Science.gov

Sample records for hepatic enzyme activity

  1. Hepatic biotransformation and antioxidant enzyme activities in Mediterranean fish from different habitat depths.

    PubMed

    Ribalta, C; Sanchez-Hernandez, J C; Sole, M

    2015-11-01

    Marine fish are threatened by anthropogenic chemical discharges. However, knowledge on adverse effects on deep-sea fish or their detoxification capabilities is limited. Herein, we compared the basal activities of selected hepatic detoxification enzymes in several species (Solea solea, Dicentrarchus labrax, Trachyrhynchus scabrus, Mora moro, Cataetix laticeps and Alepocehalus rostratus) collected from the coast, middle and lower slopes of the Blanes Canyon region (Catalan continental margin, NW Mediterranean Sea). The xenobiotic-detoxifying enzymes analysed were the phase-I carboxylesterases (CbEs), and the phase-II conjugation activities uridine diphosphate glucuronyltransferase (UDPGT) and glutathione S-transferase (GST). Moreover, some antioxidant enzyme activities, i.e., catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR), were also included in this comparative study. Because CbE activity is represented by multiple isoforms, the substrates α-naphthyl acetate (αNA) and ρ-nitrophenyl acetate (ρNPA) were used in the enzyme assays, and in vitro inhibition kinetics with dichlorvos were performed to compare interspecific CbE sensitivity. Activity of xenobiotic detoxification enzymes varied among the species, following a trend with habitat depth and body size. Thus, UDPGT and some antioxidant enzyme activities decreased in fish inhabiting lower slopes of deep-sea, whereas UDPGT and αNA-CbE activities were negatively related to fish size. A trend between CbE activities and the IC50 values for dichlorvos suggested S. solea and M. moro as potentially more sensitive to anticholinesterasic pesticides, and T. scabrus as the most resistant one. A principal component analysis considering all enzyme activities clearly identified the species but this grouping was not related to habitat depth or phylogeny. Although these results can be taken as baseline levels of the main xenobiotic detoxification enzymes in Mediterranean fish, further research is

  2. Activities of the enzymes of hepatic gluconeogenesis in periparturient dairy cows with induced fatty liver.

    PubMed

    Murondoti, Absolom; Jorritsma, Ruurd; Beynen, Anton C; Wensing, Theo; Geelen, Math J H

    2004-05-01

    The objective was to measure the activities of all the enzymes essential for hepatic gluconeogenesis in dairy cows with induced fatty liver. We aimed to induce severe fatty liver in ten experimental cows by overfeeding them during the dry period while seven control cows were maintained on a restricted diet. To induce a marked negative energy balance, the experimental cows were deprived of feed for 8 h immediately after parturition. In addition, the experimental cows were given a restricted amount of diet during the first 5 d of lactation. Liver samples were collected 1 week before and 1, 2 and 4 weeks after parturition. Before parturition, liver triacylglycerol concentrations did not differ between the two groups. After parturition, the experimental cows developed marked fatty liver as indicated by a higher level of triacylglycerols in the liver compared with the control cows. Before parturition, all gluconeogenic enzymes in the liver were lower in experimental cows than in control cows. Phosphoenolpyruvate carboxykinase, pyruvate carboxylase and propionyl-CoA carboxylase were significantly lower and fructose 1,6-bisphosphatase and glucose 6-phosphatase tended to be lower in the experimental cows. The activities of two crucial enzymes for gluconeogenesis in ruminants, i.e., phosphoenolpyruvate carboxykinase and propionyl-CoA carboxylase, remained low throughout the sampling period post partum. Activities of pyruvate carboxylase and glucose 6-phosphatase in the experimental cows post partum were upgraded to values similar to those of the control cows. The results showed that the capacity for hepatic gluconeogenesis before parturition was lower in cows with induced fatty liver than in control cows. After parturition, the low activities of crucial gluconeogenic enzymes indicated insufficient production of glucose. It is suggested that the low gluconeogenic capacity leads successively to low blood glucose concentrations, low insulin levels and high rates of

  3. Age-Related Changes in Hepatic Activity and Expression of Detoxification Enzymes in Male Rats

    PubMed Central

    Vyskočilová, Erika; Szotáková, Barbora; Skálová, Lenka; Bártíková, Hana; Hlaváčová, Jitka

    2013-01-01

    Process of aging is accompanied by changes in the biotransformation of xenobiotics and impairment of normal cellular functions by free radicals. Therefore, this study was designed to determine age-related differences in the activities and/or expressions of selected drug-metabolizing and antioxidant enzymes in young and old rats. Specific activities of 8 drug-metabolizing enzymes and 4 antioxidant enzymes were assessed in hepatic subcellular fractions of 6-week-old and 21-month-old male Wistar rats. Protein expressions of carbonyl reductase 1 (CBR1) and glutathione S-transferase (GST) were determined using immunoblotting. Remarkable age-related decrease in specific activities of CYP2B, CYP3A, and UDP-glucuronosyl transferase was observed, whereas no changes in activities of CYP1A2, flavine monooxygenase, aldo-keto reductase 1C, and antioxidant enzymes with advancing age were found. On the other hand, specific activity of CBR1 and GST was 2.4 folds and 5.6 folds higher in the senescent rats compared with the young ones, respectively. Interindividual variability in CBR1 activity increased significantly with rising age. We suppose that elevated activities of GST and CBR1 may protect senescent rats against xenobiotic as well as eobiotic electrophiles and reactive carbonyls, but they may alter metabolism of drugs, which are CBR1 and especially GSTs substrates. PMID:23971034

  4. [Isoniazid and rifampicin in the rabbit. Effect on hepatic microsomal enzyme activity].

    PubMed

    Kergueris, M F; Larousse, C; Le Normand, Y; Guillerme, G; Bourin, M

    1982-01-01

    1. Enzymatic induction or inhibition induced by isoniazid (10 mg/kg) and/or rifampicin (13 mg/kg) oral treatment of 13 days in the rabbit, is evaluated with the following parameters: --variation of antipyrine half-life measured before treatment and 24 h after the end of treatment, --cytochrome P450 content, aniline hydroxylase and aminopyrine N-demethylase activities in hepatic microsomes. Isoniazid half-life is evaluated before treatment, in order to obtain an homogeneous repartition of animals in each group: isoniazid, rifampicin, isoniazid + rifampicin and control. 2. Rifampicin treatment gives a variable enzyme induction of antipyrine metabolism, cytochrome P450 and aniline hydroxylase activity; aminopyrine N-demethylase activity is significantly inhibited. Isoniazid treatment inhibits antipyrine metabolism and increases the cytochrome P450 content.

  5. [Effect of Arnica montana tincture on some hydrolytic enzyme activities of rat liver in experimental toxic hepatitis].

    PubMed

    Iaremiĭ, I M; Meshchyshen, I F; Hrihor'ieva, N P; Kostiuk, L S

    1998-01-01

    Effects of tinctura arnica on arginase, adenosine triphosphatase, glucose-6-phosphatase and 5'-nucleotidase activities of rats liver in case of experimental toxic hepatitis have been studied. Toxic hepatitis was caused by 2 times interstomach administration of 0.25 ml oil solution of carbon tetrachloride per 100 g of animal weight. 20 mkl/100 g of tinctura arnica was administered every day per os for 14 days. The enzyme activities have been investigated at 3, 7 and 17 days. A significant demention of a studied hydrolytic enzyme activities in rats liver at intoxication of the body by CCI4 has been shown. It has been established that tinctura arnica administered per os to intoxicated animals sped up the normalization of hydrolytic enzyme activities in rat liver.

  6. Activity-based protein profiling identifies a host enzyme, carboxylesterase 1, which is differentially active during hepatitis C virus replication.

    PubMed

    Blais, David R; Lyn, Rodney K; Joyce, Michael A; Rouleau, Yanouchka; Steenbergen, Rineke; Barsby, Nicola; Zhu, Lin-Fu; Pegoraro, Adrian F; Stolow, Albert; Tyrrell, David L; Pezacki, John Paul

    2010-08-13

    Hepatitis C virus (HCV) relies on many interactions with host cell proteins for propagation. Successful HCV infection also requires enzymatic activity of host cell enzymes for key post-translational modifications. To identify such enzymes, we have applied activity-based protein profiling to examine the activity of serine hydrolases during HCV replication. Profiling of hydrolases in Huh7 cells replicating HCV identified CES1 (carboxylesterase 1) as a differentially active enzyme. CES1 is an endogenous liver protein involved in processing of triglycerides and cholesterol. We observe that CES1 expression and activity were altered in the presence of HCV. The knockdown of CES1 with siRNA resulted in lower levels of HCV replication, and up-regulation of CES1 was observed to favor HCV propagation, implying an important role for this host cell protein. Experiments in HCV JFH1-infected cells suggest that CES1 facilitates HCV release because less intracellular HCV core protein was observed, whereas HCV titers remained high. CES1 activity was observed to increase the size and density of lipid droplets, which are necessary for the maturation of very low density lipoproteins, one of the likely vehicles for HCV release. In transgenic mice containing human-mouse chimeric livers, HCV infection also correlates with higher levels of endogenous CES1, providing further evidence that CES1 has an important role in HCV propagation. PMID:20530478

  7. Effects of high sucrose diet on body and liver weight and hepatic enzyme content and activity in the rat.

    PubMed

    Peters, Leandra P; Teel, Robert W

    2003-01-01

    The effect of sucrose on the induction of hepatic and peripheral insulin resistance is well-documented. Studies show that, although oral administration of glucose does not significantly decrease total hepatic microsomal cytochrome P450 content, it causes an increase in cytosolic protein and in microsomal phospholipid and fatty acid content. In this study we examined the effects of a chronic high sucrose diet (HSD) on liver enzyme activity. Male Fisher 344 weanling rats were randomly assigned to a control diet (0% sucrose by calories, n = 10) or a diet in which starch was replaced by sucrose (65% sucrose, by calories, n = 10) for 90 days. The effects of HSD on weight gain, liver weight, hepatic microsomal cytochrome P450 (CYP450) content and glutathione-S-transferase (GST) activity were measured and compared with those fed standard lab chow. A small but statistically significant decrease in body weight (g) was seen in the sucrose-fed rats after day 50. Liver GST activity (nmol/mg protein/min) at the end of 90 days was decreased in animals maintained on HSD compared to those on the control diet, (181.7 +/- 8.0, 234.7 +/- 5.5), respectively. The liver weight and total CYP450 content in the two diet groups were not significantly different. The ratios of liver weight to body weight at the end of 90 days suggested that the livers of the HSD-fed animals were larger per gram of body weight. In addition, rats on the HSD had significantly smaller amounts of liver CYP450 1A1 and 3A2 than the rats on the control diet. These results suggest that a HSD may alter the hepatic enzyme activity which may affect the metabolism of substrates for these enzyme systems.

  8. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1.

    PubMed

    El-Bahr, S M

    2015-01-01

    Twenty-eight rats were examined in a 5-week experiment to investigate the effect of curcumin on gene expression and activities of hepatic antioxidant enzymes in rats intoxicated with aflatoxin B1 (AFB1 ). The rats were divided into four groups. Rats in 1-4 groups served as control, oral curcumin treated (15 mg/kg body weight), single i.p. dose of AFB1 (3 mg/kg body weight) and combination of single i.p. dose of AFB1 with oral curcumin treated, respectively. AFB1 Liver damage and oxidative stress were evident in untreated AFB1 -intoxicated rats as indicated by a significant elevation in hepatic transaminases, elevation in lipid peroxide biomarkers (thiobarbituric acid reactive substances; TBARS), reduction of reduced glutathione (GSH) concentration, reduction in the activities of antioxidant enzymes namely catalase (CAT), total superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) and down-regulation of gene expression of these antioxidant enzymes compared to control. Liver sections of rats intoxicated with AFB1 showed a disrupted lobular architecture, scattered necrotic cells and biliary proliferation. Administration of curcumin with AFB1 resulted in amelioration of AFB1 -induced effects compared to untreated AFB1 -intoxicated rats via an up-regulation of antioxidant enzyme gene expression, activation of the expressed genes and increase in the availability of GSH.

  9. Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats.

    PubMed

    Ikeda, Ikuo; Hamamoto, Reina; Uzu, Kazunori; Imaizumi, Katsumi; Nagao, Koji; Yanagita, Teruyoshi; Suzuki, Yuko; Kobayashi, Makoto; Kakuda, Takami

    2005-05-01

    Tea catechins, rich in (-)-epigallocatechin gallate and (-)-epicatechin gallate, or heat-treated tea catechins in which about 50% of the (-)-epigallocatechin gallate and (-)-epicatechin gallate in tea catechins was epimerized to (-)-gallocatechin gallate and (-)-catechin gallate, were fed to rats at 1% level for 23 d. Visceral fat deposition and the concentration of hepatic triacylglycerol were significantly lower in the tea catechin and heat-treated tea catechin groups than in the control group. The activities of fatty acid synthase and the malic enzyme in the liver cytosol were significantly lower in the two catechin groups than in the control group. In contrast, the activities of carnitine palmitoyltransferase and acyl-CoA oxidase in the liver homogenate were not significantly different among the three groups. These results suggest that the reduction in activities of enzymes related to hepatic fatty acid synthesis by the feeding of tea catechins or heat-treated tea catechins can cause reductions of hepatic triacylglycerol and possibly of visceral fat deposition.

  10. Activity and mRNA Levels of Enzymes Involved in Hepatic Fatty Acid Synthesis in Rats Fed Naringenin.

    PubMed

    Hashimoto, Toru; Ide, Takashi

    2015-11-01

    We investigated the physiological activity of naringenin in affecting hepatic lipogenesis and serum and liver lipid levels in rats. Rats were fed diets containing 0, 1, or 2.5 g/kg naringenin for 15 d. Naringenin at a dietary level of 2.5 g/kg significantly decreased the activities and the mRNA levels of various lipogenic enzymes and sterol regulatory element binding protein-1c (SREBP-1c) mRNA level. The activities and the mRNA levels were also 9-22% and 12-38% lower, respectively, in rats fed a 1 g/kg naringenin diet than in the animals fed a naringenin-free diet, although the differences were not significant in many cases. Naringenin at 2.5 g/kg significantly lowered serum triacylglycerol, cholesterol, and phospholipid and hepatic triacylglycerol and cholesterol. This flavonoid at 1.0 g/kg also significantly lowered these parameters except for serum triacylglycerol. Naringenin levels in serum and liver dose-dependently increased, and hepatic concentrations reached levels that can affect various signaling pathways.

  11. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis.

    PubMed

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2(-/y)) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2(-/y) mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1-7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what's more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1-7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1-7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  12. Effect of Antiviral Therapy on Serum Activity of Angiotensin Converting Enzyme in Patients with Chronic Hepatitis C

    PubMed Central

    Husic-Selimovic, Azra; Sofic, Amela; Huskic, Jasminko; Bulja, Deniz

    2016-01-01

    Introduction: Renin-angiotenzin system (RAS) is frequently activated in patients with chronic liver disease. Angiotenzin - II (AT-II), produced by angiotenzin converting enzyme (ACE), has many physiological effects, including an important role in liver fibrogenesis. Combined antiviral therapy with PEG-IFN and ribavirin besides its antiviral effect also leads to a reduction in liver parenchyma fibrosis. Aim of the study: Determining the value of ACE in serum of patients with chronic hepatitis C before and after combined antiviral therapy, as well as the value of ACE activities in sera of the control group. Materials and methods: We studied 50 patients treated at Gastroenterohepatology Department, in the time-period of four years. Value of ACE in serum was determined by Olympus AU 400 device, with application of kit “Infinity TN ACE Liquid Stable Reagent”. HCV RNA levels in sera were measured by real time PCR. HCV RNA test was performed with modular analysis of AMPLICOR and COBAS AMPLICOR HCV MONITOR test v2.0, which has proved infection and was used for quantification of the viruses and monitoring of the patients’ response to therapy. Liver histology was evaluated in accordance with the level of necroinflammation activity and stage of fibrosis. Results: Serum activities of ACE in chronic hepatitis C patients is statistically higher than the values in the control group (p=0.02). Antiviral therapy in chronic hepatitis C patients statistically decreases serum activities of ACE (p= 0.02) and indirectly affects fibrogenesis of the liver parenchyma. Correlation between ACE and ALT activity after the therapy was proved (0.3934). Conclusion: Our findings suggest that the activity of ACE in serum is a good indirect parameter of the liver damage, and could be used as an indirect prognostic factor of the level of liver parenchyma damage. Serum activity of ACE can be used as a parameter for non-invasive assessment of intensity of liver damage. PMID:27147779

  13. Thalidomide increases human hepatic cytochrome P450 3A enzymes by direct activation of the pregnane X receptor.

    PubMed

    Murayama, Norie; van Beuningen, Rinie; Suemizu, Hiroshi; Guguen-Guillouzo, Christiane; Shibata, Norio; Yajima, Kanako; Utoh, Masahiro; Shimizu, Makiko; Chesné, Christophe; Nakamura, Masato; Guengerich, F Peter; Houtman, René; Yamazaki, Hiroshi

    2014-02-17

    Heterotropic cooperativity of human cytochrome P450 (P450) 3A4/3A5 by the teratogen thalidomide was recently demonstrated by H. Yamazaki et al. ( ( 2013 ) Chem. Res. Toxicol. 26 , 486 - 489 ) using the model substrate midazolam in various in vitro and in vivo models. Chimeric mice with humanized liver also displayed enhanced midazolam clearance upon pretreatment with orally administered thalidomide, presumably because of human P450 3A induction. In the current study, we further investigated the regulation of human hepatic drug metabolizing enzymes. Thalidomide enhanced levels of P450 3A4 and 2B6 mRNA, protein expression, and/or oxidation activity in human hepatocytes, indirectly suggesting the activation of upstream transcription factors involved in detoxication, e.g., the nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR). A key event after ligand binding is an alteration of nuclear receptor conformation and recruitment of coregulator proteins that alter chromatin accessibility of target genes. To investigate direct engagement and functional alteration of PXR and CAR by thalidomide, we utilized a peptide microarray with 154 coregulator-derived nuclear receptor-interaction motifs and coregulator and nuclear receptor boxes, which serves as a sensor for nuclear receptor conformation and activity status as a function of ligand. Thalidomide and its human proximate metabolite 5-hydroxythalidomide displayed significant modulation of coregulator interaction with PXR and CAR ligand-binding domains, similar to established agonists for these receptors. These results collectively suggest that thalidomide acts as a ligand for PXR and CAR and causes enzyme induction leading to increased P450 enzyme activity. The possibilities of drug interactions during thalidomide therapy in humans require further evaluation.

  14. Hepatic P450 enzyme activity, tissue morphology and histology of mink (Mustela vison) exposed to polychlorinated dibenzofurans.

    PubMed

    Moore, Jeremy N; Newsted, John L; Hecker, Markus; Zwiernik, Matthew J; Fitzgerald, Scott D; Kay, Denise P; Zhang, Xiaowei; Higley, Eric B; Aylward, Lesa L; Beckett, Kerrie J; Budinsky, Robert A; Bursian, Steven J; Giesy, John P

    2009-08-01

    Dose- and time-dependent effects of environmentally relevant concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQ) of 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), or a mixture of these two congeners on hepatic P450 enzyme activity and tissue morphology, including jaw histology, of adult ranch mink were determined under controlled conditions. Adult female ranch mink were fed either TCDF (0.98, 3.8, or 20 ng TEQ(TCDF)/kg bw/day) or PeCDF (0.62, 2.2, or 9.5 ng TEQ(PeCDF)/kg bw/day), or a mixture of TCDF and PeCDF (4.1 ng TEQ(TCDF)/kg bw/day and 2.8 ng TEQ(PeCDF)/kg bw/day, respectively) for 180 days. Doses used in this study were approximately eight times greater than those reported in a parallel field study. Activities of the cytochrome P450 1A enzymes, ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) were significantly greater in livers of mink exposed to TCDF, PeCDF, and a mixture of the two congeners; however, there were no significant histological or morphological effects observed. It was determined that EROD and MROD activity can be used as sensitive biomarkers of exposure to PeCDF and TCDF in adult female mink; however, under the conditions of this study, the response of EROD/MROD induction occurred at doses that were less than those required to cause histological or morphological changes. PMID:19458992

  15. Comparative toxicology of tetrachlorobiphenyls in mink and rats. I. Changes in hepatic enzyme activity and smooth endoplasmic reticulum volume

    SciTech Connect

    Gillette, D.M.; Corey, R.D.; Helferich, W.G.; McFarland, J.M.; Lowenstine, L.J.; Moody, D.E.; Hammock, B.D.; Shull, L.R.

    1987-01-01

    Mink have been shown previously to be extraordinarily sensitive to polychlorinated biphenyls (PCBs) and related classes of halogenated hydrocarbons. This study explored several aspects of the acute response of mink to two purified tetrachlorobiphenyl (TCB) congeners and compared their response with that of the rat, a less sensitive and more thoroughly studied species. Young female pastel mink and young female Sprague-Dawley rats received three daily intraperitoneal injections with equimolar doses of either 2,4,2',4'-TCB or 3,4,3',4'-TCB, and were sacrificed after 7 days. Two control groups were used for each species; one was allowed free access to food and the other was pair-fed to the 3,4,3',4'-TCB treatment group. Rats remained clinically normal, while mink treated with 3,4,3',4'-TCB developed severe anorexia, diarrhea, and melena. Both species had significant increases in hepatic cytochrome P-450 content and the characteristic shift in the spectral maxima from 450 to 448 nm in the 3,4,3',4'-TCB- but not in the 2,4,2',4'-TCB-treated animals. Rats but not mink had increased activities of several hepatic monooxygenases in response to both congeners while microsomal epoxide hydrolase was increased in rats after 2,4,2',4'-TCB and in mink after 3,4,3',4'-TCB. Significant increases in the relative volume of smooth endoplasmic reticulum within hepatocytes of 2,4,2',4'-TCB-treated rats but not mink were confirmed by ultrastructural morphometry. Accumulation of both congeners was greater in adipose tissue than in the liver of either species. In both species, concentrations in adipose tissue were much greater for 2,4,2',4'-TCB than for 3,4,3',4'-TCB. PCB toxicosis in mink, as in other species, appeared to be dependent on isomeric arrangement of chlorine substituents. However, unlike other species, the toxicosis was not associated with biochemical or morphological evidence of hepatic enzyme induction.

  16. Comparison among Different Gilthead Sea Bream (Sparus aurata) Farming Systems: Activity of Intestinal and Hepatic Enzymes and 13C-NMR Analysis of Lipids

    PubMed Central

    Coco, Laura Del; Papadia, Paride; Pascali, Sandra A. De; Bressani, Giorgia; Storelli, Carlo; Zonno, Vincenzo; Fanizzi, Francesco Paolo

    2009-01-01

    In order to evaluate differences in general health and nutritional values of gilthead sea bream (Sparus aurata), the effects of semi-intensive, land-based tanks and sea-cages intensive rearing systems were investigated, and results compared with captured wild fish. The physiological state was determined by measuring the activity of three different intestinal digestive enzymes: alkaline phosphatase (ALP), leucine aminopeptidase (LAP) and maltase; and the activity of the hepatic ALP. Also, the hepatic content in protein, cholesterol, and lipid were assessed. 13C-NMR analysis for qualitative and quantitative characterization of the lipid fraction extracted from fish muscles for semi-intensive and land based tanks intensive systems was performed. The lipid fraction composition showed small but significant differences in the monounsaturated/saturated fatty acid ratio, with the semi-intensive characterized by higher monounsaturated and lower saturated fatty acid content with respect to land based tanks intensive rearing system. PMID:22253985

  17. E2 potentializes benzo(a)pyrene-induced hepatic cytochrome P450 enzyme activities in Nile tilapia at high concentrations.

    PubMed

    Rodrigues, Aline Cristina Ferreira; Moneró, Tatiana de Oliveira; Frighetto, Rosa Toyoko Shiraishi; de Almeida, Eduardo Alves

    2015-11-01

    In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia.

  18. Mechanism-based inhibitory and peroxisome proliferator-activated receptor α-dependent modulating effects of silybin on principal hepatic drug-metabolizing enzymes.

    PubMed

    Wang, Hong; Yan, Tingting; Xie, Yuan; Zhao, Min; Che, Yuan; Zhang, Jun; Liu, Huiying; Cao, Lijuan; Cheng, Xuefang; Xie, Yang; Li, Feiyan; Qi, Qu; Wang, Guangji; Hao, Haiping

    2015-04-01

    Silybin, a major pharmacologically active compound in silymarin, has been widely used in combination with other prescriptions in the clinic to treat hepatitis and a host of other diseases. Previous studies suggested that silybin is a potential inhibitor of multiple drug-metabolizing enzymes (DMEs); however, the in vitro to in vivo translation and the mechanisms involved remain established. The aim of this study was to provide a mechanistic understanding of the regulatory effects of silybin on principal DMEs. Silybin (50 or 150 mg/kg/d) was administered to mice for a consecutive 14 days. The plasma and hepatic exposure of silybin were detected; the mRNA, protein levels, and enzyme activities of principal DMEs were determined. The results demonstrated that the enzyme activities of CYP1A2, CYP2C, CYP3A11, and UGT1A1 were significantly repressed, whereas little alteration of the mRNA and protein levels was observed. Silybin inhibits these DMEs in a mechanism-based and/or substrate-competitive manner. More importantly, silybin was found to be a weak agonist of peroxisome proliferator-activated receptor (PPAR)α, as evidenced from the molecular docking, reporter gene assay, and the targeting gene expression analysis. However, silybin could significantly compromise the activation of PPARα by fenofibrate, characterized with significantly repressed expression of PPARα targeting genes, including L-FABP, ACOX1, and UGT1A6. This study suggests that silybin, despite its low bioavailability, may inhibit enzyme activities of multiple DMEs in a mechanism-based mode, and more importantly, may confer significant drug-drug interaction with PPARα agonists via the repression of PPARα activation in a competitive mode. PMID:25587127

  19. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti).

    PubMed

    Ye, Man-Hong; Nan, Yan-Lei; Ding, Meng-Meng; Hu, Jun-Bang; Liu, Qian; Wei, Wan-Hong; Yang, Sheng-Mei

    2016-01-01

    This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles. PMID:26850644

  20. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    PubMed Central

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  1. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  2. Temperature modulates hepatic carbohydrate metabolic enzyme activity and gene expression in juvenile GIFT tilapia (Oreochromis niloticus) fed a carbohydrate-enriched diet.

    PubMed

    Qiang, J; He, J; Yang, H; Wang, H; Kpundeh, M D; Xu, P; Zhu, Z X

    2014-02-01

    The effects of rearing temperature on hepatic glucokinase (GK), glucose-6-phosphatase (G6Pase) and Glucose-6-phosphate dehydrogenase (G6PD) activity and gene expression were studied in GIFT (genetically improved farmed tilapia) tilapia fed a high carbohydrate diet containing 28% crude protein, 5% crude lipid and 40% wheat starch. Triplicate groups of fish (11.28 g initial body weight) were fed the diet for 45 days at 22 °C, 28 °C or 34 °C. At the end of the trial, final body weight of juvenile at 28 °C (59.12 g) was higher than that of the fish reared at 22 °C (27.13 g) and 34 °C (43.17 g). Feed intake, feed efficiency and protein efficiency ratio were also better at 28 °C. Liver glycogen levels were higher at 28 °C, while plasma glucose levels were higher in the 22 °C group. Significant (P<0.05) effects of water temperature on enzymes activities and gene expression were observed. Hepatic GK activity and mRNA level were higher at 28 °C than at 34 °C. Higher G6Pase and G6PD activity and gene expression were observed at 22 °C. Overall, the data show that juveniles reared at 28 °C exhibited enhanced liver glycolytic capacity. In contrast, hepatic gluconeogenesis and lipogenesis were increased by low temperature (22 °C).

  3. The effects of inhibition of plasma cholinesterase and hepatic microsomal enzyme activity on cocaine, benzoylecgonine, ecgonine methyl ester, and norcocaine blood levels in pigs.

    PubMed

    Kambam, J; Mets, B; Hickman, R M; Janicki, P; James, M F; Fuller, B; Kirsch, R E

    1992-08-01

    We measured the blood levels of cocaine and its three major metabolites, benzoylecgonine, ecgonine methyl ester, and norcocaine, in three groups of male pigs weighing about 26 kg (25.75 +/- 0.25 kg) to determine the effects of inhibition of plasma cholinesterase and hepatic microsomal enzyme activity on cocaine metabolism. In addition, systemic elimination half-life, volume of distribution, and clearance of cocaine were calculated for the three groups. Group 1 pigs (n = 4) were pretreated with normal saline solution, group 2 pigs (n = 4) were pretreated with tetraisopropyl pyrophosphoramide, a specific plasma cholinesterase inhibitor, and group 3 pigs (n = 4) were pretreated with cimetidine, a hepatic microsomal enzyme inhibitor, all administered intramuscularly. Pigs were anesthetized with intravenous sodium thiopental; a carotid arterial cannula and an external jugular catheter were then inserted for the administration of cocaine and for blood sampling. Forty-five minutes later, when pigs were again completely awake, cocaine 3 mg/kg was given intravenously. Arterial blood samples were collected for the analysis of cocaine and cocaine metabolite levels just before and at 5, 10, 15, 30, 45, 60, 120, 180, and 1440 minutes after the administration of cocaine. Cocaine and cocaine metabolite blood levels were analyzed with high-pressure liquid chromatography methods and plasma cholinesterase activity was measured with a colorimetric method. The blood levels of cocaine and cocaine metabolites were significantly different among the three groups (p less than 0.05, analysis of variance). Statistically significant differences in half-life, volume of distribution and clearance were also seen among the three groups.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats.

    PubMed

    Rossi, Andrea S; Oliva, Maria E; Ferreira, Maria R; Chicco, Adriana; Lombardo, Yolanda B

    2013-05-01

    The present study analyses the effect of dietary chia seed rich in n-3 α-linolenic acid on the mechanisms underlying dyslipidaemia and liver steatosis developed in rats fed a sucrose-rich diet (SRD) for either 3 weeks or 5 months. The key hepatic enzyme activities such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), glucose-6-phosphate dehydrogenase (G-6-PDH), carnitine palmitoyltransferase-1 (CPT-1) and fatty acid oxidase (FAO) involved in lipid metabolism and the protein mass levels of sterol regulatory element-binding protein-1 (SREBP-1) and PPARα were studied. (1) For 3 weeks, Wistar rats were fed either a SRD with 11 % of maize oil (MO) as dietary fat or a SRD in which chia seed replaced MO (SRD+Chia). (2) A second group of rats were fed a SRD for 3 months. Afterwards, half the rats continued with the SRD while for the other half, MO was replaced by chia for 2 months (SRD+Chia). In a control group, maize starch replaced sucrose. Liver TAG and the aforementioned parameters were analysed in all groups. The replacement of MO by chia in the SRD prevented (3 weeks) or improved/normalised (5 months) increases in dyslipidaemia, liver TAG, FAS, ACC and G-6-PDH activities, and increased FAO and CPT-1 activities. Protein levels of PPARα increased, and the increased mature form of SREBP-1 protein levels in the SRD was normalised by chia in both protocols (1 and 2). The present study provides new data regarding some key mechanisms related to the fate of hepatic fatty acid metabolism that seem to be involved in the effect of dietary chia seed in preventing and normalising/improving dyslipidaemia and liver steatosis in an insulin-resistant rat model.

  5. Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis.

    PubMed

    Yorulmaz, Hatice; Ozkok, Elif; Erguven, Mine; Ates, Gulten; Aydın, Irfan; Tamer, Sule

    2015-01-01

    We aimed to investigate the effects of prior treatment of simvastatin on mitochondrial enzyme, ghrelin, and hypoxia-inducible factor 1 α (HIF-1 α) on hepatic tissue in rats treated with Lipopolysaccharides (LPS) during the early phase of sepsis. Rats were divided into four groups: control, LPS (20 mg/kg, i.p.), Simvastatin (20 mg/kg, p.o.), and LPS + Simvastatin group. We measured citrate synthase, complex I, II, I-III, II-III enzymes activities, serum and tissue levels of TNF-α, IL-10 using ELISA. Liver sections underwent histopathologic examination and TNF-α, IL-10, HIF-1α and ghrelin immunoreactivity were examined using immunohistochemistry methods. There were no differences in all groups for mitochondrial enzyme activities. In terms of both ELISA and immunohistochemistry findings; the levels of serum and tissue TNF-α and IL-10 were higher in the experimental groups than controls (P < 0.05). In the LPS group, the hepatocyte cell membrane and sinusoid structure were damaged. In the Simvastatin +LPS group, hepatocytes and sinusoidal cord structure were partially improved. For HIF-1α, in all experimental groups immunoreactivity was increased (P < 0.05). In the Simvastatin group, Ghrelin levels were increased in comparison with the other groups (P < 0.01). Ghrelin levels were greatly decreased in LPS (P < 0.05). We observed that the degree of hepatocellular degeneration was partially reduced depending on the dosage and duration of prior simvastatin treatment with LPS, probably due to alterations of Ghrelin and HIF-1α levels. PMID:26064259

  6. Serum hepatic enzyme activity in relation to semen quality and serum reproductive hormone levels among Estonian fertile Men.

    PubMed

    Ehala-Aleksejev, K; Punab, M

    2016-01-01

    The aim of this study was to investigate the relations of basic semen parameters and reproductive hormones with alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT). In addition, to examine possible interaction between adiposity, alcohol consumption, and liver tests in relation to male reproductive health, standard semen analysis was performed and serum levels of reproductive hormones and liver tests were measured in 245 male partners of pregnant women at a University Hospital Andrology Centres in Estonia. Quartile analysis revealed that after adjustment for covariates GGT was negatively related to sperm concentration and total sperm count. These significant changes appeared from a GGT >35.5 U/L. Next to these changes ALT was not related to sperm parameters. Both enzymes, GGT and ALT, were not related to reproductive hormones. Alcohol consumption was positively related to GGT and in cases with elevated GGT alcohol use was negatively related to sperm concentration and total sperm count. Alcohol consumption was positively related to body mass index (BMI) and waist circumference (WC). Our findings also confirm results of previous studies that BMI and WC are associated positively with ALT and GGT. According to the study, increased GGT activity might represent a possible connection between adiposity, alcohol consumption, and semen quality.

  7. Effect of High Dietary Carbohydrate on the Growth Performance, Blood Chemistry, Hepatic Enzyme Activities and Growth Hormone Gene Expression of Wuchang Bream (Megalobrama amblycephala) at Two Temperatures.

    PubMed

    Zhou, Chuanpeng; Ge, Xianping; Liu, Bo; Xie, Jun; Chen, Ruli; Ren, Mingchun

    2015-02-01

    The effects of high carbohydrate diet on growth, serum physiological response, and hepatic heat shock protein 70 expression in Wuchang bream were determined at 25°C and 30°C. At each temperature, the fish fed the control diet (31% CHO) had significantly higher weight gain, specific growth rate, protein efficiency ratio and hepatic glucose-6-phosphatase activities, lower feed conversion ratio and hepatosomatic index (HSI), whole crude lipid, serum glucose, hepatic glucokinase (GK) activity than those fed the high-carbohydrate diet (47% CHO) (p<0.05). The fish reared at 25°C had significantly higher whole body crude protein and ash, serum cholesterol and triglyceride, hepatic G-6-Pase activity, lower glycogen content and relative levels of hepatic growth hormone (GH) gene expression than those reared at 30°C (p<0.05). Significant interaction between temperature and diet was found for HSI, condition factor, hepatic GK activity and the relative levels of hepatic GH gene expression (p<0.05).

  8. Dietary D-psicose, a C-3 epimer of D-fructose, suppresses the activity of hepatic lipogenic enzymes in rats.

    PubMed

    Matsuo, T; Baba, Y; Hashiguchi, M; Takeshita, K; Izumori, K; Suzuki, H

    2001-01-01

    D-Psicose (D-ribo-2-hexulose), a C-3 epimer of D-fructose, is present in small quantities in commercial carbohydrate complexes or agricultural products. Wistar male rats were fed experimental diets which consisted of 5% D-psicose, cellulose, D-fructose or D-glucose for 28 days. Abdominal adipose tissue weight was significantly lower (P < 0.05) in rats fed the D-psicose diet than in rats fed a D-fructose and D-glucose diets, even though the four dietary groups were offered the same amount throughout the experimental period. Fatty acid synthase and glucose 6-phosphate dehydrogenase activities in the liver were significantly lower (P < 0.05) in rats fed the D-psicose diet than in rats fed the D-fructose and D-glucose diets. However, lipoprotein lipase activities in the heart, soleus muscle and perirenal adipose tissue were the same. These results suggest that a supplement of D-psicose in the diet suppresses hepatic lipogenic enzyme activities. The lower abdominal fat accumulation in rats fed a D-psicose diet might result from lower lipogenesis in the liver.

  9. Interaction of cadmium with hepatic and testicular microsomal enzymes

    SciTech Connect

    Wetzel, L.T.

    1982-01-01

    Cadmium, a ubiquitous environmental pollutant, inhibits or activates a number of microsomal enzymes. Among the enzymes affected by cadmium are cytochrome P-450 containing mixed-function oxidases (MFO) which are present in both the liver and testis. Cadmium affects MFO activity, and as a result, cadmium-induced alterations in BP metabolism might alter BP toxicity in the liver or testis. In addition, MFO essential for testosterone production are located in the testis and cadmium-MFO interactions in the testis might alter androgen production. Therefore studies were carried out to evaluate the interaction of cadmium with heptic and testicular MFO. The results indicated that cadmium affected the activities of hepatic and testicular MFO and in so doing may influence the toxicity of BP and other chemicals in liver and testes. In addition, exposure to metals may also compromise testicular androgen biosynthesis.

  10. The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state

    PubMed Central

    Alarcon, Valentina; Hernández, Sergio; Rubio, Lorena; Alvarez, Francisca; Flores, Yvo; Varas-Godoy, Manuel; De Ferrari, Giancarlo V.; Kann, Michael; Villanueva, Rodrigo A.; Loyola, Alejandra

    2016-01-01

    With about 350 million people chronically infected around the world hepatitis B is a major health problem. Template for progeny HBV synthesis is the viral genome, organized as a minichromosome (cccDNA) inside the hepatocyte nucleus. How viral cccDNA gene expression is regulated by its chromatin structure; more importantly, how the modulation of this structure impacts on viral gene expression remains elusive. Here, we found that the enzyme SetDB1 contributes to setting up a repressed cccDNA chromatin state. This repressive state is activated by the histone lysine demethylase-1 (LSD1). Consistently, inhibiting or reducing LSD1 levels led to repression of viral gene expression. This correlates with the transcriptionally repressive mark H3K9 methylation and reduction on the activating marks H3 acetylation and H3K4 methylation on viral promoters. Investigating the importance of viral proteins we found that LSD1 recruitment to viral promoters was dependent on the viral transactivator protein HBx. Moreover, the histone methyltransferase Set1A and HBx are simultaneously bound to the core promoter, and Set1A expression correlates with cccDNA H3K4 methylation. Our results shed light on the mechanisms of HBV regulation mediated by the cccDNA chromatin structure, offering new therapeutic targets to develop drugs for the treatment of chronically infected HBV patients. PMID:27174370

  11. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I.

    PubMed Central

    Park, E A; Mynatt, R L; Cook, G A; Kashfi, K

    1995-01-01

    The regulation of hepatic mitochondrial carnitine palmitoyltransferase-I (CPT-I) was studied in rats during starvation and insulin-dependent diabetes and in rat H4IIE cells. The Vmax. for CPT-I in hepatic mitochondrial outer membranes isolated from starved and diabetic rats increased 2- and 3-fold respectively over fed control values with no change in Km values for substrates. Regulation of malonyl-CoA sensitivity of CPT-I in isolated mitochondrial outer membranes was indicated by an 8-fold increase in Ki during starvation and by a 50-fold increase in Ki in the diabetic state. Peroxisomal and microsomal CPT also had decreased sensitivity to inhibition by malonyl-CoA during starvation. CPT-I mRNA abundance was 7.5 times greater in livers of 48-h-starved rats and 14.6 times greater in livers of insulin-dependent diabetic rats compared with livers of fed rats. In H4IIE cells, insulin increased CPT-I sensitivity to inhibition by malonyl-CoA in 4 h, and sensitivity continued to increase up to 24 h after insulin addition. CPT-I mRNA levels in H4IIE cells were decreased by insulin after 4 h and continued to decrease so that at 24 h there was a 10-fold difference. The half-life of CPT-I mRNA was 4 h in the presence of actinomycin D or with actinomycin D plus insulin. These results suggest that insulin regulates CPT-I by inhibiting transcription of the CPT-I gene. Images Figure 2 Figure 4 PMID:7575418

  12. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.

    PubMed

    Je, Jae-Young; Lee, Da-Bin

    2015-06-01

    Naturally occurring phenolic compounds are widely found in plants. Here, the phenolic composition and hepatoprotective effect of the butanolic extract (BE) from Nelumbo nucifera leaves against H2O2-induced hepatic damage in cultured hepatocytes were investigated. BE showed high total phenol and flavonoid contents, and major phenolic compounds are quercetin, catechin, ferulic acid, rutin, and protocatechuic acid by HPLC analysis. BE effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) cation radicals (IC50 values of 5.21 μg mL(-1) for DPPH and 6.22 μg mL(-1) for ABTS(+)) and showed strong reducing power. Pretreatment of BE prior to 650 μM H2O2 exposure markedly increased cell viability and suppressed H2O2-induced intracellular reactive oxygen species generation and AAPH-induced cell membrane lipid peroxidation. In addition, BE up-regulated intracellular glutathione levels under normal and oxidative stress conditions. Notably, the hepatoprotective effect of BE was directly correlated with the increased expression of superoxide dismutase-1 (SOD-1) by 0.62-fold, catalase (CAT) by 0.42-fold, and heme oxygenase-1 (HO-1) by 2.4-fold. Pretreatment of BE also increased the nuclear accumulation of Nrf2 by 8.1-fold indicating that increased SOD-1, CAT, and HO-1 expressions are Nrf2-mediated. PMID:25962859

  13. Inhibition of the hepatitis C virus helicase-associated ATPase activity by the combination of ADP, NaF, MgCl2, and poly(rU). Two ADP binding sites on the enzyme-nucleic acid complex.

    PubMed

    Porter, D J

    1998-03-27

    Hepatitis C virus (HCV) helicase has an intrinsic ATPase activity and a nucleic acid (poly(rU))-stimulated ATPase activity. The poly(rU)-stimulated ATPase activity was inhibited by F- in a time-dependent manner during ATP hydrolysis. Inhibition was the result of trapping an enzyme-bound ADP-poly(rU) ternary complex generated during the catalytic cycle and was not the result of generating enzyme-free ADP that subsequently inhibited the enzyme. However, catalysis was not required for efficient inhibition by F-. The stimulated and the intrinsic ATPase activities were also inhibited by treatment of the enzyme with F-, ADP, and poly(rU). The inhibited enzyme slowly recovered (t1/2 = 23 min) ATPase activity after a 2000-fold dilution into assay buffer. The onset of inhibition by 500 microM ADP and 15 mM F- in the absence of nucleic acid was very slow (t1/2 > 40 min). However, the sequence of addition of poly(rU) to a diluted solution of ADP/NaF-treated enzyme had a profound effect on the extent of inhibition. If the ADP/NaF-treated enzyme was diluted into an assay that lacked poly(rU) and the assay was subsequently initiated with poly(rU), the treated enzyme was not inhibited. Alternatively, if the treated enzyme was diluted into an assay containing poly(rU), the enzyme was inhibited. ATP protected the enzyme from inhibition by ADP/NaF. The stoichiometry between ADP and enzyme monomer in the inhibited enzyme complex was 2, as determined from titration of the ATPase activity ([ADP]/[E] = 2.2) and from the number of radiolabeled ADP bound to the inhibited enzyme ([ADP]/[E] = 1.7) in the presence of excess NaF, MgCl2, and poly(rU). The Hill coefficient for titration of ATPase activity with F- (n = 2.8) or MgCl2 (n = 2.1) in the presence of excess ADP and poly(rU) suggested that multiple F- and Mg2+ were involved in forming the inhibited enzyme complex. The stoichiometry between (dU)18, a defined oligomeric nucleic acid substituting for poly(rU), and enzyme monomer in the

  14. Mutagenic activation and detoxification of benzo[a]pyrene in vitro by hepatic cytochrome P450 1A1 and phase II enzymes in three meat-producing animals.

    PubMed

    Darwish, W; Ikenaka, Y; Eldaly, E; Ishizuka, M

    2010-01-01

    The mutagenic activation activity of hepatic microsomes from three meat-producing animals (cattle, deer and horses) was compared with those of rats as a reference species. In the Ames Salmonella typhimurium TA98 assay, the liver microsomes of all examined animals mutagenically activated benzo[a]pyrene, an ideal promutagens, in terms of production of histidine-independent revertant colonies. The microsomes of horses had the highest ability to produce revertant colonies of the examined animals under both low and high substrate concentrations. Inhibition of this mutagenic activity using alpha-naphthoflavone, anti-rat CYP1A1, CYP3A2 and CYP2E1 antibodies suggests that this activity was mainly because of CYP1A1 in these animals as well as in rats. The addition of co-factors for two phase II enzymes, microsomal UDP glucoronosyl transferase and cytosolic glutathione-S-transferase, reduced the production of the revertant colonies in a concentration-dependent manner. Interestingly, horses had the highest reduction rate among the examined animals, suggesting that phase II enzymes play a great role in producing a state of balance between the bioactivation and detoxification of xenobiotics in these meat-producing animals. This report is the first to investigate the mutagenic activation activity of the hepatic microsomes and the role of phase II enzymes against this activity in meat-producing animals.

  15. Measurement of enzyme activity.

    PubMed

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  16. Photoperiodism and Enzyme Activity

    PubMed Central

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  17. Pericholecystic hepatic activity in cholescintigraphy

    SciTech Connect

    Smith, R.; Rosen, J.M.; Gallo, L.N.; Alderson, P.O.

    1985-09-01

    Gallbladder nonvisualization in cholescintigraphy has been shown to be a reliable finding in acute cholecystitis. In some cholescintigrams, the authors have observed faintly increased pericholecystic hepatic activity in conjunction with gallbladder nonvisualization. To determine the frequency and significance of the pericholecystic hepatic activity finding, they evaluated 334 consecutive adult patients who had cholescintigrams with technetium-99m diisopropylphenylcarboamoyl iminodiacetic acid. Pericholecystic hepatic activity was seen in 21% of the abnormal scans demonstrating gallbladder nonvisualization but in none of the other scans. Thirteen of these patients underwent surgery; 11 (85%) were found to have acute cholecystitis, and two (15%) had chronic cholecystitis. The pericholecystic hepatic activity sign is not specific for gangrenous cholecystitis or gallbladder perforation but does reliably indicate inflammatory gallbladder disease and is associated with a relatively high incidence of cholecystitis complicated by perforation.

  18. Effects of methapyrilene on rat hepatic xenobiotic metabolizing enzymes and liver morphology.

    PubMed

    Graichen, M E; Neptun, D A; Dent, J G; Popp, J A; Leonard, T B

    1985-02-01

    Short-term treatment of rats with hepatocarcinogens elicits a consistent pattern of phenotypic changes in hepatic drug metabolizing enzymes, the most striking of which is a marked increase in microsomal epoxide hydrolase (EH) activity. The antihistaminic drug methapyrilene induces a high incidence of hepatocellular carcinoma in F-344 rats. The studies reported here were designed to assess the effects of methapyrilene on hepatic EH activity, cytochrome P-450-dependent mixed-function oxidase activities, liver morphology, and liver-derived serum enzymes. Male F-344 rats were treated with three daily oral doses of methapyrilene-HCl, up to 300 mg/kg/day, and were sacrificed 48 hr after the last dose. Hepatic microsomal EH and cytosolic DT-diaphorase activities were increased in a dose-related fashion, to 420 and 230% of control, respectively. Cytochrome P-450 content and benzphetamine-N-demethylase and ethoxycoumarin-O-deethylase activities were concomitantly decreased to 35-50% of control. Serum gamma-glutamyl transpeptidase and alanine aminotransferase activities were elevated 22- to 27-fold, and serum bile acids to 36-fold by treatment with methapyrilene. Periportal lesions, characterized by inflammation, nuclear and nucleolar enlargement, bile duct hyperplasia, and hepatocellular necrosis, were observed following methapyrilene administration. The severity of the periportal lesion correlated with elevations in the serum chemistry parameters. The increases noted in microsomal EH activity supports the suggestion that this enzyme may be a useful biochemical marker for exposure to hepatocarcinogens. PMID:2859228

  19. Leflunomide Induces Pulmonary and Hepatic CYP1A Enzymes via Aryl Hydrocarbon Receptor.

    PubMed

    Patel, Ananddeep; Zhang, Shaojie; Paramahamsa, Maturu; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-12-01

    Emerging evidence indicates that the aryl hydrocarbon receptor (AhR) plays a crucial role in normal physiologic homeostasis. Additionally, aberrant AhR signaling leads to several pathologic states in the lung and liver. Activation of AhR transcriptionally induces phase I (CYP1A) detoxifying enzymes. Although the effects of the classic AhR ligands such as 3-methylcholanthrene and dioxins on phase 1 enzymes are well studied in rodent lung, liver, and other organs, the toxicity profiles limit their use as therapeutic agents in humans. Hence, there is a need to identify and investigate nontoxic AhR ligands not only to understand the AhR biology but also to develop the AhR as a clinically relevant therapeutic target. Leflunomide is a Food and Drug Administration-approved drug in humans that is known to have AhR agonist activity in vitro. Whether it activates AhR and induces phase 1 enzymes in vivo is unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic CYP1A enzymes in C57BL/6J wild-type mice, but not in AhR-null mice. We performed real-time reverse-transcription polymerase chain reaction analyses for CYP1A1/2 mRNA expression, western blot assays for CYP1A1/2 protein expression, and ethoxyresorufinO-deethylase assay for CYP1A1 catalytic activity. Leflunomide increased CYP1A1/A2 mRNA, protein, and enzymatic activities in wild-type mice. In contrast, leflunomide failed to increase pulmonary and hepatic CYP1A enzymes in AhR-null mice. In conclusion, we provide evidence that leflunomide induces pulmonary and hepatic CYP1A enzymes via the AhR.

  20. Determination of lipolytic enzyme activities.

    PubMed

    Jaeger, Karl-Erich; Kovacic, Filip

    2014-01-01

    Pseudomonas aeruginosa is a versatile human opportunistic pathogen that produces and secretes an arsenal of enzymes, proteins and small molecules many of which serve as virulence factors. Notably, about 40 % of P. aeruginosa genes code for proteins of unknown function, among them more than 80 encoding putative, but still unknown lipolytic enzymes. This group of hydrolases (EC 3.1.1) is known already for decades, but only recently, several of these enzymes have attracted attention as potential virulence factors. Reliable and reproducible enzymatic activity assays are crucial to determine their physiological function and particularly assess their contribution to pathogenicity. As a consequence of the unique biochemical properties of lipids resulting in the formation of micellar structures in water, the reproducible preparation of substrate emulsions is strongly dependent on the method used. Furthermore, the physicochemical properties of the respective substrate emulsion may drastically affect the activities of the tested lipolytic enzymes. Here, we describe common methods for the activity determination of lipase, esterase, phospholipase, and lysophospholipase. These methods cover lipolytic activity assays carried out in vitro, with cell extracts or separated subcellular compartments and with purified enzymes. We have attempted to describe standardized protocols, allowing the determination and comparison of enzymatic activities of lipolytic enzymes from different sources. These methods should also encourage the Pseudomonas community to address the wealth of still unexplored lipolytic enzymes encoded and produced by P. aeruginosa.

  1. Induction of hepatic enzymes by methaqualone and effect on warfarin-induced hypoprothrombinemia.

    PubMed

    Mathur, P P; Smyth, R D; Herczeg, T; Reavey-Cantwell, N H

    1976-01-01

    The effect of methaqualone on the induction of hepatic enzymes was evaluated in rats and compared with that of phenobarbital by measuring effects on hexobarbital and methaqualone hypnosis, plasma and tissue levels of methaqualone, hepatic aniline hydroxylase and aminopyrine demethylase activity and warfarin-induced hypoprothrombinemia. Maximal reductions in hexobarbital hypnosis occurred 3 days after daily administration of 60 mg of methaqualone per kg per day. At this time, the activities of aniline hydroxylase and aminopyrine demethylase were increased 60 and 139%, respectively, and hepatic microsomal proteins increased 15% above controls in methaqualone-pretreated animals. Methaqualone altered its own metabolism as demonstrated by a 48% reduction in methaqualone hypnosis in pretreated animals. The extent and duration of induction by phenobarbital was considerably greater than methaqualone in all experiments. Methaqualone pretreatment did not affect warfarin-induced hypoprothrombinemia, whereas phenobarbital-pretreated animals showed a 32 to 64% reduction in response to the anticoagulant. These studies indicate that methaqualone is a relatively weak inducer of hepatic drug-metabolizing enzymes and has no effect on the anticoagulant acitivty of warfarin.

  2. A comparison of the inductive effects of phenobarbital, methaqualone, and methyprylon on hepatic mixed function oxidase enzymes in the rat.

    PubMed

    Reinke, L A; O'Connor, M F; Piepho, R W; Stohs, S J

    1975-05-01

    The effects of equal doses of three sedative-hypnotics, phenobarbital, methaqualone, and methyprylon, on the hepatic mixed function oxidase enzymes of the rat were investigated and compared. After 5 days of pretreatment, phenobarbital and methyprylon significantly increased aminopyrine demethylation, aniline hydroxylation, and cytochrome P-450 content in hepatic microsomes. Methaqualone pretreatment only increased hepatic aminopyrine demethylase activity and wet liver weights. After 29 days of pretreatment, phenobarbital significantly increases aminopyrine demethylase, aniline hydroxylase activity, liver weight and cytochrome P-450 content. Methaqualone only produced a significant increase in wet liver weight.

  3. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes.

    PubMed

    Kubínová, R; Machala, M; Minksová, K; Neca, J; Suchý, V

    2001-03-01

    Possible chemoprotective effects of the naturally occurring alkaloid boldine, a major alkaloid of boldo (Peumus boldus Mol.) leaves and bark, including in vitro modulations of drug-metabolizing enzymes in mouse hepatoma Hepa-1 cell line and mouse hepatic microsomes, were investigated. Boldine manifested inhibition activity on hepatic microsomal CYP1A-dependent 7-ethoxyresorufin O-deethylase and CYP3A-dependent testosterone 6 beta-hydroxylase activities and stimulated glutathione S-transferase activity in Hepa-1 cells. In addition to the known antioxidant activity, boldine could decrease the metabolic activation of other xenobiotics including chemical mutagens. PMID:11265593

  4. Effects of musk xylene and musk ketone on rat hepatic cytochrome P450 enzymes.

    PubMed

    Lehman-McKeeman, L D; Caudill, D; Vassallo, J D; Pearce, R E; Madan, A; Parkinson, A

    1999-12-20

    The purpose of the present work was to characterize the effect of musk xylene (MX) and musk ketone (MK) treatment on rat hepatic cytochrome P450 enzymes. Male F344 rats were dosed orally with MX (10, 50 or 200 mg/kg) or MK (20, 100 or 200 mg/kg) for 7 days, after which CYP1A, 2B and 3A enzyme activities and protein levels were determined. MX treatment resulted in a two- to four-fold increase in the activity of CYP1A, 2B and 3A enzymes. For CYP1A and 3A, these changes were consistent with small increases in immunoreactive proteins. However, for CYP2B, despite only a three-fold increase in enzyme activity, protein levels were increased nearly 50-fold relative to control. This induction occurred by transcriptional activation of the CYP2B1 gene as evidenced by increased steady state CYP2B1 mRNA levels. In contrast to MX, MK treatment increased CYP2B activity, protein and mRNA levels. However MK treatment also increased CYP1A enzyme activity nearly 30-fold higher than control rats, a profile that was markedly different from MX, and very different from its effects in mice (Stuard, S.B., Caudill, D., Lehman-Mc-Keeman, L.D., 1997. Characterization of the effects of musk ketone on mouse cytochrome P450 enzymes. Fund. Appl. Toxicol. 40, 264-271). These results indicate that in rats, MX is an inducer of CYP2B enzymes, but these enzymes are not functionally active. In contrast, MK also induces CYP2B enzymes, with no concurrent inactivation. MK also exhibits a unique pattern of cytochrome P450 induction by increasing both CYP1A and CYP2B in rats.

  5. Epigenetic effects of dietary butyrate on hepatic histone acetylation and enzymes of biotransformation in chicken.

    PubMed

    Mátis, Gábor; Neogrády, Zsuzsanna; Csikó, György; Gálfi, Péter; Fébel, Hedvig; Jemnitz, Katalin; Veres, Zsuzsanna; Kulcsár, Anna; Kenéz, Akos; Huber, Korinna

    2013-12-01

    The aim of the study was to investigate the in vivo epigenetic influences of dietary butyrate supplementation on the acetylation state of core histones and the activity of drug-metabolising microsomal cytochrome P450 (CYP) enzymes in the liver of broiler chickens in the starter period. One-day-old Ross 308 broilers were fed a starter diet without or with sodium butyrate (1.5 g/kg feed) for 21 days. After slaughtering, nucleus and microsome fractions were isolated from the exsanguinated liver by multi-step differential centrifugation. Histone acetylation level was detected from hepatocyte nuclei by Western blotting, while microsomal CYP activity was examined by specific enzyme assays. Hyperacetylation of hepatic histone H2A at lysine 5 was observed after butyrate supplementation, providing modifications in the epigenetic regulation of cell function. No significant changes could be found in the acetylation state of the other core histones at the acetylation sites examined. Furthermore, butyrate did not cause any changes in the drugmetabolising activity of hepatic microsomal CYP2H and CYP3A37 enzymes, which are mainly involved in the biotransformation of most xenobiotics in chicken. These data indicate that supplementation of the diet with butyrate probably does not have any pharmacokinetic interactions with simultaneously applied xenobiotics.

  6. Enzyme activities in activated sludge flocs.

    PubMed

    Yu, Guang-Hui; He, Pin-Jing; Shao, Li-Ming; Lee, Duu-Jong

    2007-12-01

    This study quantified the activities of enzymes in extracellular polymeric substances (EPS) and in pellets. Seven commonly adopted extraction schemes were utilized to extract from aerobic flocs the contained EPS, which were further categorized into loosely bound (LB) and tightly bound (TB) fractions. Ultrasonication effectively extracted the EPS from sludge flocs. Enzyme assay tests showed that the protease activity was localized mainly on the pellets, alpha-amylase and alpha-glucosidase activities were largely bound with LB-EPS, and few protease, alpha-amylase, or alpha-glucosidase activities were associated with the TB-EPS fraction. There exists no correlation between the biochemical compositions of EPS and the distribution of enzyme activities in the sludge matrix. The 44-65% of alpha-amylase and 59-100% of alpha-glucosidase activities noted with the LB-EPS indicate heterogeneous hydrolysis patterns in the sludge flocs with proteins and carbohydrates.

  7. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of

  8. Age differences affecting induction of hepatic drug metabolizing enzymes by methaqualone and phenobarbital in the rat.

    PubMed

    Mathur, P P; Boren, J A; Smyth, R D; Reavey-Cantwell, N H

    1975-05-01

    Methaqualone pretreatment for 3 or 6 days caused an induction of hepatic enzymes in the young male rat as measured by a reduction in hexobarbital-hypnosis. However, methaqualone pretreatment had no effect on the hexobarbital-hypnotic response in older male rats. Phenobarbital was a more potent enzyme inducer than methaqualone, and caused induction of liver enzymes in both age groups.

  9. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    PubMed Central

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  10. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  11. Serum enzyme activities after cardioversion

    PubMed Central

    Mandecki, Tadeusz; Giec, Leszek; Kargul, Włodzimierz

    1970-01-01

    Serum aspartate aminotransferase (SGOT), alanine aminotransferase (SGPT), creatinine phosphokinase (CPK), and butyric acid dehydrogenase (BDH) were determined in 94 patients before, 1½ hours, and 24 hours after cardioversion. An increase in SGOT and CPK activity was observed 24 hours after cardioversion in the group of patients treated with two or more DC shocks. The importance of this enzyme activity increase is discussed. It originates in the skeletal muscles and probably has no clinical significance, as no other signs of myocardial damage were observed simultaneously in a large group of patients. PMID:5470040

  12. Evaluation of a rapid enzyme immunoassay for diagnosis of hepatic amoebiasis.

    PubMed Central

    Kraoul, L; Adjmi, H; Lavarde, V; Pays, J F; Tourte-Schaefer, C; Hennequin, C

    1997-01-01

    We compared the capability of rapid enzyme immunoassay (EIA) to detect antiamoebic antibodies during hepatic amoebiasis with those of indirect hemagglutination and latex agglutination. EIA is simple to perform and rapid (20 min) and does not require any special equipment (optical reading is sufficient). EIA of 143 sera (including 43 from patients with proven hepatic amoebic abscess, 33 from patients with other hepatic disorders and/or parasitic infections, and 67 from healthy individuals) yielded a specificity, a sensitivity, and positive and negative predictive values of 100, 93, 100, and 97.1, respectively. This test could thus be considered another valuable tool for the diagnosis of hepatic amoebiasis. PMID:9163475

  13. Changes in blood metals, hematology and hepatic enzyme activities in lactating cows reared in the vicinity of a lead-zinc smelter.

    PubMed

    Mohajeri, G; Norouzian, M A; Mohseni, M; Afzalzadeh, A

    2014-06-01

    The present study examines blood metals levels and health parameters in dairy cows reared in areas around a Pb-Zn industrial complex located near the city of Zanjan-Iran. Blood samples (n = 27) were collected from cows reared around the smelter. Blood samples (n = 25) were also collected from cows reared in areas where chances of Pb contamination of soil, water and fodder do not exist, to serve as reference. The mean blood Pb level in cows around the smelter (1.09 ± 0.26 µg/mL) was higher than the cows from the reference area (0.72 ± 0.25 µg/mL). Hematocrit (PCV) levels decreased in cows reared in the near of smelter (24.37 % ± 2.22 %) compared to the reference site (27.54 % ± 2.87 %). Hemoglobin (Hb) concentration and mean corpuscular Hb concentration value in cows from the area around the smelter were statistically lower than the cows reared in reference area. Activities of alanine transaminase and aspartate aminotransferase (IU/l) were significantly higher in cows around the smelter as compared to reference animals.

  14. Suppressive effect of accumulated aluminum trichloride on the hepatic microsomal cytochrome P450 enzyme system in rats.

    PubMed

    Zhu, Yanzhu; Han, Yanfei; Zhao, Hansong; Li, Jing; Hu, Chongwei; Li, Yanfei; Zhang, Zhigang

    2013-01-01

    Aluminum (Al) is a low toxicological metal and can accumulate in the liver. The hepatic microsomal cytochrome P450 enzyme system (CYPS) plays important role in the transformation of the toxic materials. It is not clear if the CYPS is affected by Al exposure. Thus, the aim of this study is to investigate the effects of aluminum trichloride (AlCl(3)) on CYPS in rats. Forty male Wistar rats (5weeks old) weighing 110-120g were randomly allocated and orally exposed to 0, 64.18, 128.36 and 256.72mg/kg body weight (BW) AlCl(3) in drinking water for 120days. The body weight (BW) of rats, hepatosomatic index (HSI), hepatic Al content, the concentrations of cytochrome P450 (CYP450), cytochrome B5 (B5), microsomal protein and the activities of NADPH-cytochrome c reductase (CR), aminopyrin N-demethylase (AND), erythromycin N-demethylase (ERND) and aniline-4-hydeoxylase (AH) were assessed at the end of the experiment. The results showed that the increase in Al concentration decreased BW, HIS, concentrations of CYP450, B5, microsomal protein and the activity of CR, AND, ERND and AH in hepatic microsomes. The results revealed that exposure to AlCl(3) inhibited the microsomal CYP450 dependent enzyme system of liver. Our findings suggest that long term daily exposure of AlCl(3) exerts the suppressive effects and thus may cause dysfunction of hepatic CYP450 dependent enzyme system of rat.

  15. Effect of herbal teas on hepatic drug metabolizing enzymes in rats.

    PubMed

    Maliakal, P P; Wanwimolruk, S

    2001-10-01

    We have investigated the effect of herbal teas (peppermint, chamomile and dandelion) on the activity of hepatic phase I and phase II metabolizing enzymes using rat liver microsomes. Female Wistar rats were divided into six groups (n = 5 each). Three groups had free access to a tea solution (2%) while the control group had water. Two groups received either green tea extract (0.1%) or aqueous caffeine solution (0.0625%). After four weeks of pretreatment, different cytochrome P450 (CYP) isoforms and phase II enzyme activities were determined by incubation of liver microsomes or cytosol with appropriate substrates. Activity of CYP1A2 in the liver microsomes of rats receiving dandelion, peppermint or chamomile tea was significantly decreased (P < 0.05) to 15%, 24% and 39% of the control value, respectively. CYP1A2 activity was significantly increased by pretreatment with caffeine solution. No alterations were observed in the activities of CYP2D and CYP3A in any group of the pretreated rats. Activity of CYP2E in rats receiving dandelion or peppermint tea was significantly lower than in the control group, 48% and 60% of the control, respectively. There was a dramatic increase (244% of control) in the activity of phase II detoxifying enzyme UDP-glucuronosyl transferase in the dandelion tea-pretreated group. There was no change in the activity of glutathione-S-transferase. The results suggested that, like green and black teas, certain herbal teas can cause modulation of phase I and phase II drug metabolizing enzymes.

  16. Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats

    PubMed Central

    Jang, Han I; Do, Gyeong-Min; Lee, Hye Min; Ok, Hyang Mok; Shin, Jae-Ho

    2014-01-01

    BACKGROUND/OBJECTIVES This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity. PMID:24944771

  17. Complement activation in discordant hepatic xenotransplantation.

    PubMed

    Tector, A J; Chen, X; Soderland, C; Tchervenkov, J I

    1998-11-01

    Little is known about hyperacute rejection in hepatic xenotransplantation. Information from clinical xenoperfusions suggests that the liver may be rejected by a mechanism less vigorous than either kidney or heart xenografts. We used the in vitro model of porcine hepatic sinusoidal endothelial cells (PHEC) incubated with either complement replete or deficient human serum to determine the relative roles of the classical and alternate pathways of complement in the immediate response to hepatic xenotransplantation. Our results suggest that either the classical or alternate pathways are capable of independently activating the complement cascade upon exposure to the porcine hepatic sinusoidal endothelium. Our results also imply that either pathway alone is capable of initiating similar degrees of injury as the entire cascade. PMID:9915253

  18. Lung Matrix Metalloproteinase Activation following Partial Hepatic Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Ferrigno, Andrea; Rizzo, Vittoria; Tarantola, Eleonora

    2014-01-01

    Purpose. Warm hepatic ischemia-reperfusion (I/R) injury can lead to multiorgan dysfunction. The aim of the present study was to investigate whether acute liver I/R does affect the function and/or structure of remote organs such as lung, kidney, and heart via modulation of extracellular matrix remodelling. Methods. Male Sprague-Dawley rats were subjected to 30 min partial hepatic ischemia by clamping the hepatic artery and the portal vein. After a 60 min reperfusion, liver, lung, kidney, and heart biopsies and blood samples were collected. Serum hepatic enzymes, creatinine, urea, Troponin I and TNF-alpha, and tissue matrix metalloproteinases (MMP-2, MMP-9), myeloperoxidase (MPO), malondialdehyde (MDA), and morphology were monitored. Results. Serum levels of hepatic enzymes and TNF-alpha were concomitantly increased during hepatic I/R. An increase in hepatic MMP-2 and MMP-9 activities was substantiated by tissue morphology alterations. Notably, acute hepatic I/R affect the lung inasmuch as MMP-9 activity and MPO levels were increased. No difference in MMPs and MPO was observed in kidney and heart. Conclusions. Although the underlying mechanism needs further investigation, this is the first study in which the MMP activation in a distant organ is reported; this event is probably TNF-alpha-mediated and the lung appears as the first remote organ to be involved in hepatic I/R injury. PMID:24592193

  19. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  20. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  1. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content.

  2. Effect of 2 corpora lutea on blood perfusion, peripheral progesterone, and hepatic steroid-inactivating enzymes in dairy cattle.

    PubMed

    Voelz, B E; Cline, G F; Hart, C G; Lemley, C O; Larson, J E

    2015-01-01

    The luteal structure that develops postovulation is critical to the facilitation and maintenance of pregnancy in dairy cattle. The objectives of this experiment were to determine if the induction of an accessory corpus luteum (CL), via human chorionic gonadotropin, altered blood perfusion of CL, peripheral concentrations of progesterone, or hepatic steroid-inactivating enzymes. Twenty-eight late-lactation Holstein cows were synchronized using the Ovsynch protocol and randomly assigned to 1 of 2 treatment groups. Cows received either an injection of human chorionic gonadotropin (1,000IU, i.m.) to induce an accessory CL (cows had exactly 2CL in 1 ovary) or no treatment (cows had exactly 1CL). Corpora lutea were examined daily from d 10 to 18 (d 0 was induced ovulation) via Doppler ultrasonography and a blood sample was collected. Volume of the CL was recorded, as well as images and videos of each CL, which were analyzed for blood perfusion. On d 13, a liver biopsy was performed to analyze hepatic steroid-inactivating enzymes. Cows with 1 or 2CL had similar peripheral concentrations of progesterone. Cows with 2CL had similar luteal volumes to cows with 1CL but cows with 2CL had greater total luteal blood perfusion. Hepatic enzyme [cytochrome P450 (CYP) 1A, 3A, and 2C, aldo-keto reductase 1C, and uridine diphosphate glucuronosyltransferase] activities did not differ between cows with 1 and 2CL. Overall, the observed increase in total luteal blood perfusion in cows with 2CL did not correspond to differences in peripheral concentrations of progesterone or clearance of progesterone measured by the hepatic enzyme activity. This could indicate that induction of an accessory CL would not affect concentrations of progesterone necessary to maintain pregnancy.

  3. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models.

    PubMed

    Varma, Manthena V; El-Kattan, Ayman F

    2016-07-01

    A large body of evidence suggests hepatic uptake transporters, organic anion-transporting polypeptides (OATPs), are of high clinical relevance in determining the pharmacokinetics of substrate drugs, based on which recent regulatory guidances to industry recommend appropriate assessment of investigational drugs for the potential drug interactions. We recently proposed an extended clearance classification system (ECCS) framework in which the systemic clearance of class 1B and 3B drugs is likely determined by hepatic uptake. The ECCS framework therefore predicts the possibility of drug-drug interactions (DDIs) involving OATPs and the effects of genetic variants of SLCO1B1 early in the discovery and facilitates decision making in the candidate selection and progression. Although OATP-mediated uptake is often the rate-determining process in the hepatic clearance of substrate drugs, metabolic and/or biliary components also contribute to the overall hepatic disposition and, more importantly, to liver exposure. Clinical evidence suggests that alteration in biliary efflux transport or metabolic enzymes associated with genetic polymorphism leads to change in the pharmacodynamic response of statins, for which the pharmacological target resides in the liver. Perpetrator drugs may show inhibitory and/or induction effects on transporters and enzymes simultaneously. It is therefore important to adopt models that frame these multiple processes in a mechanistic sense for quantitative DDI predictions and to deconvolute the effects of individual processes on the plasma and hepatic exposure. In vitro data-informed mechanistic static and physiologically based pharmacokinetic models are proven useful in rationalizing and predicting transporter-mediated DDIs and the complex DDIs involving transporter-enzyme interplay.

  4. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models.

    PubMed

    Varma, Manthena V; El-Kattan, Ayman F

    2016-07-01

    A large body of evidence suggests hepatic uptake transporters, organic anion-transporting polypeptides (OATPs), are of high clinical relevance in determining the pharmacokinetics of substrate drugs, based on which recent regulatory guidances to industry recommend appropriate assessment of investigational drugs for the potential drug interactions. We recently proposed an extended clearance classification system (ECCS) framework in which the systemic clearance of class 1B and 3B drugs is likely determined by hepatic uptake. The ECCS framework therefore predicts the possibility of drug-drug interactions (DDIs) involving OATPs and the effects of genetic variants of SLCO1B1 early in the discovery and facilitates decision making in the candidate selection and progression. Although OATP-mediated uptake is often the rate-determining process in the hepatic clearance of substrate drugs, metabolic and/or biliary components also contribute to the overall hepatic disposition and, more importantly, to liver exposure. Clinical evidence suggests that alteration in biliary efflux transport or metabolic enzymes associated with genetic polymorphism leads to change in the pharmacodynamic response of statins, for which the pharmacological target resides in the liver. Perpetrator drugs may show inhibitory and/or induction effects on transporters and enzymes simultaneously. It is therefore important to adopt models that frame these multiple processes in a mechanistic sense for quantitative DDI predictions and to deconvolute the effects of individual processes on the plasma and hepatic exposure. In vitro data-informed mechanistic static and physiologically based pharmacokinetic models are proven useful in rationalizing and predicting transporter-mediated DDIs and the complex DDIs involving transporter-enzyme interplay. PMID:27385183

  5. Enzyme Activity Experiments Using a Simple Spectrophotometer

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  6. Development of an enzyme immunoassay using recombinant expressed antigen to detect hepatitis delta virus antibodies.

    PubMed

    Puig, J; Fields, H A

    1989-10-01

    Two generic enzyme immunoassays (EIAs) were developed for detection of anti-hepatitis delta virus antibodies (anti-HD) and compared with a commercially available radioimmunoassay. Both generic assays were configured as blocking assays and used hepatitis delta antigen (HDAg) derived from infected chimpanzee liver (EIA-1) or from Escherichia coli transformed with a plasmid containing an insert from within an open reading frame encoding HDAg (EIA-2). Absolute sensitivity was ascertained by endpoint titration, which demonstrated essentially identical endpoints for EIA-1 and EIA-2. The absolute sensitivities of the EIAs were approximately four times greater than that of the radioimmunoassay. Specificity and sensitivity were ascertained by testing a panel of 176 serum specimens by each assay. The specimens were selected to represent a panel composed of sera from individuals with or without markers of viral hepatitis as follows: (i) serologically confirmed by exclusion as posttransfusion non-A, non-B hepatitis; (ii) acute or chronic hepatitis B virus infection, positive for hepatitis B surface antigen; (iii) resolved hepatitis B virus infection, positive for anti-hepatitis B surface antigen; (iv) acute hepatitis A virus infection, positive for anti-hepatitis A virus immunoglobulin M; and (v) normal human sera. All three assays for anti-HD gave similar specificity and sensitivity values. In conclusion, the recombinant expressed HDAg can replace antigen derived from infected liver tissue as a diagnostic reagent used to configure an EIA for detection of anti-HD. Furthermore, the results suggest that the expressed antigen contains the important immunodominant epitope(s).

  7. Curcumin-induced recovery from hepatic injury involves induction of apoptosis of activated hepatic stellate cells.

    PubMed

    Priya, S; Sudhakaran, P R

    2008-10-01

    Hepatic stellate cells (HSCs) undergo activation and transdifferentiation to myofibroblast like cells in liver injury, leading to liver fibrosis. During recovery from injury, activated HSCs may either revert back to quiescent state or undergo apoptosis or both. In the present study, we have examined whether recovery from hepatic injury involves apoptosis of activated HSCs and tested whether curcumin (the yellow pigment from Curcuma longa Linn.) promotes recovery from hepatic injury by inducing apoptosis of these cells. Hepatic injury was induced by CCl4 and apoptosis was studied in HSCs isolated from liver by MTT assay, DNA fragmentation, and DAPI and annexin staining. Hepatic recovery was assessed by measuring hepatic marker activities, such as serum GOT, GPT and protein. Hepatic recovery occurred within 4 weeks after inducing injury in untreated control, whereas curcumin treatment caused hepatic recovery within 2 weeks, as evidenced by the reduction of hepatic marker activities to near normal levels. HSCs isolated from liver of animals treated with curcumin showed maximum apoptotic marker activities in 2nd week, whereas in HSCs from untreated control recovering from injury, maximum apoptosis was observed in 4th week. Induction of apoptosis in vivo during hepatic recovery was also suggested by increase in caspase-3 activity. Treatment of isolated HSCs in culture with curcumin caused apoptosis during later stages confirming that curcumin induced apoptosis of activated HSCs and not in unactivated quiescent HSCs. These results suggested that hepatoprotective effect of curcumin causing recovery from injury involved apoptosis of activated HSCs. PMID:19069843

  8. Enzyme activity down to -100 degrees C.

    PubMed

    Bragger, J M; Dunn, R V; Daniel, R M

    2000-07-14

    The activities of two enzymes, beef liver catalase (EC 1.11.1.6) and calf intestine alkaline phosphatase (EC 3.1.3.1), have been measured down to -97 degrees C and -100 degrees C, respectively. Enzyme activity has not previously been measured at such low temperatures. For catalase, the cryosolvents used were methanol:ethylene glycol:water (70:10:20) and DMSO:ethylene glycol:water (60:20:20). For alkaline phosphatase, methanol:ethylene glycol:water (70:10:20) was used. All of the Arrhenius plots were linear over the whole of the temperature range examined. Since the lowest temperatures at which activity was measured are well below the dynamic transition observed for proteins, the results indicate that the motions which cease below the dynamic transition are not essential for enzyme activity. In all cases the use of cryosolvent led to substantial increases in Arrhenius activation energies, and this imposed practical limitations on the measurement of enzyme activity below -100 degrees C. At even lower temperatures, enzyme activity may be limited by the effect of solvent fluidity on substrate/product diffusion, but overall there is no evidence that any intrinsic enzyme property imposes a lower temperature limit for enzyme activity. PMID:10899628

  9. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  10. Assessment of inhibition of porcine hepatic cytochrome P450 enzymes by 48 commercial drugs.

    PubMed

    Hu, Steven X; Mazur, Chase A; Feenstra, Kenneth L; Lorenz, Julie K; Merritt, Dawn A

    2016-05-01

    Drug interactions due to inhibition of hepatic cytochrome P450 (CYP450) enzymes are not well understood in veterinary medicine. Forty-eight commercial porcine medicines were selected to evaluate their potential inhibition on porcine hepatic CYP450 enzymes at their commercial doses and administration routes. Those drugs were first assessed through a single point inhibitory assay at 3 µM in porcine liver microsomes for six specific CYP450 metabolisms (phenacetin o-deethylation, coumarin 7-hydroxylation, tolbutamide 4-hydroxylation, bufuralol 1-hydroxylation, chlorozoxazone 6-hydroxylation and midazolam 1'-hydroxylation). When the inhibition was > 10% in the single point inhibitory assay, IC50 values (inhibitory concentrations that decrease biotransformation of selected substrate by 50%) were determined. Overall, 17 drugs showed in vitro inhibition on one or more porcine hepatic CYP450 metabolisms with different IC50 values. The potential in vivo porcine hepatic CYP450 inhibition by those drugs was assessed by combining the in vitro data and in vivo Cmax (maximum plasma concentrations from pharmacokinetic studies of the porcine medicines at their commercial doses and administration routes). Three drugs showed high potential inhibition to one or two porcine hepatic CYP450 isoforms at their commercial doses and administration routes, while seven drugs had medium risk and seven had low risk of such in vivo inhibition. These data are useful to prevent potential drug interactions in veterinary medical practice.

  11. Solid-phase enzyme-linked immunosorbent assay for detection of hepatitis A virus.

    PubMed Central

    Locarnini, S A; Garland, S M; Lehmann, N I; Pringle, R C; Gust, I D

    1978-01-01

    An enzyme-linked immunosorbent assay (ELISA) was developed for the detection of hepatitis A virus in human fecal specimens. Investigations with 88 fecal specimens from 77 patients with suspected viral hepatitis and 8 of their household contacts showed that ELISA was as specific and sensitive as radioimmunoassay and almost as sensitive as immune electron microscopy. The ELISA is quick and simple to perform, does not require sophisticated technical equipment, and can be read with the naked eye, making it suitable for field work and rapid diagnosis. PMID:212452

  12. The Anticancer Drug Ellipticine Activated with Cytochrome P450 Mediates DNA Damage Determining Its Pharmacological Efficiencies: Studies with Rats, Hepatic Cytochrome P450 Reductase Null (HRN™) Mice and Pure Enzymes

    PubMed Central

    Stiborová, Marie; Černá, Věra; Moserová, Michaela; Mrízová, Iveta; Arlt, Volker M.; Frei, Eva

    2014-01-01

    Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models. PMID:25547492

  13. Visualization of enzyme activities inside earthworm pores

    NASA Astrophysics Data System (ADS)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  14. Proteomic characterization of hepatitis C eradication: enzyme switch in the healing liver.

    PubMed

    Babudieri, S; Soddu, A; Nieddu, P; Tanca, A; Madeddu, G; Addis, M F; Pagnozzi, D; Cossu-Rocca, P; Massarelli, G; Dore, M P; Uzzau, S; Mura, M S

    2013-07-01

    Lipid pathway impairment, decrease in the antioxidant pool and downregulation in amino-acid metabolism are just some of the metabolic variations attributed to chronic HCV infection. All of them have been studied separately, mainly in animal models. Thanks to proteomic analysis we managed to describe (for the fist time to the best of our knowledge), in vivo and in humans, the metabolic alterations caused by HCV, and the recovery of the same alterations during HCV treatment. We performed proteomic analysis on liver specimens of a 28-year-old woman affected by hepatitis C genotype 1a, alcoholism and diabetes mellitus type 1, before and after antiviral treatment with pegylated interferon alpha 2b and ribavirin. The subject, thanks to a patient-tailored therapy, reached Sustained Virological Response. Throughout the treatment period the patient was monitored with subsequent biochemical, clinical and psychological examinations. The data obtained by the patient's close monitoring suggest a direct interaction between insulin resistance and an active HCV genotype 1 infection, with a leading role played by the infection, and not by insulin resistance, as demonstrated by the sharp fall of the insulin units needed per day during treatment. The proteomic analysis showed that after therapy, a downregulation of enzymes involved in amino acid metabolism, glycolysis/gluconeogenesis and alcohol catabolism takes place, the latter probably due to cessation of alcohol abuse. On the contrary, the metabolic pathways linked to metabolism of the reactive oxygen species were upregulated after therapy. Finally, a significant alteration in the pathway regulated by peroxisome proliferator-activated receptor alpha (PPARA), a major regulator of lipid metabolism in the liver, was reported. These "real time" data confirm in vivo, in humans, that during HCV infection, the pathways related to fatty acids, glucose metabolism and free radical scavenging are inhibited. The same enzyme deficit is

  15. Efficacy of azelaic acid on hepatic key enzymes of carbohydrate metabolism in high fat diet induced type 2 diabetic mice.

    PubMed

    Muthulakshmi, Shanmugam; Saravanan, Ramalingam

    2013-06-01

    Azelaic acid (AzA), a C9 linear α,ω-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM.

  16. Antimutagenic activity of oxidase enzymes

    SciTech Connect

    Agabeili, R.A.

    1986-11-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity.

  17. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  18. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  19. The effect of aspartame on the activity of rat liver xenobiotic-metabolizing enzymes.

    PubMed

    Tutelyan, V A; Kravchenko, L V; Kuzmina, E E

    1990-01-01

    Male, Wistar rats were administered aspartame (40 or 4000 mg/kg body weight) in their diet for 90 days. By 45 days, the activities of three microsomal enzymes, epoxide hydrolase, carboxylesterase, and p-nitrophenyl-UDP-glucuronosyltransferase, were significantly increased in rats consuming 4000 mg/kg of aspartame. By 90 days, however, the activity of the xenobiotic-metabolizing enzymes of the rats given aspartame did not differ significantly from the activity of control animals. From these results, we conclude that the consumption of aspartame does not substantially alter the function of the hepatic microsomal enzymes which protect the organism from foreign compounds found in its environment and food.

  20. Effect of the combined probiotics with aflatoxin B₁-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression.

    PubMed

    Zuo, Rui-yu; Chang, Juan; Yin, Qing-qiang; Wang, Ping; Yang, Yu-rong; Wang, Xiao; Wang, Guo-qiang; Zheng, Qiu-hong

    2013-09-01

    In order to degrade aflatoxin B₁ (AFB₁), AFB₁-degrading microbes (probiotics) such as Lactobacillus casei, Bacillus subtilis and Pichia anomala, and the AFB₁-degrading enzyme from Aspergillus oryzae were selected and combined to make feed additive. Seventy-five 43-day-old male Arbor Acres broilers were randomly divided into 5 groups, 15 broilers for each group. The broilers were given with 5 kinds of diets such as the basal diet, 400 μg/kg AFB₁ supplement without feed additive, and 200, 400, 800 μg/kg AFB₁ supplement with 0.15% feed additive. The feeding experimental period was 30 d, which was used to determine production performance of broilers. In addition, serum, liver and chest muscle were selected for measuring AFB₁ residues, gene expressions, microscopic and antioxidant analyses. The results showed that adding 0.15% feed additive in broiler diets could significantly relieve the negative effect of AFB₁ on chicken's production performance and nutrient metabolic rates (P<0.05). It could also improve AFB₁ metabolism, hepatic cell structure, antioxidant activity, and many hepatic enzyme gene expressions involved in oxidoreductase, apoptosis, cell growth, immune system and metabolic process (P<0.05). It could be concluded that the feed additive was able to degrade AFB₁ and improve animal production.

  1. Effect of the combined probiotics with aflatoxin B₁-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression.

    PubMed

    Zuo, Rui-yu; Chang, Juan; Yin, Qing-qiang; Wang, Ping; Yang, Yu-rong; Wang, Xiao; Wang, Guo-qiang; Zheng, Qiu-hong

    2013-09-01

    In order to degrade aflatoxin B₁ (AFB₁), AFB₁-degrading microbes (probiotics) such as Lactobacillus casei, Bacillus subtilis and Pichia anomala, and the AFB₁-degrading enzyme from Aspergillus oryzae were selected and combined to make feed additive. Seventy-five 43-day-old male Arbor Acres broilers were randomly divided into 5 groups, 15 broilers for each group. The broilers were given with 5 kinds of diets such as the basal diet, 400 μg/kg AFB₁ supplement without feed additive, and 200, 400, 800 μg/kg AFB₁ supplement with 0.15% feed additive. The feeding experimental period was 30 d, which was used to determine production performance of broilers. In addition, serum, liver and chest muscle were selected for measuring AFB₁ residues, gene expressions, microscopic and antioxidant analyses. The results showed that adding 0.15% feed additive in broiler diets could significantly relieve the negative effect of AFB₁ on chicken's production performance and nutrient metabolic rates (P<0.05). It could also improve AFB₁ metabolism, hepatic cell structure, antioxidant activity, and many hepatic enzyme gene expressions involved in oxidoreductase, apoptosis, cell growth, immune system and metabolic process (P<0.05). It could be concluded that the feed additive was able to degrade AFB₁ and improve animal production. PMID:23831311

  2. Peptidomimetic therapeutic agents targeting the protease enzyme of the human immunodeficiency virus and hepatitis C virus.

    PubMed

    Tsantrizos, Youla S

    2008-10-01

    During the past two decades, great strides have been made in the design of peptidomimetic drugs for the treatment of viral infections, despite the stigma of poor drug-like properties, low oral absorption, and high clearance associated with such compounds. This Account summarizes the progress made toward overcoming such liabilities and highlights the drug discovery efforts that have focused specifically on human immunodeficiency virus (HIV) and hepatitis C virus (HCV) protease inhibitors. The arsenal against the incurable disease AIDS, which is caused by HIV infection, includes peptidomimetic compounds that target the virally encoded aspartic protease enzyme. This enzyme is essential to the production of mature HIV particles and plays a key role in maintaining infectivity. However, because of the rapid genomic evolution of viruses, an inevitable consequence in the treatment of all viral infections is the emergence of resistance to the drugs. Therefore, the incomplete suppression of HIV in treatment-experienced AIDS patients will continue to drive the search for more effective therapeutic agents that exhibit efficacy against the mutants raised by the earlier generation of protease inhibitors. Currently, a number of substrate-based peptidomimetic agents that target the virally encoded HCV NS3/4A protease are in clinical development. Mechanistically, these inhibitors can be generally divided into activated carbonyls that are transition-state mimics or compounds that tap into the feedback mode of enzyme-product inhibition. In the HCV field, there is justified optimism that a number of these compounds will soon reach commercialization as therapeutic agents for the treatment of HCV infections. Structural research has guided the successful design of both HIV and HCV protease inhibitors. X-ray crystallography, NMR, and computational studies have provided valuable insight in to the free-state preorganization of peptidomimetic ligands and their enzyme-bound conformation

  3. Evaluation of the synergistic effect of Allium sativum, Eugenia jambolana, Momordica charantia, Ocimum sanctum, and Psidium guajava on hepatic and intestinal drug metabolizing enzymes in rats

    PubMed Central

    Kumar, Devendra; Trivedi, Neerja; Dixit, Rakesh K.

    2016-01-01

    Aims/Background: This study was to investigated the synergistic effect of polyherbal formulations (PHF) of Allium sativum L., Eugenia jambolana Lam., Momordica charantia L., Ocimum sanctum Linn., and Psidium guajava L. in the inhibition/induction of hepatic and intestinal cytochrome P450 (CYPs) and Phase-II conjugated drug metabolizing enzymes (DMEs). Consumption of these herbal remedy has been extensively documented for diabetes treatment in Ayurveda. Methodology: PHF of these five herbs was prepared, and different doses were orally administered to Sprague–Dawley rats of different groups except control group. Expression of mRNA and activity of DMEs were examined by real-time polymerase chain reaction and high performance liquid chromatography in isolated liver and intestine microsomes in PHF pretreated rats. Results: The activities of hepatic and intestinal Phase-II enzyme levels increased along with mRNA levels except CYP3A mRNA level. PHF administration increases the activity of hepatic and intestinal UDP-glucuronyltransferase and glutathione S-transferase in response to dose and time; however, the activity of hepatic sulfotransferase increased at higher doses. Conclusions: CYPs and Phase-II conjugated enzymes levels can be modulated in dose and time dependent manner. Observations suggest that polyherbal formulation might be a possible cause of herb-drug interaction, due to changes in pharmacokinetic of crucial CYPs and Phase-II substrate drug. PMID:27757267

  4. Activity assessment of microbial fibrinolytic enzymes.

    PubMed

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  5. Glucagon-like peptides activate hepatic gluconeogenesis.

    PubMed

    Mommsen, T P; Andrews, P C; Plisetskaya, E M

    1987-07-13

    Piscine (anglerfish, catfish, coho salmon) glucagon-like peptides (GLPs), applied at 3.5 nM, stimulate (1.1-1.9-fold) flux through gluconeogenesis above control levels in isolated trout and salmon hepatocytes. Human GLP-1 and GLP-2 also activate gluconeogenesis, but to a lesser degree than their piscine counterparts. Minor increases of substrate oxidation are noticed at times of peak gluconeogenic activation through GLPs. These hormones, which are derived from the same precursor peptide as glucagon are more potent activators of gluconeogenesis than glucagon when applied at equimolar concentrations, and do not appear to employ cAMP or cGMP as the intracellular messenger in hepatic tissue. PMID:3109952

  6. Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer.

    PubMed

    Hou, Chen; Wang, Yongyao; Zhu, Erkang; Yan, Chunhong; Zhao, Lin; Wang, Xiaojie; Qiu, Yingfeng; Shen, Hui; Sun, Xuejun; Feng, Zhihui; Liu, Jiankang; Long, Jiangang

    2016-03-01

    Diet-induced nonalcoholic fatty liver disease (NAFLD) is characterized by profound lipid accumulation and associated with an inflammatory response, oxidative stress and hepatic mitochondrial dysfunction. We previously demonstrated that some mitochondrial nutrients effectively ameliorated high fat diet (HFD)-induced hepatic steatosis and metabolic disorders. Molecular hydrogen in hydrogen-rich liquid or inhaling gas, which has been confirmed in scavenging reactive oxygen species and preventing mitochondrial decay, improved metabolic syndrome in patients and animal models. Coral calcium hydride (CCH) is a new solid molecular hydrogen carrier made of coral calcium. However, whether and how CCH impacts HFD-induced hepatic steatosis remains uninvestigated. In the present study, we applied CCH to a HFD-induced NAFLD rat model for 13 weeks. We found that CCH durably generated hydrogen in vivo and in vitro. CCH treatment significantly reduced body weight gain, improved glucose and lipid metabolism and attenuated hepatic steatosis in HFD-induced obese rats with no influence on food and water intake. Moreover, CCH effectively improved HFD-induced hepatic mitochondrial dysfunction, reduced oxidative stress, and activated phase II enzymes. Our results suggest that CCH is an efficient hydrogen-rich agent, which could prevent HFD-induced NAFLD via activating phase II enzymes and improving mitochondrial function. PMID:26774456

  7. SOLUBLE HEPATIC δ-AMINOLEVULINIC ACID SYNTHETASE: END-PRODUCT INHIBITION OF THE PARTIALLY PURIFIED ENZYME*

    PubMed Central

    Scholnick, Perry L.; Hammaker, Lydia E.; Marver, Harvey S.

    1969-01-01

    The present study confirms the existence of hepatic δ-aminolevulinic acid synthetase in the cytosol of the liver, suggests that this enzyme may be in transit to the mitochondria, and defines some of the characteristics of the partially purified enzyme. The substrate and cofactor requirements are similar to those of mitochondrial δ-aminolevulinic acid synthetase. Heme strongly inhibits the partially purified enzyme. A number of proteins that bind heme block this inhibition, which explains previous failures to demonstrate heme inhibition in crude systems. End-product inhibition of δ-aminolevulinic acid synthetase in the mitochondria may play an important role in the regulation of heme biosynthesis in eukaryotic cells. PMID:5257968

  8. Successful treatment of activated occult hepatitis B in a non-responder chronic hepatitis C patient

    PubMed Central

    2011-01-01

    We reported a 23 years old male with chronic hepatitis C virus infection, discontinued from pegylated interferon/ribavirin combination therapy due to a lack of early virological response. He has developed activation of occult hepatitis B virus that was successfully treated by a one year of lamivudine therapy. PMID:22078891

  9. Comparative use of isolated hepatocytes and hepatic microsomes for cytochrome P450 inhibition studies: transporter-enzyme interplay.

    PubMed

    Brown, Hayley S; Wilby, Alison J; Alder, Jane; Houston, J Brian

    2010-12-01

    Accurate assignment of the concentration of victim drug/inhibitor available at the enzyme active site, both in vivo and within an in vitro incubation, is an essential requirement in rationalizing and predicting drug-drug interactions. Inhibitor accumulation within the liver, whether as a result of active transport processes or intracellular binding, may best be accounted for using hepatocytes rather than hepatic microsomes to estimate in vitro inhibitory potency. The aims of this study were to compare K(i) values determined in rat liver microsomes and freshly isolated rat hepatocytes of four cytochrome P450 (P450) inhibitors (clarithromycin, enoxacin, nelfinavir, and saquinavir) with known hepatic transporter involvement and a range of uptake (cell/medium concentration ratios 20-3000) and clearance (10-1200 μl/min/10(6) cells) properties. Inhibition studies were performed using two well established P450 probe substrates (theophylline and midazolam). Comparison of unbound K(i) values showed marked differences between the two in vitro systems for inhibition of metabolism. In two cases (clarithromycin and enoxacin, both low-clearance drugs), inhibitory potency in hepatocytes markedly exceeded that in microsomes (10- to 20-fold), and this result was consistent with their high cell/medium concentration ratios. For nelfinavir and saquinavir (high-clearance, extensively metabolized drugs), the opposite trend was seen in the K(i) values: despite very high cell/medium concentration ratios, stronger inhibition was evident within microsomal preparations. Hence, the consequences of hepatic accumulation resulting from uptake transporters vary according to the clearance of the inhibitor. This study demonstrates that transporter-enzyme interplay can result in differences in inhibitory potency between microsomes and hepatocytes and hence drug-drug interaction predictions that are not always intuitive.

  10. Polybrominated diphenyl ethers alter hepatic phosphoenolpyruvate carboxykinase enzyme kinetics in male Wistar rats: implications for lipid and glucose metabolism.

    PubMed

    Nash, Jessica T; Szabo, David T; Carey, Gale B

    2013-01-01

    Xenobiotics such as phenobarbital, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and Aroclor 1254 significantly suppress the activity of a key gluconeogenic and glyceroneogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK), suggesting that xenobiotics disrupt hepatic glucose and fat metabolism. The effects of polybrominated diphenyl ethers (PBDE), a family of synthetic flame-retardant chemicals, on PEPCK activity is unknown. This study investigated the effect of DE-71, a commercial PBDE mixture, on PEPCK enzyme kinetics. Forty-eight 1-mo-old male Wistar rats were gavaged daily with either corn oil or corn oil containing 14 mg/kg DE-71 for 3, 14, or 28 d (n = 8/group). At each time point, fasting plasma glucose, insulin, and C-peptide were measured and hepatic PEPCK activity, lipid content, and three cytochrome P-450 enzymes (CYP1A, -2B, and -3A) were assayed. PBDE treatment for 28 d significantly decreased PEPCK Vmax ( μ mol/min/g liver weight) by 43% and increased liver lipid by 20%, compared to control. CYP1A, -2B, and -3A Vmax values were enhanced by 5-, 6-, and 39-fold, respectively, at both 14 and 28 d in treated rats compared to control. There was a significant inverse and temporal correlation between CYP3A and PEPCK Vmax for the treatment group. Fasting plasma glucose, insulin, and C-peptide levels were not markedly affected by treatment, but the glucose:insulin ratio was significantly higher in treated compared to control rats. Data suggest that in vivo PBDE treatment compromises liver glucose and lipid metabolism, and may influence whole-body insulin sensitivity.

  11. Dehydroepiandrosterone sulfotransferase in the developing human fetus: quantitative biochemical and immunological characterization of the hepatic, renal, and adrenal enzymes.

    PubMed

    Barker, E V; Hume, R; Hallas, A; Coughtrie, W H

    1994-02-01

    The sulfation of the adrenal steroid dehydroepiandrosterone (DHEA) is a critical step in the provision of substrates for estrogen biosynthesis by the placenta during pregnancy. This enzyme reaction is catalyzed by a cytosolic sulfotransferase (ST) found in many key body tissues, and we have examined the ontogeny and localization of expression of this important enzyme in three tissues: the liver, adrenal, and kidney. Hepatic DHEA ST expression increased with advancing gestational age before reaching near-adult levels in the early postnatal period, suggesting an increased requirement for this enzyme in the liver as development progresses, whereas in the adrenal and kidney there was no obvious ontogenic pattern. The enzyme was expressed at a 5-fold higher level in the adrenal than in the liver and some 40-fold higher than in the kidney. Comparison of enzyme activity measurements and quantitation of the expression of DHEA ST by immunodot blot analysis with an anti-DHEA ST antibody preparation demonstrated the fragility of the enzyme activity and suggested that immunoquantitation was a superior method for assessment of levels of expression of this enzyme in widely different tissue sources. Examination of the localization of DHEA ST in these tissues by immunohistochemistry showed that in liver, DHEA ST was expressed in embryonic hepatocytes and continued to be expressed in these cells into adulthood, when there was some concentration of immunostaining around central veins. In the fetus, the adrenal enzyme was expressed in the fetal zone, whereas in adult tissue, staining was localized principally to the zona reticularis. Renal DHEA ST was present in the proximal and distal tubules, loops of Henle, collecting ducts, and their progenitors, but was at no time expressed in the vascular glomerulus. In light of the broad substrate specificity of this enzyme toward other steroids, in particular bile acids and cholesterol, the information presented forms a strong basis for

  12. An NMR Study of Enzyme Activity.

    ERIC Educational Resources Information Center

    Peterman, Keith E.; And Others

    1989-01-01

    A laboratory experiment designed as a model for studying enzyme activity with a basic spectrometer is presented. Included are background information, experimental procedures, and a discussion of probable results. Stressed is the value of the use of Nuclear Magnetic Resonance in biochemistry. (CW)

  13. Hepatitis

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  14. New enzyme immunoassays for the serologic detection of woodchuck hepatitis virus infection.

    PubMed

    Cote, P J; Roneker, C; Cass, K; Schödel, F; Peterson, D; Tennant, B; De Noronha, F; Gerin, J

    1993-01-01

    The woodchuck and the woodchuck hepatitis virus (WHV) have been used as a model of hepatitis B virus infection and its disease sequelas. Serologic responses to WHV infection have been described in previous reports from this laboratory by using virus-specific radioimmunoassays (RIAs) for WHV surface antigen, antibody to WHV core antigen, and antibody to WHsAg. In this study, we developed and evaluated new enzyme immunoassays (EIAs) for these WHV serologic markers. Relative to the established RIAs, the EIAs were either improved or comparable in their sensitivity and specificity, and in their utility for monitoring experimental WHV infection and classifying woodchucks into serological diagnostic categories. These EIA systems are amenable to the quantitative titration of antibodies and quantitation of WHV antigens in serum, and ultimately should allow improved resolution of virologic and humoral immune responses of woodchucks to WHV infection.

  15. Arabinogalactan proteins: focus on carbohydrate active enzymes

    PubMed Central

    Knoch, Eva; Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/) involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development. PMID:24966860

  16. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice.

    PubMed

    Bharali, Rupjyoti; Tabassum, Jawahira; Azad, Mohammed Rekibul Haque

    2003-01-01

    The modulatory effects of a hydro-alcoholic extract of drumsticks of Moringa oliefera Lam at doses of 125 mg/kg bodyweight and 250 mg/ kg body weight for 7 and 14 days, respectively, were investigated with reference to drug metabolising Phase I (Cytochrome b(5) and Cytochrome p(450) ) and Phase II (Glutathione-S- transferase) enzymes, anti-oxidant enzymes, glutathione content and lipid peroxidation in the liver of 6-8 week old female Swiss albino mice. Further, the chemopreventive efficacy of the extract was evaluated in a two stage model of 7,12 - dimethylbenz(a)anthracene induced skin papillomagenesis. Significant increase (p<0.05 to p<0.01) in the activities of hepatic cytochrome b(5), cytochrome p(450), catalase, glutathione peroxidase ( GPx ), glutathione reductase (GR), acid soluble sulfhydryl content (-SH ) and a significant decrease ( p<0.01 ) in the hepatic MDA level were observed at both dose levels of treatment when compared with the control values. Glutathione-S- transferase ( GST )activity was found to be significantly increased (p<0.01 ) only at the higher dose level. Butylated hydroxyanisol (BHA ) fed at a dose of 0.75% in the diet for 7 and 14 days (positive control ) caused a significant increase (p<0.05 to p<0.01) in the levels of hepatic phase I and phase II enzymes, anti- oxidant enzymes, glutathione content and a decrease in lipid peroxidation. The skin papillomagenesis studies demonstrated a significant decrease (p<0.05 ) in the percentage of mice with papillomas, average number of papillomas per mouse and papillomas per papilloma bearing mouse when the animals received a topical application of the extract at a dose of 5mg/ kg body weight in the peri-initiation phase 7 days before and 7 days after DMBA application, Group II ), promotional phase (from the day of croton oil application and continued till the end of the experiment, Group III ) and both peri and post initiation stages (from 7 days prior to DMBA application and continued till the

  17. Epigenetic Changes during Hepatic Stellate Cell Activation

    PubMed Central

    Götze, Silke; Schumacher, Eva C.; Kordes, Claus; Häussinger, Dieter

    2015-01-01

    Background and Aims Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC. Methods and Results The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism. Conclusions In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism. PMID:26065684

  18. Concentration profiles near an activated enzyme.

    PubMed

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  19. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice.

    PubMed

    Zheng, Guodong; Qiu, Yangyang; Zhang, Qing-Feng; Li, Dongming

    2014-09-28

    Obesity has become a public health concern due to its positive association with the incidence of many diseases, and coffee components including chlorogenic acid (CGA) and caffeine have been demonstrated to play roles in the suppression of fat accumulation. To investigate the mechanism by which CGA and caffeine regulate lipid metabolism, in the present study, forty mice were randomly assigned to four groups and fed diets containing no CGA or caffeine, CGA, caffeine, or CGA+caffeine for 24 weeks. Body weight, intraperitoneal adipose tissue (IPAT) weight, and serum biochemical parameters were measured, and the activities and mRNA and protein expression of lipid metabolism-related enzymes were analysed. There was a decrease in the body weight and IPAT weight of mice fed the CGA+caffeine diet. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, TAG and leptin of mice fed the CGA+caffeine diet. The activities of carnitine acyltransferase (CAT) and acyl-CoA oxidase (ACO) were increased in mice fed the caffeine and CGA+caffeine diets, while the activity of fatty acid synthase (FAS) was suppressed in those fed the CGA+caffeine diet. The mRNA expression levels of AMP-activated protein kinase (AMPK), CAT and ACO were considerably up-regulated in mice fed the CGA+caffeine diet, while those of PPARγ2 were down-regulated. The protein expression levels of AMPK were increased and those of FAS were decreased in mice fed the CGA+caffeine diet. These results indicate that CGA+caffeine suppresses fat accumulation and body weight gain by regulating the activities and mRNA and protein expression levels of hepatic lipid metabolism-related enzymes and that these effects are stronger than those exerted by CGA and caffeine individually. PMID:25201308

  20. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  1. Local encoding of computationally designed enzyme activity

    PubMed Central

    Allert, Malin; Dwyer, Mary A.; Hellinga, Homme W.

    2007-01-01

    One aim of computational protein design is to introduce novel enzyme activity into proteins of known structure by predicting mutations that stabilize transition states. Previously we have shown that it is possible to introduce triose phosphate isomerase activity into the ribose-binding protein of Escherichia coli by constructing 17 mutations in the first two layers of residues that surround the wild-type ligand-binding site. Here we report that these mutations can be “transplanted” into a homologous ribose-binding protein, isolated from the hyperthermophilic bacterium Thermoanaerobacter tengcongensis, with retention of catalytic activity, substrate affinity, and reaction pH dependence. The observed 105–106-fold rate enhancement corresponds to 70% of the maximally known transition-state binding energy. The wild-type sequences in these two homologues are almost perfectly conserved in the vicinity of their ribose-binding sites, but diverge significantly at increasing distance from these sites. The results demonstrate that the computationally designed mutations are sufficient to encode the observed enzyme activity, that all the observed activity is locally encoded within the layer of residues directly in contact with the substrate, and that in this case at least 70% of transition state stabilization energy can be achieved using straightforward considerations of stereochemical complementarity between enzyme and reactants. PMID:17196220

  2. The Action of Antidiabetic Plants of the Canadian James Bay Cree Traditional Pharmacopeia on Key Enzymes of Hepatic Glucose Homeostasis

    PubMed Central

    Nachar, Abir; Vallerand, Diane; Musallam, Lina; Lavoie, Louis; Arnason, John; Haddad, Pierre S.

    2013-01-01

    We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada) to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase) and glycogen synthase (GS) activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK), Akt, and Glycogen synthase kinase-3 (GSK-3) were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines. PMID:23864882

  3. Hepatic ischemia-reperfusion syndrome after partial liver resection (LR): hepatic venous oxygen saturation, enzyme pattern, reduced and oxidized glutathione, procalcitonin and interleukin-6.

    PubMed

    Kretzschmar, Michael; Krüger, Antie; Schirrmeister, Wulf

    2003-06-01

    The hepatic ischemia-reperfusion syndrome was investigated in 28 patients undergoing elective partial liver resection with intraoperative occlusion of hepatic inflow (Pringle maneuver) using the technique of liver vein catheterization. Hepatic venous oxygen saturation (ShvO2) was monitored continuously up to 24 hours after surgery. Aspartate aminotransferase, glutamate dehydrogenase, gamma-glutamyl transpeptidase, pseudocholinesterase, alpha-glutathione S-transferase, reduced and oxidized glutathione, procalcitonine, and interleukin-6 were serially measured both before and after Pringle maneuver during the resection and postoperatively in arterial and/or hepatic venous blood. ShvO2 measurement demonstrated that peri- and postoperative management was suitable to maintain an optimal hepatic oxygen supply. As expected, we were able to demonstrate a typical enzyme pattern of postischemic liver injury. There was a distinct decrease of reduced glutathione levels both in arterial and hepatic venous plasma after LR accompanied by a strong increase in oxidized glutathione concentration during the phase of reperfusion. We observed increases in procalcitonin and interleukin-6 levels both in arterial and hepatic venous blood after declamping. Our data support the view that liver resection in man under conditions of inflow occlusion resulted in ischemic lesion of the liver (loss of glutathione synthesizing capacity with disturbance of protection against oxidative stress) and an additional impairment during reperfusion (liberation of reactive oxygen species, local and systemic inflammation reaction with cytokine production). Additionally, we found some evidence for the assumption that the liver has an export function for reduced glutathione into plasma in man. PMID:12877355

  4. Induction of hepatic drug metabolizing enzymes by coal fly ash in rats

    SciTech Connect

    Srivastava, P.K.; Singh, Y.; Tyagi, S.R.; Misra, U.K.

    1987-12-01

    The effect of intratracheal administration of fly ash, its benzene-extracted residue and the benzene extract has been studied on the activities of hepatic mixed-function oxidases in the rat. Fly ash and its fractions significantly increased the levels of cytochrome P-450, cytochrome b/sub 5/, cytochrome b/sub 5/ reductase, NADPH-cytochrome c reductase, aminopyrine N-demethylase, aniline hydroxylase, and glutathione S-transferase in a dose-dependent manner. Phenobarbital or 3-methylcholanthrene treatment along with the administration of fly ash or its fractions showed an additive effect on the activities of the mixed-function oxidases. The observed effects were due to chemical component, i.e., organic and inorganic fractions of fly ash, and not due to its particulate nature. This was shown by the administration of glass beads, which did not cause any alteration in the activities of hepatic mixed-function oxidases.

  5. Autoantibodies against CYP2D6 and other drug-metabolizing enzymes in autoimmune hepatitis type 2.

    PubMed

    Mizutani, Takaharu; Shinoda, Masakazu; Tanaka, Yuta; Kuno, Takuya; Hattori, Asuka; Usui, Toru; Kuno, Nayumi; Osaka, Takashi

    2005-01-01

    Autoimmune hepatitis (AIH) is a disease of unknown etiology, characterized by liver-related autoantibodies. Autoimmune hepatitis is subdivided into two major types: AIH type 1 is characterized by the detection of ANA, SMA, ANCA, anti-ASGP-R, and anti-SLA/LP. Autoimmune hepatitis type 2 is characterized to be mainly related with drug-metabolizing enzymes as autoantigens, such as anti-LKM (liver-kidney microsomal antigen)-1 against CYP2D6, anti-LKM-2 against CYP2C9-tienilic acid, anti-LKM-3 against UGT1A, and anti-LC1 (liver cytosol antigen)-1 and anti-APS (autoimmune polyglandular syndrome type-1) against CYP1A2, CYP2A6, and others. Anti-LKM-1 sera inhibited CYP2D6 activity in vitro but did not inhibit cellular drug metabolism in vivo. CYP2D6 is the major target autoantigen of LKM-1 and expressed on plasma membrane (PM) of hepatocytes, suggesting a pathogenic role for anti-LKM-1 in liver injury as a trigger. Anti-CYP1A2 was observed in dihydralazine-induced hepatitis, and radiolabeled CYP1A2 disappeared from the PM with a half-life of less than 30 min, whereas microsomal CYP1A2 was stably radiolabeled for several hours. Main antigenic epitopes on CYP2D6 are aa 193-212, aa 257-269, and aa 321-351; and D263 is essential. The third epitope is located on the surface of the protein CYP2D6 and displays a hydrophobic patch that is situated between an aromatic residue (W316) and histidine (H326). Some drugs such as anticonvulsants (phenobarbital, phenytoin, and carbamazepine) and halothane are suggested to induce hepatitis with anti-CYP3A and anti-CYP2E1, respectively. Autoantibodies against CYP11A1, CYP17, and/or CYP21 involved in the synthesis of steroid hormones are also detected in patients with adrenal failure, gonadal failure, and/or Addison disease.

  6. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells.

    PubMed

    Feng, Yi; Ying, Hai-Yan; Qu, Ying; Cai, Xiao-Bo; Xu, Ming-Yi; Lu, Lun-Gen

    2016-09-01

    Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis.

  7. Coleus forskohlii extract induces hepatic cytochrome P450 enzymes in mice.

    PubMed

    Virgona, Nantiga; Yokotani, Kaori; Yamazaki, Yuko; Shimura, Fumio; Chiba, Tsuyoshi; Taki, Yuko; Yamada, Shizuo; Shinozuka, Kazumasa; Murata, Masatsune; Umegaki, Keizo

    2012-03-01

    Coleus forskohlii root extract (CFE) is popular for use as a weight loss dietary supplement. In this study, the influence of standardized CFE containing 10% active component forskolin on the hepatic drug metabolizing system was investigated to evaluate the safety through its drug interaction potential. Male ICR mice were fed AIN93G-based diets containing 0-5% CFE or 0.05% pure forskolin for 2-3 weeks. Intake of two different sources of 0.5% CFE significantly increased the relative liver weight, total content of hepatic cytochrome P450 (CYP) and induced CYPs (especially 2B, 2C, 3A types) and glutathione S-transferase (GST) activities. CFE significantly increased mRNA expression of CYPs and GST with dose related responses. However, unlike the CFE, intake of 0.05% pure forskolin was found to be associated with only weak induction in CYP3A and GST activities with no significant increases in relative liver weight, total hepatic content or other CYPs activities. The inductions of CYPs and GST by CFE were observed at 1 week of feeding and rapidly recovered by discontinuation of CFE. These results indicated the induction potential of CFE on CYPs, and that this effect was predominantly due to other, as yet unidentified constituents, and not forskolin contained in CFE. PMID:22178802

  8. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  9. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  10. Modulation of insulin degrading enzyme activity and liver cell proliferation.

    PubMed

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald; Gretz, Norbert; Dooley, Steven; Pfeiffer, Andreas F H; Rudovich, Natalia

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.

  11. Antioxidant activity of new aramide nanoparticles containing redox-active N-phthaloyl valine moieties in the hepatic cytochrome P450 system in male rats.

    PubMed

    Hassan, Hammed H A M; El-Banna, Sabah G; Elhusseiny, Amel F; Mansour, El-Sayed M E

    2012-07-10

    We report the synthesis of aramide nanoparticles containing a chiral N-phthaloyl valine moiety and their antioxidant activities on hepatic contents of cytochrome P₄₅₀, amidopyrene N-demethylase, aniline-4-hyroxylase and induced the hepatic content of cytochrome b5 and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome C-reductase. Polymers were obtained as well-separated spherical nanoparticles while highly aggregated particles via H-bonding organization of the aramide-containing pyridine led to a thin layer formation. The effects of the nanoparticles and CCl₄ on enzyme activities and thiobarbituric acid reactive substances (TBARS) levels of male rat liver were studied. Pretreatments of rats with the polyamides prior to the administration of CCl₄ decreased the hepatic content of the tested enzymes. Doses reduced the toxic effects exerted by (•CCl₃) upon the liver through inhibition of the cytochrome P₄₅₀ system. Inhibition of such metabolizing enzymes could reduce the carcinogenic effects of chemical carcinogens.

  12. Liquiritigenin, a flavonoid aglycone from licorice, has a choleretic effect and the ability to induce hepatic transporters and phase-II enzymes.

    PubMed

    Kim, Young Woo; Kang, Hee Eun; Lee, Myung Gull; Hwang, Se Jin; Kim, Sang Chan; Lee, Chang Ho; Kim, Sang Geon

    2009-02-01

    Liquiritigenin (LQ), an active component of licorice, has an inhibitory effect on LPS-induced inhibitory nitric oxide synthase expression. This study investigated the effects of LQ on choleresis, the expression of hepatic transporters and phase-II enzymes, and fulminant hepatitis. The choleretic effect and the pharmacokinetics of LQ and its glucuronides were monitored in rats. After intravenous administration of LQ, the total area under the plasma concentration-time curve of glucuronyl metabolites was greater than that of LQ in plasma, which accompanied elevations in bile flow rate and biliary excretion of bile acid, glutathione, and bilirubin. The expressions of hepatocellular transporters and phase-II enzymes were assessed by immunoblots, real-time PCR, and immunohistochemistry. In the livers of rats treated with LQ, the protein and mRNA levels of multidrug resistance protein 2 and bile salt export pump were increased in the liver, which was verified by their increased localizations in canalicular membrane. In addition, LQ treatment enhanced the expression levels of major hepatic phase-II enzymes. Consistent with these results, LQ treatments attenuated galactosamine/LPS-induced hepatitis in rats, as supported by decreases in the plasma alanine aminotransferase, liver necrosis, and plasma TNF-alpha. These results demonstrate that LQ has a choleretic effect and the ability to induce transporters and phase-II enzymes in the liver, which may be associated with a hepatoprotective effect against galactosamine/LPS. Our findings may provide insight into understanding the action of LQ and its therapeutic use for liver disease.

  13. Liquiritigenin, a flavonoid aglycone from licorice, has a choleretic effect and the ability to induce hepatic transporters and phase-II enzymes.

    PubMed

    Kim, Young Woo; Kang, Hee Eun; Lee, Myung Gull; Hwang, Se Jin; Kim, Sang Chan; Lee, Chang Ho; Kim, Sang Geon

    2009-02-01

    Liquiritigenin (LQ), an active component of licorice, has an inhibitory effect on LPS-induced inhibitory nitric oxide synthase expression. This study investigated the effects of LQ on choleresis, the expression of hepatic transporters and phase-II enzymes, and fulminant hepatitis. The choleretic effect and the pharmacokinetics of LQ and its glucuronides were monitored in rats. After intravenous administration of LQ, the total area under the plasma concentration-time curve of glucuronyl metabolites was greater than that of LQ in plasma, which accompanied elevations in bile flow rate and biliary excretion of bile acid, glutathione, and bilirubin. The expressions of hepatocellular transporters and phase-II enzymes were assessed by immunoblots, real-time PCR, and immunohistochemistry. In the livers of rats treated with LQ, the protein and mRNA levels of multidrug resistance protein 2 and bile salt export pump were increased in the liver, which was verified by their increased localizations in canalicular membrane. In addition, LQ treatment enhanced the expression levels of major hepatic phase-II enzymes. Consistent with these results, LQ treatments attenuated galactosamine/LPS-induced hepatitis in rats, as supported by decreases in the plasma alanine aminotransferase, liver necrosis, and plasma TNF-alpha. These results demonstrate that LQ has a choleretic effect and the ability to induce transporters and phase-II enzymes in the liver, which may be associated with a hepatoprotective effect against galactosamine/LPS. Our findings may provide insight into understanding the action of LQ and its therapeutic use for liver disease. PMID:19074639

  14. High-Throughput Analysis of Enzyme Activities

    SciTech Connect

    Lu, Guoxin

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  15. Cross-sectional study of hepatic CYP1A and CYP3A enzymes in hybrid striped bass, channel catfish and Nile tilapia following oxytetracycline treatment.

    PubMed

    Topic Popovic, N; Howell, T; Babish, J G; Bowser, P R

    2012-04-01

    Terramycin for Fish® (oxytetracycline, OTC) is one of three approved drugs for therapeutic treatment of fish in the United States. Nothing is known, however, of the effects of this therapeutic on drug metabolizing enzymes in fish post-treatment. The main purpose of the study was to examine whether the fish CYP1A and CYP3A enzymes would cross-react with antibodies to known mammalian cytochrome P-450 forms (CYP1A1 and CYP3A). Observational feeding studies of OTC effects were conducted in hybrid striped bass, channel catfish and Nile tilapia. Oxytetracycline was mixed into the feed to achieve a daily dose of 82.8 mg per kg body weight at a feeding rate of 1% body weight per day. Hepatic microsomes of each fish were prepared and Western blotting of CYP1A1 and CYP3A4 and enzyme assays of CYP1A2 and CYP3A4 were performed prior to OTC treatment and on post-treatment days 1, 6, 11 and 21. Both goat anti-rat CYP1A1 and rabbit anti-human CYP3A4 showed good cross-reactivity with all three species in this study. All three species exhibited distinct perturbations in one or more of the variables examined on day 1 post-treatment. Immediately following the 10-day medication period, relative liver weight (RLW) of hybrid striped bass was increased 44% and remained elevated through post-treatment day 21. Increased CYP3A4 enzyme activity and protein abundance were noted in channel catfish and Nile tilapia, respectively. This observational approach demonstrated species differences both in control activities and in the timing and extent of hepatic responses to OTC. The unique perturbations of hepatic CYP450 enzymes in different fish species to OTC treatment observed in this study may have relevance for the use of additional antibiotics or other therapeutics used in aquaculture. PMID:21458012

  16. Cross-sectional study of hepatic CYP1A and CYP3A enzymes in hybrid striped bass, channel catfish and Nile tilapia following oxytetracycline treatment.

    PubMed

    Topic Popovic, N; Howell, T; Babish, J G; Bowser, P R

    2012-04-01

    Terramycin for Fish® (oxytetracycline, OTC) is one of three approved drugs for therapeutic treatment of fish in the United States. Nothing is known, however, of the effects of this therapeutic on drug metabolizing enzymes in fish post-treatment. The main purpose of the study was to examine whether the fish CYP1A and CYP3A enzymes would cross-react with antibodies to known mammalian cytochrome P-450 forms (CYP1A1 and CYP3A). Observational feeding studies of OTC effects were conducted in hybrid striped bass, channel catfish and Nile tilapia. Oxytetracycline was mixed into the feed to achieve a daily dose of 82.8 mg per kg body weight at a feeding rate of 1% body weight per day. Hepatic microsomes of each fish were prepared and Western blotting of CYP1A1 and CYP3A4 and enzyme assays of CYP1A2 and CYP3A4 were performed prior to OTC treatment and on post-treatment days 1, 6, 11 and 21. Both goat anti-rat CYP1A1 and rabbit anti-human CYP3A4 showed good cross-reactivity with all three species in this study. All three species exhibited distinct perturbations in one or more of the variables examined on day 1 post-treatment. Immediately following the 10-day medication period, relative liver weight (RLW) of hybrid striped bass was increased 44% and remained elevated through post-treatment day 21. Increased CYP3A4 enzyme activity and protein abundance were noted in channel catfish and Nile tilapia, respectively. This observational approach demonstrated species differences both in control activities and in the timing and extent of hepatic responses to OTC. The unique perturbations of hepatic CYP450 enzymes in different fish species to OTC treatment observed in this study may have relevance for the use of additional antibiotics or other therapeutics used in aquaculture.

  17. Single-antibody in situ enzyme immunoassay for infectivity titration of hepatitis A virus.

    PubMed

    Borovec, S; Uren, E

    1997-10-01

    Hepatitis A virus (HAV) establishes a persistent infection in cultured cells, with minimal effect on host cell metabolism. As a result, the virus produces very little, if any, cytopathic effect (CPE), even with cell culture-adapted strains. This feature precludes the use of a plaque or standard endpoint assay (using CPE as an indicator of infection) for the titration of infectious virus. The radioimmunofocus assay (RIFA) is the standard method for HAV titration, though this method is labour intensive and requires the use of radioisotopes. To this end, a single-antibody in situ enzyme immunoassay (EIA) has been developed, using binding of a perioxidase-labelled monoclonal antibody to fixed cell monolayers as an indicator of infection. This novel assay is highly reproducible, can be read by eye, and is suitable for high throughput situations. Furthermore, the assay has been validated against the RIFA making it suitable for use in studies validating the safety of therapeutic biologicals for human use.

  18. [Detection of enzyme activity in decontaminated spices in industrial use].

    PubMed

    Müller, R; Theobald, R

    1995-03-01

    A range of decontaminated species of industrial use have been examined for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material.

  19. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    PubMed Central

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  20. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes.

    PubMed

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C

    2013-11-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  1. Exploration of the spontaneous fluctuating activity of single enzyme molecules.

    PubMed

    Schwabe, Anne; Maarleveld, Timo R; Bruggeman, Frank J

    2013-09-01

    Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metabolism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy numbers per single cell. However, many processes inside cells rely on single enzyme activity, such as transcription, replication, translation, and histone modifications. Here we introduce the main theoretical concepts of stochastic single-enzyme activity starting from the Michaelis-Menten enzyme mechanism. Next, we discuss stochasticity of multi-substrate enzymes, of enzymes and receptors with multiple conformational states and finally, how fluctuations in receptor activity arise from fluctuations in signal concentration. This paper aims to introduce the exciting field of single-molecule enzyme kinetics and stochasticity to a wider audience of biochemists and systems biologists.

  2. Consumption of poisonous plants (Senecio jacobaea, Symphytum officinale, Pteridium aquilinum, Hypericum perforatum) by rats: chronic toxicity, mineral metabolism, and hepatic drug-metabolizing enzymes.

    PubMed

    Garrett, B J; Cheeke, P R; Miranda, C L; Goeger, D E; Buhler, D R

    1982-02-01

    Effect of dietary tancy ragwort (Senecio jacobaea), comfrey (Symphytum officinale), bracken (Pteridium aquilinum) and alfalfa (Medicago sativa) on hepatic drug-metabolizing enzymes in rats were measured. Tansy ragwort and bracken increased (P less than 0.05) the activity of glutathione transferase and epoxide hydrolase. Comfrey and alfalfa increased (P less than 0.05) the activity of aminopyrine N-demethylase. Feeding bracken or St. John's wort (Hypericum perforatum) in conjunction with tansy ragwort did not influence chronic toxicity of tansy ragwort as assessed by rat survival time. Dietary tansy ragwort resulted in increased (P less than 0.05) hepatic copper levels; the other plants did not affect copper levels. The results do not suggest any major interaction in the toxicity of tansy ragwort with bracken or St. John's wort. PMID:7080084

  3. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  4. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    PubMed

    Katsanou, Efrosini S; Kyriakopoulou, Katerina; Emmanouil, Christina; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Machera, Kyriaki

    2014-01-01

    Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE. PMID:24950217

  5. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions.

    PubMed

    Shisler, Krista A; Broderick, Joan B

    2014-03-15

    The glycyl radical enzyme activating enzymes (GRE-AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe-4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE-AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE-AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE-AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes.

  6. Antioxidant enzymes activities in obese Tunisian children

    PubMed Central

    2013-01-01

    Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls), aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx). Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p < 0.05). Mean activities of anti-radical GPx and CAT enzymes were not affected by the BMI increase. Although, total cholesterol levels were statistically higher in the obese group, there was no significant association with the SOD activity. Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response. PMID:23360568

  7. A Comparative Study for the Evaluation of Two Doses of Ellagic Acid on Hepatic Drug Metabolizing and Antioxidant Enzymes in the Rat

    PubMed Central

    Celik, Gurbet; Semiz, Aslı; Karakurt, Serdar; Arslan, Sevki; Adali, Orhan; Sen, Alaattin

    2013-01-01

    The present study was designed to evaluate different doses of ellagic acid (EA) in vivo in rats for its potential to modulate hepatic phases I, II, and antioxidant enzymes. EA (10 or 30 mg/kg/day, intragastrically) was administered for 14 consecutive days, and activity, protein, and mRNA levels were determined. Although the cytochrome P450 (CYP) 2B and CYP2E enzyme activities were decreased significantly, the activities of all other enzymes were unchanged with the 10 mg/kg/day EA. In addition, western-blot and qRT-PCR results clearly corroborated the above enzyme expressions. On the other hand, while the NAD(P)H:quinone oxidoreductase 1 (NQO1), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were increased significantly, CYP1A, 2B, 2C, 2E, and 19 enzyme activities were reduced significantly with 30 mg/kg/day EA. In addition, CYP2B, 2C6, 2E1, and 19 protein and mRNA levels were substantially decreased by the 30 mg/kg/day dose of EA, but the CYP1A protein, and mRNA levels were not changed. CYP3A enzyme activity, protein and mRNA levels were not altered by neither 10 nor 30 mg/kg/day ellagic acid. These results indicate that EA exerts a dose-dependent impact on the metabolism of chemical carcinogens and drugs by affecting the enzymes involved in xenobiotics activation/detoxification and antioxidant pathways. PMID:23971029

  8. The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes

    PubMed Central

    Tavis, John E.; Totten, Michael; Cao, Feng; Michailidis, Eleftherios; Aurora, Rajeev; Meyers, Marvin J.; Jacobsen, E. Jon; Parniak, Michael A.; Sarafianos, Stefan G.

    2013-01-01

    Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 µM, the best compounds had low micromolar IC50 values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 µM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development. PMID

  9. The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes.

    PubMed

    Tavis, John E; Cheng, Xiaohong; Hu, Yuan; Totten, Michael; Cao, Feng; Michailidis, Eleftherios; Aurora, Rajeev; Meyers, Marvin J; Jacobsen, E Jon; Parniak, Michael A; Sarafianos, Stefan G

    2013-01-01

    Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 µM, the best compounds had low micromolar IC(50) values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 µM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development. PMID

  10. Hepatitis

    MedlinePlus

    ... has been associated with drinking contaminated water. Hepatitis Viruses Type Transmission Prognosis A Fecal-oral (stool to ... risk for severe disease. Others A variety of viruses can affect the liver Signs and Symptoms Hepatitis ...

  11. Novel 2-oxoimidazolidine-4-carboxylic acid derivatives as Hepatitis C virus NS3-4A serine protease inhibitors: synthesis, activity, and X-ray crystal structure of an enzyme inhibitor complex

    SciTech Connect

    Arasappan, Ashok; Njoroge, F. George; Parekh, Tejal N.; Yang, Xiaozheng; Pichardo, John; Butkiewicz, Nancy; Prongay, Andrew; Yao, Nanhua; Girijavallabhan, Viyyoor

    2008-06-30

    Synthesis and HCV NS3 serine protease inhibitory activity of some novel 2-oxoimidazolidine-4-carboxylic acid derivatives are reported. Inhibitors derived from this new P2 core exhibited activity in the low {micro}M range. X-ray structure of an inhibitor, 15c bound to the protease is presented.

  12. Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system.

    PubMed

    Court, Michael H

    2010-02-01

    The human liver bank has provided an invaluable model system for the study of interindividual variability in expression and activity of the major hepatic UGTs, including UGT1A1, 1A4, 1A6, 1A9, 2B7, and 2B15. Based on studies using UGT-isoform-selective probes, the rank order of activity variability is UGT 1A1>1A6>2B15>1A4 = 1A9>2B7, with coefficient of variation values ranging from 92 to 45%. Liver donor age, sex, enzyme inducers, and genetic polymorphism are factors that have been implicated as sources of this variability in UGT activity. The expression of UGTs prior to, and immediately following, birth is quite limited, explaining the susceptibility of neonates to certain drug toxicities. Old age appears to have minimal effect on UGT function. Sex differences in UGT activity are relatively small and are confined to several UGTs, including UGT2B15, which shows higher activity in males, compared with females. Enzyme inducers, including coadministered drugs, smoking, and alcohol, may increase hepatic UGT levels. Human liver bank phenotype-genotype studies, using UGT-isoform-selective probes have identified common genetic polymorphisms that are predictive of glucuronidation activity in vitro and that were subsequently verified as predictors of probe-drug clearance by glucuronidation in vivo.

  13. Purification of a baculovirus-expressed hepatitis E virus structural protein and utility in an enzyme-linked immunosorbent assay.

    PubMed Central

    He, J; Ching, W M; Yarbough, P; Wang, H; Carl, M

    1995-01-01

    We report on the purification of the full-length structural protein encoded by open reading frame 2 (ORF-2) of hepatitis E virus. The ORF-2 protein, expressed in Sf9 cells by using a recombinant baculovirus vector system, was successfully purified to homogeneity. Gel electrophoresis of the purified ORF-2 protein showed a single polypeptide of 75 kDa by Coomassie blue staining and by Western blot (immunoblot) analysis. We demonstrated that the partially purified ORF-2 protein could be used successfully in a sensitive and specific enzyme-linked immunosorbent assay for the detection of antibodies to hepatitis E virus. PMID:8586723

  14. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits.

    PubMed

    Mohd Esa, Norhaizan; Abdul Kadir, Khairul-Kamilah; Amom, Zulkhairi; Azlan, Azrina

    2013-11-15

    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes. PMID:23790918

  15. Phase I and II liver enzyme activities in juvenile alligators (Alligator mississippiensis) collected from three sites in the Kissimmee-Everglades drainage, Florida (USA).

    PubMed

    Gunderson, M P; Oberdörster, E; Guillette, L J

    2004-10-01

    We examined CYP1A (measured using hepatic EROD and MROD activities) and glutathione-S-transferase (GST) activities in juvenile alligators (Alligator mississippiensis) collected from three sites with varying contamination in the Kissimmee-Everglades drainage in south Florida. We hypothesized that contaminants present in areas with intermediate or higher contaminant concentrations would alter hepatic enzyme activities in juvenile alligators from those sites when compared to hepatic enzyme activity in animals from the area with the least contamination. EROD activity was found to be higher in animals from the site with lower reported levels of contamination relative to those from the site with the highest reported contamination suggesting an inhibition of CYP1A expression or activity. No differences among animals from the three sites were observed for hepatic MROD and GST activities. A significant negative relationship between EROD, MROD, and GST activities and body size was exhibited in alligators from the site with the lowest contamination. No relationship between body size and hepatic enzyme activity was found in animals from the sites with intermediate and higher contamination, suggesting that contaminants present at these sites act to alter this relationship. No correlation was observed in this study between plasma steroid concentrations (estradiol-17 beta or testosterone) and hepatic EROD, MROD, or GST activities.

  16. Genetic polymorphisms in metabolic enzymes and susceptibility to anti-tuberculosis drug-induced hepatic injury.

    PubMed

    Feng, F M; Guo, M; Chen, Y; Li, S M; Zhang, P; Sun, S F; Zhang, G S

    2014-01-01

    We examined the relationships between N-transacetylase 2 (NAT2), cytochrome P450 (CYP) 2E1 enzyme, glutathione S-transferase M1, T1 (GSTM1/GSTT1) gene polymorphisms, and anti-tuberculosis drug-induced hepatic injury (ADIH). A one-to-one matched case-control study was carried out using clinical data. NAT2, CYP2E1, GSTM1, and GSTT1 polymorphisms were identified in 173 pairs of research subjects. Statistical analysis was performed to determine risk factors of ADIH. The results showed that low body mass index and alcohol consumption were risk factors of ADIH, with odds ratios of 6.852 and 3.203, respectively. The frequencies of NAT2 slow acetylator, CYP2E1 -1259G>C, -1019C>T wild-type, and the GSTM1 null genotype were higher in the case group than in the control group, with odds ratios of 2.260, 2.696, 4.714, and 2.440, respectively. GSTT1 was not found to be related to ADIH. Interactive analysis showed that NAT2 slow acetylator and the GSTM1 null genotype were mutually synergistic, while an antagonistic relationship was observed between the CYP2E1 wild-type genotype and the other 3 genetic types. The risks of hepatic injury were higher after anti-tuberculosis therapy in patients carrying the NAT2 slow acetylator, CYP2E1 -1259G>C, -1019C>T wild-type, and GSTM1 null genotype. PMID:25501156

  17. The liver X-receptor alpha controls hepatic expression of the human bile acid-glucuronidating UGT1A3 enzyme in human cells and transgenic mice.

    PubMed

    Verreault, Mélanie; Senekeo-Effenberger, Kathy; Trottier, Jocelyn; Bonzo, Jessica A; Bélanger, Julie; Kaeding, Jenny; Staels, Bart; Caron, Patrick; Tukey, Robert H; Barbier, Olivier

    2006-08-01

    Glucuronidation, an important bile acid detoxification pathway, is catalyzed by enzymes belonging to the UDP-glucuronosyltransferase (UGT) family. Among UGT enzymes, UGT1A3 is considered the major human enzyme for the hepatic C24-glucuronidation of the primary chenodeoxycholic (CDCA) and secondary lithocholic (LCA) bile acids. We identify UGT1A3 as a positively regulated target gene of the oxysterol-activated nuclear receptor liver X-receptor alpha (LXRalpha). In human hepatic cells and human UGT1A transgenic mice, LXRalpha activators induce UGT1A3 mRNA levels and the formation of CDCA-24glucuronide (24G) and LCA-24G. Furthermore, a functional LXR response element (LXRE) was identified in the UGT1A3 promoter by site-directed mutagenesis, electrophoretic mobility shift assays and chromatin immunoprecipitation experiment. In addition, LXRalpha is found to interact with the SRC-1alpha and NCoR cofactors to regulate the UGT1A3 gene, but not with PGC-1beta. In conclusion, these observations establish LXRalpha as a crucial regulator of bile acid glucuronidation in humans and suggest that accumulation of oxysterols in hepatocytes during cholestasis favors bile acid detoxification as glucuronide conjugates. LXR agonists may be useful for stimulating both bile acid detoxification and cholesterol removal in cholestatic or hypercholesterolemic patients, respectively. PMID:16871576

  18. Characterization of the effects of musk ketone on mouse hepatic cytochrome P450 enzymes.

    PubMed

    Stuard, S B; Caudill, D; Lehman-McKeeman, L D

    1997-12-01

    Nitroaromatic musks, including musk ketone (MK; 2,6-dimethyl-3,5-dinitro-4-t-butylacetophenone), are chemicals used as perfume ingredients in household products, cosmetics, and toiletries. Musk xylene (MX; 1,3,5-trinitro-2-t-butylxylene), another nitromusk, is not genotoxic but has been reported to produce mouse liver tumors in a chronic bioassay. In addition, MX has been shown to both induce and inhibit mouse liver cytochrome P450 2B (CYP2B) isozymes. The ability of MX to inhibit CYP2B enzyme activity is attributable to inactivation of the enzyme by a specific amine metabolite. MK is structurally similar to MX, but lacks the nitro substitution that is reduced to the inactivating amine metabolite. Therefore, we hypothesized that MK would induce, but not inhibit, CYP2B isozymes. To test this hypothesis, and to evaluate the effects of MK on mouse liver cytochrome P450 enzymes, two sets of experiments were performed. To evaluate the ability of MK to induce cytochromes P450, mice were dosed daily by oral gavage at dosages ranging from 5 to 500 mg/ kg MK for 7 days. This treatment resulted in a pleiotropic response in mouse liver, including increased liver weight, increased total microsomal protein, and centrilobular hepatocellular hypertrophy. At the highest dose tested, MK caused a 28-fold increase in CYP2B enzyme activity and a small (approximately 2-fold) increase in both cytochromes P450 1A and 3A (CYP1A and CYP3A) enzyme activities over control levels. Protein and mRNA analyses confirmed the relative levels of induction for CYP2B, CYP1A, and CYP3A. In addition, the no-observable-effect level (NOEL) for CYP2B induction by MK was 20 mg/kg. To evaluate the ability of MK to inhibit phenobarbital-induced CYP2B activity, mice were given 500 ppm phenobarbital (PB) in the drinking water for 5 days to induce CYP2B isozymes, followed by a single equimolar (0.67 mmol/kg) oral gavage dose of either MK (198 mg/kg) or MX (200 mg/kg), and microsomes were prepared 18 h later

  19. Evaluation of a novel chemiluminescent microplate enzyme immunoassay for hepatitis B surface antigen detection.

    PubMed

    Yang, Lin; Song, Liu-Wei; Fang, Lin-Lin; Wu, Yong; Ge, Sheng-Xiang; Li, Hui; Yuan, Quan; Zhang, Jun; Xia, Ning-Shao

    2016-02-01

    Hepatitis B virus surface antigen (HBsAg) is an important biomarker used in the diagnosis of hepatitis B virus (HBV) infection, but false-negative results are still reported in the detection of HBsAg using commercial assays. In this study, we evaluated the qualitative properties of a novel HBsAg chemiluminescence enzyme immunoassay (CLEIA) assay--WTultra. WHO standard sample dilution series and samples from low-level HBsAg carriers (<1 ng/mL) were used to evaluate the sensitivity of the WTultra assay. Boston Biomedica, Inc. (BBI) hepatitis B seroconversion panels were used to assess the ability of the WTultra assay to detect the window period. In addition, dilution series of 22 serum samples with different genotypes, serotypes and HBsAg mutations were used to assess the WTultra assay, and these were compared with other commercial assays. The lower detection limit of the WTultra assay was 0.012 IU/mL, and it showed a high sensitivity (97.52%, 95% CI, 94.95-99.00) in the detection of 282 low-level HBsAg carriers (<1 ng/mL). In samples with various HBV genotypes, serotypes and HBsAg mutations, the WTultra assay yielded 117 positive results in 132 samples, which was significantly higher than the results with the other four commercial assays (89, 83, 65 and 45, respectively, p<0.01). In the assays of mutant strains, the WTultra assay detected 82 positive results in 90 samples, which was significantly better than the results for the Hepanostika HBsAg Ultra (58 positive) and Architect (55 positive) (p<0.01) assays, which in turn were significantly better than the Murex V.3 (41 positive, p=0.026) and AxSYM V2 (29 positive, p<0.01) assays. However, in the detection of 42 samples of wild-type strains with various genotypes and serotypes, no significant differences were observed among the WTultra (35 positive), Architect (28 positive) and Hepanostika HBsAg Ultra (31 positive) assays. However, the WTultra assay detected significantly more samples than the Murex V.3 (24

  20. The effect of cloudy apple juice on hepatic and mammary gland phase I and II enzymes induced by DMBA in female Sprague-Dawley rats.

    PubMed

    Szaefer, Hanna; Krajka-Kuźniak, Violetta; Ignatowicz, Ewa; Adamska, Teresa; Markowski, Jarosław; Baer-Dubowska, Wanda

    2014-10-01

    Apples abundant in phenolic compounds show a variety of biological activities that may contribute to health beneficial effects against cardiovascular diseases, diabetes, obesity and cancer. We investigated the effect of cloudy apple juice (CAJ) on the hepatic and mammary gland carcinogen metabolizing enzymes, DNA damage and liver injury, altered by 7,12-dimethylbenz[a]anthracene (DMBA). Sprague-Dawley female rats were gavaged with CAJ (10 ml/kg b.w.) for 28 consecutive days. DMBA was administered i.p. on the 27th and the 28th days. In the liver, feeding with CAJ decreased the activities of CYP1A1 and 1A2 and increased phase II enzymes. The activities of all enzymes tested were enhanced in the animals treated with DMBA alone and in combination with CAJ. The most significant changes in the level of the hepatic enzymes tested were observed for GST alpha and NQO1. In mammary gland CAJ induced an increase in the level of GST mu and GST pi, while DMBA and CAJ combined administration elevated GST pi only. This may be beneficial as GST pi is involved in the DMBA detoxification. Additionally, pretreatment with CAJ reduced the level of most of the blood biochemical liver and kidney markers elevated as a result of DMBA treatment. These findings indicate that CAJ may interfere with enzyme system involved in carcinogen metabolism. However, this effect seems to be dependent on tissue and carcinogen and is moderately effective in the case of DMBA. Moreover, CAJ can also provide some protection against the liver and kidney damage.

  1. Observing single enzyme molecules interconvert between activity states upon heating.

    PubMed

    Rojek, Marcin J; Walt, David R

    2014-01-01

    In this paper, we demonstrate that single enzyme molecules of β-galactosidase interconvert between different activity states upon exposure to short pulses of heat. We show that these changes in activity are the result of different enzyme conformations. Hundreds of single β-galactosidase molecules are trapped in femtoliter reaction chambers and the individual enzymes are subjected to short heating pulses. When heating pulses are introduced into the system, the enzyme molecules switch between different activity states. Furthermore, we observe that the changes in activity are random and do not correlate with the enzyme's original activity. This study demonstrates that different stable conformations play an important role in the static heterogeneity reported previously, resulting in distinct long-lived activity states of enzyme molecules in a population.

  2. Hepatic Enzyme Decline after Pediatric Blunt Trauma: A Tool for Timing Child Abuse?

    ERIC Educational Resources Information Center

    Baxter, Amy L.; Lindberg, Daniel M.; Burke, Bonnie L.; Shults, Justine; Holmes, James F.

    2008-01-01

    Objectives: Previous research in adult patients with blunt hepatic injuries has suggested a pattern of serum hepatic transaminase concentration decline. Evaluating this decline after pediatric blunt hepatic trauma could establish parameters for estimating the time of inflicted injuries. Deviation from a consistent transaminase resolution pattern…

  3. Hepatic Sarcoidosis.

    PubMed

    Tadros, Micheal; Forouhar, Faripour; Wu, George Y

    2013-12-01

    Sarcoidosis is a multisystem disease characterized by the presence of non-caseating granulomas in affected organs. Pulmonary involvement is the most common site of disease activity. However, hepatic involvement is also common in sarcoidosis, occurring in up to 70% of patients. Most patients with liver involvement are asymptomatic. Therefore, the majority of cases are discovered incidentally, frequently by the finding of elevated liver enzymes. Pain in the right upper quadrant of the abdomen, fatigue, pruritus, and jaundice may be associated with liver involvement. Portal hypertension and cirrhosis are complications linked to long-standing hepatic sarcoidosis. Liver biopsy is usually required to confirm the diagnosis. It is important to differentiate hepatic sarcoidosis from other autoimmune and granulomatous liver diseases. Not all cases of hepatic sarcoidosis require treatment. For symptomatic patients, the first line treatment includes corticosteroids or ursodeoxycholic acid. Various immunosuppressant agents can be used as second line agents. Rarely, severe cases require liver transplantation.

  4. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    SciTech Connect

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  5. High Frequency of False-Positive Hepatitis C Virus Enzyme-Linked Immunosorbent Assay in Rakai, Uganda

    PubMed Central

    Mullis, Caroline E.; Laeyendecker, Oliver; Reynolds, Steven J.; Ocama, Ponsiano; Quinn, Jeffrey; Boaz, Iga; Gray, Ronald H.; Kirk, Gregory D.; Thomas, David L.; Quinn, Thomas C.; Stabinski, Lara

    2013-01-01

    The prevalence of hepatitis C virus (HCV) infection in sub-Saharan Africa remains unclear. We tested 1000 individuals from Rakai, Uganda, with the Ortho version 3.0 HCV enzyme-linked immunosorbent assay. All serologically positive samples were tested for HCV RNA. Seventy-six of the 1000 (7.6%) participants were HCV antibody positive; none were confirmed by detection of HCV RNA. PMID:24051866

  6. Why do crown ethers activate enzymes in organic solvents?

    PubMed

    van Unen, Dirk-Jan; Engbersen, Johan F J; Reinhoudt, David N

    2002-02-01

    One of the major drawbacks of enzymes in nonaqueous solvents is that their activity is often dramatically low compared to that in water. This limitation can be largely overcome by crown ether treatment of enzymes. In this paper, we describe a number of carefully designed new experiments that have improved the insights into the mechanisms that are operative in the crown ether activation of enzymes in organic solvents. The enhancement of enzyme activity upon addition of 18-crown-6 to the organic solvent can be reconciled with a mechanism in which macrocyclic interactions of 18-crown-6 with the enzyme play an important role. Macrocyclic interactions (e.g., complexation with lysine ammonium groups of the enzyme) can lead to a reduced formation of inter- and intramolecular salt bridges and, consequently, to lowering of the kinetic conformational barriers, enabling the enzyme to refold into thermodynamically stable, catalytically (more) active conformations. This assumption is supported by the observation that the crown-ether-enhanced enzyme activity is retained after removal of the crown by washing with a dry organic solvent. A much stronger crown ether activation is observed when 18-crown-6 is added prior to lyophilization, and this can be explained by a combination of two effects: the before-mentioned macrocyclic complexation effect, and a less specific, nonmacrocyclic, lyoprotecting effect. The magnitude of the total crown ether effect depends on the polarity and thermodynamic water activity of the solvent, the activation being highest in dry and apolar media, where kinetic conformational barriers are highest. By determination of the specific activity of crown-ether-lyophilized enzyme as a function of the enzyme concentration, the macrocyclic crown ether (linearly dependent on the enzyme concentration) and the nonmacrocyclic lyoprotection effect (not dependent on the enzyme concentration) could be separated. These measurements reveal that the contribution of the

  7. Spatial distribution of enzyme activities in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  8. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Lee, Mi-Rin; Kim, Hye-Kyung; Kim, Nan-young; Kim, Seung-Hyun; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia. PMID:24349058

  9. Self-Assembly of Amyloid Fibrils That Display Active Enzymes

    PubMed Central

    Zhou, Xiao-Ming; Entwistle, Aiman; Zhang, Hong; Jackson, Antony P; Mason, Thomas O; Shimanovich, Ulyana; Knowles, Tuomas P J; Smith, Andrew T; Sawyer, Elizabeth B; Perrett, Sarah

    2014-01-01

    Enzyme immobilization is an important strategy to enhance the stability and recoverability of enzymes and to facilitate the separation of enzymes from reaction products. However, enzyme purification followed by separate chemical steps to allow immobilization on a solid support reduces the efficiency and yield of the active enzyme. Here we describe polypeptide constructs that self-assemble spontaneously into nanofibrils with fused active enzyme subunits displayed on the amyloid fibril surface. We measured the steady-state kinetic parameters for the appended enzymes in situ within fibrils and compare these with the identical protein constructs in solution. Finally, we demonstrated that the fibrils can be recycled and reused in functional assays both in conventional batch processes and in a continuous-flow microreactor. PMID:25937845

  10. Experiment K304: Studies of specific hepatic enzymes and liver constituents involved in the conversion of carbohydrates to lipids in rats exposed to prolonged space flight

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Klein, H. P.; Lin, C. Y.; Volkmann, C.; Tigranyan, R. A.; Vetrova, E. G.

    1981-01-01

    The effects of space flight on the activities of 26 enzymes concerned with carbohydrate and lipid metabolism in hepatic tissue taken from male Wistar rats are investigated. These activities were measured in the various hepatic cell compartments, i.e., cytosol, mitochondria and microsomes. In addition, the levels of glycogen, total lipids, phospholipids, triglycerides, cholesterol, cholesterol esters, and the fatty acid composition of the rat livers were also examined and quantified. A similar group of ground-based rats treated in an identical manner served as controls. Both flight and synchronous control rats were sacrificed at three time intervals: R+0, 7-11 hours after recovery; R+6, after 6 days; R+6(S), after 6 days (having undergone 2-5 hour periods of fixed stress in a "backupward" position on days 0, 3, 4, 5 and 6) and R+29, after 29 days post-flight. Although most of the enzyme activities and the amounts of liver constituents studied were unaffected by the period of weightlessness, some significant differences were observed.

  11. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J. |

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  12. Hepatic steroid inactivating enzymes, hepatic portal blood flow, and corpus luteum blood perfusion in lactating dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In ruminants, a decrease in pregnancy rates may be due to decreased concentrations of progesterone (P4). It is important to note that both production from the corpus luteum and/or hepatic steroid inactivation impacts peripheral concentrations of P4. Cattle with an elevated dry matter intake have inc...

  13. Activities of biotransformation enzymes in pheasant (Phasianus colchicus) and their modulation by in vivo administration of mebendazole and flubendazole.

    PubMed

    Savlík, M; Polácková, L; Szotáková, B; Lamka, J; Velík, J; Skálová, L

    2007-08-01

    Basal activities of certain pheasant hepatic and intestinal biotransformation enzymes and modulation of their activities by anthelmintics flubendazole (FLBZ) and mebendazole (MBZ) were investigated in subcellular fractions that were prepared from liver and small intestine of control and FLBZ or MBZ treated birds. Several oxidation, reduction and conjugation enzyme activities were assessed. In the liver, treatment of pheasants by FLBZ or MBZ caused very slight or no changes in monooxygenase activities and conjugation enzymes. More significative changes were detected in small intestine. Metyrapone and daunorubicin reductase activities were increased by both substances in the liver. This is the first evidence that certain benzimidazoles modulate reductases of carbonyl group. With respect to the relatively slight extent of the changes caused by FLBZ or MBZ we can assume that repeated administration of therapeutic doses of both FLBZ and MBZ has probably no serious influence on pheasant biotransformation enzyme system.

  14. Intracellular localization of mevalonate-activating enzymes in plant cells

    PubMed Central

    Rogers, L. J.; Shah, S. P. J.; Goodwin, T. W.

    1966-01-01

    Mevalonate-activating enzymes are shown to be present in the chloroplasts of French-bean leaves. The chloroplast membrane is impermeable to mevalonic acid. Mevalonate-activating enzymes also appear to be found outside the chloroplast. These results support the view that terpenoid biosynthesis in the plant cell is controlled by a combination of enzyme segregation and specific membrane permeability. ImagesFig. 1.Fig. 2. PMID:5947149

  15. Thyroid hormone-induced changes in the hepatic monooxygenase system, heme oxygenase activity and epoxide hydrolase activity in adult male, female and immature rats.

    PubMed

    Leakey, J E; Mukhtar, H; Fouts, J R; Bend, J R

    1982-07-01

    In 8-day-old rat pups, pretreatment with a single injection of L-triiodothyronine or L-thyroxine decreased hepatic cytochrome P-450 content, aminopyrine N-demethylase activity and epoxide hydrolase activity but increased hepatic microsomal cytochrome c reductase, 7-ethoxyresorufin O-deethylase and heme oxygenase activities without significantly altering UDP-glucuronosyltransferase activity (towards o-aminophenol) or the microsomal yield. In adult rats of either sex such single injections of L-triiodothyronine failed to significantly alter these enzyme activities. However, multiple injections evoked changes similar to those observed in the pups, in all these enzyme activities, except that 7-ethoxyresorufin O-deethylase activity was slightly decreased rather than increased. These findings demonstrate that: (1) The hepatic monooxygenase system in the rat pup is more responsive to thyroid hormones than that in adult. (2) Thyroid hormones can decrease rat liver cytochrome P-450 content and its dependent monooxygenase activity independently of sexual maturity. (3) Thyroid hormones also decrease hepatic epoxide hydrolase activity in both pups and adults. Thus, hyperthyroidism could render the rat pup more susceptible to hepatotoxicity from electrophilic epoxides which utilize microsomal epoxide hydrolase as the major detoxication pathway.

  16. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  17. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  18. Ultrasound in Enzyme Activation and Inactivation

    NASA Astrophysics Data System (ADS)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  19. Investigation of antioxidant and hepatoprotective activity of standardized Curcuma xanthorrhiza rhizome in carbon tetrachloride-induced hepatic damaged rats.

    PubMed

    Devaraj, Sutha; Ismail, Sabariah; Ramanathan, Surash; Yam, Mun Fei

    2014-01-01

    Curcuma xanthorrhiza (CX) has been used for centuries in traditional system of medicine to treat several diseases such as hepatitis, liver complaints, and diabetes. It has been consumed as food supplement and "jamu" as a remedy for hepatitis. Hence, CX was further explored for its potential as a functional food for liver related diseases. As such, initiative was taken to evaluate the antioxidant and hepatoprotective potential of CX rhizome. Antioxidant activity of the standardized CX fractions was determined using in vitro assays. Hepatoprotective assay was conducted against carbon tetrachloride- (CCl4-) induced hepatic damage in rats at doses of 125, 250, and 500 mg/kg of hexane fraction. Highest antioxidant activity was found in hexane fraction. In the case of hepatoprotective activity, CX hexane fraction showed significant improvement in terms of a biochemical liver function, antioxidative liver enzymes, and lipid peroxidation activity. Good recovery was observed in the treated hepatic tissues histologically. Hence, the results concluded that CX hexane fraction possessed prominent hepatoprotective activities which might be due to its in vitro antioxidant activity. These findings also support the use of CX as a functional food for hepatitis remedy in traditional medicinal system. PMID:25133223

  20. Metformin Inhibits Glutaminase Activity and Protects against Hepatic Encephalopathy

    PubMed Central

    Ampuero, Javier; Ranchal, Isidora; Nuñez, David; Díaz-Herrero, María del Mar; Maraver, Marta; del Campo, José Antonio; Rojas, Ángela; Camacho, Inés; Figueruela, Blanca; Bautista, Juan D.; Romero-Gómez, Manuel

    2012-01-01

    Aim To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. Methods Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin) and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment). Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. Results Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82): 4.9% (2/41) in patients receiving metformin and 41.5% (17/41) in patients without metformin treatment (logRank 9.81; p = 0.002). In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2–108.8); p = 0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04–1.2); p = 0.002], female sex [H.R.10.4 (95% CI: 1.5–71.6); p = 0.017] and HE risk [H.R.21.3 (95% CI: 2.8–163.4); p = 0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM) decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05). Conclusions Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin

  1. Successful Interferon Therapy Reverses Enhanced Hepatic Progenitor Cell Activation in Patients with Chronic Hepatitis C.

    PubMed

    Noritake, Hidenao; Kobayashi, Yoshimasa; Ooba, Yukimasa; Matsunaga, Erika; Ohta, Kazuyoshi; Shimoyama, Shin; Yamazaki, Satoru; Chida, Takeshi; Kawata, Kazuhito; Sakaguchi, Takanori; Suda, Takafumi

    2015-12-01

    The enhanced accumulation of hepatic progenitor cells (HPCs) is related to the risk of progression to hepatocellular carcinoma (HCC). Interferon (IFN) treatment reduces HCC risk in patients with chronic hepatitis C virus (HCV) infection. However, the underlying mechanisms remain unclear. The aim of this study was to examine the effects of IFN treatment on HPC activation in HCV patients. Immunohistochemical detection and computer-assisted quantitative image analyses of cytokeratin 7 (CK7) were performed to evaluate HPC activation in paired pre- and post-treatment liver biopsies from 18 HCV patients with sustained virological response (SVR) to IFN-based therapy and from 23 patients without SVR, as well as normal liver tissues obtained from surgical resection specimens of 10 patients. Pretreatment HCV livers showed increased CK7 immunoreactivity, compared with normal livers (HCV: median, 1.38%; normal: median, 0.69%, P=0.006). IFN treatment reduced hepatic CK7 immunoreactivity (median, 1.57% pre-IFN vs. 0.69% post-IFN, P=0.006) in SVR patients, but not in non-SVR patients. The development of HCC following IFN treatment was encountered in 3 non-SVR patients who showed high post-IFN treatment CK7 immunoreactivity (>4%). Successful IFN therapy can reverse enhanced HPC activation in HCV patients, which may contribute to the reduced risk of HCC development in these patients.

  2. Manganese enzymes with binuclear active sites

    SciTech Connect

    Dismukes, G.C.

    1996-11-01

    The purpose of this article is twofold. First, to review the recent literature dealing with the mechanisms of catalysis by binuclear manganese enzymes. Second, to summarize and illustrate the general principles of catalysis which distinguish binuclear metalloenzymes from monometallic centers. This review covers primarily the published literature from 1991 up to May 1996. A summary of the major structurally characterized dimanganese enzymes is given. These perform various reaction types including several redox reactions, (de)hydrations, isomerizations, (de)phosphorylation, and phosphoryl transfer. 114 refs.

  3. Determination of concentration and activity of immobilized enzymes.

    PubMed

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V; Kohen, Amnon

    2015-09-01

    Methods that directly measure the concentration of surface-immobilized biomolecules are scarce. More commonly, the concentration of the soluble molecule is measured before and after immobilization, and the bound concentration is assessed by elimination, assuming that all bound molecules are active. An assay was developed for measuring the active site concentration, activity, and thereby the catalytic turnover rate (kcat) of an immobilized dihydrofolate reductase as a model system. The new method yielded a similar first-order rate constant, kcat, to that of the same enzyme in solution. The findings indicate that the activity of the immobilized enzyme, when separated from the surface by the DNA spacers, has not been altered. In addition, a new immobilization method that leads to solution-like activity of the enzyme on the surface is described. The approaches developed here for immobilization and for determining the concentration of an immobilized enzyme are general and can be extended to other enzymes, receptors, and antibodies.

  4. Relationship between Differential Hepatic microRNA Expression and Decreased Hepatic Cytochrome P450 3A Activity in Cirrhosis

    PubMed Central

    Goswami, Chirayu Pankaj; Nalamasu, Rohit; Li, Lang; Jones, David; Wei, Rongrong; Liu, Wanqing; Sarasani, Vishal; Janga, Sarath Chandra; Chalasani, Naga

    2013-01-01

    Background and Aim Liver cirrhosis is associated with decreased hepatic cytochrome P4503A (CYP3A) activity but the pathogenesis of this phenomenon is not well elucidated. In this study, we examined if certain microRNAs (miRNA) are associated with decreased hepatic CYP3A activity in cirrhosis. Methods Hepatic CYP3A activity and miRNA microarray expression profiles were measured in cirrhotic (n=28) and normal (n=12) liver tissue. Hepatic CYP3A activity was measured via midazolam hydroxylation in human liver microsomes. Additionally, hepatic CYP3A4 protein concentration and the expression of CYP3A4 mRNA were measured. Analyses were conducted to identify miRNAs which were differentially expressed between two groups but also were significantly associated with lower hepatic CYP3A activity. Results Hepatic CYP3A activity in cirrhotic livers was 1.7-fold lower than in the normal livers (0.28 ± 0.06 vs. 0.47 ± 0.07mL* min-1*mg protein-1 (mean ± SEM), P=0.02). Six microRNAs (miR-155, miR-454, miR-582-5p, let-7f-1*, miR-181d, and miR-500) had >1.2-fold increase in cirrhotic livers and also had significant negative correlation with hepatic CYP3A activity (range of r = -0.44 to -0.52, P <0.05). Notably, miR-155, a known regulator of liver inflammation, had the highest fold increase in cirrhotic livers (2.2-fold, P=4.16E-08) and significantly correlated with hepatic CYP3A activity (r=-0.50, P=0.017). The relative expression (2-ΔΔCt mean ± SEM) of hepatic CYP3A4 mRNA was significantly higher in cirrhotic livers (21.76 ± 2.65 vs. 5.91 ± 1.29, P=2.04E-07) but their levels did not significantly correlate with hepatic CYP3A activity (r=-0.43, P=0.08). Conclusion The strong association between certain miRNAs, notably miR-155, and lower hepatic CYP3A activity suggest that altered miRNA expression may regulate hepatic CYP3A activity. PMID:24058572

  5. alpha-Tocopherol acetate supplementation enhances rat hepatic cytochrome PROD activity in the presence of phenobarbital induction.

    PubMed

    Lii, C K; Sung, W C; Ko, Y J; Chen, H W

    1998-01-01

    Hepatic cytochrome P-450 enzymes play important roles in bioactivation of chemical carcinogens, biotransformation of many endogenous compounds, and detoxification of numerous xenobiotics. These enzyme activities have been shown to be regulated by various dietary factors. In our previous study, hepatic cytochrome pentoxyresorufin O-dealkylase (PROD) activity was decreased in rats fed an alpha-tocopherol acetate-deficient diet compared with rats fed alpha-tocopherol acetate-adequate or -supplemented diets. The objective of the present study was to investigate whether the modulatory effect of dietary alpha-tocopherol acetate on hepatic cytochrome PROD activity is influenced by the presence of phenobarbital. Weanling male Sprague-Dawley rats were fed the AIN-76 diet for four days, fasted for two days, then fed semipurified diets that were alpha-tocopherol acetate deficient, adequate, or supplemented with 5 and 15 g/kg alpha-tocopherol acetate for four days. Liver and plasma alpha-tocopherol concentrations were dose dependently regulated by dietary alpha-tocopherol acetate level. Inhibition of lipid peroxidation by dietary alpha-tocopherol acetate was dose dependent. Hepatic total cytochrome P-450 content was significantly greater in rats fed diets supplemented with 5 and 15 g/kg alpha-tocopherol acetate than in rats fed an alpha-tocopherol-adequate diet (p < 0.05). Hepatic cytochrome PROD activity was significantly greater in rats fed diets supplemented with 5 and 15 g/kg alpha-tocopherol acetate than in rats fed alpha-tocopherol acetate-deficient and -adequate diets (p < 0.05). These results suggest that, in the presence of phenobarbital, dietary alpha-tocopherol acetate efficiently affects tissue alpha-tocopherol levels and inhibits lipid peroxidation and that diets supplemented with 5 or 15 g/kg alpha-tocopherol acetate enhance hepatic cytochrome PROD activity compared with alpha-tocopherol acetate-deficient or -adequate diets.

  6. Enzyme catalysis in an aqueous/organic segment flow microreactor: ways to stabilize enzyme activity.

    PubMed

    Karande, Rohan; Schmid, Andreas; Buehler, Katja

    2010-06-01

    Multiphase flow microreactors benefit from rapid mixing and high mass transfer rates, yet their application in enzymatic catalysis is limited due to the fast inactivation of enzymes used as biocatalysts. Enzyme inactivation during segment flow is due to the large interfacial area between aqueous and organic phases. The Peclet number of the system points to strong convective forces within the segments, and this results in rapid deactivation of the enzyme depending on segment length and flow rate. Addition of surfactant to the aqueous phase or enzyme immobilization prevents the biocatalyst from direct contact with the interface and thus stabilizes the enzyme activity. Almost 100% enzyme activity can be recovered compared to 45% without any enzyme or medium modification. Drop tensiometry measurements point to a mixed enzyme-surfactant interfacial adsorption, and above a certain concentration, the surfactant forms a protective layer between the interface and the biocatalyst in the aqueous compartments. Theoretical models were used to compare adsorption kinetics of the protein to the interface in the segment flow microreactor and in the drop tensiometry measurements. This study is the basis for the development of segment flow microreactors as a tool to perform productive enzymatic catalysis. PMID:20201570

  7. Feeding glycerol-enriched yeast culture improves lactation performance, energy status, and hepatic gluconeogenic enzyme expression of dairy cows during the transition period.

    PubMed

    Ye, G; Liu, J; Liu, Y; Chen, X; Liao, S F; Huang, D; Huang, K

    2016-06-01

    This study aimed to evaluate the effects of feeding glycerol-enriched yeast culture (GY) on feed intake, lactation performance, blood metabolites, and expression of some key hepatic gluconeogenic enzymes in dairy cows during the transition period. Forty-four multiparous transition Holstein cows were blocked by parity, previous 305-d mature equivalent milk yield, and expected calving date and randomly allocated to 4 dietary treatments: Control (no additive), 2 L/d of GY (75.8 g/L glycerol and 15.3 g/L yeast), 150 g/d of glycerol (G; 0.998 g/g glycerol), and 1 L/d of yeast culture (Y; 31.1 g/L yeast). All additives were top-dressed and hand mixed into the upper one-third of the total mixed ration in the morning from -14 to +28 d relative to calving. Results indicated that the DMI, NE intake, change of BCS, and milk yields were not affected by the treatments ( > 0.05). Supplementation of GY or Y increased milk fat percentages, milk protein percentages, and milk protein yields relative to the Control or G group ( < 0.05). Cows fed GY or G had higher glucose levels and lower β-hydroxybutyric acid (BHBA) and NEFA levels in plasma than cows fed the Control ( < 0.05) and had lower NEFA levels than cows fed Y ( < 0.05). On 14 d postpartum, cows fed GY or G had higher enzyme activities, mRNA, and protein expression of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C; < 0.05); higher enzyme activities ( < 0.05) and a tendency toward higher mRNA expression ( < 0.10) of glycerol kinase (GK); and a tendency toward higher enzyme activities of pyruvate carboxylase (PC) in the liver ( < 0.10) when compared with cows fed Control or Y. The enzyme activities, mRNA, and protein expression of PEPCK-C, PC, and GK did not differ between cows fed GY and G ( > 0.10). In conclusion, dietary GY or Y supplementation increased the milk fat and protein content of the cows in early lactation and GY or G supplementation improved the energy status as indicated by greater plasma glucose and

  8. Hepatitis C virus NS3 protease is activated by low concentrations of protease inhibitors.

    PubMed

    Dahl, Göran; Arenas, Omar Gutiérrez; Danielson, U Helena

    2009-12-01

    The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) is a bifunctional enzyme with a protease and a helicase functionality located in each of the two domains of the single peptide chain. There is little experimental evidence for a functional role of this unexpected arrangement since artificial single domain forms of both enzymes are catalytically competent. We have observed that low concentrations of certain protease inhibitors activate the protease of full-length NS3 from HCV genotype 1a with up to 100%, depending on the preincubation time and the inhibitor used. The activation was reduced, but not eliminated, by increased ionic strength, lowered glycerol concentration, or lowered pH. In all cases, it was at the expense of a significant loss of activity. Activation was not seen with the artificial protease domain of genotype 1b NS3 fused with a fragment of the NS4A cofactor. This truncated and covalently modified enzyme form was much less active and exhibited fundamentally different catalytic properties to the full-length NS3 protease without the fused cofactor. The most plausible explanation for the activation was found to involve a slow transition between two enzyme conformations, which differed in their catalytic ability and affinity for inhibitors. Equations derived based on this assumption resulted in better fits to the experimental data than the equation for simple competitive inhibition. The mechanism may involve an inhibitor-induced stabilization of the helicase domain in a conformation that enhances the protease activity, or an improved alignment of the catalytic triad in the protease. The proposed mnemonic mechanism and derived equations are viable for both these explanations and can serve as a basic framework for future studies of enzymes activated by inhibitors or other ligands.

  9. Superoxide dismutase activity as a measure of hepatic oxidative stress in cattle following ethionine administration.

    PubMed

    Abd Ellah, Mahmoud R; Okada, Keiji; Goryo, Masanobu; Oishi, Akihiro; Yasuda, Jun

    2009-11-01

    The goal of this study was to assess if oxidative stress, as measured by alterations in the concentrations of antioxidant enzymes in the liver and erythrocytes of cattle, could be induced following dl-ethionine administration. Whole blood, serum and liver biopsy samples were collected 0, 4, 7 and 10 days after intra-peritoneal ethionine administration to five cows. The activities of the antioxidant enzymes copper zinc superoxide dismutase (Cu, Zn SOD) and catalase were assessed in the liver biopsies which were also examined histopathologically. Significant increases in hepatic Cu, Zn SOD concentrations (P<0.01) were noted on days 7 and 10 post-treatment. Hepatic catalase activity decreased significantly (P<0.01) on days 4, 7 and 10 post-treatment and erythrocyte Cu, Zn SOD activity was significantly increased on day 10. Serum biochemical analysis revealed a significant increase (P<0.01) in non-esterified fatty acid concentrations on day 4 and significant decreases in total cholesterol and phospholipid levels on days 4 (P<0.05), 7 (P<0.01) and 10 (P<0.01). In this model system, dl-ethionine administration was effective in inducing oxidative stress particularly reflected in the liver. PMID:18585936

  10. Superoxide dismutase activity as a measure of hepatic oxidative stress in cattle following ethionine administration.

    PubMed

    Abd Ellah, Mahmoud R; Okada, Keiji; Goryo, Masanobu; Oishi, Akihiro; Yasuda, Jun

    2009-11-01

    The goal of this study was to assess if oxidative stress, as measured by alterations in the concentrations of antioxidant enzymes in the liver and erythrocytes of cattle, could be induced following dl-ethionine administration. Whole blood, serum and liver biopsy samples were collected 0, 4, 7 and 10 days after intra-peritoneal ethionine administration to five cows. The activities of the antioxidant enzymes copper zinc superoxide dismutase (Cu, Zn SOD) and catalase were assessed in the liver biopsies which were also examined histopathologically. Significant increases in hepatic Cu, Zn SOD concentrations (P<0.01) were noted on days 7 and 10 post-treatment. Hepatic catalase activity decreased significantly (P<0.01) on days 4, 7 and 10 post-treatment and erythrocyte Cu, Zn SOD activity was significantly increased on day 10. Serum biochemical analysis revealed a significant increase (P<0.01) in non-esterified fatty acid concentrations on day 4 and significant decreases in total cholesterol and phospholipid levels on days 4 (P<0.05), 7 (P<0.01) and 10 (P<0.01). In this model system, dl-ethionine administration was effective in inducing oxidative stress particularly reflected in the liver.

  11. Liver Injury and the Activation of the Hepatic Myofibroblasts.

    PubMed

    Jiang, Joy X; Török, Natalie J

    2013-09-01

    Liver fibrosis is a wound healing process, the end result of chronic liver injury elicited by different noxious stimuli. Activated hepatic stellate cells or myofibroblasts and portal myofibroblasts are considered as the main producers of the extracellular matrix in the liver. Upon liver injury the quiescent stellate cells transdifferentiate into myofibroblasts a process highlighted by the loss of vitamin A stores, upregulation of interstitial type collagens, smooth muscle α actin, matrix metalloproteinases, proteoglycans, and the induction of cell survival pathways. Activation of hepatic stellate cells is a result of a complex interplay between the parenchymal cells, immune cells, extracellular matrix mechanics and extrahepatic milieu such as the gut microbiome. In this review we will focus on the pathomechanism of stellate cell activation following chronic liver injury; with the aim of identifying possible treatment targets for anti-fibrogenic agents.

  12. Enzyme activities along a latitudinal transect in Western Siberia

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wild, Birgit; Eloy Alves, Ricardo J.; Gentsch, Norman; Gittel, Antje; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Takriti, Mounir; Richter, Andreas

    2014-05-01

    Decomposition of soil organic matter (SOM) and thus carbon and nutrient cycling in soils is mediated by the activity of extracellular enzymes. The specific activities of these enzymes and their ratios to each other represent the link between the composition of soil organic matter and the nutrient demand of the microbial community. Depending on the difference between microbial nutrient demand and substrate availability, extracellular enzymes can enhance or slow down different nutrient cycles in the soil. We investigated activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase) in the topsoil organic horizon, topsoil mineral horizon and subsoil horizon in seven ecosystems along a 1,500 km-long North-South transect in Western Siberia. The transect included sites in the southern tundra, northern taiga, middle taiga, southern taiga, forest-steppe (in forested patches as well as in adjacent meadows) and Steppe. We found that enzyme patterns varied stronger with soil depth than between ecosystems. Differences between horizons were mainly based on the increasing ratio of oxidative enzymes to hydrolytic enzymes. Differences between sites were more pronounced in topsoil than in subsoil mineral horizons, but did not reflect the north-south transect and the related gradients in temperature and precipitation. The observed differences between sites in topsoil horizons might therefore result from differences in vegetation rather than climatic factors. The decreasing variability in the enzyme pattern with depth might also indicate that the composition of soil organic matter becomes more similar with soil depth, most likely by an increasing proportion of microbial remains compared to plant derived constituents of SOM. This also indicates, that SOM becomes less divers the more it is processed by soil microorganisms. Our findings highlight the importance of soil depth on enzyme

  13. Activation and stabilization of enzymes in ionic liquids.

    PubMed

    Moniruzzaman, Muhammad; Kamiya, Noriho; Goto, Masahiro

    2010-06-28

    As environmentally benign "green" solvents, room temperature ionic liquids (ILs) have been used as solvents or (co)solvents in biocatalytic reactions and processes for a decade. The technological utility of enzymes can be enhanced greatly by their use in ionic liquids (ILs) rather than in conventional organic solvents or in their natural aqueous reaction media. In fact, the combination of green properties and unique tailor-made physicochemical properties make ILs excellent non-aqueous solvents for enzymatic catalysis with numerous advantages over other solvents, including high conversion rates, high selectivity, better enzyme stability, as well as better recoverability and recyclability. However, in many cases, particularly in hydrophilic ILs, enzymes show relative instability and/or lower activity compared with conventional solvents. To improve the enzyme activity as well as stability in ILs, various attempts have been made by modifying the form of the enzymes. Examples are enzyme immobilization onto support materials via adsorption or multipoint attachment, lyophilization in the presence of stabilizing agents, chemical modification with stabilizing agents, formation of cross-linked enzyme aggregates, pretreatment with polar organic solvents or enzymes combined with suitable surfactants to form microemulsions. The use of these enzyme preparations in ILs can dramatically increase the solvent tolerance, enhance activity as well as stability, and improve enantioselectivity. This perspective highlights a number of pronounced strategies being used successfully for activation and stabilization of enzymes in non-aqueous ILs media. This review is not intended to be comprehensive, but rather to present a general overview of the potential approaches to activate enzymes for diverse enzymatic processes and biotransformations in ILs. PMID:20445940

  14. How should enzyme activities be used in fish growth studies?

    PubMed

    Pelletier; Blier; Dutil; Guderley

    1995-01-01

    The activity of glycolytic and oxidative enzymes was monitored in the white muscle of Atlantic cod Gadus morhua experiencing different growth rates. A strong positive relationship between the activity of two glycolytic enzymes and individual growth rate was observed regardless of whether the enzyme activity was expressed as units per gram wet mass, units per gram dry mass or with respect to muscle protein and DNA content. The most sensitive response to growth rate was observed when pyruvate kinase and lactate dehydrogenase activities were expressed as units per microgram DNA, and this may be useful as an indicator of growth rate in wild fish. In contrast, no relationship between the activities of oxidative enzymes and growth rate was observed when cytochrome c oxidase and citrate synthase activities were expressed as units per gram protein. Apparently, the aerobic capacity of white muscle in cod is not specifically increased to match growth rate. PMID:9319392

  15. Effect of cadmium, mercury, and zinc on the hepatic microsomal enzymes of Channa punctatus

    SciTech Connect

    Dalal, R.; Bhattacharya, S. )

    1994-06-01

    The increased use of heavy metals like cadmium and mercury in industry and agriculture, and their subsequent intrusion in indeterminate amounts into the environment has caused ecological and biological changes. In vivid contrast, zinc, one of the essential elements, and used in the cosmetic industry, is known to play a pivotal roles in various cellular processes. The seriousness and longevity of these metals in the environment are compounded by the fact that they are non-degradable with significant oxidizing capacity and substantial affinity for electronegative nucleophilic species in proteins and enzymes. Exposure of aquatic animals, especially fish, to these toxic metals for a prolonged period produces an intrinsic toxicity in relation to susceptible organs and/or tissues, although no serious morphological or anatomical changes in the animal or even their feeding behavior may occur. The p-hydroxylation of aniline by aniline hydroxylase (AH) and the N-demethylation of amines to generate formaldehyde (HCHO) by aminopyrine demethylase (APD) are the two oxygen-dependent reactions of microsomal mixed-function oxidase (MFOs) which control the pharmacological and toxicological activities of xenobiotics in mammalian and other species. While both these classical enzymes in fish are reported to demonstrate relatively low specific activity, they are used as criteria for delineating polluted areas. Unlike mammalian species, however, intoxication and interference of MFO enzymes by metal toxicants, especially during prolonged exposure, has not been investigated. The present report describes the results of studies from the concurrent exposure for 28 d to cadmium (CdCl[sub 2]), mercury (HgCl[sub 2]) or zinc (ZnCl[sub 2]) individually, on the AH and APD activities and microsomal protein content in liver of freshwater teleost Channa punctatus.

  16. Effects of simultaneous repeated exposure at high levels of arsenic and malathion on hepatic drug-biotransforming enzymes in broiler chickens.

    PubMed

    Naraharisetti, Suresh Babu; Aggarwal, Manoj; Ranganathan, V; Sarkar, Souvendra Nath; Kataria, Meena; Malik, Jitendra Kumar

    2009-09-01

    Groundwater contamination with arsenic is a major global health concern. The organophosphorus insecticide malathion has gained significance as an environmental pollutant due to its widespread use in agriculture, grain storage, ectoparasite control and public health management. The deleterious effects produced by arsenic or malathion alone are documented, but very little is known about the consequences of their coexposure. The aim of the current study was to examine the effects of repeated simultaneous exposure to arsenic and malathion on drug-biotransforming enzymes in the liver of broiler chickens. One-month-old broiler chickens were exposed daily to arsenic (50 ppm)-supplemented drinking water, malathion (500 ppm)-mixed diet or in a similar fashion coexposed to these agents for 28 days. At the term, changes in body weight, organ weights, and levels of hepatic cytochrome P450 (CYP), cytochrome b(5), microsomal and cytosolic proteins; aminopyrine N-demethylase (ANDM), aniline P-hydroxylase (APH), glutathione S-transferase (GST) and uridine diphosphate glucuronosyltransferase (UGT) were assessed. Arsenic, malathion or their coexposure decreased the body weight gain and liver weight. Brain weight (relative) was increased with arsenic or malathion, but not with the coexposure. Treatment with arsenic decreased the CYP and cytochrome b(5) contents by 39 and 36%, than with malathion by 54 and 22% and the coexposure by 45 and 28%, respectively. The ANDM activity was decreased with arsenic (44%), malathion (23%) and the coexposure (32%). Arsenic (23%) and the coexposure (37%), but not malathion (14%), reduced the APH activity. The activities of hepatic microsomal and cytosolic GST were increased with all the three treatments [Arsenic (microsomal: 88% cytosolic: 113%), malathion (microsomal: 137%, cytosolic: 94%) and coexposure (microsomal: 140%, cytosolic: 148%)]. These treatments did not significantly affect the hepatic UGT activity, but reduced the hepatic microsomal

  17. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  18. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development.

    PubMed

    Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N; Smith, Jordan N; Corley, Richard A; Wright, Aaron T

    2016-07-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  19. Profiling Kinase Activity during Hepatitis C Virus Replication Using a Wortmannin Probe.

    PubMed

    Desrochers, Geneviève F; Sherratt, Allison R; Blais, David R; Nasheri, Neda; Ning, Zhibin; Figeys, Daniel; Goto, Natalie K; Pezacki, John Paul

    2015-09-11

    To complete its life cycle, the hepatitis C virus (HCV) induces changes to numerous aspects of its host cell. As kinases act as regulators of many pathways utilized by HCV, they are likely enzyme targets for virally induced inhibition or activation. Herein, we used activity-based protein profiling (ABPP), which allows for the identification of active enzymes in complex protein samples and the quantification of their activity, to identify kinases that displayed differential activity in HCV-expressing cells. We utilized an ABPP probe, wortmannin-yne, based on the kinase inhibitor wortmannin, which contains a pendant alkyne group for bioconjugation using bioorthogonal chemistry. We observed changes in the activity of kinases involved in the mitogen-activated protein kinase pathway, apoptosis pathways, and cell cycle control. These results establish changes to the active kinome, as reported by wortmannin-yne, in the proteome of human hepatoma cells actively replicating HCV. The observed changes include kinase activity that affect viral entry, replication, assembly, and secretion, implying that HCV is regulating the pathways that it uses for its life cycle through modulation of the active kinome. PMID:27617927

  20. Comparison of hepatic drug metabolizing enzymes in three-month-old lambs and kids.

    PubMed

    Kaddouri, M; Larrieu, G; Eeckhoutte, C; Galtier, P

    1990-01-01

    1. The comparative activity of hepatic cytochrome P-450 monooxygenase system, glucuronyl-transferase, glutathione S-transferase and N-acetyltransferase was studied in three-month-old male and female Lacaune lambs and male Saanen kids. 2. The study of mixed-function oxidase components showed that total cytochrome P-450 ranged from 0.54 in kids to 0.85-0.88 nmol/mg-1 in lambs. Male lambs had higher levels than kids (122-165%) for aminopyrine, benzphetamine, ethylmorphine and erythromycin demethylases or benzo(a)pyrene hydroxylase whereas NADPH-cytochrome c reductase was 1.19-fold lower in lambs. 3. Sex-related changes were observed in lambs in case of microsomal benzo(a)pyrene hydroxylase activity which appeared 1.31-fold more potent in male liver. Cytosolic N-acetyltransferase accepting sulfamethazine as substrate was about 8-fold higher in female than in male lambs. 4. The analysis of samples from various liver lobes, indicated the heterogenous distribution of microsomal proteins which is related to higher concentrations of both cytochrome b5, NADPH-cytochrome c reductase and p-nitrophenol glucuronyltransferase in left lobes.

  1. TREATABILITY STUDY BULLETIN: ENZYME-ACTIVATED CELLULOSE TECHNOLOGY - THORNECO, INC

    EPA Science Inventory

    The Enzyme-Activated Cellulose Technology developed by Thorneco, Inc. uses cellulose placed into one or more cylindrical towers to remove metals and organic compounds from an aqueous solution. The cellulose is coated with a proprietary enzyme. Operating parameters that can affe...

  2. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  3. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    SciTech Connect

    Woodhead, A.D.; Achey, P.M.

    1981-06-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biological purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in preserving the integrity of embryonic DNA during this free-living stage.

  4. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    SciTech Connect

    Woodhead, A.D.; Achey, P.M.

    1981-01-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biologic purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm, Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in perserving the integrity of embryonic DNA during this free-living stage.

  5. TISSUE ENZYME ACTIVITIES IN KEMP'S RIDLEY TURTLES (LEPIDOCHELYS KEMPII).

    PubMed

    Petrosky, Keiko Y; Knoll, Joyce S; Innis, Charles

    2015-09-01

    This study determined the tissue distribution and activities of eight enzymes in 13 juvenile Kemp's ridley turtles (Lepidochelys kempii) that died after stranding. Samples from the liver, kidney, skeletal muscle, cardiac muscle, pancreas, lung, small intestine, and spleen were evaluated for activities of alanine aminotransferase (ALT), alkaline phosphatase (ALP), amylase, aspartate aminotransferase (AST), creatine kinase (CK), γ-glutamyl transferase (GGT), lactate dehydrogenase (LDH), and lipase. AST, CK, and LDH activities were highest in cardiac and skeletal muscle but were also found in all other tissues. Amylase and lipase activities were highest in the pancreas and low in all other tissues. ALP activity was highest in the lung. ALT activity was highest in liver, kidney, and cardiac muscle, and GGT activity was highest in the kidney, but activities of these enzymes were low in all tissues. These data may assist clinicians in interpretation of plasma enzyme activities of Kemp's ridley turtles.

  6. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

    PubMed

    Um, Min Young; Hwang, Kwang Hyun; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Curcumin is a well-known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high-fat/cholesterol diet (HFD)-induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body-weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (p < 0.05). The levels of total cholesterol, fasting glucose and insulin in serum were decreased, and HFD-induced impairment of insulin sensitivity was improved by curcumin supplementation (p < 0.05). Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP-activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator-activated receptor alpha. By contrast, curcumin suppressed the HFD-mediated increases in sterol regulatory element-binding protein-1, acetyl-CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD-induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.

  7. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  8. Active hepatic capsulitis caused by Paragonimus westermani infection.

    PubMed

    Sasaki, Michiro; Kamiyama, Takuro; Yano, Takeshi; Nakamura-Uchiyama, Fukumi; Nawa, Yukifumi

    2002-08-01

    Paragonimiasis is an important re-emerging parasitosis in Japan. Although the lungs and pleural cavity are the principal sites affected with the parasite, ectopic infection can occur in unexpected sites such as skin and brain. This case report describes a patient with active hepatic capsulitis due to Paragonimus westermani infection. The patient was successfully treated with praziquantel at the dose of 75 mg/kg/day for 3 days.

  9. Function and biotechnology of extremophilic enzymes in low water activity

    PubMed Central

    2012-01-01

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  10. Function and biotechnology of extremophilic enzymes in low water activity.

    PubMed

    Karan, Ram; Capes, Melinda D; Dassarma, Shiladitya

    2012-02-02

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.

  11. Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Gregor; Grotzky, Andrea; Lukić, Ružica; Matoori, Simon; Luciani, Paola; Yu, Hao; Zhang, Baozhong; Walde, Peter; Schlüter, A. Dieter; Gauthier, Marc A.; Leroux, Jean-Christophe

    2013-07-01

    Methods to stabilize and retain enzyme activity in the gastrointestinal tract are investigated rarely because of the difficulty of protecting proteins from an environment that has evolved to promote their digestion. Preventing the degradation of enzymes under these conditions, however, is critical for the development of new protein-based oral therapies. Here we show that covalent conjugation to polymers can stabilize orally administered therapeutic enzymes at different locations in the gastrointestinal tract. Architecturally and functionally diverse polymers are used to protect enzymes sterically from inactivation and to promote interactions with mucin on the stomach wall. Using this approach the in vivo activity of enzymes can be sustained for several hours in the stomach and/or in the small intestine. These findings provide new insight and a firm basis for the development of new therapeutic and imaging strategies based on orally administered proteins using a simple and accessible technology.

  12. Sensitive enzyme immunoassay for hepatitis B virus core-related antigens and their correlation to virus load.

    PubMed

    Kimura, Tatsuji; Rokuhara, Akinori; Sakamoto, Yoko; Yagi, Shintaro; Tanaka, Eiji; Kiyosawa, Kendo; Maki, Noboru

    2002-02-01

    A sensitive enzyme immunoassay (EIA) specific for hepatitis B virus core antigen (HBcAg) and hepatitis B e antigen (HBeAg) was developed. We designated the precore/core gene products as hepatitis B virus (HBV) core-related antigens (HBcrAg). In order to detect HBcrAg even in anti-HBc/e antibody-positive specimens, the specimens were pretreated in detergents. The antibodies are inactivated by this pretreatment and, simultaneously, the antigens are released and the epitopes are exposed. The assay demonstrated 71 to 112% recovery using HBcrAg-positive sera. We observed no interference from the tested anticoagulants or blood components. When the cutoff value was tentatively set at 10(3) U/ml, all healthy control (HBsAg/HBV-DNA negative; n = 108) and anti-HCV antibody-positive (n = 59) sera were identified as negative. The assay showed a detection limit of 4 x 10(2) U/ml using recombinant antigen. Detection limits were compared in four serially diluted HBV high-titer sera. The HBcrAg assay demonstrated higher sensitivity than HBV-DNA transcription-mediated amplification (TMA) or HBeAg radio immunoassay (RIA) in the dilution test. HBcrAg concentrations correlated well with HBV-DNA TMA (r = 0.91, n = 29) and in-house real-time detection-PCR (r = 0.93, n = 47) in hepatitis B patients. On HBeAg/anti-HBe antibody seroconversion panels, the HBcrAg concentration changed in accordance with HBV-DNA levels. HBcrAg concentration provides a reflection of HBV virus load equivalent to HBV-DNA level, and the assay therefore offers a simple method for monitoring hepatitis B patients.

  13. Sensitive Enzyme Immunoassay for Hepatitis B Virus Core-Related Antigens and Their Correlation to Virus Load

    PubMed Central

    Kimura, Tatsuji; Rokuhara, Akinori; Sakamoto, Yoko; Yagi, Shintaro; Tanaka, Eiji; Kiyosawa, Kendo; Maki, Noboru

    2002-01-01

    A sensitive enzyme immunoassay (EIA) specific for hepatitis B virus core antigen (HBcAg) and hepatitis B e antigen (HBeAg) was developed. We designated the precore/core gene products as hepatitis B virus (HBV) core-related antigens (HBcrAg). In order to detect HBcrAg even in anti-HBc/e antibody-positive specimens, the specimens were pretreated in detergents. The antibodies are inactivated by this pretreatment and, simultaneously, the antigens are released and the epitopes are exposed. The assay demonstrated 71 to 112% recovery using HBcrAg-positive sera. We observed no interference from the tested anticoagulants or blood components. When the cutoff value was tentatively set at 103 U/ml, all healthy control (HBsAg/HBV-DNA negative; n = 108) and anti-HCV antibody-positive (n = 59) sera were identified as negative. The assay showed a detection limit of 4 × 102 U/ml using recombinant antigen. Detection limits were compared in four serially diluted HBV high-titer sera. The HBcrAg assay demonstrated higher sensitivity than HBV-DNA transcription-mediated amplification (TMA) or HBeAg radio immunoassay (RIA) in the dilution test. HBcrAg concentrations correlated well with HBV-DNA TMA (r = 0.91, n = 29) and in-house real-time detection-PCR (r = 0.93, n = 47) in hepatitis B patients. On HBeAg/anti-HBe antibody seroconversion panels, the HBcrAg concentration changed in accordance with HBV-DNA levels. HBcrAg concentration provides a reflection of HBV virus load equivalent to HBV-DNA level, and the assay therefore offers a simple method for monitoring hepatitis B patients. PMID:11825954

  14. Activation volumes of enzymes adsorbed on silica particles.

    PubMed

    Schuabb, Vitor; Czeslik, Claus

    2014-12-30

    The immobilization of enzymes on carrier particles is useful in many biotechnological processes. In this way, enzymes can be separated from the reaction solution by filtering and can be reused in several cycles. On the other hand, there is a series of examples of free enzymes in solution that can be activated by the application of pressure. Thus, a potential loss of enzymatic activity upon immobilization on carrier particles might be compensated by pressure. In this study, we have determined the activation volumes of two enzymes, α-chymotrypsin (α-CT) and horseradish peroxidase (HRP), when they are adsorbed on silica particles and free in solution. The experiments have been carried out using fluorescence assays under pressures up to 2000 bar. In all cases, activation volumes were found to depend on the applied pressure, suggesting different compressions of the enzyme-substrate complex and the transition state. The volume profiles of free and adsorbed HRP are similar. For α-CT, larger activation volumes are found in the adsorbed state. However, up to about 500 bar, the enzymatic reaction of α-CT, which is adsorbed on silica particles, is characterized by a negative activation volume. This observation suggests that application of pressure might indeed be useful to enhance the activity of enzymes on carrier particles.

  15. Microbial hydrolytic enzyme activities in deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Boetius, A.

    1995-03-01

    The potential hydrolysis rates of five different hydrolytic enzymes were determined in deep-sea sediments from the northeast Atlantic (BIOTRANS area) in March 1992. Fluorogenic substrates were used to assay extracellular α- and β-glucosidase, chitobiase, lipase and aminopeptidase. The potential activity of most of the enzymes investigated decreased to a minimum within the upper two centimetre range, whereas aminopeptidase was high over the upper five centimetre range. Exceptions were found when macrofaunal burrows occurred in the cores, always increasing the activities of some hydrolases, and therefore indicating the impact of bioturbation on degradation rates. The most striking feature of the investigated enzyme spectrum was the 50 2000 times higher specific activity of the aminopeptidase, compared with the other hydrolases. The activity of hydrolytic enzymes most likely reflects the availability of their respective substrates and is not a function of bacterial biomass.

  16. Silk Microgels Formed by Proteolytic Enzyme Activity

    PubMed Central

    Samal, Sangram K.; Dash, Mamoni; Chiellini, Federica; Kaplan, David L.; Chiellini, Emo

    2013-01-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMG) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer scaled crystals in native silkworm fibers. SDS-PAGE and zeta potential results demonstrated that α-chymotrypsin utilized only the nonamorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient potential and that the prepared SMGS have useful features for studies related to biomaterials and pharmaceutical needs. This process is also an easy approach to obtain the amorphous peptide chains for further study. PMID:23756227

  17. Silk microgels formed by proteolytic enzyme activity.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Chiellini, Federica; Kaplan, David L; Chiellini, Emo

    2013-09-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study. PMID:23756227

  18. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients

    PubMed Central

    2014-01-01

    Background Type 2 diabetes is an endocrine disorder that affects a large percentage of patients. High blood glucose causes fatty deposits in the liver which is likely to increase in SGOT and SGPT activities. Significant increase in SGOT/SGPT and low HDL levels is observed in patients with diabetes. Serum fructosamine concentration reflects the degree of blood glucose control in diabetic patients. This study was aimed to investigate the antidiabetic, hypolipidemic and hepatoprotective effects of supplementation of Boswellia serrata in type2 diabetic patients. Methods 60 type 2 diabetic patients from both sexes (30 males and 30 females) were dedicated to the control and intervention groups (30 subjects per group). Boswellia serrata gum resin in amount of 900 mg daily for 6 weeks were orally administered (as three 300 mg doses) in intervention group and the control group did not receive anything. Blood samples were taken at the beginning of the study and after 6 weeks. Blood levels of fructosamine, lipid profiles as well as hepatic enzyme in type 2 diabetic patients were measured. Results Treatment of diabetic patient with Boswellia serrata was caused to significant increase in blood HDL levels as well as a remarkable decrease in cholesterol, LDL, fructosamine (p < 0.05) SGPT and SGOT levels after 6 weeks (p < 0.01). In spite of reduction of serum triglyceride, VLDL levels in intervention group, we did not detect a significant difference after 6 weeks. Conclusion This study showed that Boswellia serrata supplementation can be beneficial in controlling blood parameters in patients with type 2 diabetes. Therefore, its use can be useful in patients with medicines. PMID:24495344

  19. Diced electrophoresis gel assay for screening enzymes with specified activities.

    PubMed

    Komatsu, Toru; Hanaoka, Kenjiro; Adibekian, Alexander; Yoshioka, Kentaro; Terai, Takuya; Ueno, Tasuku; Kawaguchi, Mitsuyasu; Cravatt, Benjamin F; Nagano, Tetsuo

    2013-04-24

    We have established the diced electrophoresis gel (DEG) assay as a proteome-wide screening tool to identify enzymes with activities of interest using turnover-based fluorescent substrates. The method utilizes the combination of native polyacrylamide gel electrophoresis (PAGE) with a multiwell-plate-based fluorometric assay to find protein spots with the specified activity. By developing fluorescent substrates that mimic the structure of neutrophil chemoattractants, we could identify enzymes involved in metabolic inactivation of the chemoattractants.

  20. Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    PubMed Central

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H.

    2011-01-01

    Background Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management. PMID:21379573

  1. A novel approach to predict active sites of enzyme molecules.

    PubMed

    Chou, Kuo-Chen; Cai, Yu-dong

    2004-04-01

    Enzymes are critical in many cellular signaling cascades. With many enzyme structures being solved, there is an increasing need to develop an automated method for identifying their active sites. However, given the atomic coordinates of an enzyme molecule, how can we predict its active site? This is a vitally important problem because the core of an enzyme molecule is its active site from the viewpoints of both pure scientific research and industrial application. In this article, a topological entity was introduced to characterize the enzymatic active site. Based on such a concept, the covariant discriminant algorithm was formulated for identifying the active site. As a paradigm, the serine hydrolase family was demonstrated. The overall success rate by jackknife test for a data set of 88 enzyme molecules was 99.92%, and that for a data set of 50 independent enzyme molecules was 99.91%. Meanwhile, it was shown through an example that the prediction algorithm can also be used to find any typographic error of a PDB file in annotating the constituent amino acids of catalytic triad and to suggest a possible correction. The very high success rates are due to the introduction of a covariance matrix in the prediction algorithm that makes allowance for taking into account the coupling effects among the key constituent atoms of active site. It is anticipated that the novel approach is quite promising and may become a useful high throughput tool in enzymology, proteomics, and structural bioinformatics. PMID:14997541

  2. In Vitro Antibody-Enzyme Conjugates with Specific Bactericidal Activity

    PubMed Central

    Knowles, Daniel M.; Sullivan, Timothy J.; Parker, Charles W.; Williams, Ralph C.

    1973-01-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A β-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I- and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia. PMID:4145026

  3. Evaluation of the assumptions of an ontogeny model of rat hepatic cytochrome P450 activity.

    PubMed

    Alcorn, Jane; Elbarbry, Fawzy A; Allouh, Mohammed Z; McNamara, Patrick J

    2007-12-01

    We previously reported an ontogeny model of hepatic cytochrome P450 (P450) activity that predicts in vivo P450 elimination from in vitro intrinsic clearance. The purpose of this study was to conduct investigations into key assumptions of the P450 ontogeny model using the developing rat model system. We used two developmentally dissimilar enzymes, CYP2E1 and CYP1A2, and male rats (n = 4) at age groups representing critical developmental stages. Total body and liver weights and hepatic microsomal protein contents were measured. Following high-performance liquid chromatography analysis, apparent K(M) and V(max) estimates were calculated using nonlinear regression analysis for CYP2E1- and CYP1A2-mediated chlorzoxazone 6-hydroxylation and methoxyresorufin O-dealkylation, and V(max) estimates for p-nitrophenol and phenacetin hydroxylations, respectively. Hepatic scaling factors and V(max) values provided estimates for infant scaling factors (ISF). The data show microsomal protein contents increased with postnatal age and reached adult values after postnatal day (PD) 7. Apparent K(M) values were similar at all developmental stages except at < or =PD7. Developmental increases in probe substrate V(max) values did not correlate with the biphasic increase in immunoquantifiable P450. The activity of two different probe substrates for each P450 covaried as a function of age. A plot of observed ISF values as a function of age reflected the developmental pattern of rat hepatic P450. In summation, these observations diverge from several of the model's assumptions. Further investigations are required to explain these inconsistencies and to investigate whether the developing rat may provide a predictive paradigm for pediatric risk assessment for P450-mediated elimination processes.

  4. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats

    PubMed Central

    Ramesh, B; Karuna, R; Sreenivasa, Reddy S; Haritha, K; Sai, Mangala D; Sasi, Bhusana Rao B; Saralakumari, D

    2012-01-01

    Objective To study the antioxidant efficacy of Commiphora mukul (C. mukul) gum resin ethanolic extract in streptozotocin (STZ) induced diabetic rats. Methods The male Wistar albino rats were randomly divided into four groups of eight animals each: Control group (C), CM-treated control group (C+CMEE), Diabetic control group (D), CM- treated diabetic group (D+CMEE). Diabetes was induced by intraperitoneal injection of STZ (55 mg/kg/ bwt). After being confirmed the diabetic rats were treated with C. mukul gum resin ethanolic extract (CMEE) for 60 days. The biochemical estimations like antioxidant, oxidative stress marker enzymes and hepatic marker enzymes of tissues were performed. Results The diabetic rats showed increased level of enzymatic activities aspartate aminotransaminase (AST), alanine aminotransaminase (ALT) in liver and kidney and oxidative markers like lipid peroxidation (LPO) and protein oxidation (PO) in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control group. Administration of CMEE (200 mg/kg bw) to diabetic rats for 60 days significantly reversed the above parameters towards normalcy. Conclusions In conclusion, our data indicate the preventive role of C. mukul against STZ-induced diabetic oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of diabetes and aggravated antioxidant status. PMID:23569867

  5. Effects of polybrominated biphenyls on kidney function and activity of renal microsomal enzymes.

    PubMed

    McCormack, K M; Kluwe, W M; Sanger, V L; Hook, J B

    1978-04-01

    Polybrominated biphenyls (PBBs) cause hepatic microsomal enzyme stimulation and histopathological alterations in several organs, including kidney. Concern about effects of PBBs on the health of newborns has increased after the discovery of PBBs in milk of nursing mothers. Therefore, it was of interest to investigate the effects of PBBs on kidney function and the activity of renal microsomal enzymes in adult and immature animals. Seven and eleven day old pups were treated with a single IP injection of either peanut oil or 150 mg/kg PBBs (FireMaster BP-6) in peanut oil. Adult virgin rats were fed diet containing 0 or 100 ppm PBBs for 30 or 90 days. Treatment with PBBs only retarded weight gain after 90 days exposure. Kidney-to-body weight ratio was not altered by PBBs. Arylhydrocarbon hydroxylase activity was increased while epoxide hydratase activity was decreased (adults) or not affected (immature rats) in kidney following treatment with PBBs. Administration of PBBs had no effect on blood urea nitrogen, the clearance of inulin, p-aminohippurate (PAH), or fractional sodium excretion. Similarly, the in vitro accumulation of PAH and N-methylnicotinamide (NMN) by thin renal cortical slices and ammoniagenesis and gluconeogenesis in renal cortical slices were not affected by PBBs. In conclusion, treatment with PBBs resulted in modification of the activity of renal microsomal enzyme activities but had no detectable effect on renal function. PMID:209969

  6. Associations of hepatic and lipoprotein lipase activities with changes in dietary composition and low density lipoprotein subclasses.

    PubMed

    Campos, H; Dreon, D M; Krauss, R M

    1995-03-01

    To test whether lipoprotein lipase or hepatic lipase activities are associated with lipoprotein subclasses, and to assess the effects of dietary manipulations on these associations, enzyme activities were measured in postheparin plasma (75 U heparin/kg) from 43 healthy men who were randomly allocated to a low-fat (24% fat, 60% carbohydrate) and a high-fat (46% fat, 38% carbohydrate) diet for 6 weeks each in a cross-over design. The high-fat diet significantly increased both lipoprotein lipase (+20%, P = 0.02) and hepatic lipase (+8%, P = 0.007) activities. On both diets, hepatic lipase activity was significantly positively correlated (P < 0.01) with plasma apolipoprotein (apo)B concentrations, and with levels of small dense low density lipoprotein (LDL) III, measured by analytic ultracentrifugation as mass of lipoproteins of flotation rate (Sof) 3-5, while lipoprotein lipase activity was inversely associated with levels of LDL III (P < 0.05). Despite the cross-sectional correlations, increased hepatic lipase activity was not significantly correlated with the reduction in LDL III mass observed on the high-fat diet. Rather, changes in hepatic lipase were correlated inversely with changes in small very low density lipoproteins (VLDL) of Sof 20-40, and small intermediate density lipoproteins (VLDL) of Sof 10-16. Moreover, changes in lipoprotein lipase activity were not significantly correlated with changes in small LDL, but were positively associated with changes in small IDL of Sof 10-14, and large LDL I of Sof 7-10. Thus, while increased levels of small dense LDL are associated with a metabolic state characterized by relatively increased hepatic lipase and decreased lipoprotein lipase activity, changes in these enzymes do not appear to be primary determinants of diet-induced changes in levels of this LDL subfraction. On the other hand, increased lipoprotein lipase activity induced by high-fat feeding may contribute to the accumulation in plasma of both large LDL I

  7. Synergetic Effects of Nanoporous Support and Urea on Enzyme Activity

    SciTech Connect

    Lei, Chenghong; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.

    2007-02-01

    Here we report that synergetic effects of functionalized nanoporous support and urea on enzyme activity enhancement. Even in 8.0 M urea, the specific activity of GI entrapped in FMS was still higher than the highest specific activity of GI free in solution, indicating the strong tolerance of GI in FMS to the high concentration of urea.

  8. Prediction of CYP3A4 enzyme activity using haplotype tag SNPs in African Americans.

    PubMed

    Perera, M A; Thirumaran, R K; Cox, N J; Hanauer, S; Das, S; Brimer-Cline, C; Lamba, V; Schuetz, E G; Ratain, M J; Di Rienzo, A

    2009-02-01

    The CYP3A locus encodes hepatic enzymes that metabolize many clinically used drugs. However, there is marked interindividual variability in enzyme expression and clearance of drugs metabolized by these enzymes. We utilized comparative genomics and computational prediction of transcriptional factor binding sites to evaluate regions within CYP3A that were most likely to contribute to this variation. We then used a haplotype tagging single-nucleotide polymorphisms (htSNPs) approach to evaluate the entire locus with the fewest number of maximally informative SNPs. We investigated the association between these htSNPs and in vivo CYP3A enzyme activity using a single-point IV midazolam clearance assay. We found associations between the midazolam phenotype and age, diagnosis of hypertension and one htSNP (141689) located upstream of CYP3A4. 141689 lies near the xenobiotic responsive enhancer module (XREM) regulatory region of CYP3A4. Cell-based studies show increased transcriptional activation with the minor allele at 141689, in agreement with the in vivo association study findings. This study marks the first systematic evaluation of coding and noncoding variation that may contribute to CYP3A phenotypic variability.

  9. Effects of cadium, zinc and lead on soil enzyme activities.

    PubMed

    Yang, Zhi-xin; Liu, Shu-qing; Zheng, Da-wei; Feng, Sheng-dong

    2006-01-01

    Heavy metal (HM) is a major hazard to the soil-plant system. This study investigated the combined effects of cadium (Cd), zinc (Zn) and lead (Pb) on activities of four enzymes in soil, including calatase, urease, invertase and alkalin phosphatase. HM content in tops of canola and four enzymes activities in soil were analyzed at two months after the metal additions to the soil. Pb was not significantly inhibitory than the other heavy metals for the four enzyme activities and was shown to have a protective role on calatase activity in the combined presence of Cd, Zn and Pb; whereas Cd significantly inhibited the four enzyme activities, and Zn only inhibited urease and calatase activities. The inhibiting effect of Cd and Zn on urease and calatase activities can be intensified significantly by the additions of Zn and Cd. There was a negative synergistic inhibitory effect of Cd and Zn on the two enzymes in the presence of Cd, Zn and Pb. The urease activity was inhibited more by the HM combinations than by the metals alone and reduced approximately 20%-40% of urease activity. The intertase and alkaline phosphatase activities significantly decreased only with the increase of Cd concentration in the soil. It was shown that urease was much more sensitive to HM than the other enzymes. There was a obvious negative correlation between the ionic impulsion of HM in soil, the ionic impulsion of HM in canola plants tops and urease activity. It is concluded that the soil urease activity may be a sensitive tool for assessing additive toxic combination effect on soil biochemical parameters.

  10. Enzyme:nanoparticle bioconjugates with two sequential enzymes: stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles.

    PubMed

    Keighron, Jacqueline D; Keating, Christine D

    2010-12-21

    We report the synthesis and characterization of bioconjugates in which the enzymes malate dehydrogenase (MDH) and/or citrate synthase (CS) were adsorbed to 30 nm diameter Au nanoparticles. Enzyme:Au stoichiometry and kinetic parameters (specific activity, k(cat), K(M), and activity per particle) were determined for MDH:Au, CS:Au, and three types of dual-activity MDH/CS:Au bioconjugates. For single-activity bioconjugates (MDH:Au and CS:Au), the number of enzyme molecules adsorbed per particle was dependent upon the enzyme concentration in solution, with multilayers forming at high enzyme:Au solution ratios. The specific activity of adsorbed enzyme increased with increasing number adsorbed per particle for CS:Au, but was less sensitive to stoichiometry for MDH:Au. Dual activity bioconjugates were prepared in three ways: (1) by adsorption of MDH followed by CS, (2) by adsorption of CS followed by MDH, and (3) by coadsorption of both enzymes from the same solution. The resulting bioconjugates differed substantially in the number of enzyme molecules adsorbed per particle, the specific activity of the adsorbed enzymes, and also the enzymatic activity per particle. Bioconjugates formed by adding CS to the Au nanoparticles before MDH was added exhibited higher specific activities for both enzymes than those formed by adding the enzymes in the reverse order. These bioconjugates also had 3-fold higher per-particle sequential activity for conversion of malate to citrate, despite substantially fewer copies of both enzymes present.

  11. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  12. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  13. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway

    PubMed Central

    Zhu, Yaqin; Tong, Xing; Li, Kexue; Bai, Hui; Li, Xiaoyu; Ben, Jingjing; Zhang, Hanwen; Yang, Qing; Chen, Qi

    2016-01-01

    Background and Purpose It has been accepted that AMPK (Adenosine monophosphate–activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. Experimental Approach Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. Key Results It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. Conclusions and Implications Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders. PMID:27681040

  14. Interfacial activation-based molecular bioimprinting of lipolytic enzymes.

    PubMed Central

    Mingarro, I; Abad, C; Braco, L

    1995-01-01

    Interfacial activation-based molecular (bio)-imprinting (IAMI) has been developed to rationally improve the performance of lipolytic enzymes in nonaqueous environments. The strategy combinedly exploits (i) the known dramatic enhancement of the protein conformational rigidity in a water-restricted milieu and (ii) the reported conformational changes associated with the activation of these enzymes at lipid-water interfaces, which basically involves an increased substrate accessibility to the active site and/or an induction of a more competent catalytic machinery. Six model enzymes have been assayed in several model reactions in nonaqueous media. The results, rationalized in light of the present biochemical and structural knowledge, show that the IAMI approach represents a straightforward, versatile method to generate manageable, activated (kinetically trapped) forms of lipolytic enzymes, providing under optimal conditions nonaqueous rate enhancements of up to two orders of magnitude. It is also shown that imprintability of lipolytic enzymes depends not only on the nature of the enzyme but also on the "quality" of the interface used as the template. PMID:7724558

  15. Cadmium effect on microsomal drug-metabolizing enzyme activity in rat livers with respect to differences in age and sex

    SciTech Connect

    Ando, M.

    1982-04-01

    The effect of cadmium on the hepatic microsomal drug-metabolizing enzyme system was investigated. Cadmium chloride caused the conversion of cytochrome P-450 to P-420 in rat liver microsomes. The destruction of cytochrome P-450 by cadmium caused the reduction of microsomal drug-metabolizing enzyme activity and prolonged the pentobarbital sleeping time. There is a sex-related difference in the ability of cadmium to inhibit the hepatic drug metabolism in rats: male rats are more sensitive to cadmium than females. The effective period when cadmium prolonged their sleep depended upon the age of rats; older rats were more sensitive to cadmium than younger ones. The maximum increase of sleeping time depended upon the dose level of cadium, and the rate constant of the equations seems to depend upon the age of the animals.

  16. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones. PMID:25913319

  17. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones.

  18. PCB153 and p,p'-DDE disorder thyroid hormones via thyroglobulin, deiodinase 2, transthyretin, hepatic enzymes and receptors.

    PubMed

    Liu, Changjiang; Ha, Mei; Li, Lianbing; Yang, Kedi

    2014-10-01

    Polychlorinated biphenyls (PCBs) and DDT are widespread environmental persistent organic pollutants that have various adverse effects on reproduction, development and endocrine function. In order to elucidate effects of PCBs and DDT on thyroid hormone homeostasis, Sprague-Dawley rats were dosed with PCB153 and p,p'-DDE intraperitoneally (ip) for five consecutive days and sacrificed within 24 h after the last dose. Results indicated that after combined exposure to PCB153 and p,p'-DDE, total thyroxine , free thyroxine, total triiodothyronine, and thyroid-stimulating hormone in serum were decreased, whereas free triiodothyronine and thyrotropin-releasing hormone were not affected. Thyroglobulin and transthyretin levels in serum were significantly reduced. mRNA expression of deiodinases 2 (D2) was also suppressed, while D1 and D3 levels were not significantly influenced after combined exposure. PCB153 and p,p'-DDE induced hepatic enzymes, UDPGTs, CYP1A1, CYP2B1, and CYP3A1 mRNA expressions being significantly elevated. Moreover, TRα1, TRβ1, and TRHr expressions in the hypothalamus displayed increasing trends after combined exposure to PCB153 and p,p'-DDE. Taken together, observed results indicate that PCB153 and p,p'-DDE could disorder thyroid hormone homeostasis via thyroglobulin, deiodinase 2, transthyretin, hepatic enzymes, and hormone receptors. PMID:24878560

  19. Catalytically active nanomaterials: a promising candidate for artificial enzymes.

    PubMed

    Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2014-04-15

    Natural enzymes, exquisite biocatalysts mediating every biological process in living organisms, are able to accelerate the rate of chemical reactions up to 10(19) times for specific substrates and reactions. However, the practical application of enzymes is often hampered by their intrinsic drawbacks, such as low operational stability, sensitivity of catalytic activity to environmental conditions, and high costs in preparation and purification. Therefore, the discovery and development of artificial enzymes is highly desired. Recently, the merging of nanotechnology with biology has ignited extensive research efforts for designing functional nanomaterials that exhibit various properties intrinsic to enzymes. As a promising candidate for artificial enzymes, catalytically active nanomaterials (nanozymes) show several advantages over natural enzymes, such as controlled synthesis in low cost, tunability in catalytic activities, as well as high stability against stringent conditions. In this Account, we focus on our recent progress in exploring and constructing such nanoparticulate artificial enzymes, including graphene oxide, graphene-hemin nanocomposites, carbon nanotubes, carbon nanodots, mesoporous silica-encapsulated gold nanoparticles, gold nanoclusters, and nanoceria. According to their structural characteristics, these enzyme mimics are categorized into three classes: carbon-, metal-, and metal-oxide-based nanomaterials. We aim to highlight the important role of catalytic nanomaterials in the fields of biomimetics. First, we provide a practical introduction to the identification of these nanozymes, the source of the enzyme-like activities, and the enhancement of activities via rational design and engineering. Then we briefly describe new or enhanced applications of certain nanozymes in biomedical diagnosis, environmental monitoring, and therapeutics. For instance, we have successfully used these biomimetic catalysts as colorimetric probes for the detection of

  20. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability.

    PubMed

    Jin, Liling; Yang, Kai; Yao, Kai; Zhang, Shuai; Tao, Huiquan; Lee, Shuit-Tong; Liu, Zhuang; Peng, Rui

    2012-06-26

    The understanding of interactions between nanomaterials and biomolecules is of fundamental importance to the area of nanobiotechnology. Graphene and its derivative, graphene oxide (GO), are two-dimensional (2-D) nanomaterials with interesting physical and chemical properties and have been widely explored in various directions of biomedicine in recent years. However, how functionalized GO interacts with bioactive proteins such as enzymes and its potential in enzyme engineering have been rarely explored. In this study, we carefully investigated the interactions between serine proteases and GO functionalized with different amine-terminated polyethylene glycol (PEG). Three well-characterized serine proteases (trypsin, chymotrypsin, and proteinase K) with important biomedical and industrial applications were analyzed. It is found that these PEGylated GOs could selectively improve trypsin activity and thermostability (60-70% retained activity at 80 °C), while exhibiting barely any effect on chymotrypsin or proteinase K. Detailed investigation illustrates that the PEGylated GO-induced acceleration is substrate-dependent, affecting only phosphorylated protein substrates, and that at least up to 43-fold increase could be achieved depending on the substrate concentration. This unique phenomenon, interestingly, is found to be attributed to both the terminal amino groups on polymer coatings and the 2-D structure of GO. Moreover, an enzyme-based bioassay system is further demonstrated utilizing our GO-based enzyme modulator in a proof-of-concept experiment. To our best knowledge, this work is the first success of using functionalized GO as an efficient enzyme positive modulator with great selectivity, exhibiting a novel potential of GO, when appropriately functionalized, in enzyme engineering as well as enzyme-based biosensing and detection.

  1. Optimization to Low Temperature Activity in Psychrophilic Enzymes

    PubMed Central

    Struvay, Caroline; Feller, Georges

    2012-01-01

    Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. Considering the subtle structural adjustments required for low temperature activity, directed evolution appears to be the most suitable methodology to engineer cold activity in biological catalysts. PMID:23109875

  2. Angiotensin I converting enzyme activity in rabbit corneal endothelial cells.

    PubMed

    Neels, H M; Vanden Berghe, D A; Neetens, A J; Delgadillo, R A; Scharpe, S L

    1983-01-01

    Angiotensin I converting enzyme (ACE) was studied in Vero cells, rabbit corneal fibroblasts, and rabbit corneal endothelial cells. The enzyme activity was determined by means of an assay employing hippuryl-glycyl-glycine as a substrate. The hippuric acid end product was separated from the substrate by reversed phase liquid chromatography and measured spectrophotometrically at 228 nm. The enzyme was further characterized by a captopril inhibition study. Significant ACE activity was found in rabbit corneal endothelial cells but not in other types of cells tested. This is the first report of the presence of this enzyme in a specific ocular cell type and suggests that angiotensin II may play a role in normal ocular physiology.

  3. Replicative and transcriptional activities of hepatitis B virus in patients coinfected with hepatitis B and hepatitis delta viruses.

    PubMed

    Pollicino, Teresa; Raffa, Giuseppina; Santantonio, Teresa; Gaeta, Giovanni Battista; Iannello, Giuliano; Alibrandi, Angela; Squadrito, Giovanni; Cacciola, Irene; Calvi, Chiara; Colucci, Giuseppe; Levrero, Massimo; Raimondo, Giovanni

    2011-01-01

    Hepatitis B virus (HBV) and hepatitis delta virus (HDV) interplay was investigated by examining liver and serum samples from 21 coinfected and 22 HBV-monoinfected patients with chronic liver disease. Different real-time PCR assays were applied to evaluate intrahepatic amounts of HBV DNA, covalently closed circular DNA (cccDNA), pregenomic RNA (pgRNA), pre-S/S RNAs, and HDV RNA. Besides HBV DNA and HDV RNA levels, HBsAg concentrations in the sera were also determined. HDV-coinfected cases showed significantly lower median levels of serum HBV DNA (-5 log), intrahepatic relaxed-circular DNA (-2 log), and cccDNA (-2 log) than those of HBV-monoinfected cases. Interestingly, pgRNA and pre-S/S RNA amounts were significantly lower (both -1 log) in HDV-positive patients, whereas serum HBsAg concentrations were comparable between the two patient groups. Pre-S/S RNA and HBsAg amounts per cccDNA molecule were higher in HDV-positive patients (3-fold and 1 log, respectively), showing that HBV replication was reduced, whereas synthesis of envelope proteins was not specifically decreased. The ratios of cccDNA to intracellular total HBV DNA showed a larger proportion of cccDNA molecules in HDV-positive cases. For these patients, both intrahepatic and serum HDV RNA amounts were associated with cccDNA but not with HBsAg or HBV DNA levels. Finally, HBV genomes with large deletions in the basal core promoter/precore region were detected in 5/21 HDV-positive patients but in no HDV-negative patients and were associated with lower viremia levels. These findings provide significant information about the interference exerted by HDV on HBV replication and transcription activities in the human liver.

  4. Chimeric enzymes with improved cellulase activities

    SciTech Connect

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  5. Relative potency based on hepatic enzyme induction predicts immunosuppressive effects of a mixture of PCDDS/PCDFS and PCBS

    SciTech Connect

    Smialowicz, R.J.; DeVito, M.J. Williams, W.C.; Birnbaum, L.S.

    2008-03-15

    The toxic equivalency factor (TEF) approach was employed to compare immunotoxic potency of mixtures containing polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), using the antibody response to sheep erythrocytes (SRBC). Mixture-1 (MIX-1) contained TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-pentachlorodibenzofuran (1-PeCDF), 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF), and 1,2,3,4,6,7,8,9-octachlorodibenzofuran (OCDF). Mixture-2 (MIX-2) contained MIX-1 and the following PCBs, 3,3',4,4'-tetrachlorobiphenyl (IUPAC No. 77), 3,3',4,4',5-pentachlorobiphenyl (126), 3,3',4,4',5,5N-hexachlorobiphenyl (169), 2,3,3',4,4'-pentachlorobiphenyl (105), 2,3',4,4',5-pentachlorobiphenyl (118), and 2,3,3',4,4',5-hexachlorobiphenyl (156). The mixture compositions were based on relative chemical concentrations in food and human tissues. TCDD equivalents (TEQ) of the mixture were estimated using relative potency factors from hepatic enzyme induction in mice [DeVito, M.J., Diliberto, J.J., Ross, D.G., Menache, M.G., Birnbaum, L.S., 1997. Dose-response relationships for polyhalogenated dioxins and dibenzofurans following subchronic treatment in mice. I .CYP1A1 and CYP1A2 enzyme activity in liver, lung and skin. Toxicol. Appl. Pharmacol. 130, 197-208; DeVito, M.J., Menache, G., Diliberto, J.J., Ross, D.G., Birnbaum L.S., 2000. Dose-response relationships for induction of CYP1A1 and CYP1A2 enzyme activity in liver, lung, and skin in female mice following subchronic exposure to polychlorinated biphenyls. Toxicol. Appl. Pharmacol. 167, 157-172] Female mice received 0, 1.5, 15, 150 or 450 ng TCDD/kg/day or approximately 0, 1.5, 15, 150 or 450 ng TEQ/kg/day of MIX-1 or MIX-2 by gavage 5 days per week for 13 weeks. Mice were immunized 3 days after the last exposure and 4 days later, body, spleen, thymus, and liver weights were measured

  6. Enzyme-polymer composites with high biocatalytic activity and stability

    SciTech Connect

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.; Nauman, E B.; Dordick, Jonathan S.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease in activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.

  7. Regulation of Human Hepatic Drug Transporter Activity and Expression by Diesel Exhaust Particle Extract

    PubMed Central

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  8. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein.

    PubMed

    Evans, David C; O'Connor, Desmond; Lake, Brian G; Evers, Raymond; Allen, Christopher; Hargreaves, Richard

    2003-07-01

    "Reaction phenotyping" studies were performed with eletriptan (ETT) to determine its propensity to interact with coadministered medications. Its ability to serve as a substrate for human P-glycoprotein (P-gp) was also investigated since a central mechanism of action has been proposed for this "triptan" class of drug. In studies with a characterized bank of human liver microsome preparations, a good correlation (r2 = 0.932) was obtained between formation of N-desmethyl eletriptan (DETT) and CYP3A4-catalyzed testosterone 6 beta-hydroxylation. DETT was selected to be monitored in our studies since it represents a significant ETT metabolite in humans, circulating at concentrations 10 to 20% of those observed for parent drug. ETT was metabolized to DETT by recombinant CYP2D6 (rCYP2D6) and rCYP3A4, and to a lesser extent by rCYP2C9 and rCYP2C19. The metabolism of ETT to DETT in human liver microsomes was markedly inhibited by troleandomycin, erythromycin, miconazole, and an inhibitory antibody to CYP3A4, but not by inhibitors of other major P450 enzymes. ETT had little inhibitory effect on any of the P450 enzymes investigated. ETT was determined to be a good substrate for human P-gp in vitro. In bidirectional transport studies across LLC-MDR1 and LLC-Mdr1a cell monolayers, ETT had a BA/AB transport ratio in the range 9 to 11. This finding had significance in vivo since brain exposure to ETT was reduced 40-fold in Mdr1a+/+ relative to Mdr1a-/- mice. ETT metabolism to DETT is therefore catalyzed primarily by CYP3A4, and plasma concentrations are expected to be increased when coadministered with inhibitors of CYP3A4 and P-gp activity. PMID:12814962

  9. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition.

  10. Distribution and activity of hydrogenase enzymes in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Glombitza, C.; Spivack, A. J.; D'Hondt, S. L.; Kallmeyer, J.

    2013-12-01

    Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process rather than an overall microbial activity. Since hydrogenase enzymes are intracellular and ubiquitous in subsurface microbial communities, the enzyme activity represents a measure of total activity of the entire microbial community. A hydrogenase activity assay could quantify total metabolic activity without having to identify specific processes. This would be a major advantage in subsurface biosphere studies, where several metabolic processes can occur simultaneously. We quantified hydrogenase enzyme activity and distribution in sediment samples from different aquatic subsurface environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico) using a tritium-based assay. We found enzyme activity at all sites and depths. Volumetric hydrogenase activity did not show much variability between sites and sampling depths, whereas cell-specific activity ranged from 10-5 to 1 nmol H2 cell-1 d-1. Activity was lowest in sediment layers where nitrate was detected. Higher activity was associated with samples in which sulfate was the predominant electron acceptor. We found highest activity in samples from environments with >10 ppm methane in the pore water. The results show that cell-specific hydrogenase enzyme activity increases with decreasing energy yield of the electron acceptor used. It is not possible to convert volumetric or cell-specific hydrogenase activity into a

  11. Improving Activity of Salt-Lyophilized Enzymes in Organic Media

    NASA Astrophysics Data System (ADS)

    Borole, Abhijeet P.; Davison, Brian H.

    Lyophilization with salts has been identified as an important method of activating enzymes in organic media. Using salt-activated enzymes to transform molecules tethered to solid surfaces in organic phase requires solubilization of enzymes in the solvents. Methods of improving performance of salt-lyophilized enzymes, further, via chemical modification, and use of surfactants and surfactants to create fine emulsions prior to lyophilization are investigated. The reaction system used is transesterification of N-acetyl phenylalanine ethyl ester with methanol or propanol. Initial rate of formation of amino acid esters by subtilisin Carlsberg (SC) was studied and found to increase two to sevenfold by either chemical modification or addition of surfactants in certain solvents, relative to the salt (only)-lyophilized enzyme. The method to prepare highly dispersed enzymes in a salt-surfactant milieu also improved activity by two to threefold. To test the effect of chemical modification on derivatization of drug molecules, acylation of bergenin was investigated using chemically modified SC.

  12. Improving activity of salt-lyophilized enzymes in organic media

    SciTech Connect

    Borole, Abhijeet P; Davison, Brian H

    2008-01-01

    Lyophilization with salts has been identified as an important method of activating enzymes in organic media. Using salt-activated enzymes to transform molecules tethered to solid surfaces in organic phase requires solubilization of enzymes in the solvents. Methods of improving performance of salt-lyophilized enzymes, further, via chemical modification, and use of surfactants and surfactants to create fine emulsions prior to lyophilization are investigated. The reaction system used is transesterification of N-acetyl phenylalanine ethyl ester with methanol or propanol. Initial rate of formation of amino acid esters by subtilisin Carlsberg (SC) was studied and found to increase two to sevenfold by either chemical modification or addition of surfactants in certain solvents, relative to the salt (only)-lyophilized enzyme. The method to prepare highly dispersed enzymes in a salt-surfactant milieu also improved activity by two to threefold. To test the effect of chemical modification on derivatization of drug molecules, acylation of bergenin was investigated using chemically modified SC.

  13. Chronic administration of caderofloxacin, a new fluoroquinolone, increases hepatic CYP2E1 expression and activity in rats

    PubMed Central

    Liu, Li; Miao, Ming-xing; Zhong, Ze-yu; Xu, Ping; Chen, Yang; Liu, Xiao-dong

    2016-01-01

    Aim: Caderofloxacin is a new fluoroquinolone that is under phase III clinical trials in China. Here we examined the effects of caderofloxacin on rat hepatic cytochrome P450 (CYP450) isoforms as well as the potential of caderofloxacin interacting with co-administered drugs. Methods: Male rats were treated with caderofloxacin (9 mg/kg, ig) once or twice daily for 14 consecutive days. The effects of caderofloxacin on CYP3A, 2D6, 2C19, 1A2, 2E1 and 2C9 were evaluated using a “cocktail” of 6 probes (midazolam, dextromethorphan, omeprazole, theophylline, chlorzoxazone and diclofenac) injected on d 0 (prior to caderofloxacin exposure) and d 15 (after caderofloxacin exposure). Hepatic microsomes from the caderofloxacin-treated rats were used to assess CYP2E1 activity and chlorzoxazone metabolism. The expression of CYP2E1 mRNA and protein in hepatic microsomes was analyzed with RT-PCR and Western blotting, respectively. Results: Fourteen-day administration of caderofloxacin significantly increased the activity of hepatic CYP2E1, leading to enhanced metabolism of chlorzoxazone. In vitro microsomal study confirmed that CYP2E1 was a major metabolic enzyme involved in chlorzoxazone metabolism, and the 14-d administration of caderofloxacin significantly increased the activity of CYP2E1 in hepatic microsomes, resulting in increased formation of 6-hydroxychlorzoxazone. Furthermore, the 14-d administration of caderofloxacin significantly increased the expression of CYP2E1 mRNA and protein in liver microsomes, which was consistent with the pharmacokinetic results. Conclusion: Fourteen-day administration of caderofloxacin can induce the expression and activity of hepatic CYP2E1 in rats. When caderofloxacin is administered, a potential drug-drug interaction mediated by CYP2E1 induction should be considered. PMID:26838075

  14. Effects of hepatic enzyme inducers on thyroxine (T4) catabolism in primary rat hepatocytes

    EPA Science Inventory

    Nuclear receptor agonists such as phenobarbital (PB), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and 3-methylcholantrene (3-MC) decrease circulating thyroxine (T4) concentrations in rats. It is suspected that this decrease occurs through the induction of hepatic metabolizing en...

  15. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  16. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  17. Chronic alcohol intake upregulates hepatic expression of carotenoid cleavage enzymes and PPAR in rats.

    PubMed

    Luvizotto, Renata A M; Nascimento, André F; Veeramachaneni, Sudipta; Liu, Chun; Wang, Xiang-Dong

    2010-10-01

    Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism. Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15'-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9'10'-monooxygenase 2 (CMO2). CMO1 has been shown to be regulated by several transcription factors, such as the PPAR, retinoid X receptor, and thyroid receptor (TR). The regulation of CMO2 has yet to be identified. The impact of chronic alcohol intake on hepatic expressions of CMO1 and CMO2 and their related transcription factors are unknown. In this study, Fischer 344 rats were pair-fed either a liquid ethanol Lieber-DeCarli diet (n = 10) or a control diet (n = 10) for 11 wk. Hepatic retinoid concentration and expressions of CMO1, CMO2, PPARγ, PPARα, and TRβ as well as plasma thyroid hormones levels were analyzed. We observed that administering alcohol decreased hepatic retinoid levels but increased mRNA concentrations of CMO1, CMO2, PPARγ, PPARα, and TRβ and upregulated protein levels of CMO2, PPARγ, and PPARα. There was a positive correlation of PPARγ with CMO1 (r = 0.89; P < 0.0001) and both PPARγ and PPARα with CMO2 (r = 0.72, P < 0.001 and r = 0.62, P < 0.01, respectively). Plasma thyroid hormone concentrations did not differ between the control rats and alcohol-fed rats. This study suggests that chronic alcohol intake significantly upregulates hepatic expression of CMO1 and, to a much lesser extent, CMO2. This process may be due to alcohol-induced PPARγ expression and lower vitamin A status in the liver.

  18. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  19. Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats.

    PubMed

    Vanitha, P; Uma, C; Suganya, N; Bhakkiyalakshmi, E; Suriyanarayanan, S; Gunasekaran, P; Sivasubramanian, S; Ramkumar, K M

    2014-01-01

    The present study was aimed to evaluate the effect of morin on blood glucose, insulin level, hepatic glucose regulating enzyme activities and glycogen level in experimental diabetes. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg b.w.). Five days after STZ injection, diabetic rats received morin (25 and 50 mg/kg b.w.) orally for 30 days. Glibenclamide was used as reference drug. Morin treatment significantly reduced the blood glucose and improved the serum insulin levels. Further, a dose-dependent reduction in glucose-6-phosphatase and fructose-1,6-bisphosphatase was observed along with the increase in liver hexokinase and glucose-6-phosphate dehydrogenase activities. Morin supplement were found to be effective in preserving the normal histological appearance of pancreatic islets as well as to preserve insulin-positive β-cells in STZ-rats. Therefore, these findings suggest that morin displays beneficial effects in the treatment of diabetes, mediated through the regulation of carbohydrate metabolic enzyme activities.

  20. Enzyme activities of lung lavage in silicosis.

    PubMed

    Larivée, P; Cantin, A; Dufresne, A; Bégin, R

    1990-01-01

    The cytotoxic effect of quartz on lung cells has been well documented by in vitro and animal studies, but the pertinence of these findings to humans has not yet been documented. We measured lactate dehydrogenase (LDH) activities in the lung lavage of 24 long-term workers in the Québec granite industry and 25 control subjects. We found significant increases in LDH activities in the workers' lung lavage, even in the absence of established silicosis (9 subjects). We looked at a similar observation in the sheep model of early silicosis, measured quartz content of lung lavage, and found significant correlation with LDH levels (R = 0.64, p less than 0.001). All of the quartz particles in human and sheep lung lavage were in the alveolar macrophages. To test further the relationship of macrophage damage (cytotoxicity of quartz) we measured the release of LDH by sheep alveolar macrophage in 24 h cell culture under control conditions, exposure to inert dust, titanium, minusil-5 quartz, or aluminum-treated quartz. The LDH release was at control levels during titanium exposure and showed a significantly dose-related increase during quartz exposure. The latter cytotoxic effect was largely attenuated by aluminum treatment of quartz. These in vitro data agreed with previous reports. This study presents evidence of a cytotoxic effect of quartz inhalation in humans. The effect is related to the intensity of quartz retention in the lung macrophages; it is not a nonspecific dust exposure effect and can be attenuated by surface modification of the quartz.

  1. Microsomal antibodies in active chronic hepatitis and other disorders

    PubMed Central

    Rizzetto, M.; Swana, G.; Doniach, Deborah

    1973-01-01

    An autoantibody reacting with microsomal membranes has been characterized by a distinctive immunofluorescence pattern on proximal renal tubules and hepatocytes. The microsomal nature of the antigen was demonstrated by absorption and quantitative complement fixation studies. These results showed the antibodies to be quite distinct from the mitochondrial antibodies found in primary biliary cirrhosis. Microsomal antibodies have so far been detected in sixteen cases, of whom twelve had liver disorders. These antibodies, although rare, may provide a serological marker for a small proportion of active chronic hepatitis cases differing in several respects from other recognized subgroups in this disease. ImagesFIG. 1FIG. 5 PMID:4587503

  2. Chemoproteomic profiling of host and pathogen enzymes active in cholera

    PubMed Central

    Hatzios, Stavroula K.; Hubbard, Troy; Sasabe, Jumpei; Munera, Diana; Clark, Lars; Bachovchin, Daniel A.; Qadri, Firdausi; Ryan, Edward T.; Davis, Brigid M.; Weerapana, Eranthie; Waldor, Matthew K.

    2016-01-01

    Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human cholera stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, while genetic disruption of all four proteases increased the abundance and binding of an intestinal lectin—intelectin—to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialogue in an animal model of infection. PMID:26900865

  3. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  4. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  5. Water modulation of stratum corneum chymotryptic enzyme activity and desquamation.

    PubMed

    Watkinson, A; Harding, C; Moore, A; Coan, P

    2001-09-01

    Exposure to a dry environment leads to depletion of water from the peripheral stratum corneum layers in a process dependent on the relative humidity (RH) and the intrinsic properties of the tissue. We hypothesized that by modulating the water content of the stratum corneum in the surface layers, RH effects the rate of desquamation by modulating the activity of the desquamatory enzymes, and specifically stratum corneum chymotryptic enzyme (SCCE). Using a novel air interface in vitro desquamatory model, we demonstrated RH-dependent corneocyte release with desquamatory rates decreasing below 80% RH. Application of 10% glycerol or a glycerol-containing moisturizing lotion further increased desquamation, even in humid conditions, demonstrating that water was the rate-limiting factor in the final stages of desquamation. Furthermore, even in humid conditions desquamation was sub-maximal. In situ stratum corneum SCCE activity showed a dependence on RH: activity was significantly higher at 100% than at 44% RH. Further increases in SCCE activity were induced by applying a 10% glycerol solution. Since SCCE, a water-requiring enzyme, must function in the water-depleted outer stratum corneum, we sought to determine whether this enzyme has a tolerance to lowered water activity. Using concentrated sucrose solutions to lower water activity, we analysed the activity of recombinant SCCE and compared it to that of trypsin and chymotrypsin. SCCE activity demonstrated a tolerance to water restriction, and this may be an adaptation to maintain enzyme activity even within the water-depleted stratum corneum intercellular space. Overall these findings support the concept that in the upper stratum corneum, RH modulates desquamation by its effect upon SCCE activity, and possibly other desquamatory hydrolases. In addition, SCCE may be adapted to function in the water-restricted stratum corneum intercellular space.

  6. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  7. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  8. Suppression of silent information regulator 1 activity in noncancerous tissues of hepatocellular carcinoma: Possible association with non-B non-C hepatitis pathogenesis

    PubMed Central

    Konishi, Hideyuki; Shirabe, Ken; Nakagawara, Hidekazu; Harimoto, Norifumi; Yamashita, Yo-Ichi; Ikegami, Toru; Yoshizumi, Tomoharu; Soejima, Yuji; Oda, Yoshinao; Maehara, Yoshihiko

    2015-01-01

    Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase. In mice, mSirt1 deficiency causes the onset of fatty liver via regulation of the hepatic nutrient metabolism pathway. In this study, we demonstrate SIRT1 expression, activity and NAD+ regulation using noncancerous liver tissue specimens from hepatocellular carcinoma patients with non-B non-C (NBNC) hepatitis. SIRT1 expression levels were higher in NBNC patients than in healthy donors, while SIRT1 histone H3K9 deacetylation activity was suppressed in NBNC patients. In the liver of hepatitis patients, decreased NAD+ amounts and its regulatory enzyme nicotinamide phosphoribosyltransferase expression levels were observed, and this led to inhibition of SIRT1 activity. SIRT1 expression was associated with HIF1 protein accumulation in both the NBNC liver and liver cancer cell lines. These results may indicate that the NBNC hepatitis liver is exposed to hypoxic conditions. In HepG2 cells, hypoxia induced inflammatory chemokines, such as CXCL10 and MCP-1. These inductions were suppressed in rich NAD+ condition, and by SIRT1 activator treatment. In conclusion, hepatic SIRT1 activity was repressed in NBNC patients, and normalization of NAD+ amounts and activation of SIRT1 could improve the inflammatory condition in the liver of NBNC hepatitis patients. PMID:25736100

  9. Activation Energy of Extracellular Enzymes in Soils from Different Biomes

    PubMed Central

    Steinweg, J. Megan; Jagadamma, Sindhu; Frerichs, Joshua; Mayes, Melanie A.

    2013-01-01

    Enzyme dynamics are being incorporated into soil carbon cycling models and accurate representation of enzyme kinetics is an important step in predicting belowground nutrient dynamics. A scarce number of studies have measured activation energy (Ea) in soils and fewer studies have measured Ea in arctic and tropical soils, or in subsurface soils. We determined the Ea for four typical lignocellulose degrading enzymes in the A and B horizons of seven soils covering six different soil orders. We also elucidated which soil properties predicted any measurable differences in Ea. β-glucosidase, cellobiohydrolase, phenol oxidase and peroxidase activities were measured at five temperatures, 4, 21, 30, 40, and 60°C. Ea was calculated using the Arrhenius equation. β-glucosidase and cellobiohydrolase Ea values for both A and B horizons in this study were similar to previously reported values, however we could not make a direct comparison for B horizon soils because of the lack of data. There was no consistent relationship between hydrolase enzyme Ea and the environmental variables we measured. Phenol oxidase was the only enzyme that had a consistent positive relationship between Ea and pH in both horizons. The Ea in the arctic and subarctic zones for peroxidase was lower than the hydrolases and phenol oxidase values, indicating peroxidase may be a rate limited enzyme in environments under warming conditions. By including these six soil types we have increased the number of soil oxidative enzyme Ea values reported in the literature by 50%. This study is a step towards better quantifying enzyme kinetics in different climate zones. PMID:23536898

  10. Modulating enzyme activity using ionic liquids or surfactants.

    PubMed

    Goldfeder, Mor; Fishman, Ayelet

    2014-01-01

    One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme-water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems. PMID:24281758

  11. Lipid peroxidation and antioxidant enzymes activity in avian semen.

    PubMed

    Partyka, Agnieszka; Lukaszewicz, Ewa; Niżański, Wojciech

    2012-10-01

    The present study compared the antioxidant system and lipid peroxidation in semen of two avian species: chicken and goose. The experiment was conducted on Greenleg Partridge roosters and White Koluda(®) ganders, each represented by 10 mature males. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma. In gander spermatozoa, the amount of MDA was 10 times greater (P<0.01) than in rooster spermatozoa. Each of the investigated antioxidant enzymes had greater (P<0.01) activity in goose than chicken sperm. Catalase activity was detected in seminal plasma and spermatozoa from both studied species for the first time. In seminal plasma, the activity of GPx was two times greater (P<0.01) in the White Koluda(®) than in chickens, whereas SOD activity was less (P<0.01) than in chickens. This is the first study describing the presence of CAT in avian semen and the occurrence of indicator of lipid peroxidation (LPO) in geese. Data from the present study clearly show the species-specific differences in the activity of antioxidant defense and LPO. The greater amount of lipid peroxidation and greater activity of antioxidant enzymes in goose semen might suggest that spermatozoa were under greater oxidative stress and the enzymes were not utilized for the protection of functionally and structurally impaired cells. In turn, in fresh chicken semen a lesser activity of antioxidant enzymes accompanied with a lesser lipid peroxidation amount and good semen quality could indicate that fowl spermatozoa were under oxidative stress, but the enzymes were employed to protect and maintain sperm quality.

  12. [Enzyme activity of an actinomycete producer of carotenes and macrotetrolides].

    PubMed

    Nefelova, M V; Sverdlova, A N

    1982-01-01

    The activity of pyruvate dehydrogenase and dehydrogenases of the tricarboxylic acid cycle was assayed in the mycelium of Streptomyces chrysomallus var. Carotenoides growing under different conditions of the medium. The activity of the enzymes increased when acetic, citric and succinic acids were added at different periods of the growth. Moreover, addition of the acids increased the time of intensive functioning of the dehydrogenases whose activity abruptly decreased after 60 h of the growth under the control conditions.

  13. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

    PubMed Central

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-01-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  14. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    PubMed

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  15. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  16. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    PubMed

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying; Naleway, John Joseph

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  17. Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats

    PubMed Central

    Liu, Tao-Tao; Liang, Ning-Sheng; Li, Yan; Yang, Fan; Lu, Yi; Meng, Zi-Qing; Zhang, Li-Sheng

    2003-01-01

    AIM: To investigate the effects of long-term tea polyphenols (TPs) consumption on hepatic microsomal drug-metabolizing enzymes and liver function in rats. METHODS: TPs were administered intragastrically to rats at the doses of 833 mg·kg-1·d–1 (n = 20) and 83.3 mg·kg-1·d-1 (n = 20) respectively for six months. Controlled group (n = 20) was given same volume of saline solution. Then the contents of cytochrome P450, b5, enzyme activities of aminopyrine N-demethylase (ADM), glutathione S-trasferase (GST) and the biochemical liver function of serum were determined. RESULTS: The contents of cytochrome P450 and b5 in the livers of male rats in high dose groups (respectively 2.66 ± 0.55, 10.43 ± 2.78 nmol·mg MS pro-1) were significantly increased compared with the control group (1.08 ± 1.04, 5.51 ± 2.98 nmol·mg MS pro- 1; P < 0.01, respectively). The enzymatic activities of ADM in the livers of female rats in high dose groups (0.91 ± 0.08 mmol·mg MS pro-1min-1) were increased compared with the control group (0.82 ± 0.08 mmol·mg MS pro-1·min-1; P < 0.05). The GST activity was unchanged in all treated groups, and the function of liver was not obviously changed. CONCLUSION: The antidotal capability of rats’ livers can be significantly improved after long-term consumption of TPs. There are differences in changes of drug-metabolizing enzymes between the sexes induced by TPs and normal condition. PMID:14669325

  18. Enzyme activities by indicator of quality in organic soil

    NASA Astrophysics Data System (ADS)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  19. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  20. Carbohydrate active enzymes revealed in Coptotermes formosanus transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A normalized cDNA library of Coptotermes formosanus was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. Sequencing of this library generated 131,637 EST and 25,939 unigenes were assembled. Carbohydrate active enzymes (CAZymes) revealed in this library we...

  1. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells

    PubMed Central

    Wong, Tsz Yan; Lin, Shu-mei; Leung, Lai K.

    2015-01-01

    High blood cholesterol has been associated with cardiovascular diseases. The enzyme HMG CoA reductase (HMGCR) is responsible for cholesterol synthesis, and inhibitors of this enzyme (statins) have been used clinically to control blood cholesterol. Sterol regulatory element binding protein (SREBP) -2 is a key transcription factor in cholesterol metabolism, and HMGCR is a target gene of SREBP-2. Attenuating SREBP-2 activity could potentially minimize the expression of HMGCR. Luteolin is a flavone that is commonly detected in plant foods. In the present study, Luteolin suppressed the expression of SREBP-2 at concentrations as low as 1 μM in the hepatic cell lines WRL and HepG2. This flavone also prevented the nuclear translocation of SREBP-2. Post-translational processing of SREBP-2 protein was required for nuclear translocation. Luteolin partially blocked this activation route through increased AMP kinase (AMPK) activation. At the transcriptional level, the mRNA and protein expression of SREBP-2 were reduced through luteolin. A reporter gene assay also verified that the transcription of SREBF2 was weakened in response to this flavone. The reduced expression and protein processing of SREBP-2 resulted in decreased nuclear translocation. Thus, the transcription of HMGCR was also decreased after luteolin treatment. In summary, the results of the present study showed that luteolin modulates HMGCR transcription by decreasing the expression and nuclear translocation of SREBP-2. PMID:26302339

  2. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  3. Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties.

    PubMed

    Kuriki, T; Stewart, D C; Preiss, J

    1997-11-14

    Branching enzyme I and II isoforms from maize endosperm (mBE I and mBE II, respectively) have quite different properties, and to elucidate the domain(s) that determines the differences, chimeric genes consisting of part mBE I and part mBE II were constructed. When expressed under the control of the T7 promoter in Escherichia coli, several of the chimeric enzymes were inactive. The only fully active chimeric enzyme was mBE II-I BspHI, in which the carboxyl-terminal part of mBE II was exchanged for that of mBE I at a BspHI restriction site and was purified to homogeneity and characterized. Another chimeric enzyme, mBE I-II HindIII, in which the amino-terminal end of mBE II was replaced with that of mBE I, had very little activity and was only partially characterized. The purified mBE II-I BspHI exhibited higher activity than wild-type mBE I and mBE II when assayed by the phosphorylase a stimulation assay. mBE II-I BspHI had substrate specificity (preference for amylose rather than amylopectin) and catalytic capacity similar to mBE I, despite the fact that only the carboxyl terminus was from mBE I, suggesting that the carboxyl terminus may be involved in determining substrate specificity and catalytic capacity. In chain transfer experiments, mBE II-I BspHI transferred more short chains (with a degree of polymerization of around 6) in a fashion similar to mBE II. In contrast, mBE I-II HindIII transferred more long chains (with a degree of polymerization of around 11-12), similar to mBE I, suggesting that the amino terminus of mBEs may play a role in the size of oligosaccharide chain transferred. This study challenges the notion that the catalytic centers for branching enzymes are exclusively located in the central portion of the enzyme; it suggests instead that the amino and carboxyl termini may also be involved in determining substrate preference, catalytic capacity, and chain length transfer.

  4. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    PubMed

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry.

  5. Increased serum cortisol binding in chronic active hepatitis

    SciTech Connect

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG.

  6. Hepatic 5'-monodeiodinase activity in teleosts in vitro: A survey of thirty-three species.

    PubMed

    Leatherland, J F; Reddy, P K; Yong, A N; Leatherland, A; Lam, T J

    1990-01-01

    The in vitro hepatic 5'-monodeiodination of thyroxine (T4) to triiodothyronine (T3) in Oreochromis mossambicus, Channa striata, Clarias batrachus, Cyprinus carpio and Oxyeleotris marmorata was found to be time, pH and temperature dependent, and related to the amount of substrate (T4) and homogenate introduced into the reaction vessel, in a manner which was consistent with Menton-Michaelis kinetics, and thus indicative of an enzyme-regulated process. Dithiothreitol introduced into the reaction vessel stimulated T3 production in a dose-related manner.Hepatic 5'-monodeiodinase activity was also detected in a further 28 species of teleosts suggesting that the peripheral monodeiodination of T4, which is well-documented in salmonids, is also widespread amongst other teleost fishes. All species examined exhibited evidence of enzymatic deiodination, but there were marked differences in Km and Vmax values between the species. There was no apparent phylogenetic or environmental relationships to explain the widely divergent Km and/or Vmax values, nor was there a correlation between Km and Vmax when the species were considered together. PMID:24221892

  7. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors.

    PubMed

    Wang, X; Wang, G; Shi, J; Aa, J; Comas, R; Liang, Y; Zhu, H-J

    2016-06-01

    The aim of the study was to determine the effect of carboxylesterase 1 (CES1) genetic variation on the activation of angiotensin-converting enzyme inhibitor (ACEI) prodrugs. In vitro incubation study of human liver, intestine and kidney s9 fractions demonstrated that the ACEI prodrugs enalapril, ramipril, perindopril, moexipril and fosinopril are selectively activated by CES1 in the liver. The impact of CES1/CES1VAR and CES1P1/CES1P1VAR genotypes and diplotypes on CES1 expression and activity on enalapril activation was investigated in 102 normal human liver samples. Neither the genotypes nor the diplotypes affected hepatic CES1 expression and activity. Moreover, among several CES1 nonsynonymous variants studied in transfected cell lines, the G143E (rs71647871) was a loss-of-function variant for the activation of all ACEIs tested. The CES1 activity on enalapril activation in human livers with the 143G/E genotype was approximately one-third of that carrying the 143G/G. Thus, some functional CES1 genetic variants (for example, G143E) may impair ACEI activation, and consequently affect therapeutic outcomes of ACEI prodrugs. PMID:26076923

  8. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats.

    PubMed

    Sundaram, Ramalingam; Naresh, Rajendran; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2013-05-15

    The study was undertaken to evaluate the antidiabetic effect of green tea extract on carbohydrate metabolic key enzymes in control and streptozotocin high fat diet -induced diabetic rats. The daily oral treatment of green tea extract (300 mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of green tea extract. Further, green tea extract administration to diabetic rats improved muscle and hepatic glycogen content suggesting the antihyperglycemic potential of green tea extract in diabetic rats. The obtained results were compared with metformin, a standard oral hypoglycemic drug. Thus, this study indicates that the administration of green tea extract to diabetic rats resulted in alterations in the metabolism of glucose with subsequent reduction in plasma glucose levels.

  9. Proteomic identification of potential Clonorchis sinensis excretory/secretory products capable of binding and activating human hepatic stellate cells.

    PubMed

    Wang, Xiaoyun; Hu, Fengyu; Hu, Xuchu; Chen, Wenjun; Huang, Yan; Yu, Xinbing

    2014-08-01

    Epidemiological and experimental evidence demonstrated that Clonorchis sinensis is an important risk factor of hepatic fibrosis and cholangiocarcinoma. C. sinensis excretory/secretory products (CsESPs) are protein complex including proteases, antioxidant enzymes, and metabolic enzymes, which may contribute to pathogenesis of liver fluke-associated hepatobiliary diseases. However, potential CsESP candidates involved into hepatic fibrosis and cholangiocarcinoma still remain to be elucidated. In the present study, we performed proteomic identification of CsESP candidates capable of binding and activating human hepatic stellate cell line LX-2. Immunofluorescence analysis confirmed the interaction of CsESPs with LX-2 cell membrane. LX-2 cells could be stimulated by CsESPs from 24 h post incubation (p < 0.05). Specifically, 50 μg/ml of CsESPs showed the strongest effect on cell proliferation in methyl thiazolyl tetrazolium (MTT) assay which could also be demonstrated by flow cytometry analysis (p < 0.01). Furthermore, expression level of human type III collagen in LX-2 cells treated with CsESPs was significantly higher than that in control cells measured by molecular beacon and semiquantitative reverse transcription (RT)-PCR approaches (p < 0.01). Finally, CsESPs before and after incubation with LX-2 cells were subjected to two-dimensional gel electrophoresis (2-DE) analysis and matrix associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. Nine proteins with abundance change above threefold were Rho GTPase-activating protein, mitochondrial cytochrome c oxidase subunit Va, α-enolase, phospholipase C, interleukin-15, insect-derived growth factor, cytochrome c oxidase subunit VI, DNAH1 protein, and kinesin light chain. Taken together, we identified potential CsESP candidates capable of binding and activating human hepatic stellate cells, providing more direct evidences that are previously unknown to accelerate strategies

  10. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    PubMed

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation.

  11. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells

    SciTech Connect

    Parekkadan, Biju; Poll, Daan van; Megeed, Zaki; Kobayashi, Naoya; Tilles, Arno W.; Berthiaume, Francois; Yarmush, Martin L.

    2007-11-16

    Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-{alpha} abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.

  12. Effect of standardized cranberry extract on the activity and expression of selected biotransformation enzymes in rat liver and intestine.

    PubMed

    Bártíková, Hana; Boušová, Iva; Jedličková, Pavla; Lněničková, Kateřina; Skálová, Lenka; Szotáková, Barbora

    2014-09-18

    The use of dietary supplements containing cranberry extract is a common way to prevent urinary tract infections. As consumption of these supplements containing a mixture of concentrated anthocyanins and proanthocyanidins has increased, interest in their possible interactions with drug-metabolizing enzymes has grown. In this in vivo study, rats were treated with a standardized cranberry extract (CystiCran®) obtained from Vaccinium macrocarpon in two dosage schemes (14 days, 0.5 mg of proanthocyanidins/kg/day; 1 day, 1.5 mg of proanthocyanidins/kg/day). The aim of this study was to evaluate the effect of anthocyanins and proanthocyanidins contained in this extract on the activity and expression of intestinal and hepatic biotransformation enzymes: cytochrome P450 (CYP1A1, CYP1A2, CYP2B and CYP3A), carbonyl reductase 1 (CBR1), glutathione-S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Administration of cranberry extract led to moderate increases in the activities of hepatic CYP3A (by 34%), CYP1A1 (by 38%), UGT (by 40%), CBR1 (by 17%) and GST (by 13%), while activities of these enzymes in the small intestine were unchanged. No changes in the relative amounts of these proteins were found. Taken together, the interactions of cranberry extract with simultaneously administered drugs seem not to be serious.

  13. St. John's Wort increases brain serotonin synthesis by inhibiting hepatic tryptophan 2, 3 dioxygenase activity and its gene expression in stressed rats.

    PubMed

    Bano, Samina; Ara, Iffat; Saboohi, Kausar; Moattar, Tariq; Chaoudhry, Bushra

    2014-09-01

    We aimed to investigate the effects of herbal St. John's Wort (SJW) on transcriptional regulation of hepatic tryptophan 2, 3 - dioxygenase (TDO) enzyme activity and brain regional serotonin (5-HT) levels in rats exposed to forced swim test (FST). TDO mRNA expression was quantified using real-time reverse transcription polymerase chain (RT-PCR) reaction and brain regional indoleamines were determined by high performance liquid chromatography coupled to fluorescence detector. Behavioral analysis shows significant reduction in immobility time in SJW (500mg/kg/ml) administered rats. It was found that pretreatment of SJW to rats did not prevent stress-induced elevation in plasma corticosterone levels however it increases serotonin synthesis by virtue of inhibiting hepatic TDO enzyme activity and its gene expression, ascertaining the notion that there exists an inverse relationship between hepatic TDO enzyme activity and brain 5-HT. The drug also decreases serotonin turnover in all the brain areas (hypothalamus, hippocampus amygdala) in stressed rats endorsing its monoamine oxidase inhibition property. Inhibition of TDO enzyme activity and its gene expression by the drug provides new insights for the development of therapeutic interventions for stress related mental illnesses.

  14. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  15. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  16. Molecular imaging of macrophage enzyme activity in cardiac inflammation

    PubMed Central

    Ali, Muhammad; Pulli, Benjamin; Chen, John W.

    2014-01-01

    Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory monocytes and macrophages also induce tissue oxidative damage through the inflammatory enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular macrophage imaging. Particular stress will be given to macrophage functional and enzymatic activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging. PMID:24729833

  17. [Activity of hydrogen sulfide production enzymes in kidneys of rats].

    PubMed

    Mel'nyk, A V; Pentiuk, O O

    2009-01-01

    An experimental research of activity and kinetic descriptions of enzymes participating in formation of hydrogen sulfide in the kidney of rats has been carried out. It was established that cystein, homocystein and thiosulphate are the basic substrates for hydrogen sulfide synthesis. The higest activity for hydrogen sulfide production belongs to thiosulfate-dithiolsulfurtransferase and cysteine aminotransferase, less activity is characteristic of cystathionine beta-synthase and cystathio-nine gamma-lyase. The highest affinity to substrate is registered for thiosulfate-dithiolsulfurtransferase and cystathionine gamma-lyase. It is discovered that the substrate inhibition is typical of all hydrogen sulfide formation enzymes, although this characteristic is the most expressed thiosulfat-dithiolsulfurtransferase. PMID:20387629

  18. Influence of environmental static electric field on antioxidant enzymes activities in hepatocytes of mice.

    PubMed

    Wu, S X; Xu, Y Q; Di, G Q; Jiang, J H; Xin, L; Wu, T Y

    2016-01-01

    With the increasing voltage of direct current transmission line, the intensity of the environmental static electric field has also increased. Thus, whether static electric fields cause biological injury is an important question. In this study, the effects of chronic exposure to environmental static electric fields on some antioxidant enzymes activities in the hepatocytes of mice were investigated. Male Institute of Cancer Research mice were exposed for 35 days to environmental static electric fields of different electric field intensities of 9.2-21.85 kV/m (experiment group I, EG-I), 2.3-15.4 kV/m (experiment group II, EG-II), and 0 kV/m (control group, CG). On days 7, 14, 21, and 35 of the exposure cycle, liver homogenates were obtained and the activities of antioxidant enzymes like superoxide dismutase, glutathione S-transferase, and glutathione peroxidase were determined, as well as the concentration of malonaldehyde. The results revealed a significant increase in superoxide dismutase activity in both EG-I and EG-II on the 7th (P < 0.05) and 35th days (P < 0.01) of the exposure cycle compared to that in the control group. However, the other test indices such as glutathione S-transferase, glutathione peroxidase, and malonaldehyde showed only minimal changes during the exposure cycle. These results revealed a weak relationship between the exposure to environmental static electric fields and hepatic oxidative stress in living organisms. PMID:27525865

  19. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  20. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression Through the Life Stages of the Mouse

    EPA Science Inventory

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been ca...

  1. Relationship of hepatic and peripheral insulin resistance with plasminogen activator inhibitor-1 in Pima Indians.

    PubMed

    Nagi, D K; Tracy, R; Pratley, R

    1996-10-01

    Plasminogen activator inhibitor-1 (PAI-1) is related to insulin resistance and several components of the insulin resistance syndrome, and PAI-1 levels are elevated in subjects with non-insulin-dependent diabetes mellitus. Many Pima Indians are obese, insulin-resistant, and hyperinsulinemic, and they have high rates of diabetes but a low risk of ischemic heart disease. In contrast to whites and Asians, PAI-1 activity is similar between nondiabetic and diabetic Pima Indians. We therefore examined the association of PAI-1 with hepatic and peripheral insulin action measured using the hyperinsulinemic-euglycemic clamp. To investigate if insulin per se has any effect on PAI-1 in vivo, we also assessed the effects of endogenous (during a 75-g oral glucose load) and exogenous (during hyperinsulinemic clamp) insulin on PAI-1 antigen. Twenty-one (14 men and seven women; mean age, 26.3 +/- 4.8 years) Pima Indians underwent a 75-g oral glucose tolerance test (OGTT) and a sequential hyperinsulinemic-euglycemic clamp. Peripheral insulin action was measured as absolute glucose uptake (M value) and normalized to estimated metabolic body size (EMBS). Hepatic insulin action was measured as percent suppression of basal hepatic glucose output during hyperinsulinemia. PAI-1 antigen was determined using a two-site enzyme-linked immunosorbent assay that detects only free PAI-1. PAI-1 antigen concentrations were significantly related to body mass index ([BMI] rs = .54, P = .012), waist (rs=.52, P=.016) and thigh (rs=.63, P=.002) circumference, and fasting plasma insulin concentration (rs=.59, P=.004). PAI-1 antigen concentrations were not significantly associated with peripheral glucose uptake (M value) during either low-dose (rs= -.01, P=NS) or high-dose (rs= -.11, P=NS) insulin infusion. PAI-1 antigen was negatively correlated with basal hepatic glucose output (rs= -.57, P=.013) and percent suppression of hepatic glucose output during hyperinsulinemia (rs= -.69, P=.005). However, this

  2. Depsides: Lichen Metabolites Active against Hepatitis C Virus

    PubMed Central

    Vu, Thi Huyen; Le Lamer, Anne-Cécile; Lalli, Claudia; Boustie, Joël; Samson, Michel

    2015-01-01

    A thorough phytochemical study of Stereocaulon evolutum was conducted, for the isolation of structurally related atranorin derivatives. Indeed, pilot experiments suggested that atranorin (1), the main metabolite of this lichen, would interfere with the lifecycle of hepatitis C virus (HCV). Eight compounds, including one reported for the first time (2), were isolated and characterized. Two analogs (5, 6) were also synthesized, to enlarge the panel of atranorin-related structures. Most of these compounds were active against HCV, with a half-maximal inhibitory concentration of about 10 to 70 µM, with depsides more potent than monoaromatic phenols. The most effective inhibitors (1, 5 and 6) were then added at different steps of the HCV lifecycle. Interestingly, atranorin (1), bearing an aldehyde function at C-3, inhibited only viral entry, whereas the synthetic compounds 5 and 6, bearing a hydroxymethyl and a methyl function, respectively, at C-3 interfered with viral replication. PMID:25793970

  3. Depsides: lichen metabolites active against hepatitis C virus.

    PubMed

    Vu, Thi Huyen; Le Lamer, Anne-Cécile; Lalli, Claudia; Boustie, Joël; Samson, Michel; Lohézic-Le Dévéhat, Françoise; Le Seyec, Jacques

    2015-01-01

    A thorough phytochemical study of Stereocaulon evolutum was conducted, for the isolation of structurally related atranorin derivatives. Indeed, pilot experiments suggested that atranorin (1), the main metabolite of this lichen, would interfere with the lifecycle of hepatitis C virus (HCV). Eight compounds, including one reported for the first time (2), were isolated and characterized. Two analogs (5, 6) were also synthesized, to enlarge the panel of atranorin-related structures. Most of these compounds were active against HCV, with a half-maximal inhibitory concentration of about 10 to 70 µM, with depsides more potent than monoaromatic phenols. The most effective inhibitors (1, 5 and 6) were then added at different steps of the HCV lifecycle. Interestingly, atranorin (1), bearing an aldehyde function at C-3, inhibited only viral entry, whereas the synthetic compounds 5 and 6, bearing a hydroxymethyl and a methyl function, respectively, at C-3 interfered with viral replication. PMID:25793970

  4. Extracellular enzyme activity and biogeochemical cycling in restored prairies

    NASA Astrophysics Data System (ADS)

    Lynch, L.; Hernandez, D.; Schade, J. D.

    2011-12-01

    Winter microbial activity in mid-latitude prairie ecosystems is thermally sensitive and significantly influenced by snow depth. Snow insulates the soil column facilitating microbial processing of complex organic substrates. Previous studies in forests and tundra ecosystems suggest patterns of substrate utilization and limitation are seasonal; above freezing, soil microbes access fresh litter inputs and sugar exudates from plant roots, while under frozen condition they recycle nutrients incorporated in microbial biomass. In order to liberate nutrients required for carbon degradation, soil microbes invest energy in the production of extracellular enzymes that cleave monomers from polymer bonds. The inverse relationship between relative enzyme abundance and substrate availability makes enzyme assays a useful proxy to assess changes in resources over time. Our objective in this study was to assess patterns in microbial biomass, nutrient availability, and extracellular enzyme activity in four snow exclosure sites over a seven-month period. Over the past three years, we have maintained a snow removal experiment on two restored prairies in central Minnesota. In each prairie, snow was continuously removed annually from two 4 x 4 m plots by shoveling after each snow event. Extractable C, N and P, and microbial C, N and P in soil samples were measured in samples collected from these snow removal plots, as well as in adjacent unmanipulated prairie control plots. Pools of C, N, and P were estimated using standard extraction protocols, and microbial pools were estimated using chloroform fumigation direct extraction (CFDE). We conducted fluorometric extracellular enzyme assays (EEA) to assess how the degradation potential of cellulose (cellobiohydrolase, CBH), protein (leucine aminopeptidase, LAP), and phosphate esters (phosphatase, PHOS) changed seasonally. Microbial C and N declined between October and June, while microbial P declined during the fall and winter, but increased

  5. Activation of PPARγ is required for hydroxysafflor yellow A of Carthamus tinctorius to attenuate hepatic fibrosis induced by oxidative stress.

    PubMed

    Wang, C Y; Liu, Q; Huang, Q X; Liu, J T; He, Y H; Lu, J J; Bai, X Y

    2013-05-15

    Oxidative stress caused hepatic fibrosis by activating hepatic stellate cells (HSCs), which were implemented by depressing PPARγ activation. Hydroxysafflor yellow A (HSYA) as a nature active ingredient with antioxidant capacity was able to effectively attenuate oxidative stress mediated injury. So it will be very interesting to study effect of HSYA on HSCs activation and liver fibrosis, and reveal the role of PPARγ·CCl4 and H2O2 were used to mimic oxidative stress mediated hepatic injury in vitro and in vivo respectively. The anti-fibrosis effects of HSYA were evaluated and its mechanisms were disclosed by applying western blot, histopathological analysis, flow cytometry, RT-PCR and ELISA. Our results showed that HSCs activation and proliferation could be induced by oxidative stress, and the expressive levels of TGF-β1 and TIMP-1, the serum levels of ALT, AST, HA, LN, III-C and IV-C were also enhanced by oxidative stress, which is correlated with liver fibrosis (p<0.05 or p<0.01). HSYA was able to effectively inhibit oxidative stress mediated hepatic injury by increasing the activities of antioxidant enzymes, up regulating the expression of PPARγ and MMP-2, and down regulating the expression of TGF-β1 and TIMP-1, and reducing α-SMA level. The protective effect of HSYA can be significantly attenuated by GW9662 via blocking PPARγ (p<0.05 or p<0.01). Taken together, these results demonstrate that HSYA is able to significantly protect the liver from oxidative stress, which requires for HSYA to stimulate PPARγ activity, reduce cell proliferation and suppress ECM synthesis.

  6. Extracellular enzyme activity in a willow sewage treatment system.

    PubMed

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  7. Enzyme-like activities of algal polysaccharide - cerium complexes

    NASA Astrophysics Data System (ADS)

    Wang, Dongfeng; Sun, Jipeng; Du, Dehong; Ye, Shen; Wang, Changhong; Zhou, Xiaoling; Xue, Changhu

    2005-01-01

    Water-soluble algal polysaccharides (APS) (alginic acid, fucoidan and laminaran) possess many pharmacological activities. The results of this study showed that the APS-Ce4+ complexes have some enzyme-like activities. Fucoidan and its complex with Ce4+ have activities similar to those of SOD. The activities of laminaran, alginic acid and their complexes are not measurable. The APS do not show measurable activities in the digestion of plasmid DNA. In contrast, the APS - Ce4+ complexes show these measurable activities under the comparable condition when APS bind Ce4+ and form homogenous solutions. The laminaran - Ce4+ complex shows the most obvious activity in the digestion of plasmid DNA, pNPP and chloropy-rifos under neutral conditions.

  8. Polyphosphate-degrading enzymes in Acinetobacter spp. and activated sludge.

    PubMed Central

    van Groenestijn, J W; Bentvelsen, M M; Deinema, M H; Zehnder, A J

    1989-01-01

    Polyphosphate-degrading enzymes were studied in Acinetobacter spp. and activated sludge. Polyphosphate: AMP phosphotransferase activity in Acinetobacter strain 210A decreased with increasing growth rates. The activity of this enzyme in cell extracts of Acinetobacter strain 210A was maximal at a pH of 8.5 and a temperature of 40 degrees C and was stimulated by (NH4)2SO4. The Km for AMP was 0.6 mM, and the Vmax was 60 nmol/min per mg of protein. Cell extracts of this strain also contained polyphosphatase, which was able to degrade native polyphosphate and synthetic magnesium polyphosphate and was strongly stimulated by 300 to 400 mM NH4Cl. A positive correlation was found between polyphosphate:AMP phosphotransferase activity, adenylate kinase activity, and phosphorus accumulation in six Acinetobacter strains. Significant activities of polyphosphate kinase were detected only in strain P, which contained no polyphosphate:AMP phosphotransferase. In samples of activated sludge from different plants, the activity of adenylate kinase correlated well with the ability of the sludge to remove phosphate biologically from wastewater. PMID:2539774

  9. Hepatic metabolism, phase I and II biotransformation enzymes in Atlantic salmon (Salmo Salar, L) during a 12 week feeding period with graded levels of the synthetic antioxidant, ethoxyquin.

    PubMed

    Berdikova Bohne, Victoria J; Hamre, Kristin; Arukwe, Augustine

    2007-05-01

    The synthetic antioxidant ethoxyquin (EQ) is a widely used additive in animal feeds, including farmed fish feed. The use of EQ as food additive is prohibited and it is also undesirable in farmed meat and fish products. The possible negative aspects of EQ in fish feeds, such as modulation of hepatic detoxifying enzymes and possible effects through "carry-over" to edible parts of fish are not known. In addition, the subsequent consequences for human consumers have not been previously studied. In the present work, the alteration in gene and protein expression patterns, and catalytic activities of phase I and II hepatic biotransformation enzymes due to prolonged exposure to graded levels of dietary EQ in the range of 11-1800 mg EQ/kg feed were studied. The kinetics of parent EQ and its major metabolite, ethoxyquin dimer (EQDM) was also studied. In general two weeks seem to be the critical point in the entire toxicological response of salmon to dietary consumed EQ. Biotransformation of EQ to EQDM is shown to be a rapid process. However, the decrease in biotransformation rate results in the accumulation of EQ metabolites, high concentration of which was postulated to alter translation and post-translational modification of CYP3A, GST and UDPGT at feeding day 14 and 42, with subsequent decreases in the biotransformation of consumed EQ. Decrease in the biotransformation of consumed EQ produced the retention of un-metabolized EQ rather than metabolites in salmon liver. This may be considered as undesirable effect, since it could lead to the transport and accumulation in other organs and edible tissues. It may also cause a new wave of biotransformation with formation of metabolites inhibiting detoxifying enzymes. In general, these processes may prolong the excretion of dietary EQ from the fish body and produce EQ-derived residues in the ready-to-consume salmon or fish products. These EQ residues may have higher toxicological effects for human consumers than the parent

  10. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  11. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response

    PubMed Central

    Li, Chang Xian; Lo, Chung Mau; Lian, Qizhou; Ng, Kevin Tak-Pan; Liu, Xiao Bing; Ma, Yuen Yuen; Qi, Xiang; Yeung, Oscar Wai Ho; Tergaonkar, Vinay; Yang, Xin Xiang; Liu, Hui; Liu, Jiang; Shao, Yan; Man, Kwan

    2016-01-01

    Repressor and activator protein (Rap1) directly regulates nuclear factor-κB (NF-κB) dependent signaling, which contributes to hepatic IRI. We here intended to investigate the effect of Rap1 in hepatic ischemia reperfusion injury (IRI) and to explore the underlying mechanisms. The association of Rap1 expression with hepatic inflammatory response were investigated in both human and rat liver transplantation. The effect of Rap1 in hepatic IRI was studied in Rap1 knockout mice IRI model in vivo and primary cells in vitro. Our results showed that over expression of Rap1 was associated with severe liver graft inflammatory response, especially in living donor liver transplantation. The results were also validated in rat liver transplantation model. In mice hepatic IRI model, the knockout of Rap1 reduced hepatic damage and hepatic inflammatory response. In primary cells, the knockout of Rap1 suppressed neutrophils migration activity and adhesion in response to liver sinusoidal endothelial cells through down-regulating neutrophils F-Actin expression and CXCL2/CXCR2 pathway. In addition, the knockout of Rap1 also decreased production of pro-inflammatory cytokines/chemokines in primary neutrophils and neutrophils-induced hepatocyte damage. In conclusion, Rap1 may induce hepatic IRI through promoting neutrophils inflammatory response. Rap1 may be the potential therapeutic target of attenuating hepatic IRI. PMID:27050284

  12. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity[S

    PubMed Central

    Jaishy, Bharat; Zhang, Quanjiang; Chung, Heaseung S.; Riehle, Christian; Soto, Jamie; Jenkins, Stephen; Abel, Patrick; Cowart, L. Ashley; Van Eyk, Jennifer E.; Abel, E. Dale

    2015-01-01

    Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs. PMID:25529920

  13. Sample storage for soil enzyme activity and bacterial community profiles.

    PubMed

    Wallenius, K; Rita, H; Simpanen, S; Mikkonen, A; Niemi, R M

    2010-04-01

    Storage of samples is often an unavoidable step in environmental data collection, since available analytical capacity seldom permits immediate processing of large sample sets needed for representative data. In microbiological soil studies, sample pretreatments may have a strong influence on measurement results, and thus careful consideration is required in the selection of storage conditions. The aim of this study was to investigate the suitability of prolonged (up to 16 weeks) frozen or air-dried storage for divergent soil materials. The samples selected to this study were mineral soil (clay loam) from an agricultural field, humus from a pine forest and compost from a municipal sewage sludge composting field. The measured microbiological parameters included functional profiling with ten different hydrolysing enzyme activities determined by artificial fluorogenic substrates, and structural profiling with bacterial 16S rDNA community fingerprints by amplicon length heterogeneity analysis (LH-PCR). Storage of samples affected the observed fluorescence intensity of the enzyme assay's fluorophor standards dissolved in soil suspension. The impact was highly dependent on the soil matrix and storage method, making it important to use separate standardisation for each combination of matrix type, storage method and time. Freezing proved to be a better storage method than air-drying for all the matrices and enzyme activities studied. The effect of freezing on the enzyme activities was small (<20%) in clay loam and forest humus and moderate (generally 20-30%) in compost. The most dramatic decreases (>50%) in activity were observed in compost after air-drying. The bacterial LH-PCR community fingerprints were unaffected by frozen storage in all matrices. The effect of storage treatments was tested using a new statistical method based on showing similarity rather than difference of results.

  14. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  15. Chemoproteomic profiling of host and pathogen enzymes active in cholera.

    PubMed

    Hatzios, Stavroula K; Abel, Sören; Martell, Julianne; Hubbard, Troy; Sasabe, Jumpei; Munera, Diana; Clark, Lars; Bachovchin, Daniel A; Qadri, Firdausi; Ryan, Edward T; Davis, Brigid M; Weerapana, Eranthie; Waldor, Matthew K

    2016-04-01

    Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human choleric stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, and genetic disruption of all four proteases increased the abundance of intelectin, an intestinal lectin, and its binding to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting that it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialog in an animal model of infection. PMID:26900865

  16. Determination of immunoglobulin M antibodies for hepatitis B core antigen with a capture enzyme immunoassay and biotin-labeled core antigen produced in Escherichia coli.

    PubMed Central

    Vilja, P; Turunen, H J; Leinikki, P O

    1985-01-01

    A new capture enzyme immunoassay for the determination of immunoglobulin M (IgM) antibodies against hepatitis B core antigen (HBcAg) is described. Core antigen produced in Escherichia coli was labeled with biotin and subsequently detected by an avidin-biotin-peroxidase complex. The biotin-labeled core antigen was effective at concentrations as low as 20 ng/ml. Of 561 serum samples from different groups of patients that were tested, 465 samples were negative for other hepatitis B virus markers and also for anti-HBcAg IgM. Sera from the early stages of hepatitis B infection had high levels of anti-HBcAg IgM, and a clear correlation with the acuteness of the disease was observed in 45 follow-up sera from 23 patients with acute or recent hepatitis B. Sera from 21 patients with past hepatitis B were all negative for anti-HBcAg IgM. Twenty serum samples from chronic carriers of hepatitis B surface antigen showed slightly elevated antibody levels for anti-HBcAg IgM. Ten sera which were positive for anti-HBcAg IgG antibodies and had high levels of rheumatoid factor were negative for anti-HBcAg IgM. PMID:3908476

  17. Antiviral Activity of Glycyrrhizin against Hepatitis C Virus In Vitro

    PubMed Central

    Matsumoto, Yoshihiro; Matsuura, Tomokazu; Aoyagi, Haruyo; Matsuda, Mami; Hmwe, Su Su; Date, Tomoko; Watanabe, Noriyuki; Watashi, Koichi; Suzuki, Ryosuke; Ichinose, Shizuko; Wake, Kenjiro; Suzuki, Tetsuro; Miyamura, Tatsuo; Wakita, Takaji; Aizaki, Hideki

    2013-01-01

    Glycyrrhizin (GL) has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV) effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc). To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp), replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD), respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2). We found that group 1B PLA2 (PLA2G1B) inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release. PMID:23874843

  18. Effects of cigarette smoke and dietary vitamin E levels on selected lung and hepatic biotransformation enzymes in mice

    SciTech Connect

    Graziano, M.J.; Gairola, C.; Dorough, H.W.

    1985-01-01

    Young male C57BL mice were exposed nose-only to cigarette smoke 20 min/day for 8 weeks while maintained on diets containing 0, 5, and 100 ppm of vitamin E. Smoking had no effect on hepatic aryl hydrocarbon hydroxylase (AHH), UDP-glucuronyltransferase, glutathione S-transferase, parathion desulfurase, or parathion esterase activity. Lung AHH activity was increased in all smoke-exposed mice, although the increase was significantly less in animals maintained on the vitamin E-free diet. All mice on the vitamin E-free diet showed reduced lung AHH activity and increased hepatic lipid peroxidation. No other biotransformations tested were significantly altered by varying vitamin E concentrations alone or in combination with cigarette smoke. For all vitamin E diets, both the smoke-exposed and sham-treated mice gained significantly less weight than the control animals. This effect was attributed to stress induced by restraint of the animals within the smoking apparatus. The results of these experiments show that both cigarette smoke and vitamin E-deficient diets may affect xenobiotic metabolism but that the combination does not appear to alter markedly their individual effects or to induce ones not previously observed.

  19. Dietary proanthocyanidins boost hepatic NAD+ metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats

    PubMed Central

    Aragonès, Gerard; Suárez, Manuel; Ardid-Ruiz, Andrea; Vinaixa, Maria; Rodríguez, Miguel A.; Correig, Xavier; Arola, Lluís; Bladé, Cinta

    2016-01-01

    Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD+) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD+ precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD+. Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD+ availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD+ levels. PMID:27102823

  20. Exploring the sheep rumen microbiome for carbohydrate-active enzymes.

    PubMed

    Lopes, Lucas Dantas; de Souza Lima, André Oliveira; Taketani, Rodrigo Gouvêa; Darias, Phillip; da Silva, Lília Raquel Fé; Romagnoli, Emiliana Manesco; Louvandini, Helder; Abdalla, Adibe Luiz; Mendes, Rodrigo

    2015-07-01

    The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes.

  1. Exploring the sheep rumen microbiome for carbohydrate-active enzymes.

    PubMed

    Lopes, Lucas Dantas; de Souza Lima, André Oliveira; Taketani, Rodrigo Gouvêa; Darias, Phillip; da Silva, Lília Raquel Fé; Romagnoli, Emiliana Manesco; Louvandini, Helder; Abdalla, Adibe Luiz; Mendes, Rodrigo

    2015-07-01

    The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes. PMID:25900454

  2. Polymer nanocarriers protecting active enzyme cargo against proteolysis.

    PubMed

    Dziubla, Thomas D; Karim, Adnan; Muzykantov, Vladimir R

    2005-02-01

    Polymeric nanocarriers (PNCs), proposed as an attractive vehicle for vascular drug delivery, remain an orphan technology for enzyme therapies due to poor loading and inactivation of protein cargoes. To unite enzyme delivery by PNC with a clinically relevant goal of containment of vascular oxidative stress, a novel freeze-thaw encapsulation strategy was designed and provides approximately 20% efficiency loading of an active large antioxidant enzyme, catalase, into PNC (200-300 nm) composed of biodegradable block copolymers poly(ethylene glycol)-b-poly(lactic-glycolic acid). Catalase's substrate, H(2)O(2), was freely diffusible in the PNC polymer. Furthermore, PNC-loaded catalase stably retained 25-30% of H(2)O(2)-degrading activity for at least 18 h in a proteolytic environment, while free catalase lost activity within 1 h. Delivery and protection of catalase from lysosomal degradation afforded by PNC nanotechnology may advance effectiveness and duration of treatment of diverse disease conditions associated with vascular oxidative stress. PMID:15653162

  3. In vivo enzyme activity in inborn errors of metabolism

    SciTech Connect

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. )

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  4. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Suzer, Cüneyt; Aktülün, Sevim; Coban, Deniz; Okan Kamaci, H; Saka, Sahin; Firat, Kürşat; Alpbaz, Atilla

    2007-10-01

    The ontogenesis and specific activities of pancreatic and intestinal enzymes were investigated in sharpsnout sea bream, Diplodus puntazzo, during larval development until the end of weaning on day 50. The green-water technique was carried out for larval rearing in triplicate. Trypsin was first detected as early as hatching and sharply increased related to age and exogenous feeding until day 25, but a sharp decrease was observed towards the end of the experiment. Amylase was determined 2 days after hatching (DAH) and sharply increased to 10 DAH. Afterwards, slight decreases were found between 10 and 20 DAH and then slow alterations were continued until end of the experiment. Lipase was measured for the first time on day 4, and then slight increase was found to 25 DAH. After this date, slow variations were maintained until end of the experiment. Pepsin was firstly assayed 32 DAH related with stomach formation and sharply increased to 40 DAH. Then it was fluctuated until end of the experiment. Enzymes of brush border membranes, alkaline phosphatase and aminopeptidase N, showed similar pattern on specific activities during the first 10 days. Thereafter, while specific activity of alkaline phosphatase slightly decreased to 15 DAH and fluctuated until 20 DAH, aminopeptidase N activity slowly declined to 20 DAH. Afterwards, activity of alkaline phosphatase and aminopeptidase N were sharply increased to 30 DAH, showing maturation of the intestinal digestive process and also these activities continued to slight increase until end of the experiment. The specific activity of cytosolic peptidase, leucine-alanine peptidase sharply increased to on day 8, then suddenly declined to 12 DAH and further decreased until 20 DAH. After this date, in contrast to enzymes of brush border membranes, it sharply decreased to 25 DAH and continued to gradually decline until the end of the experiment. These converse expressions were indicative of a maturation of enterocytes and the transition to

  5. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Suzer, Cüneyt; Aktülün, Sevim; Coban, Deniz; Okan Kamaci, H; Saka, Sahin; Firat, Kürşat; Alpbaz, Atilla

    2007-10-01

    The ontogenesis and specific activities of pancreatic and intestinal enzymes were investigated in sharpsnout sea bream, Diplodus puntazzo, during larval development until the end of weaning on day 50. The green-water technique was carried out for larval rearing in triplicate. Trypsin was first detected as early as hatching and sharply increased related to age and exogenous feeding until day 25, but a sharp decrease was observed towards the end of the experiment. Amylase was determined 2 days after hatching (DAH) and sharply increased to 10 DAH. Afterwards, slight decreases were found between 10 and 20 DAH and then slow alterations were continued until end of the experiment. Lipase was measured for the first time on day 4, and then slight increase was found to 25 DAH. After this date, slow variations were maintained until end of the experiment. Pepsin was firstly assayed 32 DAH related with stomach formation and sharply increased to 40 DAH. Then it was fluctuated until end of the experiment. Enzymes of brush border membranes, alkaline phosphatase and aminopeptidase N, showed similar pattern on specific activities during the first 10 days. Thereafter, while specific activity of alkaline phosphatase slightly decreased to 15 DAH and fluctuated until 20 DAH, aminopeptidase N activity slowly declined to 20 DAH. Afterwards, activity of alkaline phosphatase and aminopeptidase N were sharply increased to 30 DAH, showing maturation of the intestinal digestive process and also these activities continued to slight increase until end of the experiment. The specific activity of cytosolic peptidase, leucine-alanine peptidase sharply increased to on day 8, then suddenly declined to 12 DAH and further decreased until 20 DAH. After this date, in contrast to enzymes of brush border membranes, it sharply decreased to 25 DAH and continued to gradually decline until the end of the experiment. These converse expressions were indicative of a maturation of enterocytes and the transition to

  6. Effect of feeding and of DDT on the activity of hepatic glucose 6- phosphate dehydrogenase in two salmonids

    USGS Publications Warehouse

    Buhler, Donald R.; Benville, P.

    1969-01-01

    The specific activity of liver glucose 6-phosphate dehydrogenase in yearling rainbow trout remained unchanged when the fish were starved for periods as long as 8 weeks and when starved animals were fed diets of various compositions. Injection of insulin concurrently with refeeding also failed to alter the specific activity of the enzyme in trout. The absence of a dietary or insulin influence on the teleost enzyme system is to be contrasted with studies in mammals in which the activity of hepatic glucose 6-P dehydrogenase was markedly stimulated after refeeding starved animals or injection of insulin.Ingestion of the pesticide DDT by juvenile coho salmon or adult rainbow trout also had no effect on the specific activity of liver glucose 6-P dehydrogenase and DDT failed to inhibit the rainbow trout enzyme in vitro. These results also differ considerably from those found in higher animals.These results suggest that the glucose 6-P dehydrogenase enzyme in teleosts may be under a different type of regulatory control from that found in mammals.

  7. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    SciTech Connect

    Kim, Young C. Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-08-15

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards.

  8. Redox regulation of apurinic/apyrimidinic endonuclease 1 activity in Long-Evans Cinnamon rats during spontaneous hepatitis.

    PubMed

    Karmahapatra, Soumendra Krishna; Saha, Tapas; Adhikari, Sanjay; Woodrick, Jordan; Roy, Rabindra

    2014-03-01

    The Long-Evans Cinnamon (LEC) rat is an animal model for Wilson's disease. This animal is genetically predisposed to copper accumulation in the liver, increased oxidative stress, accumulation of DNA damage, and the spontaneous development of hepatocellular carcinoma. Thus, this animal model is useful for studying the relationship of endogenous DNA damage to spontaneous carcinogenesis. In this study, we have investigated the apurinic/apyrimidinic endonuclease 1 (APE1)-mediated excision repair of endogenous DNA damage, apurinic/apyrimidinic (AP)-sites, which is highly mutagenic and implicated in human cancer. We found that the activity was reduced in the liver extracts from the acute hepatitis period of LEC rats as compared with extracts from the age-matched Long-Evans Agouti rats. The acute hepatitis period had also a heightened oxidative stress condition as assessed by an increase in oxidized glutathione level and loss of enzyme activity of glyceraldehyde 3-phosphate dehydrogenase, a key redox-sensitive protein in cells. Interestingly, the activity reduction was not due to changes in protein expression but apparently by reversible protein oxidation as the addition of reducing agents to extracts of the liver from acute hepatitis period reactivated APE1 activity and thus, confirmed the oxidation-mediated loss of APE1 activity under increased oxidative stress. These findings show for the first time in an animal model that the repair mechanism of AP-sites is impaired by increased oxidative stress in acute hepatitis via redox regulation which contributed to the increased accumulation of mutagenic AP-sites in liver DNA.

  9. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    PubMed

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-01

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  10. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    PubMed

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-01

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  11. Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes.

    PubMed

    Luong, Trung Quan; Erwin, Nelli; Neumann, Matthias; Schmidt, Andreas; Loos, Cornelia; Schmidt, Volker; Fändrich, Marcus; Winter, Roland

    2016-09-26

    We studied the combined effects of pressure (0.1-200 MPa) and temperature (22, 30, and 38 °C) on the catalytic activity of designed amyloid fibrils using a high-pressure stopped-flow system with rapid UV/Vis absorption detection. Complementary FT-IR spectroscopic data revealed a remarkably high pressure and temperature stability of the fibrillar systems. High pressure enhances the esterase activity as a consequence of a negative activation volume at all temperatures (about -14 cm(3)  mol(-1) ). The enhancement is sustained in the whole temperature range covered, which allows a further acceleration of the enzymatic activity at high temperatures (activation energy 45-60 kJ mol(-1) ). Our data reveal the great potential of using both pressure and temperature modulation to optimize the enzyme efficiency of catalytic amyloid fibrils.

  12. Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes.

    PubMed

    Luong, Trung Quan; Erwin, Nelli; Neumann, Matthias; Schmidt, Andreas; Loos, Cornelia; Schmidt, Volker; Fändrich, Marcus; Winter, Roland

    2016-09-26

    We studied the combined effects of pressure (0.1-200 MPa) and temperature (22, 30, and 38 °C) on the catalytic activity of designed amyloid fibrils using a high-pressure stopped-flow system with rapid UV/Vis absorption detection. Complementary FT-IR spectroscopic data revealed a remarkably high pressure and temperature stability of the fibrillar systems. High pressure enhances the esterase activity as a consequence of a negative activation volume at all temperatures (about -14 cm(3)  mol(-1) ). The enhancement is sustained in the whole temperature range covered, which allows a further acceleration of the enzymatic activity at high temperatures (activation energy 45-60 kJ mol(-1) ). Our data reveal the great potential of using both pressure and temperature modulation to optimize the enzyme efficiency of catalytic amyloid fibrils. PMID:27573584

  13. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    PubMed

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized.

  14. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity.

    PubMed

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A

    2015-09-01

    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  15. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    PubMed

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized. PMID:26139824

  16. The ameliorating effects of vitamin E on hepatic antioxidant system and xenobiotic-metabolizing enzymes in fenvalerate-exposed iodine-deficient rats.

    PubMed

    Kocer-Gumusel, Belma; Erkekoglu, Pinar; Caglayan, Aydan; Hincal, Filiz

    2016-01-01

    This study investigated the effects of vitamin E (VE) on hepatic antioxidant system and drug-metabolizing enzymes in fenvalerate (FEN)-exposed iodine-deficient (ID) Wistar rats. ID was produced by perchlorate containing drinking water. VE was introduced by a loading dose of 100 mg/kg/d, i.g. for the first three days in the last week of feeding period; then with a single maintenance dose of 40 mg/kg on the 4th day. During last week, FEN groups (F) received 100 mg/kg/d, i.p. FEN. VE alone did not significantly affect thyroid hormones and antioxidant parameters; however, significantly increased total cytochrome P450 (38%) and cytochrome b5 levels (36%). In all ID groups, plasma thyroid-stimulating hormone (TSH) levels increased markedly, but remained at control level in vitamin E plus FEN receiving iodine-deficient group (IDVF) group. Glutathione peroxidase activity showed marked increases in F (19%) and FEN-exposed iodine-deficient group (IDF, 48%) groups. FEN treatment significantly increased total cytochrome P450 (28%) and thiobarbituric acid reactive substance levels (36%), as well as 7-ethoxyresorufin O-deethylase (120%), 7-penthoxyresorufin O-deethylase (139%) and glutathione S-transferase (15%) activities and decreased total glutathione concentrations (28%) versus control. Overall results suggest that vitamin E has ameliorating effects on the measured parameters in ID and/or FEN exposure.

  17. Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism.

    PubMed

    Ding, Hui; Shi, Jinghong; Wang, Ying; Guo, Jia; Zhao, Juhui; Dong, Lei

    2011-01-10

    Neferine is a major alkaloid component of "Lian Zi Xin", embryos of the seeds of Nelumbo nucifera Gaertner, Nymphaeaceae. Previous studies have shown that neferine has an inhibitory effect on pulmonary fibrosis through its anti-inflammatory and anti-oxidative activities and inhibition of cytokines and NF-κB. However, it is unknown whether neferine also has an inhibitory effect on liver fibrosis through inhibition of TGF-β1 and collagen I and facilitation of apoptosis of hepatic stellate cells. This study examined the effects of neferine on cultured hepatic stellate (HSC-T6) cells and explored its possible action mechanisms by means of MTT assay, enzyme-linked immunosorbent assay, flow-cytometric annexin V-PI assay and Hoechst 33258 staining, as well as real-time PCR and western blotting. The results showed that neferine administration (2, 4, 6, 8 and 10μmol/l) significantly decreased the TGF-β1 and collagen I produced in HSC-T6 cells, and increased the HSC-T6 cell apoptosis in a dose-dependent manner. Neferine treatment for 48h at concentrations of 6 and 10μmol/l significantly increased Bax and caspase 3 mRNAs and proteins, and reduced Bcl2 and alpha-smooth muscle actin (α-SMA) mRNAs and proteins. Our data indicate that neferine efficiently inhibits cultured HSC-T6 cell activation and induces apoptosis by increasing Bax and caspase 3 expression via the mitochondrial pathway.

  18. Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism.

    PubMed

    Ding, Hui; Shi, Jinghong; Wang, Ying; Guo, Jia; Zhao, Juhui; Dong, Lei

    2011-01-10

    Neferine is a major alkaloid component of "Lian Zi Xin", embryos of the seeds of Nelumbo nucifera Gaertner, Nymphaeaceae. Previous studies have shown that neferine has an inhibitory effect on pulmonary fibrosis through its anti-inflammatory and anti-oxidative activities and inhibition of cytokines and NF-κB. However, it is unknown whether neferine also has an inhibitory effect on liver fibrosis through inhibition of TGF-β1 and collagen I and facilitation of apoptosis of hepatic stellate cells. This study examined the effects of neferine on cultured hepatic stellate (HSC-T6) cells and explored its possible action mechanisms by means of MTT assay, enzyme-linked immunosorbent assay, flow-cytometric annexin V-PI assay and Hoechst 33258 staining, as well as real-time PCR and western blotting. The results showed that neferine administration (2, 4, 6, 8 and 10μmol/l) significantly decreased the TGF-β1 and collagen I produced in HSC-T6 cells, and increased the HSC-T6 cell apoptosis in a dose-dependent manner. Neferine treatment for 48h at concentrations of 6 and 10μmol/l significantly increased Bax and caspase 3 mRNAs and proteins, and reduced Bcl2 and alpha-smooth muscle actin (α-SMA) mRNAs and proteins. Our data indicate that neferine efficiently inhibits cultured HSC-T6 cell activation and induces apoptosis by increasing Bax and caspase 3 expression via the mitochondrial pathway. PMID:20969858

  19. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase.

    PubMed

    Liang, Guoxin; Kitamura, Kouichi; Wang, Zhe; Liu, Guangyan; Chowdhury, Sajeda; Fu, Weixin; Koura, Miki; Wakae, Kousho; Honjo, Tasuku; Muramatsu, Masamichi

    2013-02-01

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.

  20. Protoplast fusion enhances lignocellulolytic enzyme activities in Trichoderma reesei.

    PubMed

    Cui, Yu-xiao; Liu, Jia-jing; Liu, Yan; Cheng, Qi-yue; Yu, Qun; Chen, Xin; Ren, Xiao-dong

    2014-12-01

    Protoplast fusion was used to obtain a higher production of lignocellulolytic enzymes with protoplast fusion in Trichoderma reesei. The fusant strain T. reesei JL6 was obtained from protoplast fusion from T. reesei strains QM9414, MCG77, and Rut C-30. Filter paper activity of T. reesei JL6 increased by 18% compared with that of Rut C-30. β-Glucosidase, hemicellulase and pectinase activities of T. reesei JL6 were also higher. The former activity was 0.39 Uml(-1), while those of QM9414, MCG77, and Rut C-30 were 0.13, 0.11, and 0.16 Uml(-1), respectively. Pectinase and hemicellulase activities of JL6 were 5.4 and 15.6 Uml(-1), respectively, which were slightly higher than those of the parents. The effects of corn stover and wheat bran carbon sources on the cellulase production and growth curve of T. reesei JL6 were also investigated.

  1. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia

    PubMed Central

    Hilliard, Kristie L.; Allen, Eri; Traber, Katrina E.; Kim, Yuri; Wasserman, Gregory A.; Jones, Matthew R.; Mizgerd, Joseph P.

    2015-01-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis and pneumonia. We employed a two-hit endotoxemia/pneumonia model, whereby administration of 18 h of intraperitoneal lipopolysaccharide (LPS; 5 mg/kg of body weight) was followed by intratracheal Escherichia coli (106 CFU) in wild-type mice or those lacking hepatocyte STAT3 (hepSTAT3−/−). Pneumonia alone (without endotoxemia) was effectively controlled in the absence of liver STAT3. Following endotoxemia and pneumonia, however, hepSTAT3−/− mice, with significantly reduced levels of circulating and airspace acute-phase proteins, exhibited significantly elevated lung and blood bacterial burdens and mortality. These data suggested that STAT3-dependent liver responses are necessary to promote host defense. While neither recruited airspace neutrophils nor lung injury was altered in endotoxemic hepSTAT3−/− mice, alveolar macrophage reactive oxygen species generation was significantly decreased. Additionally, bronchoalveolar lavage fluid from this group of hepSTAT3−/− mice allowed greater bacterial growth ex vivo. These results suggest that hepatic STAT3 activation promotes both cellular and humoral lung defenses. Taken together, induction of liver STAT3-dependent gene expression programs is essential to countering the deleterious consequences of sepsis on pneumonia susceptibility. PMID:26216424

  2. Plasma lysosomal enzyme activity in acute myocardial infarction.

    PubMed

    Welman, E; Selwyn, A P; Peters, T J; Colbeck, J F; Fox, K M

    1978-02-01

    N-acetyl-beta-glucosaminidase (EC 3.2.1.30, recommended name beta-N-Acetylglucosaminidase) was found to be a constituent of human cardiac lysosomes. beta-glucuronidase was also found in this tissue, while lysozyme, an enzyme present in leucocyte lysosomes, was not detectable in the heart. The activities of both N-acetyl-beta-glucosaminidase and beta-glucuronidase were elevated in plasma during the first 24 h after the onset of chest pain in patients with acute myocardial infarction and the peak levels of N-acetyl-beta-glucosaminidase correlated well with those of creatine kinase. N-acetyl-beta-glucosaminidase showed a further rise in plasma activity which gave a peak at 72 h after the onset of chest pain and this was accompanied by a rise in lysozyme activity. It is suggested that lysosome disruption caused by myocardial cell necrosis was responsible for the initial rise in plasma lysosomal enzyme activity and that the subsequent inflammatory reaction gave rise to the second peak. PMID:647716

  3. Characterization of cytidylyltransferase enzyme activity through high performance liquid chromatography.

    PubMed

    Brault, James P; Friesen, Jon A

    2016-10-01

    The cytidylyltransferases are a family of enzymes that utilize cytidine 5'-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from (14)C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively. PMID:27443959

  4. Tissue enzyme activities in the loggerhead sea turtle (Caretta caretta).

    PubMed

    Anderson, Eric T; Socha, Victoria L; Gardner, Jennifer; Byrd, Lynne; Manire, Charles A

    2013-03-01

    The loggerhead sea turtle, Caretta caretta, one of the seven species of threatened or endangered sea turtles worldwide, is one of the most commonly encountered marine turtles off the eastern coast of the United States and Gulf of Mexico. Although biochemical reference ranges have been evaluated for several species of sea turtles, tissue specificity of the commonly used plasma enzymes is lacking. This study evaluated the tissue specificity of eight enzymes, including amylase, lipase, creatine kinase (CK), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), in 30 tissues from five stranded loggerhead sea turtles with no evidence of infectious disease. Amylase and lipase showed the greatest tissue specificity, with activity found only in pancreatic samples. Creatine kinase had high levels present in skeletal and cardiac muscle, and moderate levels in central nervous system and gastrointestinal samples. Gamma-glutamyl transferase was found in kidney samples, but only in very low levels. Creatine kinase, ALP, AST, and LDH were found in all tissues evaluated and ALT was found in most, indicating low tissue specificity for these enzymes in the loggerhead.

  5. VASP Increases Hepatic Fatty Acid Oxidation by Activating AMPK in Mice

    PubMed Central

    Tateya, Sanshiro; Rizzo-De Leon, Norma; Handa, Priya; Cheng, Andrew M.; Morgan-Stevenson, Vicki; Ogimoto, Kayoko; Kanter, Jenny E.; Bornfeldt, Karin E.; Daum, Guenter; Clowes, Alexander W.; Chait, Alan; Kim, Francis

    2013-01-01

    Activation of AMP-activated protein kinase (AMPK) signaling reduces hepatic steatosis and hepatic insulin resistance; however, its regulatory mechanisms are not fully understood. In this study, we sought to determine whether vasodilator-stimulated phosphoprotein (VASP) signaling improves lipid metabolism in the liver and, if so, whether VASP’s effects are mediated by AMPK. We show that disruption of VASP results in significant hepatic steatosis as a result of significant impairment of fatty acid oxidation, VLDL-triglyceride (TG) secretion, and AMPK signaling. Overexpression of VASP in hepatocytes increased AMPK phosphorylation and fatty acid oxidation and reduced hepatocyte TG accumulation; however, these responses were suppressed in the presence of an AMPK inhibitor. Restoration of AMPK phosphorylation by administration of 5-aminoimidazole-4-carboxamide riboside in Vasp−/− mice reduced hepatic steatosis and normalized fatty acid oxidation and VLDL-TG secretion. Activation of VASP by the phosphodiesterase-5 inhibitor, sildenafil, in db/db mice reduced hepatic steatosis and increased phosphorylated (p-)AMPK and p-acetyl CoA carboxylase. In Vasp−/− mice, however, sildendafil treatment did not increase p-AMPK or reduce hepatic TG content. These studies identify a role of VASP to enhance hepatic fatty acid oxidation by activating AMPK and to promote VLDL-TG secretion from the liver. PMID:23349495

  6. Activity of enzyme immobilized on silanized Co-Cr-Mo.

    PubMed

    Puleo, D A

    1995-08-01

    The surface of an orthopedic biomaterial was modified by the covalent immobilization of biomolecules. Derivatization of Co-Cr-Mo samples with organic and aqueous solutions of gamma-aminopropyltriethoxysilane (APS) resulted in a concentration-dependent number of reactive NH2 groups on the surface available for coupling to protein. The enzyme trypsin was used as a model biomolecule to investigate the effect of immobilization on proteolytic activity. Trypsin was coupled to the silanized samples by formation of Schiff's base linkages via glutaraldehyde. The nature of the interaction between trypsin and biomaterial was then probed by treatment with concentrated guanidine hydrochloride (GuHCl) and urea. Residual activity (following treatment with chaotropic agents) of trypsin immobilized on silanized Co-Cr-Mo was dependent both on the nature of the silane solution and on the type of chaotropic agent. Organic silanization with APS required a minimum density of approximately 49 NH2 per nm2 of nominal surface area (> 0.021 M APS) for residual activity of immobilized trypsin. For aqueous silanization, approximately 5.4 NH2/nm2 (0.51 M APS) resulted in maximal residual trypsin activity. Treatment with GuHCl removed more trypsin activity from Co-Cr-Mo samples silanized with organic solutions of APS than did treatment with urea. On the contrary, with aqueous silanization the samples possessed greater residual activity following treatment with GuHCl than following urea. Compared to simple adsorption with protein onto Co-Cr-Mo, both methods of silanization with APS resulted in superior residual immobilized enzyme activity. PMID:7593038

  7. Application of capillary enzyme micro-reactor in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Guo, Liping; Yang, Li

    2015-05-15

    In this study, we present an on-line measurement of enzyme activity and inhibition of Glucose-6-phosphate dehydrogenase (G6PDH) enzyme using capillary electrophoresis based immobilized enzyme micro-reactor (CE-based IMER). The IMER was prepared using a two-step protocol based on electrostatic assembly. The micro-reactor exhibited good stability and reproducibility for on-line assay of G6PDH enzyme. Both the activity as well as the inhibition of the G6PDH enzyme by six inhibitors, including three metals (Cu(2+), Pb(2+), Cd(2+)), vancomycin, urea and KMnO4, were investigated using on-line assay of the CE-based IMERs. The enzyme activity and inhibition kinetic constants were measured using the IMERs which were found to be consistent with those using traditional off-line enzyme assays. The kinetic mechanism of each inhibitor was also determined. The present study demonstrates the feasibility of using CE-based IMERs for rapid and efficient on-line assay of G6PDH, an important enzyme in the pentosephosphate pathway of human metabolism.

  8. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

    PubMed

    Endo, Yoko; Zhang, Mingjun; Yamaji, Sachie; Cang, Yong

    2012-01-01

    Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer. PMID:22384083

  9. 2-Octynoic Acid Inhibits Hepatitis C Virus Infection through Activation of AMP-Activated Protein Kinase

    PubMed Central

    Yang, Darong; Xue, Binbin; Wang, Xiaohong; Yu, Xiaoyan; Liu, Nianli; Gao, Yimin; Liu, Chen; Zhu, Haizhen

    2013-01-01

    Many chronic hepatitis C virus (HCV)-infected patients with current therapy do not clear the virus. It is necessary to find novel treatments. The effect of 2-octynoic acid (2-OA) on HCV infection in human hepatocytes was examined. The mechanism of 2-OA antiviral activity was explored. Our data showed that 2-OA abrogated lipid accumulation in HCV replicon cells and virus-infected hepatocytes. It suppressed HCV RNA replication and infectious virus production with no cytotoxicity to the host cells. 2-OA did not affect hepatitis B virus replication in HepG2.2.15 cells derived from HepG2 cells transfected with full genome of HBV. Further study demonstrated that 2-OA activated AMP-activated protein kinase (AMPK) and inhibited acetyl-CoA carboxylase in viral-infected cells. Compound C, a specific inhibitor of AMPK, inhibited AMPK activity and reversed the reduction of intracellular lipid accumulation and the antiviral effect of 2-OA. Knockdown of AMPK expression by RNA interference abolished the activation of AMPK by 2-OA and blocked 2-OA antiviral activity. Interestingly, 2-OA induced interferon-stimulated genes (ISGs) and inhibited microRNA-122 (miR-122) expression in virus-infected hepatocytes. MiR-122 overexpression reversed the antiviral effect of 2-OA. Furthermore, knockdown of AMPK expression reversed both the induction of ISGs and suppression of miR-122 by 2-OA, implying that activated AMPK induces the intracellular innate response through the induction of ISGs and inhibiting miR-122 expression. 2-OA inhibits HCV infection through regulation of innate immune response by activated AMPK. These findings reveal a novel mechanism by which active AMPK inhibits HCV infection. 2-OA and its derivatives hold promise for novel drug development for chronic hepatitis C. PMID:23741428

  10. Effects of some drugs on hepatic glucose 6-phosphate dehydrogenase activity in Lake Van fish (Chalcalburnus tarischii Pallas, 1811).

    PubMed

    Ciftci, Mehmet; Turkoglu, Vedat; Coban, T Abdulkadir

    2007-05-01

    Inhibitory effects of some drugs on hepatic glucose 6-phosphate dehydrogenase from Lake Van fish (chalcalburnus tarischii pallas, 1811) were investigated. For this purpose, initially liver glucose 6-phosphate dehydrogenase was purified 899-fold in a yield of 46.24% by using 2',5'-ADP Sepharose 4B affinity gel. In order to control the purification of enzyme was done SDS polyacrylamide gel electrophoresis. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. A constant temperature (+4 degrees C) was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. Vankomycine, sulfanylamide, sulfanylacetamide, nidazole, ciprofloxacin, amoxicillin and KMnO(4) were used as drugs. These drugs exhibited inhibitory effects on the enzyme. IC(50) values of vankomycine, sulfanylamide, sulfanylacetamide, nidazole, ciprofloxacin, amoxicillin and KMnO(4) were 1.88, 0.037, 0.032, 1.178, 2.26, 643.5 and 0.0002 mM, and the K(i) constants 1.18+/-0.148, 0.119+/-0.021, 0.075+/-0.015, 1.15+/-0.21, 7.69+/-0.67, 1007+/-69, and 0.001+/-0.00022 mM, respectively. While vankomycine and nidazole showed competitive inhibition, others displayed noncompetitive inhibition. K(i) constants and IC(50) values for drugs were determined by Lineweaver-Burk graphs and plotting activity percentage versus [I], respectively.

  11. Mechanism-based inactivation of mouse hepatic cytochrome P4502B enzymes by amine metabolites of musk xylene.

    PubMed

    Lehman-McKeeman, L D; Johnson, D R; Caudill, D; Stuard, S B

    1997-03-01

    Musk xylene (2,4,6-trinitro-1-t-butylxylene; MX) is a synthetic nitromusk perfume ingredient that induces and inhibits mouse cytochrome P4502B (CYP2B) enzymes in vivo. The purpose of the present work was to determine whether amine metabolites of MX contributed to the enzyme inhibition and, if so, to define the nature and kinetics of this inhibition. When dosed orally to phenobarbital (PB)-treated mice, MX (200 mg/kg) inhibited > 90% of the PB-induced O-dealkylation of 7-pentoxyresorufin (PROD), and [14C]MX equivalents bound covalently to microsomal proteins. However, when this experiment was repeated in mice pretreated with antibiotics to eliminate the gastrointestinal flora, no decrease in PB-induced PROD activity and no covalent binding to microsomal proteins were observed. Thus, the ability of antibiotic treatment to eliminate the enzyme inhibition and covalent binding implicated amine metabolites of MX formed by nitroreduction in anaerobic intestinal flora as obligatory for these effects. Two monoamine metabolites of MX were synthesized to study enzyme inhibition directly. These metabolites were 2-amino-4,6-dinitro-1-t-butyl-xylene and 4-amino-2,6-dinitro-1-t-butylxylene, referred to as o-NH2-MX and p-NH2-MX, respectively, reflecting the position of the amine substitution relative to the t-butyl function. In the in vitro studies with PB-induced mouse liver microsomes, both amines inhibited PROD activity when preincubated in the absence of NADPH. However, only p-NH2-MX caused a time- and NADPH-dependent loss of PROD activity, and the inactivation rate was a pseudo-first-order process that displayed saturation kinetics. These results indicate that p-NH2-MX is a mechanism-based inactivator of mouse CYP2B enzymes. From kinetic analyses, the Ki was calculated to be 10.5 microM and the Kinact was 1.2 min-1. As final confirmation of the inhibitory effects of p-NH2-MX on mouse CYP2B enzymes, the amine (0.67 mmol/kg) was dosed orally to PB-induced mice. At 2 hr after

  12. Nrf2 pathway activation contributes to anti-fibrosis effects of ginsenoside Rg1 in a rat model of alcohol- and CCl4-induced hepatic fibrosis

    PubMed Central

    Li, Jian-ping; Gao, Yan; Chu, Shi-feng; Zhang, Zhao; Xia, Cong-yuan; Mou, Zheng; Song, Xiu-yun; He, Wen-bin; Guo, Xiao-feng; Chen, Nai-hong

    2014-01-01

    Aim: To investigate the anti-fibrosis effects of ginsenoside Rg1 on alcohol- and CCl4-induced hepatic fibrosis in rats and to explore the mechanisms of the effects. Methods: Rats were given 6% alcohol in water and injected with CCl4 (2 mL/kg, sc) twice a week for 8 weeks. Rg1 (10, 20 and 40 mg/kg per day, po) was administered in the last 2 weeks. Hepatic fibrosis was determined by measuring serum biochemical parameters, HE staining, Masson's trichromic staining, and hydroxyproline and α-SMA immunohistochemical staining of liver tissues. The activities of antioxidant enzymes, lipid peroxidation, and Nrf2 signaling pathway-related proteins (Nrf2, Ho-1 and Nqo1) in liver tissues were analyzed. Cultured hepatic stellate cells (HSCs) of rats were prepared for in vitro studies. Results: In the alcohol- and CCl4-treated rats, Rg1 administration dose-dependently suppressed the marked increases of serum ALT, AST, LDH and ALP levels, inhibited liver inflammation and HSC activation and reduced liver fibrosis scores. Rg1 significantly increased the activities of antioxidant enzymes (SOD, GSH-Px and CAT) and reduced MDA levels in liver tissues. Furthermore, Rg1 significantly increased the expression and nuclear translocation of Nrf2 that regulated the expression of many antioxidant enzymes. Treatment of the cultured HSCs with Rg1 (1 μmol/L) induced Nrf2 translocation, and suppressed CCl4-induced cell proliferation, reversed CCl4- induced changes in MDA, GPX, PCIII and HA contents in the supernatant fluid and α-SMA expression in the cells. Knockdown of Nrf2 gene diminished these actions of Rg1 in CCl4-treated HSCs in vitro. Conclusion: Rg1 exerts protective effects in a rat model of alcohol- and CCl4-induced hepatic fibrosis via promoting the nuclear translocation of Nrf2 and expression of antioxidant enzymes. PMID:24976156

  13. Hepatitis C Virus Translation Preferentially Depends on Active RNA Replication

    PubMed Central

    Liu, Helene Minyi; Aizaki, Hideki; Machida, Keigo; Ou, J.-H. James; Lai, Michael M. C.

    2012-01-01

    Hepatitis C virus (HCV) RNA initiates its replication on a detergent-resistant membrane structure derived from the endoplasmic reticulum (ER) in the HCV replicon cells. By performing a pulse-chase study of BrU-labeled HCV RNA, we found that the newly-synthesized HCV RNA traveled along the anterograde-membrane traffic and moved away from the ER. Presumably, the RNA moved to the site of translation or virion assembly in the later steps of viral life cycle. In this study, we further addressed how HCV RNA translation was regulated by HCV RNA trafficking. When the movement of HCV RNA from the site of RNA synthesis to the Golgi complex was blocked by nocodazole, an inhibitor of ER-Golgi transport, HCV protein translation was surprisingly enhanced, suggesting that the translation of viral proteins occurred near the site of RNA synthesis. We also found that the translation of HCV proteins was dependent on active RNA synthesis: inhibition of viral RNA synthesis by an NS5B inhibitor resulted in decreased HCV viral protein synthesis even when the total amount of intracellular HCV RNA remained unchanged. Furthermore, the translation activity of the replication-defective HCV replicons or viral RNA with an NS5B mutation was greatly reduced as compared to that of the corresponding wildtype RNA. By performing live cell labeling of newly synthesized HCV RNA and proteins, we further showed that the newly synthesized HCV proteins colocalized with the newly synthesized viral RNA, suggesting that HCV RNA replication and protein translation take place at or near the same site. Our findings together indicate that the translation of HCV RNA is coupled to RNA replication and that the both processes may occur at the same subcellular membrane compartments, which we term the replicasome. PMID:22937067

  14. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, E.E.; Roessler, P.G.

    1999-07-27

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.

  15. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  16. The Hepatoselective Glucokinase Activator PF-04991532 Ameliorates Hyperglycemia without Causing Hepatic Steatosis in Diabetic Rats

    PubMed Central

    Erion, Derek M.; Lapworth, Amanda; Amor, Paul A.; Bai, Guoyun; Vera, Nicholas B.; Clark, Ronald W.; Yan, Qingyun; Zhu, Yimin; Ross, Trenton T.; Purkal, Julie; Gorgoglione, Matthew; Zhang, Guodong; Bonato, Vinicius; Baker, Levenia; Barucci, Nicole; D’Aquila, Theresa; Robertson, Alan; Aiello, Robert J.; Yan, Jiangli; Trimmer, Jeff; Rolph, Timothy P.; Pfefferkorn, Jeffrey A.

    2014-01-01

    Hyperglycemia resulting from type 2 diabetes mellitus (T2DM) is the main cause of diabetic complications such as retinopathy and neuropathy. A reduction in hyperglycemia has been shown to prevent these associated complications supporting the importance of glucose control. Glucokinase converts glucose to glucose-6-phosphate and determines glucose flux into the β-cells and hepatocytes. Since activation of glucokinase in β-cells is associated with increased risk of hypoglycemia, we hypothesized that selectively activating hepatic glucokinase would reduce fasting and postprandial glucose with minimal risk of hypoglycemia. Previous studies have shown that hepatic glucokinase overexpression is able to restore glucose homeostasis in diabetic models; however, these overexpression experiments have also revealed that excessive increases in hepatic glucokinase activity may also cause hepatosteatosis. Herein we sought to evaluate whether liver specific pharmacological activation of hepatic glucokinase is an effective strategy to reduce hyperglycemia without causing adverse hepatic lipids changes. To test this hypothesis, we evaluated a hepatoselective glucokinase activator, PF-04991532, in Goto-Kakizaki rats. In these studies, PF-04991532 reduced plasma glucose concentrations independent of changes in insulin concentrations in a dose-dependent manner both acutely and after 28 days of sub-chronic treatment. During a hyperglycemic clamp in Goto-Kakizaki rats, the glucose infusion rate was increased approximately 5-fold with PF-04991532. This increase in glucose infusion can be partially attributed to the 60% reduction in endogenous glucose production. While PF-04991532 induced dose-dependent increases in plasma triglyceride concentrations it had no effect on hepatic triglyceride concentrations in Goto-Kakizaki rats. Interestingly, PF-04991532 decreased intracellular AMP concentrations and increased hepatic futile cycling. These data suggest that hepatoselective glucokinase

  17. The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats.

    PubMed

    Erion, Derek M; Lapworth, Amanda; Amor, Paul A; Bai, Guoyun; Vera, Nicholas B; Clark, Ronald W; Yan, Qingyun; Zhu, Yimin; Ross, Trenton T; Purkal, Julie; Gorgoglione, Matthew; Zhang, Guodong; Bonato, Vinicius; Baker, Levenia; Barucci, Nicole; D'Aquila, Theresa; Robertson, Alan; Aiello, Robert J; Yan, Jiangli; Trimmer, Jeff; Rolph, Timothy P; Pfefferkorn, Jeffrey A

    2014-01-01

    Hyperglycemia resulting from type 2 diabetes mellitus (T2DM) is the main cause of diabetic complications such as retinopathy and neuropathy. A reduction in hyperglycemia has been shown to prevent these associated complications supporting the importance of glucose control. Glucokinase converts glucose to glucose-6-phosphate and determines glucose flux into the β-cells and hepatocytes. Since activation of glucokinase in β-cells is associated with increased risk of hypoglycemia, we hypothesized that selectively activating hepatic glucokinase would reduce fasting and postprandial glucose with minimal risk of hypoglycemia. Previous studies have shown that hepatic glucokinase overexpression is able to restore glucose homeostasis in diabetic models; however, these overexpression experiments have also revealed that excessive increases in hepatic glucokinase activity may also cause hepatosteatosis. Herein we sought to evaluate whether liver specific pharmacological activation of hepatic glucokinase is an effective strategy to reduce hyperglycemia without causing adverse hepatic lipids changes. To test this hypothesis, we evaluated a hepatoselective glucokinase activator, PF-04991532, in Goto-Kakizaki rats. In these studies, PF-04991532 reduced plasma glucose concentrations independent of changes in insulin concentrations in a dose-dependent manner both acutely and after 28 days of sub-chronic treatment. During a hyperglycemic clamp in Goto-Kakizaki rats, the glucose infusion rate was increased approximately 5-fold with PF-04991532. This increase in glucose infusion can be partially attributed to the 60% reduction in endogenous glucose production. While PF-04991532 induced dose-dependent increases in plasma triglyceride concentrations it had no effect on hepatic triglyceride concentrations in Goto-Kakizaki rats. Interestingly, PF-04991532 decreased intracellular AMP concentrations and increased hepatic futile cycling. These data suggest that hepatoselective glucokinase

  18. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis.

    PubMed

    Wu, Dan; Gu, Qiuhong; Zhao, Ning; Xia, Fei; Li, Zhiwei

    2015-12-01

    The human tumor necrosis factor-α converting enzyme (TACE) has recently been raised as a new and promising therapeutic target of hepatitis and other inflammatory diseases. Here, we reported a successful application of the solved crystal structure of TACE complex with a peptide-like ligand INN for rational design of novel peptide hydroxamic acid inhibitors with high potency and selectivity to target and inhibit TACE. First, the intermolecular interactions between TACE catalytic domain and INN were characterized through an integrated bioinformatics approach, with which the key substructures of INN that dominate ligand binding were identified. Subsequently, the INN molecular structure was simplified to a chemical sketch of peptide hydroxamic acid compound, which can be regarded as a linear tripeptide capped by a N-terminal carboxybenzyl group (chemically protective group) and a C-terminal hydroxamate moiety (coordinated to the Zn(2+) at TACE active site). Based on the sketch, a virtual combinatorial library containing 180 peptide hydroxamic acids was generated, from which seven samples were identified as promising candidates by using a knowledge-based protein-peptide affinity predictor and were then tested in vitro with a standard TACE activity assay protocol. Consequently, three designed peptide hydroxamic acids, i.e. Cbz-Pro-Ile-Gln-hydroxamic acid, Cbz-Leu-Ile-Val-hydroxamic acid and Cbz-Phe-Val-Met-hydroxamic acid, exhibited moderate or high inhibitory activity against TACE, with inhibition constants Ki of 36 ± 5, 510 ± 46 and 320 ± 26 nM, respectively. We also examined the structural basis and non-bonded profile of TACE interaction with a designed peptide hydroxamic acid inhibitor, and found that the inhibitor ligand is tightly buried in the active pocket of TACE, forming a number of hydrogen bonds, hydrophobic forces and van der Waals contacts at the interaction interface, conferring both stability and specificity for TACE-inhibitor complex

  19. Growth characteristics and enzyme activity in Batrachochytrium dendrobatidis isolates.

    PubMed

    Symonds, E Pearl; Trott, Darren J; Bird, Philip S; Mills, Paul

    2008-09-01

    Batrachochytrium dendrobatidis is a member of the phylum Chytridiomycota and the causative organism chytridiomycosis, a disease of amphibians associated with global population declines and mass mortality events. The organism targets keratin-forming epithelium in adult and larval amphibians, which suggests that keratinolytic activity may be required to infect amphibian hosts. To investigate this hypothesis, we tested 10 isolates of B. dendrobatidis for their ability to grow on a range of keratin-supplemented agars and measured keratolytic enzyme activity using a commercially available kit (bioMerieux API ZYM). The most dense and fastest growth of isolates were recorded on tryptone agar, followed by growth on frog skin agar and the slowest growth recorded on feather meal and boiled snake skin agar. Growth patterns were distinctive for each nutrient source. All 10 isolates were strongly positive for a range of proteolytic enzymes which may be keratinolytic, including trypsin and chymotrypsin. These findings support the predilection of B. dendrobatidis for amphibian skin. PMID:18568420

  20. PP2A inhibition results in hepatic insulin resistance despite Akt2 activation.

    PubMed

    Galbo, Thomas; Perry, Rachel J; Nishimura, Erica; Samuel, Varman T; Quistorff, Bjørn; Shulman, Gerald I

    2013-10-01

    In the liver, insulin suppresses hepatic gluconeogenesis by activating Akt, which inactivates the key gluconeogenic transcription factor FoxO1 (Forkhead Box O1). Recent studies have implicated hyperactivity of the Akt phosphatase Protein Phosphatase 2A (PP2A) and impaired Akt signaling as a molecular defect underlying insulin resistance. We therefore hypothesized that PP2A inhibition would enhance insulin-stimulated Akt activity and decrease glucose production. PP2A inhibitors increased hepatic Akt phosphorylation and inhibited FoxO1in vitro and in vivo, and suppressed gluconeogenesis in hepatocytes. Paradoxically, PP2A inhibition exacerbated insulin resistance in vivo. This was explained by phosphorylation of both hepatic glycogen synthase (GS) (inactivation) and phosphorylase (activation) resulting in impairment of glycogen storage. Our findings underline the significance of GS and Phosphorylase as hepatic PP2A substrates and importance of glycogen metabolism in acute plasma glucose regulation. PMID:24150286

  1. The use of selected plasma enzyme activities for the diagnosis of fatty liver-hemorrhagic syndrome in laying hens.

    PubMed

    Diaz, G J; Squires, E J; Julian, R J

    1999-01-01

    Profiles of plasma enzymes were compared in two strains of single comb white leghorn laying hens, a normal commercial strain and strain UCD-003, which is highly susceptible to fatty liver-hemorrhagic syndrome. Plasma activity of lactate dehydrogenase (LDH), glutamate dehydrogenase (GDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) averaged 194 +/- 27, 4.0 +/- 2.8, 146 +/- 20, 1.0 +/- 1.0, and 1041 +/- 268 U/liter, respectively in normal birds. Activities of LDH, GDH, AST, and ALT, but not CK, were significantly higher in UCD-003 than in normal hens. A bimodal distribution of activities of all enzymes was found in the UCD-003 hens, with some birds showing activities comparable with those of the normal hens and others with values that were 2-10 times greater than those found in normal hens. These results are consistent with the extensive hepatic lesions observed in the UCD-003 strain of birds. Average gross hemorrhagic scores from visual inspection (scale of 0-3) were 0.28 +/- 0.45 in normal birds and 1.63 +/- 0.94 in the UCD-003 birds. Even though no clear relationship was found between plasma enzyme activities and the extent of liver hemorrhage in individual birds, the UCD-003 hens consistently had average values significantly higher for plasma enzymes that indicate liver damage. The results suggest that measurement of enzyme activities indicative of liver damage in birds, particularly AST, LDH, and GDH, is a valuable tool in the diagnosis of fatty liver-hemorrhagic syndrome in a flock of layers.

  2. Engineering Enzymes in Energy Crops: Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Enzymes are required to break plant biomass down into the fermentable sugars that are used to create biofuel. Currently, costly enzymes must be added to the biofuel production process. Engineering crops to already contain these enzymes will reduce costs and produce biomass that is more easily digested. In fact, enzyme costs alone account for $0.50-$0.75/gallon of the cost of a biomass-derived biofuel like ethanol. Agrivida is genetically engineering plants to contain high concentrations of enzymes that break down cell walls. These enzymes can be “switched on” after harvest so they won’t damage the plant while it’s growing.

  3. Activity of extracellular enzymes on the marine beach differing in the level of antropopressure.

    PubMed

    Perliński, P; Mudryk, Z J

    2016-03-01

    The level of activity of extracellular enzymes was determined on two transects characterised by different anthropic pressure on a sandy beach in Ustka, the southern coast of the Baltic Sea. Generally, the level of activity of the studied enzymes was higher on the transect characterised by high anthropic pressure. The ranking order of the mean enzyme activity rates in the sand was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > chitinase. Each enzyme had its characteristic horizontal profile of activity. The levels of activity of the studied enzymes were slightly higher in the surface than subsurface sand layer. Extracellular enzymatic activities were strongly influenced by the season. PMID:26911592

  4. Metabolic enzyme activities and drug excretion in the small intestine and in the liver in the rat.

    PubMed

    Almási, A; Bojcsev, Sz; Fischer, T; Simon, H; Perjési, P; Fischer, Emil

    2013-12-01

    The aim of these experiments was the investigation of the correlation between the metabolic enzyme activities and the intestinal and hepatic excretion of p-nitrophenol (PNP) and its metabolites (PNP-glucuronide: PNP-G and PNP-sulfate: PNP-S) in the same group of rats (n = 10). A jejunal loop was perfused with isotonic medium containing PNP in a concentration of 500 μM. The samples were obtained from the luminal perfusion medium and from the bile. For enzyme assays tissue samples were obtained from the liver and jejunum at the end of experiments. Significant differences were calculated by the Student's t-test. The activity of UDP-glucuronyltransferase and sulfotransferase was about three times higher in the liver than in the small intestine. The activity of the ß-glucuronidase was about six times higher, the activity of the arylsulfatase was approximately seven times greater in the liver than in the jejunum. No significant difference was found between the luminal appearance and the biliary excretion of PNP-G. Contrary to these findings, the biliary excretion of PNP-S was significantly higher than the luminal appearance of PNP-sulfate. It can be concluded that no direct correlation exists between the activity of metabolic enzymes and the excretion rate of PNP-metabolites in the liver and in the jejunal segment of the small intestine.

  5. Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis

    PubMed Central

    McKee, Chad; Sigala, Barbara; Soeda, Junpei; Mouralidarane, Angelina; Morgan, Maelle; Mazzoccoli, Gianluigi; Rappa, Francesca; Cappello, Francesco; Cabibi, Daniela; Pazienza, Valerio; Selden, Claire; Roskams, Tania; Vinciguerra, Manlio; Oben, Jude A.

    2015-01-01

    Amphiregulin (AR) involvement in liver fibrogenesis and hepatic stellate cells (HSC) regulation is under study. Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular cancer (HCC). Our aim was to investigate ex vivo the effect of AR on human primary HSC (hHSC) and verify in vivo the relevance of AR in NAFLD fibrogenesis. hHSC isolated from healthy liver segments were analyzed for expression of AR and its activator, TNF-α converting enzyme (TACE). AR induction of hHSC proliferation and matrix production was estimated in the presence of antagonists. AR involvement in fibrogenesis was also assessed in a mouse model of NASH and in humans with NASH. hHSC time dependently expressed AR and TACE. AR increased hHSC proliferation through several mitogenic signaling pathways such as EGFR, PI3K and p38. AR also induced marked upregulation of hHSC fibrogenic markers and reduced hHSC death. AR expression was enhanced in the HSC of a murine model of NASH and of severe human NASH. In conclusion, AR induces hHSC fibrogenic activity via multiple mitogenic signaling pathways, and is upregulated in murine and human NASH, suggesting that AR antagonists may be clinically useful anti-fibrotics in NAFLD. PMID:25744849

  6. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K.

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  7. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2.

    PubMed

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu; Huising, Mark O; Hull, Rebecca L; Kahn, Steven E; Montminy, Marc

    2015-10-23

    Under fasting conditions, increases in circulating concentrations of glucagon maintain glucose homeostasis via the induction of hepatic gluconeogenesis. Triggering of the cAMP pathway in hepatocytes stimulates the gluconeogenic program via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where it contributes to the attendant hyperglycemia. Whether selective activation of the hepatic CREB/CRTC pathway is sufficient to trigger metabolic changes in other tissues is unclear, however. Modest hepatic expression of a phosphorylation-defective and therefore constitutively active CRTC2S171,275A protein increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A-expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice, demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis.

  8. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2*

    PubMed Central

    Hogan, Meghan F.; Ravnskjaer, Kim; Matsumura, Shigenobu; Huising, Mark O.; Hull, Rebecca L.; Kahn, Steven E.; Montminy, Marc

    2015-01-01

    Under fasting conditions, increases in circulating concentrations of glucagon maintain glucose homeostasis via the induction of hepatic gluconeogenesis. Triggering of the cAMP pathway in hepatocytes stimulates the gluconeogenic program via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where it contributes to the attendant hyperglycemia. Whether selective activation of the hepatic CREB/CRTC pathway is sufficient to trigger metabolic changes in other tissues is unclear, however. Modest hepatic expression of a phosphorylation-defective and therefore constitutively active CRTC2S171,275A protein increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A-expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice, demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis. PMID:26342077

  9. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    PubMed Central

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  10. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    NASA Astrophysics Data System (ADS)

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  11. Puromycin-Sensitive Aminopeptidase: An Antiviral Prodrug Activating Enzyme

    PubMed Central

    Tehler, Ulrika; Nelson, Cara H.; Peterson, Larryn W.; Provoda, Chester J.; Hilfinger, John M.; Lee, Kyung-Dall; McKenna, Charles E.; Amidon, Gordon L.

    2010-01-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al. Molecular Pharmaceutics, 2008 vol 5 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The kcat for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher kcat for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design. PMID:19969024

  12. Anti-hepatitis B virus activities of cinobufacini and its active components bufalin and cinobufagin in HepG2.2.15 cells.

    PubMed

    Cui, Xiaoyan; Inagaki, Yoshinori; Xu, Huanli; Wang, Dongliang; Qi, Fanghua; Kokudo, Norihiro; Fang, Dingzhi; Tang, Wei

    2010-01-01

    Cinobufacini (Huachansu) is a Chinese medicine prepared from the skin of Bufo bufo gargarizans Cantor (Bufonidae), which has long been used in traditional Chinese medicine (TCM). The aim of present study was to examine the anti-hepatitis B virus (HBV) activities of cinobufacini and its active components bufalin and cinobufagin in the human HBV-transfected cell line HepG2.2.15. The hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and hepatitis B core-related antigen (HBcrAg) concentrations in cell culture medium were determined by chemiluminescent enzyme immunoassay after HepG2.2.15 cells were respectively treated with different concentrations of cinobufacini, bufalin, and cinobufagin for 3 or 6 d. HBV DNA and mRNA were determined using transcription-mediated amplification and real-time polymerase chain reaction (PCR), respectively. On d 3, cinobufacini at a concentration of 1 µg/ml had no activity against HBV virological markers. However, on d 6, cinobufacini at 1 µg/ml effectively inhibited the secretion of HBsAg, HBeAg, and HBcrAg by 29.58, 32.87, and 42.52%. It was more potent than the positive control lamivudine (100 µg/ml). Bufalin and cinobufagin slightly inhibited HBV antigen secretion. Treatment with cinobufacini, bufalin, or cinobufagin had no anti-HBV effect on DNA in cell culture medium. Consistent with the HBV antigen reduction, HBV mRNA expression was markedly inhibited in comparison to the control when HepG2.2.15 cells were treated with cinobufacini, bufalin, or cinobufagin. Results suggested that cinobufacini had more potent activity against HBV antigen secretion than its components bufalin and cinobufagin and this inhibitory role was attributed to the specific inhibition of HBV mRNA expression.

  13. Ontogeny of hepatic enzymes involved in serine- and folate-dependent one-carbon metabolism in rabbits.

    PubMed

    Thompson, H R; Jones, G M; Narkewicz, M R

    2001-05-01

    Serine occupies a central position in folate-dependent, one-carbon metabolism through 5,10-methylenetetrahydrofolate (MTHF) and 5-formyltetrahydrofolate (FTHF). We characterized the ontogeny of the specific activity of key enzymes involved in serine, 5,10-MTHF, and 5-FTHF metabolism: methenyltetrahydrofolate synthetase (MTHFS), MTHF reductase (MTHFR), the glycine cleavage system (GCS), methionine synthase (MS), and serine hydroxymethyltransferase (SHMT) in rabbit liver, placenta, brain, and kidney. In liver, MTHFS activity is low in the fetus (0.36 +/- 0.07 nmol. min(-1). mg protein(-1)), peaks at 3 wk (1.48 +/- 0.50 nmol. min(-1). mg protein(-1)), and then decreases to adult levels (1.13 +/- 0.32 nmol. min(-1). mg protein(-1)). MTHFR activity is highest early in gestation (24.9 +/- 2.4 nmol. h(-1). mg protein(-1)) and declines rapidly by birth (4.7 +/- 1.3 nmol. h(-1). mg protein(-1)). MS is highest during fetal life and declines after birth. Cytosolic SHMT activity does not vary during development, but mitochondrial SHMT peaks at 23 days. GCS activity is high in the fetus and the neonate, declining after weaning. In placenta and brain, all activities are low throughout gestation. Cytosolic and mitochondrial SHMT activities are low in kidney and rise after weaning, whereas MTHFS is low throughout development. These data suggest that the liver is the primary site of activity for these enzymes. Throughout development, there are multiple potential sources for production of 5,10-MTHF, but early in gestation high MTHFR activity and low MTHFS activity could reduce 5,10-MTHF availability. PMID:11292595

  14. Dynamically achieved active site precision in enzyme catalysis.

    PubMed

    Klinman, Judith P

    2015-02-17

    CONSPECTUS: The grand challenge in enzymology is to define and understand all of the parameters that contribute to enzymes' enormous rate accelerations. The property of hydrogen tunneling in enzyme reactions has moved the focus of research away from an exclusive focus on transition state stabilization toward the importance of the motions of the heavy atoms of the protein, a role for reduced barrier width in catalysis, and the sampling of a protein conformational landscape to achieve a family of protein substates that optimize enzyme-substrate interactions and beyond. This Account focuses on a thermophilic alcohol dehydrogenase for which the chemical step of hydride transfer is rate determining across a wide range of experimental conditions. The properties of the chemical coordinate have been probed using kinetic isotope effects, indicating a transition in behavior below 30 °C that distinguishes nonoptimal from optimal C-H activation. Further, the introduction of single site mutants has the impact of either enhancing or eliminating the temperature dependent transition in catalysis. Biophysical probes, which include time dependent hydrogen/deuterium exchange and fluorescent lifetimes and Stokes shifts, have also been pursued. These studies allow the correlation of spatially resolved transitions in protein motions with catalysis. It is now possible to define a long-range network of protein motions in ht-ADH that extends from a dimer interface to the substrate binding domain across to the cofactor binding domain, over a distance of ca. 30 Å. The ongoing challenge to obtaining spatial and temporal resolution of catalysis-linked protein motions is discussed.

  15. Mobilization of hepatic calcium pools by platelet activating factor

    SciTech Connect

    Lapointe, D.S.; Hanahan, D.J.; Olson, M.S.

    1987-03-24

    In the perfused rat liver, platelet activating factor, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC), infusion produces an extensive but transient glycogenolytic response which at low AGEPC concentrations is markedly dependent upon the perfusate calcium levels. The role of calcium in the glycogenolytic response of the liver to AGEPC was investigated by assessing the effect of AGEPC on various calcium pools in the intact liver. Livers from fed rats were equilibrated with /sup 45/Ca/sup 2 +/, and the kinetics of /sup 45/Ca/sup 2 +/ efflux were determined in control, AGEPC-stimulated, and phenylephrine-stimulated livers during steady-state washout of /sup 45/Ca/sup 2 +/. AGEPC treatment had only a slight if any effect on the pattern of steady-state calcium efflux from the liver, as opposed to major perturbations in the pattern of calcium efflux effected by the ..cap alpha..-adrenergic agonist phenylephrine. Infusion of short pulses of AGEPC during the washout of /sup 45/Ca/sup 2 +/ from labeled livers caused a transient release of /sup 45/Ca/sup 2 +/ which was not abolished at low calcium concentrations in the perfusate. Infusion of latex beads, which are removed by the reticuloendothelial cells, caused the release of hepatic /sup 45/Ca/sup 2 +/ in a fashion similar to the case with AGEPC. The findings indicate that AGEPC does not perturb a major pool of calcium within the liver as occurs upon ..cap alpha..-adrenergic stimulation; it is likely that AGEPC mobilizes calcium from a smaller yet very important pool, very possibly from nonparenchymal cells in the liver.

  16. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    PubMed Central

    Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality. PMID:25610908

  17. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality. PMID:25610908

  18. Ecotoxicological risks associated with land treatment of petrochemical wastes. II. Effects on hepatic phase I and phase II detoxification enzymes in cotton rats.

    PubMed

    Carlson, Ruth; Wilson, James; Lochmiller, Robert; Janz, David; Schroder, Jackie; Basta, Nicholas

    2003-02-28

    The purpose of this study was to evaluate possible exposure and resultant hepatic effects of petrochemical waste on cotton rats (Sigmodon hispidus) living on landfarmed sites. Male and female cotton rats were collected in summer, fall, and winter from four landfarm sites and four ecologically similar reference sites. Hepatic methoxyresorufin O-deethylase (MROD) activity was significantly induced in male and female rats collected from landfarms compared to rats collected from reference sites. In contrast, changes in ethoxyresorufin O-deethylase (EROD) activity were inconsistent due to season, sex, and treatment variation. A significant decrease in EROD and MROD activity was found in cotton rats held for 48 h prior to sacrifice compared to rats euthanized on the day of capture. These results indicate that when using hepatic EROD and MROD activities as biochemical markers of exposure to aryl hydrocarbon receptor agonists, animals should be euthanized as quickly as possible after capture. The cotton rats collected from one landfarm unit exhibited a pattern of consistent elevation of EROD, MROD, and pent-oxyresorufin O-deethylase (PROD) activity. This unit also had a pattern of elevated CYP1A2 protein expression determined by Western blotting. There were no consistent alterations from contaminant exposure on hepatic glutathione S-transferase (GST) activity, glutathione levels, or CYP1A1 protein. Hepatic EROD and MROD activities varied considerably between seasons and sex of rats. In conclusion, consistent induction of hepatic EROD and MROD activities in cotton rats was found in three out of four sampled landfarm sites compared to the rats collected from the reference sites, indicating exposure to contaminants-likely polyaromatic hydrocarbons.

  19. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats.

    PubMed

    Prasath, Gopalan Sriram; Pillai, Subramanian Iyyam; Subramanian, Sorimuthu Pillai

    2014-10-01

    Liver plays a vital role in blood glucose homeostasis. Recent studies have provided considerable evidence that hepatic glucose production (HGP) plays an important role in the development of fasting hyperglycemia in diabetes. From this perspective, diminution of HGP has certainly been considered for the treatment of diabetes. In the present study, we have analyzed the modulatory effects of fisetin, a flavonoid of strawberries, on the expression of key enzymes of carbohydrate metabolism in STZ induced experimental diabetic rats. The physiological criterions such as food and fluid intake were regularly monitored. The levels of blood glucose, plasma insulin, hemoglobin and glycosylated hemoglobin were analyzed. The mRNA and protein expression levels of gluconeogenic genes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were determined by immunoblot as well as PCR analysis. Diabetic group of rats showed significant increase in food and water intake when compared with control group of rats. Upon oral administration of fisetin as well as gliclazide to diabetic group of rats, the levels were found to be decreased. Oral administration of fisetin (10 mg/kg body weight) to diabetic rats for 30 days established a significant decline in blood glucose and glycosylated hemoglobin levels and a significant increase in plasma insulin level. The mRNA and protein expression levels of gluconeogenic genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), were decreased in liver tissues upon treatment with fisetin. The results of the present study suggest that fisetin improves glucose homeostasis by direct inhibition of gluconeogenesis in liver.

  20. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation.

    PubMed

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  1. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  2. Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein.

    PubMed

    Paliwal, Daizy; Panda, Subrat Kumar; Kapur, Neeraj; Varma, Satya Pavan Kumar; Durgapal, Hemlata

    2014-08-01

    Hepatitis E virus (HEV), a major cause of acute viral hepatitis across the world, is a non-enveloped, plus-strand RNA virus. Its genome codes three proteins, pORF1 (multifunctional polyprotein), pORF2 (capsid protein) and pORF3 (multi-regulatory protein). pORF1 encodes methyltransferase, putative papain-like cysteine protease, helicase and replicase enzymes. Of these, the protease domain has not been characterized. On the basis of sequence analysis, we cloned and expressed a protein covering aa 440-610 of pORF1, expression of which led to cell death in Escherichia coli BL-21 and Huh7 hepatoma cells. Finally, we expressed and purified this protein from E. coli C43 cells (resistant to toxic proteins). The refolded form of this protein showed protease activity in gelatin zymography. Digestion assays showed cleavage of both pORF1 and pORF2 as observed previously. MS revealed digestion of capsid protein at both the N and C termini. N-terminal sequencing of the ~35 kDa methyltransferase, ~35 kDa replicase and ~56 kDa pORF2 proteins released by protease digestion revealed that the cleavage sites were alanine15/isoleucine16, alanine1364/valine1365 in pORF1 and leucine197/valine198 in pORF2. Specificity of these cleavage sites was validated by site-directed mutagenesis. Further characterization of the HEV protease, carried out using twelve inhibitors, showed chymostatin and PMSF to be the most efficient inhibitors, indicating this protein as a chymotrypsin-like protease. The specificity was further confirmed by cleavage of the chymotrypsin-specific fluorogenic peptide N-succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin. Mutational analysis of the conserved serine/cysteine/histidine residues suggested that H443 and C472/C481/C483 are possibly the active site residues. To our knowledge, this is the first direct demonstration of HEV protease and its function.

  3. Modelling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design.

    PubMed

    Santos, A M P; Oliveira, M G; Maugeri, F

    2007-11-01

    In this work, a novel method is proposed to establish the most suitable operational temperature for an enzyme reactor. The method was based on mathematical modelling of the thermal stability and activity of the enzyme and was developed using thermodynamic concepts and experimental data from free and immobilized inulinases (2,1-beta-D fructan frutanohydrolase, EC 3.2.1.7) from Kluyveromyces marxianus, which were used as examples. The model was, therefore, designed to predict the enzyme activity with respect to the temperature and time course of the enzymatic process, as well as its half-life, in a broad temperature range. The knowledge and information provided by the model could be used to design the operational temperature conditions, leading to higher enzyme activities, while preserving acceptable stability levels, which represent the link between higher productivity and lower process costs. For the inulinase used in this study, the optimum temperature conditions leading to higher enzyme activities were shown to be 63 degrees C and 57.5 degrees C for the free and immobilized inulinases, respectively. However, according to the novel method of approach used here, the more appropriate operating temperatures would be 52 degrees C for free and 42 degrees C for immobilized inulinases, showing that the working temperature is not necessarily the same as the maximum reaction rate temperature, but preferably a lower temperature where the enzyme is much more stable.

  4. Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity.

    PubMed

    Kellogg, Joshua; Grace, Mary H; Lila, Mary Ann

    2014-10-22

    Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effects. F. distichus fractions were potent mixed-mode inhibitors of α-glucosidase and α-amylase, with IC50 values of 0.89 and 13.9 μg/mL, respectively; significantly more efficacious than the pharmaceutical acarbose (IC50 of 112.0 and 137.8 μg/mL, respectively). The activity of F. distichus fractions was associated with phlorotannin oligomers. Normal-phase liquid chromatography-mass spectrometry (NPLC-MS) was employed to characterize individual oligomers. Accurate masses and fragmentation patterns confirmed the presence of fucophloroethol structures with degrees of polymerization from 3 to 18 monomer units. These findings suggest that coastal Alaskan seaweeds are sources of α-glucosidase and α-amylase inhibitory phlorotannins, and thus have potential to limit the release of sugar from carbohydrates and thus alleviate postprandial hyperglycemia.

  5. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha.

    PubMed

    Huang, Tom Hsun-Wei; Peng, Gang; Li, George Qian; Yamahara, Johji; Roufogalis, Basil D; Li, Yuhao

    2006-02-01

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-alpha, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-alpha mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-alpha luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-alpha antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-alpha activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity. PMID:15975614

  6. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-{alpha}

    SciTech Connect

    Hsun-Wei Huang, Tom; Peng Gang; Qian Li, George; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-02-01

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-{alpha}, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-{alpha} mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-{alpha} luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-{alpha} antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-{alpha} activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity.

  7. Effect of estrogen on post-heparin lipolytic activity. Selective decline in hepatic triglyceride lipase.

    PubMed Central

    Applebaum, D M; Goldberg, A P; Pykälistö, O J; Brunzell, J D; Hazzard, W R

    1977-01-01

    The rise in plasma triglyceride (TG) levels associated with estrogen administration has been thought to arise from impaired clearance because of the uniform suppression of post-heparin lipolytic activity (PHLA). Recently PHLA has been shown to consist of two activities: hepatic TG lipase and extrahepatic lipoprotein lipase (LPL). To determine whether estrogen might induce a selective decline in one of these activities, both hepatic TG lipase and extrahepatic LPL were measured in post-heparin plasma from 13 normal women before and after 2 wk of treatment with ethinyl estradiol (1 mug/kg per day). Hepatic TG lipase and extrahepatic LPL were determined by two techniques: (a) separation by heparin-Sepharose column chromatography, and (b) selective inhibition with specific antibodies to post-heparin hepatic TG lipase and milk LPL. Estrogen uniformly depressed hepatic TG lipase as measured by affinity column (-68 +/- 12%, mean +/- SD, P less than 0.001) or antibody inhibition (-63 +/- 11%, P less than 0.001). Extrahepatic LPL was not significantly changed by affinity column (-22 +/- 40%) or antibody inhibition (-3 +/- 42%). Direct measurement of adipose tissue LPL from buttock fat biopsies also showed no systematic change in the activated form of LPL measured as heparin-elutable LPL (+64 +/- 164%) or in the tissue form of LPL measured in extracts of acetone-ether powders (+21 +/- 77%). The change in hepatic TG lipase correlated with the change in PHLA (r = 0.969, P less than 0.01). However, neither the change in PHLA nor hepatic TG lipase correlated with the increase in TG during estrogen. The decrease in PHLA during estrogen thus results from a selective decline in hepatic TG lipase. PMID:845252

  8. Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese.

    PubMed

    Torres-Llanez, M J; González-Córdova, A F; Hernandez-Mendoza, A; Garcia, H S; Vallejo-Cordoba, B

    2011-08-01

    The objective of this study was to evaluate if Mexican Fresco cheese manufactured with specific lactic acid bacteria (LAB) presented angiotensin I-converting enzyme inhibitory (ACEI) activity. Water-soluble extracts (3 kDa) obtained from Mexican Fresco cheese prepared with specific LAB (Lactococcus, Lactobacillus, Enterococcus, and mixtures: Lactococcus-Lactobacillus and Lactococcus-Enterococcus) were evaluated for ACEI activity. Specific peptide fractions with high ACEI were analyzed using reverse phase-HPLC coupled to mass spectrometry for determination of amino acid sequence. Cheese containing Enterococcus faecium or a Lactococcus lactis ssp. lactis-Enterococcus faecium mixture showed the largest number of fractions with ACEI activity and the lowest half-maximal inhibitory concentration (IC(50); <10 μg/mL). Various ACEI peptides derived from β-casein [(f(193-205), f(193-207), and f(193-209)] and α(S1)-casein [f(1-15), f(1-22), f(14-23), and f(24-34)] were found. The Mexican Fresco cheese manufactured with specific LAB strains produced peptides with potential antihypertensive activity.

  9. Effects of Fertilization on Tomato Growth and Soil Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing

    2015-04-01

    To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum

  10. Intact glucosinolates modulate hepatic cytochrome P450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables.

    PubMed

    Abdull Razis, Ahmad F; Bagatta, Manuela; De Nicola, Gina R; Iori, Renato; Ioannides, Costas

    2010-11-01

    The currently accepted view is that the chemopreventive activity of glucosinolates is exclusively mediated by their degradation products, such as isothiocyanates. In the present study, evidence is presented for the first time that intact glucosinolates can modulate carcinogen-metabolising enzyme systems. The glucosinolates glucoraphanin and glucoerucin were isolated from cruciferous vegetables and incubated with precision-cut rat liver slices. Both glucosinolates elevated the O-dealkylations of methoxy- and ethoxyresorufin, markers for CYP1 activity; supplementation of the incubation medium with myrosinase, the enzyme that converts glucosinolates to their corresponding isothiocyanates, abolished these effects. Moreover, both glucoerucin and glucoraphanin increased the apoprotein levels of microsomal CYP1A1, CYP1A2 and CYP1B1. At higher concentrations, both glucosinolates enhanced quinone reductase activity, whereas glucoraphanin also elevated glutathione S-transferase; in this instance, however, supplementation of the incubation medium with myrosinase exacerbated the inductive effect. Finally, both glucosinolates increased modestly cytosolic quinone reductase, GSTα and GSTμ protein levels, which became more pronounced when myrosinase was added to the incubations with the glucosinolate. It may be inferred that intact glucosinolates can modulate the activity of hepatic carcinogen-metabolising enzyme systems and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.

  11. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.

    PubMed

    Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P

    2014-07-16

    The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).

  12. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  13. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    NASA Astrophysics Data System (ADS)

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-05-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (A549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.

  14. Rat oocyte tissue plasminogen activator is a catalytically efficient enzyme in the absence of fibrin. Endogenous potentiation of enzyme activity.

    PubMed

    Bicsak, T A; Hsueh, A J

    1989-01-01

    Rat oocytes synthesize tissue plasminogen activator (tPA) in response to stimuli which initiate meiotic maturation. Purified tPA exhibits optimal activity only in the presence of fibrin or fibrin substitutes. Because oocytes are not exposed to fibrin in situ, we investigated the possible stimulation of rat oocyte tPA activity by other endogenous factor(s). Oocytes were obtained from immature female rats which were induced to ovulate with gonadotropins. tPA activity was measured by the plasminogen-dependent cleavage of a chromogenic substrate. Measurements of kinetic parameters with Glu- or Lys-plasminogen revealed a Km for the rat oocyte enzyme of 1.3-2.1 microM compared with 23-24 microM for purified human tPA. Inclusion of the soluble fibrin substitute polylysine lowered the Km of human tPA by 30-fold (0.8 microM) but had no effect on the oocyte tPA Km. Polylysine had no significant effect on the Vmax values. The rate of plasminogen activation catalyzed by oocyte tPA was increased only 4.3-fold by fibrin while fibrin stimulated purified human tPA activity by 15.2-fold. After fractionation of oocyte extract by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, polylysine enhanced oocyte tPA activity as seen by casein zymography. tPA activity in the conditioned medium of a rat insulinoma cell line was also not stimulated with polylysine prior to fractionation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These data suggest that extravascular cells which elaborate tPA may produce stimulatory factor(s) which allow for full tPA activity at physiological concentrations of plasminogen in the absence of fibrin. PMID:2491854

  15. Characterization and profiling of hepatic cytochromes P450 and phase II xenobiotic-metabolizing enzymes in beluga whales (Delphinapterus leucas) from the St. Lawrence River Estuary and the Canadian Arctic.

    PubMed

    McKinney, Melissa A; Arukwe, Augustine; De Guise, Sylvain; Martineau, Daniel; Béland, Pierre; Dallaire, André; Lair, Stéphane; Lebeuf, Michel; Letcher, Robert J

    2004-07-30

    Cytochromes P450 (CYP, phase I) and conjugating (phase II) enzymes can be induced by and influence the toxicokinetics (metabolism) and toxicity of xenobiotic contaminants in exposed organisms. Beluga whale (Delphinapterus leucas) from the endangered St. Lawrence (SL) River Estuary population exhibit deleterious health effects and various severe pathologies that have been associated with contaminant exposure. In contrast, such effects (e.g. reproductive and immunological impairment) are generally less frequent in less exposed populations in the Canadian Arctic (CA). In the present study, opportunistic sampling resulted in the collection immediately after death of liver tissue from a single female neonate SL beluga (SL6) and male and female CA beluga (n=10) from the Arviat region of western Hudson Bay, in addition to sampling of stranded carcasses of male and female SL beluga (n=5) at least 12 h postmortem. We immunologically characterized cross-reactive proteins of hepatic microsomal CYP1A, CYP2B, CYP3A, CYP2E, epoxide hydrolase (EH) and uridine diphosphoglucuronosyl transferase (UDPGT) isozymes. Cross-reactive proteins were found in all SL and CA beluga using anti-rat CYP1A1, anti-rainbow trout CYP3A, anti-human CYP2E1, anti-rabbit EH and anti-human UDPGT1A1 polyclonal antibodies (Abs), whereas faintly cross-reactive CYP2B proteins were only found in SL6 and the CA samples using an anti-rabbit CYP2B1 Ab. In corresponding catalytic activity assessments, only SL6 and all CA beluga microsomal samples exhibited CYP1A-mediated 7-ethoxyresorufin O-deethylase (EROD) activity (51-260 pmol/mg/min), CYP3A-mediated activity (113-899 pmol/mg/min) based on the formation of 6beta-hydroxytestosterone using a testosterone hydroxylase assay, and UDPGT activity (830-4956 pmol/mg/min) based on 1-naphthylglucuronide formation. The marginal cross-reactivity with the anti-CYP2B1 Ab and lack of catalytically measurable hydroxytestosterone isomers associated with CYP2B-type activity in

  16. Microbial enzyme activities of peatland soils in south central Alaska lowlands

    EPA Science Inventory

    Microbial enzyme activities related to carbon and nutrient acquisition were measured on Alaskan peatland soils as indicators of nutrient limitation and biochemical sustainability. Peat decomposition is mediated by microorganisms and enzymes that in turn are limited by various ph...

  17. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    PubMed Central

    Wimmer, Zdeněk; Zarevúcka, Marie

    2010-01-01

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability. PMID:20162013

  18. Genistein decreases basal hepatic cytochrome P450 1A1 protein expression and activity in Swiss Webster mice.

    PubMed

    Froyen, Erik B; Steinberg, Francene M

    2016-05-01

    Soy consumption has been associated with risk reduction for chronic diseases such as cancer. One proposed mechanism for cancer prevention by soy is through decreasing cytochrome P450 1A1 (Cyp1a1) activity. However, it is not known with certainty which soy components modulate Cyp1a1, or the characteristics or mechanisms involved in the responses after short-term (<20 days) dietary treatment without concomitant carcinogen-mediated induction. Therefore, the objective was to test the hypothesis that physiologic concentrations of dietary genistein and/or daidzein will decrease basal hepatic Cyp1a1 protein expression and activity in male and female Swiss Webster mice via inhibiting the bindings of aryl hydrocarbon receptor (AhR)-AhR nuclear translocator (ARNT) and estrogen receptor-α to the Cyp1a1 promoter region xenobiotic response element. The mice were fed the AIN-93G diet supplemented with 1500 mg/kg of genistein or daidzein for up to 1 week. Genistein, but not daidzein, significantly decreased basal hepatic microsomal Cyp1a1 protein expression and activity. AhR protein expression was not altered. Molecular mechanisms were investigated in Hepa-1c1c7 cells treated with 5 μmol/L purified aglycones genistein, daidzein, or equol. Cells treated with genistein exhibited inhibitions in ARNT and estrogen receptor-α bindings to the Cyp1a1 promoter region. This study demonstrated that genistein consumption reduced constitutive hepatic Cyp1a1 protein expression and activity, thereby contributing to the understanding of how soy isoflavone aglycones modulate cytochrome P450 biotransformation enzymes.

  19. Tryptase inhibitor APC 366 prevents hepatic fibrosis by inhibiting collagen synthesis induced by tryptase/protease-activated receptor 2 interactions in hepatic stellate cells.

    PubMed

    Lu, Jing; Chen, Baian; Li, Shengli; Sun, Quan

    2014-06-01

    Protease-activated receptor (PAR) 2 is a G-protein-coupled receptor that is activated by mast cell tryptase. PAR-2 activation augments profibrotic pathways through the induction of extracellular matrix proteins. PAR-2 is widely expressed in hepatic stellate cells (HSCs), but the role of tryptase/PAR-2 interaction in liver fibrosis is unclear. We studied the development of bile duct ligation (BDL)-induced hepatic fibrosis in rats treated with mast cell tryptase inhibitor APC 366, and showed that APC 366 reduced hepatic fibrosis scores, collagen content and serum biochemical parameters. Reduced fibrosis was associated with decreased expression of PAR-2 and α-smooth muscle actin (α-SMA). Our findings demonstrate that mast cell tryptase induces PAR-2 activation to augment HSC proliferation and promote hepatic fibrosis in rats. Treatment with tryptase antagonists may be a novel therapeutic approach to prevent fibrosis in patients with chronic liver disease.

  20. Tryptase inhibitor APC 366 prevents hepatic fibrosis by inhibiting collagen synthesis induced by tryptase/protease-activated receptor 2 interactions in hepatic stellate cells.

    PubMed

    Lu, Jing; Chen, Baian; Li, Shengli; Sun, Quan

    2014-06-01

    Protease-activated receptor (PAR) 2 is a G-protein-coupled receptor that is activated by mast cell tryptase. PAR-2 activation augments profibrotic pathways through the induction of extracellular matrix proteins. PAR-2 is widely expressed in hepatic stellate cells (HSCs), but the role of tryptase/PAR-2 interaction in liver fibrosis is unclear. We studied the development of bile duct ligation (BDL)-induced hepatic fibrosis in rats treated with mast cell tryptase inhibitor APC 366, and showed that APC 366 reduced hepatic fibrosis scores, collagen content and serum biochemical parameters. Reduced fibrosis was associated with decreased expression of PAR-2 and α-smooth muscle actin (α-SMA). Our findings demonstrate that mast cell tryptase induces PAR-2 activation to augment HSC proliferation and promote hepatic fibrosis in rats. Treatment with tryptase antagonists may be a novel therapeutic approach to prevent fibrosis in patients with chronic liver disease. PMID:24735816

  1. Effects of petroleum on adrenocortical activity and on hepatic naphthalene-metabolizing activity in mallard ducks

    USGS Publications Warehouse

    Gorsline, J.; Holmes, W.N.

    1981-01-01

    Unstressed mallard ducks (Anas platyrhychos), given uncontaminated food and maintained on a short photoperiod, show two daily maxima in plasma corticosterone concentration ([B]); one occurring early in the light phase and a second just before the onset of darkness. After one week of exposure to food containing 3% (v/w) South Louisiana crude oil, plasma [B] were significantly lowered throughout the day. Similar abrupt declines in plasma [B] also occurred during the first 10 days of exposure to food containing 1% and 0.5% crude oil. Although the plasma [B] in birds consuming food contaminated with 0.5% crude oil increased between 10 and 50 days of exposure, the concentration after 50 days was still lower than normal. During the same interval, normal plasma [B] were restored in birds consuming food containing 1% and 3% crude oil. Significant increases occurred in the naphthalene-metabolizing properties of hepatic microsomes prepared from birds acutely exposed to all levels of petroleum-contaminated food and elevated levels were sustained throughout the first 50 days of exposure. Birds given food containing 3% crude oil for more than 50 days, however, showed steady declines in hepatic naphthalene-metabolizing activity. After 500 days, the activity was similar to that found in contemporaneous controls. During the same interval, the plasma [B] increased until the levels were higher than normal after 500 days of exposure; at this time, an inverse relationship, similar to that seen during the first week of exposure to contaminated food, was once more established between plasma [B] and the concomitant hepatic naphthalene-metabolizing activity.

  2. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  3. Effect of age and diet composition on activity of pancreatic enzymes in birds.

    PubMed

    Brzęk, Paweł; Ciminari, M Eugenia; Kohl, Kevin D; Lessner, Krista; Karasov, William H; Caviedes-Vidal, Enrique

    2013-07-01

    Digestive enzymes produced by the pancreas and intestinal epithelium cooperate closely during food hydrolysis. Therefore, activities of pancreatic and intestinal enzymes processing the same substrate can be hypothesized to change together in unison, as well as to be adjusted to the concentration of their substrate in the diet. However, our knowledge of ontogenetic and diet-related changes in the digestive enzymes of birds is limited mainly to intestinal enzymes; it is largely unknown whether they are accompanied by changes in activities of enzymes produced by the pancreas. Here, we analyzed age- and diet-related changes in activities of pancreatic enzymes in five passerine and galloanserine species, and compared them with simultaneous changes in activities of intestinal enzymes. Mass-specific activity of pancreatic amylase increased with age in young house sparrows but not in zebra finches, in agreement with changes in typical dietary starch content and activity of intestinal maltase. However, we found little evidence for the presence of adaptive, diet-related modulation of pancreatic enzymes in both passerine and galloanserine species, even though in several cases the same birds adaptively modulated activities of their intestinal enzymes. In general, diet-related changes in mass-specific activities of pancreatic and intestinal enzymes were not correlated. We conclude that activity of pancreatic enzymes in birds is under strong genetic control, which enables evolutionary adjustment to typical diet composition but is less adept for short term, diet-related flexibility.

  4. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs)

    PubMed Central

    Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866

  5. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).

    PubMed

    Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.

  6. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).

    PubMed

    Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866

  7. Concurrent subacute exposure to arsenic through drinking water and malathion via diet in male rats: effects on hepatic drug-metabolizing enzymes.

    PubMed

    Naraharisetti, Suresh Babu; Aggarwal, Manoj; Sarkar, S N; Malik, J K

    2008-08-01

    Arsenic is a known global groundwater contaminant, while malathion is one of the most widely used pesticides in agriculture and public health practices in the world. Here, we investigated whether repeated exposure to arsenic at the groundwater contamination levels and to malathion at sublethal levels exerts adverse effects on the hepatic drug-metabolizing system in rats, and whether concurrent exposure is more hazardous than the single agent. Male Wistar rats were exposed daily to 4 or 40 ppm of arsenic via drinking water, 50 or 500 ppm of malathion-mixed feed and in a similar fashion co-exposed to 4 ppm of arsenic and 50 ppm of malathion or 40 ppm of arsenic and 500 ppm of malathion for 28 days. At term, toxicity was assessed by evaluating changes in body weight, liver weight, levels of cytochrome P(450) (CYP), cytochrome b (5) and microsomal and cytosolic proteins, and activities of aminopyrine-N-demethylase (ANDM), aniline-P-hydroxylase (APH), glutathione-S-transferase (GST) and uridine diphosphate glucuronosyltransferase (UGT) in liver. Arsenic and malathion alone did not alter body weight and liver weight, but these were significantly decreased in both the co-exposed groups. These treatments decreased the activities of ANDM and APH and the levels of liver microsomal and cytosolic proteins, increased GST activity and had no effect on UGT activity. The effects of exposure to low-dose and high-dose combinations on the activities of either phase I or phase II drug-metabolizing enzymes and protein content were mostly similar to that produced by the respective low and high dose of either arsenic or malathion, except APH activity. The effect of arsenic (40 ppm) on APH activity was partially, but significantly, inhibited by malathion (500 ppm). Results indicate that the body or liver weights and the biochemical parameters were differentially affected in male rats following concurrent subacute exposure to arsenic and malathion, with the co-exposure appearing more

  8. Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity.

    PubMed

    Bevan, D R; Bodlaender, P; Shemin, D

    1980-03-10

    The role of metal ions in the mechanism of action of bovine liver porphobilinogen synthase was investigated. Studies with chelating agents were consistent with a requirement of metal ions for enzyme activity, and the use of 8-hydroxyquinoline-5-sulfonic acid suggested that Zn2+ was present in the enzyme. The low activity detected in metal-free apoporphobilinogen synthase was attributed to adventitious metal ions. Addition of Zn2+ to the apoenzyme completely restored enzyme activity if the essential sulfhydryl groups on the enzyme were first reduced with sulfhydryl reagents. It does not follow necessarily from this observation that Zn2+ forms a bond with a sulfhydryl group in the enzyme. However, we also observed that Zn2+ did not bind to the enzyme unless the essential cysteinyl residues were reduced. We have concluded that the octameric enzyme contains 4 g atoms of Zn2+/mol from our enzyme activity measurements and binding studies. Alkylation of the enzyme resulted in a marked reduction in the binding of Zn2+ to the enzyme. These observations are consistent with the suggestion that the interaction of the Zn2+ ions with the enzyme occurs with sulfhydryl groups at the active site. It appears that Zn2+ does not participate in substrate binding nor in the maintenance of the quaternary structure of the enzyme. Possible mechanistic roles for Zn2+ in porphobilinogen synthase are discussed. It should be noted that Cd2+ was the only other element found which restored activity to the apoenzyme.

  9. [Active components of Ligustrum lucidum inhibiting hepatitis C virus replicase activity].

    PubMed

    Sun, Rui-na; Zhang, Yan-ni; Wang, Jun; Liu, Hao-ju; Kong, Ling-bao

    2013-09-01

    Based on previous report that the Chinese herb Ligustrum lucidum (LL) extract directly inhibited hepatitis C virus (HCV) replicase (NS5B) activity, the active components of LL extract to inhibit HCV NS5B activity and their inhibition mode were investigated in this study. LL extract was separated using ethyl acetate and thin layer chromatography (TLC). The inhibitory activity of separated fractions on HCV NS5B was analyzed by the inhibitory assay of NS5B activity. The results showed that only fractions 1 and 2 inhibited NS5B activity, and fraction 2 possessed higher inhibitory activity than fraction 1. HPLC analysis combined with inhibitory assays indicated that ursolic acid and oleanolic acid are the active components within fractions 1 and 2 to inhibit NS5B activity, separately. Moreover, oleanolic acid possessed higher inhibitory activity than ursolic acid. Further inhibition mode analysis found that both oleanolic acid and ursolic acid suppressed NS5B activity as noncompetitive inhibitors. The Ki values of ursolic acid and oleanolic acid were about 4.7 microg x mL(-1) (10 micromol x kg(-1)) and 2.5 microg x mL(-1) (5.5 micromol x kg(-1)), respectively. Taken together, these results demonstrated that oleanolic acid and ursolic acid suppressed NS5B activity as noncompetitive inhibitors, implying that the two natural products have potential value for HCV therapy. PMID:24358771

  10. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    SciTech Connect

    Shlomai, Amir; Shaul, Yosef

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  11. Chromium-Insulin Reduces Insulin Clearance and Enhances Insulin Signaling by Suppressing Hepatic Insulin-Degrading Enzyme and Proteasome Protein Expression in KKAy Mice.

    PubMed

    Wang, Zhong Q; Yu, Yongmei; Zhang, Xian H; Komorowski, James

    2014-01-01

    JDS-chromium-insulin (CRI)-003 is a novel form of insulin that has been directly conjugated with chromium (Cr) instead of zinc. Our hypothesis was that CRI enhances insulin's effects by altering insulin-degrading enzyme (IDE) and proteasome enzymes. To test this hypothesis, we measured hepatic IDE content and proteasome parameters in a diabetic animal model. Male KKAy mice were randomly divided into three groups (n = 8/group); Sham (saline), human regular insulin (Reg-In), and chromium conjugated human insulin (CRI), respectively. Interventions were initiated at doses of 2 U insulin/kg body weight daily for 8-weeks. Plasma glucose and insulin were measured. Hepatic IDE, proteasome, and insulin signaling proteins were determined by western blotting. Insulin tolerance tests at week 7 showed that both insulin treatments significantly reduced glucose concentrations and increased insulin levels compared with the Sham group, CRI significantly reduced glucose at 4 and 6 h relative to Reg-In (P < 0.05), suggesting the effects of CRI on reducing glucose last longer than Reg-In. CRI treatment significantly increased hepatic IRS-1 and Akt1 and reduced IDE, 20S as well as 19S protein abundance (P < 0.01, P < 0.05, and P < 0.001, respectively), but Reg-In only significantly increased Akt1 (P < 0.05). Similar results were also observed in Reg-In- and CRI-treated HepG2 cells. This study, for the first time, demonstrates that CRI reduces plasma insulin clearance by inhibition of hepatic IDE protein expression and enhances insulin signaling as well as prevents degradation of IRS-1 and IRS-2 by suppressing ubiquitin-proteasome pathway in diabetic mice.

  12. Application of activity-based protein profiling to study enzyme function in adipocytes.

    PubMed

    Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F; Saez, Enrique

    2014-01-01

    Activity-based protein profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways.

  13. Sechium edule Shoot Extracts and Active Components Improve Obesity and a Fatty Liver That Involved Reducing Hepatic Lipogenesis and Adipogenesis in High-Fat-Diet-Fed Rats.

    PubMed

    Yang, Mon-Yuan; Chan, Kuei-Chuan; Lee, Yi-Ju; Chang, Xiao-Zong; Wu, Cheng-Hsun; Wang, Chau-Jong

    2015-05-13

    Excess fat accumulation in the liver increases the risk of developing progressive liver injuries ranging from a fatty liver to hepatocarcinoma. In a previous study, we demonstrated that the polyphenol components of Sechium edule shoots attenuated hepatic lipid accumulation in vitro. Therefore, we investigated the effects and mechanisms of the extract of S. edule shoots (SWE) to modulate fat accumulation in a high-fat-diet (HFD)-induced animal model. In this study, we found that the SWE can reduce the body weight, adipose tissue fat, and regulate hepatic lipid contents (e.g., triglyceride and cholesterol). Additionally, treatment of caffeic acid (CA) and hesperetin (HPT), the main ingredients of SWE, also inhibited oleic acid (OA)-induced lipid accumulation in HepG2 cells. SWE enhanced the activation of AMP-activating protein kinase (AMPK) and decreased numerous lipogenic-related enzymes, such as sterol regulator element-binding proteins (SREBPs), e.g., SREBP-1 and SREBP-2, and HMG-CoA reductase (HMGCoR) proteins, which are critical regulators of hepatic lipid metabolism. Taken together, the results demonstrated that SWE can prevent a fatty liver and attenuate adipose tissue fat by inhibiting lipogenic enzymes and stimulating lipolysis via upregulating AMPK. It was also demonstrated that the main activation components of SWE are both CA and HPT.

  14. Microbial extracellular enzyme activities in HUMEX Lake Skjervatjern

    SciTech Connect

    Muenster, U. )

    1992-01-01

    Two microbial extracellular enzyme activities (MEEA) were studied in HUMEX Lake Skjervatjern: acid phosphatase (APHA) and leucine aminopeptidase (LeuAMPA). Both enzyme activities varied in the vertical and horizontal scale in both lake sites. APHA varied in the acidfied Basin A between 945-1706 nmol L[sup [minus]1] h[sup [minus]1] and LeuAMPA between 3.7-25 nmol L[sup [minus]1] h[sup [minus]1]. Both MEEA reached maxima in 0.5 m depth. In the control site (Basin B), APHA was lower by a factor of two, and varied between 156-669 nmol L[sup [minus]1] h[sup [minus]1]. LeuAMPA reached similar values as in Basin A and varied between 7.8-34.8 nmol L[sup [minus]1] h[sup [minus]1]. Maxima of APHA were found in the upper layer (0-2 m), while LeuAMPA had only one distinct maxima at 2-2.5 m depth. The number of bacteria (AFDC) varied between 4.4-8.8 10[sup 6] cells mL[sup [minus]1] and was not significantly different in either side, but both had maxima in the thermocline. Highest specific LeuAMPA activities were found in the thermocline (3.2-4.5 fmol L[sup [minus]1] h[sup [minus]1] cell[sup [minus]1]) in both sides and varied between 0.4-4.5 fmol L[sup [minus]1] h[sup [minus]1] cell[sup [minus]1] in both water columns. The main contributor (60-70%) to LeuAMPA was found in the microplankton fraction, retained on Nuclepore filters with pore sizes between 2.0-0.2 [mu]m. APHA was retained less even on a filter with pore size smaller than 0.2 [mu]m. About 50-70% of APHA passed through 0.2 [mu]m-0.1 [mu]m Nuclepore filters and could be found in the dissolved organic matter (DOM) fraction. APHA and bacteria counts (AFDC) showed a distinct gradient from the littoral zone to the pelagial in the surface water samples (0.2 m depth). APHA and LeuAMPA are regarded as important regulators for nutrient availabilty to microplankton. 40 refs., 6 figs.

  15. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion.

    PubMed

    Gao, Shuang; Duan, Xiaoxu; Wang, Xin; Dong, Dandan; Liu, Dan; Li, Xin; Sun, Guifan; Li, Bing

    2013-09-01

    Oxidative stress is one of the major mechanisms implicated in inorganic arsenic poisoning. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its chemopreventive effects partly through the activation of nuclear factor (erythroid-2 related) factor 2 (Nrf2) and its antioxidant and phase II detoxifying enzymes. In vivo, we investigated the protective effects of curcumin against arsenic-induced hepatotoxicity and oxidative injuries. Our results showed that arsenic-induced elevation of serum alanine amino transferase (ALT) and aspartate aminotransferase (AST) activities, augmentation of hepatic malonaldehyde (MDA), as well as the reduction of blood and hepatic glutathione (GSH) levels, were all consistently relieved by curcumin. We also observed the involvement of curcumin in promoting arsenic methylation and urinary elimination in vivo. Furthermore, both the hepatic Nrf2 protein and two typically recognized Nrf2 downstream genes, NADP(H) quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), were consistently up-regulated in curcumin-treated mice. Our study confirmed the antagonistic roles of curcumin to counteract inorganic arsenic-induced hepatic toxicity in vivo, and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against arsenic intoxication. This provides a potential useful chemopreventive dietary component for human populations. PMID:23871787

  16. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion.

    PubMed

    Gao, Shuang; Duan, Xiaoxu; Wang, Xin; Dong, Dandan; Liu, Dan; Li, Xin; Sun, Guifan; Li, Bing

    2013-09-01

    Oxidative stress is one of the major mechanisms implicated in inorganic arsenic poisoning. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its chemopreventive effects partly through the activation of nuclear factor (erythroid-2 related) factor 2 (Nrf2) and its antioxidant and phase II detoxifying enzymes. In vivo, we investigated the protective effects of curcumin against arsenic-induced hepatotoxicity and oxidative injuries. Our results showed that arsenic-induced elevation of serum alanine amino transferase (ALT) and aspartate aminotransferase (AST) activities, augmentation of hepatic malonaldehyde (MDA), as well as the reduction of blood and hepatic glutathione (GSH) levels, were all consistently relieved by curcumin. We also observed the involvement of curcumin in promoting arsenic methylation and urinary elimination in vivo. Furthermore, both the hepatic Nrf2 protein and two typically recognized Nrf2 downstream genes, NADP(H) quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), were consistently up-regulated in curcumin-treated mice. Our study confirmed the antagonistic roles of curcumin to counteract inorganic arsenic-induced hepatic toxicity in vivo, and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against arsenic intoxication. This provides a potential useful chemopreventive dietary component for human populations.

  17. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater.

    PubMed

    Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao

    2016-07-01

    Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants. PMID:27230025

  18. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater.

    PubMed

    Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao

    2016-07-01

    Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants.

  19. Viral Factors Induce Hedgehog Pathway Activation in Humans with Viral Hepatitis, Cirrhosis, and Hepatocellular Carcinoma

    PubMed Central

    Pereira, Thiago de Almeida; Witek, Rafal P.; Syn, Wing-Kin; Choi, Steve S.; Bradrick, Shelton; Karaca, Gamze F; Agboola, Kolade M.; Jung, Youngmi; Omenetti, Alessia; Moylan, Cynthia A.; Yang, Liu; Fernandez-Zapico, Martin E.; Jhaveri, Ravi; Shah, Vijay H.; Pereira, Fausto E.; Diehl, Anna Mae

    2010-01-01

    Hh pathway activation promotes many processes that occur during fibrogenic liver repair. Whether the Hh pathway modulates the outcomes of virally-mediated liver injury has never been examined. Gene-profiling studies of human hepatocellular carcinomas (HCC) demonstrate Hh pathway activation in HCCs related to chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV). Because most HCC develop in cirrhotic livers, we hypothesized that Hh pathway activation occurs during fibrogenic repair of liver damage due to chronic viral hepatitis, and that Hh-responsive cells mediate disease progression and hepatocarciongenesis in chronic viral hepatitis. Immunohistochemistry and qRTPCR analysis were used to analyze Hh pathway activation and identify Hh-responsive cell types in liver biopsies from 45 patients with chronic HBV or HCV. Hh signaling was then manipulated in cultured liver cells to directly assess the impact of Hh activity in relevant cell types. We found increased hepatic expression of Hh ligands in all patients with chronic viral hepatitis, and demonstrated that infection with HCV stimulated cultured hepatocytes to produce Hh ligands. The major cell populations that expanded during cirrhosis and HCC (i.e., liver myofibroblasts, activated endothelial cells, and progenitors expressing markers of tumor stem/initiating cells) were Hh-responsive, and higher levels of Hh pathway activity associated with cirrhosis and HCC. Inhibiting pathway activity in Hh-responsive target cells reduced fibrogenesis, angiogenesis, and growth. Conclusions HBV/HCV infection increases hepatocyte production of Hh ligands and expands types of Hh-responsive cells that promote liver fibrosis and cancer. PMID:20697376

  20. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Lamb, Audrey L.

    2013-01-01

    The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the “interchange” hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, “permute” hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities. PMID:24055536

  1. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Lamb, Audrey L

    2013-11-01

    The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the "interchange" hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, "permute" hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities.

  2. Ultrasonic Monitoring of Enzyme Catalysis; Enzyme Activity in Formulations for Lactose-Intolerant Infants.

    PubMed

    Altas, Margarida C; Kudryashov, Evgeny; Buckin, Vitaly

    2016-05-01

    The paper introduces ultrasonic technology for real-time, nondestructive, precision monitoring of enzyme-catalyzed reactions in solutions and in complex opaque media. The capabilities of the technology are examined in a comprehensive analysis of the effects of a variety of diverse factors on the performance of enzyme β-galactosidase in formulations for reduction of levels of lactose in infant milks. These formulations are added to infant's milk bottles prior to feeding to overcome the frequently observed intolerance to lactose (a milk sugar), a serious issue in healthy development of infants. The results highlight important impediments in the development of these formulations and also illustrate the capability of the described ultrasonic tools in the assessment of the performance of enzymes in complex reaction media and in various environmental conditions. PMID:27018312

  3. Infectivity titration of the fast-replicating and cytopathic hepatitis A virus strain HM175A.2 by an in situ enzyme immunoassay.

    PubMed

    Yap, K L; Lam, S K

    1994-04-01

    A simple, rapid and objective infectivity assay based on an in situ enzyme immunoassay (EIA) was developed for the fast-growing and cytopathic cell culture-adapted hepatitis A virus (HAV) strain HM175A.2. Infectivity titration by EIA correlated well with titration by cytopathic effects. The reliability of this assay was demonstrated by close agreement in virus infectivity titers among different assays of the same virus aliquot and between assays of different virus aliquots. HAV infected cell cultures after fixation could be stored for up to 1 week before testing without decline in virus titer.

  4. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    PubMed

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (<24 h) in both waste activated sludge and anaerobic digester sludge environments and that this was, for the majority of enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed. PMID:27498254

  5. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  6. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    PubMed

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (<24 h) in both waste activated sludge and anaerobic digester sludge environments and that this was, for the majority of enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed.

  7. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  8. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  9. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    SciTech Connect

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  10. TEMPERATURE ACTIVATION OF CERTAIN RESPIRATORY ENZYMES OF STENOTHERMOPHILIC BACTERIA

    PubMed Central

    Gaughran, Eugene R. L.

    1949-01-01

    The results of this study of the effect of temperature on the respiratory mechanism of five stenothermophilic bacteria may be summarized as follows:— 1. The respiratory mechanism and its various components of the stenothermophilic bacteria were found to function at temperatures below the minimum temperature for growth of these organisms. In every case the rates of the individual reactions involved in the respiratory chain increased exponentially with temperature until the temperature at which inactivation became apparent was reached. 2. The mean activation energies, calculated from the "best" value for the slope of the straight lines resulting from a plot of log rate against the reciprocal of the absolute temperature were: Dehydrogenases: 28,000 to 28,500 calories per gram molecule. Glucose, fructose, galactose, mannose, xylose, arabinose, maltose, lactose, sucrose, glycine, β-alanine, monosodium glutamate, (asparagine). 19,500 to 20,500 calories per gram molecule. Ethyl alcohol, succinate, pyruvate, lactate, acetate. 19,500 to 20,500 calories per gram molecule. Ethyl alcohol, succinate, pyruvate, lactate, acetate. 15,000 calories per gram molecule. Formate. Cytochrome oxidase and cytochrome b and c (substrate: p-phenylenediamine): 16,800 calories per gram molecule. Cytochrome oxidase and cytochrome c (substrate: hydroquinone): 20,200 calories per gram molecule. Catalase: 4,100 calories per gram molecule. Complete aerobic respiratory system (plus added glucose): 29,500 calories per gram molecule. 3. The identity of the energies of activation of the respiratory system and its enzymic components at temperatures above and below the minimum temperature for growth of the stenothermophilic bacteria was demonstrated. 4. An attempt has been made to indicate a relationship between the nature of the substrate and the activation energy by grouping substrates on the basis of common µ values obtained for their dehydrogenation by resting cell preparations of

  11. Angiotensin-Converting Enzyme Inhibitors and Active Tuberculosis

    PubMed Central

    Wu, Jiunn-Yih; Lee, Meng-Tse Gabriel; Lee, Si-Huei; Lee, Shih-Hao; Tsai, Yi-Wen; Hsu, Shou-Chien; Chang, Shy-Shin; Lee, Chien-Chang

    2016-01-01

    Abstract Numerous epidemiological data suggest that the use of angiotensin-converting enzyme inhibitors (ACEis) can improve the clinical outcomes of pneumonia. Tuberculosis (TB) is an airborne bacteria like pneumonia, and we aimed to find out whether the use of ACEis can decrease the risk of active TB. We conducted a nested case–control analysis by using a 1 million longitudinally followed cohort, from Taiwan national health insurance research database. The rate ratios (RRs) for TB were estimated by conditional logistic regression, and adjusted using a TB-specific disease risk score (DRS) with 71 TB-related covariates. From January, 1997 to December, 2011, a total of 75,536 users of ACEis, and 7720 cases of new active TB were identified. Current use (DRS adjusted RR, 0.87 [95% CI, 0.78–0.97]), but not recent and past use of ACEis, was associated with a decrease in risk of active TB. Interestingly, it was found that chronic use (>90 days) of ACEis was associated with a further decrease in the risk of TB (aRR, 0.74, [95% CI, 0.66–0.83]). There was also a duration response effect, correlating decrease in TB risk with longer duration of ACEis use. The decrease in TB risk was also consistent across all patient subgroups (age, sex, heart failure, cerebrovascular diseases, myocardial infraction, renal diseases, and diabetes) and patients receiving other cardiovascular medicine. In this large population-based study, we found that subjects with recent and chronic use of ACEis were associated with decrease in TB risk. PMID:27175655

  12. Activities of Tricarboxylic Acid Cycle Enzymes, Glyoxylate Cycle Enzymes, and Fructose Diphosphatase in Bakers' Yeast During Adaptation to Acetate Oxidation

    PubMed Central

    Gosling, J. P.; Duggan, P. F.

    1971-01-01

    Bakers' yeast oxidizes acetate at a high rate only after an adaptation period during which the capacity of the glyoxylate cycle is found to increase. There was apparently no necessity for the activity of acetyl-coenzyme A synthetase, the capacity of the tricarboxylic acid cycle, or the concentrations of the cytochromes to increase for this adaptation to occur. Elevation of fructose 1,6 diphosphatase occurred only when acetate oxidation was nearly maximal. Cycloheximide almost completely inhibited adaptation as well as increases in the activities of isocitrate lyase and aconitate hydratase, the only enzymes assayed. p-Fluorophenylalanine was partially effective and chloramphenicol did not inhibit at all. The presence of ammonium, which considerably delayed adaptation of the yeast to acetate oxidation, inhibited the increases in the activities of the glyoxylate cycle enzymes to different degrees, demonstrating noncoordinate control of these enzymes. Under the various conditions, the only enzyme activity increase consistently related to the rising oxygen uptake rate was that of isocitrate lyase which apparently limited the activity of the cycle. PMID:5557595

  13. Enzyme catalysis: C-H activation is a Reiske business

    NASA Astrophysics Data System (ADS)

    Bruner, Steven D.

    2011-05-01

    Enzymes that selectively oxidize unactivated C-H bonds are capable of constructing complex molecules with high efficiency. A new member of this enzyme family is RedG, a Reiske-type oxygenase that catalyses chemically challenging cyclizations in the biosynthesis of prodiginine natural products.

  14. Chaperone-like activities of {alpha}-synuclein: {alpha}-Synuclein assists enzyme activities of esterases

    SciTech Connect

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo . E-mail: ywryu@ajou.ac.kr; Doohun Kim, T. . E-mail: doohunkim@ajou.ac.kr

    2006-08-11

    {alpha}-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of {alpha}-synuclein has not yet been known. Here we have shown that {alpha}-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of {alpha}-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with {alpha}-synuclein. Our results indicate that {alpha}-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo.

  15. Controlled exogenous enzyme imbibition and activation in whole chickpea seed enzyme reactor (SER).

    PubMed

    Kliger, Eynav; Fischer, Lutz; Lutz-Wahl, Sabine; Saguy, I Sam

    2011-05-01

    Chickpeas are of excellent quality (protein, vitamins, minerals, unsaturated fatty acids) and very low in phytoestrogen, making them a potentially promising source for vegetarian-based infant formula (VBIF). However, their high starch and fiber concentration could hinder their utilization for infants. To overcome this natural shortcoming, a solid-state "enzymation" (SSE) process was developed in which imbibition of exogenous enzyme facilitates hydrolysis within the intact chickpea seed. The process was termed seed enzyme reactor (SER). Liquid imbibition data of dry chickpeas during soaking were fitted with the Weibull distribution model. The derived Weibull shape parameter, β, value (0.77 ± 0.11) indicated that the imbibition mechanism followed Fickian diffusion. Imbibition occurred through the coat and external layers. The process was tested using green fluorescent protein (GFP) as an exogenous marker, and involved soaking, thermal treatment, peeling, microwave partial drying, rehydration in enzyme solution, and SSE at an adjusted pH, time, and temperature. Amylases, or a combination of amylases and cellulases, resulted in significant carbohydrate hydrolysis (23% and 47% of the available starch, respectively). In addition, chickpea initial raffinose and stachyose concentration was significantly reduced (91% and 92%, respectively). The process could serve as a proof of concept, requiring additional development and optimization to become a full industrial application.

  16. Carbohydrate-active enzymes exemplify entropic principles in metabolism

    PubMed Central

    Kartal, Önder; Mahlow, Sebastian; Skupin, Alexander; Ebenhöh, Oliver

    2011-01-01

    Glycans comprise ubiquitous and essential biopolymers, which usually occur as highly diverse mixtures. The myriad different structures are generated by a limited number of carbohydrate-active enzymes (CAZymes), which are unusual in that they catalyze multiple reactions by being relatively unspecific with respect to substrate size. Existing experimental and theoretical descriptions of CAZyme-mediated reaction systems neither comprehensively explain observed action patterns nor suggest biological functions of polydisperse pools in metabolism. Here, we overcome these limitations with a novel theoretical description of this important class of biological systems in which the mixing entropy of polydisperse pools emerges as an important system variable. In vitro assays of three CAZymes essential for central carbon metabolism confirm the power of our approach to predict equilibrium distributions and non-equilibrium dynamics. A computational study of the turnover of the soluble heteroglycan pool exemplifies how entropy-driven reactions establish a metabolic buffer in vivo that attenuates fluctuations in carbohydrate availability. We argue that this interplay between energy- and entropy-driven processes represents an important regulatory design principle of metabolic systems. PMID:22027553

  17. Detection of Sulfatase Enzyme Activity with a CatalyCEST MRI Contrast Agent.

    PubMed

    Sinharay, Sanhita; Fernández-Cuervo, Gabriela; Acfalle, Jasmine P; Pagel, Mark D

    2016-05-01

    A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0 ppm before enzyme activity, and a second CEST signal appears at δ=9.0 ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity.

  18. Enhanced Phagocytosis and Bactericidal Activity of Hepatic Reticuloendothelial System During Endotoxin Tolerance

    PubMed Central

    Ruggiero, Giuseppe; Andreana, Augusto; Utili, Riccardo; Galante, Domenico

    1980-01-01

    The effects of tolerance to Escherichia coli endotoxin on the phagocytic and bactericidal activity of the hepatic reticuloendothelial system against viable E. coli were examined using ex vivo perfused rat livers. Livers were isolated from control and endotoxin-tolerant rats and perfused with a medium containing 5% homologous serum from either control or tolerant rats. After the addition of the E. coli (2 × 107 cells per ml) to the perfusate, the hepatic clearance of the bacteria was followed for 30 min. The highest activation of the hepatic reticuloendothelial system was observed when serum from tolerant animals was added to the perfusate. Under these conditions phagocytosis was 47% (12% in controls), and 37 to 38% of the bacteria were killed (5% in controls). This activation was less when livers obtained from tolerant rats were perfused with serum from controls or with saline only. The data suggests that, during endotoxin tolerance, humoral factors play an important role in the activation of the hepatic reticulendothelial system, although a direct stimulation of Kupffer cells also occurs. The enhancement of phagocytosis by tolerant serum did not require the presence of homologous antibodies and involved the activation of the alternative complement pathway, since it was lost after removal of factor B activity. On the other hand, stimulation of intracellular killing required both complement and specific antibodies. The data suggest a role of endotoxin in the activation of humoral and cellular mechanisms involved in the host resistance to gram-negative bacterial infection. PMID:6991430

  19. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics.

    PubMed

    Rehman, Saima; Bhatti, Haq Nawaz; Bilal, Muhammad; Asgher, Muhammad

    2016-10-01

    Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. In this study, Pencillium notatum lipase (PNL) was immobilized as carrier free cross-linked enzyme aggregates using glutaraldehyde (GLA) and Ethylene glycol-bis [succinic acid N-hydroxysuccinimide] (EG-NHS) as cross-linking agents. The optimal conditions for the synthesis of an efficient lipase CLEAs such as precipitant type, the nature and amount of cross-linking reagent, and cross-linking time were optimized. The recovered activities of CLEAs were considerably dependent on the concentration of GLA; however, the activity recovery was not severely affected by EG-NHS as a mild cross-linker. The EG-NHS aggregates displayed superior hydrolytic (52.08±2.52%) and esterification (64.42%) activities as compared to GLA aggregates which showed 23.8±1.86 and 34.54% of hydrolytic and esterification activity, respectively. Morphological analysis by fluorescence and scanning electron microscope revealed that EG-NHS aggregates were smaller in size with larger surface area compared to GLA aggregates. The pH optima of both types of CLEAs were displaced to slightly alkaline region and higher temperature as compared to native enzyme. Highest enzyme activity of CLEAs was achieved at the pH of 9.0 and 42°C temperature. Moreover, a significant improvement in the thermal resistance was also recorded after immobilization. After ten reusability cycles in aqueous medium, GLA and EG-NHS cross-linked lipase CLEAs preserved 63.62% and 70.9% of their original activities, respectively. The results suggest that this novel CLEA-lipase is potentially usable in many industrial applications.

  20. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics.

    PubMed

    Rehman, Saima; Bhatti, Haq Nawaz; Bilal, Muhammad; Asgher, Muhammad

    2016-10-01

    Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. In this study, Pencillium notatum lipase (PNL) was immobilized as carrier free cross-linked enzyme aggregates using glutaraldehyde (GLA) and Ethylene glycol-bis [succinic acid N-hydroxysuccinimide] (EG-NHS) as cross-linking agents. The optimal conditions for the synthesis of an efficient lipase CLEAs such as precipitant type, the nature and amount of cross-linking reagent, and cross-linking time were optimized. The recovered activities of CLEAs were considerably dependent on the concentration of GLA; however, the activity recovery was not severely affected by EG-NHS as a mild cross-linker. The EG-NHS aggregates displayed superior hydrolytic (52.08±2.52%) and esterification (64.42%) activities as compared to GLA aggregates which showed 23.8±1.86 and 34.54% of hydrolytic and esterification activity, respectively. Morphological analysis by fluorescence and scanning electron microscope revealed that EG-NHS aggregates were smaller in size with larger surface area compared to GLA aggregates. The pH optima of both types of CLEAs were displaced to slightly alkaline region and higher temperature as compared to native enzyme. Highest enzyme activity of CLEAs was achieved at the pH of 9.0 and 42°C temperature. Moreover, a significant improvement in the thermal resistance was also recorded after immobilization. After ten reusability cycles in aqueous medium, GLA and EG-NHS cross-linked lipase CLEAs preserved 63.62% and 70.9% of their original activities, respectively. The results suggest that this novel CLEA-lipase is potentially usable in many industrial applications. PMID:27365121

  1. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice.

    PubMed

    Seo, Kwon-Il; Choi, Myung-Sook; Jung, Un Ju; Kim, Hye-Jin; Yeo, Jiyoung; Jeon, Seon-Min; Lee, Mi-Kyung

    2008-09-01

    We investigated the effect of curcumin on insulin resistance and glucose homeostasis in male C57BL/KsJ-db/db mice and their age-matched lean non-diabetic db/+ mice. Both db/+ and db/db mice were fed with or without curcumin (0.02%, wt/wt) for 6 wks. Curcumin significantly lowered blood glucose and HbA 1c levels, and it suppressed body weight loss in db/db mice. Curcumin improved homeostasis model assessment of insulin resistance and glucose tolerance, and elevated the plasma insulin level in db/db mice. Hepatic glucokinase activity was significantly higher in the curcumin-supplemented db/db group than in the db/db group, whereas glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities were significantly lower. In db/db mice, curcumin significantly lowered the hepatic activities of fatty acid synthase, beta-oxidation, 3-hydroxy-3-methylglutaryl coenzyme reductase, and acyl-CoA: cholesterol acyltransferase. Curcumin significantly lowered plasma free fatty acid, cholesterol, and triglyceride concentrations and increased the hepatic glycogen and skeletal muscle lipoprotein lipase in db/db mice. Curcumin normalized erythrocyte and hepatic antioxidant enzyme activities (superoxide dismutase, catalase, gluthathione peroxidase) in db/db mice that resulted in a significant reduction in lipid peroxidation. However, curcumin showed no effect on the blood glucose, plasma insulin, and glucose regulating enzyme activities in db/+ mice. These results suggest that curcumin seemed to be a potential glucose-lowering agent and antioxidant in type 2 diabetic db/db mice, but had no affect in non-diabetic db/+ mice.

  2. A microsystem to assay lysosomal enzyme activities in cultured retinal pigment epithelial cells.

    PubMed

    Cabral, L; Unger, W; Boulton, M; Marshall, J

    1988-11-01

    A microsystem to assay the activity of lysosomal enzymes in a small number of cultured RPE cells is described. The activities of acid phosphatase, a-mannosidase, B-glucuronidase and N-acetyl-B-glucosaminidase were estimated in different human RPE cultures of varying passages. Some biochemical characteristics for each of the enzyme assays were studied including the effect of pH, the saturating concentrations of the appropriate substrates and the relationship between the enzyme activity and the number of cells assayed. The method presented is straightforward, avoids complicated tissue fractionation procedures and is able to estimate enzyme activities in as few as 10(4) cells. PMID:3243083

  3. Leptin stimulates hepatic activation of thyroid hormones and promotes early posthatch growth in the chicken.

    PubMed

    Li, Rongjie; Hu, Yan; Ni, Yingdong; Xia, Dong; Grossmann, Roland; Zhao, Ruqian

    2011-10-01

    Hepatic iodothyronine deiodinases (Ds) are involved in the conversion of thyroid hormones (THs) which interacts with growth hormone (GH) to regulate posthatch growth in the chicken. Previous studies suggest that leptin-like immunoreactive substance deposited in the egg may serve as a maternal signal to program posthatch growth. To test the hypothesis that maternal leptin may affect early posthatch growth through modifying hepatic activation of THs, we injected 5.0μg of recombinant murine leptin into the albumen of breeder eggs before incubation. Furthermore, chicken embryo hepatocytes (CEHs) were treated with leptin in vitro to reveal the direct effect of leptin on expression and activity of Ds. In ovo leptin administration markedly accelerated early posthatch growth, elevated serum levels of total and free triiodothyronine (tT3 and fT3), while that of total thyroxin (tT4) remained unchanged. Hepatic mRNA expression and activity of D1 which converts T4 to T3 or rT3 to T2, were significantly increased in leptin-treated chickens, while those of D3 which converts T3 to T2 or T4 to rT3, were significantly decreased. Moreover, hepatic expression of GHR and IGF-I mRNA was all up-regulated in leptin-treated chickens. Males demonstrated more pronounced responses. A direct effect of leptin on Ds was shown in CEHs cultured in vitro. Expression and activity of D1 were increased, whereas those of D3 were decreased, in leptin-treated cells. These data suggest that in ovo leptin administration improves early posthatch growth, in a gender-specific fashion, probably through improving hepatic activation of THs and up-regulating hepatic expression of GHR and IGF-I.

  4. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

    USGS Publications Warehouse

    Franson, J.C.; Murray, H.C.; Bunck, C.

    1985-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

  5. Evaluation of the impact of Flos Daturae on rat hepatic cytochrome P450 enzymes by cocktail probe drugs.

    PubMed

    Geng, Peiwu; Wang, Shuanghu; Wang, Chunjie; Chen, Jianmiao; Zhang, Lijing; Yang, Suping; Wen, Congcong; Zhou, Yunfang; Zhang, Meiling

    2015-01-01

    Flos Daturae, known as "baimantuoluo" or "yangjinhua" in China, has been used for centuries in Traditional Chinese Medicine for the treatment of asthma, convulsions, pain, and rheumatism. To investigate the influences of Flos Daturae on the activities of rat CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2B6, CYP2D6 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (10 mg/kg), tolbutamide (1 mg/kg), omeprazole (10 mg/kg), bupropion (10 mg/kg), metoprolol (10 mg/kg) and testosterone (10 mg/kg), was intragastric administered to rats treated with a single low or high dose of Flos Daturae decotion for 7days. Blood samples collected at a series of time-points in plasma were determined by UPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 3.0. The results from the present in vivo study showed that Flos Daturae induce the activity of CYP2D6 enzyme with the decreased Cmax, AUC(0-∞) (P < 0.05) and the increased CL (P < 0.05). However, there were no significant differences of other probe drugs in plasma concentration and pharmacokinetic parameters. There were no significant effects on rat CYP1A2, CYP3A4, CYP2B6, CYP2C9 and CYP2C19 by Flos Daturae. Therefore, the resulting data suggested that caution was needed when Flos Daturae was co-administered with CYP2D6 substrates, which may result in treatment failure and herb-drug interactions. PMID:26885208

  6. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens.

    PubMed

    Franssens, Lies; Lesuisse, Jens; Wang, Yufeng; Willems, Els; Willemsen, Hilke; Koppenol, Astrid; Guo, Xiaoquan; Buyse, Johan; Decuypere, Eddy; Everaert, Nadia

    2016-06-01

    Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16. PMID:26723190

  7. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens.

    PubMed

    Franssens, Lies; Lesuisse, Jens; Wang, Yufeng; Willems, Els; Willemsen, Hilke; Koppenol, Astrid; Guo, Xiaoquan; Buyse, Johan; Decuypere, Eddy; Everaert, Nadia

    2016-06-01

    Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16.

  8. Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection.

    PubMed

    Zheng, Q; Zhu, Y Y; Chen, J; Ye, Y B; Li, J Y; Liu, Y R; Hu, M L; Zheng, Y C; Jiang, J J

    2015-06-01

    Emerging evidence indicates that natural killer (NK) cells may contribute to liver injury in patients with hepatitis B virus (HBV) infection. Because HBV infection progresses through various disease phases, the cytolytic profiles of peripheral and intrahepatic NK cells in HBV-infected patients remain to be defined. In this study, we comprehensively characterized intrahepatic and peripheral NK cells in a cohort of HBV-infected individuals, and investigated their impact on liver pathogenesis during chronic HBV infection. The study population included 34 immune-clearance (IC) patients, 36 immune-tolerant (IT) carriers and 10 healthy subjects. We found that the activity of peripheral NK cells from IC patients was functionally elevated compared to IT carriers and controls, and NK cell activation was indicated by an increased expression of CD69, CD107a, interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Further analysis showed that the increased activity of both peripheral and hepatic NK cells was correlated positively with liver injury, which was assessed by serum alanine aminotransferase levels (ALT) and the liver histological activity index (HAI). Interestingly, the frequency of peripheral NK cells was reduced in IC patients (especially those with higher HAI scores of 3-4), but there was a concomitant increase in hepatic NK cells. The functionally activated NK cells are enriched preferentially in the livers of IC patients and skew towards cytolytic activity that accelerates liver injury in chronic hepatitis B (CHB) patients.

  9. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    SciTech Connect

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-02-22

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.

  10. Liv.52 attenuate copper induced toxicity by inhibiting glutathione depletion and increased antioxidant enzyme activity in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Patki, Pralhad Sadashiv

    2010-07-01

    Altered copper metabolism plays a pivotal role in the onset of several hepatic disorders and glutathione (GSH) plays an important role in its homeostasis. Hepatic diseases are often implicated with decreased content of intracellular GSH. GSH depleted cells are prone to increased oxidative damage eventually leading to its death. Liv.52 is used to treat hepatic ailments since long time. Hence, in the present study the potential cytoprotective effect of Liv.52 against toxicity induced by copper (Cu2+) was evaluated in HepG2 cells. Cu2+ at 750 microM induced cytotoxicity to HepG2 cells as determined by MTT assay. The toxicity was brought about by increased lipid peroxidation, DNA fragmentation and decreased GSH content. But, upon treatment with Liv.52 cell death induced by Cu2+ was significantly abrogated by inhibition of lipid peroxidation by 58% and DNA fragmentation by 37%. Liv.52 increased the GSH content by 74%. Activities of the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase were increased by 46%, 22% and 81% respectively in Liv.52 treated cells. Thus, it is apparent from these results that Liv.52 abrogates Cu2+ induced cytotoxicity in HepG2 cells by inhibiting lipid peroxidation and increased GSH content and antioxidant enzyme activity.

  11. Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (Humulus lupulus) in vitro and in vivo

    PubMed Central

    Dietz, Birgit M.; Hagos, Ghenet K.; Eskra, Jillian N.; Wijewickrama, Gihani T.; Anderson, Jeffrey R.; Nikolic, Dejan; Guo, Jian; Wright, Brian; Chen, Shao-Nong; Pauli, Guido F.; van Breemen, Richard B.; Bolton, Judy L.

    2013-01-01

    Scope Hops contain the phytoestrogen, 8-prenylnaringenin, and the cytoprotective compound, xanthohumol (XH). XH induces the detoxification enzyme, NAD(P)H-quinone oxidoreductase (NQO1) in vitro; however, the tissue distribution of XH and 8-prenylnaringenin and their tissue specific activity have not been analyzed. Methods and results A standardized hop extract (p.o.) and XH (s.c.) were administered to Sprague-Dawley rats over four days. LC-MS-MS analysis of plasma, liver and mammary gland revealed that XH accumulated in liver and mammary glands. Compared with the low level in the original extract, 8-prenylnaringenin was enriched in the tissues. Hops and XH induced NQO1 in the liver, while only hops reduced NQO1 activity in the mammary gland. Mechanistic studies revealed that hops modulated NQO1 through three mechanisms. In liver cells, 1) XH modified Keap1 leading to Nrf2 translocation and antioxidant response element (ARE) activation; 2) hop-mediated ARE induction was partially mediated through phosphorylation of Nrf2 by PKC; 3) in breast cells, 8-prenylnaringenin reduced NQO1 likely through binding to ERα, recruiting Nrf2, and downregulating ARE-regulated genes. Conclusions XH and 8-prenylnaringenin in dietary hops are bioavailable to the target tissues. While hops and XH might be cytoprotective in the liver, 8-prenylnaringenin seems responsible for hop-mediated NQO1 reduction in the mammary gland. PMID:23512484

  12. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation.

    PubMed

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  13. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  14. Effects of Fresh Yellow Onion Consumption on CEA, CA125 and Hepatic Enzymes in Breast Cancer Patients: A Double- Blind Randomized Controlled Clinical Trial.

    PubMed

    Jafarpour-Sadegh, Farnaz; Montazeri, Vahid; Adili, Ali; Esfehani, Ali; Rashidi, Mohammad-Reza; Mesgari, Mehran; Pirouzpanah, Saeed

    2015-01-01

    Onion (Allium cepa) consumption has been remarked in folk medicine which has not been noted to be administered so far as an adjunct to conventional doxorubicin-based chemotherapy in breast cancer patients. To our knowledge, this is the first study aimed to investigate the effects of consuming fresh yellow onions on hepatic enzymes and cancer specific antigens compared with a low-onion containing diet among breast cancer (BC) participants treated with doxorubicin. This parallel design randomized controlled clinical trial was conducted on 56 BC patients whose malignancy was confirmed with histopathological examination. Subjects were assigned in a stratified-random allocation into either group received body mass index dependent 100-160 g/d of onion as high onion group (HO; n=28) or 30-40 g/d small onion in low onion group (LO; n=28) for eight weeks intervention. Participants, care givers and laboratory assessor were blinded to the assignments (IRCT registry no: IRCT2012103111335N1). The compliance of participants in the analysis was appropriate (87.9%). Comparing changes throughout pre- and post-dose treatments indicated significant controls on carcinoembryonic antigen, cancer antigen-125 and alkaline phosphatase levels in the HO group (P<0.05). Our findings for the first time showed that regular onion administration could be effective for hepatic enzyme conveying adjuvant chemotherapy relevant toxicity and reducing the tumor markers in BC during doxorubicin-based chemotherapy. PMID:26625755

  15. Effects of Fresh Yellow Onion Consumption on CEA, CA125 and Hepatic Enzymes in Breast Cancer Patients: A Double- Blind Randomized Controlled Clinical Trial.

    PubMed

    Jafarpour-Sadegh, Farnaz; Montazeri, Vahid; Adili, Ali; Esfehani, Ali; Rashidi, Mohammad-Reza; Mesgari, Mehran; Pirouzpanah, Saeed

    2015-01-01

    Onion (Allium cepa) consumption has been remarked in folk medicine which has not been noted to be administered so far as an adjunct to conventional doxorubicin-based chemotherapy in breast cancer patients. To our knowledge, this is the first study aimed to investigate the effects of consuming fresh yellow onions on hepatic enzymes and cancer specific antigens compared with a low-onion containing diet among breast cancer (BC) participants treated with doxorubicin. This parallel design randomized controlled clinical trial was conducted on 56 BC patients whose malignancy was confirmed with histopathological examination. Subjects were assigned in a stratified-random allocation into either group received body mass index dependent 100-160 g/d of onion as high onion group (HO; n=28) or 30-40 g/d small onion in low onion group (LO; n=28) for eight weeks intervention. Participants, care givers and laboratory assessor were blinded to the assignments (IRCT registry no: IRCT2012103111335N1). The compliance of participants in the analysis was appropriate (87.9%). Comparing changes throughout pre- and post-dose treatments indicated significant controls on carcinoembryonic antigen, cancer antigen-125 and alkaline phosphatase levels in the HO group (P<0.05). Our findings for the first time showed that regular onion administration could be effective for hepatic enzyme conveying adjuvant chemotherapy relevant toxicity and reducing the tumor markers in BC during doxorubicin-based chemotherapy.

  16. Annexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling.

    PubMed

    You, Chun; Zhang, Y-H Percival

    2014-06-20

    The self-assembled three-enzyme complex containing triosephosphate isomerase (TIM), aldolase (ALD), and fructose 1,6-biphosphatase (FBP) was constructed via a mini-scaffoldin containing three different cohesins and the three dockerin-containing enzymes. This enzyme complex exhibited 1 order of magnitude higher initial reaction rates than the mixture of noncomplexed three enzymes. In this enzyme cascade reactions, the reaction mediated by ALD was the rate-limiting step. To understand the in-depth role of the rate-limiting enzyme ALD in influencing the substrate channeling effect of synthetic enzyme complexes, low-activity ALD from Thermotoga maritima was replaced with a similar-size ALD isolated from Thermus thermophilus, where the latter had more than 5 times specific activity of the former. The synthetic three-enzyme complexes annexed with either low-activity or high-activity ALDs exhibited higher initial reaction rates than the mixtures of the two-enzyme complex (TIM-FBP) and the nonbound low-activity or high activity ALD at the same enzyme concentration. It was also found that the annexation of more high-activity ALD in the synthetic enzyme complexes drastically decreased the degree of substrate channeling from 7.5 to 1.5. These results suggested that the degree of substrate channeling in synthetic enzyme complexes depended on the enzyme choice. This study implied that the construction of synthetic enzyme enzymes in synthetic cascade pathways could be a very important tool to accrelerate rate-limiting steps controlled by low-activity enzymes.

  17. Hepatic SRC-1 Activity Orchestrates Transcriptional Circuitries of Amino Acid Pathways with Potential Relevance for Human Metabolic Pathogenesis

    PubMed Central

    Tannour-Louet, Mounia; York, Brian; Tang, Ke; Stashi, Erin; Bouguerra, Hichem; Zhou, Suoling; Yu, Hui; Wong, Lee-Jun C.; Stevens, Robert D.; Xu, Jianming; Newgard, Christopher B.; O'Malley, Bert W.

    2014-01-01

    Disturbances in amino acid metabolism are increasingly recognized as being associated with, and serving as prognostic markers for chronic human diseases, such as cancer or type 2 diabetes. In the current study, a quantitative metabolomics profiling strategy revealed global impairment in amino acid metabolism in mice deleted for the transcriptional coactivator steroid receptor coactivator (SRC)-1. Aberrations were hepatic in origin, because selective reexpression of SRC-1 in the liver of SRC-1 null mice largely restored amino acids concentrations to normal levels. Cistromic analysis of SRC-1 binding sites in hepatic tissues confirmed a prominent influence of this coregulator on transcriptional programs regulating amino acid metabolism. More specifically, SRC-1 markedly impacted tyrosine levels and was found to regulate the transcriptional activity of the tyrosine aminotransferase (TAT) gene, which encodes the rate-limiting enzyme of tyrosine catabolism. Consequently, SRC-1 null mice displayed low TAT expression and presented with hypertyrosinemia and corneal alterations, 2 clinical features observed in the human syndrome of TAT deficiency. A heterozygous missense variant of SRC-1 (p.P1272S) that is known to alter its coactivation potential, was found in patients harboring idiopathic tyrosinemia-like disorders and may therefore represent one risk factor for their clinical symptoms. Hence, we reinforce the concept that SRC-1 is a central factor in the fine orchestration of multiple pathways of intermediary metabolism, suggesting it as a potential therapeutic target that may be exploitable in human metabolic diseases and cancer. PMID:25148457

  18. Comparative azo reductase activity of red azo dyes through caecal and hepatic microsomal fraction in rats.

    PubMed

    Singh, S; Das, M; Khanna, S K

    1997-09-01

    In order to study the rate of formation of toxic aromatic amines, anaerobic reduction of four red azo dyes viz. amaranth, carmoisine, fast Red E and ponceau 4R was investigated by incubating caecal content and hepatic microsomal fraction of rats with 37.5 microM concentration of dyes in sodium phosphate buffer pH 7.4 using NADPH generating system, glucose oxidase system and nitrogen as the gaseous phase. Caecal suspension exhibited higher azo reductase activity than that of hepatic microsomal fraction using any of the 4 azo dyes. Caecal microbes showed maximal azo reductase activity when ponceau 4R was used as a substrate followed by fast Red E and carmoisine, while with amaranth the activity was minimum. Similarly ponceau 4 R exhibited maximum hepatic microsomal azo reductase activity followed by fast Red E and carmoisine whereas, amaranth had minimum activity. Caecal flora possessed almost 17 fold higher degradative capability of ponceau 4 R and fast Red E colourants than the hepatic microsomal fraction. The higher reductive ability through caecal flora for ponceau 4R and fast Red E signifies the formation of more aromatic amines which may be re-absorbed through the intestine to be either eliminated through urine as conjugates or retained in the target tissues to elicit toxic effects.

  19. New Enzyme Immunoassay for Detection of Hepatitis B Virus Core Antigen (HBcAg) and Relation between Levels of HBcAg and HBV DNA

    PubMed Central

    Kimura, Tatsuji; Rokuhara, Akinori; Matsumoto, Akihiro; Yagi, Shintaro; Tanaka, Eiji; Kiyosawa, Kendo; Maki, Noboru

    2003-01-01

    A new enzyme immunoassay specific for hepatitis B virus (HBV) core antigen (HBcAg) was developed. In order to detect HBcAg, specimens were pretreated with detergents to release HBcAg from the HBV virion and disassemble it to dimers, and simultaneously, the treatment inactivated anti-HBc antibodies. HBcAg detected by the assay peaked with HBV DNA in density gradient fractions of HBV-positive sera. The assay showed a wide detection range from 2 to 100,000 pg/ml. We observed no interference from anti-HBc antibody or blood components, but the assay was inhibited by very high concentrations (>1 μg/ml; corresponding to 80 signal/cutoff) of HBeAg. When the cutoff value was tentatively set at 4 pg/ml, all healthy control (HBsAg and HBV DNA negative, n = 160) and anti-hepatitis C virus-positive (n = 55) sera were identified as negative. HBcAg concentrations correlated very closely with HBV DNA (r = 0.946, n = 145) in 216 samples from 72 hepatitis B patients. In seroconversion panels, HBcAg concentrations changed in parallel with HBV DNA levels. The assay, therefore, offers a simple method for monitoring hepatitis B patients. With a series of sera during lamivudine therapy, HBV DNA levels fell sharply and the HBcAg concentration also decreased, but the change in HBcAg was smaller and more gradual. The supposed mechanism of these changes and their clinical significance are discussed. PMID:12734224

  20. Clinical evaluation of a new enzyme immunoassay for hepatitis B virus core-related antigen; a marker distinct from viral DNA for monitoring lamivudine treatment.

    PubMed

    Rokuhara, A; Tanaka, E; Matsumoto, A; Kimura, T; Yamaura, T; Orii, K; Sun, X; Yagi, S; Maki, N; Kiyosawa, K

    2003-07-01

    We aimed to assess the clinical performance of a newly developed chemiluminescence enzyme immunoassay (CLEIA) for the detection of hepatitis B virus (HBV) core-related antigen (HBcrAg) in patients with chronic HBV infection. A total of 82 patients with chronic HBV infection and 167 HBV-negative controls were studied. HBcrAg was measured by CLEIA with monoclonal antibodies to hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg), and HBV DNA was measured by transcription-mediated amplification assay (TMA) and in-house real-time detection polymerase chain reaction (RTD-PCR). The HBcrAg assay detected viremia in 189 of 216 samples (88%) collected from 72 patients whilst the TMA assay detected viremia in 178 of the 216 samples (82%) (P = 0.019). The HBcrAg concentration correlated linearly with the HBV DNA concentration (P < 0.001) over a range which varied 100 000-fold. The accuracy in the measurement of the patients' HBV load obtained using the HBcrAg assay was not affected by the absence of hepatitis B e antigen from the serum or the presence of precore mutations in the HBV genome. In patients without anti-viral drugs, changes in their serum HBcrAg concentration over time corresponded to their HBV DNA concentration. In six additional patients who were later treated with lamivudine, HBV DNA concentration declined more rapidly than their HBcrAg concentration. Three months after treatment commenced, the ratio of HBcrAg: HBV DNA had increased in all six patients (P = 0.031). The HBcrAg assay is a sensitive and useful test for the assessment of a patient's HBV load. When monitoring the anti-viral effect of lamivudine, HBcrAg provides a viral marker which is independent of HBV DNA.

  1. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1. PMID:26854595

  2. Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes.

    PubMed

    Sarrazin, Stéphane; Wilson, Beth; Sly, William S; Tor, Yitzhak; Esko, Jeffrey D

    2010-07-01

    Guanidinylated neomycin (GNeo) can transport bioactive, high molecular weight cargo into the interior of cells in a process that depends on cell surface heparan sulfate proteoglycans. In this report, we show that GNeo-modified quantum dots bind to cell surface heparan sulfate, undergo endocytosis and eventually reach the lysosomal compartment. An N-hydroxysuccinimide activated ester of GNeo (GNeo-NHS) was prepared and conjugated to two lysosomal enzymes, beta-D-glucuronidase (GUS) and alpha-L-iduronidase. Conjugation did not interfere with enzyme activity and enabled binding of the enzymes to heparin-Sepharose and heparan sulfate on primary human fibroblasts. Cells lacking the corresponding lysosomal enzyme took up sufficient amounts of the conjugated enzymes to restore normal turnover of glycosaminoglycans. The high capacity of proteoglycan-mediated uptake suggests that this method of delivery might be used for enzyme replacement or introduction of foreign enzymes into cells.

  3. Activity-based proteomics probes for carbohydrate-processing enzymes: current trends and future outlook.

    PubMed

    Stubbs, Keith A

    2014-05-22

    Carbohydrate-processing enzymes are gaining more attention due to their roles in health and disease as these enzymes are involved in the construction and deconstruction of vast arrays of glycan structures. As a result, the development of methods to identify these enzymes in complex biological systems is of increasing interest. Activity-based proteomics probes (ABPPs) are increasingly being used in glycobiology to detect and identify functionally related proteins (and homologues) within a biological system. This review will describe the design of activity-based proteomics probes, provide examples of compounds that have been used to profile activity in the area of carbohydrate-processing enzymes, and give some future perspectives.

  4. Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers

    SciTech Connect

    Kim, Byoung Chan; Nair, Sujith; Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.; Kim, Seong H.; Gu, Man Bock

    2005-04-01

    We have developed a unique approach for the fabrication of enzyme coating on the surface of electrospun polymer nanofibers. This approach employs covalent attachment of seed enzymes onto nanofibers, followed by the glutaraldehyde treatment that crosslinks additional enzymes onto the seed enzyme molecules. These crosslinked enzyme aggregates, covalently attached to the nanofibers via seed enzyme linker, would improve not only the enzyme activity due to increased enzyme loading, but also the enzyme stability. To demonstrate the principle of concept, we fabricated the coating of alpha-chymotrypsin (CT) on the nanofibers electrospun from a mixture of polystyrene and poly(styrene-co-maleic anhydride). The addition of poly(styrene-co-maleic anhydride) makes it much easier to attach the seed enzyme molecules onto electrospun nanofibers without any rigorous functionalization of nanofibers for the attachment of enzymes. The initial activity of final CT coating was 17 and 9 times higher than those of simply-adsorbed CT and covalently-attached CT, respectively. While adsorbed and covalently-attached CT resulted in a serious enzyme leaching during initial incubation in a shaking condition, the CT coating did not show any leaching from the beginning of incubation in the same condition. As a result, the enzyme stability of CT coating was impressively improved with a half-life of 686 days under rigorous shaking while the half-life of covalently-attached CT was only 21 hours. This new approach of enzyme coating with high stability and activity will make a great impact in various applications of enzymes such as bioconversion, bioremediation, and biosensors.

  5. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells.

    PubMed

    Pirazzi, Carlo; Valenti, Luca; Motta, Benedetta Maria; Pingitore, Piero; Hedfalk, Kristina; Mancina, Rosellina Margherita; Burza, Maria Antonella; Indiveri, Cesare; Ferro, Yvelise; Montalcini, Tiziana; Maglio, Cristina; Dongiovanni, Paola; Fargion, Silvia; Rametta, Raffaela; Pujia, Arturo; Andersson, Linda; Ghosal, Saswati; Levin, Malin; Wiklund, Olov; Iacovino, Michelina; Borén, Jan; Romeo, Stefano

    2014-08-01

    Retinoids are micronutrients that are stored as retinyl esters in the retina and hepatic stellate cells (HSCs). HSCs are key players in fibrogenesis in chronic liver diseases. The enzyme responsible for hydrolysis and release of retinyl esters from HSCs is unknown and the relationship between retinoid metabolism and liver disease remains unclear. We hypothesize that the patatin-like phospholipase domain-containing 3 (PNPLA3) protein is involved in retinol metabolism in HSCs. We tested our hypothesis both in primary human HSCs and in a human cohort of subjects with non-alcoholic fatty liver disease (N = 146). Here we show that PNPLA3 is highly expressed in human HSCs. Its expression is regulated by retinol availability and insulin, and increased PNPLA3 expression results in reduced lipid droplet content. PNPLA3 promotes extracellular release of retinol from HSCs in response to insulin. We also show that purified wild-type PNPLA3 hydrolyzes retinyl palmitate into retinol and palmitic acid. Conversely, this enzymatic activity is markedly reduced with purified PNPLA3 148M, a common mutation robustly associated with liver fibrosis and hepatocellular carcinoma development. We also find the PNPLA3 I148M genotype to be an independent (P = 0.009 in a multivariate analysis) determinant of circulating retinol-binding protein 4, a reliable proxy for retinol levels in humans. This study identifies PNPLA3 as a lipase responsible for retinyl-palmitate hydrolysis in HSCs in humans. Importantly, this indicates a potential novel link between HSCs, retinoid metabolism and PNPLA3 in determining the susceptibility to chronic liver disease. PMID:24670599

  6. Molecular architectures and functions of radical enzymes and their (re)activating proteins.

    PubMed

    Shibata, Naoki; Toraya, Tetsuo

    2015-10-01

    Certain proteins utilize the high reactivity of radicals for catalysing chemically challenging reactions. These proteins contain or form a radical and therefore named 'radical enzymes'. Radicals are introduced by enzymes themselves or by (re)activating proteins called (re)activases. The X-ray structures of radical enzymes and their (re)activases revealed some structural features of these molecular apparatuses which solved common enigmas of radical enzymes—i.e. how the enzymes form or introduce radicals at the active sites, how they use the high reactivity of radicals for catalysis, how they suppress undesired side reactions of highly reactive radicals and how they are (re)activated when inactivated by extinction of radicals. This review highlights molecular architectures of radical B12 enzymes, radical SAM enzymes, tyrosyl radical enzymes, glycyl radical enzymes and their (re)activating proteins that support their functions. For generalization, comparisons of the recently reported structures of radical enzymes with those of canonical radical enzymes are summarized here.

  7. Endothelin converting enzyme (ECE) activity in human vascular smooth muscle

    PubMed Central

    Maguire, Janet J; Johnson, Christopher M; Mockridge, James W; Davenport, Anthony P

    1997-01-01

    of a phosphoramidon-sensitive ECE on the smooth muscle layer of the human umbilical vein which can convert big ET-1, big ET-2(1-37), big ET-2(1-38) and big ET-3 to their mature biologically active forms. The precise subcellular localization of this enzyme and its physiological relevance remains to be determined. PMID:9422810

  8. Anti-hepatitis B activity of isoquinoline alkaloids of plant origin.

    PubMed

    Aljofan, Mohamad; Netter, Hans J; Aljarbou, Ahmed N; Hadda, Taibi Ben; Orhan, Ilkay Erdogan; Sener, Bilge; Mungall, Bruce A

    2014-05-01

    Hepatitis B virus (HBV) is the causative agent of B-type hepatitis in humans, a vaccine-preventable disease. Despite the availability of effective vaccines, globally, 2 billion people show evidence of past or current HBV infection, of which 350 million people are persistently infected, with an estimated annual increase of 1 million. There is no cure for chronic HBV infections, which are associated with cirrhotic liver failure and with an increased risk of developing hepatocellular carcinoma. Hepatitis antiviral research has focused primarily on the development of inhibitors of viral polymerase through the use of nucleoside analogues. Therefore, there is an urgent need for the development of non-nucleoside compounds to be used as an alternative or to complement the current therapy. To address this need, 18 isoquinoline alkaloids were evaluated for their potential antiviral activity against HBV in vitro.

  9. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2010-03-01

    Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawaters relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme

  10. Enhanced diffusion, chemotaxis, and pumping by active enzymes: progress toward an organizing principle of molecular machines.

    PubMed

    Astumian, R Dean

    2014-12-23

    Active enzymes diffuse more rapidly than inactive enzymes. This phenomenon may be due to catalysis-driven conformational changes that result in "swimming" through the aqueous solution. Recent additional work has demonstrated that active enzymes can undergo chemotaxis toward regions of high substrate concentration, whereas inactive enzymes do not, and, further, that active enzymes immobilized at surfaces can directionally pump liquids. In this Perspective, I will discuss these phenomena in light of Purcell's work on directed motion at low Reynold's number and in the context of microscopic rev