Science.gov

Sample records for hepatic glycogen formation

  1. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state

    SciTech Connect

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1989-06-01

    The relative contributions of the direct and the indirect pathways to hepatic glycogen formation following a glucose load given to humans four hours after a substantial breakfast have been examined. Glucose loads labeled with (6-(/sup 14/)C)glucose were given to six healthy volunteers along with diflunisal (1 g) or acetaminophen (1.5 g), drugs excreted in urine as glucuronides. Distribution of /sup 14/C in the glucose unit of the glucuronide was taken as a measure of the extent to which glucose was deposited directly in liver glycogen (ie, glucose----glucose-6-phosphate----glycogen) rather than indirectly (ie, glucose----C3-compound----glucose-6-phosphate----glycogen). The maximum contribution to glycogen formation by the direct pathway was estimated to be 77% +/- 4%, which is somewhat higher than previous estimates in humans fasted overnight (65% +/- 1%, P less than 0.05). Thus, the indirect pathway of liver glycogen formation following a glucose load is operative in both the overnight fasted and the fed state, although its contribution may be somewhat less in the fed state.

  2. Glucocorticoids and hepatic glycogen metabolism.

    PubMed

    Stalmans, W; Laloux, M

    1979-01-01

    The steady accumulation of glycogen in fetal rat liver during the last fifth of gestation is elicited by a transient rise in the level of circulating corticosterone. One effect of glucocorticoids is to induce glycogen synthase. The actual deposition of glycogen, however, depends on the appearance of a small amount of glycogen synthase in the active, dephosphorylated form. Induction of glycogen synthase phosphatase by glucocorticoids may explain the latter crucial process. Insulin enhances further the rate of glycogen deposition. The effect of insulin requires a previous exposure of the fetal liver to glucocorticoids. It is exerted on the enzyme interconversion system and appears not to involve new protein synthesis. Administration of glucocorticoids to adult fed or fasted animals causes within 3 h an intensive deposition of glycogen in the liver. This phenomenon is ultimately explained by both an activation of glycogen synthase and an inactivation of glycogen phosphorylase. The latter process may be due to an enhanced activity of phosphorylase phosphatase, or possibly of phosphorylase kinase phosphatase. The activation of glycogen synthase is explained by an enhanced activity of glycogen synthase phosphatase. The latter enzyme is normally profoundly inhibited by phosphorylase a; glucocorticoids cause the appearance in the liver of a protein factor that decreases and eventually cancels this inhibitory effect of phosphorylase a. It remains to be established whether or not some part of the glucocorticoid effect on adult liver is mediated by insulin.

  3. Ethanolic Extract of Butea monosperma Leaves Elevate Blood Insulin Level in Type 2 Diabetic Rats, Stimulate Insulin Secretion in Isolated Rat Islets, and Enhance Hepatic Glycogen Formation

    PubMed Central

    Samad, Mehdi Bin; Kabir, Ashraf Ul; Ahmed, Arif; Jahan, Mohammad Rajib; Hannan, J. M. A.

    2014-01-01

    We measured a vast range of parameters, in an attempt to further elucidate previously claimed antihyperglycemic activity of Butea monosperma. Our study clearly negates the possibility of antidiabetic activity by inhibited gastrointestinal enzyme action or by reduced glucose absorption. Reduction of fasting and postprandial glucose level was reconfirmed (P < 0.05). Improved serum lipid profile via reduced low density lipoprotein (LDL), cholesterol, triglycerides (TG), and increased high density lipoprotein (HDL) was also reestablished (P < 0.05). Significant insulin secretagogue activity of B. monosperma was found in serum insulin assay of B. monosperma treated type 2 diabetic rats (P < 0.01). This was further ascertained by our study on insulin secretion on isolated rat islets (P < 0.05). Improved sensitivity of glucose was shown by the significant increase in hepatic glycogen deposition (P < 0.05). Hence, we concluded that antihyperglycemic activity of B. monosperma was mediated by enhanced insulin secretion and enhanced glycogen formation in the liver. PMID:24860609

  4. Minimal hepatic glucose-6-phosphatase-α activity required to sustain survival and prevent hepatocellular adenoma formation in murine glycogen storage disease type Ia.

    PubMed

    Lee, Young Mok; Kim, Goo-Young; Pan, Chi-Jiunn; Mansfield, Brian C; Chou, Janice Y

    2015-06-01

    Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. In a previous 70-90 week-study, we showed that a recombinant adeno-associated virus (rAAV) vector-mediated gene transfer that restores more than 3% of wild-type hepatic G6Pase-α activity in G6pc (-/-) mice corrects hepatic G6Pase-α deficiency with no evidence of HCA. We now examine the minimal hepatic G6Pase-α activity required to confer therapeutic efficacy. We show that rAAV-treated G6pc (-/-) mice expressing 0.2% of wild-type hepatic G6Pase-α activity suffered from frequent hypoglycemic seizures at age 63-65 weeks but mice expressing 0.5-1.3% of wild-type hepatic G6Pase-α activity (AAV-LL mice) sustain 4-6 h of fast and grow normally to age 75-90 weeks. Despite marked increases in hepatic glycogen accumulation, the AAV-LL mice display no evidence of hepatic abnormalities, hepatic steatosis, or HCA. Interprandial glucose homeostasis is maintained by the G6Pase-α/glucose-6-phosphate transporter (G6PT) complex, and G6PT-mediated microsomal G6P uptake is the rate-limiting step in endogenous glucose production. We show that hepatic G6PT activity is increased in AAV-LL mice. These findings are encouraging for clinical studies of G6Pase-α gene-based therapy for GSD-Ia.

  5. Shared control of hepatic glycogen synthesis by glycogen synthase and glucokinase.

    PubMed Central

    Gomis, R R; Ferrer, J C; Guinovart, J J

    2000-01-01

    We have used recombinant adenoviruses (AdCMV-RLGS and AdCMV-GK) to overexpress the liver isoforms of glycogen synthase (GS) and glucokinase (GK) in primary cultured rat hepatocytes. Glucose activated overexpressed GS in a dose-dependent manner and caused the accumulation of larger amounts of glycogen in the AdCMV-RLGS-treated hepatocytes. The concentration of intermediate metabolites of the glycogenic pathway, such as glucose 6-phosphate (Glc-6-P) and UDP-glucose, were not significantly altered. GK overexpression also conferred on the hepatocyte an enhanced capacity to synthesize glycogen in response to glucose, as described previously [Seoane, Gómez-Foix, O'Doherty, Gómez-Ara, Newgard and Guinovart (1996) J. Biol. Chem. 271, 23756-23760], although, in this case, they accumulated Glc-6-P. When GS and GK were simultaneously overexpressed, the accumulation of glycogen was enhanced in comparison with cells overexpressing either GS or GK. Our results are consistent with the hypothesis that liver GS catalyses the rate-limiting step of hepatic glycogen synthesis. However, hepatic glycogen deposition from glucose is submitted to a system of shared control in which the 'controller', GS, is, in turn, controlled by GK. This control is indirectly exerted through Glc-6-P, which 'switches on' GS dephosphorylation and activation. PMID:11042138

  6. Stimulation of hepatic glycogen synthesis by amino acids.

    PubMed Central

    Katz, J; Golden, S; Wals, P A

    1976-01-01

    Hepatocytes isolated from livers of fasted rats form little glycogen from glucose or lactate at concentrations below 20 mM. Glycogen is formed in substantial quantities at a glucose concentration of 60 mM. In the presence of 10 mM glucose, 20-30% as much glycogen as glucose is formed from fructose, sorbitol, or dihydroxyacetone. The addition of either glutamine, alanine, or asparagine stimulates the formation of glycogen from lactate 10- to 40-fold. The formation of glucose and glycogen is then about equal, and glycogen deposition in hepatocytes is similar to rates attained in vivo after fasted rats are refed. The amino acids stimulate 1.5- to 2-fold glycogen synthesis from fructose, and 2- to 4-fold synthesis from dihyDROXYACETONE. Ammonium chloride is about one-half as effective as amino acids in stimulating glycogen synthesis when glucose with lactate are substrates. It increased glycogen synthesis 25-50% from fructose but inhibited synthesis from dihydroxyacetone plus glucose. PMID:1068456

  7. Hepatic glycogen supercompensation activates AMP-activated protein kinase, impairs insulin signaling, and reduces glycogen deposition in the liver.

    PubMed

    Winnick, Jason J; An, Zhibo; Ramnanan, Christopher J; Smith, Marta; Irimia, Jose M; Neal, Doss W; Moore, Mary Courtney; Roach, Peter J; Cherrington, Alan D

    2011-02-01

    The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver's ability to take up and metabolize glucose. During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO(2)) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion. Fructose infusion increased net hepatic glycogen synthesis (0.7 ± 0.5 vs. 6.4 ± 0.4 mg/kg/min; P < 0.001), causing a large difference in hepatic glycogen content (62 ± 9 vs. 100 ± 3 mg/g; P < 0.001). Hepatic glycogen supercompensation (fructose infusion group) did not alter NHGU, but it reduced the percent of NHGU directed to glycogen (79 ± 4 vs. 55 ± 6; P < 0.01) and increased the percent directed to lactate (12 ± 3 vs. 29 ± 5; P = 0.01) and oxidation (9 ± 3 vs. 16 ± 3; P = NS). This change was associated with increased AMP-activated protein kinase phosphorylation, diminished insulin signaling, and a shift in glycogenic enzyme activity toward a state discouraging glycogen accumulation. These data indicate that increases in hepatic glycogen can generate a state of hepatic insulin resistance, which is characterized by impaired glycogen synthesis despite preserved NHGU.

  8. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans

    SciTech Connect

    Shulman, G.I.; Cline, G.; Schumann, W.C.; Chandramouli, V.; Kumaran, K.; Landau, B.R. )

    1990-09-01

    The effect of fasting vs. refeeding on hepatic glycogen repletion by the direct pathway, i.e., glucose----glucose 6-phosphate (G-6-P)----glycogen, was determined. Acetaminophen was administered during an infusion of glucose labeled with (1-13C)- and (6-14C)glucose into four healthy volunteers after an overnight fast and into the same subjects 4 h after breakfast. 13C enrichments in C-1 and C-6 of glucose formed from urinary acetaminophen glucuronide compared with enrichments in C-1 and C-6 of plasma glucose provided an estimate of glycogen formation by the direct pathway. The specific activity of glucose from the glucuronide compared with the specific activity of the plasma glucose, along with the percentages of 14C in C-1 and C-6 of the glucose from the glucuronide, also provided an estimate of the amount of glycogen formed by the direct pathway. The estimates were similar. Those from (6-14C)glucose would have been higher than from (1-13C)glucose if the pentose cycle contribution to overall glucose utilization had been significant. After an overnight fast, during the last hour of infusion, 49 +/- 3% of the glycogen formed was formed via the direct pathway. After breakfast, at similar plasma glucose and insulin concentrations, the percentage increased to 69 +/- 7% (P less than 0.02). Thus the contributions of the pathways to hepatic glycogen formation depend on the dietary state of the individual. For a dietary regimen in which individuals consume multiple meals per day containing at least a moderate amount of carbohydrates most glycogen synthesis occurs by the direct pathway.

  9. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis

    PubMed Central

    Kraft, Guillaume; Williams, Phillip; Hajizadeh, Ian A.; Kamal, Maahum Z.; Smith, Marta; Farmer, Ben; Scott, Melanie; Neal, Doss; Donahue, E. Patrick; Allen, Eric; Cherrington, Alan D.

    2016-01-01

    Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion. PMID:27140398

  10. Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa).

    PubMed

    Farah, Benjamin L; Sinha, Rohit A; Wu, Yajun; Singh, Brijesh K; Lim, Andrea; Hirayama, Masahiro; Landau, Dustin J; Bay, Boon Huat; Koeberl, Dwight D; Yen, Paul M

    2017-03-20

    Glycogen storage disease type Ia (GSDIa, von Gierke disease) is the most common glycogen storage disorder. It is caused by the deficiency of glucose-6-phosphatase, an enzyme which catalyses the final step of gluconeogenesis and glycogenolysis. Clinically, GSDIa is characterized by fasting hypoglycaemia and hepatic glycogen and triglyceride overaccumulation. The latter leads to steatohepatitis, cirrhosis, and the formation of hepatic adenomas and carcinomas. Currently, little is known about the function of various organelles and their impact on metabolism in GSDIa. Accordingly, we investigated mitochondrial function in cell culture and mouse models of GSDIa. We found impairments in oxidative phosphorylation and changes in TCA cycle metabolites, as well as decreased mitochondrial membrane potential and deranged mitochondrial ultra-structure in these model systems. Mitochondrial content also was decreased, likely secondary to decreased mitochondrial biogenesis. These deleterious effects culminated in the activation of the mitochondrial apoptosis pathway. Taken together, our results demonstrate a role for mitochondrial dysfunction in the pathogenesis of GSDIa, and identify a new potential target for the treatment of this disease. They also provide new insight into the role of carbohydrate overload on mitochondrial function in other hepatic diseases, such as non-alcoholic fatty liver disease.

  11. Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa)

    PubMed Central

    Farah, Benjamin L.; Sinha, Rohit A.; Wu, Yajun; Singh, Brijesh K.; Lim, Andrea; Hirayama, Masahiro; Landau, Dustin J.; Bay, Boon Huat; Koeberl, Dwight D.; Yen, Paul M.

    2017-01-01

    Glycogen storage disease type Ia (GSDIa, von Gierke disease) is the most common glycogen storage disorder. It is caused by the deficiency of glucose-6-phosphatase, an enzyme which catalyses the final step of gluconeogenesis and glycogenolysis. Clinically, GSDIa is characterized by fasting hypoglycaemia and hepatic glycogen and triglyceride overaccumulation. The latter leads to steatohepatitis, cirrhosis, and the formation of hepatic adenomas and carcinomas. Currently, little is known about the function of various organelles and their impact on metabolism in GSDIa. Accordingly, we investigated mitochondrial function in cell culture and mouse models of GSDIa. We found impairments in oxidative phosphorylation and changes in TCA cycle metabolites, as well as decreased mitochondrial membrane potential and deranged mitochondrial ultra-structure in these model systems. Mitochondrial content also was decreased, likely secondary to decreased mitochondrial biogenesis. These deleterious effects culminated in the activation of the mitochondrial apoptosis pathway. Taken together, our results demonstrate a role for mitochondrial dysfunction in the pathogenesis of GSDIa, and identify a new potential target for the treatment of this disease. They also provide new insight into the role of carbohydrate overload on mitochondrial function in other hepatic diseases, such as non-alcoholic fatty liver disease. PMID:28317891

  12. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice

    PubMed Central

    Udoh, Uduak S.; Swain, Telisha M.; Filiano, Ashley N.; Gamble, Karen L.; Young, Martin E.

    2015-01-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. PMID:25857999

  13. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice.

    PubMed

    Udoh, Uduak S; Swain, Telisha M; Filiano, Ashley N; Gamble, Karen L; Young, Martin E; Bailey, Shannon M

    2015-06-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. Copyright © 2015 the American Physiological Society.

  14. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    SciTech Connect

    Ritchie, D.G. )

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with ({sup 14}C)glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant ({sup 14}C)glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, ({sup 14}C)glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6.

  15. Hepatic glycogen synthesis in the fetal mouse: An ultrastructural, morphometric, and autoradiographic investigation of the relationship between the smooth endoplasmic reticulum and glycogen

    SciTech Connect

    Breslin, J.S.

    1989-01-01

    Fetal rodent hepatocytes undergo a rapid and significant accumulation of glycogen prior to birth. The distinct association of the smooth endoplasmic reticulum (SER) with glycogen during glycogen synthesis documented in the adult hepatocyte has not been clearly demonstrated in the fetus. The experiments described in this dissertation tested the hypothesis that SER is present and functions in the synthesis of fetal hepatic glycogen. Biochemical analysis, light microscopic (LM) histochemistry and electron microscope (EM) morphometry demonstrated that fetal hepatic glycogen synthesis began on day 15, with maximum accumulation occurring between days 17-19. Glycogen accumulation began in a small population of cells. Both the number of cells containing glycogen and the quantity of glycogen per cell increased as glycogen accumulated. Smooth endoplasmic reticulum (SER) was observed on day 14 of gestation and throughout fetal hepatic glycogen synthesis, primarily as dilated ribosome-free terminal extensions of rough endoplasmic reticulum (RER), frequently associated with glycogen. SER was in close proximity to isolated particles of glycogen and at the periphery of large compact glycogen deposits. Morphometry demonstrated that the membrane surface of SER in the average fetal hepatocyte increased as glycogen accumulated through day 18 and dropped significantly as glycogen levels peaked on day 19. Parallel alterations in RER membrane surface, indicated overall increases in ER membrane surface. Autoradiography following administration of {sup 3}H-galactose demonstrated that newly synthesized glycogen was deposited near profiles of SER at day 16 and at day 18; however, at day 18 the majority of label was uniformly distributed over glycogen remote from profiles of SER.

  16. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis.

    PubMed

    Kir, Serkan; Beddow, Sara A; Samuel, Varman T; Miller, Paul; Previs, Stephen F; Suino-Powell, Kelly; Xu, H Eric; Shulman, Gerald I; Kliewer, Steven A; Mangelsdorf, David J

    2011-03-25

    Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.

  17. A novel mechanism for regulating hepatic glycogen synthesis involving serotonin and cyclin-dependent kinase-5.

    PubMed

    Tudhope, Susan J; Wang, Chung-Chi; Petrie, John L; Potts, Lloyd; Malcomson, Fiona; Kieswich, Julius; Yaqoob, Muhammad M; Arden, Catherine; Hampson, Laura J; Agius, Loranne

    2012-01-01

    Hepatic autonomic nerves regulate postprandial hepatic glucose uptake, but the signaling pathways remain unknown. We tested the hypothesis that serotonin (5-hydroxytryptamine [5-HT]) exerts stimulatory and inhibitory effects on hepatic glucose disposal. Ligands of diverse 5-HT receptors were used to identify signaling pathway(s) regulating glucose metabolism in hepatocytes. 5-HT had stimulatory and inhibitory effects on glycogen synthesis in hepatocytes mediated by 5-HT1/2A and 5-HT2B receptors, respectively. Agonists of 5-HT1/2A receptors lowered blood glucose and increased hepatic glycogen after oral glucose loading and also stimulated glycogen synthesis in freshly isolated hepatocytes with greater efficacy than 5-HT. This effect was blocked by olanzapine, an antagonist of 5-HT1/2A receptors. It was mediated by activation of phosphorylase phosphatase, inactivation of glycogen phosphorylase, and activation of glycogen synthase. Unlike insulin action, it was not associated with stimulation of glycolysis and was counteracted by cyclin-dependent kinase (cdk) inhibitors. A role for cdk5 was supported by adaptive changes in the coactivator protein p35 and by elevated glycogen synthesis during overexpression of p35/cdk5. These results support a novel mechanism for serotonin stimulation of hepatic glycogenesis involving cdk5. The opposing effects of serotonin, mediated by distinct 5-HT receptors, could explain why drugs targeting serotonin function can cause either diabetes or hypoglycemia in humans.

  18. Investigation and management of the hepatic glycogen storage diseases.

    PubMed

    Bhattacharya, Kaustuv

    2015-07-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease.

  19. Investigation and management of the hepatic glycogen storage diseases

    PubMed Central

    2015-01-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease. PMID:26835382

  20. Hormonal control of hepatic glycogen metabolism in food-deprived, continuously swimming coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Vijayan, M.M.; Maule, A.G.; Schreck, C.B.; Moon, T.W.

    1993-01-01

    The plasma cortisol concentration and liver cytosolic glucocorticoid receptor activities of continuously swimming, food-deprived coho salmon (Oncorhynchus kisutch) did not differ from those of resting, fed fish. Plasma glucose concentration was significantly higher in the exercising, starved fish, but there were no significant differences in either hepatic glycogen concentration or hepatic activities of glycogen phosphorylase, glycogen synthase, pyruvate kinase, or lactate dehydrogenase between the two groups. Total glucose production by hepatocytes did not differ significantly between the two groups; glycogen breakdown accounted for all the glucose produced in the resting, fed fish whereas it explained only 59% of the glucose production in the exercised animals. Epinephrine and glucagon stimulation of glucose production by hepatocytes was decreased in the exercised fish without significantly affecting hepatocyte glycogen breakdown in either group. Insulin prevented glycogen breakdown and enhanced glycogen deposition in exercised fish. The results indicate that food-deprived, continuously swimming coho salmon conserve glycogen by decreasing the responsiveness of hepatocytes to catabolic hormones and by increasing the responsiveness to insulin (anabolic hormone).

  1. Inhibition of Hepatic Glycogen Synthesis by Hyperhomocysteinemia Mediated by TRB3

    PubMed Central

    Liu, Wen-Jing; Ma, Lan-Qing; Liu, Wei-Hua; Zhou, Wei; Zhang, Ke-Qin; Zou, Cheng-Gang

    2011-01-01

    Recently, epidemiological and experimental studies have linked hyperhomocysteinemia (HHcy) to insulin resistance. However, whether HHcy impairs glucose homeostasis by affecting glycogenesis in the liver is not clear. In the present study, we investigated the effect of HHcy on hepatic glycogen synthesis. Hyperhomocysteinemia was induced in mice by drinking water containing two percent methionine. Mice with HHcy showed an increase in the phosphorylation of glycogen synthase and a significant decrease in hepatic glycogen content and the rate of glycogen synthesis. The expression of TRB3 (tribbles-related protein 3) was up-regulated in the liver of mice with HHcy, concomitantly with the dephosphorylation of glycogen synthase kinase-3β and Akt. The knockdown of TRB3 by short hairpin RNA suppressed the dephosphorylation of these two kinases. Homocysteine induced an increase in the levels of hepatic cAMP and cAMP response element-binding protein phosphorylation, which in turn up-regulated the expression of peroxisome proliferator–activated receptor (PPAR)-γ coactivator-1α and TRB3. The inhibition of PPAR-α by its inhibitor, MK886, or knockdown of PPAR-α by small interfering RNA significantly inhibited the expression of TRB3 induced by homocysteine. The current study demonstrates that HHcy impairs hepatic glycogen synthesis by inducing the expression of TRB3. These results provide a novel explanation for the development and progression of insulin resistance in HHcy. PMID:21435438

  2. CLOCK Regulates Circadian Rhythms of Hepatic Glycogen Synthesis through Transcriptional Activation of Gys2*

    PubMed Central

    Doi, Ryosuke; Oishi, Katsutaka; Ishida, Norio

    2010-01-01

    Hepatic glycogen content is important for glucose homeostasis and exhibits robust circadian rhythms that peak at the end of the active phase in mammals. The activities of the rate-limiting enzymes for glycogenesis and glycogenolysis also show circadian rhythms, and the balance between them forms the circadian rhythm of the hepatic glycogen content. However, no direct evidence has yet implicated the circadian clock in the regulation of glycogen metabolism at the molecular level. We show here that a Clock gene mutation damps the circadian rhythm of the hepatic glycogen content, as well as the circadian mRNA and protein expression of Gys2 (glycogen synthase 2), which is the rate-limiting enzyme of glycogenesis in the liver. Transient reporter assays revealed that CLOCK drives the transcriptional activation of Gys2 via two tandemly located E-boxes. Chromatin immunoprecipitation assays of liver tissues revealed that CLOCK binds to these E-box elements in vivo, and real time reporter assays showed that these elements are sufficient for circadian Gys2 expression in vitro. Thus, CLOCK regulates the circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. PMID:20430893

  3. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  4. Hepatic overexpression of a constitutively active form of liver glycogen synthase improves glucose homeostasis.

    PubMed

    Ros, Susana; Zafra, Delia; Valles-Ortega, Jordi; García-Rocha, Mar; Forrow, Stephen; Domínguez, Jorge; Calbó, Joaquim; Guinovart, Joan J

    2010-11-26

    In this study, we tested the efficacy of increasing liver glycogen synthase to improve blood glucose homeostasis. The overexpression of wild-type liver glycogen synthase in rats had no effect on blood glucose homeostasis in either the fed or the fasted state. In contrast, the expression of a constitutively active mutant form of the enzyme caused a significant lowering of blood glucose in the former but not the latter state. Moreover, it markedly enhanced the clearance of blood glucose when fasted rats were challenged with a glucose load. Hepatic glycogen stores in rats overexpressing the activated mutant form of liver glycogen synthase were enhanced in the fed state and in response to an oral glucose load but showed a net decline during fasting. In order to test whether these effects were maintained during long term activation of liver glycogen synthase, we generated liver-specific transgenic mice expressing the constitutively active LGS form. These mice also showed an enhanced capacity to store glycogen in the fed state and an improved glucose tolerance when challenged with a glucose load. Thus, we conclude that the activation of liver glycogen synthase improves glucose tolerance in the fed state without compromising glycogenolysis in the postabsorptive state. On the basis of these findings, we propose that the activation of liver glycogen synthase may provide a potential strategy for improvement of glucose tolerance in the postprandial state.

  5. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    SciTech Connect

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-03-05

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 ..mu..mol/min/kg containing tracer (6-/sup 3/H)- and (U-/sup 14/C)-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 ..mu..mol/min/g) did not differ between a glucose infusion rate of 20 and 230 ..mu..mol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ((/sup 3/H) specific activity in hepatic glycogen/(/sup 3/H) specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration.

  6. Prevalent role of the insulin receptor isoform A in the regulation of hepatic glycogen metabolism in hepatocytes and in mice.

    PubMed

    Diaz-Castroverde, Sabela; Baos, Selene; Luque, María; Di Scala, Marianna; González-Aseguinolaza, Gloria; Gómez-Hernández, Almudena; Beneit, Nuria; Escribano, Oscar; Benito, Manuel

    2016-12-01

    In the postprandial state, the liver regulates glucose homeostasis by glucose uptake and conversion to glycogen and lipids. Glucose and insulin signalling finely regulate glycogen synthesis through several mechanisms. Glucose uptake in hepatocytes is favoured by the insulin receptor isoform A (IRA), rather than isoform B (IRB). Thus, we hypothesised that, in hepatocytes, IRA would increase glycogen synthesis by promoting glucose uptake and glycogen storage. We addressed the role of insulin receptor isoforms on glycogen metabolism in vitro in immortalised neonatal hepatocytes. In vivo, IRA or IRB were specifically expressed in the liver using adeno-associated virus vectors in inducible liver insulin receptor knockout (iLIRKO) mice, a model of type 2 diabetes. The role of IR isoforms in glycogen synthesis and storage in iLIRKO was subsequently investigated. In immortalised hepatocytes, IRA, but not IRB expression induced an increase in insulin signalling that was associated with elevated glycogen synthesis, glycogen synthase activity and glycogen storage. Similarly, elevated IRA, but not IRB expression in the livers of iLIRKO mice induced an increase in glycogen content. We provide new insight into the role of IRA in the regulation of glycogen metabolism in cultured hepatocytes and in the livers of a mouse model of type 2 diabetes. Our data strongly suggest that IRA is more efficient than IRB at promoting glycogen synthesis and storage. Therefore, we suggest that IRA expression in the liver could provide an interesting therapeutic approach for the regulation of hepatic glucose content and glycogen storage.

  7. Anti-insulin effects of amylin and calcitonin-gene-related peptide on hepatic glycogen metabolism.

    PubMed Central

    Gómez-Foix, A M; Rodriguez-Gil, J E; Guinovart, J J

    1991-01-01

    To evaluate the effects of amylin and calcitonin-gene-related peptide (CGRP) as anti-insulin agents in hepatic tissue, we have studied whether these two agents counteracted the action of insulin on glycogen metabolism in isolated rat hepatocytes. In this system insulin stimulates [14C]glucose incorporation into glycogen and activates glycogen synthase. Incubation of the cells with insulin in the presence of amylin or CGRP markedly blocked the insulin stimulation of these two parameters, whereas amylin or CGRP acting alone did not induce any effect. We also examined the ability of amylin and CGRP to modify the anti-glucagon effects of insulin. In the presence of 100 nM-amylin or -CGRP, 10 nM-insulin was almost unable to counteract the inactivation of glycogen synthase and the activation of phosphorylase induced by glucagon. In contrast, neither amylin nor CGRP modified the effect of glucagon on these two enzymes. Our results indicate that amylin and CGRP are able to impair the action of insulin on hepatic glycogen metabolism. PMID:1905922

  8. The glucose-galactose paradox in neonatal murine hepatic glycogen synthesis

    SciTech Connect

    Kunst, C.; Kliegman, R.; Trindade, C. )

    1989-11-01

    In adults glucose incorporation to glycogen is indirect after recycling from lactate. In neonates galactose entry to glycogen exceeds that for glucose, but the pathway is unknown. The pathway of hexose incorporation to glycogen was studied in 5-7-day-old rats and 6-h-old rats injected intraperitoneally (IP) with either double-labeled (6-3H)glucose (nonrecycling), (U-14C)glucose (recycling), or (6-3H)glucose and (U-14C)galactose in saline. In another group of pups, 1 g/kg of glucose or galactose was administered in addition to tracers to determine glycemia and net glycogen synthesis between 15 and 180 min after injection. Blood glucose increased from 3.4 +/- 0.4 to 8.5 +/- 1.5 mM in 5-7-day-old pups in response to IP glucose; there was no glycemic response to galactose, although galactose levels increased from 0.5 to 6.3 mM at 15 min. Hepatic glycogen increased after IP glucose from 14 +/- 2 at 15 min to 30 +/- 3 at 120 min (P less than 0.01), whereas after IP galactose glycogen was 44 +/- 6 mumol/g at 120 min (P less than 0.05). After IP glucose, 3H and 14C disintegration per minute in glycogen increased slowly with 14C exceeding 3H at 120 and 180 min. In contrast IP (14C)galactose resulted in a much greater peak of 14C incorporation into glycogen. The ratio of 3H to 14C in glycogen relative to the injectate after IP glucose decreased from 0.69 +/- 0.12 to 0.36 +/- 0.03 (P less than 0.01) between 15 to 180 min, whereas the ratio after galactose was 0.20 +/- 0.007 to 0.15 +/- 0.02 at these times. The 6-h-old pups also demonstrated augmented incorporation of (14C)galactose in glycogen relative to (3H-14C)glucose. In contrast to 5-7-day-old pups there was no evidence of glucose recycling in 6-h-old pups. In conclusion galactose entry into glycogen exceeds that for glucose and is not dependent on recycling.

  9. The effect of antenatal administration of solcoseryl on hepatic glycogen synthesis in rat fetuses with intrauterine growth retardation.

    PubMed

    Takahashi, H; Cheng, K M; Araki, T

    1993-06-01

    The effect of antenatal solcoseryl administration on hepatic glycogen synthesis and storage was studied in normal developing and intrauterine growth-retarded (IUGR) rat fetuses using biochemical analyses. The maximal effect of solcoseryl occurred 2 hours after administration. The glycogen content of the liver showed a significant increase in normal and IUGR fetuses with antenatal solcoseryl administration compared to their non-solcoseryl counterparts (p < 0.05). The activities of glycogen synthase enzymes, total and active forms, showed significant increases, at p < 0.05 and p < 0.005, respectively, in IUGR fetuses with antenatal solcoseryl administration. Active synthase also increased in normal fetuses with antenatal solcoseryl administration (p < 0.05). There were no significant changes in the activities of glycogen phosphorylase enzyme. These findings suggest that antenatal solcoseryl administration stimulates hepatic glycogen synthesis and storage in IUGR rat fetuses, and thus might favorably influence the development of neonatal hypoglycemia.

  10. ²H enrichment distribution of hepatic glycogen from ²H₂O reveals the contribution of dietary fructose to glycogen synthesis.

    PubMed

    Delgado, Teresa C; Martins, Fátima O; Carvalho, Filipa; Gonçalves, Ana; Scott, Donald K; O'Doherty, Robert; Macedo, M Paula; Jones, John G

    2013-02-15

    Dietary fructose can benefit or hinder glycemic control, depending on the quantity consumed, and these contrasting effects are reflected by alterations in postprandial hepatic glycogen synthesis. Recently, we showed that ²H enrichment of glycogen positions 5 and 2 from deuterated water (²H₂O) informs direct and indirect pathway contributions to glycogenesis in naturally feeding rats. Inclusion of position 6(S) ²H enrichment data allows indirect pathway sources to be further resolved into triose phosphate and Krebs cycle precursors. This analysis was applied to six rats that had fed on standard chow (SC) and six rats that had fed on SC plus 35% sucrose in their drinking water (HS). After 2 wk, hepatic glycogenesis sources during overnight feeding were determined by ²H₂O administration and postmortem analysis of glycogen ²H enrichment at the conclusion of the dark period. Net overnight hepatic glycogenesis was similar between SC and HS rodents. Whereas direct pathway contributions were similar (403 ± 71 μmol/g dry wt HS vs. 578 ± 76 μmol/g dry wt SC), triose phosphate contributions were significantly higher for HS compared with SC (382 ± 61 vs. 87 ± 24 μmol/g dry wt, P < 0.01) and Krebs cycle inputs lower for HS compared with SC (110 ± 9 vs. 197 ± 32 μmol/g dry wt, P < 0.05). Analysis of plasma glucose ²H enrichments at the end of the feeding period also revealed a significantly higher fractional contribution of triose phosphate to plasma glucose levels in HS vs. SC. Hence, the ²H enrichment distributions of hepatic glycogen and glucose from ²H₂O inform the contribution of dietary fructose to hepatic glycogen and glucose synthesis.

  11. Lipids in hepatic glycogen storage diseases: pathophysiology, monitoring of dietary management and future directions.

    PubMed

    Derks, Terry G J; van Rijn, Margreet

    2015-05-01

    Hepatic glycogen storage diseases (GSD) underscore the intimate relationship between carbohydrate and lipid metabolism. The hyperlipidemias in hepatic GSD reflect perturbed intracellular metabolism, providing biomarkers in blood to monitor dietary management. In different types of GSD, hyperlipidemias are of a different origin. Hypertriglyceridemia is most prominent in GSD type Ia and associated with long-term outcome morbidity, like pancreatitis and hepatic adenomas. In the ketotic subtypes of GSD, hypertriglyceridemia reflects the age-dependent fasting intolerance, secondary lipolysis and increased mitochondrial fatty acid oxidation. The role of high protein diets is established for ketotic types of GSD, but non-traditional dietary interventions (like medium-chain triglycerides and the ketogenic diet) in hepatic GSD are still controversial and necessitate further studies. Patients with these rare inherited disorders of carbohydrate metabolism meet several criteria of the metabolic syndrome, therefore close monitoring for cardiovascular diseases in ageing GSD patients may be justified.

  12. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia.

    PubMed

    Cho, Jun-Ho; Kim, Goo-Young; Pan, Chi-Jiunn; Anduaga, Javier; Choi, Eui-Ju; Mansfield, Brian C; Chou, Janice Y

    2017-05-01

    A deficiency in glucose-6-phosphatase-α (G6Pase-α) in glycogen storage disease type Ia (GSD-Ia) leads to impaired glucose homeostasis and metabolic manifestations including hepatomegaly caused by increased glycogen and neutral fat accumulation. A recent report showed that G6Pase-α deficiency causes impairment in autophagy, a recycling process important for cellular metabolism. However, the molecular mechanism underlying defective autophagy is unclear. Here we show that in mice, liver-specific knockout of G6Pase-α (L-G6pc-/-) leads to downregulation of sirtuin 1 (SIRT1) signaling that activates autophagy via deacetylation of autophagy-related (ATG) proteins and forkhead box O (FoxO) family of transcriptional factors which transactivate autophagy genes. Consistently, defective autophagy in G6Pase-α-deficient liver is characterized by attenuated expressions of autophagy components, increased acetylation of ATG5 and ATG7, decreased conjugation of ATG5 and ATG12, and reduced autophagic flux. We further show that hepatic G6Pase-α deficiency results in activation of carbohydrate response element-binding protein, a lipogenic transcription factor, increased expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), a lipid regulator, and suppressed expression of PPAR-α, a master regulator of fatty acid β-oxidation, all contributing to hepatic steatosis and downregulation of SIRT1 expression. An adenovirus vector-mediated increase in hepatic SIRT1 expression corrects autophagy defects but does not rectify metabolic abnormalities associated with G6Pase-α deficiency. Importantly, a recombinant adeno-associated virus (rAAV) vector-mediated restoration of hepatic G6Pase-α expression corrects metabolic abnormalities, restores SIRT1-FoxO signaling, and normalizes defective autophagy. Taken together, these data show that hepatic G6Pase-α deficiency-mediated down-regulation of SIRT1 signaling underlies defective hepatic autophagy in GSD-Ia.

  13. Perioperative management of hemostasis for surgery of benign hepatic adenomas in patients with glycogen storage disease type ia.

    PubMed

    Mollet-Boudjemline, Alix; Hubert-Buron, Aurélie; Boyer-Neumann, Catherine; Aldea, Roxana; Franco, Dominique; Trioche-Eberschweiller, Pascale; Mas, Anne-Elisabeth; Mabille, Mylène; Labrune, Philippe; Gajdos, Vincent

    2011-01-01

    The development of hepatocellular adenomas in the liver of patients with glycogen storage disease type I is a well-known complication of the disease. Surgical procedures and perioperative managements described so far have reported persistent and important morbidity. We report here a series of six patients (three males and three females) who underwent hepatic resection, and we propose a new hemostatic management protocol comprising glucose infusion, corticosteroids, desmopressin, and antifibrinolytic drugs, used to prevent efficaciously hepatic hemorrhage due to glycogen storage disease (GSD) platelet dysfunction.

  14. Effect of Repeated Glucagon Doses on Hepatic Glycogen in Type 1 Diabetes: Implications for a Bihormonal Closed-Loop System

    PubMed Central

    El Youssef, Joseph; Bakhtiani, Parkash A.; Cai, Yu; Stobbe, Jade M.; Branigan, Deborah; Ramsey, Katrina; Jacobs, Peter; Reddy, Ravi; Woods, Mark; Ward, W. Kenneth

    2015-01-01

    OBJECTIVE To evaluate subjects with type 1 diabetes for hepatic glycogen depletion after repeated doses of glucagon, simulating delivery in a bihormonal closed-loop system. RESEARCH DESIGN AND METHODS Eleven adult subjects with type 1 diabetes participated. Subjects underwent estimation of hepatic glycogen using 13C MRS. MRS was performed at the following four time points: fasting and after a meal at baseline, and fasting and after a meal after eight doses of subcutaneously administered glucagon at a dose of 2 µg/kg, for a total mean dose of 1,126 µg over 16 h. The primary and secondary end points were, respectively, estimated hepatic glycogen by MRS and incremental area under the glucose curve for a 90-min interval after glucagon administration. RESULTS In the eight subjects with complete data sets, estimated glycogen stores were similar at baseline and after repeated glucagon doses. In the fasting state, glycogen averaged 21 ± 3 g/L before glucagon administration and 25 ± 4 g/L after glucagon administration (mean ± SEM) (P = NS). In the fed state, glycogen averaged 40 ± 2 g/L before glucagon administration and 34 ± 4 g/L after glucagon administration (P = NS). With the use of an insulin action model, the rise in glucose after the last dose of glucagon was comparable to the rise after the first dose, as measured by the 90-min incremental area under the glucose curve. CONCLUSIONS In adult subjects with well-controlled type 1 diabetes (mean A1C 7.2%), glycogen stores and the hyperglycemic response to glucagon administration are maintained even after receiving multiple doses of glucagon. This finding supports the safety of repeated glucagon delivery in the setting of a bihormonal closed-loop system. PMID:26341131

  15. Glycogen storage disease type Ia mice with less than 2% of normal hepatic glucose-6-phosphatase-α activity restored are at risk of developing hepatic tumors.

    PubMed

    Kim, Goo-Young; Lee, Young Mok; Kwon, Joon Hyun; Cho, Jun-Ho; Pan, Chi-Jiunn; Starost, Matthew F; Mansfield, Brian C; Chou, Janice Y

    2017-03-01

    Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA) and carcinoma (HCC), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). We have previously shown that G6pc-/- mice receiving gene transfer mediated by rAAV-G6PC, a recombinant adeno-associated virus (rAAV) vector expressing G6Pase-α, and expressing 3-63% of normal hepatic G6Pase-α activity maintain glucose homeostasis and do not develop HCA/HCC. However, the threshold of hepatic G6Pase-α activity required to prevent tumor formation remained unknown. In this study, we constructed rAAV-co-G6PC, a rAAV vector expressing a codon-optimized (co) G6Pase-α and showed that rAAV-co-G6PC was more efficacious than rAAV-G6PC in directing hepatic G6Pase-α expression. Over an 88-week study, we showed that both rAAV-G6PC- and rAAV-co-G6PC-treated G6pc-/- mice expressing 3-33% of normal hepatic G6Pase-α activity (AAV mice) maintained glucose homeostasis, lacked HCA/HCC, and were protected against age-related obesity and insulin resistance. Of the eleven rAAV-G6PC/rAAV-co-G6PC-treated G6pc-/- mice harboring 0.9-2.4% of normal hepatic G6Pase-α activity (AAV-low mice), 3 expressing 0.9-1.3% of normal hepatic G6Pase-α activity developed HCA/HCC, while 8 did not (AAV-low-NT). Finally, we showed that the AAV-low-NT mice exhibited a phenotype indistinguishable from that of AAV mice expressing ≥3% of normal hepatic G6Pase-α activity. The results establish the threshold of hepatic G6Pase-α activity required to prevent HCA/HCC and show that GSD-Ia mice harboring <2% of normal hepatic G6Pase-α activity are at risk of tumor development. Published by Elsevier Inc.

  16. Perioperative management of benign hepatic tumors in patients with glycogen storage disease type Ia.

    PubMed

    Oshita, Akihiko; Itamoto, Toshiyuki; Amano, Hironobu; Ohdan, Hideki; Tashiro, Hirotaka; Asahara, Toshimasa

    2008-01-01

    Glycogen storage disease type Ia (GSD-Ia; von Gierke disease) is an inherited disorder caused by glucose-6-phosphatase deficiency, and there have been some reports of hepatic tumors in patients with this disease. We report two patients with benign hepatic tumors with GSD-Ia. One is a 19-year-old man who underwent segmentectomy 4 for a focal nodular hyperplasia, and the other is a 31-year-old woman who underwent segmentectomies 3, 5, and 6 for hepatic adenomas. Two significant perioperative complications, resulting from the carbohydrate metabolic disorders, hypoglycemia and metabolic acidosis, occurred in both patients. We managed the metabolic complications successfully by administering a sufficient volume of glucose intravenously. Close perioperative monitoring of blood glucose and lactate concentrations is essential in the perioperative management of patients with GSD-Ia. The intravenous administration of glucose, starting with a smaller dose and then increasing the dose, is adequate management for lactic acidosis with or without hypoglycemia during the perioperative period.

  17. Elevated serum biotinidase activity in hepatic glycogen storage disorders--a convenient biomarker.

    PubMed

    Paesold-Burda, P; Baumgartner, M R; Santer, R; Bosshard, N U; Steinmann, B

    2007-11-01

    An elevated serum biotinidase activity in patients with glycogen storage disease (GSD) type Ia has been reported previously. The aim of this work was to investigate the specificity of the phenomenon and thus we expanded the study to other types of hepatic GSDs. Serum biotinidase activity was measured in a total of 68 GSD patients and was compared with that of healthy controls (8.7 +/- 1.0; range 7.0-10.6 mU/ml; n = 26). We found an increased biotinidase activity in patients with GSD Ia (17.7 +/- 3.9; range: 11.4-24.8; n = 21), GSD I non-a (20.9 +/- 5.6; range 14.6-26.0; n = 4), GSD III (12.5 +/- 3.6; range 7.8-19.1; n = 13), GSD VI (15.4 +/- 2.0; range 14.1-17.7; n = 3) and GSD IX (14.0 +/- 3.8; range: 7.5-21.6; n = 22). The sensitivity of this test was 100% for patients with GSD Ia, GSD I non-a and GSD VI, 62% for GSD III, and 77% for GSD IX, indicating reduced sensitivity for GSD III and GSD IX, respectively. In addition, we found elevated biotinidase activity in all sera from 5 patients with Fanconi-Bickel Syndrome (15.3 +/- 3.7; range 11.0-19.4). Taken together, we propose serum biotinidase as a diagnostic biomarker for hepatic glycogen storage disorders.

  18. Brain glucagon-like peptide–1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage

    PubMed Central

    Knauf, Claude; Cani, Patrice D.; Perrin, Christophe; Iglesias, Miguel A.; Maury, Jean François; Bernard, Elodie; Benhamed, Fadilha; Grémeaux, Thierry; Drucker, Daniel J.; Kahn, C. Ronald; Girard, Jean; Tanti, Jean François; Delzenne, Nathalie M.; Postic, Catherine; Burcelin, Rémy

    2005-01-01

    Intestinal glucagon-like peptide–1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9–39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state. PMID:16322793

  19. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage.

    PubMed

    Knauf, Claude; Cani, Patrice D; Perrin, Christophe; Iglesias, Miguel A; Maury, Jean François; Bernard, Elodie; Benhamed, Fadilha; Grémeaux, Thierry; Drucker, Daniel J; Kahn, C Ronald; Girard, Jean; Tanti, Jean François; Delzenne, Nathalie M; Postic, Catherine; Burcelin, Rémy

    2005-12-01

    Intestinal glucagon-like peptide-1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9-39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state.

  20. Increased Laforin and Laforin Binding to Glycogen Underlie Lafora Body Formation in Malin-deficient Lafora Disease*

    PubMed Central

    Tiberia, Erica; Turnbull, Julie; Wang, Tony; Ruggieri, Alessandra; Zhao, Xiao-Chu; Pencea, Nela; Israelian, Johan; Wang, Yin; Ackerley, Cameron A.; Wang, Peixiang; Liu, Yan; Minassian, Berge A.

    2012-01-01

    The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen. PMID:22669944

  1. Hepatic Overexpression of CD36 Improves Glycogen Homeostasis and Attenuates High-Fat Diet-Induced Hepatic Steatosis and Insulin Resistance

    PubMed Central

    Garbacz, Wojciech G.; Lu, Peipei; Miller, Tricia M.; Poloyac, Samuel M.; Eyre, Nicholas S.; Mayrhofer, Graham; Xu, Meishu; Ren, Songrong

    2016-01-01

    The common complications in obesity and type 2 diabetes include hepatic steatosis and disruption of glucose-glycogen homeostasis, leading to hyperglycemia. Fatty acid translocase (FAT/CD36), whose expression is inducible in obesity, is known for its function in fatty acid uptake. Previous work by us and others suggested that CD36 plays an important role in hepatic lipid homeostasis, but the results have been conflicting and the mechanisms were not well understood. In this study, by using CD36-overexpressing transgenic (CD36Tg) mice, we uncovered a surprising function of CD36 in regulating glycogen homeostasis. Overexpression of CD36 promoted glycogen synthesis, and as a result, CD36Tg mice were protected from fasting hypoglycemia. When challenged with a high-fat diet (HFD), CD36Tg mice showed unexpected attenuation of hepatic steatosis, increased very low-density lipoprotein (VLDL) secretion, and improved glucose tolerance and insulin sensitivity. The HFD-fed CD36Tg mice also showed decreased levels of proinflammatory hepatic prostaglandins and 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictive and proinflammatory arachidonic acid metabolite. We propose that CD36 functions as a protective metabolic sensor in the liver under lipid overload and metabolic stress. CD36 may be explored as a valuable therapeutic target for the management of metabolic syndrome. PMID:27528620

  2. [Mitochondrial dysfunction in children with hepatic forms of glycogen storage disease].

    PubMed

    Kurbatova, O V; Izmaĭlova, T D; Surkov, A N; Namazova-Baranova, L S; Poliakova, S I; Miroshkina, L V; Semenova, G F; Samokhina, I V; Kapustina, E Iu; Dukhova, Z N; Potapov, A S; Petrichuk, S V

    2014-01-01

    The purpose of the study was to assess mitochondrial dysfunction severity in patients with hepatic forms of glycogen storage disease (GSD). We examined 53 children with GSD in the dynamics. Distribution of children by disease types was: 1st group--children with GSD type I, 2nd group--children with GSD type III, 3rd group--children with GSD type VI and IX; comparison group consisted of 34 healthy children. Intracellular dehydrogenases activity: succinate dehydrogenase (SDH), glycerol-3-phosphate-dehydrogenase (GPDH). nicotinamideadenin-H-dehydrogenase (NADH-D) and lactatdehydrogenase (LDH) was measured using the quantitative cytochemical method in the peripheral lymphocytes. It was revealed decrease of SDH- (p < 0.001) and GPDH-activities (p < 0.001), along with increase of the NADH-D activity (p < 0.05) in all patients with GSD, (SDH/ NADH-D) index was decreased (p < 0.001). LDH activity was increased in groups 1 (p < 0.05) and 3 (p < 0.01), compared with comparison group. The most pronounced intracellular enzymes activity deviations were observed in children with GSD type I, that correspond to more severe clinical form of GSD. It was found strong correlation between intracellular enzymes activity and both hepatomegaly level (R = 0.867) and metabolic acidosis severity (R = 0.987). Our investigation revealed features of mitochondrial dysfunction in children with GSD, depending on the GSD type. Activities of lymphocytes enzymes correlates with the main disease severity parameters and can be used as an additional diagnostic criteria in children with hepatic form of GSD.

  3. Formation of new high density glycogen-microtubule structures is induced by cardiac steroids.

    PubMed

    Fridman, Eleonora; Lichtstein, David; Rosen, Haim

    2012-02-24

    Cardiac steroids (CS), an important class of naturally occurring compounds, are synthesized in plants and animals. The only established receptor for CS is the ubiquitous Na(+),K(+)-ATPase, a major plasma membrane transporter. The binding of CS to Na(+),K(+)-ATPase causes the inhibition of Na(+) and K(+) transport and elicits cell-specific activation of several intracellular signaling mechanisms. It is well documented that the interaction of CS with Na(+),K(+)-ATPase is responsible for numerous changes in basic cellular physiological properties, such as electrical plasma membrane potential, cell volume, intracellular [Ca(2+)] and pH, endocytosed membrane traffic, and the transport of other solutes. In the present study we show that CS induces the formation of dark structures adjacent to the nucleus in human NT2 and ACHN cells. These structures, which are not surrounded by membranes, are clusters of glycogen and a distorted microtubule network. Formation of these clusters results from a relocation of glycogen and microtubules in the cells, two processes that are independent of one another. The molecular mechanisms underlying the formation of the clusters are mediated by the Na(+),K(+)-ATPase, ERK1/2 signaling pathway, and an additional unknown factor. Similar glycogen clusters are induced by hypoxia, suggesting that the CS-induced structural change, described in this study, may be part of a new type of cellular stress response.

  4. Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells.

    PubMed

    Shieh, Jiunn-Min; Wu, Hung-Tsung; Cheng, Kai-Chun; Cheng, Juei-Tang

    2009-11-01

    Low levels of melatonin in circulation had been reported to be related to the development of diabetes. Melatonin administration in animals increases hepatic glycogen content to lower blood glucose. However, the signaling pathway for these effects is still unclear. The present study shows that intraperitoneal injection of 10 mg/kg melatonin ameliorated glucose utilization and insulin sensitivity in high fat diet-induced diabetic mice with an increase in hepatic glycogen and improvement in liver steatosis. We used HepG2 cells to investigate the signaling pathways for the melatonin-stimulated hepatic glycogen increment. Treatment of HepG2 cells with 1 nm melatonin markedly increased glycogen synthesis which was blocked by the melatonin receptor antagonist luzindole. In addition, melatonin increased the phosphorylation of subcellular signals at the level of protein kinase C zeta (PKCzeta), Akt, and glycogen synthase kinase 3beta (GSK3beta) while the increase in glycogen synthesis induced by melatonin was inhibited by PKCzeta pseudo-peptide. However, 3',5'-cyclic adenosine monophosphate-activated protein kinase (AMPK) was not influenced by melatonin treatment. Taken together, melatonin improves glucose intolerance and insulin resistance in high fat diet-induced diabetic mice and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in HepG2 cells.

  5. Glycogenic hepatopathy, an underdiagnosed cause of relapsing hepatitis in uncontrolled type 1 diabetes mellitus

    PubMed Central

    Sarkhy, Ahmed A. Al; Zaidi, Zafar A.; Babiker, Amir M.

    2017-01-01

    Glycogenic hepatopathy is a rare condition that causes significant hepatomegaly and elevated liver enzyme levels in uncontrolled type 1 diabetic patients. It develops due to excessive accumulation of glycogen in the hepatocytes. It is typically reversible with good glycemic control and rarely progresses to mild fibrosis, but not cirrhosis. PMID:28042636

  6. [History case of multiple hepatic adenomas in adolescent with severe course of glycogen storage disease type lb].

    PubMed

    Surkov, A N; Namazova-Baranova, L S; Potapov, A S; Savost'yanov, K V; Pushkov, A A; Nikitin, A G; Polyakova, S I; Ryazanov, M V; Kustova, O V; Barskii, V I; Stepanyan, M Yu

    2014-01-01

    We represented a case history of multiple hepatic adenomas in an adolescent with severe clinical course of glycogen storage disease type lb (compound heterozygous mutations c.1042_1043delCT and c.817G>A in the SLC37A4). The patient was prescribed a raw cornstarch and hepatoprotectors therapy, but he and his parents had low compliance to treatment. At the age of 13,5 years ultrasound investigation and computed tomography revealed multiple adenomas. Due to the severe condition of the patient it was impossible to perform focal hepatic biopsy. At present time the patient receives treatment focused on correction of metabolic disturbances, thereafter an applicability of exploratory puncture will be settled for the further patient surveillance. The modern data on causes and risk factors of hepatic adenomas in such patients, the possibility of their malignization, the algorithm of the follow-up and the methods of treatment are presented in the discussion.

  7. Lobular and cellular patterns of early hepatic glycogen deposition in the rat as observed by light and electron microscopic radioautography after injection of /sup 3/H-galactose

    SciTech Connect

    Michaels, J.E.; Hung, J.T.; Garfield, S.A.; Cardell, R.R. Jr.

    1984-05-01

    Very low hepatic glycogen levels are achieved by overnight fasting of adrenalectomized (ADX) rats. Subsequent injection of dexamethasone (DEX), a synthetic glucocorticoid, stimulates marked increases in glycogen synthesis. Using this system and injecting /sup 3/H-galactose as a glycogen precursor 1 hr prior to sacrifice, the intralobular and intracellular patterns of labeled glycogen deposition were studied by light (LM) and electron (EM) microscopic radioautography. LM radioautography revealed that 1 hr after DEX treatment, labeling patterns for both periportal and centrilobular hepatocytes resembled those in rats with no DEX treatment: 18% of the hepatocytes were unlabeled, and 82% showed light labeling. Two hours after treatment with DEX, 14% of the hepatocytes remained unlabeled, and 78% were lightly labeled; however, 8% of the cells, located randomly throughout the lobule, were intensely labeled. An increased number of heavily labeled cells (26%) appeared 3 hr after DEX treatment; and by 5 hr 91% of the hepatocytes were intensely labeled. Label over the periportal cells at this time was aggregated, whereas centrilobular cells displayed dispersed label. EM radioautographs showed that 2 to 3 hr after DEX injection initial labeling of hepatocytes, regardless of their intralobular location, occurred over foci of smooth endoplasmic reticulum (SER) and small electron-dense particles of presumptive glycogen, and in areas of SER and distinct glycogen particles. After 5 hrs of treatment with DEX, the intracellular distribution of label reflected the glycogen patterns characteristic of periportal or centrilobular regions.

  8. Current status of hepatic glycogen storage disease in Japan: clinical manifestations, treatments and long-term outcomes.

    PubMed

    Kido, Jun; Nakamura, Kimitoshi; Matsumoto, Shirou; Mitsubuchi, Hiroshi; Ohura, Toshihiro; Shigematsu, Yosuke; Yorifuji, Tohru; Kasahara, Mureo; Horikawa, Reiko; Endo, Fumio

    2013-05-01

    Many reports have been published on the long-term outcome and treatment of hepatic glycogen storage diseases (GSDs) overseas; however, none have been published from Japan. We investigated the clinical manifestations, treatment, and prognosis of 127 hepatic GSD patients who were evaluated and treated between January 1999 and December 2009. A characteristic genetic pattern was noted in the Japanese GSD patients: most GSD Ia patients had the g727t mutation, and many GSD Ib patients had the W118R mutation. Forty-one percent (14/34) of GSD Ia patients and 18% (2/11) of GSD Ib patients of ages 13 years 4 months had liver adenoma. Among subjects aged 10 years, 19% (7/36) of the GSD Ia patients and none of the GSD Ib patients had renal dysfunction. The mean height of male GSD Ia patients aged 18 years was 160.8±10.6 cm (n=14), and that of their female counterparts was 147.8±3.80 cm (n=9). Patients with hepatic GSDs develop a variety of symptoms but can survive in the long term by diet therapy, corn starch treatment and supportive care. Liver transplantation for hepatic GSDs is an important treatment strategy and can help improve the patients'quality of life.

  9. Labeling of hepatic glycogen after short- and long-term stimulation of glycogen synthesis in rats injected with 3H-galactose

    SciTech Connect

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr. )

    1990-08-01

    The effects of short- and long-term stimulation of glycogen synthesis elicited by dexamethasone were studied by light (LM) and electron (EM) microscopic radioautography (RAG) and biochemical analysis. Adrenalectomized rats were fasted overnight and pretreated for short- (3 hr) or long-term (14 hr) periods with dexamethasone prior to intravenous injection of tracer doses of 3H-galactose. Analysis of LM-RAGs from short-term rats revealed that about equal percentages (44%) of hepatocytes became heavily or lightly labeled 1 hr after labeling. The percentage of heavily labeled cells increased slightly 6 hr after labeling, and unlabeled glycogen became apparent in some hepatocytes. The percentage of heavily labeled cells had decreased somewhat 12 hr after labeling, and more unlabeled glycogen was evident. In the long-term rats 1 hr after labeling, a higher percentage of heavily labeled cells (76%) was observed compared to short-term rats, and most glycogen was labeled. In spite of the high amount of labeling seen initially, the percentage of heavily labeled hepatocytes had decreased considerably to 55% by 12 hr after injection; and sparsely labeled and unlabeled glycogen was prevalent. The EM-RAGs of both short- and long-term rats were similar. Silver grains were associated with glycogen patches 1 hr after labeling; 12 hr after labeling, the glycogen patches had enlarged; and label, where present, was dispersed over the enlarged glycogen clumps. Analysis of DPM/mg tissue corroborated the observed decrease in label 12 hr after administration in the long-term animals. The loss of label observed 12 hr after injection in the long-term pretreated rats suggests that turnover of glycogen occurred during this interval despite the net accumulation of glycogen that was visible morphologically and evident from biochemical measurement.

  10. [Glycogen storage of the liver: a determining factor of initial function of the hepatic graft].

    PubMed

    Boudjema, K; Cinqualbre, J; Barguil, Y; Pattou, F; Kerr, J A; Wolf, P; Southard, J H; Jaeck, D

    1991-01-01

    In this study we have investigated the effects of hepatocytes glycogen storage on the quality of livers for transplantation. Rats were fed or fasted for 24 h and hepatocytes isolated and cold stored in UW solution for 24 and 48 hours. Viability of the cells was analyzed by LDH release after 2 hours incubation in L15 with O2. Also, rabbits were fed, fasted (48 h) or glucose fed (48 h) and livers cold stored for 6, 24 and 48 h in UW solution. Functions of the livers were analyzed by isolated perfusion for 2 hours. Hepatocytes from fasted rats released significantly more LDH than hepatocytes from fed rats after 24 and 48 h cold storage. In rabbit livers, fasting depleted glycogen by 85% but had no effect on ATP or glutathione concentration. Livers from fasted rabbits produced similar amount of bile, released similar concentrations of lactate dehydrogenase and aspartate transaminase into the perfusate, maintained similar concentrations of glutathione after 24 hours preservation when compared to fed animals. After 48 h preservation livers from fasted animals were less viable than livers from fed animals and the decrease of liver functions in livers from fasted animals preserved for 48 hours was prevented by feeding glucose. This study shows that liver glycogen storage in hepatocyte is an important metabolite for successful liver preservation. Glycogen may be a source for ATP and antioxydant synthesis during the early period of reperfusion.

  11. Comparison of /sup 3/H-galactose and /sup 3/H-glucose as precursors of hepatic glycogen in control-fed rats

    SciTech Connect

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1989-05-01

    Labeling of hepatic glycogen derived from 3H-galactose and 3H-glucose was compared shortly after intravenous injection in control-fed rats. The rats were allowed to accumulate 5-8% glycogen prior to receiving label. Fifteen minutes to 2 hours after labeling, liver was excised and processed for routine light (LM) and electron microscopic (EM) radioautography (RAG) or biochemical analysis. After injection of 3H-galactose, LM-RAGs revealed that the percentage of heavily labeled hepatocytes increased from 37% after 15 minutes to 68% after 1 hour but showed no further increase after 2 hours. alpha-Amylase treatment removed most glycogen and incorporated label; thus few silver grains were observed, indicating little incorporation of label except into glycogen. EM-RAGs demonstrated that most label occurred where glycogen was located. Biochemical analysis showed initially a high blood level of label that rapidly plateaued at a reduced level by 5 minutes. Concomitantly, glycogen labeling determined by liquid scintillation counting reflected the increases observed in the RAGs. After injection of 3H-glucose, LM-RAGs revealed that only 12% of the hepatocytes were heavily labeled at 1 hour and 20% at 2 hours. In tissue treated with alpha-amylase, glycogen was depleted and label was close to background level at each interval observed. EM-RAGs showed most grains associated with glycogen deposits. Biochemically, blood levels of label persisted at a high level for 30 minutes and tissue levels increased slowly over the 2-hour period. This study shows that incorporation from 3H-galactose was more rapid than incorporation of 3H-glucose; however, label derived from both carbohydrates appeared to be incorporated mainly into glycogen.

  12. Hepatic mucormycosis with abscess formation.

    PubMed

    Su, Henry; Thompson, George R; Cohen, Stuart H

    2012-06-01

    We describe a case of hepatic mucormycosis with abscess, an uncommon presentation of mucormycetes infection. Our patient was initially treated with transcutaneous pigtail catheter placement, liposomal amphotericin B, and micafungin without improvement. The patient subsequently improved after hepatic segmentectomy and hemidiaphragm resection. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Hepatic lentiviral gene transfer prevents the long-term onset of hepatic tumours of glycogen storage disease type 1a in mice.

    PubMed

    Clar, Julie; Mutel, Elodie; Gri, Blandine; Creneguy, Alison; Stefanutti, Anne; Gaillard, Sophie; Ferry, Nicolas; Beuf, Olivier; Mithieux, Gilles; Nguyen, Tuan Huy; Rajas, Fabienne

    2015-04-15

    Glycogen storage disease type 1a (GSD1a) is a rare disease due to the deficiency in the glucose-6-phosphatase (G6Pase) catalytic subunit (encoded by G6pc), which is essential for endogenous glucose production. Despite strict diet control to maintain blood glucose, patients with GSD1a develop hepatomegaly, steatosis and then hepatocellular adenomas (HCA), which can undergo malignant transformation. Recently, gene therapy has attracted attention as a potential treatment for GSD1a. In order to maintain long-term transgene expression, we developed an HIV-based vector, which allowed us to specifically express the human G6PC cDNA in the liver. We analysed the efficiency of this lentiviral vector in the prevention of the development of the hepatic disease in an original GSD1a mouse model, which exhibits G6Pase deficiency exclusively in the liver (L-G6pc(-/-) mice). Recombinant lentivirus were injected in B6.G6pc(ex3lox/ex3lox). SA(creERT2/w) neonates and G6pc deletion was induced by tamoxifen treatment at weaning. Magnetic resonance imaging was then performed to follow up the development of hepatic tumours. Lentiviral gene therapy restored glucose-6 phosphatase activity sufficient to correct fasting hypoglycaemia during 9 months. Moreover, lentivirus-treated L-G6pc(-/-) mice presented normal hepatic triglyceride levels, whereas untreated mice developed steatosis. Glycogen stores were also decreased although liver weight remained high. Interestingly, lentivirus-treated L-G6pc(-/-) mice were protected against the development of hepatic tumours after 9 months of gene therapy while most of untreated L-G6pc(-/-) mice developed millimetric HCA. Thus the treatment of newborns by recombinant lentivirus appears as an attractive approach to protect the liver from the development of steatosis and hepatic tumours associated to GSD1a pathology. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Resistin disrupts glycogen synthesis under high insulin and high glucose levels by down-regulating the hepatic levels of GSK3β

    PubMed Central

    Song, Rongjing; Wang, Xi; Mao, Yiqing; Li, Hui; Li, Zhixin; Xu, Wei; Wang, Rong; Guo, Tingting; Jin, Ling; Zhang, Xiaojing; Zhang, Yizhuang; Zhou, Na; Hu, Ruobi; Jia, Jianwei; Lei, Zhen; Irwin, David M.; Niu, Gang; Tan, Huanran

    2014-01-01

    The effect of mouse resistin on hepatic insulin resistance in vivo and in vitro, and its possible molecular mechanism were examined. Focusing on liver glycogen metabolism and gluconeogenesis, which are important parts of glucose metabolism, in primary cultures of rat hepatocytes we found that glycogen content was significantly lower (P<0.05) after treatment with recombinant murine resistin only in the presence of insulin plus glucose stimulation. Protein levels of factors in the insulin signaling pathway involved in glycogen synthesis were examined by Western blot analysis, with the only significant change observed being the level of phosphorylated (at Ser 9) glycogen synthase kinase-3β (GSK-3β) (P<0.001). No differences in the protein levels for the insulin receptor β (IRβ), insulin receptor substrates (IRS1 and IRS2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) or their phosphorylated forms were observed between control and resistin treated primary rat hepatocytes. In a mouse model with high liver-specific expression of resistin, fasting blood glucose levels and liver glycogen content changed. Fasting blood glucose levels were significantly higher (P<0.001) in the model mice, compared to the control mice, while the glycogen content of the liver tissue was about 60% of that of the control mice (P<0.05). The gluconeogenic response was not altered between the experimental and control mice. The level of phosphorylated GSK-3β in the liver tissue was also decreased (P<0.05) in the model mice, consistent with the results from the primary rat hepatocytes. Our results suggests that resistin reduces the levels of GSK-3β phosphorylated at Ser 9 leading to impaired hepatic insulin action in primary rat hepatocytes and in a mouse model with high liver-specific expression of resistin. PMID:23860320

  15. Characterization of hepatic and brain metabolism in young adults with glycogen storage disease type 1: a magnetic resonance spectroscopy study.

    PubMed

    Weghuber, D; Mandl, M; Krssák, M; Roden, M; Nowotny, P; Brehm, A; Krebs, M; Widhalm, K; Bischof, M G

    2007-11-01

    In glycogen storage disease type 1 (GSD1), children present with severe hypoglycemia, whereas the propensity for hypoglycemia may decrease with age in these patients. It was the aim of this study to elucidate the mechanisms for milder hypoglycemia symptoms in young adult GSD1 patients. Four patients with GSD1 [body mass index (BMI) 23.2 +/- 6.3 kg/m, age 21.3 +/- 2.9 yr] and four healthy controls matched for BMI (23.1 +/- 3.0 kg/m) and age (24.0 +/- 3.1 yr) were studied. Combined (1)H/(31)P nuclear magnetic resonance spectroscopy (NMRS) was used to assess brain metabolism. Before and after administration of 1 mg glucagon, endogenous glucose production (EGP) was measured with d-[6,6-(2)H(2)]glucose and hepatic glucose metabolism was examined by (1)H/(13)C/(31)P NMRS. At baseline, GSD1 patients exhibited significantly lower rates of EGP (0.53 +/- 0.04 vs. 1.74 +/- 0.03 mg.kg(-1).min(-1); P < 0.01) but an increased intrahepatic glycogen (502 +/- 89 vs. 236 +/- 11 mmol/l; P = 0.05) and lipid content (16.3 +/- 1.1 vs. 1.4 +/- 0.4%; P < 0.001). After glucagon challenge, EGP did not change in GSD1 patients (0.53 +/- 0.04 vs. 0.59 +/- 0.24 mg.kg(-1).min(-1); P = not significant) but increased in healthy controls (1.74 +/- 0.03 vs. 3.95 +/- 1.34; P < 0.0001). In GSD1 patients, we found an exaggerated increase of intrahepatic phosphomonoesters (0.23 +/- 0.08 vs. 0.86 +/- 0.19 arbitrary units; P < 0.001), whereas inorganic phosphate decreased (0.36 +/- 0.08 vs. -0.43 +/- 0.17 arbitrary units; P < 0.01). Intracerebral ratios of glucose and lactate to creatine were higher in GSD1 patients (P < 0.05 vs. control). Therefore, hepatic defects of glucose metabolism persist in young adult GSD1 patients. Upregulation of the glucose and lactate transport at the blood-brain barrier could be responsible for the amelioration of hypoglycemic symptoms.

  16. Focal hepatic infarction with bile lake formation

    SciTech Connect

    Peterson, I.M.; Neumann, C.H.

    1984-06-01

    Venous thrombosis associated with oral contraceptives is a well recognized phenomenon. Arterial thrombosis, while less common, is also a known risk, as evidenced by the increased incidence of cerebral vascular accidents and myocardial ischemia or infarction. The liver is relatively protected from the usual consequences of arterial thrombosis because of its dual blood supply. The authors present an unusual case of a young woman with a history of oral contraceptive and cigarette use who developed hepatic artery thrombosis and had focal liver lesions on computed tomography (CT) due to hepatic infarction and bile lake formation despite an intact portal venous system.

  17. Nuclear assembly with lambda DNA in fractionated Xenopus egg extracts: an unexpected role for glycogen in formation of a higher order chromatin intermediate

    PubMed Central

    1994-01-01

    Crude extracts of Xenopus eggs are capable of nuclear assembly around chromatin templates or even around protein-free, naked DNA templates. Here the requirements for nuclear assembly around a naked DNA template were investigated. Extracts were separated by ultracentrifugation into cytosol, membrane, and gelatinous pellet fractions. It was found that, in addition to the cytosolic and membrane fractions, a component of the gelatinous pellet fraction was required for the assembly of functional nuclei around a naked DNA template. In the absence of this component, membrane-bound but functionally inert spheres of lambda DNA were formed. Purification of the active pellet factor unexpectedly demonstrated the component to be glycogen. The assembly of functionally active nuclei, as assayed by DNA replication and nuclear transport, required that glycogen be pre-incubated with the lambda DNA and cytosol during the period of chromatin and higher order intermediate formation, before the addition of membranes. Hydrolysis of glycogen with alpha- amylase in the extract blocked nuclear formation. Upon analysis, chromatin formed in the presence of cytosol and glycogen alone appeared highly condensed, reminiscent of the nuclear assembly intermediate described by Newport in crude extracts (Newport, J. 1987. Cell. 48:205- 217). In contrast, chromatin formed from phage lambda DNA in cytosol lacking glycogen formed "fluffy chromatin-like" structures. Using sucrose gradient centrifugation, the highly condensed intermediates formed in the presence of glycogen could be isolated and were now able to serve as nuclear assembly templates in extracts lacking glycogen, arguing that the requirement for glycogen is temporally restricted to the time of intermediate formation and function. Glycogen does not act simply by inducing condensation of the chromatin, since similarly isolated mitotically condensed chromatin intermediates do not form functional nuclei. However, both mitotic and fluffy

  18. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-α-glucosidase

    PubMed Central

    Amalfitano, A.; McVie-Wylie, A. J.; Hu, H.; Dawson, T. L.; Raben, N.; Plotz, P.; Chen, Y. T.

    1999-01-01

    This report demonstrates that a single intravenous administration of a gene therapy vector can potentially result in the correction of all affected muscles in a mouse model of a human genetic muscle disease. These results were achieved by capitalizing both on the positive attributes of modified adenovirus-based vectoring systems and receptor-mediated lysosomal targeting of enzymes. The muscle disease treated, glycogen storage disease type II, is a lysosomal storage disorder that manifests as a progressive myopathy, secondary to massive glycogen accumulations in the skeletal and/or cardiac muscles of affected individuals. We demonstrated that a single intravenous administration of a modified Ad vector encoding human acid α-glucosidase (GAA) resulted in efficient hepatic transduction and secretion of high levels of the precursor GAA proenzyme into the plasma of treated animals. Subsequently, systemic distribution and uptake of the proenzyme into the skeletal and cardiac muscles of the GAA-knockout mouse was confirmed. As a result, systemic decreases (and correction) of the glycogen accumulations in a variety of muscle tissues was demonstrated. This model can potentially be expanded to include the treatment of other lysosomal enzyme disorders. Lessons learned from systemic genetic therapy of muscle disorders also should have implications for other muscle diseases, such as the muscular dystrophies. PMID:10430861

  19. History of Hepatic Bile Formation: Old Problems, New Approaches

    ERIC Educational Resources Information Center

    Javitt, Norman B.

    2014-01-01

    Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The…

  20. History of Hepatic Bile Formation: Old Problems, New Approaches

    ERIC Educational Resources Information Center

    Javitt, Norman B.

    2014-01-01

    Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The…

  1. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    PubMed

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes. © 2015

  2. An acute increase in fructose concentration increases hepatic glucose-6-phosphatase mRNA via mechanisms that are independent of glycogen synthase kinase-3 in rats.

    PubMed

    Wei, Yuren; Bizeau, Michael E; Pagliassotti, Michael J

    2004-03-01

    It appears that low amounts of fructose improve, whereas increased concentrations impair glucose tolerance and hepatic glucose metabolism. In this study, we compared directly the effects of low vs. high portal vein fructose concentrations on hepatic glucose metabolism in rats, using glucose-6-phosphatase gene expression as an endpoint. In the control group (C; n = 7), pancreatic clamps were performed using somatostatin and replacement of insulin such that basal glucose levels were maintained. In the experimental groups (n = 8/group), hyperglycemic, hyperinsulinemic pancreatic clamps were performed in which glucose (G) or glucose + fructose was infused into a jejunal vein. Fructose was infused to achieve either low (F1; <0.3 mmol/L) or high (F2; >1.0 mmol/L) portal vein concentrations. Total sugar load to the liver was equalized among the 3 experimental groups. Compared with C, liver glucose-6-phosphatase catalytic subunit mRNA was reduced by approximately 55% in G and F1, whereas it was increased approximately 180% in F2. F2 did not differentially affect glucose-6-phosphate translocase or phosphoenolpyruvate carboxykinase mRNA levels in liver, nor kidney glucose-6-phosphatase catalytic subunit mRNA. Livers from the F2 group were characterized by an accumulation of pentose phosphate intermediates and reduced phosphorylation of glycogen synthase kinase-3 (active form). However, in separate studies (n = 5/group), the infusion of a glycogen synthase kinase-3 inhibitor did not prevent the effects of F2 on glucose-6-phosphatase gene expression. We hypothesize that elevated fructose concentrations, similar to levels achieved after ingestion of sucrose- or fructose-enriched meals, initiate signals within the liver that elicit selective changes in hepatic gene expression.

  3. Prior Exercise Training Prevent Hyperglycemia in STZ Mice by Increasing Hepatic Glycogen and Mitochondrial Function on Skeletal Muscle.

    PubMed

    de Carvalho, Afonso Kopczynski; da Silva, Sabrina; Serafini, Edenir; de Souza, Daniela Roxo; Farias, Hemelin Resende; de Bem Silveira, Gustavo; Silveira, Paulo Cesar Lock; de Souza, Claudio Teodoro; Portela, Luis Valmor; Muller, Alexandre Pastoris

    2017-04-01

    Diabetes mellitus is a metabolic disorder characterized by hyperglycemia. We investigated the effect of a prior 30 days voluntary exercise protocol on STZ-diabetic CF1 mice. Glycemia, and the liver and skeletal muscle glycogen, mitochondrial function, and redox status were analyzed up to 5 days after STZ injection. Animals were engaged in the following groups: Sedentary vehicle (Sed Veh), Sedentary STZ (Sed STZ), Exercise Vehicle (Ex Veh), and Exercise STZ (Ex STZ). Exercise prevented fasting hyperglycemia in the Ex STZ group. In the liver, there was decreased on glycogen level in Sed STZ group but not in EX STZ group. STZ groups showed decreased mitochondrial oxygen consumption compared to vehicle groups, whereas mitochondrial H2 O2 production was not different between groups. Addition of ADP to the medium did not decrease H2 O2 production in Sed STZ mice. Exercise increased GSH level. Sed STZ group increased nitrite levels compared to other groups. In quadriceps muscle, glycogen level was similar between groups. The Sed STZ group displayed decreased O2 consumption, and exercise prevented this reduction. The H2 O2 production was higher in Ex STZ when compared to other groups. Also, GSH level decreased whereas nitrite levels increased in the Sed STZ compared to other groups. The PGC1 α levels increased in Sed STZ, Ex Veh, and Ex STZ groups. In summary, prior exercise training prevents hyperglycemia in STZ-mice diabetic associated with increased liver glycogen storage, and oxygen consumption by the mitochondria of skeletal muscle implying in increased oxidative/biogenesis capacity, and improved redox status of both tissues. J. Cell. Biochem. 118: 678-685, 2017. © 2016 Wiley Periodicals, Inc.

  4. Effect of oral D-tagatose on liver volume and hepatic glycogen accumulation in healthy male volunteers.

    PubMed

    Boesch, C; Ith, M; Jung, B; Bruegger, K; Erban, S; Diamantis, I; Kreis, R; Bär, A

    2001-04-01

    Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid. Copyright 2001 Academic Press.

  5. Carbohydrate-response-element-binding protein (ChREBP) and not the liver X receptor α (LXRα) mediates elevated hepatic lipogenic gene expression in a mouse model of glycogen storage disease type 1.

    PubMed

    Grefhorst, Aldo; Schreurs, Marijke; Oosterveer, Maaike H; Cortés, Victor A; Havinga, Rick; Herling, Andreas W; Reijngoud, Dirk-Jan; Groen, Albert K; Kuipers, Folkert

    2010-12-01

    GSD-1 (glycogen storage disease type 1) is caused by an inherited defect in glucose-6-phosphatase activity, resulting in a massive accumulation of hepatic glycogen content and an induction of de novo lipogenesis. The chlorogenic acid derivative S4048 is a pharmacological inhibitor of the glucose 6-phosphate transporter, which is part of glucose-6-phosphatase, and allows for mechanistic studies concerning metabolic defects in GSD-1. Treatment of mice with S4048 resulted in an ~60% reduction in blood glucose, increased hepatic glycogen and triacylglycerol (triglyceride) content, and a markedly enhanced hepatic lipogenic gene expression. In mammals, hepatic expression of lipogenic genes is regulated by the co-ordinated action of the transcription factors SREBP (sterol-regulatory-element-binding protein)-1c, LXRα (liver X receptor α) and ChREBP (carbohydrate-response-element-binding protein). Treatment of Lxra-/- mice and Chrebp-/- mice with S4048 demonstrated that ChREBP, but not LXRα, mediates the induction of hepatic lipogenic gene expression in this murine model of GSD-1. Thus ChREBP is an attractive target to alleviate derangements in lipid metabolism observed in patients with GSD-1.

  6. Hepatic metastasis complicated by abscess formation.

    PubMed

    Yi, Liao; Lihua, Qiu; Xianming, Diao; Qiyong, Gong

    2015-01-01

    Hepatic abscesses and hepatic metastasis are common diseases. However, hepatic abscesses seldom occur in patients with hepatic metastases. We describe a case of a 67-year-old female patient with abdominal pain in the right upper quadrant. Magnetic resonance imaging revealed several lesions, with the largest lesion displaying features of both hepatic pyogenic abscess and liver metastasis. These features included iso- or hypointense signaling on T1WI and T2WI, hyperintense signaling on diffusion weighted imaging of the thick wall, and mixed hyperintense signal in the center on DWI, as well as dramatic and irregular peripheral enhancement was detected on LAVA dynamic contrast scanning. Aspiration and culture of the largest lesions revealed Klebsiella pneumoniae and a pathologic diagnosis of adenocarcinoma. At this point, the patient admitted a history of colon adenocarcinoma 9 years ago treated with hemicolectomy. Therefore, this patient was considered to have a hepatic pyogenic abscesses complicated by hepatic metastasis. The patient began treatment for the responsible pathogens and underwent chemoembolization of the liver lesions. In special cases, we could attempt to pursue a more detailed search for coexistence of microorganism infection and tumor.

  7. Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice

    PubMed Central

    O’Brien, W. Timothy; Huang, Jian; Buccafusca, Roberto; Garskof, Julie; Valvezan, Alexander J.; Berry, Gerard T.; Klein, Peter S.

    2011-01-01

    Lithium is the first-line therapy for bipolar disorder. However, its therapeutic target remains controversial. Candidates include inositol monophosphatases, glycogen synthase kinase-3 (GSK-3), and a β-arrestin-2/AKT/protein phosphatase 2A (β-arrestin-2/AKT/PP2A) complex that is known to be required for lithium-sensitive behaviors. Defining the direct target(s) is critical for the development of new therapies and for elucidating the molecular pathogenesis of this major psychiatric disorder. Here, we show what we believe to be a new link between GSK-3 and the β-arrestin-2 complex in mice and propose an integrated mechanism that accounts for the effects of lithium on multiple behaviors. GSK-3β (Gsk3b) overexpression reversed behavioral defects observed in lithium-treated mice and similar behaviors observed in Gsk3b+/– mice. Furthermore, immunoprecipitation of striatial tissue from WT mice revealed that lithium disrupted the β-arrestin-2/Akt/PP2A complex by directly inhibiting GSK-3. GSK-3 inhibitors or loss of one copy of the Gsk3b gene reduced β-arrestin-2/Akt/PP2A complex formation in mice, while overexpression of Gsk3b restored complex formation in lithium-treated mice. Thus, GSK-3 regulates the stability of the β-arrestin-2/Akt/PP2A complex, and lithium disrupts the complex through direct inhibition of GSK-3. We believe these findings reveal a new role for GSK-3 within the β-arrestin complex and demonstrate that GSK-3 is a critical target of lithium in mammalian behaviors. PMID:21821916

  8. Biomarker for Glycogen Storage Diseases

    ClinicalTrials.gov

    2017-07-03

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  9. [Antibody formation in type A viral hepatitis].

    PubMed

    Teokharova, M P; Losev, B B; Andonov, A P; Draganov, P I; Mineva, E G

    1978-01-01

    Immune response to hepatitis type A antigen (HAAg) was measured by the passive hemagglutination test (PHA) and by the immune adherence test (IAHA). Specific antibodies found by PHA are of the IgM class which indicates a recent exposure to hepatitis A virus. The antibodies found by IAHA reflect the level of postinfectious immune status. The antibody curve is highest in the age group of 30--49 years (95%). The above-mentioned serological tests were carried out with purified by gel filtration in Sepharose 6B Botevgrad faecal morphologically consisting of 27 nm particles with the buoyant density in CcCl of 1.40 g/ml. The same particles were aggregated with sera positive for antibody to hepatitis type A antigen in immune electron microscopy (IEM).

  10. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus.

    PubMed Central

    Thorburn, A W; Gumbiner, B; Bulacan, F; Brechtel, G; Henry, R R

    1991-01-01

    To define the mechanisms of impaired muscle glycogen synthase and reduced glycogen formation in non-insulin dependent diabetes mellitus (NIDDM), glycogen synthase activity was kinetically analyzed during the basal state and three glucose clamp studies (insulin approximately equal to 300, 700, and 33,400 pmol/liter) in eight matched nonobese NIDDM and eight control subjects. Muscle glycogen content was measured in the basal state and following clamps at insulin levels of 33,400 pmol/liter. NIDDM subjects had glucose uptake matched to controls in each clamp by raising serum glucose to 15-20 mmol/liter. The insulin concentration required to half-maximally activate glycogen synthase (ED50) was approximately fourfold greater for NIDDM than control subjects (1,004 +/- 264 vs. 257 +/- 110 pmol/liter, P less than 0.02) but the maximal insulin effect was similar. Total glycogen synthase activity was reduced approximately 38% and glycogen content was approximately 30% lower in NIDDM. A positive correlation was present between glycogen content and glycogen synthase activity (r = 0.51, P less than 0.01). In summary, defects in muscle glycogen synthase activity and reduced glycogen content are present in NIDDM. NIDDM subjects also have less total glycogen synthase activity consistent with reduced functional mass of the enzyme. These findings and the correlation between glycogen synthase activity and glycogen content support the theory that multiple defects in glycogen synthase activity combine to cause reduced glycogen formation in NIDDM. PMID:1899428

  11. In vitro digestion of starches in a dynamic gastrointestinal model: an innovative study to optimize dietary management of patients with hepatic glycogen storage diseases.

    PubMed

    Nalin, Tatiéle; Venema, Koen; Weinstein, David A; de Souza, Carolina F M; Perry, Ingrid D S; van Wandelen, Mario T R; van Rijn, Margreet; Smit, G Peter A; Schwartz, Ida V D; Derks, Terry G J

    2015-05-01

    Uncooked cornstarch (UCCS) is a widely used treatment strategy for patients with hepatic glycogen storage disease (GSD). It has been observed that GSD-patients display different metabolic responses to different cornstarches. The objective was to characterize starch fractions and analyze the digestion of different starches in a dynamic gastrointestinal in vitro model. The following brands of UCCS were studied: Argo and Great Value from the United States of America; Brazilian Maizena Duryea and Yoki from Brazil; Dutch Maizena Duryea from the Netherlands. Glycosade, a modified starch, and sweet polvilho, a Brazilian starch extracted from cassava, were also studied. The starch fractions were analyzed by glycemic TNO index method and digestion analyses were determined by the TIM-1 system, a dynamic, computer-controlled, in vitro gastrointestinal model, which simulates the stomach and small intestine. The final digested amounts were between 84 and 86% for the UCCS and Glycosade, but was 75.5% for sweet povilho. At 180 min of the experiment, an important time-point for GSD patients, the digested amount of the starches corresponded to 67.9-71.5 for the UCCS and Glycosade, while it was 55.5% for sweet povilho. In an experiment with a mixture of sweet polvilho and Brazilian Maizena Duryea, a final digested amount of 78.4% was found, while the value at 180 min was 61.7%. Sweet polvilho seems to have a slower and extended release of glucose and looks like an interesting product to be further studied as it might lead to extended normoglycemia in GSD-patients.

  12. A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease.

    PubMed

    Cheng, Alan; Zhang, Mei; Gentry, Matthew S; Worby, Carolyn A; Dixon, Jack E; Saltiel, Alan R

    2007-10-01

    Cori's disease is a glycogen storage disorder characterized by a deficiency in the glycogen debranching enzyme, amylo-1,6-glucosidase,4-alpha-glucanotransferase (AGL). Here, we demonstrate that the G1448R genetic variant of AGL is unable to bind to glycogen and displays decreased stability that is rescued by proteasomal inhibition. AGL G1448R is more highly ubiquitinated than its wild-type counterpart and forms aggresomes upon proteasome impairment. Furthermore, the E3 ubiquitin ligase Malin interacts with and promotes the ubiquitination of AGL. Malin is known to be mutated in Lafora disease, an autosomal recessive disorder clinically characterized by the accumulation of polyglucosan bodies resembling poorly branched glycogen. Transfection studies in HepG2 cells demonstrate that AGL is cytoplasmic whereas Malin is predominately nuclear. However, after depletion of glycogen stores for 4 h, approximately 90% of transfected cells exhibit partial nuclear staining for AGL. Furthermore, stimulation of cells with agents that elevate cAMP increases Malin levels and Malin/AGL complex formation. Refeeding mice for 2 h after an overnight fast causes a reduction in hepatic AGL levels by 48%. Taken together, these results indicate that binding to glycogen crucially regulates the stability of AGL and, further, that its ubiquitination may play an important role in the pathophysiology of both Lafora and Cori's disease.

  13. Nuclear glycogen and glycogen synthase kinase 3.

    PubMed

    Ragano-Caracciolo, M; Berlin, W K; Miller, M W; Hanover, J A

    1998-08-19

    Glycogen is the principal storage form of glucose in animal cells. It accumulates in electron-dense cytoplasmic granules and is synthesized by glycogen synthase (GS), the rate-limiting enzyme of glycogen deposition. Glycogen synthase kinase-3 (GSK-3) is a protein kinase that phosphorylates GS. Two nearly identical forms of GSK-3 exist: GSK-3 alpha and GSK-3 beta. Both are constitutively active in resting cells and their activity can be modulated by hormones and growth factors. GSK-3 is implicated in the regulation of many physiological responses in mammalian cells by phosphorylating substrates including neuronal cell adhesion molecule, neurofilaments, synapsin I, and tau. Recent observations point to functions for glycogen and glycogen metabolism in the nucleus. GSK-3 phosphorylates several transcription factors, and we have recently shown that it modifies the major nuclear pore protein p62. It also regulates PK1, a protein kinase required for maintaining the interphase state and for DNA replication in cycling Xenopus egg extracts. Recently, glycogen was shown to be required for nuclear reformation in vitro using ovulated Xenopus laevis egg lysates. Because neither glycogen nor GSK-3 has been localized to the nuclear envelope or intranuclear sites, glycogen and GSK-3 activites were measured in rat liver nuclei and nuclear reformation extracts. Significant quantities of glycogen-like material co-purified with the rat-liver nuclear envelope. GSK-3 is also highly enriched in the glycogen pellet of egg extracts of Xenopus that is required for nuclear assembly in vitro. Based on the finding that enzymes of glycogen metabolism copurify with glycogen, we propose that glycogen may serve a structural role as a scaffold for nuclear assembly and sequestration of critical kinases and phosphatases in the nucleus. Copyright 1998 Academic Press.

  14. Effect of Entodinium caudatum on starch intake and glycogen formation by Eudiplodinium maggii in the rumen and reticulum.

    PubMed

    Bełżecki, Grzegorz; McEwan, Neil R; Kowalik, Barbara; Michałowski, Tadeusz; Miltko, Renata

    2017-02-01

    This study aimed to quantify the engulfed starch and reserve α-glucans (glycogen) in the cells of the ciliates Eudiplodinium maggii, as well the α-glucans in defaunated and selectively faunated sheep. The content of starch inside the cell of ciliates varied from 21 to 183mg/g protozoal DM relative to the rumen fauna composition whereas, the glycogen fluctuated between 17 and 126mg/g dry matter (DM) of this ciliate species. Establishment of the population Entodinium caudatum in the rumen of sheep already faunated with E. maggii caused a drop in both types of quantified carbohydrates. The content of α-glucans in the rumen of defaunated sheep varied from 4.4 to 19.9mg/g DM and increased to 7.4-29.9 or 11.8-33.9mg/g DM of rumen contents in the presence of only E. maggii or E. maggii and E. caudatum, respectively. The lowest content of the carbohydrates was always found just before feeding and the highest at 4h thereafter. The α-glucans in the reticulum varied 7.5-40.1, 14.3-76.8 or 21.9-106.1mg/g DM of reticulum content for defaunated, monofaunated or bifaunated sheep, respectively. The results indicated that both ciliate species engulf starch granules and convert the digestion products to the glycogen, diminishing the pool of starch available for amylolytic bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    SciTech Connect

    Otani, Satoshi; Kakinuma, Sei; Kamiya, Akihide; Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin; Asahina, Yasuhiro; Yamaguchi, Tomoyuki; Koshikawa, Naohiko; Seiki, Motoharu; Nakauchi, Hiromitsu; and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  16. Glycogen storage diseases: New perspectives

    PubMed Central

    Özen, Hasan

    2007-01-01

    Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis. The overall GSD incidence is estimated 1 case per 20000-43000 live births. There are over 12 types and they are classified based on the enzyme deficiency and the affected tissue. Disorders of glycogen degradation may affect primarily the liver, the muscle, or both. Type Ia involves the liver, kidney and intestine (and Ib also leukocytes), and the clinical manifestations are hepatomegaly, failure to thrive, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia. Type IIIa involves both the liver and muscle, and IIIb solely the liver. The liver symptoms generally improve with age. Type IV usually presents in the first year of life, with hepatomegaly and growth retardation. The disease in general is progressive to cirrhosis. Type VI and IX are a heterogeneous group of diseases caused by a deficiency of the liver phosphorylase and phosphorylase kinase system. There is no hyperuricemia or hyperlactatemia. Type XI is characterized by hepatic glycogenosis and renal Fanconi syndrome. Type II is a prototype of inborn lysosomal storage diseases and involves many organs but primarily the muscle. Types V and VII involve only the muscle. PMID:17552001

  17. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  18. Muscle Glycogen Remodeling and Glycogen Phosphate Metabolism following Exhaustive Exercise of Wild Type and Laforin Knockout Mice*

    PubMed Central

    Irimia, Jose M.; Tagliabracci, Vincent S.; Meyer, Catalina M.; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2015-01-01

    Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. PMID:26216881

  19. Precursors to glycogen in ovine fetuses

    SciTech Connect

    Levitsky, L.L.; Paton, J.B.; Fisher, D.E. )

    1988-11-01

    Postprandial hepatic glycogenesis in the adult animal is now felt to proceed largely through gluconeogenic pathways rather than directly from glucose. The ovine fetus, like the mature sheep, lacks specific hepatic glucokinase. Therefore, the authors examined the role of lactate as a fetal glycogenic precursor in seven chronically catheterized 125-day sheep fetuses. Fetuses were infused with L-(U-{sup 14}C)lactate and D-(3-{sup 3}H)glucose, while maternal glucose was maintained at 50 mg/dl. Mean fetal hepatic glycogen specific activity ({mu}Ci/mg {times} 10{sup 3}) was 0.82 {plus minus} 0.08 for {sup 14}C and 2.6 {plus minus} 0.4 for {sup 3}H, whereas fetal renal glycogen specific activity was 0.46 {plus minus} 0.22 for {sup 14}C and 0.78 {plus minus} 0.16 for {sup 3}H. In contrast, ({sup 14}C)glucose specific activity was undetectable in blood and mean ({sup 3}H)glucose specific activity was 8.9 {plus minus} 1.3 {mu}Ci/mg {times} 10{sup 3}. The least detectable specific activity of ({sup 14}C)glucose did not differ significantly from the ({sup 14}C)glycogen enrichment in liver, whereas ({sup 3}H)glucose specific activity was significantly greater than ({sup 3}H)glycogen enrichment. The authors conclude that glycogenesis from glucose is partly through the indirect gluconeogenic route and that lactate may be a glycogenic precursor in the ovine fetus.

  20. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    SciTech Connect

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  1. Immunochemical Study of the Effect of F2Glc on Glycogen Synthase Translocation and Glycogen Synthesis in Isolated Rat Hepatocytes.

    PubMed

    Fernández-Novell, J M; Díaz-Lobo, M

    2017-09-16

    The compound 2-deoxy-2-fluoro-α-D-glucopyranosyl fluoride (F2Glc), which is a nonmetabolized superior glucose analogue, is a potent inhibitor of glycogen phosphorylase and pharmacological properties are reported. Glycogen phosphorylase (GP) and glycogen synthase (GS) are responsible of the degradation and synthesis, respectively, of glycogen which is a polymer of glucose units that provides a readily available source of energy in mammals. GP and GS are two key enzymes that modulate cellular glucose and glycogen levels; therefore, these proteins are suggested as potential targets for the treatment of diseases related to glycogen metabolism disorders. We studied by Western Blot technique that F2Glc decreased GP activity, and we also showed that F2Glc did not affect GS activity and its translocation from a uniform cytosolic distribution to the hepatocyte periphery, which is crucial for glycogen synthesis, using immunoblotting and immunofluorescence labeling techniques. F2Glc specifically inhibits glycogenolysis pathway and permits a greater deposition of glycogen. These observations open up the possibility of further develop drugs that act specifically on GP. The ability to selectively inhibit GP, which is a key enzyme for the release of glucose from the hepatic glycogen reserve, may represent a new approach for the treatment of hyperglycemia in type 2 diabetes.

  2. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression.

    PubMed

    Zani, Fabio; Breasson, Ludovic; Becattini, Barbara; Vukolic, Ana; Montani, Jean-Pierre; Albrecht, Urs; Provenzani, Alessandro; Ripperger, Juergen A; Solinas, Giovanni

    2013-01-01

    The interplay between hepatic glycogen metabolism and blood glucose levels is a paradigm of the rhythmic nature of metabolic homeostasis. Here we show that mice lacking a functional PER2 protein (Per2 (Brdm1) ) display reduced fasting glycemia, altered rhythms of hepatic glycogen accumulation, and altered rhythms of food intake. Per2 (Brdm1) mice show reduced hepatic glycogen content and altered circadian expression during controlled fasting and refeeding. Livers from Per2 (Brdm1) mice display reduced glycogen synthase protein levels during refeeding, and increased glycogen phosphorylase activity during fasting. The latter is explained by PER2 action on the expression of the adapter proteins PTG and GL, which target the protein phosphatase-1 to glycogen to decrease glycogen phosphorylase activity. Finally, PER2 interacts with genomic regions of Gys2, PTG, and G L . These results indicate an important role for PER2 in the hepatic transcriptional response to feeding and acute fasting that promotes glucose storage to liver glycogen.

  3. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    PubMed Central

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  4. Role of maltose enzymes in glycogen synthesis by Escherichia coli.

    PubMed

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-05-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase.

  5. Glycogen storage disease type III diagnosis and management guidelines.

    PubMed

    Kishnani, Priya S; Austin, Stephanie L; Arn, Pamela; Bali, Deeksha S; Boney, Anne; Case, Laura E; Chung, Wendy K; Desai, Dev M; El-Gharbawy, Areeg; Haller, Ronald; Smit, G Peter A; Smith, Alastair D; Hobson-Webb, Lisa D; Wechsler, Stephanie Burns; Weinstein, David A; Watson, Michael S

    2010-07-01

    Glycogen storage disease type III is a rare disease of variable clinical severity affecting primarily the liver, heart, and skeletal muscle. It is caused by deficient activity of glycogen debranching enzyme, which is a key enzyme in glycogen degradation. Glycogen storage disease type III manifests a wide clinical spectrum. Individuals with glycogen storage disease type III present with hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Those with type IIIa have symptoms related to liver disease and progressive muscle (cardiac and skeletal) involvement that varies in age of onset, rate of disease progression, and severity. Those with type IIIb primarily have symptoms related to liver disease. This guideline for the management of glycogen storage disease type III was developed as an educational resource for health care providers to facilitate prompt and accurate diagnosis and appropriate management of patients. An international group of experts in various aspects of glycogen storage disease type III met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (cardiovascular, gastrointestinal/nutrition, hepatic, musculoskeletal, and neuromuscular) involved in glycogen storage disease type III. Conditions to consider in a differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic transplantation, and prenatal diagnosis, are addressed. A guideline that will facilitate the accurate diagnosis and appropriate management of individuals with glycogen storage disease type III was developed. This guideline will help health care providers recognize patients with all forms of

  6. Hepatitis

    MedlinePlus

    ... CPR: A Real Lifesaver Kids Talk About: Coaches Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... have liver damage because of it. What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  7. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation.

    PubMed

    Fields, Joshua A; Thompson, Stuart A

    2012-10-11

    Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81-176, indicating that the Csr pathway is important for Campylobacter pathogenesis. We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, biofilm formation, and cellular morphology; however, it failed to return excess glycogen accumulation to wild type levels. These findings suggest that C. jejuni CsrA is capable of efficiently binding some E. coli CsrA binding sites, but not others, and provide insight into the biochemistry of C. jejuni CsrA.

  8. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation

    PubMed Central

    2012-01-01

    Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81–176, indicating that the Csr pathway is important for Campylobacter pathogenesis. Results We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, biofilm formation, and cellular morphology; however, it failed to return excess glycogen accumulation to wild type levels. Conclusions These findings suggest that C. jejuni CsrA is capable of efficiently binding some E. coli CsrA binding sites, but not others, and provide insight into the biochemistry of C. jejuni CsrA. PMID:23051923

  9. Characterization and pathogenesis of anemia in glycogen storage disease type Ia and Ib

    PubMed Central

    Wang, David Q.; Carreras, Caroline T.; Fiske, Laurie M.; Austin, Stephanie; Boree, Danielle; Kishnani, Priya S.; Weinstein, David A.

    2013-01-01

    Purpose The aim of this study was to characterize the frequency and causes of anemia in glycogen storage disease type I. Methods Hematologic data and iron studies were available from 202 subjects (163 with glycogen storage disease Ia and 39 with glycogen storage disease Ib). Anemia was defined as hemoglobin concentrations less than the 5th percentile for age and gender; severe anemia was defined as presence of a hemoglobin <10 g/dl. Results In glycogen storage disease Ia, 68/163 patients were anemic at their last follow-up. Preadolescent patients tended to have milder anemia secondary to iron deficiency, but anemia of chronic disease predominated in adults. Severe anemia was present in 8/163 patients, of whom 75% had hepatic adenomas. The anemia improved or resolved in all 10 subjects who underwent resection of liver lesions. Anemia was present in 72% of patients with glycogen storage disease Ib, and severe anemia occurred in 16/39 patients. Anemia in patients with glycogen storage disease Ib was associated with exacerbations of glycogen storage disease enterocolitis, and there was a significant correlation between C-reactive protein and hemoglobin levels (P = 0.036). Conclusion Anemia is a common manifestation of both glycogen storage disease Ia and Ib, although the pathophysiology appears to be different between these conditions. Those with severe anemia and glycogen storage disease Ia likely have hepatic adenomas, whereas glycogen storage disease enterocolitis should be considered in those with glycogen storage disease Ib. PMID:22678084

  10. Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin - nicotinamide induced experimental rats.

    PubMed

    Dhananjayan, Indumathi; Kathiroli, Sujithra; Subramani, Srinivasan; Veerasamy, Vinothkumar

    2017-04-01

    Betanin, a chromoalkaloid of beetroot, has shown significant biological effects of antioxidants, anti-inflammatory and anticarcinogenic activities. So, we attempted to determine whether betanin (a natural pigment) would be protective against hyperglycemia in streptozotocin (STZ) - nicotinamide (NA) induced diabetic rats. Rats were injected with STZ (40mg/kgb.w.) 15 mins after the administration of NA (110mg/kgb.w.) by intraperitonially (i.p.) 30days for the induction of experimental diabetes mellitus. After 72h diabetic rats were treated with betanin orally at a doses of 10, 20 and 40mg/kg b.w., respectively in a dose dependent manner and glibenclamide (600μg/kgb.w.). The promising character of betanin against diabetic rats was evaluated by performing the various biochemical parameters and histomorphological changes in liver and pancreas. Among the three doses, 20mg/kgb.w. of betanin was able to positively regulate plasma glucose, insulin, glycosylated hemoglobin (HbA1c) and hemoglobin (Hb) levels by significantly increasing the activity of glycolytic enzyme (glucokinase and pyruvate kinase), glucose-6-phosphate dehydrogenase and significantly decreasing the activity of gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) thereby increasing the glycogen content in the liver. We put forward that betanin could significantly restore the levels of carbohydrate metabolic key enzymes to near normal in diabetic rat. Immunohistochemical observation of pancreas revealed that betanin treated diabetic rats showed increased insulin immunoreactive β-cells, which confirmed the biochemical findings. Taken together, present study suggests that betanin modulates the carbohydrate metabolism and has beneficial effects in glucose homeostasis.

  11. Hepatitis

    MedlinePlus

    ... clotting problems or chronic liver disease. previous continue Hepatitis B and Hepatitis C Although hep A is a ... does — through direct contact with infected body fluids. Hepatitis B and C are even more easily passed in ...

  12. Hepatitis

    MedlinePlus

    ... A if they've been vaccinated against it. Hepatitis B Hepatitis B is a more serious infection. It may lead ... of which cause severe illness and even death. Hepatitis B virus (HBV) is transmitted from person to person ...

  13. Hepatitis

    MedlinePlus

    ... a problem with the liver itself What Is Hepatitis A? Hepatitis A virus (HAV) is contagious, usually spreading to others ... objects contaminated by feces (poop) containing HAV. The hepatitis A vaccine has helped to make the infection rare ...

  14. Neuronal glycogen synthesis contributes to physiological aging

    PubMed Central

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora’s disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. PMID:25059425

  15. [Effect of metformin on the formation of hepatic fibrosis in type 2 diabetic rats].

    PubMed

    Qiang, Gui-Fen; Zhang, Li; Xuan, Qi; Yang, Xiu-Ying; Shi, Li-Li; Zhang, Heng-Ai; Chen, Bai-Nian; Du, Guan-Hua

    2010-06-01

    The aim of this study is to investigate the effects of the metformin on the formation of hepatic fibrosis in type 2 diabetic rats and discuss its mechanism of liver-protecting activity. After SD rats were fed with high-fat and high-sucrose diet for four weeks, low-dose streptozotocin (STZ) was injected intraperitoneally to make the animal mode of type 2 diabetes. Then, all diabetic rats was fed with the high-fat diet and metformin (ig, 100 mg x kg(-1)) was given orally to metformin group for four months. After the last administration, fasting blood glucose was determined. The livers were removed to calculate the hepatic coefficient and to make HE and Picro acid-Sirius red staining, immunohistochemistry (alpha-SMA and TGFbeta1) and TUNEL staining in order to evaluate the effect of metformin on the hepatic fibrosis. The animal model of type 2 diabetes with hepatic fibrosis was successfully made. Metformin can significantly alleviate the lesions of hepatic steatosis and fibrosis, markedly reduce the expressions of alpha-SMA and TGFbeta1 in liver tissue of type 2 diabetic rats. However, TUNEL staining result suggested that metformin could not reduce apoptosis of hepatocytes. The results suggest that metformin can inhibit the formation of hepatic fibrosis in type 2 diabetes.

  16. Metabolic Crosstalk: Molecular Links Between Glycogen and Lipid Metabolism in Obesity

    PubMed Central

    Lu, Binbin; Bridges, Dave; Yang, Yemen; Fisher, Kaleigh; Cheng, Alan; Chang, Louise; Meng, Zhuo-Xian; Lin, Jiandie D.; Downes, Michael; Yu, Ruth T.; Liddle, Christopher; Evans, Ronald M.

    2014-01-01

    Glycogen and lipids are major storage forms of energy that are tightly regulated by hormones and metabolic signals. We demonstrate that feeding mice a high-fat diet (HFD) increases hepatic glycogen due to increased expression of the glycogenic scaffolding protein PTG/R5. PTG promoter activity was increased and glycogen levels were augmented in mice and cells after activation of the mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target SREBP1. Deletion of the PTG gene in mice prevented HFD-induced hepatic glycogen accumulation. Of note, PTG deletion also blocked hepatic steatosis in HFD-fed mice and reduced the expression of numerous lipogenic genes. Additionally, PTG deletion reduced fasting glucose and insulin levels in obese mice while improving insulin sensitivity, a result of reduced hepatic glucose output. This metabolic crosstalk was due to decreased mTORC1 and SREBP activity in PTG knockout mice or knockdown cells, suggesting a positive feedback loop in which once accumulated, glycogen stimulates the mTORC1/SREBP1 pathway to shift energy storage to lipogenesis. Together, these data reveal a previously unappreciated broad role for glycogen in the control of energy homeostasis. PMID:24722244

  17. Metabolic crosstalk: molecular links between glycogen and lipid metabolism in obesity.

    PubMed

    Lu, Binbin; Bridges, Dave; Yang, Yemen; Fisher, Kaleigh; Cheng, Alan; Chang, Louise; Meng, Zhuo-Xian; Lin, Jiandie D; Downes, Michael; Yu, Ruth T; Liddle, Christopher; Evans, Ronald M; Saltiel, Alan R

    2014-09-01

    Glycogen and lipids are major storage forms of energy that are tightly regulated by hormones and metabolic signals. We demonstrate that feeding mice a high-fat diet (HFD) increases hepatic glycogen due to increased expression of the glycogenic scaffolding protein PTG/R5. PTG promoter activity was increased and glycogen levels were augmented in mice and cells after activation of the mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target SREBP1. Deletion of the PTG gene in mice prevented HFD-induced hepatic glycogen accumulation. Of note, PTG deletion also blocked hepatic steatosis in HFD-fed mice and reduced the expression of numerous lipogenic genes. Additionally, PTG deletion reduced fasting glucose and insulin levels in obese mice while improving insulin sensitivity, a result of reduced hepatic glucose output. This metabolic crosstalk was due to decreased mTORC1 and SREBP activity in PTG knockout mice or knockdown cells, suggesting a positive feedback loop in which once accumulated, glycogen stimulates the mTORC1/SREBP1 pathway to shift energy storage to lipogenesis. Together, these data reveal a previously unappreciated broad role for glycogen in the control of energy homeostasis.

  18. Glycogen Phosphorylation and Lafora disease

    PubMed Central

    Roach, Peter J.

    2015-01-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 - 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease PMID:26278984

  19. Glycogen synthesis in liver and skeletal muscle after exercise: participation of the gluconeogenic pathway

    SciTech Connect

    Johnson, J.L.

    1986-01-01

    Hepatic glycogenesis occurs by both the uptake of plasma glucose (direct pathway) as well as from gluconeogenesis (indirect pathway). In vitro studies suggest that skeletal muscle can also synthesize glycogen from lactate. The purpose of the present studies was to assess the contribution of the indirect pathway to liver and muscle glycogen synthesis after exercise with various substrata infusions. The authors hypothesis was the contribution of the indirect pathway of hepatic glycogenesis would increase after exercise. To this end, fasted rats were depleted of glycogen by exhaustive exercise; a second group of fasted rats remained rested. Both groups were then infused intravenously with glucose containing tracer quantities of (6-/sup 3/H) and (U-/sup 14/C) glucose for 4 hrs. The ensuing hyperglycemic response was exaggerated in post-exercised rats; whereas, plasma lactate levels were lower than those of nonexercised rats. The percent of hepatic glycogen synthesized from gluconeogenic precursors did not differ between exercised (39%) and nonexercised (36%) rats.

  20. The formation, disposition, and hepatic metabolism of dimethylnitrosamine in the pig.

    PubMed

    Harrington, G W; Magee, P N; Pylypiw, H M; Kozeniauskas, R; Bevill, R F; Nelson, D R; Thurmon, J C

    1990-01-01

    The disposition, metabolism, and endogenous formation of N-nitrosodimethylamine (NDMA) from nitrosatable precursors was studied in the intact pig and in animals with cannulated hepatic and portal veins and catheterized bile ducts. Rates of disappearance of NDMA from peripheral venous and arterial blood after iv injections were virtually identical and the compound appeared in bile after a lag time of about 1 hr, with a subsequent decline in biliary concentration at about the same rate as in circulating blood. Measurements of NDMA in portal and hepatic vein blood after oral doses of 10, 1.0 and 0.1 mg/kg, respectively, showed progressively greater hepatic extraction with levels in the hepatic vein approaching the limits of detection after the lowest dose. Both halothane and ethanol virtually abolished the hepatic extraction of NDMA, presumably due to their known inhibitory action on its metabolism in the liver. Endogenous formation of NDMA and N-nitrosomorpholine after oral doses of the amines plus nitrite was demonstrated by their detection and measurement in the portal vein blood. Morpholine was nitrosated more effectively than dimethylamine and inhibited the nitrosation of the latter when the two amines were given together. NDMA was found in the portal blood after sequential oral administration of aminopyrine and nitrite, the concentration being considerably greater after fasting for 24 hr than after a 2-hr fast when much food was present in the stomach.

  1. Insights into Brain Glycogen Metabolism

    PubMed Central

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  2. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery.

    PubMed

    Perrone, Mara; Lopalco, Antonio; Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Douglas, Justin; Franco, Massimo; Liberati, Elisa; Russo, Vincenzo; Tongiani, Serena; Denora, Nunzio; Bernkop-Schnürch, Andreas

    2017-10-01

    The purpose of this study was to synthesize and characterize a novel thiolated glycogen, so-named S-preactivated thiolated glycogen, as a mucosal drug delivery systems and the assessment of its mucoadhesive properties. In this regard, glycogen-cysteine and glycogen-cysteine-2-mercaptonicotinic acid conjugates were synthesized. Glycogen was activated by an oxidative ring opening with sodium periodate resulting in reactive aldehyde groups to which cysteine was bound via reductive amination. The obtained thiolated polymer displayed 2203.09±200μmol thiol groups per gram polymer. In a second step, the thiol moieties of thiolated glycogen were protected by disulfide bond formation with the thiolated aromatic residue 2-mercaptonicotinic acid (2MNA). In vitro screening of mucoadhesive properties was performed on porcine intestinal mucosa using different methods. In particular, in terms of rheology investigations of mucus/polymer mixtures, the S-preactivated thiolated glycogen showed a 4.7-fold increase in dynamic viscosity over a time period of 5h, in comparison to mucus/Simulated Intestinal Fluid control. The S-preactivated polymer remained attached on freshly excised porcine mucosa for 45h. Analogous results were obtained with tensile studies demonstrating a 2.7-fold increase in maximum detachment force and 3.1- fold increase in total work of adhesion for the S-preactivated polymer compared to unmodified glycogen. Moreover, water-uptake studies showed an over 4h continuing weight gain for the S-preactivated polymer, whereas disintegration took place for the unmodified polymer within the first hour. Furthermore, even in the highest tested concentration of 2mg/ml the new conjugates did not show any cytotoxicity on Caco-2 cell monolayer using an MTT assay. According to these results, S-preactivated glycogen represents a promising type of mucoadhesive polymers useful for the development of various mucosal drug delivery systems. Copyright © 2017 Elsevier B.V. All rights

  3. Natural Progression of Canine Glycogen Storage Disease Type IIIa

    PubMed Central

    Brooks, Elizabeth D; Yi, Haiqing; Austin, Stephanie L; Thurberg, Beth L; Young, Sarah P; Fyfe, John C; Kishnani, Priya S; Sun, Baodong

    2016-01-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies. PMID:26884409

  4. Natural Progression of Canine Glycogen Storage Disease Type IIIa.

    PubMed

    Brooks, Elizabeth D; Yi, Haiqing; Austin, Stephanie L; Thurberg, Beth L; Young, Sarah P; Fyfe, John C; Kishnani, Priya S; Sun, Baodong

    2016-02-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies.

  5. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    PubMed Central

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  6. Hepatitis

    MedlinePlus

    ... low because of routine testing of donated blood. Sexual transmission and transmission among family members through close contact ... associated with drinking contaminated water. Hepatitis Viruses ... B Blood, needles, sexual 10% of older children develop chronic infection. 90% ...

  7. HGF, EGF and Dexamethasone induced gene expression patterns during formation of tissue in hepatic organoid cultures

    PubMed Central

    Michalopoulos, George K.; Bowen, William C.; Mulé, Karen; Luo, Jianhua

    2007-01-01

    Corticosteroids, HGF and EGF play important roles in hepatic biology. We have previously shown that these molecules are required for formation of tissue with specific histology in complex organoid cultures. Dexamethasone suppresses growth and induces hepatocyte maturation; HGF and EGF are needed for formation of the non-epithelial elements. All three are needed for formation of the biliary epithelium. The gene expression patterns by which corticosteroids, HGF and EGF mediate their effects in hepatic tissue formation are distinct. These patterns affect many gene families and are described in detail. In terms of main findings, Dexamethasone induces expression of both HNF4 and C/EBP-alpha, essential transcription factors for hepatocyte differentiation. It suppresses hepatocyte growth by suppressing many molecules associated with growth in liver and other tissues, including IL6, CXC-Chemokine receptor, Amphiregulin, COX-2, HIF, etc. HGF and EGF induce all members of the TGF-beta family. They also induced multiple CNS-related genes, probably associated with stellate cells. Dexamethasone, as well as HGF and EGF, induce expression of HNF6-beta, associated with biliary epithelium formation. Combined addition of all three molecules is associated with mature histology in which hepatocyte and biliary lineages are separate and HNF4 is expressed only in hepatocyte nuclei. In conclusion, the results provide new and often surprising information on the gene expression alterations by which corticosteroids, HGF and EGF exert their effects on formation of hepatic tissue. The results underscore the usefulness of the organoid cultures for generating information on histogenesis which cannot be obtained by other culture or whole animal models. PMID:12837037

  8. Glucide metabolism disorders (excluding glycogen myopathies).

    PubMed

    Klepper, Joerg

    2013-01-01

    Glucide metabolism comprises pathways for transport, intermediate metabolism, utilization, and storage of carbohydrates. Defects affect multiple organs and present as systemic diseases. Neurological symptoms result from hypoglycemia, lactic acidosis, or inadequate storage of complex glucide molecules in neurological tissues. In glycogen storage disorders hypoglycemia indicates hepatic involvement, weakness and muscle cramps muscle involvement. Hypoglycemia is also the leading neurological symptom in disorders of gluconeogenesis. Disorders of galactose and fructose metabolism are rare, detectable by neonatal screening, and manifest following dietary intake of these sugars. Rare defects within the pentose metabolism constitute a new area of inborn metabolic disorders and may present with neurological symptoms. Treatment of these disorders involves the avoidance of fasting, dietary treatment eliminating specific carbohydrates, and enzyme replacement therapy in individual glycogen storage diseases.GLUT1 deficiency syndrome, a specific disorder of glucose transport into brain, results in global developmental delay, early-onset epilepsy, and a complex movement disorder. Treatment with a high-fat, low-carbohydrate ketogenic diet provides ketones as an alternative fuel to the brain and restores brain energy metabolism. Recently paroxysmal exertion-induced dyskinesia and stomatin-deficient cryohydrocytosis have been identified as an allelic disorder to GLUT1 deficiency equally responding to a ketogenic diet. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. GLYCOGENIC HEPATOPATHY: A COMPLICATION OF UNCONTROLLED DIABETES

    PubMed Central

    Satyarengga, Medha; Zubatov, Yelena; Frances, Sylvaine; Narayanswami, Gopal; Galindo, Rodolfo J.

    2017-01-01

    Objective To describe a case of hepatomegaly and elevated transaminases in a patient with glycogenic hepatopathy (GH) as a complication of uncontrolled diabetes. Methods Clinical, laboratory, and pathological information are described. Results An 18-year-old male with uncontrolled type 1 diabetes and recurrent diabetic ketoacidosis (DKA) presented with abdominal distention and severe hyperglycemia. Physical examination revealed massive hepatomegaly. Laboratory evaluation showed anion-gap metabolic acidosis, ketonuria, and markedly elevated aspartate and alanine amino transaminases (AST = 1,162 IU/L and ALT = 598 IU/L, respectively). Despite resolution of DKA with insulin infusion, transaminases continued to increase (peak AST = 3,725 U/L, ALT = 1,049 U/L) with no signs of liver failure (normal coagulation profile and albumin level). Abdominal ultrasonography revealed an enlarged liver with moderate echogenicity, consistent with steatosis. Extensive evaluation for causes of hepatitis including toxic, autoimmune, genetic, and infectious diseases was unrevealing. Liver biopsy showed no signs of nonalcoholic fatty liver disease (NAFLD), such as fibrosis, steatosis, or portal inflammation. However, swollen hepatocytes with glycogen accumulation consistent with GH were seen. Conclusion GH can present as hepatomegaly and elevated liver transaminases in patients with uncontrolled diabetes. Clinicians should consider GH in patients with uncontrolled diabetes after ruling out other common causes. Liver ultrasound cannot differentiate this condition from the more commonly seen NAFLD. Although liver biopsy remains a gold standard, evaluation with magnetic resonance imaging may be considered as a less invasive alternative in the appropriate clinical setting. PMID:28868358

  10. GLYCOGENIC HEPATOPATHY: A COMPLICATION OF UNCONTROLLED DIABETES.

    PubMed

    Satyarengga, Medha; Zubatov, Yelena; Frances, Sylvaine; Narayanswami, Gopal; Galindo, Rodolfo J

    2017-01-01

    To describe a case of hepatomegaly and elevated transaminases in a patient with glycogenic hepatopathy (GH) as a complication of uncontrolled diabetes. Clinical, laboratory, and pathological information are described. An 18-year-old male with uncontrolled type 1 diabetes and recurrent diabetic ketoacidosis (DKA) presented with abdominal distention and severe hyperglycemia. Physical examination revealed massive hepatomegaly. Laboratory evaluation showed anion-gap metabolic acidosis, ketonuria, and markedly elevated aspartate and alanine amino transaminases (AST = 1,162 IU/L and ALT = 598 IU/L, respectively). Despite resolution of DKA with insulin infusion, transaminases continued to increase (peak AST = 3,725 U/L, ALT = 1,049 U/L) with no signs of liver failure (normal coagulation profile and albumin level). Abdominal ultrasonography revealed an enlarged liver with moderate echogenicity, consistent with steatosis. Extensive evaluation for causes of hepatitis including toxic, autoimmune, genetic, and infectious diseases was unrevealing. Liver biopsy showed no signs of nonalcoholic fatty liver disease (NAFLD), such as fibrosis, steatosis, or portal inflammation. However, swollen hepatocytes with glycogen accumulation consistent with GH were seen. GH can present as hepatomegaly and elevated liver transaminases in patients with uncontrolled diabetes. Clinicians should consider GH in patients with uncontrolled diabetes after ruling out other common causes. Liver ultrasound cannot differentiate this condition from the more commonly seen NAFLD. Although liver biopsy remains a gold standard, evaluation with magnetic resonance imaging may be considered as a less invasive alternative in the appropriate clinical setting.

  11. Hepatic stellate cells and astrocytes: Stars of scar formation and tissue repair.

    PubMed

    Schachtrup, Christian; Le Moan, Natacha; Passino, Melissa A; Akassoglou, Katerina

    2011-06-01

    Scar formation inhibits tissue repair and regeneration in the liver and central nervous system. Activation of hepatic stellate cells (HSCs) after liver injury or of astrocytes after nervous system damage is considered to drive scar formation. HSCs are the fibrotic cells of the liver, as they undergo activation and acquire fibrogenic properties after liver injury. HSC activation has been compared to reactive gliosis of astrocytes, which acquire a reactive phenotype and contribute to scar formation after nervous system injury, much like HSCs after liver injury. It is intriguing that a wide range of neuroglia-related molecules are expressed by HSCs. We identified an unexpected role for the p75 neurotrophin receptor in regulating HSC activation and liver repair. Here we discuss the molecular mechanisms that regulate HSC activation and reactive gliosis and their contributions to scar formation and tissue repair. Juxtaposing key mechanistic and functional similarities in HSC and astrocyte activation might provide novel insight into liver regeneration and nervous system repair.

  12. Overtraining and glycogen depletion hypothesis.

    PubMed

    Snyder, A C

    1998-07-01

    Low muscle glycogen levels due to consecutive days of extensive exercise have been shown to cause fatigue and thus decrements in performance. Low muscle glycogen levels could also lead to oxidation of the branched chain amino acids and central fatigue. Therefore, the questions become, can low muscle glycogen not only lead to peripheral and central fatigue but also to overtraining, and if so can overtraining be avoided by consuming sufficient quantities of carbohydrates? Research on swimmers has shown that those who were nonresponsive to an increase in their training load had low levels of muscle glycogen and consumed insufficient energy and carbohydrates. However, cyclists who increased their training load for 2 wk but also increased carbohydrate intake to maintain muscle glycogen levels still met the criteria of over-reaching (short-term overtraining) and might have met the criteria for overtraining had the subjects been followed for a longer period of time. Thus, some other mechanism than reduced muscle glycogen levels must be responsible for the development and occurrence of overtraining.

  13. Herniation of Duodenum into the Right Ventral Hepatic Peritoneal Cavity with Groove Formation at the Ventral Hepatic Surface in a 2-Week-Old Chicken

    PubMed Central

    HARIDY, Mohie; SASAKI, Jun; GORYO, Masanobu

    2013-01-01

    ABSTRACT Internal hernia in avian species is very rare. A necropsy of a 2-week-old SPF White Leghorn chicken revealed that a loop of the duodenum and part of the pancreas (4 × 2 × 1 cm) was protruding through the abnormal foramen (2.5 cm in diameter) in the right posthepatic septum into the right ventral hepatic peritoneal cavity. The herniated loop was located underneath the ventral hepatic surface, leaving a groove on the right hepatic lobe (2 × 1.5 × 0.4 cm). The part of the pancreas involved in the hernia was grossly enlarged. Microscopically, a zone of pressure atrophy of hepatic tissue was characterized by crowdedness of hepatocytes with pyknotic nuclei and faint eosinophilic cytoplasm and indistinct narrow sinusoids. The pancreas revealed hypertrophy of the acinar cells with an increase in the secretory granules and basophilic cytoplasm. This is the first report of duodenum herniation into the right ventral hepatic peritoneal cavity resulting in groove formation on the ventral hepatic surface in a 2-week-old chicken. PMID:23759688

  14. Assignment of the gene encoding glycogen synthase (GYS) to human chromosome 19, band q13,3

    SciTech Connect

    Lehto, M. Helsinki Univ. ); Stoffel, M.; Espinosa, R. III; Beau, M.M. le; Bell, G.I. ); Groop, L. )

    1993-02-01

    The enzyme glycogen synthase (UDP glocose:glycogen 4-[alpha]-D-glucosyltransferase, EC 2.4.1.11) catalyzes the formation of glycogen from uridine diphosphate glucose (UPDG). Impaired activation of muscle glycogen synthase by insulin has been noted in patients with genetic risk of developing non-insulin-dependent diabets mellitus (NIDDM) and this may represent an early defect in the pathogenesis of this disorder. As such, glycogen synthase represents a candidate gene for contributing to genetic susceptibility. As a first step in studying the role of glycogen synthase in the genetics of NIDDM, we have isolated a cosmid encoding the human glycogen synthase gene (gene symbol GYS) and determined its chromosomal localization by fluorescence in situ hybridization. 4 refs., 1 fig.

  15. Dichloroacetate Stimulates Glycogen Accumulation in Primary Hepatocytes through an Insulin-Independent Mechanism

    SciTech Connect

    Lingohr, Melissa K.; Bull, Richard J.; Kato-Weinstein, Junko; Thrall, Brian D. )

    2002-01-01

    Dichloroacetate (DCA), a by-product of water chlorination, causes liver cancer in B6C3F1 mice. A hallmark response observed in mice exposed to carcinogenic doses of DCA is an accumulation of hepatic glycogen content. To distinguish whether the in vivo glycogenic effect of DCA was dependent on insulin and insulin signaling proteins, experiments were conducted in isolated hepatocytes where insulin concentrations could be controlled. In hepatocytes isolated from male B6C3F1 mice, DCA increased glycogen levels in a dose-related manner, independently of insulin. The accumulation of hepatocellular glycogen induced by DCA was not the result of decreased glycogenolysis, since DCA had no effect on the rate of glucagon-stimulated glycogen breakdown. Glycogen accumulation caused by DCA treatment was not hindered by inhibitors of extracellular-regulated protein kinase kinase (Erk1/2 kinase or MEK) or p70 kDa S6 protein kinase (p70(S6K)), but was completely blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin. Similarly, insulin-stimulated glycogen deposition was not influenced by the Erk1/2 kinase inhibitor, PD098509, or the p70(S6K) inhibitor, rapamycin. Unlike DCA-stimulated glycogen deposition, PI3K-inhibition only partially blocked the glycogenic effect of insulin. DCA did not cause phosphorylation of the downstream PI3K target protein, protein kinase B (PKB/Akt). The phosphorylation of PKB/Akt did not correlate to insulin-stimulated glycogenesis either. Similar to insulin, DCA in the medium decreased IR expression in isolated hepatocytes. The results indicate DCA increases hepatocellular glycogen accumulation through a PI3K-dependent mechanism that does not involve PKB/Akt and is, at least in part, different from the classical insulin-stimulated glycogenesis pathway. Somewhat surprisingly, insulin-stimulated glycogenesis also appears not to involve PKB/Akt in isolated murine hepatocytes.

  16. [Glycogen content in gerbil's liver following the spacecraft Foton-M3 mission].

    PubMed

    Atiakshin, D A; Bykov, E G; Il'in, E A; Pashkov, A N

    2009-01-01

    Glycogen cytochemistry and distribution in hepatocytes of the classic liver lobules were studied in three groups of gerbils Meriones unguiculatus: vivarium, synchronous control and flown in the 12-d Foton-M3 mission. The control animals were shown to have the central glycogen distribution with a large pool of polysaccharides found in hepatocytes of the pericentral and intermediate lobules and a small pool in the periportal area. Glycogen in hepatocyte plasm was within the physiological norm in the alpha- and beta-granules, typically localized on the cell periphery. Exposure to the spaceflight conditions decreased significantly glycogen concentrations in each functional region of the hepatic lobules and reduced the gradient of polysaccharide distribution from the portal triads toward the central vein. In parallel, high glycogen heterogeneity formed in adjacent hepatocytes and loci. The presence of glycosomes evidenced disturbance of carbohydrates metabolism. In addition, intracellular topography of glycogen granules in cytoplasm was altered. Trends of glycogen in gerbils of the synchronous control were similar to the space flown animals but much less pronounced.

  17. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction.

    PubMed

    Baker, David J; Greenhaff, Paul L; MacInnes, Alan; Timmons, James A

    2006-06-01

    Glycogen phosphorylase inhibition represents a promising strategy to suppress inappropriate hepatic glucose output, while muscle glycogen is a major source of fuel during contraction. Glycogen phosphorylase inhibitors (GPi) currently being investigated for the treatment of type 2 diabetes do not demonstrate hepatic versus muscle glycogen phosphorylase isoform selectivity and may therefore impair patient aerobic exercise capabilities. Skeletal muscle energy metabolism and function are not impaired by GPi during high-intensity contraction in rat skeletal muscle; however, it is unknown whether glycogen phosphorylase inhibitors would impair function during prolonged lower-intensity contraction. Utilizing a novel red cell-perfused rodent gastrocnemius-plantaris-soleus system, muscle was pretreated for 60 min with either 3 micromol/l free drug GPi (n=8) or vehicle control (n=7). During 60 min of aerobic contraction, GPi treatment resulted in approximately 35% greater fatigue. Muscle glycogen phosphorylase a form (P<0.01) and maximal activity (P<0.01) were reduced in the GPi group, and postcontraction glycogen (121.8 +/- 16.1 vs. 168.3 +/- 8.5 mmol/kg dry muscle, P<0.05) was greater. Furthermore, lower muscle lactate efflux and glucose uptake (P<0.01), yet higher muscle Vo(2), support the conclusion that carbohydrate utilization was impaired during contraction. Our data provide new confirmation that muscle glycogen plays an essential role during submaximal contraction. Given the critical role of exercise prescription in the treatment of type 2 diabetes, it will be important to monitor endurance capacity during the clinical evaluation of nonselective GPi. Alternatively, greater effort should be devoted toward the discovery of hepatic-selective GPi, hepatic-specific drug delivery strategies, and/or alternative strategies for controlling excess hepatic glucose production in type 2 diabetes.

  18. Risk factors for liver abscess formation in patients with blunt hepatic injury after non-operative management.

    PubMed

    Hsu, C-P; Wang, S-Y; Hsu, Y-P; Chen, H-W; Lin, B-C; Kang, S-C; Yuan, K-C; Liu, E-H; Kuo, I-M; Liao, C-H; Ouyang, C-H; Yang, S-J

    2014-10-01

    To identify risk factors for liver abscess formation in patients with blunt hepatic injury who underwent non-operative management (NOM). From January 2004 to October 2008, retrospective data were collected from a single level I trauma center. Clinical data, hospital course, and outcome were all extracted from patient medical records for further analysis. A total of 358 patients were enrolled for analysis. There were 13 patients with liver abscess after blunt hepatic injury. Patients with abscess had a significant increase in glutamic oxaloacetic transaminase (GOT, p = 0.006) and glutamic pyruvic transaminase (GPT, p < 0.0001), and a decrease in arterial blood pH (p = 0.023) compared to patients without abscess in the univariate analyses. In addition, high-grade hepatic injury and transarterial embolization (TAE, p < 0.001) were also risk factors for liver abscess formation. Five factors (GOT, GPT, pH level in the arterial blood sample, TAE, and high-grade hepatic injury) were included in the multivariate analysis. TAE, high-grade hepatic injury, and GPT level were statistically significant. The odds ratios of TAE and high-grade hepatic injury were 15.41 and 16.08, respectively. A receiver operating characteristic (ROC) analysis was used for GPT, and it suggested cutoff values of 372.5 U/L. A prediction model based on the ROC analysis had 100 % sensitivity and 86.7 % specificity to predict liver abscess formation in patients with two of the three independent risk factors. TAE, high-grade hepatic injury, and a high GPT level are independent risk factors for liver abscess formation.

  19. Environmental temperature and glycogen resynthesis.

    PubMed

    Naperalsky, M; Ruby, B; Slivka, D

    2010-08-01

    This study investigated the effects of hot (H) and room temperature (RT) recovery environments on glycogen resynthesis. Nine male participants completed two trials, cycling for 1 h in a temperature-controlled chamber (32.6 degrees C), followed by 4 h of recovery at 32.6 degrees C (H) or 22.2 degrees C (RT). Rectal temperature was continuously recorded. A carbohydrate beverage (1.8 g/kg bodyweight) was supplied at 0 and 2 h post-exercise. Muscle biopsies were taken immediately, 2 h, and 4 h post-exercise for glycogen analysis. Blood samples were taken at 30, 60, 120, 150, 180, and 240 min into recovery for glucose and insulin analysis. Expired gas was collected at 105 min and 225 min into recovery to calculate whole body carbohydrate oxidation. Average core temperature, whole body carbohydrate oxidation, and serum glucose at 120, 150, 180 and 240 min was higher in H compared to RT (p<0.05). Muscle glycogen was higher in RT vs. H at 4 h (105+/-28 vs. 88+/-24 mmolxkg (-1) wet weight, respectively; p<0.05), but no different at 0 and 2 h. There was no difference in serum insulin. These data indicate the importance of minimizing the exposure to heat after exercise to improve recovery, specifically to improve glycogen resynthesis.

  20. Percutaneous radiofrequency ablation of hepatic tumours: factors affecting technical failure of artificial ascites formation using an angiosheath.

    PubMed

    Kang, T W; Lee, M W; Hye, M J; Song, K D; Lim, S; Rhim, H; Lim, H K; Cha, D I

    2014-12-01

    To evaluate the technical feasibility of artificial ascites formation using an angiosheath before percutaneous radiofrequency ablation (RFA) for hepatic tumours and to determine predictive factors affecting the technical failure of artificial ascites formation. This retrospective study was approved by the institutional review board. One hundred and thirteen patients underwent percutaneous RFA of hepatic tumours after trying to make artificial ascites using an angiosheath to avoid collateral thermal damage. The technical success rate of making artificial ascites using an angiosheath and conversion rate to other techniques after initial failure of making artificial ascites were evaluated. The technical success rate for RFA was assessed. In addition, potential factors associated with technical failure including previous history of transcatheter arterial chemoembolization (TACE) or RFA, type of abdominal surgery, and adjacent perihepatic structures were reviewed. Predictive factors for the technical failure of artificial ascites formation were analysed using multivariate analysis. The technical success rates of artificial ascites formation by angiosheath and that of RFA were 84.1% (95/113) and 97.3% (110/113), respectively. The conversion rate to other techniques after the failure of artificial ascites formation using an angiosheath was 15.9% (18/113). Previous hepatic resection was the sole independent predictive factor affecting the technical failure of artificial ascites formation (p<0.001, odds ratio = 29.03, 95% confidence interval: 4.56-184.69). Making artificial ascites for RFA of hepatic tumours using an angiosheath was technically feasible in most cases. However, history of hepatic resection was a significant predictive factor affecting the technical failure of artificial ascites formation. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes.

    PubMed Central

    Kirk, C J; Rodrigues, L M; Hems, D A

    1979-01-01

    The relative abilities of seven vasopressin-like peptides to activate hepatic glycogen phosphorylase and stimulate phosphate incorporation into phosphatidylinositol were compared. Although the individual peptides differed in their potencies, the concentrations required to stimulate phosphatidylinositol metabolism were always greater (about 10 times) than those needed to activate phosphorylase. The molecular specificity of the hepatic vasopressin receptor and the role of vasopressin-stimulated phosphatidylinositol turnover are discussed. PMID:444224

  2. Effect of a hepatitis B virus inhibitor, NZ-4, on capsid formation.

    PubMed

    Yang, Li; Wang, Ya-Juan; Chen, Hai-Jun; Shi, Li-Ping; Tong, Xian-Kun; Zhang, Yang-Ming; Wang, Gui-Feng; Wang, Wen-Long; Feng, Chun-Lan; He, Pei-Lan; Xu, Yi-Bin; Lu, Meng-Ji; Tang, Wei; Nan, Fa-Jun; Zuo, Jian-Ping

    2016-01-01

    During the hepatitis B virus (HBV) life cycle, nucleocapsid assembly is essential for HBV replication. Both RNA reverse transcription and DNA replication occur within the HBV nucleocapsid. HBV nucleocapsid is consisted of core protein (HBcAg), whose carboxy-terminal domain (CTD) contains an Arg-rich domain (ARD). The ARD of HBcAg does contribute to the encapsidation of pregenomic RNA (pgRNA). Previously, we reported a small-molecule, NZ-4, which dramatically reduced the HBV DNA level in an in vitro cell setting. Here, we explore the possible mechanisms by which NZ-4 inhibits HBV function. As an HBV inhibitor, NZ-4 leads to the formation of genome-free capsids, including a new population of capsid that runs faster on agarose gels. NZ-4's activity was dependent on the presence of the ARD I, containing at least one positively charged amino acid. NZ-4 might provide a new option for further development of HBV therapeutics for the treatment of chronic hepatitis B.

  3. Liver glycogen bodies: ground-glass hepatocytes in transplanted patients.

    PubMed

    Bejarano, Pablo A; Garcia, Monica T; Rodriguez, Maria M; Ruiz, Phillip; Tzakis, Andreas G

    2006-11-01

    Ground-glass hepatocytes have been described in Lafora's disease, fibrinogen deposition, hepatitis B, type IV glycogenosis, and alcohol aversion (cyanamide) therapy. We encountered ground-glass hepatocytes with intracytoplasmic inclusions in four liver biopsies from three transplanted patients who had none of the above-mentioned underlying diseases. One patient was a 4-year-old boy who had a kidney transplant for severe ureterovesical reflux. Patient 2 was a 52-year-old man who had two liver transplants because of hepatitis C. The third patient was a 7-month-old girl who underwent a multivisceral transplant because of necrotizing enterocolitis and liver failure induced by total parenteral nutrition. The patients developed liver abnormalities from 45 days to 4 years after their transplants. The livers showed conspicuous ground-glass hepatocytes in 90% of the children's samples and 30% of the adult liver cells. The cytoplasmic bodies stained strongly for Gomori methenamine-silver; they were positive for periodic acid-Schiff without diastase, but negative after diastase digestion. They were negative for colloidal iron and hepatitis B core and surface antigens. Electron microscopy revealed non-membrane bound aggregates of glycogen. Idiopathic ground-glass hepatocytes occur in transplanted patients and represent accumulation of altered glycogen. However, their clinical significance and cause are not entirely elucidated.

  4. Analysis of Mesorhizobium loti glycogen operon: effect of phosphoglucomutase (pgm) and glycogen synthase (g/gA) null mutants on nodulation of Lotus tenuis.

    PubMed

    Lepek, Viviana C; D'Antuono, Alejandra L; Tomatis, Pablo E; Ugalde, Juan E; Giambiagi, Susana; Ugalde, Rodolfo A

    2002-04-01

    The phosphoglucomutase (pgm) gene codes for a key enzyme required for the formation of UDP-glucose and ADP-glucose, the sugar donors for the biosynthesis of glucose containing polysaccharides. A Mesorhizobium loti pgm null mutant obtained in this study contains an altered form of lipopolysaccharide (LPS), lacks exopolysaccharide (EPS), beta cyclic glucan, and glycogen and is unable to nodulate Lotus tenuis. The nonnodulating phenotype of the pgm mutant was not due to the absence of glycogen, since a glycogen synthase (glgA) null mutant effectively nodulates this legume. In M. loti, pgm is part of the glycogen metabolism gene cluster formed by GlgP (glycogen phosphorylase), glgB (glycogen branching), glgC (ADP-glucose pyrophosphorylase), glgA, pgm, and glgX (glycogen debranching). The genes are transcribed as a single transcript from glgP to at least pgm under the control of a strong promoter (promoter I) upstream of glgP. An alternative promoter (promoter II), mapping in a 154-bp DNA fragment spanning 85 bp upstream of the glgA start codon and the first 69 bp of the glgA coding region, controls the expression of glgA and pgm, independently of the rest of the upstream genes. Primer extension experiments showed that transcription starts 19 bp upstream of the glgA start codon.

  5. Propionibacterium acnes-induced hepatic granuloma formation is impaired in mice lacking tetraspanin CD9.

    PubMed

    Yamane, Hiroyuki; Tachibana, Isao; Takeda, Yoshito; Saito, Yoshiyuki; Tamura, Yoshio; He, Ping; Suzuki, Mayumi; Shima, Yoshihito; Yoneda, Tsutomu; Hoshino, Shigenori; Inoue, Koji; Kijima, Takashi; Yoshida, Mitsuhiro; Kumagai, Toru; Osaki, Tadashi; Eishi, Yoshinobu; Kawase, Ichiro

    2005-08-01

    The granuloma is a host defence response to persistent pathogenic irritants. In the process of granuloma formation, the activation, migration, and fusion of macrophages occur locally, but the mechanisms involved remain elusive. Tetraspanins regulate cell migration and fusion by organizing functional molecular complexes in membrane microdomains. Here we investigated the role of tetraspanin CD9 in hepatic granuloma formation. Immunostaining of the liver of untreated wild-type mice showed that CD9 was expressed by vascular endothelial cells and perivenular hepatocytes. When intrahepatic granulomas were induced by intravenous injection of Propionibacterium acnes, hepatocyte CD9 was extensively upregulated, while inflammatory cells constituting granulomas were mostly negative for CD9. Compared with wild-type littermates, CD9-knockout mice showed dissemination of Propionibacterium acnes and reduced number and size of granulomas after the injection. Moreover, production of granuloma-inducing cytokines, TNF-alpha and IFN-gamma, was delayed and chemotactic activity for macrophages was suppressed in the liver of mutant mice. These results suggest that CD9 is one of the proteins that promotes granuloma formation in the liver. Copyright 2005 Pathological Society of Great Britain and Ireland

  6. Hexokinase 2, Glycogen Synthase and Phosphorylase Play a Key Role in Muscle Glycogen Supercompensation

    PubMed Central

    Irimia, José M.; Rovira, Jordi; Nielsen, Jakob N.; Guerrero, Mario; Wojtaszewski, Jørgen F. P.; Cussó, Roser

    2012-01-01

    Background Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. Methods Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. Results In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5′-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. Conclusions Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches. PMID:22860128

  7. Multiple Glycogen-binding Sites in Eukaryotic Glycogen Synthase Are Required for High Catalytic Efficiency toward Glycogen

    SciTech Connect

    Baskaran, Sulochanadevi; Chikwana, Vimbai M.; Contreras, Christopher J.; Davis, Keri D.; Wilson, Wayne A.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.

    2012-12-10

    Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V{sub max}/S{sub 0.5} for glycogen by 40- and 70-fold, respectively. Combined mutation of site-1 and site-2 decreased the V{sub max}/S{sub 0.5} for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells ({Delta}gsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a 'toehold mechanism,' keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.

  8. Hepatitis B Virus Covalently Closed Circular DNA Formation in Immortalized Mouse Hepatocytes Associated with Nucleocapsid Destabilization.

    PubMed

    Cui, Xiuji; Guo, Ju-Tao; Hu, Jianming

    2015-09-01

    Hepatitis B virus (HBV) infects hundreds of millions of people worldwide and causes acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HBV is an enveloped virus with a relaxed circular (RC) DNA genome. In the nuclei of infected human hepatocytes, conversion of RC DNA from the incoming virion or cytoplasmic mature nucleocapsid (NC) to the covalently closed circular (CCC) DNA, which serves as the template for producing all viral transcripts, is essential to establish and sustain viral replication. For reasons yet to be understood, HBV is apparently unable to make CCC DNA in normal mouse hepatocytes in the liver. We report here that HBV CCC DNA was formed efficiently in an immortalized mouse hepatocyte cell line, AML12HBV10, and this is associated with destabilization of mature NCs in these cells. These results suggest that destabilization of mature HBV NCs in AML12HBV10 cells facilitates efficient NC uncoating and subsequent CCC DNA formation. They further implicate NC uncoating as an important step in CCC DNA formation that is subject to host regulation and potentially a critical determinant of host range and/or cell tropism of HBV. IMPORTANCE Persistent infection by hepatitis B virus (HBV), afflicting hundreds of millions worldwide, is sustained by the episomal viral covalently closed circular (CCC) DNA in the nuclei of infected hepatocytes. CCC DNA is converted from the viral genomic (precursor) DNA contained in cytoplasmic viral nucleocapsids. The conversion process remains ill defined, but host cell factors are thought to play an essential role. In particular, HBV fails to make CCC DNA in normal mouse hepatocytes despite the presence of large amounts of nucleocapsids containing the precursor viral DNA. We have found that in an immortalized mouse hepatocyte cell line, HBV is able to make abundant amounts of CCC DNA. This ability correlates with increased instability of viral nucleocapsids in these cells, which likely facilitates nucleocapsid

  9. FGF2 mediates hepatic progenitor cell formation during human pluripotent stem cell differentiation by inducing the WNT antagonist NKD1

    PubMed Central

    Twaroski, Kirk; Mallanna, Sunil K.; Jing, Ran; DiFurio, Francesca; Urick, Amanda; Duncan, Stephen A.

    2015-01-01

    Fibroblast growth factors (FGFs) are required to specify hepatic fate within the definitive endoderm through activation of the FGF receptors (FGFRs). While the signaling pathways involved in hepatic specification are well understood, the mechanisms through which FGFs induce hepatic character within the endoderm are ill defined. Here we report the identification of genes whose expression is directly regulated by FGFR activity during the transition from endoderm to hepatic progenitor cell. The FGFR immediate early genes that were identified include those encoding transcription factors, growth factors, and signaling molecules. One of these immediate early genes encodes naked cuticle homolog 1 (NKD1), which is a repressor of canonical WNT (wingless-type MMTV integration site) signaling. We show that loss of NKD1 suppresses the formation of hepatic progenitor cells from human induced pluripotent stem cells and that this phenotype can be rescued by using a pharmacological antagonist of canonical WNT signaling. We conclude that FGF specifies hepatic fate at least in large part by inducing expression of NKD1 to transiently suppress the canonical WNT pathway. PMID:26637527

  10. Emerging Roles for Glycogen in the CNS

    PubMed Central

    Waitt, Alice E.; Reed, Liam; Ransom, Bruce R.; Brown, Angus M.

    2017-01-01

    The ability of glycogen, the depot into which excess glucose is stored in mammals, to act as a source of rapidly available energy substrate, has been exploited by several organs for both general and local advantage. The liver, expressing the highest concentration of glycogen maintains systemic normoglycemia ensuring the brain receives a supply of glucose in excess of demand. However the brain also contains glycogen, although its role is more specialized. Brain glycogen is located exclusively in astrocytes in the adult, with the exception of pathological conditions, thus in order to benefit neurons, and energy conduit (lactate) is trafficked inter-cellularly. Such a complex scheme requires cell type specific expression of a variety of metabolic enzymes and transporters. Glycogen supports neural elements during withdrawal of glucose, but once the limited buffer of glycogen is exhausted neural function fails and irreversible injury ensues. Under physiological conditions glycogen acts to provide supplemental substrates when ambient glucose is unable to support function during increased energy demand. Glycogen also supports learning and memory where it provides lactate to neurons during the conditioning phase of in vitro long-term potentiation (LTP), an experimental correlate of learning. Inhibiting the breakdown of glycogen or intercellular transport of lactate in in vivo rat models inhibits the retention of memory. Our current understanding of the importance of brain glycogen is expanding to encompass roles that are fundamental to higher brain function. PMID:28360839

  11. Brain glycogen decreases during prolonged exercise

    PubMed Central

    Matsui, Takashi; Soya, Shingo; Okamoto, Masahiro; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2011-01-01

    Abstract Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here, we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose, we exercised male Wistar rats on a treadmill for different durations (30–120 min) at moderate intensity (20 m min−1) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37–60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise. PMID:21521757

  12. REVISITING GLYCOGEN CONTENT IN THE HUMAN BRAIN

    PubMed Central

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R.

    2015-01-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3–4 µmol/g brain glycogen content using in vivo 13C magnetic resonance spectroscopy (MRS) in conjunction with [1-13C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3–5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state 13C labeling in glycogen, here we administered [1-13C]glucose to healthy volunteers for 80 hours. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-13C]glucose administration and 13C-glycogen levels in the occipital lobe were measured by 13C MRS approximately every 12 hours. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the 13C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  13. Role of hepatic Annexin A6 in fatty acid-induced lipid droplet formation.

    PubMed

    Cairns, Rose; Alvarez-Guaita, Anna; Martínez-Saludes, Inés; Wason, Sundeep J; Hanh, Jacky; Nagarajan, Shilpa R; Hosseini-Beheshti, Elham; Monastyrskaya, Katia; Hoy, Andrew J; Buechler, Christa; Enrich, Carlos; Rentero, Carles; Grewal, Thomas

    2017-09-15

    Annexin A6 (AnxA6) has been implicated in the regulation of endo-/exocytic pathways, cholesterol transport, and the formation of multifactorial signaling complexes in many different cell types. More recently, AnxA6 has also been linked to triglyceride storage in adipocytes. Here we investigated the potential role of AnxA6 in fatty acid (FA) - induced lipid droplet (LD) formation in hepatocytes. AnxA6 was associated with LD from rat liver and HuH7 hepatocytes. In oleic acid (OA) -loaded HuH7 cells, substantial amounts of AnxA6 bound to LD in a Ca(2+)-independent manner. Remarkably, stable or transient AnxA6 overexpression in HuH7 cells led to elevated LD numbers/size and neutral lipid staining under control conditions as well as after OA loading compared to controls. In contrast, overexpression of AnxA1, AnxA2 and AnxA8 did not impact on OA-induced lipid accumulation. On the other hand, incubation of AnxA6-depleted HuH7 cells or primary hepatocytes from AnxA6 KO-mice with OA led to reduced FA accumulation and LD numbers. Furthermore, morphological analysis of liver sections from A6-KO mice revealed significantly lower LD numbers compared to wildtype animals. Interestingly, pharmacological inhibition of cytoplasmic phospholipase A2α (cPLA2α)-dependent LD formation was ineffective in AnxA6-depleted HuH7 cells. We conclude that cPLA2α-dependent pathways contribute to the novel regulatory role of hepatic AnxA6 in LD formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Travelers' Health: Hepatitis A

    MedlinePlus

    ... Recommend on Facebook Tweet Share Compartir Chapter 3 - Helminths, Soil-Transmitted Chapter 3 - Hepatitis B Hepatitis A ... Dec 20;2(6):227–30. Chapter 3 - Helminths, Soil-Transmitted Chapter 3 - Hepatitis B File Formats ...

  15. Correction of glycogen storage disease type III with rapamycin in a canine model.

    PubMed

    Yi, Haiqing; Brooks, Elizabeth D; Thurberg, Beth L; Fyfe, John C; Kishnani, Priya S; Sun, Baodong

    2014-06-01

    Recently, we reported that progression of liver fibrosis and skeletal myopathy caused by extensive accumulation of cytoplasmic glycogen at advanced age is the major feature of a canine model of glycogen storage disease (GSD) IIIa. Here, we aim to investigate whether rapamycin, a specific inhibitor of mTOR, is an effective therapy for GSD III. Our data show that rapamycin significantly reduced glycogen content in primary muscle cells from human patients with GSD IIIa by suppressing the expression of glycogen synthase and glucose transporter 1. To test the treatment efficacy in vivo, rapamycin was daily administered to GSD IIIa dogs starting from age 2 (early-treatment group) or 8 months (late-treatment group), and liver and skeletal muscle biopsies were performed at age 12 and 16 months. In both treatment groups, muscle glycogen accumulation was not affected at age 12 months but significantly inhibited at 16 months. Liver glycogen content was reduced in the early-treatment group but not in the late-treatment group at age 12 months. Both treatments effectively reduced liver fibrosis at age 16 months, consistent with markedly inhibited transition of hepatic stellate cells into myofibroblasts, the central event in the process of liver fibrosis. Our results suggest a potential useful therapy for GSD III. Rapamycin inhibited glycogen accumulation in GSD IIIa patient muscle cells. Rapamycin reduced muscle glycogen content in GSD IIIa dogs at advanced age. Rapamycin effectively prevented progression of liver fibrosis in GSD IIIa dogs. Our results suggest rapamycin as potential useful therapy for patients with GSD III.

  16. Spheroid Formation and Evaluation of Hepatic Cells in a Three-Dimensional Culture Device.

    PubMed

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2015-12-17

    In drug discovery, it is very important to evaluate liver cells within an organism. Compared to 2D culture methods, the development of 3D culture techniques for liver cells has been successful in maintaining long-term liver functionality with the formation of a hepatic-specific structure. The key to performing drug testing is the establishment of a stable in vitro evaluation system. In this article, we report a Tapered Stencil for Cluster Culture (TASCL) device developed to create liver spheroids in vitro. The TASCL device will be applied as a toxicity evaluation system for drug discovery. The TASCL device was created with an overall size of 10 mm × 10 mm, containing 400 microwells with a top aperture (500 µm × 500 µm) and a bottom aperture (300 µm diameter circular) per microwell. We evaluated the formation, recovery, and size of HepG2 spheroids in the TASCL device. The formation and recovery were both nearly 100%, and the size of the HepG2 spheroids increased with an increase in the initial cell seeding density. There were no significant differences in the sizes of the spheroids among the microwells. In addition, the HepG2 spheroids obtained using the TASCL device were alive and produced albumin. The morphology of the HepG2 spheroids was investigated using FE-SEM. The spheroids in the microwells exhibited perfectly spherical aggregation. In this report, by adjusting the size of the microwells of the TASCL device, uniform HepG2 spheroids were created, and the device facilitated more precise measurements of the liver function per HepG2 spheroid. Our TASCL device will be useful for application as a toxicity evaluation system for drug testing.

  17. Unique Features of Hepatitis C Virus Capsid Formation Revealed by De Novo Cell-Free Assembly

    PubMed Central

    Klein, Kevin C.; Polyak, Stephen J.; Lingappa, Jaisri R.

    2004-01-01

    The assembly of hepatitis C virus (HCV) is poorly understood, largely due to the lack of mammalian cell culture systems that are easily manipulated and produce high titers of virus. This problem is highlighted by the inability of the recently established HCV replicon systems to support HCV capsid assembly despite high levels of structural protein synthesis. Here we demonstrate that up to 80% of HCV core protein synthesized de novo in cell-free systems containing rabbit reticulocyte lysate or wheat germ extracts assembles into HCV capsids. This contrasts with standard primate cell culture systems, in which almost no core assembles into capsids. Cell-free HCV capsids, which have a sedimentation value of ≈100S, have a buoyant density (1.28 g/ml) on cesium chloride similar to that of HCV capsids from other systems. Capsids produced in cell-free systems are also indistinguishable from capsids isolated from HCV-infected patient serum when analyzed by transmission electron microscopy. Using these cell-free systems, we show that HCV capsid assembly is independent of signal sequence cleavage, is dependent on the N terminus but not the C terminus of HCV core, proceeds at very low nascent chain concentrations, is independent of intact membrane surfaces, and is partially inhibited by cultured liver cell lysates. By allowing reproducible and quantitative assessment of viral and cellular requirements for capsid formation, these cell-free systems make a mechanistic dissection of HCV capsid assembly possible. PMID:15308720

  18. Human Cathelicidin Compensates for the Role of Apolipoproteins in Hepatitis C Virus Infectious Particle Formation

    PubMed Central

    Puig-Basagoiti, Francesc; Fukuhara, Takasuke; Tamura, Tomokazu; Ono, Chikako; Uemura, Kentaro; Kawachi, Yukako; Yamamoto, Satomi; Mori, Hiroyuki; Kurihara, Takeshi; Okamoto, Toru; Aizaki, Hideki

    2016-01-01

    ABSTRACT Exchangeable apolipoproteins (ApoA, -C, and -E) have been shown to redundantly participate in the formation of infectious hepatitis C virus (HCV) particles during the assembly process, although their precise role in the viral life cycle is not well understood. Recently, it was shown that the exogenous expression of only short sequences containing amphipathic α-helices from various apolipoproteins is sufficient to restore the formation of infectious HCV particles in ApoB and ApoE double-gene-knockout Huh7 (BE-KO) cells. In this study, through the expression of a small library of human secretory proteins containing amphipathic α-helix structures, we identified the human cathelicidin antimicrobial peptide (CAMP), the only known member of the cathelicidin family of antimicrobial peptides (AMPs) in humans and expressed mainly in bone marrow and leukocytes. We showed that CAMP is able to rescue HCV infectious particle formation in BE-KO cells. In addition, we revealed that the LL-37 domain in CAMP containing amphipathic α-helices is crucial for the compensation of infectivity in BE-KO cells, and the expression of CAMP in nonhepatic 293T cells expressing claudin 1 and microRNA miR-122 confers complete propagation of HCV. These results suggest the possibility of extrahepatic propagation of HCV in cells with low-level or no expression of apolipoproteins but expressing secretory proteins containing amphipathic α-helices such as CAMP. IMPORTANCE Various exchangeable apolipoproteins play a pivotal role in the formation of infectious HCV during the assembly of viral particles, and amphipathic α-helix motifs in the apolipoproteins have been shown to be a key factor. To the best of our knowledge, we have identified for the first time the human cathelicidin CAMP as a cellular protein that can compensate for the role of apolipoproteins in the life cycle of HCV. We have also identified the domain in CAMP that contains amphipathic α-helices crucial for compensation and

  19. Kinetic studies on muscle glycogen synthase.

    PubMed

    Salsas, E; Larner, J

    1975-05-10

    Using the I form of rabbit muscle glycogen synthase essentially free of glycogen, the kinetics and mechanism of action was investigated. No evidence for an exchange between [14C]UDP and UDP-glucose was found. The bisubstrate kinetics of the enzyme for UDP-glucose and glycogen, as well as for UDP-glucose and maltose, was determined. An intersecting pattern in the double reciprocal plot (velocity versus substrate concentration) suggestive of a sequential mechanism (ordered or random) was found in all cases. The K-m for UDP-glucose (45 to 48 mM) was the same with either maltose or glycogen as acceptor. The K-m for maltose (230 mM) and for glycogen (1.5 mug/ml) differed.

  20. The Clinical Course of Glycogen Disease

    PubMed Central

    van Creveld, Simon

    1963-01-01

    The various types of glycogen disease, of which the author gave the first clinical description in 1928, that can at present be distinguished, are described in terms of the differing clinical and biochemical findings and the enzyme deficiencies more or less characteristic for each type. The clinical course of the author's first two patients with glycogen disease, at present 42 and 38 years old, is given in detail; they have type III of the disease. Some cases of glycogen disease cannot be fitted into the clinical classification of the different types, and for some no definite enzymatic defect to account for the glycogen accumulation has been found. The therapy of glycogen disease is discussed briefly. ImagesFig. 1aFig. 1bFig. 2Fig. 8 PMID:14023832

  1. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model.

    PubMed

    López-Soldado, Iliana; Zafra, Delia; Duran, Jordi; Adrover, Anna; Calbó, Joaquim; Guinovart, Joan J

    2015-03-01

    We generated mice that overexpress protein targeting to glycogen (PTG) in the liver (PTG(OE)), which results in an increase in liver glycogen. When fed a high-fat diet (HFD), these animals reduced their food intake. The resulting effect was a lower body weight, decreased fat mass, and reduced leptin levels. Furthermore, PTG overexpression reversed the glucose intolerance and hyperinsulinemia caused by the HFD and protected against HFD-induced hepatic steatosis. Of note, when fed an HFD, PTG(OE) mice did not show the decrease in hepatic ATP content observed in control animals and had lower expression of neuropeptide Y and higher expression of proopiomelanocortin in the hypothalamus. Additionally, after an overnight fast, PTG(OE) animals presented high liver glycogen content, lower liver triacylglycerol content, and lower serum concentrations of fatty acids and β-hydroxybutyrate than control mice, regardless of whether they were fed an HFD or a standard diet. In conclusion, liver glycogen accumulation caused a reduced food intake, protected against the deleterious effects of an HFD, and diminished the metabolic impact of fasting. Therefore, we propose that hepatic glycogen content be considered a potential target for the pharmacological manipulation of diabetes and obesity. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Brain glycogen supercompensation following exhaustive exercise.

    PubMed

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals.

  3. Inhibition of bacterial cell wall-induced leukocyte recruitment and hepatic granuloma formation by TGF-beta gene transfer.

    PubMed

    Song, X; Zeng, L; Pilo, C M; Zagorski, J; Wahl, S M

    1999-10-01

    Intraperitoneal injection of streptococcal cell walls (SCW) into Lewis rats results in dissemination of SCW to the liver, spleen, bone marrow, and peripheral joints. The uptake of SCW by Kupffer cells in the liver initiates a chain of events largely mediated by T lymphocytes and macrophages. Local synthesis and secretion of cytokines and growth factors in response to the persistent SCW lead to the evolution and maintenance of a chronic T cell-dependent granulomatous response and result in granuloma formation and irreversible hepatic fibrosis. In an attempt to impede the development of the chronic granulomatous lesions in the liver, we injected a plasmid DNA encoding TGF-beta 1 i.m. to the SCW animals to determine the effect of TGF-beta 1 gene transfer on the course of liver inflammation and fibrosis. A single injection of plasmid DNA encoding TGF-beta 1 resulted in virtual abolition of the development of the SCW-induced hepatic granuloma formation and matrix expansion. TGF-beta 1 DNA not only reduced key proinflammatory cytokines including TNF-alpha, IL-1 beta, IFN-gamma, and IL-18, but also inhibited both CXC and CC chemokine production, thereby blocking inflammatory cell recruitment and accumulation in the liver. Moreover, TGF-beta 1 gene delivery inhibited its own expression in the liver tissue, which is otherwise up-regulated in SCW-injected animals. Our study suggests that TGF-beta 1 gene transfer suppresses hepatic granuloma formation by blocking the recruitment of inflammatory cells to the liver, and thus may provide a new approach to the control of hepatic granulomatous and fibrotic diseases.

  4. Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules.

    PubMed

    Xu, Hongyang; Stapleton, David; Murphy, Robyn M

    2015-06-01

    Glycogenin, glycogen-debranching enzyme (GDE) and glycogen phosphorylase (GP) are important enzymes that contribute to glycogen particle metabolism. In Long-Evans Hooded rat whole muscle homogenates prepared from extensor digitorum longus (EDL, fast-twitch) and soleus (SOL, oxidative, predominantly slow twitch), it was necessary to include α-amylase, which releases glucosyl units from glycogen, to detect glycogenin but not GDE or GP. Up to ∼12 % of intramuscular glycogen pool was broken down using either in vitro electrical stimulation or leaving muscle at room temperature >3 h (delayed, post-mortem). Electrical stimulation did not reveal glycogenin unless α-amylase was added, although in post-mortem muscle ∼50 and ∼30 % of glycogenin in EDL and SOL muscles, respectively, was detected compared to the amount detected with α-amylase treatment. Single muscle fibres were dissected from fresh or post-mortem EDL muscles, mechanically skinned to remove surface membrane and the presence of glycogenin, GDE and GP as freely diffusible proteins (i.e. cytoplasmic localization) compared by Western blotting. Diffusibility of glycogenin (∼20 %) and GP (∼60 %) was not different between muscles, although GDE increased from ∼15 % diffusible in fresh muscle to ∼60 % in post-mortem muscle. Under physiologically relevant circumstances, in rat muscle and within detection limits: (1) The total cellular pool of glycogenin is always associated with glycogen granules, (2) GDE is associated with glycogen granules with over half the total pool associated with the outer tiers of glycogen, (3) GP is only ever weakly associated with glycogen granules and (4) addition of α-amylase is necessary in order to detect glycogenin, but not GDE or GP.

  5. Effect of oat bran on time to exhaustion, glycogen content and serum cytokine profile following exhaustive exercise

    PubMed Central

    2010-01-01

    The aim of this study was to evaluate the effect of oat bran supplementation on time to exhaustion, glycogen stores and cytokines in rats submitted to training. The animals were divided into 3 groups: sedentary control group (C), an exercise group that received a control chow (EX) and an exercise group that received a chow supplemented with oat bran (EX-O). Exercised groups were submitted to an eight weeks swimming training protocol. In the last training session, the animals performed exercise to exhaustion, (e.g. incapable to continue the exercise). After the euthanasia of the animals, blood, muscle and hepatic tissue were collected. Plasma cytokines and corticosterone were evaluated. Glycogen concentrations was measured in the soleus and gastrocnemius muscles, and liver. Glycogen synthetase-α gene expression was evaluated in the soleus muscle. Statistical analysis was performed using a factorial ANOVA. Time to exhaustion of the EX-O group was 20% higher (515 ± 3 minutes) when compared with EX group (425 ± 3 minutes) (p = 0.034). For hepatic glycogen, the EX-O group had a 67% higher concentrations when compared with EX (p = 0.022). In the soleus muscle, EX-O group presented a 59.4% higher glycogen concentrations when compared with EX group (p = 0.021). TNF-α was decreased, IL-6, IL-10 and corticosterone increased after exercise, and EX-O presented lower levels of IL-6, IL-10 and corticosterone levels in comparison with EX group. It was concluded that the chow rich in oat bran increase muscle and hepatic glycogen concentrations. The higher glycogen storage may improve endurance performance during training and competitions, and a lower post-exercise inflammatory response can accelerate recovery. PMID:20955601

  6. CHARACTERIZATION OF HYDROQUINONE AND CATECHOL FORMATION USING HEPATIC MICROSOMES FROM THREE SPECIES OF FISH

    EPA Science Inventory

    The in vitro metabolism of phenol at 11 degrees C has been studied using juvenile and immature adult rainbow (Orcorhynchus mykiss), immature adult brook (Salvelinus fontinalis), and immature adult lake trout (Salvelinus namacush) hepatic microsomal preparations.

  7. CHARACTERIZATION OF HYDROQUINONE AND CATECHOL FORMATION USING HEPATIC MICROSOMES FROM THREE SPECIES OF FISH

    EPA Science Inventory

    The in vitro metabolism of phenol at 11 degrees C has been studied using juvenile and immature adult rainbow (Orcorhynchus mykiss), immature adult brook (Salvelinus fontinalis), and immature adult lake trout (Salvelinus namacush) hepatic microsomal preparations.

  8. Biochemical titration of glycogen in vitro.

    PubMed

    Pelletier, Joffrey; Bellot, Grégory; Pouysségur, Jacques; Mazure, Nathalie M

    2013-11-24

    Glycogen is the main energetic polymer of glucose in vertebrate animals and plays a crucial role in whole body metabolism as well as in cellular metabolism. Many methods to detect glycogen already exist but only a few are quantitative. We describe here a method using the Abcam Glycogen assay kit, which is based on specific degradation of glycogen to glucose by glucoamylase. Glucose is then specifically oxidized to a product that reacts with the OxiRed probe to produce fluorescence. Titration is accurate, sensitive and can be achieved on cell extracts or tissue sections. However, in contrast to other techniques, it does not give information about the distribution of glycogen in the cell. As an example of this technique, we describe here the titration of glycogen in two cell lines, Chinese hamster lung fibroblast CCL39 and human colon carcinoma LS174, incubated in normoxia (21% O2) versus hypoxia (1% O2). We hypothesized that hypoxia is a signal that prepares cells to synthesize and store glycogen in order to survive(1).

  9. Targeting glycogen metabolism in bladder cancer

    PubMed Central

    Lew, Carolyn Ritterson; Guin, Sunny; Theodorescu, Dan

    2015-01-01

    Metabolism has been a heavily investigated topic in cancer research for the past decade. Although the role of aerobic glycolysis (the Warburg effect) in cancer has been extensively studied, abnormalities in other metabolic pathways are only just being understood in cancer. One such pathway is glycogen metabolism; its involvement in cancer development, particularly in urothelial malignancies, and possible ways of exploiting aberrations in this process for treatment are currently being studied. New research shows that the glycogen debranching enzyme amylo-α-1,6-glucosidase, 4-α-glucanotransferase (AGL) is a novel tumour suppressor in bladder cancer. Loss of AGL leads to rapid proliferation of bladder cancer cells. Another enzyme involved in glycogen debranching, glycogen phosphorylase, has been shown to be a tumour promoter in cancer, including in prostate cancer. Studies demonstrate that bladder cancer cells in which AGL expression is lost are more metabolically active than cells with intact AGL expression, and these cells are more sensitive to inhibition of both glycolysis and glycine synthesis—two targetable pathways. As a tumour promoter and enzyme, glycogen phosphorylase can be directly targeted, and preclinical inhibitor studies are promising. However, few of these glycogen phosphorylase inhibitors have been tested for cancer treatment in the clinical setting. Several possible limitations to the targeting of AGL and glycogen phosphorylase might also exist. PMID:26032551

  10. Glycogen metabolism in the rat retina.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2004-02-01

    It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid.

  11. Hepatocytes contribute to residual glucose production in a mouse model for glycogen storage disease type Ia.

    PubMed

    Hijmans, Brenda S; Boss, Andreas; van Dijk, Theo H; Soty, Maud; Wolters, Henk; Mutel, Elodie; Groen, Albert K; Derks, Terry G J; Mithieux, Gilles; Heerschap, Arend; Reijngoud, Dirk-Jan; Rajas, Fabienne; Oosterveer, Maaike H

    2017-07-20

    It is a longstanding enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production (EGP) despite the loss of glucose-6-phosphatase (G6Pase) activity. Insight into the source of residual EGP is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated G6Pase-independent EGP in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc(-/-) mice), and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc(-/-) mice using state-of-the-art stable isotope methodologies. Here we show that G6pc-deficient hepatocytes are capable of producing glucose. In vivo analysis of hepatic glucose metabolism revealed that the hepatic glucokinase (GCK) flux was decreased by 95% in L-G6pc(-/-) mice. It also showed increased glycogen phosphorylase flux in L-G6pc(-/-) mice, which is coupled to the release of free glucose via glycogen debranching. Although the ex vivo activities of debranching enzyme and lysosomal acid maltase, two major hepatic α-glucosidases, were unaltered in L-G6pc(-/-) mice, pharmacological inhibition of α-glucosidase activity almost completely abolished residual glucose production by G6pc-deficient hepatocytes. Our data indicate that hepatocytes contribute to residual glucose production in GSD Ia. We show that α-glucosidase activity, i.e. glycogen debranching and/or lysosomal glycogen breakdown, contributes to residual glucose production by GSD Ia hepatocytes. A strong reduction in hepatic GCK flux in L-G6pc(-/-) mice furthermore limits the phosphorylation of free glucose synthesized by G6pc-deficient hepatocytes, allowing the release of glucose into the circulation. The almost complete abrogation of GCK flux in G6pc-deficient liver also explains the contradictory reports on residual glucose production in GSD Ia patients. This article is protected by copyright. All rights

  12. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase.

    PubMed Central

    Cadefau, J; Bollen, M; Stalmans, W

    1997-01-01

    Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P. PMID:9148744

  13. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase.

    PubMed

    Cadefau, J; Bollen, M; Stalmans, W

    1997-03-15

    Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P.

  14. Activation of glycolysis and apoptosis in glycogen storage disease type Ia.

    PubMed

    Sun, Baodong; Li, Songtao; Yang, Liu; Damodaran, Tirupapuliyur; Desai, Dev; Diehl, Anna Mae; Alzate, Oscar; Koeberl, Dwight D

    2009-08-01

    The deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia, growth retardation, renal failure, hepatic adenomas, and hepatocellular carcinoma. Liver involvement includes the massive accumulation of glycogen and lipids due to accumulated glucose-6-phosphate and glycolytic intermediates. Proteomic analysis revealed elevations in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and other enzymes involved in glycolysis. GAPDH was markedly increased in murine G6Pase-deficient hepatocytes. The moonlighting role of GAPDH includes increasing apoptosis, which was demonstrated by increased TUNEL assay positivity and caspase 3 activation in the murine GSD-Ia liver. These analyses of hepatic involvement in GSD-Ia mice have implicated the induction of apoptosis in the pathobiology of GSD-Ia.

  15. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state

    SciTech Connect

    Huang, M.T.; Veech, R.L.

    1988-03-01

    The pathway for hepatic glycogen synthesis in the postprandial state was studied in meal-fed rats chronically cannulated in the portal vein. Plasma glucose concentration in the portal vein was found to be 4.50 +/- 1.01 mM (mean +/- SE; n = 3) before a meal and 11.54 +/- 0.70 mM (mean +/- SE; n = 4) after a meal in rats meal-fed a diet consisting of 100% commercial rat chow for 7 d. The hepatic-portal difference of plasma glucose concentration showed that liver released glucose in the fasted state and either extracted or released glucose after feeding depending on plasma glucose concentration in the portal vein. The concentration of portal vein glucose at which liver changes from glucose releasing to glucose uptake was 8 mM, the Km of glucokinase. The rate of glycogen synthesis in liver during meal-feeding was found to be approximately 1 mumol glucosyl U/g wet wt/min in rats meal-fed a 50% glucose supplemented chow diet. The relative importance of the direct vs. indirect pathway for the replenishment of hepatic glycogen was determined by the incorporation of (3-/sup 3/H,U-/sup 14/C)glucose into liver glycogen. Labeled glucose was injected into the portal vein at the end of meal-feeding. The ratio of /sup 3/H//sup 14/C in the glucosyl units of glycogen was found to be 83-92% of the ratio in liver free glucose six minutes after the injection, indicating that the majority of exogenous glucose incorporated into glycogen did not go through glycolysis. The percent contribution of the direct versus indirect pathway was quantitated from the difference in the relative specific activity (RSA) of (/sup 3/H) and (/sup 14/C)-glycogen in rats infused with (3-/sup 3/H,U-/sup 14/C)glucose. No significant difference was found between the RSA of (/sup 3/H)glycogen and (/sup 14/C)glycogen, indicating further that the pathway for glycogen synthesis in liver from exogenous glucose is from the direct pathway.

  16. An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP.

    PubMed

    Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-11-11

    Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Type I Glycogen Storage Disease

    MedlinePlus

    ... Foundation is included in CharityWatch’s 2016 list of Top-Rated Charities and is a Member of the World Hepatitis Alliance. ––––––––––––––––– Begin Code for Siteimprove Analytics –––––––––

  18. Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli DH5α on glycogen structure, accumulation, and bacterial viability.

    PubMed

    Wang, Liang; Regina, Ahmed; Butardo, Vito M; Kosar-Hashemi, Behjat; Larroque, Oscar; Kahler, Charlene M; Wise, Michael J

    2015-05-07

    Glycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation. A series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media. Despite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were

  19. Roles of poly-3-hydroxybutyrate (PHB) and glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp.

    PubMed

    Wang, Chunxia; Saldanha, Marsha; Sheng, Xiaoyan; Shelswell, Kristopher J; Walsh, Keith T; Sobral, Bruno W S; Charles, Trevor C

    2007-02-01

    Poly-3-hydroxybutyrate (PHB) and glycogen are major carbon storage compounds in Sinorhizobium meliloti. The roles of PHB and glycogen in rhizobia-legume symbiosis are not fully understood. Glycogen synthase mutations were constructed by in-frame deletion (glgA1) or insertion (glgA2). These mutations were combined with a phbC mutation to make all combinations of double and triple mutants. PHB was not detectable in any of the mutants containing the phbC mutation; glycogen was not detectable in any of the mutants containing the glgA1 mutation. PHB levels were significantly lower in the glgA1 mutant, while glycogen levels were increased in the phbC mutant. Exopolysaccharide (EPS) was not detected in any of the phbC mutants, while the glgA1 and glgA2 mutants produced levels of EPS similar to the wild-type. Symbiotic properties of these strains were investigated on Medicago truncatula and Medicago sativa. The results indicated that the strains unable to synthesize PHB, or glycogen, were still able to form nodules and fix nitrogen. However, phbC mutations caused greater nodule formation delay on M. truncatula than on M. sativa. Time-course studies showed that (1) the ability to synthesize PHB is important for N(2) fixation in M. truncatula nodules and younger M. sativa nodules, and (2) the blocking of glycogen synthesis resulted in lower levels of N(2) fixation on M. truncatula and older nodules on M. sativa. These data have important implications for understanding how PHB and glycogen function in the interactions of S. meliloti with Medicago spp.

  20. Hypoxia Promotes Glycogen Accumulation through Hypoxia Inducible Factor (HIF)-Mediated Induction of Glycogen Synthase 1

    PubMed Central

    Pescador, Nuria; Garcia-Rocha, Mar; Ortiz-Barahona, Amaya; Vazquez, Silvia; Ordoñez, Angel; Cuevas, Yolanda; Saez-Morales, David; Garcia-Bermejo, Maria Laura; Landazuri, Manuel O.; Guinovart, Joan; del Peso, Luis

    2010-01-01

    When oxygen becomes limiting, cells reduce mitochondrial respiration and increase ATP production through anaerobic fermentation of glucose. The Hypoxia Inducible Factors (HIFs) play a key role in this metabolic shift by regulating the transcription of key enzymes of glucose metabolism. Here we show that oxygen regulates the expression of the muscle glycogen synthase (GYS1). Hypoxic GYS1 induction requires HIF activity and a Hypoxia Response Element within its promoter. GYS1 gene induction correlated with a significant increase in glycogen synthase activity and glycogen accumulation in cells exposed to hypoxia. Significantly, knockdown of either HIF1α or GYS1 attenuated hypoxia-induced glycogen accumulation, while GYS1 overexpression was sufficient to mimic this effect. Altogether, these results indicate that GYS1 regulation by HIF plays a central role in the hypoxic accumulation of glycogen. Importantly, we found that hypoxia also upregulates the expression of UTP:glucose-1-phosphate urydylyltransferase (UGP2) and 1,4-α glucan branching enzyme (GBE1), two enzymes involved in the biosynthesis of glycogen. Therefore, hypoxia regulates almost all the enzymes involved in glycogen metabolism in a coordinated fashion, leading to its accumulation. Finally, we demonstrated that abrogation of glycogen synthesis, by knock-down of GYS1 expression, impairs hypoxic preconditioning, suggesting a physiological role for the glycogen accumulated during chronic hypoxia. In summary, our results uncover a novel effect of hypoxia on glucose metabolism, further supporting the central importance of metabolic reprogramming in the cellular adaptation to hypoxia. PMID:20300197

  1. High liver glycogen in hereditary fructose intolerance.

    PubMed

    Cain, A R; Ryman, B E

    1971-11-01

    A case of hereditary fructose intolerance is reported in a girl aged 2 years at the time of her death. She had apparently progressed normally until the age of 14 months. At 19 months she was admitted to hospital with failure to thrive, hepatomegaly, and superficial infections. Investigations revealed hypoglycaemia, persistent acidosis, aminoaciduria, and a high liver glycogen level which suggested that she had glycogen storage disease. There was also some evidence of malabsorption. At necropsy the liver enzyme estimations showed that fructose 1-phosphate aldolase activity was absent and that fructose 1,6-diphosphate aldolase activity was reduced. Hereditary fructose intolerance and glycogen storage disease have been confused in the past on clinical grounds, but a high liver glycogen level has not previously been reported in hereditary fructose intolerance.

  2. Carbohydrates, Muscle Glycogen, and Improved Performance.

    ERIC Educational Resources Information Center

    Sherman, W. Mike

    1987-01-01

    One way to improve athletic performance without harming the athlete's health is diet manipulation. This article explores the relationship between muscular endurance and muscle glycogen and discusses a diet and training approach to competition. (Author/MT)

  3. Alglucosidase alfa treatment alleviates liver disease in a mouse model of glycogen storage disease type IV.

    PubMed

    Yi, Haiqing; Gao, Fengqin; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2016-12-01

    Patients with progressive hepatic form of GSD IV often die of liver failure in early childhood. We tested the feasibility of using recombinant human acid-α glucosidase (rhGAA) for treating GSD IV. Weekly intravenously injection of rhGAA at 40 mg/kg for 4 weeks significantly reduced hepatic glycogen accumulation, lowered liver/body weight ratio, and reduced plasma ALP and ALT activities in GSD IV mice. Our data suggests that rhGAA is a potential therapy for GSD IV.

  4. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  5. Impairment of Liver Glycogen Storage in the db/db Animal Model of Type 2 Diabetes: A Potential Target for Future Therapeutics?

    PubMed

    Sullivan, Mitchell A; Harcourt, Brooke E; Xu, Ping; Forbes, Josephine M; Gilbert, Robert G

    2015-01-01

    After the discovery of the db gene in 1966, it was determined that a blood-borne satiety factor was produced excessively, but was not responded to, in db/db mice. This model for type 2 diabetes is widely used since it phenocopies human disease and its co-morbidities including obesity, progressive deterioration in glucose tolerance, hypertension and hyperlipidaemia. Db/db mice, unlike their non-diabetic controls, have consistently elevated levels of liver glycogen, most likely due to hyperphagia. In transmission electron micrographs, liver glycogen usually shows a composite cauliflower-like morphology of large "α particles" (with a wide range of sizes) made up of smaller "β particles" bound together. New studies have explored the size distribution of liver glycogen molecules and found that α particles in db/db mice are more chemically fragile than those in healthy mice, and can readily break apart to smaller β particles. There is evidence that smaller glycogen particles have a higher association with glycogen phosphorylase, a key enzyme involved in glycogen degradation, as well as being degraded more rapidly in vitro; therefore the inability to form stable large glycogen α particles is predicted to result in a faster, less controlled degradation into glucose. The implications of this for glycaemic control remain to be fully elucidated. However, "rescuing" the more fragile diabetic glycogen to decrease hepatic glucose output in type 2 diabetes, may provide a potential therapeutic target which is the subject of this review.

  6. Polyprotein-Driven Formation of Two Interdependent Sets of Complexes Supporting Hepatitis C Virus Genome Replication

    PubMed Central

    Gomes, Rafael G. B.; Isken, Olaf; Tautz, Norbert; McLauchlan, John

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1. Using these constructs and other methods, we have assessed the polyprotein requirements for rescue of different lethal point mutations across NS3-5B. Mutations readily tractable to rescue broadly fell into two groupings: those requiring expression of a minimum NS3-5A and those requiring expression of a minimum NS3-5B polyprotein. A cis-acting mutation that blocked NS3 helicase activity, T1299A, was tolerated when introduced into either ORF within the intragenomic replicon, but unlike many other mutations required the other ORF to express a functional NS3-5B. Three mutations were identified as more refractile to rescue: one that blocked cleavage of the NS4B5A boundary (S1977P), another in the NS3 helicase (K1240N), and a third in NS4A (V1665G). Introduced into ORF1, these exhibited a dominant negative phenotype, but with K1240N inhibiting replication as a minimum NS3-5A polyprotein whereas V1665G and S1977P only impaired replication as a NS3-5B polyprotein. Furthermore, an S1977P-mutated NS3-5A polyprotein complemented other defects shown to be dependent on NS3-5A for rescue. Overall, our findings suggest the existence of two interdependent sets of protein complexes supporting RNA replication, distinguishable by the minimum polyprotein requirement needed for their formation. IMPORTANCE Positive-strand RNA viruses reshape the intracellular membranes of cells to form a compartment within which to replicate their genome, but little is known about the functional

  7. Inhibition of glycogen synthesis by increased lipid availability is associated with subcellular redistribution of glycogen synthase.

    PubMed

    Taylor, A J; Ye, J-M; Schmitz-Peiffer, C

    2006-01-01

    Increased lipid availability is associated with diminished insulin-stimulated glucose uptake and glycogen synthesis in muscle, but it is not clear whether alterations in glycogen synthase activity itself play a direct role. Because intracellular localization of this enzyme is involved in its regulation, we investigated whether fat oversupply causes an inhibitory redistribution. We examined the recovery of glycogen synthase in subcellular fractions from muscle of insulin-resistant, fat-fed rats and chow-fed controls, either maintained in the basal state or after a euglycaemic-hyperinsulinaemic clamp. Although glycogen synthase protein and activity were mostly recovered in an insoluble fraction, insulin caused translocation of activity from the smaller soluble pool to the insoluble fraction. Fat-feeding, which led to a reduction in glycogen synthesis during the clamp, was associated with a depletion in the soluble pool, consistent with an important role for this component. A similar depletion was also observed in cytosolic fractions of muscles from obese db/db mice, another model of lipid-induced insulin resistance. To investigate this in more detail, we employed lipid-pretreated L6 myotubes, which exhibited a reduction in insulin-stimulated glycogen synthesis independently of alterations in glucose flux or insulin signalling through protein kinase B. In control cells, insulin caused redistribution of a minor cytosolic pool of glycogen synthase to an insoluble fraction, which was again forestalled by lipid pretreatment. Glycogen synthase recovered in the insoluble fraction from pre-treated cells exhibited a low fractional velocity that was not increased in response to insulin. Our results suggest that the initial localization of glycogen synthase in a soluble pool plays an important role in glycogen synthesis, and that its sequestration in an insulin-resistant insoluble pool may explain in part the reduced glycogen synthesis caused by lipid oversupply.

  8. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    PubMed

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed.

  9. Hypogonadotropic Hypogonadism in Males with Glycogen Storage Disease Type 1.

    PubMed

    Wong, Evelyn M; Lehman, Anna; Acott, Philip; Gillis, Jane; Metzger, Daniel L; Sirrs, Sandra

    2017-02-04

    Glycogen storage disease type 1 is an autosomal recessive disorder with an incidence of 1 in 100,000. Long-term complications include chronic blood glucose lability, lactic academia, short stature, osteoporosis, delayed puberty, gout, progressive renal insufficiency, systemic or pulmonary hypertension, hepatic adenomas at risk for malignant transformation, anemia, vitamin D deficiency, hyperuricemic nephrocalcinosis, inflammatory bowel syndrome (type 1b), hypertriglyceridemia, and irregular menstrual cycles. We describe hypogonadotropic hypogonadism as a novel complication in glycogen storage disease (GSD) type 1. Case Studies and Methods: Four unrelated patients with GSD 1a (N = 1) and 1b (N = 3) were found to have hypogonadotropic hypogonadism diagnosed at different ages. Institutional Research Ethics Board approval was obtained as appropriate. Participant consent was obtained. A retrospective chart review was performed and clinical symptoms and results of investigations summarized as a case series. All patients were confirmed biochemically to have low luteinizing hormone (LH) and follicular stimulating hormone (FSH), and correspondingly low total testosterone. Clinical symptoms of hypogonadism varied widely. Investigations for other causes of hypogonadotropic hypogonadism were unremarkable. In addition, all patients were found to have disproportionately low bone mineral density at the lumbar spine compared to the hip. Common to all patients was erratic metabolic control, including recurrent hypoglycemia and elevated lactate levels. Recurrent elevations in cortisol in response to hypoglycemia may be the underlying pathology leading to suppression of gonadotropin-releasing hormone (GnRH) release. Incorporating clinical and/or biochemical screening of the hypothalamic-pituitary-gonadal axis may be important in the management of this disease. Testosterone therapy however needs to be carefully considered because of the risk of hepatic adenomas.

  10. [Diagnosis of glycogen storage disease type IIIA by detecting glycogen debranching enzyme activity, glycogen content and structure in muscle].

    PubMed

    Wang, Wei; We, Min; Song, Hong-mei; Qiu, Zheng-qing; Zhang, Wei-min; Wu, Xiao-yan; Lu, Chao-xia; Qi, Jun-ming; Jing, Hong; Li, Fan

    2009-08-01

    Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by glycogen debranching enzyme (GDE) gene (AGL gene) mutation resulting in hepatomegaly, hypoglycemia, short stature and hyperlipidemia. GSD IIIA, involves both liver and muscle, and accounts for up to 80% of GSD III. The definitive diagnosis depends on either mutation analysis or liver and muscle glycogen debranching enzyme activity tests. This study aimed to establish enzymologic diagnostic method for GSD IIIA firstly in China by detecting muscular GDE activity, glycogen content and structure and to determine the normal range of muscular GDE activity, glycogen content and structure in Chinese children. Muscle samples were collected from normal controls (male 15, female 20; 12-78 years old), molecularly confirmed GSD III A patients (male 8, female 4, 2-27 years old) and other myopathy patients (male 9, 2-19 years old). Glycogen in the muscle homogenate was degraded into glucose by amyloglucosidase and phosphorylase respectively. The glycogen content and structure were identified by glucose yield determination. The debranching enzyme activity was determined using limit dextrin as substrate. Independent samples Kruskal-Wallis H test, Nemenyi-Wilcoxson-Wilcox test, and Chi-square test were used for statistical analyses by SPSS 11.5. (1) GSD III A patients' glycogen content were higher, but G1P/G ratio and GDE activity were lower than those of the other two groups (P < 0.01). In all of the three parameters, there were no significant difference between normal controls and other myopathy patients. (2) The range of normal values: glycogen content 0.31%-0.43%, G1P/G ratio 22.37%- 26.43%, GDE activity 0.234-0.284 micromol/(g. min). (3) Enzymologic diagnostic method had a power similar to that of gene analysis in diagnosis of GSD-IIIA patients. The sensitivity and specificity of enzymologic diagnostic method and mutation detection were 91.7% and 100% respectively. Enzymologic diagnostic

  11. Amphipathic α-Helices in Apolipoproteins Are Crucial to the Formation of Infectious Hepatitis C Virus Particles

    PubMed Central

    Nakamura, Shota; Ono, Chikako; Shiokawa, Mai; Yamamoto, Satomi; Motomura, Takashi; Okamoto, Toru; Okuzaki, Daisuke; Yamamoto, Masahiro; Saito, Izumu; Wakita, Takaji; Koike, Kazuhiko; Matsuura, Yoshiharu

    2014-01-01

    Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly. PMID:25502789

  12. Regulation of glycogen resynthesis following exercise. Dietary considerations.

    PubMed

    Friedman, J E; Neufer, P D; Dohm, G L

    1991-04-01

    With the cessation of exercise, glycogen repletion begins to take place rapidly in skeletal muscle and can result in glycogen levels higher than those present before exercise. Understanding the rate-limiting steps that regulate glycogen synthesis will provide us with strategies to increase the resynthesis of glycogen during recovery from exercise, and thus improve performance. Given the importance of muscle glycogen to endurance performance, various factors which may optimise glycogen resynthesis rate and insure complete restoration have been of interest to both the scientist and athlete. The time required for complete muscle glycogen resynthesis after prolonged moderate intensity exercise is generally considered to be 24 hours provided approximately 500 to 700g of carbohydrate is ingested. Muscle glycogen synthesis rate is highest during the first 2 hours after exercise. Ingestion of 0.70g glucose/kg bodyweight every 2 hours appears to maximise glycogen resynthesis rate at approximately 5 to 6 mumol/g wet weight/h during the first 4 to 6 hours after exhaustive exercise. Further enhancement of glycogen resynthesis rate with ingestion of greater than 0.70g glucose/kg bodyweight appears to be limited by the constraints imposed by gastric emptying. Ingestion of glucose or sucrose results in similar muscle glycogen resynthesis rates while glycogen synthesis in liver is better served with the ingestion of fructose. Also, increases in muscle glycogen content during the first 4 to 6 hours after exercise are greater with ingestion of simple as compared with complex carbohydrate. Glycogen synthase activity is a key component in the regulation of glycogen resynthesis. Glycogen synthase enzyme exists in 2 states: the less active, more phosphorylated (D) form which is under allosteric control of glucose-6-phosphate, and the more active, less phosphorylated (I) form which is independent of glucose-6-phosphate. There is generally an inverse relationship between glycogen content

  13. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review.

    PubMed

    Magoulas, Pilar L; El-Hattab, Ayman W; Roy, Angshumoy; Bali, Deeksha S; Finegold, Milton J; Craigen, William J

    2012-06-01

    Glycogen storage disease type IV is a rare autosomal recessive disorder of glycogen metabolism caused by mutations in the GBE1 gene that encodes the 1,4-alpha-glucan-branching enzyme 1. Its clinical presentation is variable, with the most common form presenting in early childhood with primary hepatic involvement. Histologic manifestations in glycogen storage disease type IV typically consist of intracytoplasmic non-membrane-bound inclusions containing abnormally branched glycogen (polyglucosan bodies) within hepatocytes and myocytes. We report a female infant with classic hepatic form of glycogen storage disease type IV who demonstrated diffuse reticuloendothelial system involvement with the spleen, bone marrow, and lymph nodes infiltrated by foamy histiocytes with intracytoplasmic polyglucosan deposits. Sequence analysis of the GBE1 gene revealed compound heterozygosity for a previously described frameshift mutation (c.1239delT) and a novel missense mutation (c.1279G>A) that is predicted to alter a conserved glycine residue. GBE enzyme analysis revealed no detectable activity. A review of the literature for glycogen storage disease type IV patients with characterized molecular defects and deficient enzyme activity reveals most GBE1 mutations to be missense mutations clustering in the catalytic enzyme domain. Individuals with the classic hepatic form of glycogen storage disease type IV tend to be compound heterozygotes for null and missense mutations. Although the extensive reticuloendothelial system involvement that was observed in our patient is not typical of glycogen storage disease type IV, it may be associated with severe enzymatic deficiency and a poor outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Epithelial-mesenchymal transition delayed by E-cad to promote tissue formation in hepatic differentiation of mouse embryonic stem cells in vitro.

    PubMed

    Hu, Anbin; Shang, Changzhen; Li, Qiang; Sun, Nianfeng; Wu, Linwei; Ma, Yi; Jiao, Xingyuan; Min, Jun; Zeng, Gucheng; He, Xiaoshun

    2014-04-15

    Hepatic differentiation of embryonic stem cells (ESCs) usually results in a single cell lineage, and the formation of liver tissues remains difficult. Here, we examine the role of epithelial-mesenchymal transition (EMT) that is regulated by epithelial cadherin (E-cad) expression in hepatic tissue formation from ESCs. E-cad was transfected into mouse ESCs to enable a stable expression of E-cad. Hepatic differentiation of ESCs was then induced by hepatic growth factors. Wnt/β-catenin signaling and EMT speed were examined to determine the differentiation process. Hepatic and angiogenesis markers, as well as differentiated cell-adhesive force were also examined to identify the hepatic tissue differentiation. In our results, E-cad expression gradually decreased in normal ESC (N-ESC) differentiation, but remained stable in the E-cad transfected ESC (EC-ESC) group. In EC-ESC differentiation, expressions of cytoplastic β-catenin and EMT were much lower and significantly prolonged. Angiogenesis markers vascular endothelial growth factor receptor-1 (VEGFR-1) and CD31/PECAM-1 were expressed only on day 5-13 in N-ESC differentiation, whereas VEGFR-1 and CD31/PECAM-1 were expressed prolonged on day 5-17 in the EC-ESC group and were coincident with the expression of hepatic markers. Finally, EC-ESC differentiation maintained multilayer-growth patterns, and abundant vascular network structures appeared and migrated in albumin-positive cell areas. The cellular adhesion forces between embryonic body cells in EC-ESC differentiation during day 13-17 were similar to those of mouse liver tissue. In conclusion, accelerated EMT due to the decreased E-cad expression may partially contribute to the failure of hepatic tissue formation in N-ESC differentiation. E-cad can act in synergy with hepatic growth factors and facilitate the early-stage formation of hepatic tissues through down-regulating Wnt/β-catenin signaling and delaying EMT. This work provides a new insight into hepatic tissue

  15. An investigation into the formation of tebufenozide's toxic aromatic amine metabolites in human in vitro hepatic microsomes.

    PubMed

    Abass, Khaled M

    2016-10-01

    Tebufenozide is a nonsteroid ecdysone agonist that causes premature and incomplete molting in Lepidoptera. Studies conducted so far have shown the low toxicity of tebufenozide in mammals, birds and invertebrates. Tebufenozide potential metabolites such as aromatic amines are known to induce methemoglobinemia disorder in humans, most likely by the formation of N-hydroxy metabolites; therefore, the aim of this research is to investigate the formation of the potential toxic N-hydroxy derivatives in pooled human hepatic microsomal fractions. Analyses of metabolites by high performance liquid chromatography equipped by a time-of-flight detector (HPLC/TOF) indicated the formation of a hydroxylated metabolite (exact mass=369; retention time: 6.65min) and two de-dimethylethyl metabolites (exact masses=313; retention times: 5.76 and 6.22min). Hydroxylated tebufenozide metabolite resulted from hydroxylation at either the 3 or 5 position of the dimethylbenzoic acid moiety to form either 3-hydroxymethyl-5-methylbenzoic acid 1-(1,1-dimethylethyl)-2-(4-ethylbenzoyl) or 3-methyl-5-hydroxymethylbenzoic acid 1-(1,1-dimethylethyl)-2-(4-ethylbenzoyl), respectively. The two de-dimethylethyl-tebufenozide derivatives were 3,5-dimethylbenzoic acid-2-(4-hydroxyethylbenzoyl) and 3-hydroxymethyl-5-methylbenzoic acid-2-(4-ethylbenzoyl) or 3-methyl-5-hydroxymethylbenzoic acid-2-(4-ethylbenzoyl). Generally the metabolite formation rates increased with incubation time. The rate of hydroxylation of the dimethylbenzoic acid moiety was approximately 12 times higher than the hydroxylation of the ethylbenzoyl moiety. Tebufenozide does not appear to produce the toxic aromatic amine metabolites in human in vitro hepatic microsomes. This suggests that the fate of tebufenozide in humans is a process of detoxification rather than activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Micronuclei formation in liver fibrosis samples from patients infected by hepatitis C virus

    PubMed Central

    2010-01-01

    Genetic research on fibrosis outset and its progression in chronic hepatitis (CH) by hepatitis C virus (HCV) are limited. The lack of cytogenetic data led us to investigate the presence of micronuclei (MNi), as a sign of genomic damage. Hepatocytes of hepatic parenchyma from 62 cases diagnosed with CH associated with HCV and displaying different degrees of fibrosis (F1-F4) were analyzed. These data were compared to 15 cases without fibrosis (F0). Twelve healthy liver parenchyma samples were included as control. All samples were obtained from paraffin-embedded archival material. Micronucleated hepatocytes (MN-Heps) were analyzed through Feulgen/Fast-green staining. Results showed that the rates of MN-Heps in the F4 group were statistically significant (p < 0.05) and higher than those in the control group. Like results were also obtained on comparing F4 with F0, F1, F2 and F3 cases. Conversely, differences were not significant (p > 0.05) on comparing F0, F1, F2, F3, one against the other, as well as individual versus control. Although chromosomal losses in CH were detected, it was shown that liver parenchyma with fibrosis in the initial stages (F1-F3) cannot be considered cytogenetically abnormal. PMID:21637406

  17. Biochemical and molecular investigation of two Korean patients with glycogen storage disease type III.

    PubMed

    Oh, Sue-Hyun; Park, Hyung-Doo; Ki, Chang-Seok; Choe, Yon-Ho; Lee, Soo-Youn

    2008-01-01

    Glycogen storage disease type III (GSD-III) is an inborn error of glycogen metabolism caused by a deficiency of the glycogen debranching enzyme, amylo-1,6-glucosidase,4-alpha-glucanotransferase (AGL). Here, we describe two unrelated Korean patients with GSD-III and review their clinical and laboratory findings. The patients were 18- and 11-month-old girls. They presented with hepatosplenomegaly, developmental delay and hypotonia. The routine laboratory findings showed an elevated serum aspartate aminotransferase, alanine aminotransferase, creatine kinase and triglyceride levels. The blood lactate and uric acid levels were within normal limits. PCR and direct sequencing were performed to determine genetic findings. Glycogen quantitation was markedly increased and AGL activity was undetectable in both patients. Sequence analysis of the AGL gene showed that both patients were compound heterozygotes for c.853C>T (p.R285X) and c.1735+1G>T in one patient, and c.2894_2896delGGAinsTG and c.4090G>C (p.D1364H) in the other patient. The c.2894_2896delGGAinsTG and c.4090G>C (p.D1364H) mutation was a novel finding. GSD-III should be ruled out when a patient presents with hepatic abnormalities, hypoglycemia, myopathy and hyperlipidemia. This is the first report of confirmation of GSD-III in Korean patients by biochemical and genetic findings.

  18. The antidiabetic agent sodium tungstate activates glycogen synthesis through an insulin receptor-independent pathway.

    PubMed

    Domínguez, Jorge E; Muñoz, M Carmen; Zafra, Delia; Sanchez-Perez, Isabel; Baqué, Susanna; Caron, Martine; Mercurio, Ciro; Barberà, Albert; Perona, Rosario; Gomis, Ramon; Guinovart, Joan J

    2003-10-31

    Sodium tungstate is a powerful antidiabetic agent when administered orally. In primary cultured hepatocytes, tungstate showed insulin-like actions, which led to an increase in glycogen synthesis and accumulation. However, this compound did not significantly alter the insulin receptor activation state or dephosphorylation rate in cultured cells (CHO-R) or in primary hepatocytes, in either short or long term treatments. In contrast, at low concentrations, tungstate induced a transient strong activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) after 5-10 min of treatment, in a similar way to insulin. Moreover, this compound did not significantly delay or inhibit the dephosphorylation of ERK1/2. ERK1/2 activation triggered a cascade of downstream events, which included the phosphorylation of p90rsk and glycogen synthase-kinase 3beta. Experiments with a specific inhibitor of ERK1/2 activation and kinase assays indicate that these proteins were directly involved in the stimulation of glycogen synthase and glycogen synthesis induced by tungstate without a direct involvement of protein kinase B (PKB/Akt). These results show a direct involvement of ERK1/2 in the mechanism of action of tungstate at the hepatic level.

  19. Variation in glycogen concentrations within mantle and foot tissue in Amblema plicata plicata: Implications for tissue biopsy sampling

    USGS Publications Warehouse

    Naimo, T.J.; Monroe, E.M.

    1999-01-01

    With the development of techniques to non-lethally biopsy tissue from unionids, a new method is available to measure changes in biochemical, contaminant, and genetic constituents in this imperiled faunal group. However, before its widespread application, information on the variability of biochemical components within and among tissues needs to be evaluated. We measured glycogen concentrations in foot and mantle tissue in Amblema plicata plicata (Say, 1817) to determine if glycogen was evenly distributed within and between tissues and to determine which tissue might be more responsive to the stress associated with relocating mussels. Glycogen was measured in two groups of mussels: those sampled from their native environment (undisturbed mussels) and quickly frozen for analysis and those relocated into an artificial pond (relocated mussels) for 24 months before analysis. In both undisturbed and relocated mussels, glycogen concentrations were evenly distributed within foot, but not within mantle tissue. In mantle tissue, concentrations of glycogen varied about 2-fold among sections. In addition, glycogen varied significantly between tissues in undisturbed mussels, but not in relocated mussels. Twenty-four months after relocation, glycogen concentrations had declined by 80% in mantle tissue and by 56% in foot tissue relative to the undisturbed mussels. These data indicate that representative biopsy samples can be obtained from foot tissue, but not mantle tissue. We hypothesize that mantle tissue could be more responsive to the stress of relocation due to its high metabolic activity associated with shell formation.

  20. [Glycogen metabolism in the cranial cervical ganglion of the cat sympathetic trunk during decentralization and reparative regeneration].

    PubMed

    Greten, A G; Sokolova, G A

    1982-07-01

    The character of glycogen metabolism disorders has been studied in the cranial cervical ganglion of the cat sympathetic trunk after the latter has been cut 1.5 cm caudally the ganglion. As the innervational connections are establishing, the glycogen metabolism is normalizing, but even after 2 months the initial level is not restored. Glycogen is proved to be one of the most sensitive tests to the lesion. In various time after cutting, the glycogen metabolism has certain specific peculiarities both in the neural cell bodies, and in the synapses. The wavy character of the glycogen-synthesizing process in the neural elements is demonstrated, with anaerobic glycolysis taking a large part in it. Certain connections with the higher centers are necessary not only for glycogen metabolism as energy resources, but to ensure a regular synthesis, particularly that of enzymes, in the neurons and synapses. The peculiarities of glycogen-synthesizing properties in the synaptic formations, after the connection with the center is broken, are closely connected with the notion on autonomity in the synaptic structures activity.

  1. Focal Hepatic Glycogenosis in a Patient With Uncontrolled Diabetes Mellitus Type 1.

    PubMed

    Glushko, Tetiana; Kushchayev, Sergiy V; Trifanov, Dmitry; Salei, Aliaksei; Morales, Diego; Berry, Gerard; Mackey, Justin; Teytelboym, Oleg M

    2017-09-20

    Hepatomegaly and elevated liver enzymes in patients with diabetes are commonly associated with fatty liver disease. However, physicians often forget about another intrinsic substance that can cause a similar clinical picture-glycogen. Liver stores approximately one third of the total body glycogen and is responsible for blood glucose homeostasis. Excessive hepatocellular glycogen accumulation occurs not only in congenital glycogen storage diseases, but also in acquired conditions associated with hyperglycemic-hyperinsulinemic states such as uncontrolled diabetes mellitus, high-dose corticosteroid use, and dumping syndrome. All reported cases of acquired abnormal glycogen deposition described a diffuse form of hepatic glycogenosis with the entire liver involved in the accumulating process. To our knowledge, this is the first reported case of abnormal focal glycogen deposition in a patient with diabetes mellitus type 1 with imaging and pathologic correlation. Awareness of the imaging appearance of focal glycogen deposition can help to distinguish it from other pathologic conditions.

  2. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  3. Cell Fusion Reprogramming Leads to a Specific Hepatic Expression Pattern during Mouse Bone Marrow Derived Hepatocyte Formation In Vivo

    PubMed Central

    Arza, Elvira; Alvarez-Barrientos, Alberto; Fabregat, Isabel; Garcia-Bravo, Maria; Meza, Nestor W.; Segovia, Jose C.

    2012-01-01

    The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation. PMID:22457803

  4. A Case Series of Liver Abscess Formation after Transcatheter Arterial Chemoembolization for Hepatic Tumors

    PubMed Central

    Sun, Wei; Xu, Fei; Li, Xiao; Li, Chen-Rui

    2017-01-01

    Background: Liver abscess is a serious complication following transcatheter arterial chemoembolization (TACE). Much attention has been paid to this condition as it may interfere with the treatment process and result in a poor prognosis of the patient. This study aimed to analyze the causes of liver abscess, a complication, after TACE for hepatic tumors and to summarize management approaches. Methods: From June 2012 to June 2014, of 1480 consecutive patients who underwent TACE at our hospital, five patients developed liver abscess after TACE procedures for hepatic tumors. Of the five patients, each receiving conventional TACE, one underwent three sessions, two underwent two sessions, and the remaining two underwent one session of TACE. Demographic and clinical characteristics, together with management approaches and prognosis, were collected through a review of medical records. Results: These five patients were confirmed to have post-TACE liver abscess through clinical manifestations, laboratory, and imaging tests. After percutaneous drainage and anti-inflammatory treatments, the symptoms present in four patients with liver abscess significantly improved as evidenced by shrinkage or disappearance of the abscess cavity, and the patients recovered completely after sufficient drainage. The remaining patient experienced recurrent symptoms and abdominal abscess, achieved no significant improvement after treatment, and eventually died of severe infection and multiple organ failures. Conclusions: TACE must be implemented with extreme caution to avoid liver abscess. An effective management relies on an early diagnosis, prompt use of sufficient doses of appropriate antibiotics, and active implementation of abscess incision, drainage, and aspiration. PMID:28524831

  5. A Case Series of Liver Abscess Formation after Transcatheter Arterial Chemoembolization for Hepatic Tumors.

    PubMed

    Sun, Wei; Xu, Fei; Li, Xiao; Li, Chen-Rui

    2017-06-05

    Liver abscess is a serious complication following transcatheter arterial chemoembolization (TACE). Much attention has been paid to this condition as it may interfere with the treatment process and result in a poor prognosis of the patient. This study aimed to analyze the causes of liver abscess, a complication, after TACE for hepatic tumors and to summarize management approaches. From June 2012 to June 2014, of 1480 consecutive patients who underwent TACE at our hospital, five patients developed liver abscess after TACE procedures for hepatic tumors. Of the five patients, each receiving conventional TACE, one underwent three sessions, two underwent two sessions, and the remaining two underwent one session of TACE. Demographic and clinical characteristics, together with management approaches and prognosis, were collected through a review of medical records. These five patients were confirmed to have post-TACE liver abscess through clinical manifestations, laboratory, and imaging tests. After percutaneous drainage and anti-inflammatory treatments, the symptoms present in four patients with liver abscess significantly improved as evidenced by shrinkage or disappearance of the abscess cavity, and the patients recovered completely after sufficient drainage. The remaining patient experienced recurrent symptoms and abdominal abscess, achieved no significant improvement after treatment, and eventually died of severe infection and multiple organ failures. TACE must be implemented with extreme caution to avoid liver abscess. An effective management relies on an early diagnosis, prompt use of sufficient doses of appropriate antibiotics, and active implementation of abscess incision, drainage, and aspiration.

  6. Identification of Intermediate in Hepatitis B Virus CCC DNA Formation and Sensitive and Selective CCC DNA Detection.

    PubMed

    Luo, Jun; Cui, Xiuji; Gao, Lu; Hu, Jianming

    2017-06-21

    The hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC to CCC DNA conversion, two 3' exonucleases Exo I and Exo III, in combination were used to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA, either single-stranded (SS) or double-stranded (DS). Indeed, a RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA or cM-RC DNA) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus strand closing can occur before plus strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and factors involved.IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the molecular basis of viral persistence, by serving as the viral transcriptional template. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC to CCC DNA, thus providing

  7. Genetics Home Reference: glycogen storage disease type VI

    MedlinePlus

    ... a result, liver cells cannot use glycogen for energy. Since glycogen cannot be broken down, it accumulates within liver cells, causing these cells to become enlarged and dysfunctional. Learn more about the gene associated with glycogen storage disease type VI PYGL Related Information What is ...

  8. Effect of diabetes on glycogen metabolism in rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Hernández-Berrones, Jethro; Luna-Ulloa, Luis Bernardo; Coffe, Víctor; Salceda, Rocío

    2008-07-01

    Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.

  9. Mallory-Denk Body (MDB) formation modulates Ufmylation expression epigenetically in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH).

    PubMed

    Liu, Hui; Gong, Ming; French, Barbara A; Li, Jun; Tillman, Brittany; French, Samuel W

    2014-12-01

    Promoter CpG island hypermethylation is an important mechanism for inactivating key cellular enzymes that mediate epigenetic processes in hepatitis-related hepatocellular carcinoma (HCC). The ubiquitin-fold modifier 1 (Ufm1) conjugation pathway (Ufmylation) plays an essential role in protein degradation, protein quality control and signal transduction. Previous studies showed that the Ufmylation pathway was downregulated in alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH) and in mice fed DDC, resulting in the formation of Mallory-Denk Bodies (MDBs). In this study, we further discovered that betaine, a methyl donor, fed together with DDC significantly prevents the increased expression of Ufmylation in drug-primed mice fed DDC. Betaine significantly prevented transcript silencing of Ufm1, Uba5 and UfSP1 where MDBs developed and also prevented the increased expression of FAT10 and LMP7 caused by DDC re-fed mice. Similar downregulation of Ufmylation was observed in multiple AH and NASH biopsies which had formed MDBs. The DNA methylation levels of Ufm1, Ufc1 and UfSP1 in the promoter CpG region were significantly increased both in AH and NASH patients compared to normal subjects. DNA (cytosine-5-)-methyltransferase 1 (DNMT1) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) mRNA levels were markedly upregulated in AH and NASH patients, implying that the maintenance of Ufmylation methylation might be mediated by DNMT1 and DNMT3B together. These data show that MDB formation results from Ufmylation expression epigenetically in AH and NASH patients. Promoter CpG methylation may be a major mechanism silencing Ufmylation expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Use of Prophylactic Antibiotics to Prevent Abscess Formation Following Hepatic Ablation in Patients with Prior Enterobiliary Manipulation.

    PubMed

    Odisio, Bruno C; Richter, Michael; Aloia, Thomas A; Conrad, Claudius; Ahrar, Kamran; Gupta, Sanjay; Vauthey, Jean-Nicolas; Huang, Steven Y

    2016-08-01

    Prior enterobiliary manipulation confers a high risk for liver abscess formation after hepatic ablation. We aimed to determine if prophylactic antibiotics could prevent post-ablation abscess in patients with a history of hepaticojejunostomy. This single-institution retrospective study identified 262 patients who underwent 307 percutaneous liver ablation sessions between January 2010 and August 2014. Twelve (4.6 %) patients with prior hepaticojejunostomy were included in this analysis. Ten (83> %) had received an aggressive prophylactic antibiotic regimen consisting of levofloxacin, metronidazole, neomycin, and erythromycin base. Two (16.6 %) had received other antibiotic regimens. Clinical, laboratory, and imaging findings were used to identify abscess formation and antibiotic-related side effects. Twelve ablation sessions were performed during the period studied. During a mean follow-up period of 440 days (range, 77-1784 days), post-ablation abscesses had developed in 2 (16.6 %) patients, who both received the alternative antibiotic regimens. None of the 10 patients who received the aggressive prophylactic antibiotic regimen developed liver abscess. One of the 10 patients who received the aggressive prophylactic antibiotic regimen developed grade 2 antibiotic-related diarrhea and arthralgia. An aggressive regimen of prophylactic antibiotics may be effective in preventing liver abscess formation after liver ablation in patients with prior hepaticojejunostomy.

  11. Fructose effect to enhance liver glycogen deposition is due to inhibition of glycogenolysis

    SciTech Connect

    Youn, J.; Kaslow, H.; Bergman, R.

    1987-05-01

    The effect of fructose on glycogen degradation was examined by measuring flux of (/sup 14/C) from prelabeled glycogen in perfused rat livers. During 2 h refeeding of fasted rats hepatic glycogen was labeled by injection of (U /sup 14/C) galactose (0.1 mg and 0.02 ..mu..Ci/g of body weight). Refed livers were perfused for 30 min with glucose only (10 mM) and for 60 min with glucose (10 mM) without (n=5) or with fructose (1, 2, 10 mM; n=5 for each). With fructose, label production immediately declined and remained suppressed through the end of perfusion (P < 0.05). Suppression was dose-dependent: steady state label production was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose (P < 0.0001), without significant changes in glycogen synthase or phosphorylase. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (F1P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.6 ..mu..moles/g of liver with 1, 2, and 10 mM fructose. Maximum inhibition of phosphorylase was 82%; FIP concentration for half inhibition was 0.57 ..mu..moles/g of liver, well within the concentration of F1P attained in refeeding. Fructose enhances net glycogen synthesis in liver by suppressing glycogenolysis and the suppression is presumably caused by allosteric inhibition of phosphorylase by F1P.

  12. The VP4 Peptide of Hepatitis A Virus Ruptures Membranes through Formation of Discrete Pores

    PubMed Central

    Shukla, Ashutosh; Padhi, Aditya K.; Gomes, James

    2014-01-01

    ABSTRACT Membrane-active peptides, components of capsid structural proteins, assist viruses in overcoming the host membrane barrier in the initial stages of infection. Several such peptides have been identified, and their roles in membrane fusion or disruption have been characterized through biophysical studies. In several members of the Picornaviridae family, the role of the VP4 structural peptide in cellular-membrane penetration is well established. However, there is not much information on the membrane-penetrating capsid components of hepatitis A virus (HAV), an unusual member of this family. The VP4 peptide of HAV differs from its analogues in other picornaviruses in being significantly shorter in length and in lacking a signal for myristoylation, thought to be a critical requisite for VP4-mediated membrane penetration. Here we report, for the first time, that the atypical VP4 in HAV contains significant membrane-penetrating activity. Using a combination of biophysical assays and molecular dynamics simulation studies, we show that VP4 integrates into membrane vesicles through its N-terminal region to finally form discrete pores of 5- to 9-nm diameter, which induces leakage in the vesicles without altering their overall size or shape. We further demonstrate that the membrane activity of VP4 is specific toward vesicles mimicking the lipid content of late endosomes at acidic pH. Taken together, our data indicate that VP4 might be essential for the penetration of host endosomal membranes and release of the viral genome during HAV entry. IMPORTANCE Hepatitis A virus causes acute hepatitis in humans through the fecal-oral route and is particularly prevalent in underdeveloped regions with poor hygienic conditions. Although a vaccine for HAV exists, its high cost makes it unsuitable for universal application in developing countries. Studies on host-virus interaction for HAV have been hampered due to a lack of starting material, since the virus is extremely slow growing

  13. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. In vivo regulation of muscle glycogen synthase and the control of glycogen synthesis.

    PubMed Central

    Shulman, R G; Bloch, G; Rothman, D L

    1995-01-01

    The activity of glycogen synthase (GSase; EC 2.4.1.11) is regulated by covalent phosphorylation. Because of this regulation, GSase has generally been considered to control the rate of glycogen synthesis. This hypothesis is examined in light of recent in vivo NMR experiments on rat and human muscle and is found to be quantitatively inconsistent with the data under conditions of glycogen synthesis. Our first experiments showed that muscle glycogen synthesis was slower in non-insulin-dependent diabetics compared to normals and that their defect was in the glucose transporter/hexokinase (GT/HK) part of the pathway. From these and other in vivo NMR results a quantitative model is proposed in which the GT/HK steps control the rate of glycogen synthesis in normal humans and rat muscle. The flux through GSase is regulated to match the proximal steps by "feed forward" to glucose 6-phosphate, which is a positive allosteric effector of all forms of GSase. Recent in vivo NMR experiments specifically designed to test the model are analyzed by metabolic control theory and it is shown quantitatively that the GT/HK step controls the rate of glycogen synthesis. Preliminary evidence favors the transporter step. Several conclusions are significant: (i) glucose transport/hexokinase controls the glycogen synthesis flux; (ii) the role of covalent phosphorylation of GSase is to adapt the activity of the enzyme to the flux and to control the metabolite levels not the flux; (iii) the quantitative data needed for inferring and testing the present model of flux control depended upon advances of in vivo NMR methods that accurately measured the concentration of glucose 6-phosphate and the rate of glycogen synthesis. Images Fig. 1 PMID:7567971

  15. Amylin impairment of insulin effects on glycogen synthesis and phosphoenolpyruvate carboxykinase gene expression in rat primary cultured hepatocytes.

    PubMed Central

    Baqué, S; Guinovart, J J; Gómez-Foix, A M

    1994-01-01

    The ability of amylin to impair hepatic insulin action is controversial. We have found that the effect of amylin in primary cultured hepatocytes is strongly dependent on the culture conditions. Only in hepatocytes preincubated in the presence of fetal serum did amylin, at concentrations ranging from 1 to 100 nM, reduce insulin-stimulated glycogen synthesis rate and glycogen accumulation without showing direct effects. Neither basal glycogen synthase nor glycogen phosphorylase activity was modified by amylin treatment. Nevertheless, amylin (100 nM) blocked the activation of glycogen synthase by insulin. Amylin also proved capable of opposing the reduction in the expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene induced by insulin, whereas the basal mRNA level of PEPCK was unaffected by amylin treatment. Thus, these results show that, in cultured rat hepatocytes, amylin is indeed able to interfere with insulin regulation of glycogenesis and PEPCK gene expression, favouring the hypothesis that amylin may modulate liver sensitivity to insulin. Images Figure 3 PMID:7998979

  16. Oncogene-specific formation of chemoresistant murine hepatic cancer stem cells.

    PubMed

    Chow, Edward Kai-Hua; Fan, Ling-ling; Chen, Xin; Bishop, J Michael

    2012-10-01

    At least some cancer stem cells (CSCs) display intrinsic drug resistance that may thwart eradication of a malignancy by chemotherapy. We explored the genesis of such resistance by studying mouse models of liver cancer driven by either MYC or the combination of oncogenic forms of activation of v-akt murine thymoma viral oncogene homolog (AKT) and NRAS. A common manifestation of chemoresistance in CSCs is efflux of the DNA-binding dye Hoechst 33342. We found that only the MYC-driven tumors contained a subset of cells that efflux Hoechst 33342. This "side population" (SP) was enriched for CSCs when compared to non-SP tumor cells and exhibited markers of hepatic progenitor cells. The SP cells could differentiate into non-SP tumor cells, with coordinate loss of chemoresistance, progenitor markers, and the enrichment for CSCs. In contrast, non-SP cells did not give rise to SP cells. Exclusion of Hoechst 33342 is mediated by ATP binding cassette drug transporter proteins that also contribute to chemoresistance in cancer. We found that the multidrug resistance gene 1 (MDR1) transporter was responsible for the efflux of Hoechst from SP cells in our MYC-driven model. Accordingly, SP cells and their tumor-initiating subset were more resistant than non-SP cells to chemotherapeutics that are effluxed by MDR1. The oncogenotype of a tumor can promote a specific mechanism of chemoresistance that can contribute to the survival of hepatic CSCs. Under circumstances that promote differentiation of CSCs into more mature tumor cells, the chemoresistance can be quickly lost. Elucidation of the mechanisms that govern chemoresistance in these mouse models may illuminate the genesis of chemoresistance in human liver cancer. Copyright © 2012 American Association for the Study of Liver Diseases.

  17. Hepatic microvascular regulatory mechanisms. X. Effects of alpha-one or -two adrenoceptor blockade on glucoregulation in normotensive endotoxic rats with optimal perfusion and flowrates.

    PubMed

    Reilly, F D; McCafferty, R E; Cilento, E V

    1988-08-01

    Circulating-blood glucose, hepatic glycogen distribution, and the glycogen contents of liver and skeletal muscle, were determined for 60 min in 31 fed and anesthetized Sprague-Dawley rats. These rats received an endoportal infusion of 15 mg per kg b.w. E. coli endotoxin (026:B6) or of sterile saline solution as a control. Either substance was given intravenously at 9:30 a.m. following an intraperitoneal injection at 9:00 a.m. of 0.1 mg per kg b.w. prazosin or 0.3 mg per kg b.w. yohimbine or of the carrier, distilled water. Infused endotoxin elevated blood glucose without affecting hepatic glycogen distribution and total glycogen contents of liver and skeletal muscle when compared to control. Prazosin inhibited endotoxin-induced hyperglycemia, and prazosin plus endotoxin provoked centrilobular glycogen depletion and decreased total hepatic glycogen content. However, no significant alteration in the glycogen content of skeletal muscle accompanied blockade of glucogenesis. Prazosin administered by itself produced no changes in hepatic and muscle glycogen. Although yohimbine blocked endotoxin-induced hyperglycemia, yohimbine, or yohimbine plus endotoxin, produced no significant change in the glycogen contents of liver and skeletal muscle. Blockade in the latter case was associated with some depletion of glycogen in hepatocytes dispersed randomly throughout the unit lobule and in cells located centrivenously. These results suggested that endotoxin-induced hyperglycemia is evoked by activation of alpha-1 and -2 adrenergic receptors. Since no detectible change in hepatic glycogen distribution and in the contents of liver and muscle glycogen accompanied glucogenesis, glycogen catabolism and deposition are postulated to proceed simultaneously and at equivalent rates by 60 min following the experimental induction of endotoxemia. Blockade of alpha (one or two) adrenoceptors is hypothesized to inhibit endotoxin-induced hyperglycemia by facilitating glucose utilization and not

  18. Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation.

    PubMed

    Cui, Xiuji; Luckenbaugh, Laurie; Bruss, Volker; Hu, Jianming

    2015-10-01

    Assembly of hepatitis B virus (HBV) begins with packaging of the pregenomic RNA (pgRNA) into immature nucleocapsids (NC), which are converted to mature NCs containing the genomic relaxed circular (RC) DNA as a result of reverse transcription. Mature NCs have two alternative fates: (i) envelopment by viral envelope proteins, leading to secretion extracellularly as virions, or (ii) disassembly (uncoating) to deliver their RC DNA content into the host cell nucleus for conversion to the covalently closed circular (CCC) DNA, the template for viral transcription. How these two alternative fates are regulated remains to be better understood. The NC shell is composed of multiple copies of a single viral protein, the HBV core (HBc) protein. HBc mutations located on the surface of NC have been identified that allow NC maturation but block its envelopment. The potential effects of some of these mutations on NC uncoating and CCC DNA formation have been analyzed by transfecting HBV replication constructs into hepatoma cells. All envelopment-defective HBc mutations tested were competent for CCC DNA formation, indicating that core functions in envelopment and uncoating/nuclear delivery of RC DNA were genetically separable. Some of the envelopment-defective HBc mutations were found to alter specifically the integrity of mature, but not immature, NCs such that RC DNA became susceptible to nuclease digestion. Furthermore, CCC DNA formation could be enhanced by NC surface mutations that did or did not significantly affect mature NC integrity, indicating that the NC surface residues may be closely involved in NC uncoating and/or nuclear delivery of RC DNA. Hepatitis B virus (HBV) infection is a major health issue worldwide. HBV assembly begins with the packaging into immature nucleocapsids (NCs) of a viral RNA pregenome, which is converted to the DNA genome in mature NCs. Mature NCs are then selected for envelopment and secretion as complete-virion particles or, alternatively, can

  19. Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice

    PubMed Central

    Chen, Yingying; Vanegas, Diana; McLamore, Eric Scott; Shen, Yingbai

    2016-01-01

    The purpose of this study was to investigate the effects of leaf extract from Lithocarpus polystachyus Rehd. on type II diabetes mellitus (T2DM) and the active ingredients of this effect. In addition, this study determined, for the first time, the underlying molecular and pharmacological mechanisms of the extracts on hyperglycemia using long-term double high diet-fed and streptozotocin (STZ) induced type II diabetic mice. In the present study, leaf extract, phloridzin and trilobatin were assessed in vivo (gavage) and in vitro (non-invasive micro-test technique, NMT) in experimental T2DM mice. The biochemical parameters were measured including blood glucose and blood lipid level, liver biochemical indexes, and hepatic glycogen. The relative expression of glycometabolism-related genes was detected. The effect of leaf extracts on physiological glucose flux in liver tissue from control and T2DM mice was also investigated. Body weight of experimental T2DM mice increased significantly after the first week, but stabilized over the subsequent three weeks; body weight of all other groups did not change during the four weeks’ study. After four weeks, all treatment groups decreased blood glucose, and treatment with leaf extract had numerous positive effects: a) promoted in glucose uptake in liver, b) increased synthesis of liver glycogen, c) reduced oxidative stress, d) up-regulation of glucokinase (GK), glucose transporter 2 (GLUT2), insulin receptor (IR) and insulin receptor substrate (IRS) expression in liver, e) down-regulation of glucose-6-phosphatase (G-6-P) expression, and f) ameliorated blood lipid levels. Both treatment with trilobatin or phloridzin accelerated liver glycogen synthesis, decreased oxidative stress and increased expression of GK. IRS and phosphoenolpyruvate carboxykinase (PEPCK) were both up-regulated after treatment with trilobatin. Expression of GLUT2, PEPCK and G-6-P were also increased in liver tissue after treatment with phloridzin. Our data

  20. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus

    PubMed Central

    Qi, Yonghe; Gao, Zhenchao; Peng, Bo; Yan, Huan; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-01-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV. PMID:27783675

  1. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    PubMed Central

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  2. Glycogen and its metabolism: some new developments and old themes

    PubMed Central

    Roach, Peter J.; Depaoli-Roach, Anna A.; Hurley, Thomas D.; Tagliabracci, Vincent S.

    2016-01-01

    Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease. PMID:22248338

  3. Hepatic microvascular regulatory mechanisms. VIII. Glucogenic responses and morphologic changes following serotonin-induced low flow.

    PubMed

    Reilly, F D; McCafferty, R E; McCuskey, P A; Dimlich, R V

    1986-01-01

    Changes in blood glucose, hepatic glycogen content and distribution, the number of hepatic mast cells, and hepatic morphology were assessed over 30 min in non-fasted and anesthetized Sprague-Dawley rats receiving endoportal or femoral intravenous injections of selected doses of serotonin and/or phentolamine, lodoxamide, or of Ringer's solution (control). Endoportal administration of low-flow producing doses of serotonin (1.0, 10.0, 20.0 micrograms per 100 g b.w.) elevated circulating blood glucose without decreasing hepatic glycogen content when compared to control in unit dry or wet weights. Hyperglycemia was accompanied by centrilobular glycogen depletion and apparent Kupffer cell activation. However, no change in hepatocyte or endothelial cell morphology or in the number of hepatic mast cells was observed following serotonin-induced low flow. The glucotropic response to a nonhypotensive dose of serotonin (1.0 microgram per 100 g b.w.) was modified by phentolamine (100 micrograms per 100 g b.w.) but not lodoxamide (0.1 microgram per 100 g b.w.). These blockers, when given alone, stimulated centrilobular glycogen depletion without producing a net change in blood glucose or hepatic glycogen content. By contrast, injection of serotonin (10.0 micrograms per 100 g b.w.) and/or phentolamine (100 micrograms per 100 g b.w.) into the femoral vein provoked no glucogenesis or systemic hypotension. Given these results, serotonin is suggested to stimulate hyperglycemia by activating alpha-adrenergic receptors. Since centrilobular glycogen depletion proceeds with no detectable change in total hepatic glycogen content, it is postulated that hepatic glycogen catabolism and deposition occur simultaneously and at equivalent rates during conditions of serotonin-induced hyperglycemia and low flow.

  4. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation-and Beyond?

    PubMed

    Schreiner, Sabrina; Nassal, Michael

    2017-05-22

    Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.

  5. The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters.

    PubMed

    Singh, Pankaj Kumar; Singh, Sweta; Ganesh, Subramaniam

    2012-02-01

    Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.

  6. The Laforin-Malin Complex Negatively Regulates Glycogen Synthesis by Modulating Cellular Glucose Uptake via Glucose Transporters

    PubMed Central

    Singh, Pankaj Kumar; Singh, Sweta

    2012-01-01

    Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5′-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD. PMID:22124153

  7. Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application.

    PubMed

    Hu, Jianming; Liu, Kuancheng

    2017-03-21

    Hepatitis B virus (HBV) is a para-retrovirus or retroid virus that contains a double-stranded DNA genome and replicates this DNA via reverse transcription of a RNA pregenome. Viral reverse transcription takes place within a capsid upon packaging of the RNA and the viral reverse transcriptase. A major characteristic of HBV replication is the selection of capsids containing the double-stranded DNA, but not those containing the RNA or the single-stranded DNA replication intermediate, for envelopment during virion secretion. The complete HBV virion particles thus contain an outer envelope, studded with viral envelope proteins, that encloses the capsid, which, in turn, encapsidates the double-stranded DNA genome. Furthermore, HBV morphogenesis is characterized by the release of subviral particles that are several orders of magnitude more abundant than the complete virions. One class of subviral particles are the classical surface antigen particles (Australian antigen) that contain only the viral envelope proteins, whereas the more recently discovered genome-free (empty) virions contain both the envelope and capsid but no genome. In addition, recent evidence suggests that low levels of RNA-containing particles may be released, after all. We will summarize what is currently known about how the complete and incomplete HBV particles are assembled. We will discuss briefly the functions of the subviral particles, which remain largely unknown. Finally, we will explore the utility of the subviral particles, particularly, the potential of empty virions and putative RNA virions as diagnostic markers and the potential of empty virons as a vaccine candidate.

  8. Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application

    PubMed Central

    Hu, Jianming; Liu, Kuancheng

    2017-01-01

    Hepatitis B virus (HBV) is a para-retrovirus or retroid virus that contains a double-stranded DNA genome and replicates this DNA via reverse transcription of a RNA pregenome. Viral reverse transcription takes place within a capsid upon packaging of the RNA and the viral reverse transcriptase. A major characteristic of HBV replication is the selection of capsids containing the double-stranded DNA, but not those containing the RNA or the single-stranded DNA replication intermediate, for envelopment during virion secretion. The complete HBV virion particles thus contain an outer envelope, studded with viral envelope proteins, that encloses the capsid, which, in turn, encapsidates the double-stranded DNA genome. Furthermore, HBV morphogenesis is characterized by the release of subviral particles that are several orders of magnitude more abundant than the complete virions. One class of subviral particles are the classical surface antigen particles (Australian antigen) that contain only the viral envelope proteins, whereas the more recently discovered genome-free (empty) virions contain both the envelope and capsid but no genome. In addition, recent evidence suggests that low levels of RNA-containing particles may be released, after all. We will summarize what is currently known about how the complete and incomplete HBV particles are assembled. We will discuss briefly the functions of the subviral particles, which remain largely unknown. Finally, we will explore the utility of the subviral particles, particularly, the potential of empty virions and putative RNA virions as diagnostic markers and the potential of empty virons as a vaccine candidate. PMID:28335554

  9. Glycogen storage disease type III-hepatocellular carcinoma a long-term complication?

    PubMed Central

    Demo, Erin; Frush, Donald; Gottfried, Marcia; Koepke, John; Boney, Anne; Bali, Deeksha; Chen, Y.T.; Kishnani, Priya S.

    2009-01-01

    Background/Aims Glycogen storage disease III (GSD III) is caused by a deficiency of glycogen-debranching enzyme which causes an incomplete glycogenolysis resulting in glycogen accumulation with abnormal structure (short outer chains resembling limit dextrin) in liver and muscle. Hepatic involvement is considered mild, self-limiting and improves with age. With increased survival, a few cases of liver cirrhosis and hepatocellular carcinoma (HCC) have been reported. Methods A systematic review of 45 cases of GSD III at our center (20 months to 67 years of age) was reviewed for HCC, 2 patients were identified. A literature review of HCC in GSD III was performed and findings compared to our patients. Conclusions GSD III patients are at risk for developing HCC. Cirrhosis was present in all cases and appears to be responsible for HCC transformation There are no reliable biomarkers to monitor for HCC in GSD III. Systematic evaluation of liver disease needs be continued in all patients, despite lack of symptoms. Development of guidelines to allow for systematic review and microarray studies are needed to better delineate the etiology of the hepatocellular carcinoma in patients with GSD III. PMID:17196294

  10. Glycogen storage disease type III-hepatocellular carcinoma a long-term complication?

    PubMed

    Demo, Erin; Frush, Donald; Gottfried, Marcia; Koepke, John; Boney, Anne; Bali, Deeksha; Chen, Y T; Kishnani, Priya S

    2007-03-01

    Glycogen storage disease III (GSD III) is caused by a deficiency of glycogen-debranching enzyme which causes an incomplete glycogenolysis resulting in glycogen accumulation with abnormal structure (short outer chains resembling limit dextrin) in liver and muscle. Hepatic involvement is considered mild, self-limiting and improves with age. With increased survival, a few cases of liver cirrhosis and hepatocellular carcinoma (HCC) have been reported. A systematic review of 45 cases of GSD III at our center (20 months to 67 years of age) was reviewed for HCC, 2 patients were identified. A literature review of HCC in GSD III was performed and findings compared to our patients. GSD III patients are at risk for developing HCC. Cirrhosis was present in all cases and appears to be responsible for HCC transformation There are no reliable biomarkers to monitor for HCC in GSD III. Systematic evaluation of liver disease needs be continued in all patients, despite lack of symptoms. Development of guidelines to allow for systematic review and microarray studies are needed to better delineate the etiology of the hepatocellular carcinoma in patients with GSD III.

  11. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    PubMed Central

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage. PMID:27148080

  12. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    SciTech Connect

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane; Faure, Robert; Marceau, Normand

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  13. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    SciTech Connect

    Eyre, Nicholas S.; Hampton-Smith, Rachel J.; Aloia, Amanda L.; Eddes, James S.; Simpson, Kaylene J.; Hoffmann, Peter; Beard, Michael R.

    2016-04-15

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.

  14. Mutations within potential glycosylation sites in the capsid protein of hepatitis E virus prevent the formation of infectious virus particles.

    PubMed

    Graff, Judith; Zhou, Yi-Hua; Torian, Udana; Nguyen, Hanh; St Claire, Marisa; Yu, Claro; Purcell, Robert H; Emerson, Suzanne U

    2008-02-01

    Hepatitis E virus is a nonenveloped RNA virus. However, the single capsid protein resembles a typical glycoprotein in that it contains a signal sequence and potential glycosylation sites that are utilized when recombinant capsid protein is overexpressed in cell culture. In order to determine whether these unexpected observations were biologically relevant or were artifacts of overexpression, we analyzed capsid protein produced during a normal viral replication cycle. In vitro transcripts from an infectious cDNA clone mutated to eliminate potential glycosylation sites were transfected into cultured Huh-7 cells and into the livers of rhesus macaques. The mutations did not detectably affect genome replication or capsid protein synthesis in cell culture. However, none of the mutants infected rhesus macaques. Velocity sedimentation analyses of transfected cell lysates revealed that mutation of the first two glycosylation sites prevented virion assembly, whereas mutation of the third site permitted particle formation and RNA encapsidation, but the particles were not infectious. However, conservative mutations that did not destroy glycosylation motifs also prevented infection. Overall, the data suggested that the mutations were lethal because they perturbed protein structure rather than because they eliminated glycosylation.

  15. Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism

    PubMed Central

    Seibold, Gerd M.; Eikmanns, Bernhard J.

    2013-01-01

    In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways. PMID:23863124

  16. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05

    PubMed Central

    Mohtar, Nur Syazwani; Raja Abd Rahman, Raja Noor Zaliha; Leow, Thean Chor; Salleh, Abu Bakar; Mat Isa, Mohd Noor

    2016-01-01

    The glycogen branching enzyme (EC 2.4.1.18), which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB) was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique. PMID:27957389

  17. Partial Purification and Characterization of Glycogen Phosphorylase from Dictyostelium discoideum1

    PubMed Central

    Jones, Theodore H. D.; Wright, Barbara E.

    1970-01-01

    Glycogen phosphorylase was isolated from cells of Dictyostelium discoideum in the culmination stage of development and purified 35-fold. The enzyme had a pH optimum of 6.9 and contained sulfhydryl groups essential for activity. The Km values for phosphate and glycogen were 3 mm and 0.06% (w/v), respectively. No dependence on, or stimulation by, any nucleotide was observed and a wide variety of nucleotides and glycolytic intermediates did not inhibit the enzyme. Nucleotide sugars competitively inhibited the enzyme. Guanosine diphosphoglucose and adenosine diphosphoglucose were the most effective, and uridine diphosphoglucose was the least effective of the nucleotide sugars tested. The specific activity of glycogen phosphorylase increased from about 0.004 unit per mg of protein in aggregating cells to about 0.024 unit per mg in culminating cells, and then decreased during sorocarp formation. This increase in enzyme specific activity during the starvation and aging of the system can account for the increased rate of glycogen degradation during this period of development. Amylase specific activity, measured at pH 4.8 and 6.9, varied between 0.005 and 0.013 unit per mg of protein during all stages of development. PMID:5530813

  18. Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure.

    PubMed Central

    Tsitsanou, K. E.; Oikonomakos, N. G.; Zographos, S. E.; Skamnaki, V. T.; Gregoriou, M.; Watson, K. A.; Johnson, L. N.; Fleet, G. W.

    1999-01-01

    The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase. PMID:10211820

  19. Stop codon insertion restores the particle formation ability of hepatitis B virus core-hantavirus nucleocapsid protein fusions.

    PubMed

    Kazaks, Andris; Lachmann, Sylvie; Koletzki, Diana; Petrovskis, Ivars; Dislers, Andris; Ose, Velta; Skrastina, Dace; Gelderblom, Hans R; Lundkvist, Ake; Meisel, Helga; Borisova, Galina; Krüger, Detlev H; Pumpens, Paul; Ulrich, Rainer

    2002-01-01

    In recent years, epitopes of various origin have been inserted into the core protein of hepatitis B virus (HBc), allowing the formation of chimeric HBc particles. Although the C-terminus of a C-terminally truncated HBc (HBc) tolerates the insertion of extended foreign sequences, the insertion capacity is still a limiting factor for the construction of multivalent vaccines. Previously, we described a new system to generate HBc mosaic particles based on a read-through mechanism in an Escherichia coli suppressor strain [J Gen Virol 1997;78:2049-2053]. Those mosaic particles allowed the insertion of a 114-amino acid (aa)-long segment of a Puumala hantavirus (PUUV) nucleocapsid (N) protein. To study the value and the potential limitations of the mosaic approach in more detail, we investigated the assembly capacity of 'non-mosaic' HBc fusion proteins and the corresponding mosaic constructs carrying 94, 213 and 433 aa of the hantaviral N protein. Whereas the fusion proteins carrying 94, 114, 213 or 433 aa were not assembled into HBc particles, or only at a low yield, the insertion of a stop codon-bearing linker restored the ability to form particles with 94, 114 and 213 foreign aa. The mosaic particles formed exhibited PUUV-N protein antigenicity. Immunization of BALB/c mice with these mosaic particles carrying PUUV-N protein aa 1-114, aa 1-213 and aa 340-433, respectively, induced HBc-specific antibodies, whereas PUUV-N protein-specific antibodies were detected only in mice immunized with particles carrying N-terminal aa 1-114 or aa 1-213 of the N protein. Both the anti-HBc and anti-PUUV antibody responses were IgG1 dominated. In conclusion, stop codon suppression allows the formation of mosaic core particles carrying large-sized and 'problematic', e.g. hydrophobic, hantavirus sequences.

  20. Qualitative and Quantitative Analyses of Glycogen in Human Milk.

    PubMed

    Matsui-Yatsuhashi, Hiroko; Furuyashiki, Takashi; Takata, Hiroki; Ishida, Miyuki; Takumi, Hiroko; Kakutani, Ryo; Kamasaka, Hiroshi; Nagao, Saeko; Hirose, Junko; Kuriki, Takashi

    2017-02-22

    Identification as well as a detailed analysis of glycogen in human milk has not been shown yet. The present study confirmed that glycogen is contained in human milk by qualitative and quantitative analyses. High-performance anion exchange chromatography (HPAEC) and high-performance size exclusion chromatography with a multiangle laser light scattering detector (HPSEC-MALLS) were used for qualitative analysis of glycogen in human milk. Quantitative analysis was carried out by using samples obtained from the individual milks. The result revealed that the concentration of human milk glycogen varied depending on the mother's condition-such as the period postpartum and inflammation. The amounts of glycogen in human milk collected at 0 and 1-2 months postpartum were higher than in milk collected at 3-14 months postpartum. In the milk from mothers with severe mastitis, the concentration of glycogen was about 40 times higher than that in normal milk.

  1. Elimination of glucose contamination from adipocyte glycogen extracts.

    PubMed

    Nunes, Patricia M; Carvalho, Eugénia; Jones, John G

    2008-07-07

    Glycogen was quantified in rat adipocytes by isolation using conventional KOH digestion and ethanol precipitation, followed by hydrolysis and spectrophotometric assay of the glucose product. A concentration of 0.193+/-0.020 micromol glucosyl units/10(6)cells was recorded. When this procedure was modified by including a 4h incubation with glucose oxidase prior to glycogen hydrolysis, the glycogen concentration was found to be 0.055+/-0.008 micromol glucosyl units/10(6) cells. Therefore in adipocytes, conventional glycogen assays give substantial overestimates due to incomplete removal of glucose during glycogen isolation. Contaminant glucose can be scavenged in a simple manner by incubation with glucose oxidase prior to glycogen hydrolysis.

  2. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    PubMed Central

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. Conclusion We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen. PMID:24626262

  3. Novel method for detection of glycogen in cells.

    PubMed

    Skurat, Alexander V; Segvich, Dyann M; DePaoli-Roach, Anna A; Roach, Peter J

    2017-05-01

    Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions.

  4. Hepatic and cerebral energy metabolism after neonatal canine alimentation.

    PubMed

    Kliegman, R M; Miettinen, E L; Morton, S K

    1983-04-01

    Intrahepatic and intracerebral metabolic responses to neonatal fasting or enteric carbohydrate alimentation were investigated among newborn dogs. Pups were either fasted or given an intravenous glucose infusion (alimented) before an enteric feeding of physiologic quantities of either glucose or galactose. These pups were also compared to another group which was completely starved throughout the study period. Gastrointestinal carbohydrate feeding resulted in enhanced hepatic glycogen content among pups after a prior state of fasting. Though there were no differences of glycogen content between glucose or galactose feeding in this previously fasted group, combined intravenous glucose and enteric galactose administration produced the greatest effect on hepatic glycogen synthesis. Intrahepatic fructose 1, 6-diphosphate and phosphoenolpyruvate levels were increased among previously fasted pups fed enteric monosaccharides compared to completely starved control pups, whereas intrahepatic phosphoenolpyruvate and pyruvate levels were elevated after combined intravenous and enteric carbohydrate administration. Of greater interest was the observation that hepatic levels of ATP were significantly elevated among all groups given exogenous carbohydrates compared to the completely starved control group. In contrast to the augmented hepatic glycogen and ATP levels, there were no alterations of cerebral glycogen or ATP after alimentation. Nevertheless, cerebral pyruvate and/or phosphoenolpyruvate concentrations were elevated after enteric or combined intravenous and enteric alimentation compared to the totally starved control pups.

  5. Muscle Ultrasound in Patients with Glycogen Storage Disease Types I and III.

    PubMed

    Verbeek, Renate J; Sentner, Christiaan P; Smit, G Peter A; Maurits, Natasha M; Derks, Terry G J; van der Hoeven, Johannes H; Sival, Deborah A

    2016-01-01

    In glycogen storage diseases (GSDs), improved longevity has resulted in the need for neuromuscular surveillance. In 12 children and 14 adults with the "hepatic" (GSD-I) and "myopathic" (GSD-III) phenotypes, we cross-sectionally assessed muscle ultrasound density (MUD) and muscle force. Children with both "hepatic" and "myopathic" GSD phenotypes had elevated MUD values (MUD Z-scores: GSD-I > 2.5 SD vs. GSD-III > 1 SD, p < 0.05) and muscle weakness (GSD-I muscle force; p < 0.05) of myopathic distribution. In "hepatic" GSD-I adults, MUD stabilized (GSD-I adults vs. GSD-I children, not significant), concurring with moderate muscle weakness (GSD-I adults vs. healthy matched pairs, p < 0.05). In "myopathic" GSD-III adults, MUD increased with age (MUD-GSD III vs. age: r = 0.71-0.83, GSD-III adults > GSD-III children, p < 0.05), concurring with pronounced muscle weakness (GSD-III adults vs. GSD-I adults, p < 0.05) of myopathic distribution. Children with "hepatic" and "myopathic" GSD phenotypes were both found to have myopathy. Myopathy stabilizes in "hepatic" GSD-I adults, whereas it progresses in "myopathic" GSD-III adults. Muscle ultrasonography provides an excellent, non-invasive tool for neuromuscular surveillance per GSD phenotype. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Kinetic mechanism of rabbit muscle glycogen synthase I.

    PubMed

    Gold, A M

    1980-08-05

    The kinetic mechanism of rabbit muscle glycogen synthase I was investigated by determining isotope-exchange rates at chemical equilibrium between uridine diphosphoglucose (UDPG) and glycogen and between UDPG and uridine 5'-diphosphate (UDP). The rates were followed simultaneously by use of UDPG labeled with 14C in the glucose moiety and with 3H in the uracil group. They were found to be independent of the concentrations of glycogen and the UDPG-UDP pair, averaging 6 X 10(-9) mol min-1 mg-1, with a ratio of UDPG-glycogen exchange to UDPG-UDP exchange of 0.85-0.95. The conclusion is that glycogen synthase has a rapid equilibrium random bi bi mechanism. The previously reported slow activation of glycogen-free synthase in the presence of glycogen was examined kinetically. The activation rate appears to be independent of glycogen concentration over a wide range, while the maximum activation is related to the third or fourth root of the glycogen concentration. This suggest that the slow bimolecular reaction mechanism proposed for human polymorphonuclear leucocyte glycogen synthase I [Sølling, H., & Esmann, V. (1977) Eur. J. Biochem. 81, 129] does not apply to rabbit muscle synthase I. The rate of exchange of glycogen molecules in the complex between glycogen and rabbit muscle synthase I under conditions where the enzyme is catalytically active was estimated by a novel method. The enzyme-glycogen complex was treated with [glucose-14C]UDPG and glycogen of different molecular weight. The distribution of isotope between the two forms of glycogen was determined after their separation by agarose gel chromatography. A rate constant of 0.3 min-1 was estimated for the exchange. It can be calculated, on the basis of the specific activity of the enzyme (20 mumol min-1 mg-1) and its action pattern, that hundreds of individual chains in the glycogen molecule must be available to the enzyme during the average lifetime of the complex. A mechanism is proposed for this process.

  7. Hepatitis A

    MedlinePlus

    Hepatitis A Hepatitis A Hepatitis A is a contagious viral infection that can easily affect children and adults. It is one of the most common types of hepatitis virus. Often when you hear about hepatitis A ...

  8. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects.

    PubMed Central

    Taylor, R; Magnusson, I; Rothman, D L; Cline, G W; Caumo, A; Cobelli, C; Shulman, G I

    1996-01-01

    Despite extensive recent studies, understanding of the normal postprandial processes underlying immediate storage of substrate and maintenance of glucose homeostasis in humans after a mixed meal has been incomplete. The present study applied 13C nuclear magnetic resonance spectroscopy to measure sequential changes in hepatic glycogen concentration, a novel tracer approach to measure postprandial suppression of hepatic glucose output, and acetaminophen to trace the pathways of hepatic glycogen synthesis to elucidate the homeostatic adaptation to the fed state in healthy human subjects. After the liquid mixed meal, liver glycogen concentration rose from 207 +/- 22 to 316 +/- 19 mmol/liter at an average rate of 0.34 mmol/liter per min and peaked at 318 +/- 31 min, falling rapidly thereafter (0.26 mmol/liter per min). The mean increment at peak represented net glycogen synthesis of 28.3 +/- 3.7 g (approximately 19% of meal carbohydrate content). The contribution of the direct pathway to overall glycogen synthesis was 46 +/- 5 and 68 +/- 8% between 2 and 4 and 4 and 6 h, respectively. Hepatic glucose output was completely suppressed within 30 min of the meal. It increased steadily from 60 to 255 min from 0.31 +/- 32 to 0.49 +/- 18 mg/kg per min then rapidly returned towards basal levels (1.90 +/- 0.04 mg/kg per min). This pattern of change mirrored precisely the plasma glucagon/insulin ratio. These data provide for the first time a comprehensive picture of normal carbohydrate metabolism in humans after ingestion of a mixed meal. PMID:8550823

  9. Glycogen storage disease type 1 and diabetes: learning by comparing and contrasting the two disorders.

    PubMed

    Rajas, F; Labrune, P; Mithieux, G

    2013-10-01

    Glycogen storage disease type 1 (GSD1) and diabetes may look at first like totally opposite disorders, as diabetes is characterized by uncontrolled hyperglycaemia, whereas GSD1 is characterized by severe fasting hypoglycaemia. Diabetes is due to a failure to suppress endogenous glucose production (EGP) in the postprandial state because of either a lack of insulin or insulin resistance. In contrast, GSD1 is characterized by a lack of EGP. However, both diseases share remarkably similar patterns in terms of pathophysiology such as the long-term progression of renal dysfunction and hepatic steatosis leading to renal failure and the development of hepatic tumours, respectively. Thus, much may be learned from considering the similarities between GSD1 and diabetes, especially in the metabolic pathways underlying nephropathy and fatty liver, and perhaps even more from their differences. In this review, the differences between diabetes and GSD1 are first highlighted, as both are characterized by alterations in EGP. The molecular pathways involved in liver pathologies, including steatosis, hepatomegaly (glycogenic hepatopathy) and the development of liver tumours are also compared. These pathologies are mainly due to the accumulation of lipids and/or glycogen in hepatocytes. Finally, the similar pathways leading to nephropathy in both diabetic and GSD1 patients are described. In conclusion, comparisons of these pathologies should lead to a better understanding of the crucial role of EGP in the control of glucose and energy homoeostasis. Moreover, it may highlight similar therapeutic targets for the two disorders. Thus, this review suggests that the treatment of adult patients with either GSD1 or diabetes could be carried out by the same specialists-diabetologists. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome.

    PubMed

    Sentner, Christiaan P; Hoogeveen, Irene J; Weinstein, David A; Santer, René; Murphy, Elaine; McKiernan, Patrick J; Steuerwald, Ulrike; Beauchamp, Nicholas J; Taybert, Joanna; Laforêt, Pascal; Petit, François M; Hubert, Aurélie; Labrune, Philippe; Smit, G Peter A; Derks, Terry G J

    2016-09-01

    Glycogen storage disease type III (GSDIII) is a rare disorder of glycogenolysis due to AGL gene mutations, causing glycogen debranching enzyme deficiency and storage of limited dextrin. Patients with GSDIIIa show involvement of liver and cardiac/skeletal muscle, whereas GSDIIIb patients display only liver symptoms and signs. The International Study on Glycogen Storage Disease (ISGSDIII) is a descriptive retrospective, international, multi-centre cohort study of diagnosis, genotype, management, clinical course and outcome of 175 patients from 147 families (86 % GSDIIIa; 14 % GSDIIIb), with follow-up into adulthood in 91 patients. In total 58 AGL mutations (non-missense mutations were overrepresented and 21 novel mutations were observed) were identified in 76 families. GSDIII patients first presented before the age of 1.5 years, hepatomegaly was the most common presenting clinical sign. Dietary management was very diverse and included frequent meals, uncooked cornstarch and continuous gastric drip feeding. Chronic complications involved the liver (hepatic cirrhosis, adenoma(s), and/or hepatocellular carcinoma in 11 %), heart (cardiac involvement and cardiomyopathy, in 58 % and 15 %, respectively, generally presenting in early childhood), and muscle (pain in 34 %). Type 2 diabetes mellitus was diagnosed in eight out of 91 adult patients (9 %). In adult patients no significant correlation was detected between (non-) missense AGL genotypes and hepatic, cardiac or muscular complications. This study demonstrates heterogeneity in a large cohort of ageing GSDIII patients. An international GSD patient registry is warranted to prospectively define the clinical course, heterogeneity and the effect of different dietary interventions in patients with GSDIII.

  11. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    PubMed

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  12. Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism.

    PubMed

    Grover, Jagdish Kumari; Vats, Vikrant; Yadav, Satyapal

    2002-12-01

    The Indian traditional system of medicine prescribed plant therapies for diseases including diabetes mellitus called madhumeh in Sanskrit. One such plant mentioned in Ayurveda is Pterocarpus marsupium (PM). In the present study, aqueous extract of PM (1 g/kg PO) was assessed for its effect on glycogen levels of insulin dependent (skeletal muscle and liver), insulin-independent tissues (kidneys and brain) and enzymes such as glucokinase (GK), hexokinase (HK), and phosphofructokinase (PFK). Administration of PM led to decrease in blood glucose levels by 38 and 60% on 15th and 30th day of the experiment. Liver and 2-kidney weight expressed as percentage of body-weight was significantly increased in diabetics (p < 0.0005) vs. normal controls and this alteration in the renal weight (p < 0.0005) but not liver weight was normalized by feeding of PM extract. Renal glycogen content increased by over 10-fold while hepatic and skeletal muscle glycogen content decreased by 75 and 68% in diabetic controls vs. controls and these alteration in glycogen content was partly prevented by PM. Activity of HK, GK and PFK in diabetic controls was 35,50 and 60% of the controls and PM completely corrected this alteration in PFK and only partly in HK and GK.

  13. Attenuation of Helicteres isora L. bark extracts on streptozotocin-induced alterations in glycogen and carbohydrate metabolism in albino rats.

    PubMed

    Kumar, G; Sharmila Banu, G; Murugesan, A G

    2009-11-01

    The present study was undertaken to assess the effect of Helicteres isora L. on four important enzymes of carbohydrate metabolism (glucokinase [GK], hexokinase [HK] phosphofructokinase [PFK] and fructose-1, 6-bisphosphatase [FBP]) along with glycogen content of insulin-dependent (skeletal muscle and liver) and insulin-independent tissues (kidneys and brain) in streptozotocin (STZ; 60 mg/kg)-induced model of diabetes for 30 days. Administration of bark extracts (100, 200 mg/kg) for 30 days led to decrease in plasma glucose levels by approximately 9.60% and 22.04% and 19.18% and 33.93% on 15th and 30th day, respectively, of the experiment. Liver and two-kidney weight expressed as percentage of body weight significantly increased in diabetics (P < 0.05) versus normal controls. Renal glycogen content increased by 10 folds while hepatic and skeletal muscle glycogen content decreased by 75% and 68% in diabetic controls versus controls. H. isora did not affect glycogen content in any tissue. The decreased activities of PFK, GK, FBP and HK in diabetic controls were 40%, 50%, 50% and 60% and bark extract of H. isora partially corrected this alteration. The efficacy of the bark extract was comparable with Tolbutamide, a well-known hypoglycemic drug.

  14. Biotin deficiency in a glycogen storage disease type 1b girl fed only with glycogen storage disease-related formula.

    PubMed

    Ihara, Kenji; Abe, Kiyomi; Hayakawa, Kou; Makimura, Mika; Kojima-Ishii, Kanako; Hara, Toshiro

    2011-01-01

    Glycogen storage disease type I is an autosomal recessive disorder caused by the defect in the glucose-6-phosphate enzyme system. Frequent intake of glucose-containing glycogen storage disease formula, uncooked cornstarch, or both, are usually needed to maintain normal blood glucose level. We report a glycogen storage disease type 1b girl with biotin deficiency caused by an exclusive glucose-containing glycogen storage disease formula for years, presenting with the appearance of severe skin lesions, and diagnosed by urinary organic acid analysis by gas chromato-spectrometry, and blood acylcarnitine analysis by tandem mass-spectrometry.

  15. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    NASA Astrophysics Data System (ADS)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  16. 13C and 1H Nuclear Magnetic Resonance Study of Glycogen Futile Cycling in Strains of the Genus Fibrobacter

    PubMed Central

    Matheron, Christelle; Delort, Anne-Marie; Gaudet, Geneviève; Forano, Evelyne; Liptaj, Tibor

    1998-01-01

    We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics. PMID:12033219

  17. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    PubMed Central

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  18. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress.

    PubMed

    Garaigorta, Urtzi; Heim, Markus H; Boyd, Bryan; Wieland, Stefan; Chisari, Francis V

    2012-10-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.

  19. Hepatitis C Virus (HCV) Induces Formation of Stress Granules Whose Proteins Regulate HCV RNA Replication and Virus Assembly and Egress

    PubMed Central

    Heim, Markus H.; Boyd, Bryan; Wieland, Stefan

    2012-01-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress. PMID:22855484

  20. Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle.

    PubMed

    Murphy, Robyn M; Xu, Hongyang; Latchman, Heidy; Larkins, Noni T; Gooley, Paul R; Stapleton, David I

    2012-12-01

    To understand how glycogen affects skeletal muscle physiology, we examined enzymes essential for muscle glycogen synthesis and degradation using single fibers from quiescent and stimulated rat skeletal muscle. Presenting a shift in paradigm, we show these proteins are differentially associated with glycogen granules. Protein diffusibility and/or abundance of glycogenin, glycogen branching enzyme (GBE), debranching enzyme (GDE), phosphorylase (GP), and synthase (GS) were examined in fibers isolated from rat fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscle. GDE and GP proteins were more abundant (~10- to 100-fold) in fibers from EDL compared with SOL muscle. GS and glycogenin proteins were similar between muscles while GBE had an approximately fourfold greater abundance in SOL muscle. Mechanically skinned fibers exposed to physiological buffer for 10 min showed ~70% total pools of GBE and GP were diffusible (nonbound), whereas GDE and GS were considerably less diffusible. Intense in vitro stimulation, sufficient to elicit a ~50% decrease in intracellular glycogen, increased diffusibility of GDE, GP, and GS (~15-60%) and decreased GBE diffusibility (~20%). Amylase treatment, which breaks α-1,4 linkages of glycogen, indicated differential diffusibilities and hence glycogen associations of GDE and GS. Membrane solubilization (1% Triton-X-100) allowed a small additional amount of GDE and GS to diffuse from fibers, suggesting the majority of nonglycogen-associated GDE/GS is associated with myofibrillar/contractile network of muscle rather than membranes. Given differences in enzymes required for glycogen metabolism, the current findings suggest glycogen particles have fiber-type-dependent structures. The greater catabolic potential of glycogen breakdown in fast-twitch fibers may account for different contraction induced rates of glycogen utilization.

  1. Glycogen synthesis from lactate in a chronically active muscle

    SciTech Connect

    Talmadge, R.J.; Scheide, J.I.; Silverman, H.

    1989-05-01

    In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A (/sup 14/C)lactate intraperitoneal injection leads to preferential /sup 14/C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM (/sup 14/C)lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates (14C) lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers.

  2. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    PubMed Central

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  3. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    PubMed

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson; de Oliveira, Carlos Jorge Logullo; Campos, Eldo; da Fonseca, Rodrigo Nunes

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  4. Glycogen synthesis in amphibian oocytes: evidence for an indirect pathway.

    PubMed Central

    Kessi, E; Guixé, V; Preller, A; Ureta, T

    1996-01-01

    Glycogen is the main end product of glucose metabolism in amphibian oocytes. However, in the first few minutes after [U-14C]glucose microinjection most of the label is found in lactate. The burst of lactate production and the shape of the time curves for the labelling of glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate and glycogen suggest a precursor-product relationship of lactate with respect to glycogen and its intermediates. Expansion (by microinjection) of the pool of glycolytic intermediates, such as dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, 3-phosphoglycerate or phosphoenolpyruvate, results in a marked decrease in [U-14C]glucose incorporation into glycogen. After co-injection of doubly labelled glucoses, extensive detritiation (93%) of the glucosyl units of glycogen was observed with [2-3H, U-14C]glucose and partial detritiation with [3-3H,U-14C]glucose (34%) or [5-3H,U-14C]glucose (46%). After injection of [6-3H,U-14C]glucose, a small but significant and reproducible detritiation (13%) in glycogen was observed. Co-injection of [U-14C]glucose and 3-mercaptopicolinate resulted in marked inhibition of glycogen labelling. Half-maximal inhibition was observed at 0.58 mM 3-mercaptopicolinate, which agrees with the IC50 value (0.47 mM) for the inhibition in vitro of phosphoenolpyruvate carboxykinase activity. We concluded that in frog oocytes most of the glucosyl units are incorporated into glycogen by an indirect pathway involving breakdown of glucose to lactate, which is then converted into glycogen via gluconeogenesis. Both processes, glycolytic degradation of glucose to lactate and subsequent reconversion of the latter into hexose phosphates and glycogen, occur in the same cell. PMID:8615814

  5. Consensus guidelines for management of glycogen storage disease type 1b - European Study on Glycogen Storage Disease Type 1.

    PubMed

    Visser, Gepke; Rake, Jan Peter; Labrune, Philippe; Leonard, James V; Moses, Shimon; Ullrich, Kurt; Wendel, Udo; Smit, G Peter A

    2002-10-01

    Life expectancy in glycogen storage disease type 1 (GSD-1) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and therefore experience with long-term management and follow-up at each centre is limited. There is wide variation in methods of dietary and pharmacological treatment. Based on data from the European Study on Glycogen Storage Disease Type 1, discussions within this study group together with those at the International SHS Symposium 'Glycogen Storage Disease Type I and II: Recent Developments, Management and Outcome', Fulda, Germany (2000) and on data from the literature, a series of guidelines were drawn up. the following guidelines for the management of patients with glycogen storage disease type 1b are in addition to those general guidelines for glycogen storage disease type 1 and address specific problems related to neutropenia and neutrophil dysfunction.

  6. Sensitivity of glycogen phosphorylase isoforms to indole site inhibitors is markedly dependent on the activation state of the enzyme

    PubMed Central

    Freeman, S; Bartlett, J B; Convey, G; Hardern, I; Teague, J L; Loxham, S J G; Allen, J M; Poucher, S M; Charles, A D

    2006-01-01

    Background and purpose: Inhibition of hepatic glycogen phosphorylase is a potential treatment for glycaemic control in type 2 diabetes. Selective inhibition of the liver phosphorylase isoform could minimize adverse effects in other tissues. We investigated the potential selectivity of two indole site phosphorylase inhibitors, GPi688 and GPi819. Experimental approach: The activity of glycogen phosphorylase was modulated using the allosteric effectors glucose or caffeine to promote the less active T state, and AMP to promote the more active R state. In vitro potency of indole site inhibitors against liver and muscle glycogen phosphorylase a was examined at different effector concentrations using purified recombinant enzymes. The potency of GPi819 was compared with its in vivo efficacy at raising glycogen concentrations in liver and muscle of Zucker (fa/fa) rats. Key results: In vitro potency of indole site inhibitors depended upon the activity state of phosphorylase a. Both inhibitors showed selectivity for liver phosphorylase a when the isoform specific activities were equal. After 5 days dosing of GPi819 (37.5 μmol kg−1), where free compound levels in plasma and tissue were at steady state, glycogen elevation was 1.5-fold greater in soleus muscle than in liver (P<0.05). Conclusions and implications: The in vivo selectivity of GPi819 did not match that seen in vitro when the specific activities of phosphorylase a isoforms are equal. This suggests T state promoters may be important physiological regulators in skeletal muscle. The greater efficacy of indole site inhibitors in skeletal muscle has implications for the overall safety profile of such drugs. PMID:17016495

  7. Effect of exhaustive ultra-endurance exercise in muscular glycogen and both Alpha1 and Alpha2 Ampk protein expression in trained rats.

    PubMed

    Tarini, V A F; Carnevali, L C; Arida, R M; Cunha, C A; Alves, E S; Seeleander, M C L; Schmidt, B; Faloppa, F

    2013-09-01

    Glycogen is the main store of readily energy in skeletal muscle and plays a key role in muscle function, demonstrated by the inability to sustain prolonged high-intensity exercise upon depletion of these glycogen stores. With prolonged exercise, glycogen depletion occurs and 5'-AMP-activated protein kinase (AMPK), a potent regulator of muscle metabolism and gene expression, is activated promoting molecular signalling that increases glucose uptake by muscular skeletal cells. The aim of this study was primarily to determine the effect of ultra-endurance exercise on muscle glycogen reserves and secondly to verify the influence of this type of exercise on AMPK protein expression. Twenty-four male Wistar rats, 60 days old, were divided into four experimental groups: sedentary, sedentary exhausted (SE), endurance trained (T) and endurance trained exhausted (TE). The animals ran for 10 to 90 min/day, 5 days/week, for 12 weeks to attain trained status. Rats were killed immediately after the exhaustion protocol, which consisted of running on a treadmill (at approximately 60% Vmax until exhaustion). Optical density of periodic acid-Schiff was detected and glycogen depletion observed predominantly in type I muscle fibres of the TE group and in both type I and II muscle fibres in the SE group. Plasma glucose decreased only in the TE group. Hepatic glycogen was increased in T group and significantly depleted in TE group. AMPK protein expression was significantly elevated in TE and T groups. In conclusion, acute exhaustive ultra-endurance exercise promoted muscle glycogen depletion. It seems that total AMPK protein and gene expression is more influenced by status training.

  8. Human Choline Kinase-α Promotes Hepatitis C Virus RNA Replication through Modulation of Membranous Viral Replication Complex Formation

    PubMed Central

    Wong, Mun-Teng

    2016-01-01

    ABSTRACT Hepatitis C virus (HCV) infection reorganizes cellular membranes to create an active viral replication site named the membranous web (MW). The role that human choline kinase-α (hCKα) plays in HCV replication remains elusive. Here, we first showed that hCKα activity, not the CDP-choline pathway, promoted viral RNA replication. Confocal microscopy and subcellular fractionation of HCV-infected cells revealed that a small fraction of hCKα colocalized with the viral replication complex (RC) on the endoplasmic reticulum (ER) and that HCV infection increased hCKα localization to the ER. In the pTM-NS3-NS5B model, NS3-NS5B expression increased the localization of the wild-type, not the inactive D288A mutant, hCKα on the ER, and hCKα activity was required for effective trafficking of hCKα and NS5A to the ER. Coimmunoprecipitation showed that hCKα was recruited onto the viral RC presumably through its binding to NS5A domain 1 (D1). hCKα silencing or treatment with CK37, an hCKα activity inhibitor, abolished HCV-induced MW formation. In addition, hCKα depletion hindered NS5A localization on the ER, interfered with NS5A and NS5B colocalization, and mitigated NS5A-NS5B interactions but had no apparent effect on NS5A-NS4B and NS4B-NS5B interactions. Nevertheless, hCKα activity was not essential for the binding of NS5A to hCKα or NS5B. These findings demonstrate that hCKα forms a complex with NS5A and that hCKα activity enhances the targeting of the complex to the ER, where hCKα protein, not activity, mediates NS5A binding to NS5B, thereby promoting functional membranous viral RC assembly and viral RNA replication. IMPORTANCE HCV infection reorganizes the cellular membrane to create an active viral replication site named the membranous web (MW). Here, we report that human choline kinase-α (hCKα) acts as an essential host factor for HCV RNA replication. A fraction of hCKα colocalizes with the viral replication complex (RC) on the endoplasmic reticulum

  9. The effect of pulp and seed extract of Citrullus Colocynthis, as an antidaibetic medicinal herb, on hepatocytes glycogen stores in diabetic rabbits

    PubMed Central

    Shafaei, Hajar; Rad, Jafar Soleimani; Delazar, Abbas; Behjati, Mohaddeseh

    2014-01-01

    Background: Medicinal herbs such as Citrullus Colocynthis (C.C) have been used traditionally in the treatment of diabetes mellitus. However therapeutic applications and adverse effects of C.C and its natural variants are not determined well. The current work investigates the effects of pulp and seed extract of C.C on hepatocyte's glycogen stores. Materials and Methods: Thirty six male rabbits were divided into six groups (control and diabetic) randomly. Alloxan was used in order to induce diabetes mellitus in animals. Among 5 diabetic groups, one remained as control and the rest received 100 and 200 mg/kg/day of either pulp or seed extract. One month later, animals were sacrificed and their liver specimen fixed in 10% Formalin was stained with periodic acid schiff (PAS) for light microscopic scanning. Results: PAS staining of hepatocytes revealed large amounts of glycogen stores in diabetic animals treated with pulp and seed extracts of C.C, contrary with non-treated diabetic rabbits. Sites of glycogen deposition were also different in animals treated with seed extract (P < 0.0001). No hepatic congestion was seen in treated animals. Dose escalation has no effect on the obtained results. Conclusions: The anti-diabetic effects of C.C can be explained by its effects on accumulation of glycogen stores in hepatocytes. The importance of varied sites of glycogen deposition by the application of C.C needs to be determined. PMID:25625097

  10. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    PubMed

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas.

    PubMed

    Mutel, Elodie; Abdul-Wahed, Aya; Ramamonjisoa, Nirilanto; Stefanutti, Anne; Houberdon, Isabelle; Cavassila, Sophie; Pilleul, Frank; Beuf, Olivier; Gautier-Stein, Amandine; Penhoat, Armelle; Mithieux, Gilles; Rajas, Fabienne

    2011-03-01

    Glycogen storage disease type 1a (GSD1a) is an inherited disease caused by a deficiency in the catalytic subunit of the glucose-6 phosphatase enzyme (G6Pase). GSD1a is characterized by hypoglycaemia, hyperlipidemia, and lactic acidosis with associated hepatic (including hepatocellular adenomas), renal, and intestinal disorders. A total G6pc (catalytic subunit of G6Pase) knock-out mouse model has been generated that mimics the human pathology. However, these mice rarely live longer than 3 months and long-term liver pathogenesis cannot be evaluated. Herein, we report the long-term characterization of a liver-specific G6pc knock-out mouse model (L-G6pc(-/-)). We generated L-G6pc(-/-) mice using an inducible CRE-lox strategy and followed up the development of hepatic tumours using magnetic resonance imaging. L-G6pc(-/-) mice are viable and exhibit normoglycemia in the fed state. They develop hyperlipidemia, lactic acidosis, and uricemia during the first month after gene deletion. However, these plasmatic parameters improved after 6 months. L-G6pc(-/-) mice develop hepatomegaly with glycogen accumulation and hepatic steatosis. Using an MRI approach, we could detect hepatic nodules with diameters of less than 1 mm, 9 months after induction of deficiency. Hepatic nodules (1 mm) were detected in 30-40% of L-G6pc(-/-) mice at 12 months. After 18 months, all L-G6pc(-/-) mice developed multiple hepatocellular adenomas of 1-10 mm diameter. This is the first report of a viable animal model of the hepatic pathology of GSD1a, including the late development of hepatocellular adenomas. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages.

    PubMed

    Ran, Lin; Yu, Qilin; Zhang, Shu; Xiong, Fei; Cheng, Jia; Yang, Ping; Xu, Jun-Fa; Nie, Hao; Zhong, Qin; Yang, Xueli; Yang, Fei; Gong, Quan; Kuczma, Michal; Kraj, Piotr; Gu, Weikuan; Ren, Bo-Xu; Wang, Cong-Yi

    2015-07-01

    Acute schistosomiasis is characterized by pro-inflammatory responses against tissue- or organ-trapped parasite eggs along with granuloma formation. Here, we describe studies in Cx3cr1(-/-) mice and demonstrate the role of Cx3cr1 in the pathoetiology of granuloma formation during acute schistosomiasis. Mice deficient in Cx3cr1 were protected from granuloma formation and hepatic injury induced by Schistosoma japonicum eggs, as manifested by reduced body weight loss and attenuated hepatomegaly along with preserved liver function. Notably, S. japonicum infection induced high levels of hepatic Cx3cr1 expression, which was predominantly expressed by infiltrating macrophages. Loss of Cx3cr1 rendered macrophages preferentially towards M2 polarization, which then led to a characteristic switch of the host immune defense from a conventional Th1 to a typical Th2 response during acute schistosomiasis. This immune switch caused by Cx3cr1 deficiency was probably associated with enhanced STAT6/PPAR-γ signaling and increased expression of indoleamine 2,3-dioxygenase (IDO), an enzyme that promotes M2 polarization of macrophages. Taken together, our data provide evidence suggesting that CX3CR1 could be a viable therapeutic target for treatment of acute schistosomiasis.

  13. Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages

    PubMed Central

    Ran, Lin; Yu, Qilin; Zhang, Shu; Xiong, Fei; Cheng, Jia; Yang, Ping; Xu, Jun-Fa; Nie, Hao; Zhong, Qin; Yang, Xueli; Yang, Fei; Gong, Quan; Kuczma, Michal; Kraj, Piotr; Gu, Weikuan; Ren, Bo-Xu; Wang, Cong-Yi

    2015-01-01

    ABSTRACT Acute schistosomiasis is characterized by pro-inflammatory responses against tissue- or organ-trapped parasite eggs along with granuloma formation. Here, we describe studies in Cx3cr1−/− mice and demonstrate the role of Cx3cr1 in the pathoetiology of granuloma formation during acute schistosomiasis. Mice deficient in Cx3cr1 were protected from granuloma formation and hepatic injury induced by Schistosoma japonicum eggs, as manifested by reduced body weight loss and attenuated hepatomegaly along with preserved liver function. Notably, S. japonicum infection induced high levels of hepatic Cx3cr1 expression, which was predominantly expressed by infiltrating macrophages. Loss of Cx3cr1 rendered macrophages preferentially towards M2 polarization, which then led to a characteristic switch of the host immune defense from a conventional Th1 to a typical Th2 response during acute schistosomiasis. This immune switch caused by Cx3cr1 deficiency was probably associated with enhanced STAT6/PPAR-γ signaling and increased expression of indoleamine 2,3-dioxygenase (IDO), an enzyme that promotes M2 polarization of macrophages. Taken together, our data provide evidence suggesting that CX3CR1 could be a viable therapeutic target for treatment of acute schistosomiasis. PMID:26035381

  14. Changes in brain glycogen after sleep deprivation vary with genotype.

    PubMed

    Franken, Paul; Gip, Phung; Hagiwara, Grace; Ruby, Norman F; Heller, H Craig

    2003-08-01

    Sleep has been functionally implicated in brain energy homeostasis in that it could serve to replenish brain energy stores that become depleted while awake. Sleep deprivation (SD) should therefore lower brain glycogen content. We tested this hypothesis by sleep depriving mice of three inbred strains, i.e., AKR/J (AK), DBA/2J (D2), and C57BL/6J (B6), that differ greatly in their sleep regulation. After a 6-h SD, these mice and their controls were killed by microwave irradiation, and glycogen and glucose were quantified in the cerebral cortex, brain stem, and cerebellum. After SD, both measures significantly increased by approximately 40% in the cortex of B6 mice, while glycogen significantly decreased by 20-38% in brain stem and cerebellum of AK and D2 mice. In contrast, after SD, glucose content increased in all three structures in AK mice and did not change in D2 mice. The increase in glycogen after SD in B6 mice persisted under conditions of food deprivation that, by itself, lowered cortical glycogen. Furthermore, the strains that differ most in their compensatory response to sleep loss, i.e., AK and D2, did not differ in their glycogen response. Thus glycogen content per se is an unlikely end point of sleep's functional role in brain energy homeostasis.

  15. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress

    PubMed Central

    Gusarov, Ivan; Pani, Bibhusita; Gautier, Laurent; Smolentseva, Olga; Eremina, Svetlana; Shamovsky, Ilya; Katkova-Zhukotskaya, Olga; Mironov, Alexander; Nudler, Evgeny

    2017-01-01

    A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging. PMID:28627510

  16. Regulation of glycogen metabolism in yeast and bacteria

    PubMed Central

    Wilson, Wayne A.; Roach, Peter J.; Montero, Manuel; Baroja-Fernández, Edurne; Muñoz, Francisco José; Eydallin, Gustavo; Viale, Alejandro M.; Pozueta-Romero, Javier

    2010-01-01

    Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to guarantee the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and post-transcriptional levels, which regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, especial emphasis is given to aspects related with genetic regulation of glycogen metabolism and its connection with other biological processes. PMID:20412306

  17. Improving size-exclusion chromatography separation for glycogen.

    PubMed

    Sullivan, Mitchell A; Powell, Prudence O; Witt, Torsten; Vilaplana, Francisco; Roura, Eugeni; Gilbert, Robert G

    2014-03-07

    Glycogen is a hyperbranched glucose polymer comprised of glycogen β particles, which can also form much larger composite α particles. The recent discovery using size-exclusion chromatography (SEC) that fewer, smaller, α particles are found in diabetic-mouse liver compared to healthy mice highlights the need to achieve greater accuracy in the size separation methods used to analyze α and β particles. While past studies have used dimethyl sulfoxide as the SEC eluent to analyze the molecular size and structure of native glycogen, an aqueous eluent has not been rigorously tested and compared with dimethyl sulfoxide. The conditions for SEC of pig-liver glycogen, phytoglycogen and oyster glycogen were optimized by comparing two different eluents, aqueous 50 mM NH₄NO₃/0.02% NaN₃ and dimethyl sulfoxide/0.5% LiBr, run through different column materials and pore sizes at various flow rates. The aqueous system gave distinct size separation of α- and β-particle peaks, allowing for a more detailed and quantitative analysis and comparison between liver glycogen samples. This greater resolution has also revealed key differences between the structure of liver glycogen and phytoglycogen.

  18. Hormonal regulation of glycogen metabolism in neonatal rat liver

    PubMed Central

    Schwartz, Alan L.; Rall, Theodore W.

    1973-01-01

    1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver. PMID:4357717

  19. Formation of similar species to carbon monoxide during hepatic microsomal metabolism of cannabidiol on the basis of spectral interaction with cytochrome P-450.

    PubMed

    Watanabe, K; Narimatsu, S; Gohda, H; Yamamoto, I; Yoshimura, H

    1988-12-15

    Cannabidiol induced a carbon monoxide-like complex with mouse hepatic microsomal cytochrome P-450 during NADPH-dependent metabolism in vitro on a spectral basis. The reduction by dithionite was required for the maximal development of a spectrum. The complex showed a peak at 450 nm which shifted to 419 or 423 nm, respectively, by further addition of hemoglobin or myoglobin. Cannabidiol-induced complex formation required molecular oxygen, and was decreased by the addition of inhibitors of cytochrome P-450-dependent monoxygenase. Pretreatment of mice with phenobarbital (80 or 100 mg/kg, i.p. for 3 days) but not 3-methylcholanthrene (80 mg/kg, i.p.) increased the complex formation. In contrast, pretreatment with cobaltous chloride (40 mg/kg, i.p. for 3 days) decreased the complex formation. 8,9-Dihydro- and 1,2,8,9-tetrahydrocannabidiols also induced the same spectrum as that of above complex, whereas cannabidiol monomethyl- and dimethylethers reduced this ability. In addition, both cannabidivarin and cannabigerol induced the complex formation, although delta 9-tetrahydrocannabinol, cannabinol and cannabielsoin did not. Olivetol but not d-limonene induced the spectrum of the complex to some extent. These results indicate that cannabidiol induces a carbon monoxide-like complex with cytochrome P-450 during hepatic microsomal metabolism, and suggest that phenobarbital-inducible cytochrome P-450s mediate at least one of the metabolic steps of CBD to form the complex, as well as the importance of the resorcinol moiety of CBD for the complex formation.

  20. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...

  1. Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference.

    PubMed

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-03-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer.

  2. Glycogen Phosphorylase in Acanthamoeba spp.: Determining the Role of the Enzyme during the Encystment Process Using RNA Interference▿

    PubMed Central

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-01-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer. PMID:18223117

  3. The Phospholipid:Diacylglycerol Acyltransferase Lro1 Is Responsible for Hepatitis C Virus Core-Induced Lipid Droplet Formation in a Yeast Model System

    PubMed Central

    Wang, Chao-Wen; Cheng, Yun-Hsin; Irokawa, Hayato; Hwang, Gi-Wook; Naganuma, Akira; Kuge, Shusuke

    2016-01-01

    Chronic infection with the hepatitis C virus frequently induces steatosis, which is a significant risk factor for liver pathogenesis. Steatosis is characterized by the accumulation of lipid droplets in hepatocytes. The structural protein core of the virus induces lipid droplet formation and localizes on the surface of the lipid droplets. However, the precise molecular mechanisms for the core-induced formation of lipid droplets remain elusive. Recently, we showed that the expression of the core protein in yeast as a model system could induce lipid droplet formation. In this study, we probed the cellular factors responsible for the formation of core-induced lipid-droplets in yeast cells. We demonstrated that one of the enzymes responsible for triglyceride synthesis, a phospholipid:diacylglycerol acyltransferase (Lro1), is required for the core-induced lipid droplet formation. While core proteins inhibit Lro1 degradation and alter Lro1 localization, the characteristic localization of Lro1 adjacent to the lipid droplets appeared to be responsible for the core-induced lipid droplet formation. RNA virus genomes have evolved using high mutation rates to maintain their ability to replicate. Our observations suggest a functional relationship between the core protein with hepatocytes and yeast cells. The possible interactions between core proteins and the endoplasmic reticulum membrane affect the mobilization of specific proteins. PMID:27459103

  4. A detailed characterization of the adult mouse model of glycogen storage disease Ia.

    PubMed

    Salganik, Susan V; Weinstein, David A; Shupe, Thomas D; Salganik, Max; Pintilie, Dana G; Petersen, Bryon E

    2009-09-01

    Glycogen storage disease type Ia (GSDIa) is caused by a genetic defect in the hepatic enzyme glucose-6-phosphatase (G6Pase-alpha), which manifests as life-threatening hypoglycemia with related metabolic complications. A G6Pase-alpha knockout (KO) mouse model was generated to study potential therapies for correcting this disorder. Since then, gene therapy studies have produced promising results, showing long-term improvement in liver histology and glycogen metabolism. Under existing protocols, however, untreated KO pups seldom survived weaning. Here, we present a thorough characterization of the G6Pase-alpha KO mouse, as well as the husbandry protocol for rearing this strain to adulthood. These mice were raised with only palliative care, and characterized from birth through 6 months of age. Once KO mice have survived the very frail weaning period, their size, agility, serum lipids and glycemic control improve dramatically, reaching levels approaching their wild-type littermates. In addition, our data reveal that adult mice lacking G6Pase-alpha are able to mate and produce viable offspring. However, liver histology and glycogen accumulation do not improve with age. Overall, the reliable production of mature KO mice could provide a critical tool for advancing the GSDIa field, as the availability of a robust enzyme-deficient adult offers a new spectrum of treatment avenues that would not be tolerated by the frail pups. Most importantly, our detailed characterization of the adult KO mouse provides a crucial baseline for accurately gauging the efficacy of experimental therapies in this important model.

  5. Castanospermine inhibits alpha-glucosidase activities and alters glycogen distribution in animals.

    PubMed

    Saul, R; Ghidoni, J J; Molyneux, R J; Elbein, A D

    1985-01-01

    Castanospermine, an inhibitor of alpha-glucosidase activity, was injected into rats to determine its effects in vivo. Daily injections of alkaloid, at levels of 0.5 mg/g of body weight, or higher, for 3 days decreased hepatic alpha-glucosidase to 40% of control values, whereas alpha-glucosidase in brain was reduced to 25% of control values and that in spleen and kidney was reduced to about 40%. In liver, both the neutral (pH 6.5) and the acidic (pH 4.5) alpha-glucosidase activities were inhibited, but the former was more susceptible. On the other hand, beta-N-acetylhexosaminidase activity was elevated in the livers of treated animals, whereas beta-galactosidase activity was unchanged and alpha-mannosidase activity was somewhat inhibited. Livers of treated animals were examined by light and electron microscopy and compared to control animals to determine whether changes in morphology had occurred. In treated animals fed normal rat chow, the hepatocytes were smaller in size and simplified in structure, whereas the high-glucose diet lessened these alterations. Furthermore, in those animals receiving castanospermine at 1.0 mg or higher per g of body weight for 3 days, there was a marked decrease in the amount of glycogen in the cytoplasm, while a large number of lysosomes were observed that were full of dense, granular material. That this dense material was indeed glycogen was shown by the fact that it disappeared when blocks of fixed tissue were pretreated with alpha-amylase. Glycogen levels in liver, as measured either colorimetrically or enzymatically, were somewhat depressed at the higher levels of castanospermine.

  6. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum

    PubMed Central

    Qin, Jun; Wang, Guanghui; Jiang, Cong; Xu, Jin-Rong; Wang, Chenfang

    2015-01-01

    Wheat scab caused by Fusarium graminearum is an important disease. In a previous study, the FGK3 glycogen synthase kinase gene orthologous to mammalian GSK3 was identified as an important virulence factor. Although GSK3 orthologs are well-conserved, none of them have been functionally characterized in fungal pathogens. In this study, we further characterized the roles of FGK3 gene. The Δfgk3 mutant had pleiotropic defects in growth rate, conidium morphology, germination, and perithecium formation. It was non-pathogenic in infection assays and blocked in DON production. Glycogen accumulation was increased in the Δfgk3 mutant, confirming the inhibitory role of Fgk3 on glycogen synthase. In FGK3-GFP transformants, GFP signals mainly localized to the cytoplasm in conidia but to the cytoplasm and nucleus in hyphae. Moreover, the expression level of FGK3 increased in response to cold, H2O2, and SDS stresses. In the Δfgk3 mutant, cold, heat, and salt stresses failed to induce the expression of the stress response-related genes FgGRE2, FgGPD1, FgCTT1, and FgMSN2. In the presence of 80 mM LiCl, a GSK3 kinase inhibitor, the wild type displayed similar defects to the Δfgk3 mutant. Overall, our results indicate that FGK3 is important for growth, conidiogenesis, DON production, pathogenicity, and stress responses in F. graminearum. PMID:25703795

  7. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus.

    PubMed Central

    Cline, G W; Rothman, D L; Magnusson, I; Katz, L D; Shulman, G I

    1994-01-01

    To determine the effect of insulin-dependent diabetes mellitus (IDDM) on rates and pathways of hepatic glycogen synthesis, as well as flux through hepatic pyruvate dehydrogenase, we used 13C-nuclear magnetic resonance spectroscopy to monitor the peak intensity of the C1 resonance of the glucosyl units of hepatic glycogen, in combination with acetaminophen to sample the hepatic UDP-glucose pool and phenylacetate to sample the hepatic glutamine pool, during a hyperglycemic-hyperinsulinemic clamp using [1-13C]-glucose. Five subjects with poorly controlled IDDM and six age-weight-matched control subjects were clamped at a mean plasma glucose concentration of approximately 9 mM and mean plasma insulin concentrations approximately 400 pM for 5 h. Rates of hepatic glycogen synthesis were similar in both groups (approximately 0.43 +/- 0.09 mumol/ml liver min). However, flux through the indirect pathway of glycogen synthesis (3 carbon units-->-->glycogen) was increased by approximately 50% (P < 0.05), whereas the relative contribution of pyruvate oxidation to TCA cycle flux was decreased by approximately 30% (P < 0.05) in the IDDM subjects compared to the control subjects. These studies demonstrate that patients with poorly controlled insulin-dependent diabetes mellitus have augmented hepatic gluconeogenesis and relative decreased rates of hepatic pyruvate oxidation. These abnormalities are not immediately reversed by normalizing intraportal concentrations of glucose, insulin, and glucagon and may contribute to postprandial hyperglycemia. PMID:7989593

  8. Molecular Mechanisms of Allosteric Inhibition of Brain Glycogen Phosphorylase by Neurotoxic Dithiocarbamate Chemicals.

    PubMed

    Mathieu, Cécile; Bui, Linh-Chi; Petit, Emile; Haddad, Iman; Agbulut, Onnik; Vinh, Joelle; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-02-03

    Dithiocarbamates (DTCs) are important industrial chemicals used extensively as pesticides and in a variety of therapeutic applications. However, they have also been associated with neurotoxic effects and in particular with the development of Parkinson-like neuropathy. Although different pathways and enzymes (such as ubiquitin ligases or the proteasome) have been identified as potential targets of DTCs in the brain, the molecular mechanisms underlying their neurotoxicity remain poorly understood. There is increasing evidence that alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. Interestingly, recent studies with N,N-diethyldithiocarbamate suggest that brain glycogen phosphorylase (bGP) and glycogen metabolism could be altered by DTCs. Here, we provide molecular and mechanistic evidence that bGP is a target of DTCs. To examine this system, we first tested thiram, a DTC pesticide known to display neurotoxic effects, observing that it can react rapidly with bGP and readily inhibits its glycogenolytic activity (kinact = 1.4 × 10(5) m(-1) s(-1)). Using cysteine chemical labeling, mass spectrometry, and site-directed mutagenesis approaches, we show that thiram (and certain of its metabolites) alters the activity of bGP through the formation of an intramolecular disulfide bond (Cys(318)-Cys(326)), known to act as a redox switch that precludes the allosteric activation of bGP by AMP. Given the key role of glycogen metabolism in brain functions and neurodegeneration, impairment of the glycogenolytic activity of bGP by DTCs such as thiram may be a new mechanism by which certain DTCs exert their neurotoxic effects.

  9. Glucose uptake and glycogen synthesis in muscles from immobilized limbs

    NASA Technical Reports Server (NTRS)

    Nicholson, W. F.; Watson, P. A.; Booth, F. W.

    1984-01-01

    Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.

  10. Hepatocellular Adenomas and Carcinoma in Asymptomatic, Non-Cirrhotic Type III Glycogen Storage Disease.

    PubMed

    Oterdoom, Leendert H; Verweij, K Evelyne; Biermann, Katharina; Langeveld, Mirjam; van Buuren, Henk R

    2015-12-01

    Glycogen storage diseases (GSDs) are a group of inherited metabolic disorders characterized by accumulation of abnormal glycogen in muscle or liver or both. Specific hepatic complications include liver adenomas and hepatocellular carcinoma (HCC). Hepatocellular carcinomas described in GSD type I are often due to the degeneration of liver adenomas. Hepatocellular carcinoma in GSD type III, however, is rare and is thought to be associated with underlying cirrhosis.We present the case of a 63-year old male who was admitted for assessment of suitability for liver transplantation because of development of recurrent HCC in the presence of multiple liver adenomas. A diagnosis of GSD type III was made in this patient without underlying cirrhosis or metabolic disturbances resembling GSD. This case report is the first documentation of HCC development in an asymptomatic, non-cirrhotic patient with GSD type III. This raises the possibility that in GSD type III, the adenoma - carcinoma sequence can occur as it is also seen in GSD type I. Physicians taking care of GSD patients should be aware of this and some form of surveillance for cirrhosis and HCC should be considered. Also male patients with adenomas should have a thorough workup to reveal any underlying disease such as GSD.

  11. Ontogeny of the rat hepatic adrenoceptors

    SciTech Connect

    McMillian, M.K.

    1985-01-01

    Hepatic alpha-1, alpha-2, and beta-2 adrenoceptors were characterized during development of the rat through Scatchard analysis of (/sup 3/H)-prazosin, (/sup 3/H)-rauwolscine and (/sup 125/I)-pindolol binding to washed particle membrane preparations. Major changes in adrenoceptor number occur shortly before birth and at weaning. The fetal rat liver is characterized by a large number of alpha-2 adrenoceptors which falls 10-20 fold at birth. The number of hepatic beta adrenoceptors decreases 30-50% during the third week after birth increases slightly at weaning, then decreases gradually in the adult. Hepatic alpha-1 adrenoceptor number increases 3-5 fold at weaning to become the predominant adrenoceptor in the adult rat liver. The basis for the fall in alpha-2 number at birth remains unclear. The fall in beta receptor number at the end of the second week post-natally appears dependent on increased insulin and corticosterone secretion as well as increased NE release form nerve terminals. The basis for the increase in beta number at weaning and the sex-dependent loss of beta function but not receptor number in the adult rat remains unknown. The dramatic increases in alpha-1 number and function at weaning are dependent on increased adrenocortical secretion, adrenalectomy prevents the normal. This effect of adrenocorticoids might be mediated through glycogen, as glycogen depletion during fasting decreases alpha-1 receptor number and function at weaning are dependent on increased adrenocortical secretion, adrenalectomy prevents the normal. This effect of adrenocorticoids might be mediated through glycogen, as glycogen depletion during fasting decreases alpha-1 receptor number and function. These findings suggest that hepatic adrenoceptor number adapts from the low carbohydrate diet of the suckling rat to the high carbohydrate diet of the adult at weaning.

  12. Allosteric regulation of glycogen synthase in liver. A physiological dilemma.

    PubMed

    Nuttall, F Q; Gannon, M C

    1993-06-25

    Glycogen synthase catalyzes the transfer of the glucosyl moiety from UDP-glucose to the terminal branch of the glycogen molecule and is considered to be the rate-limiting enzyme for glycogen synthesis. However, under ideal assay conditions, i.e. 37 degrees C with saturating concentrations of UDP-glucose and the activator, glucose-6-P, the maximal catalytic activity of glycogen synthase was only 78% of the in vivo glycogen synthetic rate. Using concentrations of UDP-glucose and glucose-6-P likely to be present in vivo, the rate was only approximately 30%. This prompted us to reassess a possible role of allosteric effectors on synthase activity. Glycogen synthase was assayed at 37 degrees C using dilute, pH 7.0, buffered extracts, initial rate conditions, and UDP-glucose and glucose-6-P concentrations, which approximate those calculated to be present in total liver cell water. Several allosteric effectors were tested. Magnesium and AMP had little effect on activity. Pi, ADP, ATP, and UTP inhibited activity. When a combination of effectors were added at concentrations approximating those present in cell water, synthase activity could account for only 2% of the glycogen synthetic rate. Thus, although allosteric effectors are likely to be playing a major role in regulating synthase enzymic activity in liver cells, to date, a metabolite that can stimulate activity and/or overcome nucleotide inhibition has yet to be identified. If such a metabolite cannot be identified, an additional or alternative pathway for glycogen synthesis must be considered.

  13. Glycogen synthase kinase-3: cryoprotection and glycogen metabolism in the freeze-tolerant wood frog.

    PubMed

    Dieni, Christopher A; Bouffard, Melanie C; Storey, Kenneth B

    2012-02-01

    The terrestrial anuran Rana sylvatica tolerates extended periods of whole-body freezing during the winter. Freezing survival is facilitated by extensive glycogen hydrolysis and distribution of high concentrations of the cryoprotectant glucose into blood and all tissues. As glycogenesis is both an energy-expensive process and counter-productive to maintaining sustained high cryoprotectant levels, we proposed that glycogen synthase kinase-3 (GSK-3) would be activated when wood frogs froze and would phosphorylate its downstream substrates to inactivate glycogen synthesis. Western blot analysis determined that the amount of phosphorylated (inactive) GSK-3 decreased in all five tissues tested in 24 h frozen frogs compared with unfrozen controls. Total GSK-3 protein levels did not change, with the exception of heart GSK-3, indicating that post-translational modification was the primary regulatory mechanism for this kinase. Kinetic properties of skeletal muscle GSK-3 from control and frozen frogs displayed differential responses to a temperature change (22 versus 4°C) and high glucose. For example, when assayed at 4°C, the K(m) for the GSK-3 substrate peptide was ∼44% lower for frozen frogs than the corresponding value in control frogs, indicating greater GSK-3 affinity for its substrates in the frozen state. This indicates that at temperatures similar to the environment encountered by frogs, GSK-3 in frozen frogs will phosphorylate its downstream targets more readily than in unfrozen controls. GSK-3 from skeletal muscle of control frogs was also allosterically regulated. AMP and phosphoenolpyruvate activated GSK-3 whereas inhibitors included glucose, glucose 6-phosphate, pyruvate, ATP, glutamate, glutamine, glycerol, NH(4)Cl, NaCl and KCl. The combination of phosphorylation and allosteric control argues for a regulatory role of GSK-3 in inactivating glycogenesis to preserve high glucose cryoprotectant levels throughout each freezing bout.

  14. Quantifying the contribution of the liver to glucose homeostasis: a detailed kinetic model of human hepatic glucose metabolism.

    PubMed

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases.

  15. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    PubMed Central

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  16. Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion formation and causes intracellular capsid accumulation.

    PubMed

    Wittkop, Linda; Schwarz, Alexandra; Cassany, Aurelia; Grün-Bernhard, Stefanie; Delaleau, Mildred; Rabe, Birgit; Cazenave, Christian; Gerlich, Wolfram; Glebe, Dieter; Kann, Michael

    2010-07-01

    Capsids of hepatitis B virus and other hepadnaviruses contain a cellular protein kinase, which phosphorylates the capsid protein. Some phosphorylation sites are shown to be essential for distinct steps of viral replication as pregenome packaging or plus strand DNA synthesis. Although different protein kinases have been reported to phosphorylate the capsid protein, varying experimental approaches do not allow direct comparison. Furthermore, the activity of a specific protein kinase has not yet been correlated to steps in the hepadnaviral life cycle. In this study we show that capsids from various sources encapsidate active protein kinase Calpha, irrespective of hepatitis B virus genotype and host cell. Treatment of a virion expressing cell line with a pseudosubstrate inhibitor showed that inhibition of protein kinase C phosphorylation did not affect genome maturation but resulted in capsid accumulation and inhibited virion release to the medium. Our results imply that different protein kinases have distinct functions within the hepadnaviral life cycle.

  17. A metabolic link between mitochondrial ATP synthesis and liver glycogen metabolism: NMR study in rats re-fed with butyrate and/or glucose

    PubMed Central

    2011-01-01

    Background Butyrate, end-product of intestinal fermentation, is known to impair oxidative phosphorylation in rat liver and could disturb glycogen synthesis depending on the ATP supplied by mitochondrial oxidative phosphorylation and cytosolic glycolysis. Methods In 48 hr-fasting rats, hepatic changes of glycogen and total ATP contents and unidirectional flux of mitochondrial ATP synthesis were evaluated by ex vivo 31P NMR immediately after perfusion and isolation of liver, from 0 to 10 hours after force-feeding with (butyrate 1.90 mg + glucose 14.0 mg.g-1 body weight) or isocaloric glucose (18.2 mg.g-1 bw); measurements reflected in vivo situation at each time of liver excision. The contribution of energetic metabolism to glycogen metabolism was estimated. Results A net linear flux of glycogen synthesis (~11.10 ± 0.60 μmol glucosyl units.h-1.g-1 liver wet weight) occurred until the 6th hr post-feeding in both groups, whereas butyrate delayed it until the 8th hr. A linear correlation between total ATP and glycogen contents was obtained (r2 = 0.99) only during net glycogen synthesis. Mitochondrial ATP turnover, calculated after specific inhibition of glycolysis, was stable (~0.70 ± 0.25 μmol.min-1.g-1 liver ww) during the first two hr whatever the force-feeding, and increased transiently about two-fold at the 3rd hr in glucose. Butyrate delayed the transient increase (1.80 ± 0.33 μmol.min-1.g-1 liver ww) to the 6th hr post-feeding. Net glycogenolysis always appeared after the 8th hr, whereas flux of mitochondrial ATP synthesis returned to near basal level (0.91 ± 0.19 μmol.min-1.g-1 liver ww). Conclusion In liver from 48 hr-starved rats, the energy need for net glycogen synthesis from exogenous glucose corresponds to ~50% of basal mitochondrial ATP turnover. The evidence of a late and transient increase in mitochondrial ATP turnover reflects an energetic need, probably linked to a glycogen cycling. Butyrate, known to reduce oxidative phosphorylation yield and

  18. Structure and solution properties of enzymatically synthesized glycogen.

    PubMed

    Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Kitamura, Shinichi

    2010-04-19

    Recently, a new enzymatic process for glycogen production was developed. In this process, short-chain amylose is used as a substrate for branching enzymes (BE, EC 2.4.1.18). The molecular weight of the enzymatically synthesized glycogen (ESG) depends on the size and concentration of the substrate. Structural and physicochemical properties of ESG were compared to those of natural source glycogen (NSG). The average chain length, interior chain length, and exterior chain length of ESG were 8.2-11.6, 2.0-3.3, and 4.2-7.6, respectively. These values were within the range of variation of NSG. The appearances of both ESG and NSG in solution were opalescent (milky white and slightly bluish). Furthermore, transmission electron microscopy and atomic force microscopy showed that ESG molecules formed spherical particles, and that there were no differences between ESG and NSG. Viscometric analyses also showed the spherical nature of both glycogens. When ESG and NSG were treated with pullulanase, a glucan-hydrolyzing enzyme known to degrade glycogen only on its surface portion, both glycogens were similarly degraded. These analyses revealed that ESG shares similar molecular shapes and surface properties with NSG.

  19. Glycogen storage in fetuses of trained pregnant rats.

    PubMed

    Houghton, P E; Mottola, M F; Mezzapelli, J; Vandermolen, R; Christopher, P D

    1997-08-01

    The purpose was to determine if running 30 m/min on a 10 degrees incline, 60 min/day for 5 days/ week altered fetal glycogen storage in prepregnancy trained rats. Animals that exercised for 3 weeks prior to pregnancy either continued the same exercise program until Day 19 of gestation (pregnant running group [PR]), or ceased exercising at conception (pregnant controls [PC]). A separate set of animals did not exercise either before or during pregnancy (pregnant nonrunning control group [PNRC]). On Day 20 of gestation, fetal organs and placenta were weighted and analyzed for glycogen concentration. Glycogen concentrations were not different in either fetal liver, heart, or placenta of PR rats compared to PNRC animals. However, fetal liver glycogen concentration was significantly lower in the fetal heart and liver of PC animals compared to glycogen measured in both PNRC and PR animals (p < .05). These results suggest that exercise of this intensity does not compromise fetal glycogen storage in trained pregnant rats. However, chronic prepregnancy exercise and then abrupt cessation of exercise at conception may compromise fetal growth and development.

  20. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation

    PubMed Central

    Kessler, Sonja M.; Laggai, Stephan; Van Wonterghem, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E.; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K.

    2016-01-01

    Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation. PMID:27199763

  1. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    PubMed Central

    Specht, Andrew; Fiske, Laurie; Erger, Kirsten; Cossette, Travis; Verstegen, John; Campbell-Thompson, Martha; Struck, Maggie B.; Lee, Young Mok; Chou, Janice Y.; Byrne, Barry J.; Correia, Catherine E.; Mah, Cathryn S.; Weinstein, David A.; Conlon, Thomas J.

    2011-01-01

    A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases. PMID:21318173

  2. Glycogen storage disease type Ia in canines: a model for human metabolic and genetic liver disease.

    PubMed

    Specht, Andrew; Fiske, Laurie; Erger, Kirsten; Cossette, Travis; Verstegen, John; Campbell-Thompson, Martha; Struck, Maggie B; Lee, Young Mok; Chou, Janice Y; Byrne, Barry J; Correia, Catherine E; Mah, Cathryn S; Weinstein, David A; Conlon, Thomas J

    2011-01-01

    A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including "lactic acidosis", larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.

  3. Spatial and temporal transcriptomics of Schistosoma japonicum-induced hepatic granuloma formation reveals novel roles for neutrophils.

    PubMed

    Chuah, Candy; Jones, Malcolm K; Burke, Melissa L; Owen, Helen C; Anthony, Barrie J; McManus, Donald P; Ramm, Grant A; Gobert, Geoffrey N

    2013-08-01

    The severity of schistosome egg-induced hepatic granulomatous pathology depends markedly on the nature of the host immune responses. In this study, we used LMM and microarray analysis to compare gene expression profiles of histologically distinct zones within, and directly proximal to, hepatic granulomas that developed in C57BL/6 mice infected with Schistosoma japonicum. There was significant up-regulation of type-1, type-2, and type-17 immune-associated genes within the granuloma core (adjacent to eggs), followed by increased expression of type-2 and fibrotic genes at the outer zones of granulomas. Neutrophil-associated genes were also found to be expressed differentially in the core and at the peripheral zone of granulomas, present at 7 weeks p.i., demonstrating a significant role of neutrophils in S. japonicum granulomatous pathology. The release of NETs was observed microscopically in granulomas obtained from the livers of infected mice and when human neutrophils were incubated in vitro in the presence of S. japonicum eggs. These finding are the first to suggest a novel, dual role for neutrophils in the mediation of tissue damage and repair in S. japonicum egg-induced hepatic granulomatous lesions. Together, these results provide an overview of the local events occurring within the granuloma microenvironment.

  4. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  5. Glycogen Storage Disease Type Ia: Linkage of Glucose, Glycogen, Lactic Acid, Triglyceride, and Uric Acid Metabolism

    PubMed Central

    Sever, Sakine; Weinstein, David A.; Wolfsdorf, Joseph I.; Gedik, Reyhan; Schaefer, Ernst J.

    2013-01-01

    Case Summary A female presented in infancy with hypotonia, undetectable serum glucose, lactic acidosis, and triglycerides > 5,000 mg/dl. The diagnosis of type 1A glycogen storage disease (GSD) was made by liver biopsy that showed increased glycogen and absent glucose-6-phosphatase enzyme activity. She was treated with dextrose feeding, which was replaced by frequent cornstarch feeding, with improvement of her metabolic parameters. At age 18 years she had marked hypertriglyceridemia (3,860 mg/dl) and eruptive xanthomas, and was treated with fenofibrate, atorvastatin, and fish oil. At age 29 years she was noted to have multiple liver adenomas, severe anemia, and hyperuricemia. Aggressive cornstarch therapy was commenced with a goal of maintaining her blood glucose levels > 75 mg/dl and lactate levels < 2 mmol/L. After 15 months on this regimen, her lipids levels (measured in mg/dl) off all medications were: total cholesterol 222, triglycerides 179, high density lipoprotein cholesterol 32, and calculated low density lipoprotein cholesterol 154. Her weight was stable with a body mass index of 24.8 kg/m2. Her liver adenomas had decreased in size, and her anemia and hyperuricemia had improved. She was homozygous for the R83C missense mutation in G6PC. Our data indicate that optimized metabolic control to maintain blood glucose levels > 75 mg/dl is critical in the management of this disease. PMID:23312056

  6. Focal hepatic glycogenosis associated with metastatic insulinoma presenting as mass lesions.

    PubMed

    Vyas, Monika; Zhang, Xuchen; Morrow, Jon S; Jain, Dhanpat; Salem, Ronald R; West, A Brian

    2016-01-01

    One of the important functions of the liver is glycogen storage. Most processes associated with increased hepatic glycogen, or glycogenoses, are metabolic and affect the entire liver leading to diffuse glycogenosis. We present a case in which the liver contained multiple small pale nodules that on initial assessment were recognized to be composed of glycogenated hepatocytes. Most of the known causes of hepatic glycogenosis were not pertinent to this case. After cutting many deeper levels and obtaining additional sections, small foci of insulinoma were revealed in the center of each of these lesions. The glycogenosis surrounding the foci of insulinoma can be best explained as a local effect of insulin on the hepatocytes, a phenomenon that has been previously described in primate models, but not in human subjects. Here, we report the first case of metastatic insulinoma causing local hepatic glycogenosis.

  7. Hepatitis C

    MedlinePlus

    ... your doctor may want you to get the hepatitis B vaccine (and maybe the hepatitis A vaccine, too), if you don't already have these viruses. If you have hepatitis C, you are more likely to catch hepatitis A or hepatitis B, which would cause more damage to your liver. ...

  8. Hepatic, gut, and renal substrate flux rates in patients with hepatic cirrhosis.

    PubMed Central

    Owen, O E; Reichle, F A; Mozzoli, M A; Kreulen, T; Patel, M S; Elfenbein, I B; Golsorkhi, M; Chang, K H; Rao, N S; Sue, H S; Boden, G

    1981-01-01

    The roles of liver, kidney, and gut in maintaining fuel homeostasis were studied in 28 patients with severe hepatic cirrhosis, 25 of whom had alcohol-induced cirrhosis. Hepatic, portal, and renal blood flow rates were measured and combined with substrate concentration differences across liver, gut, and kidney to calculate the net flux of free fatty acids, ketone bodies, triglycerides, and glucose with selected glucose precursors, including glycerol, lactate, pyruvate, and amino acids. Data from the catheterization studies were related to hepatic histology, glycogen content, and activities of gluconeogenic enzymes and compared with data obtained from control patients. The effects of food deprivation on net flux of fuels across the liver, gut, and kidney were assessed after overnight and after 3d of fasting. Activities of gluconeogenic enzymes were normal, but hepatic glycogen content was diminished in cirrhotic livers, probably as a consequence of extensive hepatic fibrosis. Extrahepatic splanchnic tissues (gut) had only a small influence on total splanchnic flux rates of carbohydrates, lipids and, amino acids. In cirrhotic patients, there was no mean renal glucose contribution to the bloodstream after an overnight or after a 3-d fast. After an overnight fast hepatic glucose production in patients with cirrhosis was diminished as a result of low-rate glycogenolysis. Hepatic gluconeogenesis and ketogenesis were increased. This pattern of hepatic metabolism mimics that seen in "normal" patients after more advanced stages of starvation. After 3 d of starvation, patients with hepatic cirrhosis have hepatic gluconeogenic and ketogenic profiles comparable to those of normal patients undergoing starvation of similar duration. Nevertheless, the total number of caloric equivalents derived from ketone bodies plus glucose corrected for recycled lactate and pyruvate added to the bloodstream by the cirrhotic livers that could be terminally oxidized by peripheral tissues was less

  9. Lithium Induces Glycogen Accumulation in Salivary Glands of the Rat.

    PubMed

    Souza, D N; Mendes, F M; Nogueira, F N; Simões, A; Nicolau, J

    2016-02-01

    Lithium is administered for the treatment of mood and bipolar disorder. The aim of this study was to verify whether treatment with different concentrations of lithium may affect the glycogen metabolism in the salivary glands of the rats when compared with the liver. Mobilization of glycogen in salivary glands is important for the process of secretion. Two sets of experiments were carried out, that is, in the first, the rats received drinking water supplemented with LiCl (38,25 and 12 mM of LiCl for 15 days) and the second experiment was carried out by intraperitoneal injection of LiCl solution (12 mg/kg and 45 mg LiCl/kg body weight) for 3 days. The active form of glycogen phosphorylase was not affected by treatment with LiCl considering the two experiments. The active form of glycogen synthase presented higher activity in the submandibular glands of rats treated with 25 and 38 mM LiCl and in the liver, with 25 mM LiCl. Glycogen level was higher than that of control in the submandibular glands of rats receiving 38 and 12 mM LiCl, in the parotid of rats receiving 25 and 38 mM, and in the liver of rats receiving 12 mM LiCl. The absolute value of glycogen for the submandibular treated with 25 mM LiCl, and the liver treated with 38 mM LiCl, was higher than the control value, although not statistically significant for these tissues. No statistically significant difference was found in the submandibular and parotid salivary glands for protein concentration when comparing experimental and control groups. We concluded that LiCl administered to rats influences the metabolism of glycogen in salivary glands.

  10. Digestion of glycogen by a glucosidase released by Trichomonas vaginalis.

    PubMed

    Huffman, Ryan D; Nawrocki, Lauren D; Wilson, Wayne A; Brittingham, Andrew

    2015-12-01

    Trichomonas vaginalis is a protozoan parasite that is the causative agent of trichomoniasis, a widespread sexually transmitted disease. In vitro culture of T. vaginalis typically employs a medium supplemented with either maltose or glucose and carbohydrates are considered essential for growth. Although the nature of the carbohydrates utilized by T. vaginalis in vivo is undefined, the vaginal epithelium is rich in glycogen, which appears to provide a source of carbon for the vaginal microbiota. Here, we show that T. vaginalis grows equally well in growth media supplemented with simple sugars or with glycogen. Analysis of conditioned growth medium by thin layer chromatography indicates that growth on glycogen is accompanied by glycogen breakdown to a mixture of products including maltose, glucose, and oligosaccharides. Enzymatic assays with conditioned growth medium show that glycogen breakdown is accomplished via the release of a glucosidase activity having the properties of an α-amylase into the growth medium. Furthermore, we find that released glucosidase activity increases upon removal of carbohydrate from the growth medium, indicating regulation of synthesis and/or secretion in response to environmental cues. Lastly, we show that addition of T. vaginalis glucosidase activity to a growth medium containing glycogen generates sufficient simple sugar to support the growth of lactobacilli which, themselves, are unable to degrade glycogen. Thus, not only does the glucosidase activity likely play an important role in allowing T. vaginalis to secure simple sugars for its own use, it has the potential to impact the growth of other members of the vaginal microbiome.

  11. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    PubMed Central

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  12. Four cases of type 1 diabetes mellitus showing sharp serum transaminase increases and hepatomegaly due to glycogenic hepatopathy.

    PubMed

    Ikarashi, Yuichi; Kogiso, Tomomi; Hashimoto, Etsuko; Yamamoto, Kuniko; Kodama, Kazuhisa; Taniai, Makiko; Torii, Nobuyuki; Takaike, Hiroko; Uchigata, Yasuko; Tokushige, Katsutoshi

    2017-03-01

    Poorly controlled diabetes mellitus (DM) patients sometimes show serum transaminase elevations due to steatohepatitis. However, we experienced four cases with type 1 DM with sharp elevations in serum transaminases that could not be explained by steatohepatitis alone and showed bright liver. They were diagnosed with glycogenic hepatopathy (GH) clinicopathologically. The four patients had a median age of 22.5 years (range, 19-29 years) and 12.5 (4-15)-year histories of type 1 DM and showed marked increases in serum transaminases (aspartate aminotransferase, 698 U/L [469-2763 U/L]; alanine transaminase, 255 U/L [216-956 U/L]). Diabetes mellitus control was poor and hemoglobin A1c was 12.7% (11-16.5%). Three cases had a past history of diabetic ketoacidosis. Hepatomegaly and hyperdense liver were seen on computed tomography scans. Magnetic resonance imaging showed low intensity in T2-weighted images. The pathological findings revealed pale and swollen hepatocytes and glycogenated nuclei. The architecture of the liver was preserved, and steatosis and fibrosis were mild. The cytoplasm of hepatocytes stained densely positive with periodic acid-Schiff, and the positive staining disappeared after diastase digestion, suggesting glycogen deposition. No other cause of hepatitis was evident, and the diagnosis was GH. Elevated transaminases improved within 1 month with good glycemic control. Transaminase elevations were observed several times in three cases with poor glycemic control. Glycogenic hepatopathy is rare, but extremely high serum elevations of transaminases are important to identify clinically. Despite showing a good clinical course in general, GH sometimes recurs and requires strict glycemic control. Clinicians should be aware of and recognize GH when dealing with uncontrolled DM patients.

  13. Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison).

    PubMed

    Bowman, Kole; Rose, Jack

    2017-01-01

    Glycogen synthesis by mink uterine glandular and luminal epithelia (GE and LE) is stimulated by estradiol (E2 ) during estrus. Subsequently, the glycogen deposits are mobilized to near completion to meet the energy requirements of pre-embryonic development and implantation by as yet undetermined mechanisms. We hypothesized that progesterone (P4 ) was responsible for catabolism of uterine glycogen reserves as one of its actions to ensure reproductive success. Mink were treated with E2 , P4 or vehicle (controls) for 3 days and uteri collected 24 h (E2 , P4 and vehicle) and 96 h (E2 ) later. To evaluate E2 priming, mink were treated with E2 for 3 days, then P4 for an additional 3 days (E2 →P4 ) and uteri collected 24 h later. Percent glycogen content of uterine epithelia was greater at E2 + 96 h (GE = 5.71 ± 0.55; LE = 11.54 ± 2.32) than E2 +24 h (GE = 3.63 ± 0.71; LE = 2.82 ± 1.03), and both were higher than controls (GE = 0.27 ± 0.15; LE = 0.54 ± 0.30; P < 0.05). Treatment as E2 →P4 reduced glycogen content (GE = 0.61 ± 0.16; LE = 0.51 ± 0.13), to levels not different from controls, while concomitantly increasing catabolic enzyme (glycogen phosphorylase m and glucose-6-phosphatase) gene expression and amount of phospho-glycogen synthase protein (inactive) in uterine homogenates. Interestingly, E2 →P4 increased glycogen synthase 1 messenger RNA (mRNA) and hexokinase 1mRNA and protein. Our findings suggest to us that while E2 promotes glycogen accumulation by the mink uterus during estrus and pregnancy, it is P4 that induces uterine glycogen catabolism, releasing the glucose that is essential to support pre-embryonic survival and implantation.

  14. Hepatitis C

    MedlinePlus

    Hepatitis C Overview By Mayo Clinic Staff Hepatitis C is a viral infection that causes liver inflammation, sometimes leading to serious liver damage. The hepatitis C virus (HCV) spreads through contaminated ...

  15. Hepatitis B

    MedlinePlus

    ... receive the hepatitis B vaccine. Since then, the rate of new hepatitis B infections has gone down ... 1 Asian Americans and African Americans have higher rates of chronic hepatitis B. 2 Many people in ...

  16. Potential Contribution of Cytochrome P450 2B6 to Hepatic 4-Hydroxycyclophosphamide Formation In Vitro and In VivoS⃞

    PubMed Central

    Raccor, Brianne S.; Claessens, Adam J.; Dinh, Jean C.; Park, Julie R.; Hawkins, Douglas S.; Thomas, Sushma S.; Makar, Karen W.; McCune, Jeannine S.

    2012-01-01

    Results from retrospective studies on the relationship between cytochrome P450 (P450) 2B6 (CYP2B6) genotype and cyclophosphamide (CY) efficacy and toxicity in adult cancer patients have been conflicting. We evaluated this relationship in children, who have faster CY clearance and receive different CY-based regimens than adults. These factors may influence the P450s metabolizing CY to 4-hydroxycyclophosphamide (4HCY), the principal precursor to CY's cytotoxic metabolite. Therefore, we sought to characterize the in vitro and in vivo roles of hepatic CYP2B6 and its main allelic variants in 4HCY formation. CYP2B6 is the major isozyme responsible for 4HCY formation in recombinant P450 Supersomes. In human liver microsomes (HLM), 4HCY formation correlated with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. However, in HLM, CYP3A4/5 also contributes to 4HCY formation at the CY concentrations similar to plasma concentrations achieved in children (0.1 mM). 4HCY formation was not associated with CYP2B6 genotype at low (0.1 mM) or high (1 mM) CY concentrations potentially because CYP3A4/5 and other isozymes also form 4HCY. To remove this confounder, 4HCY formation was evaluated in recombinant CYP2B6 enzymes, which demonstrated that 4HCY formation was lower for CYP2B6.4 and CYP2B6.5 compared with CYP2B6.1. In vivo, CYP2B6 genotype was not directly related to CY clearance or ratio of 4HCY/CY areas under the curve in 51 children receiving CY-based regimens. Concomitant chemotherapy agents did not influence 4HCY formation in vitro. We conclude that CYP2B6 genotype is not consistently related to 4HCY formation in vitro or in vivo. PMID:21976622

  17. Hormetic modulation of hepatic insulin sensitivity by advanced glycation end products.

    PubMed

    Fabre, Nelly T; Thieme, Karina; Silva, Karolline S; Catanozi, Sérgio; Cavaleiro, Ana Mercedes; Pinto, Danilo A C; Okamoto, Maristela M; Morais, Mychel Raony P T; Falquetto, Bárbara; Zorn, Telma M; Machado, Ubiratan F; Passarelli, Marisa; Correa-Giannella, Maria Lúcia

    2017-05-15

    Because of the paucity of information regarding metabolic effects of advanced glycation end products (AGEs) on liver, we evaluated effects of AGEs chronic administration in (1) insulin sensitivity; (2) hepatic expression of genes involved in AGEs, glucose and fat metabolism, oxidative stress and inflammation and; (3) hepatic morphology and glycogen content. Rats received intraperitoneally albumin modified (AlbAGE) or not by advanced glycation for 12 weeks. AlbAGE induced whole-body insulin resistance concomitantly with increased hepatic insulin sensitivity, evidenced by activation of AKT, inactivation of GSK3, increased hepatic glycogen content, and decreased expression of gluconeogenesis genes. Additionally there was reduction in hepatic fat content, in expression of lipogenic, pro-inflamatory and pro-oxidative genes and increase in reactive oxygen species and in nuclear expression of NRF2, a transcription factor essential to cytoprotective response. Although considered toxic, AGEs become protective when administered chronically, stimulating AKT signaling, which is involved in cellular defense and insulin sensitivity.

  18. Additive effect of contraction and insulin on glucose uptake and glycogen synthase in muscle with different glycogen contents.

    PubMed

    Lai, Yu-Chiang; Zarrinpashneh, Elham; Jensen, Jørgen

    2010-05-01

    Insulin and contraction regulate glucose uptake and glycogen synthase (GS) via distinct mechanisms in skeletal muscles, and an additive effect has been reported. Glycogen content is known to influence both contraction- and insulin-stimulated glucose uptake and GS activity. Our study reports that contraction and insulin additively stimulate glucose uptake in rat epitrochlearis muscles with normal (NG) and high (HG) glycogen contents, but the additive effect was only partial. In muscles with low glycogen (LG) content no additive effect was seen, but glucose uptake was higher in LG than in NG and HG during contraction, insulin stimulation, and when the two stimuli were combined. In LG, contraction-stimulated AMP-activated protein kinase (AMPK) activity and insulin-stimulated PKB phosphorylation were higher than in NG and HG, but phosphorylation of Akt substrate of 160 kDa was not elevated correspondingly. GLUT4 content was 50% increased in LG (rats fasted 24 h), which may explain the increased glucose uptake. Contraction and insulin also additively increased GS fractional activity in NG and HG but not in LG. GS fractional activity correlated most strongly with GS Ser641 phosphorylation (R -0.94, P<0.001). GS fractional activity also correlated with GS Ser7,10 phosphorylation, but insulin did not reduce GS Ser7,10 phosphorylation. In conclusion, an additive effect of contraction and insulin on glucose uptake and GS activity occurs in muscles with normal and high glycogen content but not in muscles with low glycogen content. Furthermore, contraction, insulin, and glycogen content all regulate GS Ser641 phosphorylation and GS fractional activity in concert.

  19. Insulin stimulation of glycogen synthase in cultured human diploid fibroblasts.

    PubMed

    Hidaka, H; Howard, B V; Kosmakos, F C; Fields, R M; Craig, J W; Bennett, P H; Larner, J

    1980-10-01

    The effect of insulin on glycogen synthase activity in human diploid fibroblasts has been studied. As little as 2 X 10(-10) M insulin increased the glycogen synthase / activity without changing the total activity. Stimulation occurred within 5 min and became maximal in 30 min. A half-maximal increase of / activity was achieved at 3 X 10(-9) M insulin. Glucose starvation increased the magnitude of response of glycogen synthase to insulin but did not change the insulin concentration necessary to give a half-maximal stimulation. Glucose increased the basal level of / activity in human diploid fibroblasts; the effect of insulin was additive. During in vitro senescence the total glycogen synthase activity declined, but the concentration of insulin that produced a half-maximal stimulation remained unchanged. These data indicate that regulation of glycogen synthase activity in human diploid fibroblasts is responsive to physiologic insulin levels and that the system provides a useful model for the in vitro study of insulin sensitivity.

  20. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    SciTech Connect

    Richter, E.A.; Hansen, S.A.; Hansen, B.F. )

    1988-11-01

    The extent to which muscle glycogen concentrations can be increased during exposure to maximal insulin concentrations and abundant glucose was investigated in the isolated perfused rat hindquarter preparation. Perfusion for 7 h in the presence of 20,000 {mu}U/ml insulin and 11-13 mM glucose increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased from 34.9 {mu}mol{center dot}g{sup {minus}1}{center dot}h{sup {minus}1} at 0 h to 7.5 after 7 h of perfusion. During the perfusion muscle glycogen synthase activity decreased and free intracellular glucose and glucose 6-phosphate increased indicating that glucose disposal was impaired. However, glucose transport as measured by the uptake of 3-O-({sup 14}C)methyl-D-glucose was also markedly decreased after 5 and 7 h of perfusion compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal.

  1. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    PubMed Central

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  2. Intraorgan differences of blood flow, oxygen supply and glycogen content in the multilobular liver of normal and hemorrhagic rats.

    PubMed

    Metzger, H P; Schywalsky, M

    1992-02-01

    In order to characterize intraorgan differences in blood supply of the rat liver, hepatic blood flow (HBF), surface oxygen tension (sPO2) and glycogen content of the largest and smallest lobi have been determined for normal and hemorrhagic rats (N = 68) in ketamin-xylazine anesthesia. 1. Mean HBF +/- SD of lobus sinister measured 1.07 +/- 0.23 ml/g min (n = 119 determinations, N = 9 rats); HBF of lob. caudatus dexter showed a left-shifted histogram (mean value = 0.77 ml/g.min, median = 0.72 ml/g.min, modul = 0.63 ml/g.min, p less than 0.005). 2. Mean sPO2 +/- SD of lob. sin. measured 23 +/- 6.8 mm Hg (n = 168, N = 16). The histograms of lob. caudat. dext. and sin. were left-shifted (mean value of l.c.d. = 9 mm Hg, median = 4 mm Hg, modul = 0 mm Hg, mean value of l.c.s. = 16 mm Hg, median = 17 mm Hg, modul = 0 mm Hg). Under hemorrhage sPO2 became almost zero in 91% of the measurements. 3. In response to an arterial bolus of fluorescence stained gamma-globulins, spreading of the dye showed a pronounced front and marked periportal area within lob. sin., while an irregular convective front and a much smaller area were detected within both of the lobi caudati. Under hemorrhage, intersinusoidal staining and undefined, irregular contours were observed within all lobes. 4. Compared with lob. sin. preferential glycogen depletion and partial centrilobular necrosis were detected within both of the lob. caudati while under hemorrhage the glycogen stores were empty and severe group necroses have been observed especially within the small lobi. From the data it is concluded that in comparison to lob. sin. an insufficient supply and pronounced vulnerability against hepatic ischemia exists within the small lobi caudati.

  3. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses

    PubMed Central

    Königer, Christian; Wingert, Ida; Marsmann, Moritz; Rösler, Christine; Beck, Jürgen; Nassal, Michael

    2014-01-01

    Hepatitis B virus (HBV), the causative agent of chronic hepatitis B and prototypic hepadnavirus, is a small DNA virus that replicates by protein-primed reverse transcription. The product is a 3-kb relaxed circular DNA (RC-DNA) in which one strand is linked to the viral polymerase (P protein) through a tyrosyl–DNA phosphodiester bond. Upon infection, the incoming RC-DNA is converted into covalently closed circular (ccc) DNA, which serves as a viral persistence reservoir that is refractory to current anti-HBV treatments. The mechanism of cccDNA formation is unknown, but the release of P protein is one mandatory step. Structural similarities between RC-DNA and cellular topoisomerase–DNA adducts and their known repair by tyrosyl-DNA-phosphodiesterase (TDP) 1 or TDP2 suggested that HBV may usurp these enzymes for its own purpose. Here we demonstrate that human and chicken TDP2, but only the yeast ortholog of TDP1, can specifically cleave the Tyr–DNA bond in virus-adapted model substrates and release P protein from authentic HBV and duck HBV (DHBV) RC-DNA in vitro, without prior proteolysis of the large P proteins. Consistent with TPD2’s having a physiological role in cccDNA formation, RNAi-mediated TDP2 depletion in human cells significantly slowed the conversion of RC-DNA to cccDNA. Ectopic TDP2 expression in the same cells restored faster conversion kinetics. These data strongly suggest that TDP2 is a first, although likely not the only, host DNA-repair factor involved in HBV cccDNA biogenesis. In addition to establishing a functional link between hepadnaviruses and DNA repair, our results open new prospects for directly targeting HBV persistence. PMID:25201958

  4. Time-dependent effect of ethanol force-feeding on glycogen repletion: NMR evidence of a link with ATP turnover in rat liver.

    PubMed

    Beauvieux, Marie-Christine; Gin, Henri; Roumes, Hélène; Kassem, Cendrella; Couzigou, Patrice; Gallis, Jean-Louis

    2015-09-01

    The purpose was to study the hepatic effects of low-dose ethanol on the links between ATP and glycogen production. Fasted male Wistar rats received a single force-feeding of glucose plus ethanol or isocaloric glucose. At different times after force-feeding (0-10 h), glycogen repletion and ATP characteristics (content, apparent catalytic time constant, mitochondrial turnover) were monitored by (13)C- or (31)P-nuclear magnetic resonance (NMR) in perfused and isolated liver. In vivo glycogen repletion after force-feeding was slower after glucose plus ethanol vs. glucose (12.04 ± 0.68 and 8.50 ± 0.86 μmol/h/g liver wet weight [ww], respectively), reaching a maximum at the 6th hour. From the 3rd to the 8th hour, glycogen content was lower after glucose plus ethanol vs. glucose. After glucose plus ethanol, the correlation between glycogen and ATP contents presented two linear steps: before and after the 3rd hour (30 and 102 μmol glycogen/g ww per μmol ATP/g ww, respectively, the latter being near the single step measured in glucose). After glucose plus ethanol, ATP turnover remained stable for 2 h, was 3-fold higher from the 3rd hour to the 8th hour, and was higher than after glucose (2.59 ± 0.45 and 1.39 ± 0.19 μmol/min/g ww, respectively). In the 1st hour, glucose plus ethanol induced a transient acidosis and an increase in the phosphomonoesters signal. In conclusion, after ethanol consumption, a large part of the ATP production was diverted to redox re-equilibrium during the first 2 h, thereby reducing the glycogen synthesis. Thereafter, the maintenance of a large oxidative phosphorylation allowed the stimulation of glycogen synthesis requiring ATP.

  5. Glycogen storage disease type Ia: linkage of glucose, glycogen, lactic acid, triglyceride, and uric acid metabolism.

    PubMed

    Sever, Sakine; Weinstein, David A; Wolfsdorf, Joseph I; Gedik, Reyhan; Schaefer, Ernst J

    2012-01-01

    A female presented in infancy with hypotonia, undetectable serum glucose, lactic acidosis, and triglycerides >5000 mg/dL. The diagnosis of type 1A glycogen storage disease was made via the result of a liver biopsy, which showed increased glycogen and absent glucose-6-phosphatase enzyme activity. The patient was treated with dextrose administered orally, which was replaced by frequent feedings of cornstarch, which resulted in an improvement of her metabolic parameters. At age 18 years of age, she had marked hypertriglyceridemia (3860 mg/dL) and eruptive xanthomas and was treated with fenofibrate, atorvastatin, and fish oil. At age 29 years she was noted to have multiple liver adenomas, severe anemia, and hyperuricemia. Aggressive cornstarch therapy was commenced with a goal of maintaining her blood glucose levels >75 mg/dL and lactate levels <2 mmol/L. After 15 months on this regimen, her lipids levels (measured in mg/dL) off all medications were as follows: total cholesterol 222, triglycerides 179, high-density lipoprotein cholesterol 32, and calculated low-density lipoprotein cholesterol 154. Her weight was stable with a body mass index of 24.8 kg/m(2). Her liver adenomas had decreased in size, and her anemia and hyperuricemia had improved. She was homozygous for the R83C missense mutation in G6PC. Our data indicate that optimized metabolic control to maintain blood glucose levels >75 mg/dL is critical in the management of this disease. Copyright © 2012. Published by Elsevier Inc.

  6. Role in Tumor Growth of a Glycogen Debranching Enzyme Lost in Glycogen Storage Disease

    PubMed Central

    Guin, Sunny; Pollard, Courtney; Ru, Yuanbin; Ritterson Lew, Carolyn; Duex, Jason E.; Dancik, Garrett; Owens, Charles; Spencer, Andrea; Knight, Scott; Holemon, Heather; Gupta, Sounak; Hansel, Donna; Hellerstein, Marc; Lorkiewicz, Pawel; Lane, Andrew N.; Fan, Teresa W.-M.

    2014-01-01

    Background Bladder cancer is the most common malignancy of the urinary system, yet our molecular understanding of this disease is incomplete, hampering therapeutic advances. Methods Here we used a genome-wide functional short-hairpin RNA (shRNA) screen to identify suppressors of in vivo bladder tumor xenograft growth (n = 50) using bladder cancer UMUC3 cells. Next-generation sequencing was used to identify the most frequently occurring shRNAs in tumors. Genes so identified were studied in 561 patients with bladder cancer for their association with stratification of clinical outcome by Kaplan-Meier analysis. The best prognostic marker was studied to determine its mechanism in tumor suppression using anchorage-dependent and -independent growth, xenograft (n = 20), and metabolomic assays. Statistical significance was determined using two-sided Student t test and repeated-measures statistical analysis. Results We identified the glycogen debranching enzyme AGL as a prognostic indicator of patient survival (P = .04) and as a novel regulator of bladder cancer anchorage-dependent (P < .001), anchorage-independent (mean ± standard deviation, 180 ± 23.1 colonies vs 20±9.5 in control, P < .001), and xenograft growth (P < .001). Rescue experiments using catalytically dead AGL variants revealed that this effect is independent of AGL enzymatic functions. We demonstrated that reduced AGL enhances tumor growth by increasing glycine synthesis through increased expression of serine hydroxymethyltransferase 2. Conclusions Using an in vivo RNA interference screen, we discovered that AGL, a glycogen debranching enzyme, has a biologically and statistically significant role in suppressing human cancer growth. PMID:24700805

  7. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-09-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  8. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    PubMed Central

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  9. Neonatal presentation of lethal neuromuscular glycogen storage disease type IV.

    PubMed

    Escobar, L F; Wagner, S; Tucker, M; Wareham, J

    2012-10-01

    A total of 11 types of glycogen storage disorders have been recognized with variable clinical presentations. Type IV, also known as Andersen disease, represents a rare subtype that can induce severe clinical findings early in life. We report on a patient with early fetal onset of symptoms with severe neuromuscular findings at birth. The pregnancy was further complicated by polyhydramnios and depressed fetal movement. At birth severe hypotonia was noticed requiring active resuscitation and then mechanical ventilation. His lack of expected course for hypoxic ischemic encephalopathy prompted genetic testing, including a muscle biopsy, which confirmed the diagnosis of glycogen storage disease IV (GSD IV). Mutation analysis of the glycogen branching enzyme 1 gene demonstrated a previously unrecognized mutation. We review recent information on early presentation of GSD IV with particular interest in the presentation of the neonatal lethal neuromuscular form of this rare disorder.

  10. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    DOE PAGES

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; ...

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less

  11. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    SciTech Connect

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; Melcher, Karsten

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.

  12. Glycogenic effect of an alkali soluble fraction from sepia shell.

    PubMed

    Reddy, T N; Reddy, C P; Srinivas, V; Divan, P V; Reddy, P U

    1994-10-01

    The alkali soluble fraction of the sepia shell possesses both anticonvulsant and hypoglycemic effect. The investigation regarding the fate of the blood sugar during the hypoglycemia revealed that the sepia shell extract acts as a glycogenic agent by mobilising the blood sugar towards liver glycogen reserve through the modulation of the enzymes glycogen phosphorylase a and ab in normal and streptozotocin diabetic mice. The glucose tolerance test (GTT) showed a depression in the GTT curve in experimental mice. The available literature on the biochemistry of the shell reveals that it contains glucosamines and some amino acid residues. The presence of amine group may resemble the sulfonylureas like tolbutamide which also possesses both anticonvulsant and hypoglycemic effect.

  13. Glycogen levels in wildland firefighters during wildfire suppression.

    PubMed

    Cuddy, John S; Slivka, Dustin R; Tucker, Tyler J; Hailes, Walter S; Ruby, Brent C

    2011-03-01

    The purpose of this project was to determine the effects of wildfire suppression on muscle glycogen utilization in wildland firefighters (WLFFs). Wildland firefighters (n = 11) participated in the study. Muscle biopsies were obtained from the vastus lateralis pre- and post-work shift. Activity patterns were measured using an Actical activity monitor positioned on the chest. Food was consumed ad libitum and recorded using a food log and interview. Differences were analyzed using paired samples t-tests and relationships were assessed using Pearson r correlation coefficients. A significance level of p < .05 was set. Body weight was similar pre- to post-work shift (85.9 ± 9.1 and 85.6 ± 8.8 kg, respectively). Muscle glycogen decreased from pre- to post-work shift, 101 ± 7 to 80 ± 5 mmol/kg wet wt, p < .05. Average activity counts were 175 ± 60 counts/min. Mean percent of time spent in each intensity category included: sedentary (74 ± 7%), light (21 ± 5%), and moderate/vigorous (5 ± 2%). There was a significant relationship between minutes completing vigorous activity and glycogen utilization (r = -.76, p < .05), and between minutes spent completing vigorous activity and pre-shift glycogen content (r = .79, p < .05). Kilocalorie intake during the work shift was 9.2 ± 2.9 MJ/d (2195 ± 699 kcal/d). This study demonstrates the variety of self-selected nutritional and activity habits of WLFFs, and emphasizes the relationships between moderate/vigorous activity and muscle glycogen. The current data suggest that the food provided was adequate to maintain muscle glycogen levels pre- to post-work shift. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  14. Postexercise muscle glycogen synthesis with combined glucose and fructose ingestion.

    PubMed

    Wallis, Gareth A; Hulston, Carl J; Mann, Christopher H; Roper, Helen P; Tipton, Kevin D; Jeukendrup, Asker E

    2008-10-01

    To evaluate the efficacy of using combined glucose and fructose (GF) ingestion as a means to stimulate short-term (4 h) postexercise muscle glycogen synthesis compared to glucose only (G). On two separate occasions, six endurance-trained men performed an exhaustive glycogen-depleting exercise bout followed by a 4-h recovery period. Muscle biopsy samples were obtained from the vastus lateralis muscle at 0, 1, and 4 h after exercise. Subjects ingested carbohydrate solutions containing G (90 g x h(-1)) or GF (G = 60 g x h(-1); F = 30 g x h(-1)) commencing immediately after exercise and every 30 min thereafter. Immediate postexercise muscle glycogen concentrations were similar in both trials (G = 128 +/- 25 mmol x kg(-1) dry muscle (dm) vs GF = 112 +/- 16 mmol x kg(-1) dm; P > 0.05). Total glycogen storage during the 4-h recovery period was 176 +/- 33 and 155 +/- 31 mmol x kg(-1) dm for G and GF, respectively (G vs GF, P > 0.05). Hence, mean muscle glycogen synthesis rates during the 4-h recovery period did not differ between the two conditions (G = 44 +/- 8 mmol x kg(-1) dm x h(-1) vs GF = 39 +/- 8 mmol x kg(-1) dm x h(-1), P > 0.05). Plasma glucose and serum insulin responses during the recovery period were similar in both conditions, although plasma lactate concentrations were significantly elevated during GF compared to G (by approximately 0.8 mmol x L(-1), P < 0.05). Glucose and glucose/fructose (2:1 ratio) solutions, ingested at a rate of 90 g x h(-1), are equally effective at restoring muscle glycogen in exercised muscles during the recovery from exhaustive exercise.

  15. Effect of local cold application on glycogen recovery.

    PubMed

    Tucker, T J; Slivka, D R; Cuddy, J S; Hailes, W S; Ruby, B C

    2012-04-01

    The purpose of this study was to investigate the effect of local cold application on muscle glycogen re-synthesis after exercise. Recreationally active male subjects (n=11) completed a 90-minute glycogen depleting ride, followed by 4 h of recovery. During recovery, ice was applied intermittently to one leg (IL) while the subjects other leg (CL) acted as a control. Intramuscular and rectal temperature was recorded continuously. A carbohydrate (1.8 g∙kg-1 bodyweight) beverage was supplied at 0 and 2 h post exercise. Muscle biopsies were taken immediately after exercise from the vastus lateralis and at 4 h post exercise for the analysis of muscle glycogen and muscle lactate. Leg circumference was measured 30, 60, 120, 180, and 240 minutes into recovery. The IL was colder than the CL from 15 minutes after initial ice application until the end recovery (P<0.05). Immediate post-exercise glycogen was similar between legs (55.3±7.4 vs. 56.1±7 mmol∙kg-1 wet weight for the iced vs. control, respectively). However, muscle glycogen was lower in the IL compared to the CL at 4 h post exercise (72±8.4 vs. 95±8.4 mmol∙kg-1 wet weight, respectively; P<0.05). Muscle lactate was lower in the IL after 4 h of recovery compared to the CL (1.6±.2 vs. 2.6±.2 mmol∙L-1, respectively; P<0.05). There was no difference in circumference between IL and CL. These data demonstrate a reduction in muscle glycogen re-synthesis with local cold application.

  16. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  17. Hypohydration Does Not Impair Skeletal Muscle Glycogen Resynthesis After Exercise

    DTIC Science & Technology

    1991-01-01

    AD-A262 085 9 3 -0 6 4 1 1 Hypohydration does not impair skeletal muscle glycogen resynthesis after exercise P. DARRELL NEUFER , MICHAEL N. SAWKA...5007 NEUFER , P. DARRELL, MICHAEL N. SAWKA, ANDREW J. for the restoration of preexercise glycogen levels, More- YOUNG, MARK D. QUIGLEY, WILLIAM A...Scand. S. Clin. Lab. Invest. 38:5.57 -560. 1978. tory Integratiue (’omp. Physiol. 14l: R25--R31, 198.3.19. NEUFER . P. D., A. J. YOUNG, AND M. N. SAWKA

  18. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  19. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    PubMed Central

    Nagasawa, Kazumichi; Tanizaki, Yuta; Okui, Takehito; Watarai, Atsuko; Ueda, Shinobu; Kato, Takashi

    2013-01-01

    Summary The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control) and a low environmental temperature (5°C, cold exposure). Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism. PMID:24167716

  20. Structural Mechanism of Laforin Function in Glycogen Dephosphorylation and Lafora Disease

    PubMed Central

    Raththagala, Madushi; Brewer, M. Kathryn; Parker, Matthew W.; Sherwood, Amanda R.; Wong, Brian K.; Hsu, Simon; Bridges, Travis M.; Paasch, Bradley C.; Hellman, Lance M.; Husodo, Satrio; Meekins, David A.; Taylor, Adam O.; Turner, Benjamin D.; Auger, Kyle D.; Dukhande, Vikas V.; Chakravarthy, Srinivas; Sanz, Pascual; Woods, Virgil V.; Li, Sheng; Vander Kooi, Craig W.; Gentry, Matthew S.

    2015-01-01

    SUMMARY Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled, due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease. PMID:25544560

  1. Hepatitis B

    MedlinePlus

    ... of the liver), liver cancer, and even death.Hepatitis A can cause varying symptoms, but most often causes fever, tiredness, ... important? The hepatitis B vaccine prevents infection with hepatitis B virus, which causes liver cancer. The hepatitis B virus is 100 ...

  2. Hepatitis A

    MedlinePlus

    ... transaminase enzyme levels Treatment There is no specific treatment for hepatitis A. You should rest when the symptoms are ... and have not had hepatitis A or the hepatitis A vaccine. Common reasons for getting one or both of these treatments include: You live with someone who has hepatitis ...

  3. Pre-eclampsia is associated with an increase in trophoblast glycogen content and glycogen synthase activity, similar to that found in hydatidiform moles.

    PubMed Central

    Arkwright, P D; Rademacher, T W; Dwek, R A; Redman, C W

    1993-01-01

    Pre-eclampsia is a placental disorder, but until now, biochemical details of dysfunction have been lacking. During an analysis of the oligosaccharide content of syncytiotrophoblast microvesicles purified from the placental chorionic villi of 10 primigravid women with proteinuric pre-eclampsia, we found an excess of glycogen breakdown products. Further investigation revealed a 10-fold increase in glycogen content (223 +/- 117 micrograms glycogen/mg protein), when compared with controls matched for gestational age at delivery (23 +/- 18 micrograms glycogen/mg protein) (P < 0.01). This was confirmed by examination of electron micrographs of chorionic villous tissue stained for glycogen. The increase in glycogen content was associated with 16 times more glycogen synthase (1,323 +/- 1,013 relative to 83 +/- 96 pmol glucose/mg protein per min) (P < 0.001), and a threefold increase in glycogen phosphorylase activity (2,280 +/- 1,360 relative to 700 +/- 540 pmol glucose/mg protein per min; P < 0.05). Similar changes in glycogen metabolism were found in trophoblast microvesicles derived from hydatidiform moles. Glycogen accumulation in villous syncytiotrophoblast may be a metabolic marker of immaturity of this cell which is unable to divide. The implications of these findings with regard to the pathogenesis of pre-eclampsia are discussed. Images PMID:8514882

  4. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    PubMed Central

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  5. Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), a host membrane-deforming protein, is critical for membranous web formation in hepatitis C virus replication.

    PubMed

    Chao, Ti-Chun; Su, Wen-Chi; Huang, Jing-Ying; Chen, Yung-Chia; Jeng, King-Song; Wang, Horng-Dar; Lai, Michael M C

    2012-02-01

    Hepatitis C virus (HCV) reorganizes intracellular membranes to establish sites of replication. How viral and cellular proteins target, bind, and rearrange specific membranes into the replication factory remains a mystery. We used a lentivirus-based RNA interference (RNAi) screening approach to identify the potential cellular factors that are involved in HCV replication. A protein with membrane-deforming activity, proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), was identified as a potential factor. Knockdown of PSTPIP2 in HCV subgenomic replicon-harboring and HCV-infected cells was associated with the reduction of HCV protein and RNA expression. PSTPIP2 was localized predominantly in detergent-resistant membranes (DRMs), which contain the RNA replication complex. PSTPIP2 knockdown caused a significant reduction of the formation of HCV- and NS4B-induced membranous webs. A PSTPIP2 mutant defective in inducing membrane curvature failed to support HCV replication, confirming that the membrane-deforming ability of PSTPIP2 is essential for HCV replication. Taking these results together, we suggest that PSTPIP2 facilitates membrane alterations and is a key player in the formation of the membranous web, which is the site of the HCV replication complex.

  6. Role of the thymus in streptococcal cell wall-induced arthritis and hepatic granuloma formation. Comparative studies of pathology and cell wall distribution in athymic and euthymic rats.

    PubMed Central

    Allen, J B; Malone, D G; Wahl, S M; Calandra, G B; Wilder, R L

    1985-01-01

    Systemic administration of an aqueous suspension of group A streptococcal cell wall fragments to susceptible rats induces acute and chronic polyarthritis, as well as noncaseating hepatic granulomas. To gain insight into the role of the thymus in the pathogenesis of this experimental model, pathologic responses and cell wall tissue distribution were compared in congenitally athymic rats (rnu/rnu) and their euthymic littermates (NIH/rnu). Within 24 h, both rat strains developed acute arthritis, characterized by polymorphonuclear leukocytic exudate in the synovium and joint spaces. This acute process was maximal at day 3 and gradually subsided. Beginning 2-3 wk after injection, the euthymic, but not the athymic, rats developed the typical exacerbation of arthritis, characterized by synovial cell hyperplasia with villus formation and T helper/inducer lymphocyte-rich mononuclear cell infiltration. This process eventually resulted in marginal erosions and destruction of periarticular bone and cartilage. Parallel development of acute and chronic hepatic lesions was observed. Bacterial cell wall antigen distribution and persistence were similar in the athymic and euthymic rats. Cell wall antigens were demonstrated in the cytoplasm of cells within subchondral bone marrow, synovium, liver, and spleen, coincident with the development of the acute lesions, and persisted in these sites, although in decreasing amounts, for the duration of the experiment. Our findings provide evidence that the acute and chronic phases of the experimental model are mechanistically distinct. The thymus and functional thymus derived-lymphocytes appear not to be required for the development of the acute exudative disease but are essential for the development of chronic proliferative and erosive disease. Induction of disease is dependent upon cell wall dissemination to and persistence in the affected tissues. Images PMID:3876354

  7. Fluorescent primuline derivatives inhibit hepatitis C virus NS3-catalyzed RNA unwinding, peptide hydrolysis and viral replicase formation.

    PubMed

    Ndjomou, Jean; Kolli, Rajesh; Mukherjee, Sourav; Shadrick, William R; Hanson, Alicia M; Sweeney, Noreena L; Bartczak, Diana; Li, Kelin; Frankowski, Kevin J; Schoenen, Frank J; Frick, David N

    2012-11-01

    The hepatitis C virus (HCV) multifunctional nonstructural protein 3 (NS3) is a protease that cleaves viral and host proteins and a helicase that separates DNA and RNA structures in reactions fueled by ATP hydrolysis. Li et al. (2012) recently synthesized a series of new NS3 helicase inhibitors from the benzothiazole dimer component of the fluorescent yellow dye primuline. This study further characterizes a subset of these primuline derivatives with respect to their specificity, mechanism of action, and effect on cells harboring HCV subgenomic replicons. All compounds inhibited DNA and RNA unwinding catalyzed by NS3 from different HCV genotypes, but only some inhibited the NS3 protease function, and few had any effect on HCV NS3 catalyzed ATP hydrolysis. A different subset contained potent inhibitors of RNA stimulated ATP hydrolysis catalyzed by the related NS3 protein from Dengue virus. In assays monitoring intrinsic protein fluorescence in the absence of nucleic acids, the compounds cooperatively bound NS3 with K(d)s that reflect their potency in assays. The fluorescent properties of the primuline derivatives both in vitro and in cells are also described. The primuline derivative that was the most active against subgenomic replicons in cells caused a 14-fold drop in HCV RNA levels (IC(50)=5±2μM). In cells, the most effective primuline derivative did not inhibit the cellular activity of NS3 protease but disrupted HCV replicase structures.

  8. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2014-11-20

    In prokaryotic species equipped with glycogen metabolism machinery, the co-regulation of glycogen biosynthesis and degradation has been associated with the synthesis of energy storage compounds and various crucial physiological functions, including global cellular processes such as carbon and nitrogen metabolism, energy sensing and production, stress response and cell-cell communication. In addition, the glycogen metabolic pathway was proposed to serve as a carbon capacitor that regulates downstream carbon fluxes, and in some microorganisms the ability to synthesize intracellular glycogen has been implicated in host persistence. Among lactobacilli, complete glycogen metabolic pathway genes are present only in select species predominantly associated with mammalian hosts or natural environments. This observation highlights the potential involvement of glycogen biosynthesis in probiotic activities and persistence of intestinal lactobacilli in the human gastrointestinal tract. In this review, we summarize recent findings on (i) the presence and potential ecological distribution of glycogen metabolic pathways among lactobacilli, (ii) influence of carbon substrates and growth phases on glycogen metabolic gene expression and glycogen accumulation in L. acidophilus, and (iii) the involvement of glycogen metabolism on growth, sugar utilization and bile tolerance. Our present in vivo studies established the significance of glycogen biosynthesis on the competitive retention of L. acidophilus in the mouse intestinal tract, demonstrating for the first time that the ability to synthesize intracellular glycogen contributes to gut fitness and retention among probiotic microorganisms.

  9. Regulation of glycogen content in rat pineal gland by norepinephrine.

    PubMed

    Eugenín, E A; Sáez, C G; Garcés, G; Sáez, J C

    1997-06-20

    In the rat pineal gland the glycogen stores were cytochemically localized in astrocytes and pinealocytes. Moreover, it was found that norepinephrine (NE) induced a time- and concentration-dependent reduction in pineal glycogen content and yielded lactic acid. The NE effect was prevented by blocking alpha1- but not alpha2 or beta-adrenoceptors. Activation of alpha2-adrenoceptors induced a small decrease in glycogen levels that could have pre- and postsynaptic components. Activation of beta-adrenoceptors with 10(-12)-10(-3) M isoproterenol (ISO) induced a bell shape concentration-response curve, presumably due to desensitization, since the response induced by 10(-4) M ISO was greater with shorter period of stimulation. On the other hand, activation of alpha1-adrenoceptors with 10(-12)-10(-3) M phenylephrine (PHN) induced a hyperbolic concentration-response curve with a maximum at concentrations above 10(-8) M. Moreover, treatment with ISO drastically reduced the response induced by PHN concentrations lower but not higher than 10(-6) M, favoring a concentration-dependent response between 10(-6) and 10(-4) M PHN, similar to that induced by equimolar NE concentrations. Thus, the NE-induced reduction in glycogen content of the rat pineal gland is mainly mediated by alpha1-adrenoceptors and modulated by intracellular mechanisms activated by beta-adrenoceptors.

  10. Aroclor 1254 disrupts liver glycogen metabolism and enhances acute stressor-mediated glycogenolysis in rainbow trout.

    PubMed

    Wiseman, Steve; Vijayan, Mathilakath M

    2011-09-01

    The objective of this study was to investigate the impact of short-term exposure to polychlorinated biphenyls on the acute stress response in rainbow trout. Fish were exposed to dietary Aroclor1254 (10mg kg(-1) body mass/day) for 3 days and then subjected to a 3-min handling disturbance and sampled over a 24h recovery after the stressor exposure. In the pre-stress fish, PCB exposure significantly elevated aryl hydrocarbon receptor (AhR) and cytochrome P4501A1 (Cyp1A1) mRNA abundance and Cyp1A protein expression confirming AhR activation. There was no significant effect of PCB on plasma cortisol and glucose levels, while plasma lactate levels were significantly elevated compared to the sham group. PCB exposure significantly elevated liver glycogen content and hexokinase activity, whereas lactate dehydrogenase activity was depressed. Short-term PCB exposure did not modify the acute stressor-induced plasma cortisol, glucose and lactate responses. Liver glycogen content dropped significantly after stressor exposure in the PCB group but not in the sham group. This was matched by a significantly higher liver LDH activity and a lower HK activity during recovery in the PCB group suggesting enhanced glycolytic capacity to fuel hepatic metabolism. Liver AhR, but not Cyp1A1, transcript levels were significantly reduced during recovery from handling stressor in the Aroclor fed fish. Collectively, this study demonstrates that short-term PCB exposure may impair the liver metabolic performance that is critical to cope with the enhanced energy demand associated with additional stressor exposure in rainbow trout. Copyright © 2011. Published by Elsevier Inc.

  11. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D; Pinto, Carlos; Sun, Baodong; Li, Songtao; Kozink, Daniel M; Benjamin, Daniel K; Demaster, Amanda K; Kruse, Meghan A; Vaughn, Valerie; Hillman, Steven; Bird, Andrew; Jackson, Mark; Brown, Talmage; Kishnani, Priya S; Chen, Yuan-Tsong

    2008-04-01

    Glycogen storage disease type Ia (GSD-Ia) profoundly impairs glucose release by the liver due to glucose-6-phosphatase (G6Pase) deficiency. An adeno-associated virus (AAV) containing a small human G6Pase transgene was pseudotyped with AAV8 (AAV2/8) to optimize liver tropism. Survival was prolonged in 2-week-old G6Pase (-/-) mice by 600-fold fewer AAV2/8 vector particles (vp), in comparison to previous experiments involving this model (2 x 10(9) vp; 3 x 10(11) vp/kg). When the vector was pseudotyped with AAV1, survival was prolonged only at a higher dose (3 x 10(13) vp/kg). The AAV2/8 vector uniquely prevented hypoglycemia during fasting and fully corrected liver G6Pase deficiency in GSD-Ia mice and dogs. The AAV2/8 vector has prolonged survival in three GSD-Ia dogs to >11 months, which validated this strategy in the large animal model for GSD-Ia. Urinary biomarkers, including lactate and 3-hydroxybutyrate, were corrected by G6Pase expression solely in the liver. Glycogen accumulation in the liver was reduced almost to the normal level in vector-treated GSD-Ia mice and dogs, as was the hepatocyte growth factor (HGF) in GSD-Ia mice. These preclinical data demonstrated the efficacy of correcting hepatic G6Pase deficiency, and support the further preclinical development of AAV vector-mediated gene therapy for GSD-Ia.

  12. Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism

    PubMed Central

    Yagishita, Yoko; Katsuoka, Fumiki; Kitajima, Yasuo; Nunomiya, Aki; Nagatomi, Ryoichi; Pi, Jingbo; Biswal, Shyam S.

    2016-01-01

    Nrf2 (NF-E2-related factor 2) contributes to the maintenance of glucose homeostasis in vivo. Nrf2 suppresses blood glucose levels by protecting pancreatic β cells from oxidative stress and improving peripheral tissue glucose utilization. To elucidate the molecular mechanisms by which Nrf2 contributes to the maintenance of glucose homeostasis, we generated skeletal muscle (SkM)-specific Keap1 knockout (Keap1MuKO) mice that express abundant Nrf2 in their SkM and then examined Nrf2 target gene expression in that tissue. In Keap1MuKO mice, blood glucose levels were significantly downregulated and the levels of the glycogen branching enzyme (Gbe1) and muscle-type PhKα subunit (Phka1) mRNAs, along with those of the glycogen branching enzyme (GBE) and the phosphorylase b kinase α subunit (PhKα) protein, were significantly upregulated in mouse SkM. Consistent with this result, chemical Nrf2 inducers promoted Gbe1 and Phka1 mRNA expression in both mouse SkM and C2C12 myotubes. Chromatin immunoprecipitation analysis demonstrated that Nrf2 binds the Gbe1 and Phka1 upstream promoter regions. In Keap1MuKO mice, muscle glycogen content was strongly reduced and forced GBE expression in C2C12 myotubes promoted glucose uptake. Therefore, our results demonstrate that Nrf2 induction in SkM increases GBE and PhKα expression and reduces muscle glycogen content, resulting in improved glucose tolerance. Our results also indicate that Nrf2 differentially regulates glycogen metabolism in SkM and the liver. PMID:27044864

  13. Phylogenomic analysis of glycogen branching and debranching enzymatic duo.

    PubMed

    Zmasek, Christian M; Godzik, Adam

    2014-08-23

    Branched polymers of glucose are universally used for energy storage in cells, taking the form of glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in introducing and removing of the α(1-6) bonds in glucose polymers, bonds that provide the unique branching structure to glucose polymers. We performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400 completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a gene duplication and consequently paralogous. Despite being usually associated with animal liver glycogen and plant starch, energy storage in the form of branched glucose polymers is clearly an ancient process and has probably been present in the last universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study of even seemingly "simple" metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch branching and debranching enzymes hint at some as yet unknown mechanisms, as

  14. Chronic central leptin infusion modulates the glycemia response to insulin administration in male rats through regulation of hepatic glucose metabolism.

    PubMed

    Burgos-Ramos, Emma; Canelles, Sandra; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Frago, Laura M; Chowen, Julie A; Frühbeck, Gema; Argente, Jesús; Barrios, Vicente

    2015-11-05

    Leptin and insulin use overlapping signaling mechanisms to modify hepatic glucose metabolism, which is critical in maintaining normal glycemia. We examined the effect of an increase in central leptin and insulin on hepatic glucose metabolism and its influence on serum glucose levels. Chronic leptin infusion increased serum leptin and reduced hepatic SH-phosphotyrosine phosphatase 1, the association of suppressor of cytokine signaling 3 to the insulin receptor in liver and the rise in glycemia induced by central insulin. Leptin also decreased hepatic phosphoenolpyruvate carboxykinase levels and increased insulin's ability to phosphorylate insulin receptor substrate-1, Akt and glycogen synthase kinase on Ser9 and to stimulate glucose transporter 2 and glycogen levels. Peripheral leptin treatment reproduced some of these changes, but to a lesser extent. Our data indicate that leptin increases the hepatic response to a rise in insulin, suggesting that pharmacological manipulation of leptin targets may be of interest for controlling glycemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Mutations in the liver glycogen synthase gene in children with hypoglycemia due to glycogen storage disease type 0.

    PubMed Central

    Orho, M; Bosshard, N U; Buist, N R; Gitzelmann, R; Aynsley-Green, A; Blümel, P; Gannon, M C; Nuttall, F Q; Groop, L C

    1998-01-01

    Glycogen storage disease type 0 (GSD-0) is a rare form of fasting hypoglycemia presenting in infancy or early childhood and accompanied by high blood ketones and low alanine and lactate concentrations. Although feeding relieves symptoms, it often results in postprandial hyperglycemia and hyperlactatemia. The glycogen synthase (GS) activity has been low or immeasurable in liver biopsies, whereas the liver glycogen content has been only moderately decreased. To investigate whether mutations in the liver GS gene (GYS2) on chromosome 12p12.2 were involved in GSD-0, we determined the exon-intron structure of the GYS2 gene and examined nine affected children from five families for linkage of GSD-0 to the GYS2 gene. Mutation screening of the 16 GYS2 exons was done by single-strand conformational polymorphism (SSCP) and direct sequencing. Liver GS deficiency was diagnosed from liver biopsies (GS activity and glycogen content). GS activity in the liver of the affected children was extremely low or nil, resulting in subnormal glycogen content. After suggestive linkage to the GYS2 gene had been established (LOD score = 2.9; P < 0.01), mutation screening revealed several different mutations in these families, including a premature stop codon in exon 5 (Arg246X), a 5'-donor splice site mutation in intron 6 (G+1T--> CT), and missense mutations Asn39Ser, Ala339Pro, His446Asp, Pro479Gln, Ser483Pro, and Met491Arg. Seven of the affected children carried mutations on both alleles. The mutations could not be found in 200 healthy persons. Expression of the mutated enzymes in COS7 cells indicated severely impaired GS activity. In conclusion, the results demonstrate that GSD-0 is caused by different mutations in the GYS2 gene. PMID:9691087

  16. Physiological and drug-induced changes in the glycogen content of mouse brain

    PubMed Central

    Hutchins, D. A.; Rogers, K. J.

    1970-01-01

    1. The effect of the method of killing on the concentration of glycogen in mouse brain was determined. The cerebral glycogen content of mice killed by immersion in liquid nitrogen did not differe significantly from that of animals decapitated and the heads immediately frozen. A delay before freezing led to the rapid loss of brain glycogen, with a 17% fall at 10 s and an 82% loss after 5 min. 2. Hyperglycaemia, induced by the administration of D-glucose, resulted in an 8·3% loss of brain glycogen after 120 min. Insulin hypoglycaemia produced a 10·7% fall in glycogen at 60 min followed by an 11·2% increase at 120 min. 3. Exposure to either high (32° C) or low (10° C) ambient temperatures caused a depletion of brain glycogen. 4. A circadian rhythm of brain glycogen concentration was found, with a nadir which was coincident with the peak of locomotor activity and body temperature. 5. Drugs from several pharmacological classes were studied for their in vivo effect on the concentration of glycogen in mouse brain. 6. Brain glycogen was increased by all the depressant drugs tested, and by some drugs which had little effect on behaviour (diphenhydramine, phenytoin and propranolol), or which caused excitation (caffeine and nialamide). 7. Glycogen was depleted only by amphetamine-like compounds or by bemegride-induced convulsions. 8. The results are discussed with particular reference to the possible relation between catecholamines and glycogen metabolism in the brain. PMID:5420149

  17. Glycogen in the Nervous System. I; Methods for Light and Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Estable, Rosita F. De; Estable-Puig, J. F.; Miquel, J.

    1964-01-01

    'l'he relative value of different methods for combined light and electron microscopical studies of glycogen in the nervous tissue was investigated. Picroalcoholic fixatives preserve glycogen in a considerable amount but give an inadequate morphological image of glycogen distribution and are unsuitable for ultrastructural studies. Fixation by perfusion, with Dalton's chromeosmic fluid seems adequate for ultrastructural cytochemistry of glycogen. Furthermore it permits routine paraffin embedding of brain slices adjacent to those used for electron microscopy. Dimedone blocking is a necessary step for a selective staining of glycogen with PAS after osmic fixation. Enzymatic removal of glycogen in osmic fixed nervous tissue can be done In paraffin-embedded tissue. It can also be performed in glycolmethacrylate-embedded tissue without removal of the embedding medium. Paraphenylenediamine stains glycogen following periodic acid oxidation.

  18. THE LOCALIZATION OF GLYCOGEN IN THE SPERMATOZOA OF VARIOUS INVERTEBRATE AND VERTEBRATE SPECIES

    PubMed Central

    Anderson, Winston A.; Personne, Paul

    1970-01-01

    With the periodic acid-thiosemicarbazide-silver proteinate procedure for the detection of polysaccharides in thin sections, glycogen is localized in the cavities of centrioles and basal bodies, within the axoneme (and surrounding it), in mitochondria, and in the "packing" cytoplasm of the middle piece of spermatozoa of several invertebrate and vertebrate species. The cytochemical localization of glycogen is verified by extraction with α-amylase solution. These findings establish the existence of stored glycogen in sperm. The polysaccharide presumably serves as an endogenous source of energy in the absence of extracellular metabolites, under either aerobic or anaerobic conditions. Other hypotheses on the physiological significance of intracellular glycogen stores in sperm are discussed. Sperm that store glycogen contain some enzymes of glycogen metabolism. In the presence of glucose-1-phosphate, ATP, and Mg++ ions, an amylophosphorylase catalyzes the in vivo synthesis of glycogen. The newly formed product resembles γ-particles, and is digestible with α-amylase. PMID:5409463

  19. The influence of social status on hepatic glucose metabolism in rainbow trout Oncorhynchus mykiss.

    PubMed

    Gilmour, Kathleen M; Kirkpatrick, Sheryn; Massarsky, Andrey; Pearce, Brenda; Saliba, Sarah; Stephany, Céleste-Élise; Moon, Thomas W

    2012-01-01

    The effects of chronic social stress on hepatic glycogen metabolism were examined in rainbow trout Oncorhynchus mykiss by comparing hepatocyte glucose production, liver glycogen phosphorylase (GP) activity, and liver β-adrenergic receptors in dominant, subordinate, control, fasted, and cortisol-treated fish. Hepatocyte glucose production in subordinate fish was approximately half that of dominant fish, reflecting hepatocyte glycogen stores in subordinate trout that were just 16% of those in dominant fish. Fasting and/or chronic elevation of cortisol likely contributed to these differences based on similarities among subordinate, fasted, and cortisol-treated fish. However, calculation of the "glycogen gap"--the difference between glycogen stores used and glucose produced--suggested an enhanced gluconeogenic potential in subordinate fish that was not present in fasted or cortisol-treated trout. Subordinate, fasted, and cortisol-treated trout also exhibited similar GP activities (both total activity and that of the active or a form), and these activities were in all cases significantly lower than those in control trout, perhaps reflecting an attempt to protect liver glycogen stores or a modified capacity to activate GP. Dominant trout exhibited the lowest GP activities (20%-24% of the values in control trout). Low GP activities, presumably in conjunction with incoming energy from feeding, allowed dominant fish to achieve the highest liver glycogen concentrations (double the value in control trout). Liver membrane β-adrenoceptor numbers (assessed as the number of (3)H-CGP binding sites) were significantly lower in subordinate than in dominant trout, although this difference did not translate into attenuated adrenergic responsiveness in hepatocyte glucose production in vitro. Transcriptional regulation, likely as a result of fasting, was indicated by significantly lower β(2)-adrenoceptor relative mRNA levels in subordinate and fasted trout. Collectively, the data

  20. Direct pathway for hepatic glycogenesis predominates in meal-fed rats

    SciTech Connect

    Huang, M.T.; Veech, R.L.

    1987-05-01

    The pathway for hepatic glycogen synthesis in the postprandial state was studied in meal-fed rats chronically cannulated in the portal vein. The rate of glycogen synthesis in livers of rats meal-fed for seven days was found to be about 1 umol/g/min. Plasma glucose concentration in the portal vein was generally below 8 mM before meal-feeding and could reach up to 12 mM at the end of the meal-feeding. Studies on the hepatic-portal (H-P) difference of plasma glucose showed that liver released glucose in the fasted state and could either extract or release glucose after feeding, depending on plasma glucose concentration in the portal vein. The cross-over concentration for the transition was found to be 8 mM. The relative importance of the direct vs indirect pathway for the replenishment of hepatic glycogen was determined by injecting (3-/sup 3/H,U-/sup 14/C)-glucose into the portal vein at the end of meal-feeding. Six minutes after the injection, the ratio of /sup 3/H//sup 14/C in glycogen-glucose was found to be 83-92% of the ratio in liver free glucose. The H-P differences of glucose, lactate, pyruvate, and alanine during feeding were determined. It was found that the H-P difference of (glc) was about 9 times greater than the combined total of ..delta.. (lac), ..delta.. (pyr), and ..delta.. (ala) as early as 10 minutes after the onset of feeding. It is concluded that the direct pathway for the replenishment of hepatic glycogen is predominant and can account for more than 80% of the total glycogen synthesized in vivo in the postprandial state, in contrast to the result of < 30% reported previously by Newgard et al in acute traumatized rats.

  1. Early events in the generation of autophagosomes are required for the formation of membrane structures involved in hepatitis C virus genome replication.

    PubMed

    Mohl, Bjorn-Patrick; Bartlett, Christopher; Mankouri, Jamel; Harris, Mark

    2016-03-01

    Hepatitis C virus (HCV) infection has been shown to induce autophagy but the mechanisms underpinning this process remain to be elucidated. Induction of autophagy requires the class III phosphatidylinositol 3-kinase, Vps34, which produces phosphatidylinositol 3-phosphate (PI3P) within the endoplasmic reticulum (ER) membrane. This recruits proteins with PI3P binding domains such as the double-FYVE-containing protein 1 (DFCP1). DFCP1 generates cup-shaped protrusions from the ER membrane, termed omegasomes, which provide a platform for the production of autophagosomes. Here we present data demonstrating that both Vps34 and DFCP1 are required for HCV genome replication, in the context of both a subgenomic replicon and virus infection, but did not affect virus entry or initial translation. Using live cell fluorescence microscopy we demonstrated that early during HCV infection the nascent viral genome replication complexes (identified by using non-structural protein NS5A as a marker) transiently colocalize with DFCP1-positive punctae (omegasomes), before the two structures move apart from each other. This observation is reminiscent of the transient association of LC3 and DFCP1 during omegasome formation, and therefore we propose that omegasomes are utilized by HCV to generate the double-membrane vesicles which are the hallmark of HCV replication complexes.

  2. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp ( Carassius carassius L.)

    NASA Astrophysics Data System (ADS)

    Vornanen, Matti; Asikainen, Juha; Haverinen, Jaakko

    2011-03-01

    Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp ( Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish ( p < 0.05). In fin and skin, size dependence was evident in winter, but not in summer, while in other tissues (ventricle, atrium, intestine, liver, muscle, and spleen), no size dependence was found. The liver was much bigger in small than large fish ( p < 0.001), and there was a prominent enlargement of the liver in winter irrespective of fish size. As a consequence, the whole body glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.

  3. Exercise training-induced adaptations associated with increases in skeletal muscle glycogen content.

    PubMed

    Manabe, Yasuko; Gollisch, Katja S C; Holton, Laura; Kim, Young-Bum; Brandauer, Josef; Fujii, Nobuharu L; Hirshman, Michael F; Goodyear, Laurie J

    2013-02-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism leading to increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4 or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. As compared with sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase (GSK)-3. Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of R(GL)(G(M)), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1 activity, GSK-3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~ 40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks, and may function as a negative feedback mechanism in response to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms, including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase, and PP1 activity.

  4. Acute Peripheral but Not Central Administration of Olanzapine Induces Hyperglycemia Associated with Hepatic and Extra-Hepatic Insulin Resistance

    PubMed Central

    Girault, Elodie M.; Alkemade, Anneke; Foppen, Ewout; Ackermans, Mariëtte T.; Fliers, Eric; Kalsbeek, Andries

    2012-01-01

    Atypical antipsychotic drugs such as Olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying the metabolic side-effects of these centrally acting drugs are still unknown to a large extent. We compared the effects of peripheral (intragastric; 3 mg/kg/h) versus central (intracerebroventricular; 30 µg/kg/h) administration of Olanzapine on glucose metabolism using the stable isotope dilution technique (Experiment 1) in combination with low and high hyperinsulinemic-euglycemic clamps (Experiments 2 and 3), in order to evaluate hepatic and extra-hepatic insulin sensitivity, in adult male Wistar rats. Blood glucose, plasma corticosterone and insulin levels were measured alongside endogenous glucose production and glucose disappearance. Livers were harvested to determine glycogen content. Under basal conditions peripheral administration of Olanzapine induced pronounced hyperglycemia without a significant increase in hepatic glucose production (Experiment 1). The clamp experiments revealed a clear insulin resistance both at hepatic (Experiment 2) and extra-hepatic levels (Experiment 3). The induction of insulin resistance in Experiments 2 and 3 was supported by decreased hepatic glycogen stores in Olanzapine-treated rats. Central administration of Olanzapine, however, did not result in any significant changes in blood glucose, plasma insulin or corticosterone concentrations nor in glucose production. In conclusion, acute intragastric administration of Olanzapine leads to hyperglycemia and insulin resistance in male rats. The metabolic side-effects of Olanzapine appear to be mediated primarily via a peripheral mechanism, and not to have a central origin. PMID:22905238

  5. Autoimmune hepatitis

    MedlinePlus

    ... them. Causes This form of hepatitis is an autoimmune disease . The body's immune system cannot tell the difference ... inflammation, or hepatitis, may occur along with other autoimmune diseases. These include: Graves disease Inflammatory bowel disease Rheumatoid ...

  6. Hepatitis B

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000279.htm Hepatitis B To use the sharing features on this page, please enable JavaScript. Hepatitis B is irritation and swelling (inflammation) of the ...

  7. Hepatitis B

    MedlinePlus

    ... Financial Report (AFR) Budget Submission Recovery Act Resources Business Congressional Affairs Jobs Benefits Booklet Data & Statistics National ... with hepatitis B need to be on treatment. Choosing the right time for hepatitis B treatment is ...

  8. Hepatitis A

    MedlinePlus

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  9. Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1.

    PubMed Central

    Moon, Byoung; Duddy, Noreen; Ragolia, Louis; Begum, Najma

    2003-01-01

    Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1(G)) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1(G) in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1(G) or with PP-1(G) mutants in which site-1 (S1) Ser(48) and site-2 (S2) Ser(67) residues were substituted with Ala. Cells expressing wild-type and PP-1(G) mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60 min heat shock at 45 degrees C, followed by analysis of [(14)C]glucose incorporation into glycogen at 37 degrees C. PP-1(G) S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1(G) S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3 beta (GSK-3 beta) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3 beta phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1(G) S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1(G) S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3

  10. Reproducibility and Absolute Quantification of Muscle Glycogen in Patients with Glycogen Storage Disease by 13C NMR Spectroscopy at 7 Tesla

    PubMed Central

    Romain, Nadine; Cheshkov, Sergey; Ren, Jimin; Malloy, Craig R.; Haller, Ronald G.

    2014-01-01

    Carbon-13 magnetic resonance spectroscopy (13C MRS) offers a noninvasive method to assess glycogen levels in skeletal muscle and to identify excess glycogen accumulation in patients with glycogen storage disease (GSD). Despite the clinical potential of the method, it is currently not widely used for diagnosis or for follow-up of treatment. While it is possible to perform acceptable 13C MRS at lower fields, the low natural abundance of 13C and the inherently low signal-to-noise ratio of 13C MRS makes it desirable to utilize the advantage of increased signal strength offered by ultra-high fields for more accurate measurements. Concomitant with this advantage, however, ultra-high fields present unique technical challenges that need to be addressed when studying glycogen. In particular, the question of measurement reproducibility needs to be answered so as to give investigators insight into meaningful inter-subject glycogen differences. We measured muscle glycogen levels in vivo in the calf muscle in three patients with McArdle disease (MD), one patient with phosphofructokinase deficiency (PFKD) and four healthy controls by performing 13C MRS at 7T. Absolute quantification of the MRS signal was achieved by using a reference phantom with known concentration of metabolites. Muscle glycogen concentration was increased in GSD patients (31.5±2.9 g/kg w. w.) compared with controls (12.4±2.2 g/kg w. w.). In three GSD patients glycogen was also determined biochemically in muscle homogenates from needle biopsies and showed a similar 2.5-fold increase in muscle glycogen concentration in GSD patients compared with controls. Repeated inter-subject glycogen measurements yield a coefficient of variability of 5.18%, while repeated phantom measurements yield a lower 3.2% system variability. We conclude that noninvasive ultra-high field 13C MRS provides a valuable, highly reproducible tool for quantitative assessment of glycogen levels in health and disease. PMID:25296331

  11. Hepatitis C

    MedlinePlus

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  12. Novel Swelling-Resistant Sodium Alginate Membrane Branching Modified by Glycogen for Highly Aqueous Ethanol Solution Pervaporation.

    PubMed

    Ji, Chen-Hao; Xue, Shuang-Mei; Xu, Zhen-Liang

    2016-10-12

    A novel carbohydrate chain cross-linking method of sodium alginate (SA) is proposed in which glycogen with the branched-chain structure is utilized to cross-link with SA matrix by the bridging of glutaraldehyde (GA). The active layer of SA composite ceramic membrane modified by glycogen and GA for pervaporation (PV) demonstrates great advantages. The branched structure increases the chain density of the active layer, which compresses the free volume between the carbohydrate chains of SA. Large amounts of hydroxyl groups are consumed during the reaction with GA, which reduces the hydrogen bond formation between water molecules and the polysaccharide matrix. The two factors benefit the active layer with great improvement in swelling resistance, promoting the potential of the active layer for the dehydration of an ethanol-water solution containing high water content. Meanwhile, the modified active layer is loaded on the rigid α-Al2O3 ceramic membrane by dip-coating method with the enhancement of anti-deformation and controllable thickness of the active layer. Characterization techniques such as SEM, AFM, XRD, FTIR, XPS, and water contact angle are utilized to observe the composite structure and surface morphology of the composite membrane, to probe the free volume variation, and to determine the chemical composition and hydrophilicity difference of the active layer caused by the different glycogen additive amounts. The membrane containing 3% glycogen in the selective layer demonstrates the flux at 1250 g m(-2) h(-1) coupled with the separation factor of 187 in the 25 wt % water content feed solution at the operating temperature of 75 °C, reflecting superior pervaporation processing capacity compared with the general organic PV membranes in the same condition.

  13. The Inhibitory Effect of the Hepatitis B Virus Singly-Spliced RNA-Encoded p21.5 Protein on HBV Nucleocapsid Formation

    PubMed Central

    Wang, Yi-Ling; Liou, Gan-Guang; Lin, Chao-Hsiung; Chen, Mong-Liang; Kuo, Tzer-Min; Tsai, Kuen-Nan; Huang, Chien-Choao; Chen, Ya-Ling; Huang, Li-Rung; Chou, Yu-Chi; Chang, Chungming

    2015-01-01

    Hepatitis B virus (HBV) is the smallest DNA virus and the major cause of acute and chronic hepatitis. The 3.2 kb HBV viral genome generates four major species of unspliced viral transcript as well as several alternatively spliced RNAs. A 2.2 kb singly-spliced RNA is the most abundant spliced RNA and is widely expressed among all HBV genotypes. The expression of the singly-spliced RNA, as well as that of its encoded protein HBSP, is strongly associated with hepatopathology during HBV infection. Here, we report a novel inhibitory role of a p21.5 protein, which is encoded by a 2.2 kb singly-spliced RNA, in the modulation of HBV replication. We show that overexpression of the singly-spliced RNA is able to efficiently inhibit HBV replication. Furthermore, a mutation in the ATG start codon of the precore region completely abolishes the inhibitory effect of the singly-spliced RNA, indicating that a viral protein (p21.5) derived from the singly-spliced RNA is the mediator of the inhibition. Furthermore, p21.5 is able to form a homodimer that interacts with core dimers forming hybrid viral assembly components. Sucrose gradient fractionation revealed that co-expression of p21.5 resulted in a spread distribution pattern of core proteins ranging from low to high sucrose densities. When compared with p22, p21.5 is almost ten times more efficient at destabilizing HBV nucleocapsid assembly in Huh7 cells overexpressing either p21.5 or p22 protein. Moreover, in vivo expression of p21.5 protein by tail vein injection was found to decrease the amount of nucleocapsid in the livers of HBV-expressing BALB/c mice. In conclusion, our study reveals that the HBV 2.2 kb singly-spliced RNA encodes a 21.5 kDa viral protein that significantly interferes with the assembly of nucleocapsids during HBV nucleocapsid formation. These findings provide a possible strategy for elimination of HBV particles inside cells. PMID:25785443

  14. The glycogen synthase 2 gene (Gys2) displays parallel evolution between Old World and New World fruit bats.

    PubMed

    Qian, Yamin; Fang, Tao; Shen, Bin; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats rely largely on hepatic glycogenesis and glycogenolysis for postprandial blood glucose disposal and maintenance of glucose homeostasis during short time starvation, respectively. The glycogen synthase 2 encoded by the Gys2 gene plays a critical role in liver glycogen synthesis. To test whether the Gys2 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Gys2 gene in a number of bat species, including three Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our results showed that the Gys2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to OWFBs and NWFBs. Our explicit convergence test showed that posterior probabilities of convergence between several branches of OWFBs, and the NWFBs were markedly higher than that of divergence. Three parallel amino acid substitutions (Q72H, K371Q, and E666D) were detected among branches of OWFBs and NWFBs. Tests for parallel evolution showed that two parallel substitutions (Q72H and E666D) were driven by natural selection, while the K371Q was more likely to be fixed randomly. Thus, our results suggested that the Gys2 gene has undergone parallel evolution on amino acid level between OWFBs and NWFBs in relation to their carbohydrate metabolism.

  15. Dumping syndrome, a cause of acquired glycogenic hepatopathy.

    PubMed

    Resnick, Jeffrey M; Zador, Ivan; Fish, Daryl L

    2011-01-01

    A 2-year-old boy, having undergone fundoplication for gastroesophageal reflux disease and fed by gastrostomy, presented with recurrent emesis, syncope with hypoglycemia, and persistently elevated serum liver transaminase levels. Liver biopsy revealed hepatocellular glycogenosis by light and electron microscopy. Further evaluation showed no evidence of diabetes mellitus, glycogen storage disease, or corticosteroid use. Since the hyperglycemic-hyperinsulinemic state of dumping syndrome would provide a mechanism for hepatocellular glycogenosis, the biopsy findings prompted consideration of dumping syndrome. Metabolic evaluation confirmed the diagnosis of dumping syndrome, and appropriate dietary management led to sustained resolution of symptomatology and hypertransaminasemia. Dumping syndrome is proposed to be a cause of hepatocellular glycogenosis, the latter representing a form of acquired glycogenic hepatopathy.

  16. Transition from glycogen to starch metabolism in Archaeplastida.

    PubMed

    Cenci, Ugo; Nitschke, Felix; Steup, Martin; Minassian, Berge A; Colleoni, Christophe; Ball, Steven G

    2014-01-01

    In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of α-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida.

  17. Glycogen storage disease types I and II: Treatment updates

    PubMed Central

    Kishnani, P. S.; Chen, Y. T.

    2009-01-01

    Summary Prior to 2006 therapy for glycogen storage diseases consisted primarily of dietary interventions, which in the case of glycogen storage disease (GSD) type II (GSD II; Pompe disease) remained essentially palliative. Despite improved survival and growth, long-term complications of GSD type I (GSD I) have not responded to dietary therapy with uncooked cornstarch or continuous gastric feeding. The recognized significant risk of renal disease and liver malignancy in GSD I has prompted efforts towards curative therapy, including organ transplantation, in those deemed at risk. Results of clinical trials in infantile Pompe disease with alglucosidase alfa (Myozyme) showed prolonged survival reversal of cardiomyopathy, and motor gains. This resulted in broad label approval of Myozyme for Pompe disease in 2006. Furthermore, the development of experimental therapies, such as adeno-associated virus (AAV) vector-mediated gene therapy, holds promise for the availability of curative therapy in GSD I and GSD II/Pompe disease in the future. PMID:17308886

  18. Glycogen storage disease types I and II: treatment updates.

    PubMed

    Koeberl, D D; Kishnani, P S; Chen, Y T

    2007-04-01

    Prior to 2006 therapy for glycogen storage diseases consisted primarily of dietary interventions, which in the case of glycogen storage disease (GSD) type II (GSD II; Pompe disease) remained essentially palliative. Despite improved survival and growth, long-term complications of GSD type I (GSD I) have not responded to dietary therapy with uncooked cornstarch or continuous gastric feeding. The recognized significant risk of renal disease and liver malignancy in GSD I has prompted efforts towards curative therapy, including organ transplantation, in those deemed at risk. Results of clinical trials in infantile Pompe disease with alglucosidase alfa (Myozyme) showed prolonged survival reversal of cardiomyopathy, and motor gains. This resulted in broad label approval of Myozyme for Pompe disease in 2006. Furthermore, the development of experimental therapies, such as adeno-associated virus (AAV) vector-mediated gene therapy, holds promise for the availability of curative therapy in GSD I and GSD II/Pompe disease in the future.

  19. Acute myelogenous leukemia and glycogen storage disease 1b.

    PubMed

    Pinsk, Maury; Burzynski, Jeffrey; Yhap, Margaret; Fraser, Robert B; Cummings, Brian; Ste-Marie, Micheline

    2002-12-01

    Glycogen storage disease 1b (GSD 1b) is caused by a deficiency of glucose-6-phosphate translocase and the intracellular accumulation of glycogen. The disease presents with failure to thrive, hepatomegaly, hypoglycemia, lactic acidosis, as well as neutropenia causing increased susceptibility to pyogenic infections. We present a case of a young woman with GSD 1b who developed acute myelogenous leukemia while on long-term granulocyte colony-stimulating factor therapy. The presence of two rare diseases in a single patient raises suspicion that GSD 1b and acute myelogenous leukemia are linked. Surveillance for acute myelogenous leukemia should become part of the long-term follow-up for GSD 1b.

  20. Hypohydration does not impair skeletal muscle glycogen resynthesis after exercise.

    PubMed

    Neufer, P D; Sawka, M N; Young, A J; Quigley, M D; Latzka, W A; Levine, L

    1991-04-01

    The purpose of this investigation was to examine the effects of moderate hypohydration (HY) on skeletal muscle glycogen resynthesis after exhaustive exercise. On two occasions, eight males completed 2 h of intermittent cycle ergometer exercise (4 bouts of 17 min at 60% and 3 min at 80% of maximal O2 consumption/10 min rest) to reduce muscle glycogen concentrations (control values 711 +/- 41 mumol/g dry wt). During one trial, cycle exercise was followed by several hours of light upper body exercise in the heat without fluid replacement to induce HY (-5% body wt); in the second trial, sufficient water was ingested during the upper body exercise and heat exposure to maintain euhydration (EU). In both trials, 400 g of carbohydrate were ingested at the completion of exercise and followed by 15 h of rest while the desired hydration level was maintained. Muscle biopsy samples were obtained from the vastus lateralis immediately after intermittent cycle exercise (T1) and after 15 h of rest (T2). During the HY trial, the muscle water content was lower (P less than 0.05) at T1 and T2 (288 +/- 9 and 265 +/- 5 ml/100 g dry wt, respectively; NS) than during EU (313 +/- 8 and 301 +/- 4 ml/100 g dry wt, respectively; NS). Muscle glycogen concentration was not significantly different during EU and HY at T1 (200 +/- 35 vs. 251 +/- 50 mumol/g dry wt) or T2 (452 +/- 34 vs. 491 +/- 35 mumol/g dry wt). These data indicate that, despite reduced water content during the first 15 h after heavy exercise, skeletal muscle glycogen resynthesis is not impaired.

  1. Influence of Skeletal Muscle Glycogen on Passive Rewarming after Hypothermia,

    DTIC Science & Technology

    1987-08-01

    D-A186 451 INFLUENCE OF SKETA MUCL GLCGNOASV REWIRRNING AFTER NYPOTHERNIALU) ARMY RESEARCH INST OF ENVIRONMENTAL MEDICINE NATICK MA P D NEUFER ET AL...SecurityClassification) (U) Influence of skeletal muscle glycogen on passive rewarming after hypothermia 12 PERSONAL AUTHOR(S) P. Darrell Neufer , Andrew J. Young...Include Area Code) 22c OFFICE SYMBOL P. Darrell Neufer (617) 651-4834 SGRD-UE-MEP Abstract "Individuals performing work and athletes competing in cold

  2. Identification of mutations in Type IV glycogen storage disease

    SciTech Connect

    Bao, Y.; Kishnani, P.; Chen, Y.T.

    1994-09-01

    Type IV glycogen storage disease (GSD IV, Andersen disease) is caused by a deficiency of glycogen branching enzyme (GBE) activity, which results in the accumulation of glycogen with unbranched, long, outer chains in the tissues. The molecular basis of the disease is not known. We studied four patients with the disease; three with typical presentation of progressive liver cirrhosis and failure, and one with severe and fatal neonatal hypotonia and cardiomyopathy. Southern blot analysis with EcoRI or MspI did not detect gross DNA rearrangement, deletion or duplication in patients` glycogen branching enzyme genes. Northern analysis with total cellular RNAs isolated from skin fibroblast MI strains of three patients with typical clinical presentation showed a normal level and size (2.95 kb) of GBE mRNA hybridization band in two and absent mRNA hybridization band in the remaining one. The patient with atypical severe neonatal hypotonia demonstrated a less intense and smaller size (2.75 kb) of mRNA hybridization band. A 210 hp deletion from nucleotide sequence 873 to 1082 which causes 70 amino acids missing from amino acid sequence 262 to 331 was detected in all 17 clones sequenced from the fatal hypotonia patient. This deletion is located in the region which is highly conserved between prokaryotic, yeast and human GBE polypeptide sequences, and also includes the first of the four regions which constitute the catalytic active sites of most of amylolytic enzymes. A point mutation C-T (1633) which changes the amino acid from Arginine to Cystine was found in 19 of 20 cDNA clones from a patient with classical clinical presentation. This point mutation was unique to this patient and was not observed in three other patients or normal controls. This is the first report on the molecular basis of GSD IV and our data indicated the presence of extensive genetic heterogeneity in the disease.

  3. Mouse model of glycogen storage disease type III.

    PubMed

    Liu, Kai-Ming; Wu, Jer-Yuarn; Chen, Yuan-Tsong

    2014-04-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of the glycogen debranching enzyme (GDE), which is encoded by the Agl gene. GDE deficiency leads to the pathogenic accumulation of phosphorylase limit dextrin (PLD), an abnormal glycogen, in the liver, heart, and skeletal muscle. To further investigate the pathological mechanisms behind this disease and develop novel therapies to treat this disease, we generated a GDE-deficient mouse model by removing exons after exon 5 in the Agl gene. GDE reduction was confirmed by western blot and enzymatic activity assay. Histology revealed massive glycogen accumulation in the liver, muscle, and heart of the homozygous affected mice. Interestingly, we did not find any differences in the general appearance, growth rate, and life span between the wild-type, heterozygous, and homozygous affected mice with ad libitum feeding, except reduced motor activity after 50 weeks of age, and muscle weakness in both the forelimb and hind legs of homozygous affected mice by using the grip strength test at 62 weeks of age. However, repeated fasting resulted in decreased survival of the knockout mice. Hepatomegaly and progressive liver fibrosis were also found in the homozygous affected mice. Blood chemistry revealed that alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities were significantly higher in the homozygous affected mice than in both wild-type and heterozygous mice and the activity of these enzymes further increased with fasting. Creatine phosphokinase (CPK) activity was normal in young and adult homozygous affected mice. However, the activity was significantly elevated after fasting. Hypoglycemia appeared only at a young age (3 weeks) and hyperlipidemia was not observed in our model. In conclusion, with the exception of normal lipidemia, these mice recapitulate human GSD IIIa; moreover, we found that repeated fasting was detrimental to these mice. This mouse model will

  4. Pregnancy in women with glycogen storage disease Ia and Ib.

    PubMed

    Ferrecchia, Iris A; Guenette, Ginny; Potocik, Elizabeth A; Weinstein, David A

    2014-01-01

    Over the past 9 decades since glycogen storage disease (GSD) was described, an almost universally fatal disease has become one where women are living well into adulthood and choosing to bear children. This inborn error of metabolism associated with the creation and utilization of glycogen, when untreated, manifests with unrelenting hypoglycemia. The initiation of continuous feeds has improved outcomes, and later in 1982, the administration of intermittent doses of cornstarch in water provided a continuous supply of exogenous glucose. As metabolic control has improved, morbidity has decreased. Glycogen storage disease Ib has the same severity of hypoglycemia as GSD Ia, with associated immune disturbance. Prior to the introduction of granulocyte colony-stimulating factor (G-CSF), infections caused significant mortality in GSD Ib. Pregnancy in patients with GSD Ia and Ib poses unique challenges during gestation and delivery. Good metabolic control before conception and throughout pregnancy is directly related to successful outcomes. There is no nursing literature to date addressing perinatal and neonatal care in this population.

  5. A glycogene mutation map for discovery of diseases of glycosylation

    PubMed Central

    Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J; Pedersen, Nis Borbye; Have, Christian Theil; Kong, Yun; Wang, Shengjun; Sparso, Thomas; Grarup, Niels; Vester-Christensen, Malene Bech; Schjoldager, Katrine; Freeze, Hudson H; Hansen, Torben; Pedersen, Oluf; Henrissat, Bernard; Mandel, Ulla; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P

    2015-01-01

    Glycosylation of proteins and lipids involves over 200 known glycosyltransferases (GTs), and deleterious defects in many of the genes encoding these enzymes cause disorders collectively classified as congenital disorders of glycosylation (CDGs). Most known CDGs are caused by defects in glycogenes that affect glycosylation globally. Many GTs are members of homologous isoenzyme families and deficiencies in individual isoenzymes may not affect glycosylation globally. In line with this, there appears to be an underrepresentation of disease-causing glycogenes among these larger isoenzyme homologous families. However, genome-wide association studies have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole-exome sequencing (WES) provides access to mutations in, for example, GT genes in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a functional mutational map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2000 Danes. We cataloged all missense mutations and used prediction algorithms, manual inspection and in case of carbohydrate-active enzymes family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP (http://glymap.glycomics.ku.dk) provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs. PMID:25267602

  6. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  7. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae.

    PubMed

    Bourassa, Lori; Camilli, Andrew

    2009-04-01

    Pathogenic Vibrio cholerae cycle between the nutrient-rich human intestinal tract and nutrient-poor aquatic environments and currently few bacterial factors are known that aid in the transition between these disparate environments. We hypothesized that the ability to store carbon as glycogen would facilitate both bacterial fitness in the aquatic environment and transmission of V. cholerae to new hosts. To investigate the role of glycogen in V. cholerae transmission, we constructed mutants that cannot store or degrade glycogen. Here, we provide the first report of glycogen metabolism in V. cholerae and demonstrate that glycogen prolongs survival in nutrient-poor environments that are known ecological niches of V. cholerae, including pond water and rice-water stool. Additionally, glycogen contributes to the pathogenesis of V. cholerae in a transmission model of cholera. A role for glycogen in the transmission of V. cholerae is further supported by the presence of glycogen granules in rice-water stool vibrios from cholera patients, indicating that glycogen is stored during human infection. Collectively, our findings indicate that glycogen metabolism is critical for V. cholerae to transition between host and aquatic environments.

  8. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    PubMed

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2016-12-26

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ((13)C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by (13)C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for (13)C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of (13)C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen.

  9. Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica.

    PubMed

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2016-12-01

    Liver glycogen is an important energy store in vertebrates, and in the freeze-tolerant wood frog, Rana sylvatica, this carbohydrate also serves as a major source of the cryoprotectant glucose. We investigated how variation in the levels of the catalytic subunit of protein kinase A (PKAc), glycogen phosphorylase (GP), and glycogen synthase (GS) relates to seasonal glycogen cycling in a temperate (Ohioan) and subarctic (Alaskan) populations of this species. In spring, Ohioan frogs had reduced potential for glycogen synthesis, as evidenced by low GS activity and high PKAc protein levels. In addition, glycogen levels in spring were the lowest of four seasonal samples, as energy input was likely directed towards metabolism and somatic growth during this period. Near-maximal glycogen levels were reached by mid-summer, and remained unchanged in fall and winter, suggesting that glycogenesis was curtailed during this period. Ohioan frogs had a high potential for glycogenolysis and glycogenesis in winter, as evidenced by large glycogen reserves, high levels of GP and GS proteins, and high GS activity, which likely allows for rapid mobilization of cryoprotectant during freezing and replenishing of glycogen reserves during thawing. Alaskan frogs also achieved a near-maximal liver glycogen concentration by summer and displayed high glycogenic and glycogenolytic potential in winter, but, unlike Ohioan frogs, started replenishing their energy reserves early in spring. We conclude that variation in levels of both glycogenolytic and glycogenic enzymes likely happens in response to seasonal changes in energetic strategies and demands, with winter survival being a key component to understanding the regulation of glycogen cycling in this species.

  10. Impact of Macrophage Inflammatory Protein-1α Deficiency on Atherosclerotic Lesion Formation, Hepatic Steatosis, and Adipose Tissue Expansion

    PubMed Central

    Gutierrez, Dario A.; Surmi, Bonnie K.; Orr, Jeb S.; Webb, Corey D.; Hasty, Alyssa H.

    2012-01-01

    Macrophage inflammatory protein-1α (CCL3) plays a well-known role in infectious and viral diseases; however, its contribution to atherosclerotic lesion formation and lipid metabolism has not been determined. Low density lipoprotein receptor deficient (LDLR−/−) mice were transplanted with bone marrow from CCL3−/− or C57BL/6 wild type donors. After 6 and 12 weeks on western diet (WD), recipients of CCL3−/− marrow demonstrated lower plasma cholesterol and triglyceride concentrations compared to recipients of C57BL/6 marrow. Atherosclerotic lesion area was significantly lower in female CCL3−/− recipients after 6 weeks and in male CCL3−/− recipients after 12 weeks of WD feeding (P<0.05). Surprisingly, male CCL3−/− recipients had a 50% decrease in adipose tissue mass after WD-feeding, and plasma insulin, and leptin levels were also significantly lower. These results were specific to CCL3, as LDLR−/− recipients of monocyte chemoattractant protein−/− (CCL2) marrow were not protected from the metabolic consequences of high fat feeding. Despite these improvements in LDLR−/− recipients of CCL3−/− marrow in the bone marrow transplantation (BMT) model, double knockout mice, globally deficient in both proteins, did not have decreased body weight, plasma lipids, or atherosclerosis compared with LDLR−/− controls. Finally, there were no differences in myeloid progenitors or leukocyte populations, indicating that changes in body weight and plasma lipids in CCL3−/− recipients was not due to differences in hematopoiesis. Taken together, these data implicate a role for CCL3 in lipid metabolism in hyperlipidemic mice following hematopoietic reconstitution. PMID:22359597

  11. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  12. Glycogen synthase kinase 3 alpha phosphorylates and regulates the osteogenic activity of Osterix.

    PubMed

    Li, Hongyan; Jeong, Hyung Min; Choi, You Hee; Lee, Sung Ho; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl

    2013-05-10

    Osteoblast-specific transcription factor Osterix is a zinc-finger transcription factor that required for osteoblast differentiation and new bone formation. The function of Osterix can be modulated by post-translational modification. Glycogen synthase kinase 3 alpha (GSK3α) is a multifunctional serine/threonine protein kinase that plays a role in the Wnt signaling pathways and is implicated in the control of several regulatory proteins and transcription factors. In the present study, we investigated how GSK3α regulates Osterix during osteoblast differentiation. Wide type GSK3α up-regulated the protein level, protein stability and transcriptional activity of Osterix. These results suggest that GSK3α regulates osteogenic activity of Osterix.

  13. NMR studies of muscle glycogen synthesis in insulin-resistant offspring of parents with non-insulin-dependent diabetes mellitus immediately after glycogen-depleting exercise.

    PubMed Central

    Price, T B; Perseghin, G; Duleba, A; Chen, W; Chase, J; Rothman, D L; Shulman, R G; Shulman, G I

    1996-01-01

    To examine the impact of insulin resistance on the insulin-dependent and insulin-independent portions of muscle glycogen synthesis during recovery from exercise, we studied eight young, lean, normoglycemic insulin-resistant (IR) offspring of individuals with non-insulin-dependent diabetes mellitus and eight age-weight matched control (CON) subjects after plantar flexion exercise that lowered muscle glycogen to approximately 25% of resting concentration. After approximately 20 min of exercise, intramuscular glucose 6-phosphate and glycogen were simultaneously monitored with 31P and 13C NMR spectroscopies. The postexercise rate of glycogen resynthesis was nonlinear. Glycogen synthesis rates during the initial insulin independent portion (0-1 hr of recovery) were similar in the two groups (IR, 15.5 +/- 1.3 mM/hr and CON, 15.8 +/- 1.7 mM/hr); however, over the next 4 hr, insulin-dependent glycogen synthesis was significantly reduced in the IR group [IR, 0.1 +/- 0.5 mM/hr and CON, 2.9 +/- 0.2 mM/hr; (P < or = 0.001)]. After exercise there was an initial rise in glucose 6-phosphate concentrations that returned to baseline after the first hour of recovery in both groups. In summary, we found that following muscle glycogen-depleting exercise, IR offspring of parents with non-insulin-dependent diabetes mellitus had (i) normal rates of muscle glycogen synthesis during the insulin-independent phase of recovery from exercise and (ii) severely diminished rates of muscle glycogen synthesis during the subsequent recovery period (2-5 hr), which has previously been shown to be insulin-dependent in normal CON subjects. These data provide evidence that exercise and insulin stimulate muscle glycogen synthesis in humans by different mechanisms and that in the IR subjects the early response to stimulation by exercise is normal. PMID:8643574

  14. Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen.

    PubMed

    Elbein, Alan D; Pastuszak, Irena; Tackett, Alan J; Wilson, Tyler; Pan, Yuan T

    2010-03-26

    We show that Mycobacterium smegmatis has an enzyme catalyzing transfer of maltose from [(14)C]maltose 1-phosphate to glycogen. This enzyme was purified 90-fold from crude extracts and characterized. Maltose transfer required addition of an acceptor. Liver, oyster, or mycobacterial glycogens were the best acceptors, whereas amylopectin had good activity, but amylose was a poor acceptor. Maltosaccharides inhibited the transfer of maltose from [(14)C]maltose-1-P to glycogen because they were also acceptors of maltose, and they caused production of larger sized radioactive maltosaccharides. When maltotetraose was the acceptor, over 90% of the (14)C-labeled product was maltohexaose, and no radioactivity was in maltopentaose, demonstrating that maltose was transferred intact. Stoichiometry showed that 0.89 micromol of inorganic phosphate was produced for each micromole of maltose transferred to glycogen, and 56% of the added maltose-1-P was transferred to glycogen. This enzyme has been named alpha1,4-glucan:maltose-1-P maltosyltransferase (GMPMT). Transfer of maltose to glycogen was inhibited by micromolar amounts of inorganic phosphate or arsenate but was only slightly inhibited by millimolar concentrations of glucose-1-P, glucose-6-P, or inorganic pyrophosphate. GMPMT was compared with glycogen phosphorylase (GP). GMPMT catalyzed transfer of [(14)C]maltose-1-P, but not [(14)C]glucose-1-P, to glycogen, whereas GP transferred radioactivity from glucose-1-P but not maltose-1-P. GMPMT and GP were both inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol, but only GP was inhibited by isofagomine. Because mycobacteria that contain trehalose synthase accumulate large amounts of glycogen when grown in high concentrations of trehalose, we propose that trehalose synthase, maltokinase, and GMPMT represent a new pathway of glycogen synthesis using trehalose as the source of glucose.

  15. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase.

    PubMed

    Maile, C A; Hingst, J R; Mahalingan, K K; O'Reilly, A O; Cleasby, M E; Mickelson, J R; McCue, M E; Anderson, S M; Hurley, T D; Wojtaszewski, J F P; Piercy, R J

    2017-01-01

    Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. Equine muscle biochemical and recombinant enzyme kinetic assays in vitro and homology modelling in silico, were used to investigate the hypothesis that higher GS activity in affected horse muscle is caused by higher GS expression, dysregulation, or constitutive activation via a conformational change. PSSM1-affected horse muscle had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6P). Muscle from homozygous mutant horses also had significantly increased GS phosphorylation at sites 2+2a and significantly higher AMPKα1 (an upstream kinase) expression than controls, likely reflecting a physiological attempt to reduce GS enzyme activity. Recombinant mutant GS was highly active with a considerably lower Km for UDP-glucose, in the presence and absence of G6P, when compared to wild type GS, and despite its phosphorylation. Elevated activity of the mutant enzyme is associated with ineffective regulation via phosphorylation rendering it constitutively active. Modelling suggested that the mutation disrupts a salt bridge that normally stabilises the basal state, shifting the equilibrium to the enzyme's active state. This study explains the gain of function pathogenesis in this highly prevalent polyglucosan myopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Phylogenomic analysis of glycogen branching and debranching enzymatic duo

    PubMed Central

    2014-01-01

    Background Branched polymers of glucose are universally used for energy storage in cells, taking the form of glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in introducing and removing of the α(1–6) bonds in glucose polymers, bonds that provide the unique branching structure to glucose polymers. Results We performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400 completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a gene duplication and consequently paralogous. Conclusions Despite being usually associated with animal liver glycogen and plant starch, energy storage in the form of branched glucose polymers is clearly an ancient process and has probably been present in the last universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study of even seemingly “simple” metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch branching and debranching enzymes hint at

  17. Patterns of variation in glycogen, free glucose and lactate in organs of supercooled hatchling painted turtles (Chrysemys picta).

    PubMed

    Packard, Mary J; Packard, Gary C

    2005-08-01

    Hatchling painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest), where they may be exposed for extended periods to ice and cold. The key to their survival seems to be to avoid freezing and to sustain a state of supercooling. As temperature declines below 0 degrees C, however, the heart of an unfrozen turtle beats progressively slower, the diminished perfusion of peripheral tissues with blood induces a functional hypoxia, and anaerobic glycolysis assumes ever greater importance as a source of ATP. We hypothesized that diminished circulatory function in supercooled turtles also reduces the delivery of metabolic substrates to peripheral tissues from central stores in the liver, so that the tissues depend increasingly on endogenous stores to fuel their metabolism. We discovered in the current investigation that part of the glycogen reserve in hearts and brains of hatchlings is mobilized during the first 10 days of exposure to -6 degrees C but that glucose from hepatic glycogen supports metabolism of the organs thereafter. Hatchlings that were held at -6 degrees C for 10 days and then at +3 degrees C for another 10 days were able to reconstitute some of the reserve of glycogen in heart and liver but not the glycogen reserve in brain. Patterns of accumulation of lactate in individual organs were very similar to those reported for whole animals in a companion study, and point to a high degree of reliance on anaerobic metabolism at -6 degrees C and to a lesser degree of reliance on anaerobiosis at higher subzero temperatures. Lactate had returned to baseline levels in organs of animals that were held for 10 days at -6 degrees C and for another 10 days at +3 degrees C, but free glucose remained elevated. Indeed, carbohydrate metabolism probably does not return to the pre-exposure state in any of the major organs until well after the exposure to subzero temperatures has ended, circulatory

  18. Misdiagnosis as steatohepatitis in a family with mild glycogen storage disease type 1a.

    PubMed

    Shieh, Jeng-Jer; Lu, Yung-Hsiu; Huang, Shi-Wei; Huang, Yu-Hsiu; Sun, Chih-Hao; Chiou, Hong-Jen; Liu, Chinsu; Lo, Ming-Yu; Lin, Ching-Yuang; Niu, Dau-Ming

    2012-11-01

    The manifestations of glycogen storage disease type 1a (GSD 1a) are usually so prominent in childhood that it is readily diagnosed by pediatricians. However, a mild form of the disease may only become apparent during adolescence or adulthood. We observed a brother and sister with subtle manifestations of the disease, which was discovered after the brother's son was diagnosed with typical GSD 1a. The adult siblings never suffered from hypoglycemia, had normal fasting blood glucose and liver transaminases at the time of diagnosis, and were taller than average for Chinese. Their only notable disease manifestations were recurrent gouty arthritis associated with hyperuricemia and hyperlipidemia during adolescence. When diagnosed, the brother had multiple benign and malignant hepatic tumors, and died of fulminant metastatic hepatocellular carcinoma 6 months after liver transplantation. p.M121V/p.R83H and p.M121V/p.M121V genotypic constellations of the G6PC gene were identified in this family. Both siblings were homozygous for the newly identified p.M121V mutation. The infant had compound heterozygous mutations, p.R83H and p.M121V. We recommend that mild GSD should be considered in the adolescents with unexplained hyperuricemia and hyperlipidemia, despite the presence of normal blood glucose levels. This report also reminds us that hepatocellular carcinoma could develop even in very mild GSD 1a patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Dual-action hypoglycemic and hypocholesterolemic agents that inhibit glycogen phosphorylase and lanosterol demethylase.

    PubMed

    Harwood, H James; Petras, Stephen F; Hoover, Dennis J; Mankowski, Dayna C; Soliman, Victor F; Sugarman, Eliot D; Hulin, Bernard; Kwon, Younggil; Gibbs, E Michael; Mayne, James T; Treadway, Judith L

    2005-03-01

    Diabetic dyslipidemia requires simultaneous treatment with hypoglycemic agents and lipid-modulating drugs. We recently described glycogen phosphorylase inhibitors that reduce glycogenolysis in cells and lower plasma glucose in ob/ob mice (J. Med. Chem., 41: 2934, 1998). In evaluating the series prototype, CP-320626, in dogs, up to 90% reduction in plasma cholesterol was noted after 2 week treatment. Cholesterol reductions were also noted in ob/ob mice and in rats. In HepG2 cells, CP-320626 acutely and dose-dependently inhibited cholesterolgenesis without affecting fatty acid synthesis. Inhibition occurred together with a dose-dependent increase in the cholesterol precursor, lanosterol, suggesting that cholesterolgenesis inhibition was due to lanosterol 14alpha-demethylase (CYP51) inhibition. In ob/ob mice, acute treatment with CP-320626 resulted in a decrease in hepatic cholesterolgenesis with concomitant lanosterol accumulation, further implicating CYP51 inhibition as the mechanism of cholesterol lowering in these animals. CP-320626 and analogs directly inhibited rhCYP51, and this inhibition was highly correlated with HepG2 cell cholesterolgenesis inhibition (R2 = 0.77). These observations indicate that CP-320626 inhibits cholesterolgenesis via direct inhibition of CYP51, and that this is the mechanism whereby CP-320626 lowers plasma cholesterol in experimental animals. Dual-action glycogenolysis and cholesterolgenesis inhibitors therefore have the potential to favorably affect both the hyperglycemia and the dyslipidemia of type 2 diabetes.

  20. Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV.

    PubMed

    Lee, Yi-Ching; Chang, Chia-Jung; Bali, Deeksha; Chen, Yuan-Tsong; Yan, Yu-Ting

    2011-02-01

    Glycogen storage disease type IV (GSD-IV) is an autosomal recessive disease caused by a deficiency in glycogen-branching enzyme (GBE1) activity that results in the accumulation of amylopectin-like polysaccharide, which presumably leads to osmotic swelling and cell death. This disease is extremely heterogeneous in terms of tissue involvement, age of onset and clinical manifestation. The most severe fetal form presents as hydrops fetalis; however, its pathogenetic mechanisms are largely unknown. In this study, mice carrying a stop codon mutation (E609X) in the Gbe1 gene were generated using a gene-driven mutagenesis approach. Homozygous mutants (Gbe(-/-) mice) recapitulated the clinical features of hydrops fetalis and the embryonic lethality of the severe fetal form of GSD-IV. However, contrary to conventional expectations, little amylopectin accumulation and no cell degeneration were found in Gbe(-/-) embryonic tissues. Glycogen accumulation was reduced in developing hearts of Gbe(-/-)embryos, and abnormal cardiac development, including hypertrabeculation and noncompaction of the ventricular wall, was observed. Further, Gbe1 ablation led to poor ventricular function in late gestation and ultimately caused heart failure, fetal hydrops and embryonic lethality. We also found that the cell-cycle regulators cyclin D1 and c-Myc were highly expressed in cardiomyocytes and likely contributed to cardiomyocyte proliferation and trabeculation/compaction of the ventricular wall. Our results reveal that early molecular events associated with Gbe1 deficiency contribute to abnormal cardiac development and fetal hydrops in the fetal form of GSD-IV.

  1. Guidelines for management of glycogen storage disease type I - European Study on Glycogen Storage Disease Type I (ESGSD I).

    PubMed

    Rake, Jan Peter; Visser, Gepke; Labrune, Philippe; Leonard, James V; Ullrich, Kurt; Smit, G Peter A

    2002-10-01

    Life-expectancy in glycogen storage disease type I (GSD I) has improved considerably. Its relative rarity implies that no metabolic centre has experience of large series of patients and experience with long-term management and follow-up at each centre is limited. There is wide variation in methods of dietary and pharmacological treatment. Based on the data of the European Study on Glycogen Storage Disease Type I, discussions within this study group, discussions with the participants of the international SHS-symposium 'Glycogen Storage Disease Type I and II: Recent Developments, Management and Outcome' (Fulda, Germany; 22-25th November 2000) and on data from the literature, guidelines are presented concerning: (1). diagnosis, prenatal diagnosis and carrier detection; (2). (biomedical) targets; (3). recommendations for dietary treatment; (4). recommendations for pharmacological treatment; (5). metabolic derangement/intercurrent infections/emergency treatment/preparation elective surgery; and (6). management of complications (directly) related to metabolic disturbances and complications which may develop with ageing and their follow-up. In this paper guidelines for the management of GSD I are presented.

  2. Adult Schistosoma mansoni worms positively modulate soluble egg antigen-induced inflammatory hepatic granuloma formation in vivo. Stereological analysis and immunophenotyping of extracellular matrix proteins, adhesion molecules, and chemokines.

    PubMed Central

    Jacobs, W.; Bogers, J.; Deelder, A.; Wéry, M.; Van Marck, E.

    1997-01-01

    Synchronized liver granulomas were induced by injecting Sepharose beads to which SEA soluble egg antigen (SEA) or the concanavalin A binding fraction of SEA had been coupled into a mesenteric vein in naive, single-sex (35 days) and bisexually (28 days) Schistosoma mansoni-infected and Plasmodium berghei-immunized mice. Stereological analysis revealed that peak granuloma formation was already reached 8 days after injection in single-sex infected mice compared with 16 days in naive animals. No difference in granuloma formation between naive and P. berghei-immunized animals and between unisexually and bisexually S. mansoni-infected mice was observed. This suggests that the positive immunomodulatory effect on the granulomogenesis is worm specific and not likely to be due to arousal of the immune system by unrelated factors, nor is it influenced by the gender or degree of maturation of female worms. At all stages in time, the concanavalin A binding-fraction-induced granulomas reached only 65 to 70% of the volume of SEA-induced granulomas. Immunophenotyping of extracellular matrix proteins around deposited heads revealed that fibronectin was the dominant extracellular matrix protein and that also type I and IV collagen and laminin were deposited. Temporal analysis of the expression of the adhesion molecules ICAM-1, LFA-1, VLA-4, and VLA-6 was performed. Morphological evidence is presented for the role of adhesion molecules in the initiation and maintenance of hepatic granuloma formation. The chemokine monocyte chemoattractant protein-1 was expressed in the granuloma and in hepatic artery branches. From these data, it is concluded that adult S. mansoni worms positively modulate schistosomal hepatic granuloma formation in vivo. Adhesion molecules and chemokines play important roles in schistosomal granuloma formation. Images Figure 1 Figure 2 Figure 3 PMID:9176396

  3. Thyroid tumor formation in the male mouse induced by fluopyram is mediated by activation of hepatic CAR/PXR nuclear receptors.

    PubMed

    Rouquié, D; Tinwell, H; Blanck, O; Schorsch, F; Geter, D; Wason, S; Bars, R

    2014-12-01

    Fluopyram, a broad spectrum fungicide, caused an increased incidence of thyroid follicular cell (TFC) adenomas in males at the highest dose evaluated (750ppm equating to 105mg/kg/day) in the mouse oncogenicity study. A series of short-term mechanistic studies were conducted in the male mouse to characterize the mode of action (MOA) for the thyroid tumor formation and to determine if No Observed Effect Levels (NOELs) exist for each key event identified. The proposed MOA consists of an initial effect on the liver by activating the constitutive androstane (Car) and pregnane X (Pxr) nuclear receptors causing increased elimination of thyroid hormones followed by an increased secretion of thyroid stimulating hormone (TSH). This change in TSH secretion results in an increase of TFC proliferation which leads to hyperplasia and eventually adenomas after chronic exposure. Car/Pxr nuclear receptors were shown to be activated as indicated by increased activity of specific Phase I enzymes (PROD and BROD, respectively). Furthermore, evidence of increased T4 metabolism was provided by the induction of phase II enzymes known to preferentially use T4 as a substrate. Additional support for the proposed MOA was provided by demonstrating increased Tsh β transcripts in the pituitary gland. Finally, increased TFC proliferation was observed after 28days of treatment. In these dose-response studies, clear NOELs were established for phase 2 liver enzyme activities, TSH changes and TFC proliferation. Furthermore, compelling evidence for Car/Pxr activation being the molecular initiating event for these thyroid tumors was provided by the absence of the sequential key events responsible for the TCF tumors in Car/Pxr KO mice when exposed to fluopyram. In conclusion, fluopyram thyroid toxicity is mediated by activation of hepatic Car/Pxr receptors and shows a threshold dependent MOA. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Hepatitis Vaccines

    PubMed Central

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  5. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations

    PubMed Central

    Zhai, Liting; Feng, Lingling; Xia, Lin; Yin, Huiyong; Xiang, Song

    2016-01-01

    Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII. PMID:27088557

  6. Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy

    PubMed Central

    Zirin, Jonathan; Nieuwenhuis, Joppe; Perrimon, Norbert

    2013-01-01

    Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8. PMID:24265594

  7. Effects of genetic and environmental factors on muscle glycogen content in Japanese Black cattle

    PubMed Central

    Komatsu, Tomohiko; Shoji, Noriaki; Saito, Kunihiko; Suzuki, Keiichi

    2014-01-01

    Monosaccharides such as glucose contribute to the development of meat flavor upon heating via the Maillard reaction; therefore, monosaccharide content is related to beef palatability. Here, we analyzed the effects of genetic and environmental factors on the content of glycogen, one of the precursors of monosaccharides, in the muscles of 958 fattened Japanese Black cattle from Yamagata Prefecture. Analysis of variance showed that muscle glycogen content was affected by the farm and postmortem periods, but not by sex, slaughter age, slaughter month or number of days detained at the slaughter yard. Additionally, consumption of digestible brown rice feed elevated muscle glycogen levels. Glycogen heritability was estimated to be 0.34, and genetic correlations between glycogen and carcass weight (CW) or beef marbling standard (BMS) were weak. The predicted breeding values varied among paternal lines. These results demonstrated that genetic factors might improve muscle glycogen content and therefore beef palatability, but do not influence CW or BMS. PMID:24716455

  8. Glycogen hyperaccumulation in white muscle fibres of RN- carrier pigs. A biochemical and ultrastructural study.

    PubMed

    Estrade, M; Vignon, X; Rock, E; Monin, G

    1993-02-01

    1. The dominant RN- gene affects meat quality of pigs by increasing the glycogen content of muscle. Glycogen localization was studied in Longissimus dorsi muscle from RN- carrier pigs (RN- pigs) and rn+ rn+ homozygous pigs (rn+ pigs). 2. Ultrastructural study showed an excess of glycogen in the sarcoplasm of white fibres from RN- pigs as compared to rn+ pigs. 3. Lysosome-enriched fractions extracted from muscles contained 6% of the tissue glycogen content in both types of pigs. The distribution of the glycogen particles between sarcoplasm and lysosomes appeared to be similar in both RN- and rn+ pig tissues. 4. White fibres from RN- pigs with an increased glycogen level showed two ultrastructural alterations: the sarcoplasmic compartment was abnormally enlarged and a large proportion of mitochondria was morphologically modified. 5. The RN- gene seems, therefore, to be associated with alterations in the glycolytic metabolism, in the distribution of proteic compartments and in the oxidative metabolism of white muscle fibres.

  9. Dysregulation of multiple facets of glycogen metabolism in a murine model of Pompe disease.

    PubMed

    Taylor, Kristin M; Meyers, Elizabeth; Phipps, Michael; Kishnani, Priya S; Cheng, Seng H; Scheule, Ronald K; Moreland, Rodney J

    2013-01-01

    Pompe disease, also known as glycogen storage disease (GSD) type II, is caused by deficiency of lysosomal acid α-glucosidase (GAA). The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1 to 2 years of age to a slower progressive course that causes significant morbidity and early mortality in children and adults. The aim of this study is to better understand the biochemical consequences of glycogen accumulation in the Pompe mouse. We evaluated glycogen metabolism in heart, triceps, quadriceps, and liver from wild type and several strains of GAA(-/-) mice. Unexpectedly, we observed that lysosomal glycogen storage correlated with a robust increase in factors that normally promote glycogen biosynthesis. The GAA(-/-) mouse strains were found to have elevated glycogen synthase (GS), glycogenin, hexokinase, and glucose-6-phosphate (G-6-P, the allosteric activator of GS). Treating GAA(-/-) mice with recombinant human GAA (rhGAA) led to a dramatic reduction in the levels of glycogen, GS, glycogenin, and G-6-P. Lysosomal glycogen storage also correlated with a dysregulation of phosphorylase, which normally breaks down cytoplasmic glycogen. Analysis of phosphorylase activity confirmed a previous report that, although phosphorylase protein levels are identical in muscle lysates from wild type and GAA(-/-) mice, phosphorylase activity is suppressed in the GAA(-/-) mice in the absence of AMP. This reduction in phosphorylase activity likely exacerbates lysosomal glycogen accumulation. If the dysregulation in glycogen metabolism observed in the mouse model of Pompe disease also occurs in Pompe patients, it may contribute to the observed broad spectrum of disease severity.

  10. Dysregulation of Multiple Facets of Glycogen Metabolism in a Murine Model of Pompe Disease

    PubMed Central

    Taylor, Kristin M.; Meyers, Elizabeth; Phipps, Michael; Kishnani, Priya S.; Cheng, Seng H.; Scheule, Ronald K.; Moreland, Rodney J.

    2013-01-01

    Pompe disease, also known as glycogen storage disease (GSD) type II, is caused by deficiency of lysosomal acid α-glucosidase (GAA). The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1 to 2 years of age to a slower progressive course that causes significant morbidity and early mortality in children and adults. The aim of this study is to better understand the biochemical consequences of glycogen accumulation in the Pompe mouse. We evaluated glycogen metabolism in heart, triceps, quadriceps, and liver from wild type and several strains of GAA−/− mice. Unexpectedly, we observed that lysosomal glycogen storage correlated with a robust increase in factors that normally promote glycogen biosynthesis. The GAA−/− mouse strains were found to have elevated glycogen synthase (GS), glycogenin, hexokinase, and glucose-6-phosphate (G-6-P, the allosteric activator of GS). Treating GAA−/− mice with recombinant human GAA (rhGAA) led to a dramatic reduction in the levels of glycogen, GS, glycogenin, and G-6-P. Lysosomal glycogen storage also correlated with a dysregulation of phosphorylase, which normally breaks down cytoplasmic glycogen. Analysis of phosphorylase activity confirmed a previous report that, although phosphorylase protein levels are identical in muscle lysates from wild type and GAA−/− mice, phosphorylase activity is suppressed in the GAA−/− mice in the absence of AMP. This reduction in phosphorylase activity likely exacerbates lysosomal glycogen accumulation. If the dysregulation in glycogen metabolism observed in the mouse model of Pompe disease also occurs in Pompe patients, it may contribute to the observed broad spectrum of disease severity. PMID:23457523

  11. Candidate Gene Polymorphisms and their Association with Glycogen Content in the Pacific Oyster Crassostrea gigas

    PubMed Central

    She, Zhicai; Li, Li; Qi, Haigang; Song, Kai; Que, Huayong; Zhang, Guofan

    2015-01-01

    Background The Pacific oyster Crassostrea gigas is an important cultivated shellfish that is rich in nutrients. It contains high levels of glycogen, which is of high nutritional value. To investigate the genetic basis of this high glycogen content and its variation, we conducted a candidate gene association analysis using a wild population, and confirmed our results using an independent population, via targeted gene resequencing and mRNA expression analysis. Results We validated 295 SNPs in the 90 candidate genes surveyed for association with glycogen content, 86 of were ultimately genotyped in all 144 experimental individuals from Jiaonan (JN). In addition, 732 SNPs were genotyped via targeted gene resequencing. Two SNPs (Cg_SNP_TY202 and Cg_SNP_3021) in Cg_GD1 (glycogen debranching enzyme) and one SNP (Cg_SNP_4) in Cg_GP1 (glycogen phosphorylase) were identified as being associated with glycogen content. The glycogen content of individuals with genotypes TT and TC in Cg_SNP_TY202 was higher than that of individuals with genotype CC. The transcript abundance of both glycogen-associated genes was differentially expressed in high glycogen content and low glycogen content individuals. Conclusions This study identified three polymorphisms in two genes associated with oyster glycogen content, via candidate gene association analysis. The transcript abundance differences in Cg_GD1 and Cg_GP1 between low- and the high-glycogen content individuals suggests that it is possible that transcript regulation is mediated by variations of Cg_SNP_TY202, Cg_SNP_3021, and Cg_SNP_4. These findings will not only provide insights into the genetic basis of oyster quality, but also promote research into the molecular breeding of oysters. PMID:25951187

  12. Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease.

    PubMed

    DePaoli-Roach, Anna A; Contreras, Christopher J; Segvich, Dyann M; Heiss, Christian; Ishihara, Mayumi; Azadi, Parastoo; Roach, Peter J

    2015-01-09

    Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500-2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a(-/-) and Epm2b(-/-) mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. [Beneficial effect of swimming in thermal waters on muscle glycogen depletion].

    PubMed

    D'Amelio, G; Boninsegna, A; Calzavara, M; Bertolini, M

    1991-05-01

    The effect of swimming in the termal water on muscle glycogen stores was studied. After 30 min the muscle glycogen results in a diminution, but it is not depleted. On the contrary, 30 min of swimming in normal water results in a depletion of muscle glycogene stores. The glycemic homeostasis is well maintained in thermal water, and hypoglicemia occurs only after swimming in normal water.

  14. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH.

    PubMed

    Mirmonsef, Paria; Hotton, Anna L; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T

    2014-01-01

    Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8-11 years. Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization.

  15. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  16. Detection of human muscle glycogen by natural abundance /sup 13/C NMR

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-03-01

    Natural abundance /sup 13/C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated /sup 1/H decoupling was used to obtain decoupled natural abundance /sup 13/C NMR spectra of the C-1 position of muscle glycogen.

  17. Free Glycogen in Vaginal Fluids Is Associated with Lactobacillus Colonization and Low Vaginal pH

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Burgad, Derick; Landay, Alan; Weber, Kathleen M.; Cohen, Mardge; Ravel, Jacques; Spear, Gregory T.

    2014-01-01

    Objective Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH. Methods Free glycogen in lavage samples was quantified. Pyrosequencing of the 16S rRNA gene was used to identify microbiota from 21 African American women collected over 8–11 years. Results Free glycogen levels varied greatly between women and even in the same woman. Samples with the highest free glycogen had a corresponding median genital pH that was significantly lower (pH 4.4) than those with low glycogen (pH 5.8; p<0.001). The fraction of the microbiota consisting of Lactobacillus was highest in samples with high glycogen versus those with low glycogen (median = 0.97 vs. 0.05, p<0.001). In multivariable analysis, having 1 vs. 0 male sexual partner in the past 6 months was negatively associated, while BMI ≥30 was positively associated with glycogen. High concentrations of glycogen corresponded to higher levels of L. crispatus and L. jensenii, but not L. iners. Conclusion These findings show that free glycogen in genital fluid is associated with a genital microbiota dominated by Lactobacillus, suggesting glycogen is important for maintaining genital health. Treatments aimed at increasing genital free glycogen might impact Lactobacillus colonization. PMID:25033265

  18. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  19. [Morphological substantiation for the surgical treatment of chronic hepatic abscess].

    PubMed

    Kotenko, O G; Gomoliako, I V; Gusev, A V; Klochkova, N E; Petrishche, I I; Minich, A A

    2011-03-01

    The results of histological investigation, conducted in 27 patients, operated on for chronic hepatic abscess, are presented. Macroscopic and microscopic characteristic of all zones of hepatic affection is adduced, the mechanisms of formation of pyogenic membrane, zones of infiltration and fibrosis in chronic hepatic abscess formation are delineated.

  20. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    PubMed

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  1. Hepatitis B and Hepatitis C in Pregnancy

    MedlinePlus

    ... signs and symptoms of hepatitis C virus infection? Hepatitis C virus infection causes signs and symptoms similar to those of hepatitis B virus infection. It also can cause no symptoms. Unlike hepatitis B virus infection, most ...

  2. Feature Hepatitis: Hepatitis Can Strike Anyone

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis Can Strike Anyone Past Issues / Spring 2009 Table ... from all walks of life are affected by hepatitis, especially hepatitis C, the most common form of ...

  3. A Rare Case of Persistent Lactic Acidosis in the ICU: Glycogenic Hepatopathy and Mauriac Syndrome

    PubMed Central

    Alvarez, George F.

    2016-01-01

    Mauriac syndrome is a rare disorder that can present with the single feature of glycogenic hepatopathy in children and adults with poorly controlled diabetes mellitus. An often underrecognized finding of glycogenic hepatopathy is lactic acidosis and hyperlactatemia. Primary treatment of glycogenic hepatopathy is improved long-term blood glucose control. Resolution of symptoms and hepatomegaly will occur with improvement in hemoglobin A1C. We present here a case of a young adult female presenting to the intensive care unit with Mauriac syndrome. This case demonstrates exacerbation of lactic acidosis in a patient with glycogenic hepatopathy treated for diabetic ketoacidosis with high dose insulin and dextrose. PMID:27699071

  4. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  5. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep.

    PubMed

    Kong, Jiming; Shepel, P Nicolas; Holden, Clark P; Mackiewicz, Mirek; Pack, Allan I; Geiger, Jonathan D

    2002-07-01

    Sleep is thought to be restorative in function, but what is restored during sleep is unclear. Here we tested the hypothesis that increased periods of wakefulness will result in decreased levels of glycogen, the principal energy store in brain, and with recovery sleep levels of glycogen will be replenished, thus representing a homeostatic component of sleep drive. Using a high-energy focused microwave irradiation method to kill animals and thereby snap-inactivate glycogen-producing and -metabolizing enzymes, we determined, with accuracy and precision, levels of brain glycogen and showed these levels to decrease significantly by approximately 40% in brains of rats deprived of sleep for 12 or 24 hr. Recovery sleep of 15 hr duration after 12 hr of sleep deprivation reversed the decreases in glycogen. Using a novel histochemical method to stain brain glycogen, we found glycogen to be concentrated in white matter; this finding was confirmed biochemically in white matter dissected from rats killed with microwave irradiation. Levels of glycogen, as determined histochemically, were significantly decreased in gray and white matter with sleep deprivation, and these decreases were reversed with recovery sleep. The observed decreases in levels of brain glycogen may be a consequence of increased wakefulness and/or a component integral to the homeostatic drive to sleep.

  6. Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns

    PubMed Central

    Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C.

    2016-01-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well‐defined glycogen immunoreactive signals compared with the conventional periodic acid‐Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3‐CA1 and striatum had a ‘patchy’ appearance with glycogen‐rich and glycogen‐poor astrocytes appearing in alternation. The glycogen patches were more evident with large‐molecule glycogen in young adult mice but they were hardly observable in aged mice (1–2 years old). Our results reveal brain region‐dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532–1545 PMID:27353480

  7. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres.

    PubMed

    Gejl, Kasper D; Ørtenblad, Niels; Andersson, Erik; Plomgaard, Peter; Holmberg, Hans-Christer; Nielsen, Joachim

    2017-05-01

    Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg(-1)  min(-1) ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0

  8. A New Muscle Glycogen Storage Disease Associated with Glycogenin-1 Deficiency

    PubMed Central

    Malfatti, Edoardo; Nilsson, Johanna; Hedberg-Oldfors, Carola; Hernandez-Lain, Aurelio; Michel, Fabrice; Dominguez-Gonzalez, Cristina; Viennet, Gabriel; Akman, H. Orhan; Kornblum, Cornelia; den Bergh, Peter Van; Romero, Norma B.; Engel, Andrew G.; DiMauro, Salvatore; Oldfors, Anders

    2015-01-01

    We describe a slowly progressive myopathy in 7 unrelated adult patients with storage of polyglucosan in muscle fibers. Genetic investigation revealed homozygous or compound heterozygous deleterious variants in the glycogenin-1 gene (GYG1). Most patients showed depletion of glycogenin-1 in skeletal muscle, whereas 1 showed presence of glycogenin-1 lacking the C-terminal that normally binds glycogen synthase. Our results indicate that either depletion of glycogenin-1 or impaired interaction with glycogen synthase underlies this new form of glycogen storage disease that differs from a previously reported patient with GYG1 mutations who showed profound glycogen depletion in skeletal muscle and accumulation of glycogenin-1. PMID:25272951

  9. Sodium tungstate activates glycogen synthesis through a non-canonical mechanism involving G-proteins.

    PubMed

    Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Guinovart, Joan J

    2013-01-31

    Tungstate treatment ameliorates experimental diabetes by increasing liver glycogen deposition through an as yet unidentified mechanism. The signalling mechanism of tungstate was studied in CHOIR cells and primary cultured hepatocytes. This compound exerted its pro-glycogenic effects through a new G-protein-dependent and Tyr-Kinase Receptor-independent mechanism. Chemical or genetic disruption of G-protein signalling prevented the activation of the Ras/ERK cascade and the downstream induction of glycogen synthesis caused by tungstate. Thus, these findings unveil a novel non-canonical signalling pathway that leads to the activation of glycogen synthesis and that could be exploited as an approach to treat diabetes.

  10. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  11. Post-Exercise Muscle Glycogen Repletion in the Extreme: Effect of Food Absence and Active Recovery

    PubMed Central

    Fournier, Paul A.; Fairchild, Timothy J.; Ferreira, Luis D.; Bräu, Lambert

    2004-01-01

    Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one’s ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses. Key Points Even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. During active recovery from exercise, skeletal muscles rich in type II fibers replenish part of their glycogen stores even in the absence of food intake. Post-exercise muscle glycogen synthesis in the

  12. Fractionation of particulate glycogen and bound enzymes using high-performance liquid chromatography.

    PubMed

    Vardanis, A

    1990-05-15

    During a study aimed at the specificity of binding of phosphorylase and glycogen synthase to glycogen particles we investigated the separation of these particles with the technique of high-performance liquid chromatography using several media. The technique allowed relatively rapid fractionations with little, if any, loss of enzyme activity. The basis of some separations was molecular weight of the particle. Of the molecular exclusion media used, Superose 6 had an exclusion limit large enough to accommodate most glycogens but excluded mouse liver and bovine liver glycogen particles. Toyopearl HW-75 F was a medium that could accommodate liver glycogen and gave us reasonably well-defined separation of the particles that carried phosphorylase and glycogen synthase. Separations on ion-exchange columns, that were obviously based on the overall charge of proteins associated with the glycogen particles, were not very effective in terms of allowing the separation of different types of particle. Of all the media used the hydrophobic interaction column was best in terms of separating what appeared to be distinct populations of particles that had definite preferences in terms of binding phosphorylase and glycogen synthase. As expected, these separations were based on the hydrophobic interaction of the proteins associated with the glycogen particles, since particles that had been deproteinized by a cold water extraction procedure did not bind to the column.

  13. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    PubMed

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network.

  14. Hepatitis C Test

    MedlinePlus

    ... Hepatitis C Antibody; Anti-HCV; HCV-PCR; HCV-RNA; Hepatitis C Viral Load Formal name: Viral Hepatitis C Antibody Screen; Viral Hepatitis C RNA by PCR; Hepatitis C Virus Genotype Related tests: ...

  15. Travelers' Health: Hepatitis B

    MedlinePlus

    ... Chapter 3 - Hepatitis A Chapter 3 - Hepatitis C Hepatitis B Francisco Averhoff INFECTIOUS AGENT Hepatitis B is ... their exposures. Map 3-04. Prevalence of chronic hepatitis B virus infection among adults PDF Version (printable) ...

  16. [Renal involvement in glycogen storage disease type 1: Practical issues].

    PubMed

    Ben Chehida, Amel; Bensmaïl, Takoua; Ben Rehouma, Faten; Ben Abdelaziz, Rim; Azzouz, Hatem; Boudabbous, Hela; Slim Abdelmoula, Mohamed; Abdelhak, Sonia; Kaabachi, Naziha; Ben Turkia, Hadhami; Tebib, Néji

    2015-07-01

    To investigate risk factors of renal complications in glycogen storage disease type I, in order to identify practical implications for renal preservation. A retrospective study of 38 patients with glycogen storage disease type I. The patients studied were 8.6 years old in average (1.5 to 22 years) and were followed during 7.4 ± 4.5 years. Hypercalciuria was detected in 23 patients and was related to acidosis (P=0.028), higher lactate levels (5.9 ± 3.5 versus 3.7 ± 1.7 mmol/L; P=0.013) and smaller height (-2.1 ± 1.5 SD versus -0.8 ± 1.5 SD; P=0.026). Urolithiasis was diagnosed in 7 cases. Glomerular disease (19/38) was more frequent in cases with severe hypertriglyceridemia (P=0.042) and occurred at an older age (P=0.007). Microalbuminuria occurred in 15/31 cases; ACE inhibitors were prescribed in only 8 cases. The frequency of renal complications did not differ according to the diet group (continuous enteral feeding or uncooked starch). Logistic regression concluded as risk factors: lactic acidosis for tubular disease and age>10 years for glomerular disease. Renal involvement is common in glycogen storage disease type I patients. Tubular abnormalities are precocious, related to lactic acidosis and may be detected by monitoring of urinary calcium. Glomerular hyperfiltration is the first stage of a progressive glomerular disease and is related to age. Practical implications for renal preservation are discussed based on our results and literature. Copyright © 2015 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  17. Influence of skeletal muscle glycogen on passive rewarming after hypothermia.

    PubMed

    Neufer, P D; Young, A J; Sawka, M N; Muza, S R

    1988-08-01

    To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.

  18. Contribution of dietary starch to hepatic and systemic carbohydrate fluxes in European seabass (Dicentrarchus labrax L.).

    PubMed

    Viegas, Ivan; Rito, João; Jarak, Ivana; Leston, Sara; Caballero-Solares, Albert; Metón, Isidoro; Pardal, Miguel A; Baanante, Isabel V; Jones, John G

    2015-05-14

    In the present study, the effects of partial substitution of dietary protein by digestible starch on endogenous glucose production were evaluated in European seabass (Dicentrarchus labrax). The fractional contribution of dietary carbohydrates v. gluconeogenesis to blood glucose appearance and hepatic glycogen synthesis was quantified in two groups of seabass fed with a diet containing 30% digestible starch (DS) or without a carbohydrate supplement as the control (CTRL). Measurements were performed by transferring the fish to a tank containing water enriched with 5% (2)H2O over the last six feeding days, and quantifying the incorporation of (2)H into blood glucose and hepatic glycogen by (2)H NMR. For CTRL fish, gluconeogenesis accounted for the majority of circulating glucose while for the DS fish, this contribution was significantly lower (CTRL 85 (SEM 4) % v. DS 54 (SEM 2) %; P < 0.001). Hepatic glycogen synthesis via gluconeogenesis (indirect pathway) was also significantly reduced in the DS fish, in both relative (CTRL 100 (SEM 1) % v. DS 72 (SEM 1) %; P < 0.001) and absolute terms (CTRL 28 (SEM 1) v. DS 17 (sem 1) μmol/kg per h; P < 0.001). A major fraction of the dietary carbohydrates that contributed to blood glucose appearance (33 (sem 1) % of the total 47 (SEM 2) %) had undergone exchange with hepatic glucose 6-phosphate. This indicated the simultaneous activity of hepatic glucokinase and glucose 6-phosphatase. In conclusion, supplementation of digestible starch resulted in a significant reduction of gluconeogenic contributions to systemic glucose appearance and hepatic glycogen synthesis.

  19. FDG PET/CT in Type I Glycogen Storage Disease.

    PubMed

    Manca, Chloé; Claudin, Marine; Belle, Arthur; Marie, Pierre Yves; Verger, Antoine

    2016-04-01

    Type I glycogen storage disease (GSD) is a rare autosomal recessive disorder caused by glucose-6-phosphatase deficiency. We report herein the particular pattern provided by FDG PET imaging in a 33-year-old patient with type Ib GSD. PET images yielded evidence of a pulmonary infectious focus as well as of: (1) a dramatically enlarged liver leading to a high global FDG uptake, (2) increased bone marrow activity, (3) splenomegalia leading to a high global spleen uptake, (4) a diffuse enhancement in muscle FDG uptake.

  20. Glycogen synthase kinase 3 in the world of cell migration.

    PubMed

    Sun, Tong; Rodriguez, Marbelys; Kim, Leung

    2009-12-01

    Glycogen synthase kinase 3 (GSK3) is one of the few master switch kinases that regulate many aspects of cell functions. Recent studies on cell polarization and migration have shown that GSK3 is also essential for proper regulation of these processes. GSK3 influences cell migration as one of the regulators of the spatiotemporally controlled dynamics of the actin cytoskeleton, microtubules, and cell-to-matrix adhesions. In this mini-review, the effects of GSK3 on these three aspects of cell migration will be discussed.

  1. Priming Effect of a Morning Meal on Hepatic Glucose Disposition Later in the Day.

    PubMed

    Moore, Mary Courtney; Smith, Marta S; Farmer, Ben; Kraft, Guillaume; Shiota, Masakazu; Williams, Phillip E; Cherrington, Alan D

    2017-02-07

    We used hepatic balance and tracer ((3)H-glucose) techniques to examine the impact of "breakfast" on hepatic glucose metabolism later in the same day. From 0-240 min, 2 groups (n=9 each) of conscious dogs received a duodenal infusion of glucose (GLC) or saline (SAL), then fasted from 240-360 min. Three dogs from each group were euthanized for tissue collection at 360 min. From 360-600 min, the remaining dogs underwent a hyperinsulinemic (4x basal) hyperglycemic clamp (arterial blood glucose 146±2 mg/dL) with portal glucose infusion. The total glucose infusion rate was 14% greater in GLC vs SAL (AUC360-600min 2979±296 vs 2597±277 mg/kg, respectively). The rates (mg(.)kg(-1.)min(-1)) of hepatic glucose uptake (5.8±0.8 vs 3.2±0.3) and glycogen storage (4.7±0.6 vs 2.9±0.3) during the clamp were markedly greater in GLC vs SAL. Hepatic glycogen content was ≈50% greater, glycogen synthase activity was ≈50% greater, glycogen phosphorylase activity was ≈50% lower, and the amount of p-glycogen synthase was 34% lower, indicating activation of the enzyme, in GLC vs. SAL. Thus, morning GLC primed the liver to extract and store more glucose in the presence of hyperinsulinemic hyperglycemia later in the same day, indicating that breakfast enhances the liver's role in glucose disposal in subsequent same-day meals.

  2. Starch Binding Domain-containing Protein 1/Genethonin 1 Is a Novel Participant in Glycogen Metabolism*

    PubMed Central

    Jiang, Sixin; Heller, Brigitte; Tagliabracci, Vincent S.; Zhai, Lanmin; Irimia, Jose M.; DePaoli-Roach, Anna A.; Wells, Clark D.; Skurat, Alexander V.; Roach, Peter J.

    2010-01-01

    Stbd1 is a protein of previously unknown function that is most prevalent in liver and muscle, the major sites for storage of the energy reserve glycogen. The protein is predicted to contain a hydrophobic N terminus and a C-terminal CBM20 glycan binding domain. Here, we show that Stbd1 binds to glycogen in vitro and that endogenous Stbd1 locates to perinuclear compartments in cultured mouse FL83B or Rat1 cells. When overexpressed in COSM9 cells, Stbd1 concentrated at enlarged perinuclear structures, co-localized with glycogen, the late endosomal/lysosomal marker LAMP1 and the autophagy protein GABARAPL1. Mutant Stbd1 lacking the N-terminal hydrophobic segment had a diffuse distribution throughout the cell. Point mutations in the CBM20 domain did not change the perinuclear localization of Stbd1, but glycogen was no longer concentrated in this compartment. Stable overexpression of glycogen synthase in Rat1WT4 cells resulted in accumulation of glycogen as massive perinuclear deposits, where a large fraction of the detectable Stbd1 co-localized. Starvation of Rat1WT4 cells for glucose resulted in dissipation of the massive glycogen stores into numerous and much smaller glycogen deposits that retained Stbd1. In vitro, in cells, and in animal models, Stbd1 consistently tracked with glycogen. We conclude that Stbd1 is involved in glycogen metabolism by binding to glycogen and anchoring it to membranes, thereby affecting its cellular localization and its intracellular trafficking to lysosomes. PMID:20810658

  3. Validation of musculoskeletal ultrasound to assess and quantify muscle glycogen content. A novel approach.

    PubMed

    Hill, John C; Millán, Iñigo San

    2014-09-01

    Glycogen storage is essential for exercise performance. The ability to assess muscle glycogen levels should be an important advantage for performance. However, skeletal muscle glycogen assessment has only been available and validated through muscle biopsy. We have developed a new methodology using high-frequency ultrasound to assess skeletal muscle glycogen content in a rapid, portable, and noninvasive way using MuscleSound (MuscleSound, LCC, Denver, CO) technology. To validate the utilization of high-frequency musculoskeletal ultrasound for muscle glycogen assessment and correlate it with histochemical glycogen quantification through muscle biopsy. Twenty-two male competitive cyclists (categories: Pro, 1-4; average height, 183.7 ± 4.9 cm; average weight, 76.8 ± 7.8 kg) performed a steady-state test on a cyclergometer for 90 minutes at a moderate to high exercise intensity, eliciting a carbohydrate oxidation of 2-3 g·min⁻¹ and a blood lactate concentration of 2 to 3 mM. Pre- and post-exercise glycogen content from rectus femoris muscle was measured using histochemical analysis through muscle biopsy and through high-frequency ultrasound scans using MuscleSound technology. Correlations between muscle biopsy glycogen histochemical quantification (mmol·kg⁻¹) and high-frequency ultrasound methodology through MuscleSound technology were r = 0.93 (P < 0.0001) pre-exercise and r = 0.94 (P < 0.0001) post-exercise. The correlation between muscle biopsy glycogen quantification and high-frequency ultrasound methodology for the change in glycogen from pre- and post-exercise was r = 0.81 (P < 0.0001). These results demonstrate that skeletal muscle glycogen can be measured quickly and noninvasively through high-frequency ultrasound using MuscleSound technology.

  4. Multiple requirements for glycogen synthesis by hepatocytes isolated from fasted rats.

    PubMed

    Chen, K S; Lardy, H A

    1985-11-25

    Glycogen synthesis from various combinations of substrates by hepatocytes isolated from rats fasted 24 h was studied. As reported by Katz et al. (Katz, J., Golden, S., and Wals, P. A. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3433-3437), appreciable rates of glycogen synthesis occurred only in the presence of gluconeogenic precursors and one of several amino acids, which includes L-glutamine. L-Leucine had negligible effects on glycogen synthesis from 20 mM dihydroxyacetone and/or 15 mM glucose when L-glutamine was not added to the medium. In the presence of 10 mM L-glutamine, L-leucine greatly increased glycogen synthesis from these substrates. alpha-Ketoisocaproate was ineffective, as was oleate. NH4Cl depressed glycogen synthesis from 10 mM glucose plus 20 mM dihydroxyacetone in the absence of added L-glutamine and enhanced that in its presence, but these effects were weak compared to those of L-leucine. The amino acid analogues L-norvaline and L-norleucine exerted effects that were similar to those exerted by L-leucine. Under all conditions studied, cycloheximide and puromycin inhibited net glycogen synthesis. Cycloheximide did not stimulate gluconeogenesis from dihydroxyacetone, or phosphorylase in hepatocytes from starved rats, or glycogenolysis in hepatocytes from fed rats. Puromycin, however, stimulated glycogenolysis in hepatocytes from fed rats. Glycogen synthesis from 20 mM dihydroxyacetone proceeds with a pronounced initial lag phase that can be shortened by incubation of cells with glutamine plus leucine before addition of dihydroxyacetone. Concurrent measurements of glycogen synthesis, glycogen synthase, and gluconeogenesis under different conditions reveal that in addition to protein synthesis, activation of glycogen synthase, which must occur to allow glycogen synthesis in hepatocytes, requires a second component which can be satisfied by addition of dihydroxyacetone or fructose to the cells.

  5. Effect of stress on hepatic 11beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism.

    PubMed

    Altuna, María Eugenia; Lelli, Sandra Marcela; San Martín de Viale, Leonor C; Damasco, María Cristina

    2006-10-01

    Stress activates the synthesis and secretion of catecholamines and adrenal glucocorticoids, increasing their circulating levels. In vivo, hepatic 11beta-hydroxysteroid dehydrogenase 1 (HSD1) stimulates the shift of 11-dehydrocorticosterone to corticosterone, enhancing active glucocorticoids at tissue level. We studied the effect of 3 types of stress, 1 induced by bucogastric overload with 200 mmol/L HCl causing metabolic acidosis (HCl), the second induced by bucogastric overload with 0.45% NaCl (NaCl), and the third induced by simulated overload (cannula), on the kinetics of hepatic HSD1 of rats and their influence on the activity of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase, glycemia, and glycogen deposition. Compared with unstressed controls, all types of stress significantly increased HSD1 activity (146% cannula, 130% NaCl, and 253% HCl), phosphoenolpyruvate carboxykinase activity (51% cannula, 48% NaCl, and 86% HCl), and glycemia (29% cannula, 30% NaCl, and 41% HCl), but decreased hepatic glycogen (68% cannula, 68% NaCl, and 78% HCl). Owing to these results, we suggest the following events occur when stress is induced: an increase in hepatic HSD1 activity, augmented active glucocorticoid levels, increased gluconeogenesis, and glycemia. Also involved are the multiple events indirectly related to glucocorticoids, which lead to the depletion of hepatic glycogen deposits, thereby contributing to increased glycemia. This new approach shows that stress increments the activity of hepatic HSD1 and suggests that this enzyme could be involved in the development of the Metabolic Syndrome.

  6. Hepatitis A

    MedlinePlus

    ... inflammation of the liver.” This inflammation can be caused by a wide variety of toxins, drugs, and metabolic diseases, as well as infection. There are at least 5 hepatitis viruses. Hepatitis A is contracted when a child eats food or drinks water that is contaminated with the virus or has ...

  7. Hepatitis A

    MedlinePlus

    ... MW, Sheffield JS. Prevention and management of viral hepatitis in pregnancy. Obstetrics and Gynecology Clinics of North America . 2014;41(4):573–592. [4] Centers for Disease Control and Prevention. Chapter 9: Hepatitis A. In Hamborsky J, Kroger A, Wolfe S, eds. ...

  8. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa.

    PubMed

    Li, Xin-Hua; Gong, Qi-Ming; Ling, Yun; Huang, Chong; Yu, De-Min; Gu, Lei-Lei; Liao, Xiang-Wei; Zhang, Dong-Hua; Hu, Xi-Qi; Han, Yue; Kong, Xiao-Fei; Zhang, Xin-Xin

    2014-12-05

    We studied two patients from a nonconsanguineous family with life-long abnormal liver function, hepatomegaly and abnormal fatty acid profiles. Abnormal liver function, hypoglycemia and muscle weakness are observed in various genetic diseases, including medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and glycogen storage diseases. The proband showed increased free fatty acids, mainly C8 and C10, resembling fatty acid oxidation disorder. However, no mutation was found in ACADM and ACADL gene. Sequencing of theamylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) gene showed that both patients were compound heterozygotes for c.118C > T (p.Gln40X) and c.753_756 del CAGA (p.Asp251Glufsx29), whereas their parents were each heterozygous for one of these mutations. The AGL protein was undetectable in EBV-B cells from the two patients. Transcriptome analysis demonstrated a significant different pattern of gene expression in both of patients’ cells, including genes involving in the PPAR signaling pathway, fatty acid biosynthesis, lipid synthesis and visceral fat deposition and metabolic syndrome. This unique gene expression pattern is probably due to the absence of AGL, which potentially accounts for the observed clinical phenotypes of hyperlipidemia and hepatocyte steatosis in glycogen storage disease type IIIa.

  9. Glycogen storage disease type I: clinical and laboratory profile.

    PubMed

    Santos, Berenice L; Souza, Carolina F M de; Schuler-Faccini, Lavinia; Refosco, Lilia; Epifanio, Matias; Nalin, Tatiele; Vieira, Sandra M G; Schwartz, Ida V D

    2014-01-01

    To characterize the clinical, laboratory, and anthropometric profile of a sample of Brazilian patients with glycogen storage disease type I managed at an outpatient referral clinic for inborn errors of metabolism. This was a cross-sectional outpatient study based on a convenience sampling strategy. Data on diagnosis, management, anthropometric parameters, and follow-up were assessed. Twenty-one patients were included (median age 10 years, range 1-25 years), all using uncooked cornstarch therapy. Median age at diagnosis was 7 months (range, 1-132 months), and 19 patients underwent liver biopsy for diagnostic confirmation. Overweight, short stature, hepatomegaly, and liver nodules were present in 16 of 21, four of 21, nine of 14, and three of 14 patients, respectively. A correlation was found between height-for-age and BMI-for-age Z-scores (r=0.561; p=0.008). Diagnosis of glycogen storage disease type I is delayed in Brazil. Most patients undergo liver biopsy for diagnostic confirmation, even though the combination of a characteristic clinical presentation and molecular methods can provide a definitive diagnosis in a less invasive manner. Obesity is a side effect of cornstarch therapy, and appears to be associated with growth in these patients. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  10. Zero-order ultrasensitivity in the regulation of glycogen phosphorylase.

    PubMed Central

    Meinke, M H; Bishop, J S; Edstrom, R D

    1986-01-01

    The activity of glycogen phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) is controlled by a cyclic phosphorylation-dephosphorylation process through the action of the interconverting enzymes, phosphorylase b kinase (ATP:phosphorylase-b phosphotransferase, EC 2.7.1.38) and phosphorylase a phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17). In muscle tissue, the combined concentration of the activated (phospho-) form, phosphorylase a, and the nonactivated (dephospho-) form, phosphorylase b, is substantially greater than the Km of either of the interconverting enzymes for its phosphorylase substrate. It has been predicted that, under such a set of conditions, a sensitivity amplification will occur for phosphorylase regulation due to the zero-order ultrasensitivity effect [LaPorte, D. C. & Koshland, D. E., Jr. (1983) Nature (London) 305, 286-290]. The sensitivity amplification will enhance the responsiveness of the phosphorylase interconversion cycle to changes in the ratio of activities of the kinase to phosphatase. We have studied the cyclic interconversion process using purified muscle enzymes in steady-state reactions and found that there is an enhancement in the control sensitivity of the process due to the zero-order ultrasensitivity effect. The potential for the in vivo enhancement of sensitivity in glycogen degradation by this effect is discussed. PMID:3458247

  11. Technical note: A method for isolating glycogen granules from ruminal protozoa for further characterization

    USDA-ARS?s Scientific Manuscript database

    Evaluation of physical, compositional, and digestion characteristics of protozoal glycogen is best performed on a pure substrate in order to avoid interference from other cell components. A method for isolating protozoal glycogen without use of detergents was developed. Rumen inoculum was incubated ...

  12. Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery.

    PubMed

    Duarte, João M N; Morgenthaler, Florence D; Gruetter, Rolf

    2017-01-12

    Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.

  13. Glycogen accumulation and degradation by the trichomonads Trichomonas vaginalis and Trichomonas tenax.

    PubMed

    Nielsen, Tyler J; Pradhan, Prajakta; Brittingham, Andrew; Wilson, Wayne A

    2012-01-01

    Several species of trichomonad have been shown to accumulate significant quantities of glycogen during growth, suggesting an important role for this compound in cell physiology. We provide the first analysis of the changes in glycogen content and glycogen phosphorylase activity that occur during in vitro growth of two trichomonad species: Trichomonas vaginalis and Trichomonas tenax. Both species accumulated glycogen following inoculation into fresh medium and utilized this compound during logarithmic growth. Glycogen phosphorylase activity also varied during growth in a species-specific manner. The expression of phosphorylase genes in T. vaginalis remained constant during growth and thus transcriptional control did not explain the observed fluctuations in phosphorylase activity. After cloning, expression, and purification, two recombinant glycogen phosphorylases from T. vaginalis and one recombinant glycogen phosphorylase from T. tenax had robust activity and, in contrast to many other eukaryotic glycogen phosphorylases, did not appear to be regulated by reversible protein phosphorylation. Furthermore, allosteric regulation, if present, was not mediated by compounds known to impact the activity of better characterized phosphorylases.

  14. Location of glycogen in spermatids and spermatozoa of the shipworm, Bankia australis (Teredinidae, Bivalvia, Mollusca).

    PubMed

    Popham, J D; Dickson, M R

    1975-12-18

    The periodic acid-thiocarbohydrazide-silver proteinate technique and alpha-amylase digestion were used to locate glycogen in the spermatids and sperms of the bivalve Bankia australis. Glycogen was found in the middle piece and around the acrosome in spermatozoa, apparently randomly scattered throughout the cytoplasm of young spermatids, and in a cytoplasmic bead in old spermatids.

  15. Glycogen serves as an energy source that maintains astrocyte cell proliferation in the neonatal telencephalon.

    PubMed

    Gotoh, Hitoshi; Nomura, Tadashi; Ono, Katsuhiko

    2017-06-01

    Large amounts of energy are required when cells undergo cell proliferation and differentiation for mammalian neuronal development. Early neonatal mice face transient starvation and use stored energy for survival or to support development. Glycogen is a branched polysaccharide that is formed by glucose, and serves as an astrocytic energy store for rapid energy requirements. Although it is present in radial glial cells and astrocytes, the role of glycogen during development remains unclear. In the present study, we demonstrated that glycogen accumulated in glutamate aspartate transporter (GLAST)+ astrocytes in the subventricular zone and rostral migratory stream. Glycogen levels markedly decreased after birth due to the increase of glycogen phosphorylase, an essential enzyme for glycogen metabolism. In primary cultures and in vivo, the inhibition of glycogen phosphorylase decreased the proliferation of astrocytic cells. The number of cells in the G1 phase increased in combination with the up-regulation of cyclin-dependent kinase inhibitors or down-regulation of the phosphorylation of retinoblastoma protein (pRB), a determinant for cell cycle progression. These results suggest that glycogen accumulates in astrocytes located in specific areas during the prenatal stage and is used as an energy source to maintain normal development in the early postnatal stage.

  16. Brain Glycogen Decreases During Intense Exercise Without Hypoglycemia: The Possible Involvement of Serotonin.

    PubMed

    Matsui, Takashi; Soya, Shingo; Kawanaka, Kentaro; Soya, Hideaki

    2015-07-01

    Brain glycogen stored in astrocytes, a source of lactate as a neuronal energy source, decreases during prolonged exercise with hypoglycemia. However, brain glycogen dynamics during exercise without hypoglycemia remain unknown. Since intense exercise increases brain noradrenaline and serotonin as known inducers for brain glycogenolysis, we hypothesized that brain glycogen decreases with intense exercise not accompanied by hypoglycemia. To test this hypothesis, we employed a well-established acute intense exercise model of swimming in rats. Rats swam for fourteen 20 s bouts with a weight equal to 8 % of their body mass and were sacrificed using high-power (10 kW) microwave irradiation to inactivate brain enzymes for accurate detection of brain glycogen and monoamines. Intense exercise did not alter blood glucose, but did increase blood lactate levels. Immediately after exercise, brain glycogen decreased and brain lactate increased in the hippocampus, cerebellum, cortex, and brainstem. Simultaneously, serotonin turnover in the hippocampus and brainstem mutually increased and were associated with decreased brain glycogen. Intense swimming exercise that does not induce hypoglycemia decreases brain glycogen associated with increased brain lactate, implying an importance of glycogen in brain energetics during intense exercise even without hypoglycemia. Activated serotonergic regulation is a possible underlying mechanism for intense exercise-induced glycogenolysis at least in the hippocampus and brainstem.

  17. Cinnamon increases liver glycogen in an animal model of insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Cinnamon, and aqueous polyphenol extracts of cinnamon, improve insulin sensitivity in vitro, and in animal and human studies. Given the relationship between the glucose/insulin system and glycogen metabolism, the objective of this study was to determine the effects of cinnamon on glycogen synthesis...

  18. Effects of organosilicon compounds, bearing molecular substitutions, on mouse liver glycogen

    SciTech Connect

    Gulley, C.

    1987-01-01

    This study was conducted to observe the effects of organosilicon compounds on the liver glycogen levels of Jax Albino mice. Tris(trimethylisilyl) methylcarboxylic acid, hexaphenyldisilane and tris(trimethylsilyl) bromomethane were fed to mice ad libitum in an organosilicon compound-laboratory chow mixture for 3 one week periods. At the ends of each period, the mice were sacrificed, their livers removed, glycogen was extracted, and subjected to acid hydrolysis. The concentration of free glucose units were determined using the 3,5 dinitrosalicylate reagent. Compared with the controls, tris(trimethylsilyl) methylcarboxylic acid caused a slight depletion of liver glycogen. Hexaphenyldisilane caused a greater depletion of the glycogen stores, and tris(trimethylsilyl) bromomethane caused the greatest depletion of the glycogen stores.

  19. Dichloroacetate inhibits glycolysis and augments insulin-stimulated glycogen synthesis in rat muscle.

    PubMed Central

    Clark, A S; Mitch, W E; Goodman, M N; Fagan, J M; Goheer, M A; Curnow, R T

    1987-01-01

    The decrease in plasma lactate during dichloroacetate (DCA) treatment is attributed to stimulation of lactate oxidation. To determine whether DCA also inhibits lactate production, we measured glucose metabolism in muscles of fed and fasted rats incubated with DCA and insulin. DCA increased glucose-6-phosphate, an allosteric modifier of glycogen synthase, approximately 50% and increased muscle glycogen synthesis and glycogen content greater than 25%. Lactate release fell; inhibition of glycolysis accounted for greater than 80% of the decrease. This was associated with a decrease in intracellular AMP, but no change in citrate or ATP. When lactate oxidation was increased by raising extracellular lactate, glycolysis decreased (r = - 0.91), suggesting that lactate oxidation regulates glycolysis. When muscle lactate production was greatly stimulated by thermal injury, DCA increased glycogen synthesis, normalized glycogen content, and inhibited glycolysis, thereby reducing lactate release. The major effect of DCA on lactate metabolism in muscle is to inhibit glycolysis. PMID:3543056

  20. Effect of tunicamycin on glycogen accumulation in the stratum intermedium and odontoblasts of rat incisor.

    PubMed

    Chardin, H; Septier, D; Lecolle, S; Goldberg, M

    1989-06-01

    Repeated injection of rats with tunicamycin over two days induced a 1- to 5-fold increase in glycogen. This accumulation occurred in the stratum intermedium of the enamel organ and in young secretory odontoblasts. In rats injected over 3 days, the number of glycogen particles was at least 10 times larger than in control rats, and large glycogen accumulations were observed in the cytosol of these two groups of cells. These results were obtained by staining with periodic acid-thiocarbohydrazide and silver proteinate, a specific method for the detection of glycoconjugates containing vic-glycol groups. The existence of a relationship between these local cytosolic accumulations of glycogen and the developmental stage of certain groups of cells was shown by the changes that occurred in glycogen distribution. The present results suggest that the stratum intermedium supplies energy for precursor transport.

  1. Restoration of anabolic deficit and muscle glycogen consumption in competitive orienteering.

    PubMed

    Johansson, C; Tsai, L; Hultman, E; Tegelman, R; Pousette, A

    1990-06-01

    Consumption and restoration of muscle glycogen and changes in anabolic and catabolic steroid hormones were analyzed in five male elite orienteers during and after an orienteering competition. The magnitude of glycogen consumption and pronounced increase in serum-cortisol during the orienteering race reflect the great muscular output demands during forest running. The free testosterone/cortisol ratio was normalized to the initial level within four hours post-exercise. Synchronously, only 25% of the muscle glycogen loss was restored. Within 24 hours post-exercise all runners showed normalized levels of testosterone, cortisol and free testosterone/cortisol ratio. The glycogen content was also restored except in one of the runners. We conclude that daily orienteering competitions per se do not seem to create risks for developing a state of hormonal imbalance or significant decrease in glycogen when the carbohydrate supply is appropriate.

  2. Chronic overeating impairs hepatic glucose uptake and disposition.

    PubMed

    Coate, Katie C; Kraft, Guillaume; Shi