Sample records for hepatic p450 isoforms

  1. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats.

    PubMed

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban

    2016-11-01

    The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases.

  2. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats

    PubMed Central

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban

    2016-01-01

    The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases. PMID:27882225

  3. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase.

    PubMed

    Henderson, Colin J; Otto, Diana M E; Carrie, Dianne; Magnuson, Mark A; McLaren, Aileen W; Rosewell, Ian; Wolf, C Roland

    2003-04-11

    Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment.

  4. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leoni, Claudia; Buratti, Franca M.; Testai, Emanuela

    Although fenthion (FEN) is widely used as a broad spectrum insecticide on various crops in many countries, very scant data are available on its biotransformation in humans. In this study the in vitro human hepatic FEN biotransformation was characterized, identifying the relative contributions of cytochrome P450 (CYPs) and/or flavin-containing monooxygenase (FMOs) by using single c-DNA expressed human enzymes, human liver microsomes and cytosol and CYP/FMO-specific inhibitors. Two major metabolites, FEN-sulfoxide and FEN-oxon (FOX), are formed by some CYPs although at very different levels, depending on the relative CYP hepatic content. Formation of further oxidation products and the reduction of FEN-sulfoxidemore » back to FEN by the cytosolic aldehyde oxidase enzyme were ruled out. Comparing intrinsic clearance values, FOX formation seemed to be favored and at low FEN concentrations CYP2B6 and 1A2 are mainly involved in its formation. At higher levels, a more widespread CYP involvement was evident, as in the case of FEN-sulfoxide, although a higher efficiency of CYP2C family was suggested. Hepatic FMOs were able to catalyze only sulfoxide formation, but at low FEN concentrations hepatic FEN sulfoxidation is predominantly P450-driven. Indeed, the contribution of the hepatic isoforms FMO{sub 3} and FMO{sub 5} was generally negligible, although at high FEN concentrations FMO's showed activities comparable to the active CYPs, accounting for up to 30% of total sulfoxidation. Recombinant FMO{sub 1} showed the highest efficiency with respect to CYPs and the other FMOs, but it is not expressed in the adult human liver. This suggests that FMO{sub 1}-catalysed sulfoxidation may represent the major extra-hepatic pathway of FEN biotransformation.« less

  5. WhichP450: a multi-class categorical model to predict the major metabolising CYP450 isoform for a compound

    NASA Astrophysics Data System (ADS)

    Hunt, Peter A.; Segall, Matthew D.; Tyzack, Jonathan D.

    2018-02-01

    In the development of novel pharmaceuticals, the knowledge of how many, and which, Cytochrome P450 isoforms are involved in the phase I metabolism of a compound is important. Potential problems can arise if a compound is metabolised predominantly by a single isoform in terms of drug-drug interactions or genetic polymorphisms that would lead to variations in exposure in the general population. Combined with models of regioselectivities of metabolism by each isoform, such a model would also aid in the prediction of the metabolites likely to be formed by P450-mediated metabolism. We describe the generation of a multi-class random forest model to predict which, out of a list of the seven leading Cytochrome P450 isoforms, would be the major metabolising isoforms for a novel compound. The model has a 76% success rate with a top-1 criterion and an 88% success rate for a top-2 criterion and shows significant enrichment over randomised models.

  6. Does Compound I Vary Significantly between Isoforms of Cytochrome P450?

    PubMed Central

    2011-01-01

    The cytochrome P450 (CYP) enzymes are important in many areas, including pharmaceutical development. Subtle changes in the electronic structure of the active species, Compound I, have been postulated previously to account partly for the experimentally observed differences in reactivity between isoforms. Current predictive models of CYP metabolism typically assume an identical Compound I in all isoforms. Here we present a method to calculate the electronic structure and to estimate the Fe–O bond enthalpy of Compound I, and apply it to several human and bacterial CYP isoforms. Conformational flexibility is accounted for by sampling large numbers of structures from molecular dynamics simulations, which are subsequently optimized with density functional theory (B3LYP) based quantum mechanics/molecular mechanics. The observed differences in Compound I between human isoforms are small: They are generally smaller than the spread of values obtained for the same isoform starting from different initial structures. Hence, it is unlikely that the variation in activity between human isoforms is due to differences in the electronic structure of Compound I. A larger difference in electronic structure is observed between the human isoforms and P450cam and may be explained by the slightly different hydrogen-bonding environment surrounding the cysteinyl sulfur. The presence of substrate in the active site of all isoforms studied appears to cause a slight decrease in the Fe–O bond enthalpy, apparently due to displacement of water out of the active site, suggesting that Compound I is less stable in the presence of substrate. PMID:21863858

  7. Effect of p-amino-diphenyl ethers on hepatic microsomal cytochrome P450.

    PubMed

    Jiang, Huidi; Xuan, Guida

    2003-09-01

    The present paper aims to investigate whether p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450. Mice were given daily intraperitoneal (ip) injections of p-amino-2',4'-dichlorodiphenyl ether (0.25 mmol/kg) or p-amino-4'-methyldiphenyl ether (0.25 mmol/kg) for 4 days and tested at 24 h and 48 h after the last dose injection. The results showed the mice pentobarbital sleeping time was shorter and the P450 content of hepatic microsome increased significantly in the group pretreated with p-amino-4'-methyldiphenyl ether when compared with the control group, while in mice pretreated with p-amino-2',4'-dichlorodiphenyl ether the hepatic microsome P450 content increased but the pentobarbital sleeping time was extended in clear contrast to the control group. The sleeping time of the phenobarbital group (80 mg/kg daily ip injection for 4 days) was shortened at 24 h after the last injection with increased P450 content of hepatic microsome, but it showed no difference at 48 h. The zoxazolamine-paralysis times of mice treated with p-amino-2',4'-dichlorodiphenyl ether were longer than those of the control mice, while the same dose of zoxazolamine did not lead to paralysis in mice pretreated with BNF. p-Amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether inhibited the activity of 7-ethoxyresorufin O-deethylase from rat hepatic microsome induced by BNF in vitro by 70.0% and 50.1% respectively. These results suggest that p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450.

  8. High-Fat Diets Alter the Modulatory Effects of Xenobiotics on Cytochrome P450 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Webb-Robertson, Bobbie-Jo M.; Clauss, Therese R.

    Cytochrome P450 monooxygenases (P450) are key to the metabolism of myriad endogenous chemicals and xenobiotics, including the majority of therapeutic drugs. Dysregulated P450 activities can lead to altered drug metabolism and toxicity, oxidative stress, and inflammation; all physiological states frequently charged as the impetus for various chronic pathologies. We characterized the impact of common xenobiotic exposures, specifically high-fat diet and active or passive cigarette smoke, on the functional capacity of hepatic and pulmonary P450s. We employed an activity-based protein profiling approach to characterize the identity and activity level of measured individual P450 isoforms. Our results confirm expectations of significant alterationsmore » in pulmonary P450s due to cigarette smoke, but now reveal the repressive impact of high-fat diet-induced obesity on many hepatic P450s activities, and the dynamic alterations due to concomitant diet and smoke exposures on liver and lung P450 activities impacting drug metabolism and pathways of inflammation.« less

  9. Cytochrome P-450 isoforms involved in carboxylic acid ester cleavage of Hantzsch pyridine ester of pranidipine.

    PubMed

    Kudo, S; Okumura, H; Miyamoto, G; Ishizaki, T

    1999-02-01

    Cytochrome P-450 (CYP) isoforms responsible for the cleavage of Hantzsch pyridine ester at the 3-position of pranidipine were studied in vitro using cDNA-expressed human CYP enzymes. CYP1A1, 1A2, 2D6, and 3A4 cleaved the ester with a catalytic activity of 5.5, 0. 93, 13.1, and 22.4 nmol/30 min/nmol P-450, respectively. CYP2A6, 2B6, 2C8, 2C9, 2C19, and 2E1 were not involved in the de-esterification. The Km and Vmax values for the de-esterification were 11.8 microM and 0.47 nmol/min/nmol P-450 in the CYP2D6-catalyzed reaction and 8. 7 microM and 0.84 nmol/min/nmol P-450 in the CYP3A4-catalyzed reaction. The intrinsic clearance (Vmax/Km) of the de-esterification by CYP3A4 was 2-fold greater than that by CYP2D6. Quinidine almost completely inhibited the CYP2D6-mediated de-esterification at the concentration of 1 x 10(-6) M. Ketoconazole and troleandomycin inhibited the CYP3A4-mediated reaction in a dose-related manner. The results indicate that although the multiple CYP isoforms can catalyze the de-esterification, CYP3A4 and 2D6 are the major isoforms.

  10. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    PubMed Central

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-01-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative. Images PMID:3186722

  11. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    PubMed

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-11-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative.

  12. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    PubMed Central

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia

    2014-01-01

    Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint. PMID:25408844

  13. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  14. Isoform-specific regulation of cytochrome P450 expression and activity by estradiol in female rats

    PubMed Central

    Choi, Su-Young; Fischer, Liam; Yang, Kyunghee; Chung, Hyejin; Jeong, Hyunyoung

    2011-01-01

    Estradiol (E2) is the major endogenous estrogen, and its plasma concentration increases up to 100-fold during pregnancy in humans. Accumulating evidence suggests that an elevated level of E2 may influence hepatic drug metabolism, potentially being responsible for altered drug metabolism during pregnancy. We characterized effects of E2 on expression and activities of cytochrome P450 enzymes (CYPs) in an in vivo system using rats. To this end, female rats were treated with estradiol benzoate (EB) or known CYP inducers. Liver tissues were obtained after 5 days of treatment, and mRNA and protein expression levels as well as activities of major hepatic CYPs were determined by qRT-PCR, immunoblot, and microsomal assay. E2 increased CYP1A2 expression and activity to a smaller extent than β-naphthoflavone did. E2 also enhanced CYP2C expression (CYP2C6, CYP2C7, and CYP2C12) to levels comparable to those observed by phenobarbital. E2 upregulated CYP3A9 expression, while expression of CYP3A1 was downregulated. Expression of hepatic nuclear receptors (PXR and CAR) and the obligate redox partner of CYPs (POR) was downregulated in EB-treated rats, suggesting their potential involvement in regulation of CYP expression and activity by E2. In summary, in female rats E2 regulates expression of hepatic CYPs in a CYP isoform-specific manner although the directional changes are different from those clinically observed during human pregnancy. Further study is warranted to determine whether the changes in drug metabolism during human pregnancy are attributable to involvement of hormones other than E2. PMID:21219883

  15. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling.

    PubMed

    Arlt, Volker M; Poirier, Miriam C; Sykes, Sarah E; John, Kaarthik; Moserova, Michaela; Stiborova, Marie; Wolf, C Roland; Henderson, Colin J; Phillips, David H

    2012-09-03

    Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kg body weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. In vitro metabolism and interaction of cilostazol with human hepatic cytochrome P450 isoforms.

    PubMed

    Abbas, R; Chow, C P; Browder, N J; Thacker, D; Bramer, S L; Fu, C J; Forbes, W; Odomi, M; Flockhart, D A

    2000-03-01

    1. Cilostazol (OPC-13013) undergoes extensive hepatic metabolism. The hydroxylation of the quinone moiety of cilostazol to OPC-13326 was the predominant route in all the liver preparations studies. The hydroxylation of the hexane moiety to OPC-13217 was the second most predominant route in vitro. 2. Ketoconazole (1 microM) was the most potent inhibitor of both quinone and hexane hydroxylation. Both the CYP2D6 inhibitor quinidine (0.1 microM) and the CYP2C19 inhibitor omeprazole (10 microM) failed to consistently inhibit metabolism of cilostazol via either of these two predominant routes. 3. Data obtained from a bank of pre-characterized human liver microsomes demonstrated a stronger correlation (r2=0.68, P < 0.01) between metabolism of cilostazol to OPC-13326 and metabolism of felodipine, a CYP3A probe, that with probes for any other isoform. Cimetidine demonstrated concentration-dependent competitive inhibition of the metabolism of cilostazol by both routes. 4. Kinetic data demonstrated a Km value of 101 microM for cilostazol, suggesting a relatively low affinity of cilostazol for CYP3A. While recombinant CYP1A2, CYP2D6 and CYP2C19 were also able to catalyze formation of specific cilostazol metabolites, they did not appear to contribute significantly to cilostazol metabolism in whole human liver microsomes.

  17. Bioavailable flavonoids: cytochrome P450-mediated metabolism of methoxyflavones.

    PubMed

    Walle, U Kristina; Walle, Thomas

    2007-11-01

    Methoxylated flavones were recently shown to be promising cancer chemopreventive agents. Their high metabolic stability compared with the hydroxylated analogs was shown in our laboratory using the human hepatic S9 fraction with cofactors for glucuronidation, sulfation, and oxidation. In the present study, the resistance of methoxylated flavones toward oxidative metabolism was investigated with human liver microsomes and recombinant cytochrome P450 (P450) isoforms. Among 15 methoxylated flavones investigated, the two partially methylated compounds, tectochrysin and kaempferide, were among the most susceptible to microsomal oxidation (Cl(int) 283 and 82 ml/min/kg). Of the fully methylated compounds, 5,7-dimethoxyflavone and 5-methoxyflavone were the most stable (Cl(int) 13 and 18 ml/min/kg, respectively), whereas 4'-methoxyflavone, 3'-methoxyflavone, 5,4'-dimethoxyflavone, and 7,3'-dimethoxyflavone were the least stable (Cl(int) 161, 140, 119, and 92 ml/min/kg, respectively), emphasizing the importance of the positions of the methoxy substituents in the flavone ring system. Among the five P450 isoforms tested, CYP1A1 showed the highest rate of metabolism of fully methylated compounds, followed by CYP1A2 and CYP3A4. CYP2C9 and CYP2D6 gave minimal disappearance of the parent compound. Finally, in incubations with hepatic S9 fraction with cofactors for oxidation and both conjugation reactions, partially methylated flavones, as expected, were much less metabolically stable than fully methylated flavones, confirming that oxidative demethylation is the rate-limiting metabolic reaction for fully methylated flavones only. In summary, the rate of oxidative metabolism of methoxylated flavones, mainly involving CYP1A1 and CYP1A2, varied widely, even between compounds with very similar structures.

  18. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats.

    PubMed

    Martínez, María-Aránzazu; Ares, Irma; Rodríguez, José-Luis; Martínez, Marta; Roura-Martínez, David; Castellano, Victor; Lopez-Torres, Bernardo; Martínez-Larrañaga, María-Rosa; Anadón, Arturo

    2018-08-01

    This study aimed to examine in rats the effects of the Type II pyrethroid lambda-cyhalothrin on hepatic microsomal cytochrome P450 (CYP) isoform activities, oxidative stress markers, gene expression of proinflammatory, oxidative stress and apoptosis mediators, and CYP isoform gene expression and metabolism phase I enzyme PCR array analysis. Lambda-cyhalothrin, at oral doses of 1, 2, 4 and 8mg/kg bw for 6days, increased, in a dose-dependent manner, hepatic activities of ethoxyresorufin O-deethylase (CYP1A1), methoxyresorufin O-demethylase (CYP1A2), pentoxyresorufin O-depentylase (CYP2B1/2), testosterone 7α- (CYP2A1), 16β- (CYP2B1), and 6β-hydroxylase (CYP3A1/2), and lauric acid 11- and 12-hydroxylase (CYP4A1/2). Similarly, lambda-cyhalothrin (4 and 8mg/kg bw, for 6days), in a dose-dependent manner, increased significantly hepatic CYP1A1, 1A2, 2A1, 2B1, 2B2, 2E1, 3A1, 3A2 and 4A1 mRNA levels and IL-1β, NFκB, Nrf2, p53, caspase-3 and Bax gene expressions. PCR array analysis showed from 84 genes examined (P<0.05; fold change>1.5), changes in mRNA levels in 18 genes: 13 up-regulated and 5 down-regulated. A greater fold change reversion than 3-fold was observed on the up-regulated ALDH1A1, CYP2B2, CYP2C80 and CYP2D4 genes. Ingenuity Pathway Analysis (IPA) groups the expressed genes into biological mechanisms that are mainly related to drug metabolism. In the top canonical pathways, Oxidative ethanol degradation III together with Fatty Acid α-oxidation may be significant pathways for lambda-cyhalothrin. Our results may provide further understanding of molecular aspects involved in lambda-cyhalothrin-induced liver injury. Copyright © 2018. Published by Elsevier B.V.

  19. [Effect of Gegen Qinlian decoction on hepatic cytochrome CYP450 isozymes in rats by HPLC-MS/MS].

    PubMed

    Liu, Zi-hua; An, Rui; Zhang, Yi-zhu; Gu, Qing-qing; You, Li-sha; Wang, Xin-hong

    2015-08-01

    To study the effect of Gegen Qinlian decoction and its major effective components on five hepatic microsomal CYP450 isozymes in rats. The in vitro hepatic microsomal incubation technique was used to co-culture Gegen Qinlian decoction and its major effective components together with each probe substrate. HPLC-MS/MS was used to establish the analytical method for metabolites of the five isoform probe substrates of CYP450 isozymes, detect the linearity among micoromal protein concentration, incubation time and metabolite formation amount. And HPLC-MS/MS was applied to determine the formation rate (V) of corresponding metabolites (acetaminophen, 4-OH-chlorzoxazone, dextrophan, 6-OH-chlorzoxazone and 6β-hydroxytestosterone) specific probe substrates of the five isoform probe substrates of CYP450 isozymes (phenacetin, polbutamide, dextromethorphan, chlorzoxazone, testosterone), in order to determine the activity of each isozyme. The result showed good linearity among acetaminophen, 4-OH-tolbutamide, dextrophan, 6-OH-chlorzoxazone and 6β-hydroxytestosterone, satisfactory precision, stability and average recovery, suggesting the method was feasible. The optimized in vitro microsomal incubation conditions conformed to the requirements in the guideline of drug-drug interaction. Gegen Qinlian decoction showed different degrees of inhibitor effect on 5 CYP450 isoforms (CYP1A2, CYP2C11, CYP2D2, CYP2E1, CYP3A1/2). Its major effective component berberine could inhibit each CYP450 isoform at high concentrations (except for CYP1A2, CYP3A1/2).

  20. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    EPA Science Inventory

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  1. 21-Aminosteroids prevent the down-regulation of hepatic cytochrome P450 induced by hypoxia and inflammation in conscious rabbits

    PubMed Central

    Galal, Ahmed; du Souich, Patrick

    1999-01-01

    This study was conducted to assess whether a 21-aminosteroid, U74389G, could prevent the down-regulation of hepatic cytochrome P450 (P450) induced by acute moderate hypoxia or an inflammatory reaction.The rabbits of two groups (n=6 per group) were subjected to acute moderate hypoxia (PaO2≈35 mmHg), one pre-treated with U74389G (3 mg kg−1 i.v. every 6 h, for 48 h). The rabbits of two other groups received 5 ml of turpentine s.c., one of them being pre-treated with U74389G (3 mg kg−1 i.v. every 6 h, for 72 h). The kinetics of theophylline (2.5 mg kg−1) were assessed to evaluate the activity of the P450. Once the rabbits were sacrificed, the P450 content and the amount of thiobarbituric acid reactive substances (TBARS), a marker of lipid peroxidation, were estimated in the liver.Compared with control rabbits, hypoxia and inflammation increased theophylline plasma concentrations, as a result of a decrease in theophylline systemic clearance (P<0.05). Both experimental conditions reduced hepatic content of P450 by 40–50% (P<0.05) and increased the amount of hepatic TBARS by around 50% (P<0.05). Pre-treatment with U74389G prevented the hypoxia- and inflammation-induced decrease in theophylline systemic clearance, the down-regulation of hepatic P450, and the increase in liver TBARS.It is concluded that in the rabbit, U74389G prevents hepatic P450 depression produced by acute moderate hypoxia and a turpentine-induced inflammatory reaction, possibly by eliciting a radical quenching antioxidant activity. PMID:10510447

  2. Hepatic microsomal cytochromes P450 in mink fed Saginaw Bay carp (SBC)

    USGS Publications Warehouse

    Melancon, M.J.; LeCaptain, L.; Rattner, B.A.; Heaton, S.; Aulerich, R.; Tillitt, D.; Stegeman, John J.; Woodin, B.

    1992-01-01

    Livers from mink fed diets containing 0% (n = 12), 10% (n = 11), 20% (n = 12) and 40% (n = 10) SBC for 6 months contained 0.1, 2.2, 3.6, and 6.3 ug/g total PCBs, respectively. Hepatic microsomes were prepared and assayed for protein, arylhydrocarbon hydroxylase (AHH), benzyloxyresorufin-O-dealkylase (BROD), ethoxy-ROD (ER0D), pentoxy-ROD (PROD), and ethoxycoumarin-OD (ECOD). Mink fed SBC had increased AHH, EROD, and ECOD (group means 2.2-3.4 X control means), decreased BROD and unchanged PROD (the latter 2 assays indicators for phenobarbital-type induction in mammals). Three samples from each group were examined by western blot using a polyclonal anti-P450llB antibody and a monoclonal anti-P450lA antibody (MAb 1-12-3). Mink fed SBC showed induction of a protein recognized by anti-P450lA (8 X control), but had little protein recognized by anti-P450IlB. The monooxygenase activities and western blot data give a consistent picture of MC-type but not PB-type induction in mink fed SBC.

  3. Pharmacokinetics and Differential Regulation of Cytochrome P450 Enzymes in Type 1 Allergic Mice.

    PubMed

    Tanino, Tadatoshi; Komada, Akira; Ueda, Koji; Bando, Toru; Nojiri, Yukie; Ueda, Yukari; Sakurai, Eiichi

    2016-12-01

    Type 1 allergic diseases are characterized by elevated production of specific immunoglobulin E (IgE) for each antigen and have become a significant health problem worldwide. This study investigated the effect of IgE-mediated allergy on drug pharmacokinetics. To further understand differential suppression of hepatic cytochrome P450 (P450) activity, we examined the inhibitory effect of nitric oxide (NO), a marker of allergic conditions. Seven days after primary sensitization (PS7) or secondary sensitization (SS7), hepatic CYP1A2, CYP2C, CYP2E1, and CYP3A activities were decreased to 45%-75% of the corresponding control; however, CYP2D activity was not downregulated. PS7 and SS7 did not change the expression levels of five P450 proteins. Disappearance of CYP1A2 and CYP2D substrates from the plasma was not significantly different between allergic mice and control mice. In contrast, the area under the curve of a CYP1A2-mediated metabolite in PS7 and SS7 mice was reduced by 50% of control values. Total clearances of a CYP2E1 substrate in PS7 and SS7 mice were significantly decreased to 70% and 50% respectively, of the control without altering plasma protein binding. Hepatic amounts of CYP1A2 and CYP2E1 substrates were enhanced by allergic induction, being responsible for each downregulated activity. NO scavenger treatment completely improved the downregulated P450 activities. Therefore, our data suggest that the onset of IgE-mediated allergy alters the pharmacokinetics of major P450-metabolic capacity-limited drugs except for CYP2D drugs. NO is highly expected to participate in regulatory mechanisms of the four P450 isoforms. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Cytochrome P450 isoforms in the Metabolism of Decursin and Decursinol Angelate from Korean Angelica

    PubMed Central

    ZHANG, Jinhui; LI, Li; TANG, Suni; HALE, Thomas W.; XING, Chengguo; JIANG, Cheng; LÜ, Junxuan

    2016-01-01

    We have shown that the in vitro hepatic microsomal metabolism of pyranocoumarin compound decursinol angelate (DA) to decursinol (DOH) exclusively requires cytochrome P450 enzymes (CYP) whereas the conversion of its isomer decursin (D) to DOH can be mediated by CYP and esterase(s). To provide insight into specific isoforms involved, here we show with recombinant human CYP that 2C19 was the most active at metabolizing D and DA in vitro followed by 3A4. With carboxylesterases (CES), D was hydrolyzed by CES2 but not CES1, and DA was resistant to both CES1 and CES2. In human liver microsomal preparation, general CYP inhibitor 1-aminobenzotriazole (ABT) and respective competitive inhibitors for 2C19 and 3A4, (+)-N-3-benzylnirvanol and ketoconazole, substantially retarded the metabolism of DA and, to a lesser extent, of D. In healthy human subjects from a single-dose pharmacokinetic study, 2C19 extensive metabolizer genotype (2C19*17 allele) tended to have less plasma DA AUC0–48h and poor metabolizer genotype (2C19*2 allele) tended to have greater DA AUC0–48h. In mice given a single dose of D/DA, pretreatment with ABT boosted the plasma and prostate levels of D and DA by more than an order of magnitude. Taken together, our findings suggest that CYP isoforms 2C19 and 3A4 may play a crucial role in the first pass liver metabolism of DA and, to a lesser extent, that of D in humans. Pharmacogenetics with respect to CYP genotypes and interactions among CYP inhibitor drugs and D/DA should therefore be considered in designing future translation studies of DA and/or D. PMID:26394652

  5. Cytochrome P450 Isoforms in the Metabolism of Decursin and Decursinol Angelate from Korean Angelica.

    PubMed

    Zhang, Jinhui; Li, Li; Tang, Suni; Hale, Thomas W; Xing, Chengguo; Jiang, Cheng; Lü, Junxuan

    2015-01-01

    We have shown that the in vitro hepatic microsomal metabolism of pyranocoumarin compound decursinol angelate (DA) to decursinol (DOH) exclusively requires cytochrome P450 (CYP) enzymes, whereas the conversion of its isomer decursin (D) to DOH can be mediated by CYP and esterase(s). To provide insight into specific isoforms involved, here we show with recombinant human CYP that 2C19 was the most active at metabolizing D and DA in vitro followed by 3A4. With carboxylesterases (CES), D was hydrolyzed by CES2 but not CES1, and DA was resistant to both CES1 and CES2. In human liver microsomal (HLM) preparation, the general CYP inhibitor 1-aminobenzotriazole (ABT) and respective competitive inhibitors for 2C19 and 3A4, (+)-N-3-benzylnirvanol (NBN) and ketoconazole substantially retarded the metabolism of DA and, to a lesser extent, of D. In healthy human subjects from a single-dose pharmacokinetic (PK) study, 2C19 extensive metabolizer genotype (2C19*17 allele) tended to have less plasma DA AUC0-48h and poor metabolizer genotype (2C19*2 allele) tended to have greater DA AUC0-48h. In mice given a single dose of D/DA, pretreatment with ABT boosted the plasma and prostate levels of D and DA by more than an order of magnitude. Taken together, our findings suggest that CYP isoforms 2C19 and 3A4 may play a crucial role in the first pass liver metabolism of DA and, to a lesser extent, that of D in humans. Pharmacogenetics with respect to CYP genotypes and interactions among CYP inhibitor drugs and D/DA should therefore be considered in designing future translation studies of DA and/or D.

  6. Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms.

    PubMed

    Lee, Hwa-Kyung; Moon, Joon-Kwan; Chang, Chul-Hee; Choi, Hoon; Park, Hee-Won; Park, Byeoung-Soo; Lee, Hye-Suk; Hwang, Eul-Chul; Lee, Young-Deuk; Liu, Kwang-Hyeon; Kim, Jeong-Han

    2006-07-01

    Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo(e)dioxathiepin-3-oxide) is a broad-spectrum chlorinated cyclodiene insecticide. This study was performed to elucidate the stereoselective metabolism of endosulfan in human liver microsomes and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of endosulfan. Human liver microsomal incubation of endosulfan in the presence of NADPH resulted in the formation of the toxic metabolite, endosulfan sulfate. The intrinsic clearances (CL(int)) of endosulfan sulfate from beta-endosulfan were 3.5-fold higher than those from alpha-endosulfan, suggesting that beta-endosulfan would be cleared more rapidly than alpha-endosulfan. Correlation analysis between the known P450 enzyme activities and the rate of the formation of endosulfan sulfate in the 14 human liver microsomes showed that alpha-endosulfan metabolism is significantly correlated with CYP2B6-mediated bupropion hydroxylation and CYP3A-mediated midazolam hydroxylation, and that beta-endosulfan metabolism is correlated with CYP3A activity. The P450 isoform-selective inhibition study in human liver microsomes and the incubation study of cDNA-expressed enzymes also demonstrated that the stereoselective sulfonation of alpha-endosulfan is mediated by CYP2B6, CYP3A4, and CYP3A5, and that that of beta-endosulfan is transformed by CYP3A4 and CYP3A5. The total CL(int) values of endosulfan sulfate formation catalyzed by CYP3A4 and CYP3A5 were consistently higher for beta-endosulfan than for the alpha-form (CL(int) of 0.67 versus 10.46 microl/min/pmol P450, respectively). CYP2B6 enantioselectively metabolizes alpha-endosulfan, but not beta-endosulfan. These findings suggest that the CYP2B6 and CYP3A enzymes are major enzymes contributing to the stereoselective disposition of endosulfan.

  7. Fasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR.

    PubMed

    de Vries, E M; Lammers, L A; Achterbergh, R; Klümpen, H-J; Mathot, R A A; Boelen, A; Romijn, J A

    2016-01-01

    Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR). Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance are mediated by CAR. To investigate this we used a drug cocktail validated in humans consisting of five widely prescribed drugs as probes for specific P450 enzymes: caffeine (CYP1A2), metoprolol (CYP2D6), omeprazole (CYP2C19), midazolam (CYP3A4) and s-warfarin (CYP2C9). This cocktail was administered to wild type (WT, C57Bl/6) mice or mice deficient for CAR (CAR-/-) that were either fed ad libitum or fasted for 24 hours. Blood was sampled at predefined intervals and drug concentrations were measured as well as hepatic mRNA expression of homologous/orthologous P450 enzymes (Cyp1a2, Cyp2d22, Cyp3a11, Cyp2c37, Cyp2c38 and Cyp2c65). Fasting decreased Cyp1a2 and Cyp2d22 expression and increased Cyp3a11 and Cyp2c38 expression in both WT and CAR-/- mice. The decrease in Cyp1a2 was diminished in CAR-/- in comparison with WT mice. Basal Cyp2c37 expression was lower in CAR-/- compared to WT mice. Fasting decreased the clearance of all drugs tested in both WT and CAR-/- mice. The absence of CAR was associated with an decrease in the clearance of omeprazole, metoprolol and midazolam in fed mice. The fasting-induced reduction in clearance of s-warfarin was greater in WT than in CAR-/-. The changes in drug clearance correlated with the expression pattern of the specific P450 enzymes in case of Cyp1a2-caffeine and Cyp2c37-omeprazole. We conclude that CAR is important for hepatic clearance of several widely prescribed drugs metabolized by P450 enzymes. However the fasting-induced alterations in P450 mediated drug clearance are largely independent of CAR.

  8. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    PubMed

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  9. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats

    USDA-ARS?s Scientific Manuscript database

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethan...

  10. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Cheng; Behr, Melissa; Xie Fang

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dosemore » of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.« less

  11. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.

    2006-10-15

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ micemore » and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16{alpha}-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females.« less

  12. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    PubMed Central

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.; Baldwin, William S.

    2007-01-01

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16α-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females. PMID:16828826

  13. Daily fluctuation of hepatic P450 monooxygenase activities in male rats is controlled by the suprachiasmatic nucleus but remains unaffected by adrenal hormones.

    PubMed

    Furukawa, T; Manabe, S; Watanabe, T; Sehata, S; Sharyo, S; Okada, T; Mori, Y

    1999-09-01

    Hepatic P450 monooxygenase activities, which strongly influence the efficacy and/or toxicity of drugs, are known to fluctuate daily. We also know that the P450 activities assessed by measurement of 7-alkoxycoumarin O-dealkylase (ACD) activities fluctuate daily, with apparently high values during the dark period in male rats. However, there is little knowledge about the factors that regulate daily fluctuation of P450 monooxygenase activities. In the present study using rats, we induced lesions in the suprachiasmatic nucleus (SCN) of the brain, the known site of the body's internal clock, and examined the effects on the daily fluctuation of the ACD activities to clarify the relationship between the SCN and the daily fluctuation of P450 monooxygenase activities. In addition, adrenalectomy was performed to re-evaluate the influence of adrenal hormones on the P450 activities. Our results indicated that daily fluctuations of the hepatic ACD activities were completely eliminated in the SCN-lesioned rats. However, the ACD activities in the adrenalectomized rats showed apparent daily fluctuations with high values during the dark period and low values during the light period. Therefore, this study demonstrated that the daily fluctuation of the hepatic P450 monooxygenase activities in male rats is controlled by the SCN but remains unaffected by the adrenal hormones.

  14. Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos.

    PubMed

    Joo, Hyun; Choi, Kyoungju; Rose, Randy L; Hodgson, Ernest

    2007-01-01

    Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.

  15. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  16. Vinclozolin modulates hepatic cytochrome P450 isoforms during pregnancy.

    PubMed

    de Oca, Félix Genoveva García-Montes; López-González, Ma de Lourdes; Escobar-Wilches, Derly Constanza; Chavira-Ramírez, Roberto; Sierra-Santoyo, Adolfo

    2015-06-01

    Vinclozolin (V) is classified as a potent endocrine disruptor. The aim of the present study was to determine the effects of V on rat liver CYP regulation and on serum levels of testosterone and estradiol during pregnancy. Pregnancy decreased the liver total CYP content by 65%, enzyme activities of MROD, PROD, and PNPH, and testosterone hydroxylation activities, as well as the protein content of CYP2A and 3A. V exposure remarkably induced the protein content and enzyme activities of CYP1A, 2A, 2B and 3A subfamilies. Testosterone and estradiol were affected in an opposite manner, provoking a 3.5-fold increase in the estradiol/testosterone ratio. These results suggest that V could regulate the hepatic CYP expression through interaction with receptors and coactivators involved in its expression and may play an important role in hormonal balance during pregnancy. In addition, the results may also contribute to understanding the toxicity of V by in utero exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Complexation of cytochrome P-450 isozymes in hepatic microsomes from SKF 525-A-induced rats.

    PubMed

    Murray, M

    1988-05-01

    Potassium ferricyanide-elicited reactivation of steroid hydroxylase activities, in hepatic microsomes from SKF 525-A-induced male rats, was used as an indicator of complex formation between individual cytochrome P-450 isozymes and the SKF 525-A metabolite. Induction of male rats with SKF 525-A (50 mg/kg for three days) led to apparent increases in androst-4-ene-3,17-dione 16 beta- and 6 beta-hydroxylation to 6.7- and 3-fold of control activities. Steroid 7 alpha-hydroxylase activity was decreased to 0.8-fold of control and 16 alpha-hydroxylation was unchanged. Ferricyanide-elicited dissociation of the SKF 525-A metabolite-P-450 complex revealed an even greater induction of 16 beta- and 6 beta-hydroxylase activities (to 1.8- and 1.6-fold of activities in the absence of ferricyanide). Androst-4-ene-3,17-dione 16 alpha-hydroxylase activity increased 2-fold after ferricyanide but 7 alpha-hydroxylase activity was unaltered. An antibody directed against the male-specific cytochrome P-450 UT-A decreased androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to 13% of control in hepatic microsomes from untreated rats. In contrast, 16 alpha-hydroxylase activity in microsomes from SKF 525-A-induced rats, before and after dissociation with ferricyanide, was reduced by anti UT-A IgG to 32 and 19% of the respective uninhibited controls. Considered together, these observations strongly suggest that the phenobarbital-inducible cytochrome P-450 isozymes PB-B and PCN-E are present in an inactive complexed state in microsomes from SKF 525-A-induced rat liver. Further, the increased susceptibility of androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to inhibition by an antibody to cytochrome P-450 UT-A, following ferricyanide treatment of microsomes, suggests that this male sexually differentiated enzyme is also complexed after in vivo SKF 525-A dosage. In contrast, the constitutive isozyme cytochrome P-450 UT-F, which is active in steroid 7 alpha-hydroxylation, does not appear

  18. SEASONAL HEPATIC CYTOCHROME P-450 INDUCTION IN COTTON RATS (SIGMODON HISPIDUS) INHABITING PETROCHEMICAL WASTE SITES. (R826242)

    EPA Science Inventory

    Abstract

    <p>Wildlife species inhabiting contaminated sites are often exposed to complex mixtures of chemicals that have known effects on physiological and biochemical function. We evaluated the induction of major hepatic cytochrome P-450 isoenzymes through O-dealky...

  19. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. The Cytochrome P450 Enzyme Responsible for the Production of (Z)-Norendoxifen in vitro.

    PubMed

    Ma, Jianli; Chu, Zhong; Lu, Jessica Bo Li; Liu, Jinzhong; Zhang, Qingyuan; Liu, Zhaoliang; Tang, Dabei

    2018-01-01

    Norendoxifen, an active metabolite of tamoxifen, is a potent aromatase inhibitor. Little information is available regarding production of norendoxifen in vitro. Here, we conducted a series of kinetic and inhibition studies in human liver microsomes (HLMs) and expressed P450s to study the metabolic disposition of norendoxifen. To validate that norendoxifen was the metabolite of endoxifen, metabolites in HLMs incubates of endoxifen were measured using a HPLC/MS/MS method. To further probe the specific isoforms involved in the metabolic route, endoxifen was incubated with recombinant P450s (CYP 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A5 and CYP4A11). Formation rates of norendoxifen were evaluated in the absence and presence of P450 isoform specific inhibitors using HLMs. The peak of norendoxifen was found in the incubations consisting of endoxifen, HLMs, and cofactors. The retention times of norendoxifen, endoxifen, and the internal standard (diphenhydramine) were 7.81, 7.97, and 5.86 min, respectively. The K m (app) and V max (app) values of norendoxifen formation from endoxifen in HLM was 47.8 μm and 35.39 pmol min -1 mg -1 . The apparent hepatic intrinsic clearances of norendoxifen formation were 0.74 μl mg -1 min. CYP3A5 and CYP2D6 were the major enzymes capable of norendoxifen formation from endoxifen with the rates of 0.26 and 0.86 pmol pmol -1 P450 × min. CYP1A2, 3A2, 2C9, and 2C19 also contributed to norendoxifen formation, but the contributions were at least 6-fold lower. One micromolar ketoconazole (CYP3A inhibitor) showed an inhibitory effect on the rates of norendoxifen formation by 45%, but 1 μm quinidine (CYP2D6 inhibitor) does not show any inhibitory effect. Norendoxifen, metabolism from endoxifen by multiple P450s that including CYP3A5. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  1. Interactions of the hepatitis C virus protease inhibitor faldaprevir with cytochrome P450 enzymes: in vitro and in vivo correlation.

    PubMed

    Sabo, John P; Kort, Jens; Ballow, Charles; Kashuba, Angela D M; Haschke, Manuel; Battegay, Manuel; Girlich, Birgit; Ting, Naitee; Lang, Benjamin; Zhang, Wei; Cooper, Curtis; O'Brien, Drané; Seibert, Eleanore; Chan, Tom S; Tweedie, Donald; Li, Yongmei

    2015-04-01

    The potential inhibition of the major human cytochrome P450 (CYP) enzymes by faldaprevir was evaluated both in vitro and in clinical studies (healthy volunteers and hepatitis C virus [HCV] genotype 1-infected patients). In vitro studies indicated that faldaprevir inhibited CYP2B6, CYP2C9, and CYP3A, and was a weak-to-moderate inactivator of CYP3A4. Faldaprevir 240 mg twice daily in healthy volunteers demonstrated moderate inhibition of hepatic and intestinal CYP3A (oral midazolam: 2.96-fold increase in AUC(0-24 h)), weak inhibition of hepatic CYP3A (intravenous midazolam: 1.56-fold increase in AUC(0-24 h)), weak inhibition of CYP2C9 ([S]-warfarin: 1.29-fold increase in AUC(0-120 h)), and had no relevant effects on CYP1A2, CYP2B6, or CYP2D6. Faldaprevir 120 mg once daily in HCV-infected patients demonstrated weak inhibition of hepatic and intestinal CYP3A (oral midazolam: 1.52-fold increase in AUC(0-∞)), and had no relevant effects on CYP2C9 or CYP1A2. In vitro drug-drug interaction predictions based on inhibitor concentration ([I])/inhibition constant (Ki) ratios tended to overestimate clinical effects and a net-effect model provided a more accurate approach. These studies suggest that faldaprevir shows a dose-dependent inhibition of CYP3A and CYP2C9, and does not induce CYP isoforms. © 2015, The American College of Clinical Pharmacology.

  2. Disparity in holoprotein/apoprotein ratios of different standards used for immunoquantification of hepatic cytochrome P450 enzymes.

    PubMed

    Perrett, H F; Barter, Z E; Jones, B C; Yamazaki, H; Tucker, G T; Rostami-Hodjegan, A

    2007-10-01

    An analysis of reported hepatic abundances of CYP3A4 and 3A5 indicated that values determined by immunoquantification using commercially available, unpurified recombinant enzymes as standards are significantly lower than those determined using purified enzymes or human liver microsomes characterized with lysosomal peptides (CYP3A4: mean 45 versus 121 pmol/mg protein, p < 0.01; CYP3A5: mean 28 versus 83 pmol/mg protein, p < 0.05). When immunoquantifying cytochromes P450 (P450s), it is assumed that the holoprotein (holo)/apoprotein ratio is the same in the samples and the standard. Estimates of holo/apoprotein ratios from data reported for a range of P450s purified from human liver and non-commercial recombinant systems indicated less than complete and variable heme coupling dependent on enzyme and system.

  3. In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family Malvaceae) on selected cytochrome P450 isoforms.

    PubMed

    Johnson, Showande Segun; Oyelola, Fakeye Titilayo; Ari, Tolonen; Juho, Hokkanen

    2013-01-01

    Literature is scanty on the interaction potential of Hibiscus sabdariffa L., plant extract with other drugs and the affected targets. This study was conducted to investigate the cytochrome P450 (CYP) isoforms that are inhibited by the extract of Hibiscus sabdariffa L. in vitro. The inhibition towards the major drug metabolizing CYP isoforms by the plant extract were estimated in human liver microsomal incubations, by monitoring the CYP-specific model reactions through previously validated N-in-one assay method. The ethanolic extract of Hibiscus sabdariffa showed inhibitory activities against nine selected CYP isoforms: CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. The concentrations of the extract which produced 50% inhibition of the CYP isoforms ranged from 306 µg/ml to 1660 µg/ml, and the degree of inhibition based on the IC50 values for each CYP isoform was in the following order: CYP1A2 > CYP2C8 > CYP2D6 > CYP2B6 > CYP2E1 > CYP2C19 > CYP3A4 > CYP2C9 > CYP2A6. Ethanolic extract of Hibiscus sabdariffa caused inhibition of CYP isoforms in vitro. These observed inhibitions may not cause clinically significant herb-drug interactions; however, caution may need to be taken in co-administering the water extract of Hibiscus sabdariffa with other drugs until clinical studies are available to further clarify these findings.

  4. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane.

    PubMed

    Kharasch, E D; Thummel, K E

    1993-10-01

    Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0

  5. Differential effects of traumatic brain injury on the cytochrome p450 system: a perspective into hepatic and renal drug metabolism.

    PubMed

    Kalsotra, Auinash; Turman, Cheri M; Dash, Pramod K; Strobel, Henry W

    2003-12-01

    Traumatic brain injury is known to cause several secondary effects, one of which is altered drug clearance. Given the fact that patients who sustain TBI are subsequently treated with a variety of pharmacological agents for the purpose of either neuroprotection or physiological support, it is imperative to clarify changes in expression and/or activities of enzymes involved in clearing drugs. The mixed function oxidase system, which consists of cytochrome P450 and cytochrome P450 reductase, plays a vital role in phase I drug metabolism. This paper addresses the issue as to what extent TBI affects the levels and activity of various rat CYP450 subfamilies. Our results show that TBI induces tissue-specific and time-dependent alterations. Total hepatic CYP450 content showed a biphasic response with a decrease seen at 24 h followed by an increase at 2 weeks. CYP450 reductase, in contrast, showed an opposite temporal profile. Immunoblot analyses and marker substrate metabolism demonstrated a clear decrease in hepatic CYP1A levels while a significant increase in kidney was seen at both 24 h and 2 weeks. A dramatic induction of CYP3A was evident at 2 weeks in liver, while no changes were noticed in CYP2B or CYP2D subfamilies. CYP4F subfamily showed induction in kidney only. Collectively, the data reveal the differential effects of TBI on hepatic and renal drug metabolism.

  6. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4.

    PubMed

    Spracklin, D K; Thummel, K E; Kharasch, E D

    1996-09-01

    The anesthetic halothane undergoes extensive oxidative and reductive biotransformation, resulting in metabolites that cause hepatotoxicity. Halothane is reduced anaerobically by cytochrome P450 (P450) to the volatile metabolites 2-chloro-1,1-difluoroethene (CDE) and 2-chloro-1,1,1-trifluoroethane (CTE). The purpose of this investigation was to identify the human P450 isoform(s) responsible for reductive halothane metabolism. CDE and CTE formation from halothane metabolism by human liver microsomes was determined by GC/MS analysis. Halothane metabolism to CDE and CTE under reductive conditions was completely inhibited by carbon monoxide, which implicates exclusively P450 in this reaction. Eadie-Hofstee plots of both CDE and CTE formation were nonlinear, suggesting multiple P450 isoform involvement. Microsomal CDE and CTE formation were each inhibited 40-50% by P450 2A6-selective inhibitors (coumarin and 8-methoxypsoralen) and 55-60% by P450 3A4-selective inhibitors (ketoconazole and troleandomycin). P450 1A-, 2B6-, 2C9/10-, and 2D6-selective inhibitors (7,8-benzoflavone, furafylline, orphenadrine, sulfaphenazole, and quinidine) had no significant effect on reductive halothane metabolism. Measurement of product formation catalyzed by a panel of cDNA-expressed P450 isoforms revealed that maximal rates of CDE formation occurred with P450 2A6, followed by P450 3A4. P450 3A4 was the most effective catalyst of CTE formation. Among a panel of 11 different human livers, there were significant linear correlations between the rate of CDE formation and both 2A6 activity (r = 0.64, p < 0.04) and 3A4 activity (r = 0.64, p < 0.03). Similarly, there were significant linear correlations between CTE formation and both 2A6 activity (r = 0.55, p < 0.08) and 3A4 activity (r = 0.77, p < 0.005). The P450 2E1 inhibitors 4-methylpyrazole and diethyldithiocarbamate inhibited CDE and CTE formation by 20-45% and 40-50%, respectively; however, cDNA-expressed P450 2E1 did not catalyze

  7. Listeriosis downregulates hepatic cytochrome P450 enzymes in sublethal murine infection.

    PubMed

    Kummer, Anne; Nishanth, Gopala; Koschel, Josephin; Klawonn, Frank; Schlüter, Dirk; Jänsch, Lothar

    2016-10-01

    Listeria monocytogenes (Lm) can cross the intestinal barrier in humans and then disseminates into different organs. Invasion of the liver occurs even in sublethal infections, however, knowledge of affected physiological processes is scarce. This study employed a sublethal murine infection model to investigate liver responses systematically by proteomics. Liver samples from three stages of the sublethal infection covering the initial invasion, the peak of infection, and the clearance phase (1, 3, 9 days postinoculation) were analyzed in comparison to samples from noninfected mice. Apart from flow cytometry and RT-PCRs for immune status control, liver responses were analyzed by quantitative peptide sequencing (HPLC-Orbitrap Fusion) using 4-plex iTRAQ-labeling. Accurate MS characterized about 3600 proteins and statistics revealed 15% of the hepatic proteome as regulated. Immunological data as well as protein regulation dynamics strongly indicate stage-specific hepatic responses in sublethal infections. Most notably, this study detected a comprehensive deregulation of drug metabolizing enzymes at all stages, including 25 components of the cytochrome P450 system. Sublethal Lm infection deregulates hepatic drug metabolizing pathways. This finding indicates the need to monitor drug administration along Lm infections, especially in all patients needing constant medication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomicmore » analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.« less

  9. Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1988-01-01

    1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone

  10. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism.

    PubMed Central

    Shedlofsky, S I; Israel, B C; McClain, C J; Hill, D B; Blouin, R A

    1994-01-01

    In experimental animals, injection of gram-negative endotoxin (LPS) decreases hepatic cytochrome P450-mediated drug metabolism. To evaluate this phenomenon in a human model of gram-negative sepsis, LPS was administered on two consecutive days to healthy male volunteers during which time a cocktail of antipyrine (AP-250 mg), hexobarbital (HB-500 mg), and theophylline (TH-150 mg) was ingested and the apparent oral clearance of each drug determined. Each subject had a control drug clearance study with saline injections. In the first experiment, six subjects received the drug cocktail 0.5 h after the first dose of LPS. In the second experiment, another six subjects received the drug cocktail 0.5 h after the second dose of LPS. In both experiments, LPS caused the expected physiologic responses of inflammation including fever with increases in serum concentrations of TNF alpha, IL-1 beta, IL-6, and acute phase reactants. In the first experiment, only minor decreases in clearances of the probe drugs were observed (7-12%). However in the second experiment, marked decreases in the clearances of AP (35, 95% CI 18-48%), HB (27, 95% CI 14-34%), and TH (22, 95% CI 12-32%) were seen. The decreases in AP clearance correlated with initial peak values of TNF alpha (r = 0.82) and IL-6 (r = 0.86). These data show that in humans the inflammatory response to even a very low dose of LPS significantly decreases hepatic cytochrome P450-mediated drug metabolism and this effect evolves over a 24-h period. It is likely that septic patients with much higher exposures to LPS have more profound inhibition of drug metabolism. PMID:7989576

  11. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    PubMed

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  12. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B sub 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyama, Toshifumi; Yamano, Shigeru; Gelboin, H.V.

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B{sub 1} to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B{sub 1} to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B{sub 1} to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cellsmore » expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B{sub 1} as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B{sub 1} activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B{sub 1} in human liver involves the contribution of multiple forms of P450.« less

  13. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  14. Dominant role of cytochrome P-450 2E1 in human hepatic microsomal oxidation of the CFC-substitute 1,1,1,2-tetrafluoroethane.

    PubMed

    Surbrook, S E; Olson, M J

    1992-01-01

    The chlorofluorocarbon substitute 1,1,1,2-tetrafluoroethane (HFC-134a) is subject to metabolism by cytochrome P-450 in hepatic microsomes from rat, rabbit, and human. In rat and rabbit, the P-450 form 2E1 is a predominant low-KM, high-rate catalyst of HFC-134a biotransformation and is prominently involved in the metabolism of other tetrahaloalkanes of greater toxicity than HFC-134a [e.g. 1,2-dichloro-1,1-difluoroethane (HCFC-132b)]. In this study, we determined that the human ortholog of P-450 2E1 plays a role of similar importance in the metabolism of HFC-134a. In human hepatic microsomes from 12 individuals, preparations from subjects with relatively high P-450 2E1 levels were shown to metabolize HFC-134a at rates 5- to 10-fold greater than microsomes of individuals with lower levels of this enzyme; the increased rate of metabolism of HFC-134a was specifically linked to increased expression of P-450 2E1. The primary evidence for this conclusion is drawn from studies using mechanism-based inactivation of P-450 2E1 by diethyldithiocarbamate, competitive inhibition of HFC-134a oxidation by p-nitrophenol (a high-affinity substrate for P-450 2E1), strong positive correlation of rates of HFC-134a defluorination with p-nitrophenol hydroxylation in the study population, and correlation of P-450 2E1 levels with rates of halocarbon oxidation. Thus, our findings support the conclusion that human metabolism of HFC-134a is qualitatively similar to that of the species (rat and rabbit) used for toxicological assessment of this halocarbon.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Identification of human cytochrome P450s as autoantigens.

    PubMed

    Manns, M P; Johnson, E F

    1991-01-01

    Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.

  16. Intestinal and Hepatic Expression of Cytochrome P450s and mdr1a in Rats with Indomethacin-Induced Small Intestinal Ulcers

    PubMed Central

    Kawauchi, Shoji; Nakamura, Tsutomu; Yasui, Hiroyuki; Nishikawa, Chikako; Miki, Ikuya; Inoue, Jun; Horibe, Sayo; Hamaguchi, Tsuneo; Tanahashi, Toshihito; Mizuno, Shigeto

    2014-01-01

    Background: Non-steroidal anti-inflammatory drugs induce the serious side effect of small intestinal ulcerations (SIUs), but little information is available regarding the consequences to drug metabolism and absorption. Aim: We examined the existence of secondary hepatic inflammation in rats with indomethacin (INM)-induced SIUs and assessed its relationship to the cytochrome P450 (CYP) and P-glycoprotein (mdr1a), the major drug-metabolizing factors in the small intestine and the liver. Methods: Gene expression of the CYP family of enzymes and mdr1a was measured with quantitative real-time polymerase chain reaction (qPCR). Vancomycin (VCM), a poorly absorbed drug, was administered intraduodenally to rats with SIUs. Results: INM induced SIUs predominantly in the lower region of the small intestine with high expression of inflammatory markers. Liver dysfunction was also observed, which suggested a secondary inflammatory response in rats with SIUs. In the liver of rats with SIUs, the expression of CYP2C11, CYP2E1, and CYP3A1 was significantly decreased, and loss of CYP3A protein was observed. Although previous studies have shown a direct effect of INM on CYP3A activity, we could not confirm any change in hepatic CY3A4 expression (major isoform of human CYP3A) in vitro. The plasma VCM concentration was increased in rats with SIUs due to partial absorption from the mucosal injury, but not in normal mucosa. Conclusions: INM-induced SIUs had a subtle effect on intestinal CYP expression, but had an apparent action on hepatic CYP, which was influenced, at least in part, by the secondary inflammation. Furthermore, drug absorption was increased in rats with SIUs. PMID:25317066

  17. Current cytochrome P450 phenotyping methods applied to metabolic drug-drug interaction prediction in dogs.

    PubMed

    Mills, Beth Miskimins; Zaya, Matthew J; Walters, Rodney R; Feenstra, Kenneth L; White, Julie A; Gagne, Jason; Locuson, Charles W

    2010-03-01

    Recombinant cytochrome P450 (P450) phenotyping, different approaches for estimating fraction metabolized (f(m)), and multiple measures of in vivo inhibitor exposure were tested for their ability to predict drug interaction magnitude in dogs. In previous reports, midazolam-ketoconazole interaction studies in dogs have been attributed to inhibition of CYP3A pathways. However, in vitro phenotyping studies demonstrated higher apparent intrinsic clearances (CL(int,app)) of midazolam with canine CYP2B11 and CYP2C21. Application of activity correction factors and isoform hepatic abundance to liver microsome CL(int,app) values further implicated CYP2B11 (f(m) >or= 0.89) as the dog enzyme responsible for midazolam- and temazepam-ketoconazole interactions in vivo. Mean area under the curve (AUC) in the presence of the inhibitor/AUC ratios from intravenous and oral midazolam interaction studies were predicted well with unbound K(i) and estimates of unbound hepatic inlet inhibitor concentrations and intestinal metabolism using the AUC-competitive inhibitor relationship. No interactions were observed in vivo with bufuralol, although significant interactions with bufuralol were predicted with fluoxetine via CYP2D and CYP2C pathways (>2.45-fold) but not with clomipramine (<2-fold). The minor caffeine-fluvoxamine interaction (1.78-fold) was slightly higher than predicted values based on determination of a moderate f(m) value for CYP1A1, although CYP1A2 may also be involved in caffeine metabolism. The findings suggest promise for in vitro approaches to drug interaction assessment in dogs, but they also highlight the need to identify improved substrate and inhibitor probes for canine P450s.

  18. Relative contribution of rat cytochrome P450 isoforms to the metabolism of caffeine: the pathway and concentration dependence.

    PubMed

    Kot, Marta; Daniel, Władysława A

    2008-04-01

    The aim of the present study was to estimate the relative contribution of rat P450 isoforms to the metabolism of caffeine and to assess the usefulness of caffeine as a marker substance for estimating the activity of P450 in rat liver and its potential for pharmacokinetic interactions in pharmacological experiments. The results obtained using rat cDNA-expressed P450s indicated that 8-hydroxylation was the main oxidation pathway of caffeine (70%) in the rat. CYP1A2 was found to be a key enzyme catalyzing 8-hydroxylation (72%) and substantially contributing to 3-N-demethylation (47%) and 1-N-demethylation (37.5%) at a caffeine concentration of 0.1mM (relevant to "the maximum therapeutic concentration in humans"). Furthermore, CYP2C11 considerably contributed to 3-N-demethylation (31%). The CYP2C subfamily (66%) - mainly CYP2C6 (27%) and CYP2C11 (29%) - played a major role in catalyzing 7-N-demethylation. At higher substrate concentrations, the contribution of CYP1A2 to the metabolism of caffeine decreased in favor of CYP2C11 (N-demethylations) and CYP3A2 (mainly 8-hydroxylation). The obtained results were confirmed with liver microsomes (inhibition and correlation studies). Therefore, caffeine may be used as a marker substance for assessing the activity of CYP1A2 in rats, using 8-hydroxylation (but not 3-N-demethylation-like in humans); moreover, caffeine may also be used to simultaneously, preliminarily estimate the activity of CYP2C using 7-N-demethylation as a marker reaction. Hence caffeine pharmacokinetics in rats may be changed by drugs affecting the activity of CYP1A2 and/or CYP2C, e.g. by some antidepressants.

  19. Effect of feeding quandong (Santalum acuminatum) oil to rats on tissue lipids, hepatic cytochrome P-450 and tissue histology.

    PubMed

    Jones, G P; Birkett, A; Sanigorski, A; Sinclair, A J; Hooper, P T; Watson, T; Rieger, V

    1994-06-01

    Quandong kernels are a traditional Aboriginal food item; they are rich in oil and contain large amounts of an unusual fatty acid, trans-11-octadecen-9-ynoic acid (santalbic acid), but it is not known whether this acid is absorbed and/or metabolized. The oil was fed at 12.6% of total energy content in semi-synthetic diets to groups of male Sprague-Dawley rats for 10 and 20 days. Santalbic acid was found in the lipids of plasma, adipose tissue, skeletal muscle, kidney, heart and liver but not in brain. Hepatic microsomal cytochrome P-450 activity in animals fed for 20 days was significantly higher (P < 0.05) than in controls. Histopathological examination did not reveal any lesions in the tissues of any animal fed quandong oil. The fact that santalbic acid was readily absorbed, widely distributed in tissues and was associated with an elevated level of hepatic cytochrome P-450 indicates that further studies are required to investigate whether or not there is a hazard associated with the human practice of consuming quandong kernels.

  20. [Effect of bemethyl on cytochrome P-450-dependent monoxygenases in the human liver and lymphocytes].

    PubMed

    Sorokina, E A; Sibiriak, S V; Sergeeva, S A

    2002-01-01

    Effects of the actoprotector bemithyl (50 mg/kg, p.o.) upon a single or five-fold administration on the cytochrome P-450 and b5 content and the isoform-specific and nonspecific monooxygenase activity [aminopyrine-N-demethylase, aniline-p-hydroxylase, 4-nitroanisole-o-demethylase,2,5-diphenyloxazole-p-hydroxylase, 7-ethoxyresorufin-o-deethylase (EROD), benzyloxyresorufin-o-debenzylase (BROD)] in rat liver were evaluated. In addition, the influence of bemithyl (0.(1)-100 microM) on the development of EROD and BROD activity was studied on the mitogen-stimulated human lymphocytes in vitro. Administered in rats, bemithyl exhibited the properties of a cytochrome P-450 inductor of the mixed type, which was manifested by an increase in the total cytochrome P-450 content in liver microsomes and in the monooxygenase activity related to both Ah-receptor-dependent and -independent isoforms (except for the aniline-p-hydroxylase activity). The induction of the monooxygenase activity realized by Ah-receptor-dependent isoforms (4-nitroanisole-o-demethylase, 2,5-diphenyloxazole-p-hydroxylase, and EROD activity) was more pronounced, reaching maximum upon a single drug administration. Acting upon the human lymphocytes in vitro, high concentrations of bemithyl increased expression of the EROD activity, while low drug concentrations stimulated the BROD activity.

  1. Microsomal P-450 induction by some secondary products from thermal oxidation of dietary lipids: epidermal hyperplasia, mutagenicity and cytochrome P-450 activities.

    PubMed

    Crawford, L; Wheeler, E L

    1983-12-01

    Distillable secondary products from roasted fowl were found to be cytotoxic but not mutagenic when assayed with Salmonella typhimurium strains TA98, TA100 and TA1537. A crudely separated fraction of the volatiles produced focal hyperplasia and damage to the epidermis of the backs of mice. The volatiles also caused an apparent synthesis of non-constitutive forms of rat hepatic cytochromes P-450 which metabolize benzo[a]pyrene B [a]P differently from the constitutive P-450.

  2. Antibodies to P450IID6, SLA, PDH-E2 and BCKD-E2 in Japanese patients with chronic hepatitis.

    PubMed

    Nishioka, M; Morshed, S A; Parveen, S; Kono, K; Matsuoka, H; Manns, M P

    1997-12-01

    Auto-antibodies specific to various antigens in chronic hepatitis (CH) have been detected but their specificities and implications were uncertain. The aims of the present study were to investigate the frequency and the significance of seropositivity of antibodies to P450IID6 or liver/kidney microsome 1 (LKM1), soluble liver antigen (SLA), pyruvate dehydrogenase (PDH) and branched-chain keto acid dehydrogenase (BCKD) in 188 Japanese patients with different forms of CH by western blot or enzyme immunoassay (EIA). Anti-LKM1 was also measured by indirect immunofluorescent test. Anti-P450IID6 was found in 6/188 (3.2%) CH patients including 5/104 (4.8%) with hepatitis C virus (C) infection and 1/12 (8.3%) CH-C patients with antibodies to nuclear and smooth muscle antigens and hypergammaglobulinaemia (> 2.5 g/dL). This patient was the only one diagnosed with autoimmune hepatitis (AIH). All CH patients with hepatitis B (B), hepatitis non-B non-C (NBNC) and AIH were seronegative for anti-LKM1. Antibodies to soluble liver antigen were found in two of 188 (1%) patients, one with AIH and one with CH-B. Anti-BCKD-E2 but not anti-PDH-E2 was found in four patients (2.5%), one with AIH, two with CH-C, and one with NBNC. There was no obvious difference in age, sex ratio and laboratory findings in patients with or without anti-SLA and anti-BCKD-E2. Antibodies to P450IID6, SLA, PDH-E2 and BCKD-E2 are uncommon in adult CH-C, CH-B, CH-NBNC and AIH patients in Japan. Some of these patients positive for auto-antibodies appear to have autoimmune features and might require a careful follow up. The heterogeneity of these antibodies in CH preclude further justification for subtyping of AIH by the presence of the distinct auto-antibodies.

  3. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs

    PubMed Central

    LYTTON, S D; BERG, U; NEMETH, A; INGELMAN-SUNDBERG, M

    2002-01-01

    Treatment with the immunosuppressive drugs cyclosporin and tacrolimus, the mainstays of anti-graft rejection and autoimmune disease therapy, is limited by their hepato-and nephrotoxicity. The metabolic conversion of these compounds to more easily excretable products is catalysed mainly by hepatic cytochrome P4503A4 (CYP3A4) but also involves extrahepatic CYP3A5 and other P450 forms. We set out to study whether or not exposure to cyclosporin and FK506 in children undergoing organ transplantation leads to formation of autoantibodies against P450s. Immunoblotting analysis revealed anti-CYP reactivity in 16% of children on CyA for anti-graft rejection or treatment of nephrosis (n = 67), 31% of kidney transplant patients switched from CyA to FK506 (n = 16), and 21% of kidney and or liver transplant patients on FK506 (n = 14). In contrast, the frequency of reactive immunoblots was only 8·5% among the normal paediatric controls (n = 25) and 7% among adult kidney transplant patients on CyA or FK506 (n = 30). The CYP2C9+ sera were able to immunoprecipitate in vitro translated CYP2C9 and the immunoblot reactivity showed striking correlation to peaks in the age at onset of drug exposure. Sera were isoform selective as evidenced from Western blotting using human liver microsomes and heterologously expressed human P450s. These findings suggest that anti-cytochrome P450 autoantibodies, identified on the basis of their specific binding in immunoblots, are significantly increased among children on immunosuppressive drugs and in some cases are associated with drug toxicity and organ rejection. PMID:11876753

  4. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs.

    PubMed

    Lytton, S D; Berg, U; Nemeth, A; Ingelman-Sundberg, M

    2002-02-01

    Treatment with the immunosuppressive drugs cyclosporin and tacrolimus, the mainstays of anti-graft rejection and autoimmune disease therapy, is limited by their hepato- and nephrotoxicity. The metabolic conversion of these compounds to more easily excretable products is catalysed mainly by hepatic cytochrome P4503A4 (CYP3A4) but also involves extrahepatic CYP3A5 and other P450 forms. We set out to study whether or not exposure to cyclosporin and FK506 in children undergoing organ transplantation leads to formation of autoantibodies against P450s. Immunoblotting analysis revealed anti-CYP reactivity in 16% of children on CyA for anti-graft rejection or treatment of nephrosis (n = 67), 31% of kidney transplant patients switched from CyA to FK506 (n = 16), and 21% of kidney and or liver transplant patients on FK506 (n = 14). In contrast, the frequency of reactive immunoblots was only 8.5% among the normal paediatric controls (n = 25) and 7% among adult kidney transplant patients on CyA or FK506 (n = 30). The CYP2C9+ sera were able to immunoprecipitate in vitro translated CYP2C9 and the immunoblot reactivity showed striking correlation to peaks in the age at onset of drug exposure. Sera were isoform selective as evidenced from Western blotting using human liver microsomes and heterologously expressed human P450s. These findings suggest that anti-cytochrome P450 autoantibodies, identified on the basis of their specific binding in immunoblots, are significantly increased among children on immunosuppressive drugs and in some cases are associated with drug toxicity and organ rejection.

  5. Suppression of Cytochrome P450 Reductase (POR) Expression in Hepatoma Cells Replicates the Hepatic Lipidosis Observed in Hepatic POR-Null Mice

    PubMed Central

    Banerjee, Subhashis; Stolarczyk, Elzbieta I.; Zou, Ling

    2011-01-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis. PMID:21368239

  6. Suppression of cytochrome P450 reductase (POR) expression in hepatoma cells replicates the hepatic lipidosis observed in hepatic POR-null mice.

    PubMed

    Porter, Todd D; Banerjee, Subhashis; Stolarczyk, Elzbieta I; Zou, Ling

    2011-06-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis.

  7. INDUCTION AND POST-TRANSCRIPTIONAL SUPPRESSION OF HEPATIC CYTOCHROME P450 1A1 BY 3,3',4,4'-TETRACHLOROBIPHENYL. (R827102)

    EPA Science Inventory

    Abstract

    <p>3,3',4,4'-Tetrachlorobiphenyl (TCB) can induce and inhibit cytochrome P450 1A1 (CYP1A1) in vertebrates. TCB may also suppress CYP1A1 protein levels, but the mechanism is unknown. This study examined transcriptional and translational aspects of hepatic ...

  8. Cytochrome P450 (CYP450) Tests

    MedlinePlus

    ... P450 (CYP450) tests Overview Your doctor may use cytochrome P450 (CYP450) tests to help determine how your body processes (metabolizes) a drug. The human body contains P450 enzymes to process medications. Because of inherited (genetic) traits ...

  9. Responsiveness of cerebral and hepatic cytochrome P450s in rat offspring prenatally exposed to lindane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok

    2008-08-15

    ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD{sub 50}; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increasemore » in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics.« less

  10. Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. Regulation by multiple mechanisms.

    PubMed

    Ram, P A; Waxman, D J

    1992-02-15

    The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major

  11. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, Dalya; Goralski, Kerry B.; College of Pharmacy, Burbidge Building, Dalhousie University, Halifax, Nova Scotia, B3H 3J5

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo,more » an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.« less

  12. The basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots.

    PubMed

    Donzelli, Massimiliano; Derungs, Adrian; Serratore, Maria-Giovanna; Noppen, Christoph; Nezic, Lana; Krähenbühl, Stephan; Haschke, Manuel

    2014-03-01

    Phenotyping cocktails use a combination of cytochrome P450 (CYP)-specific probe drugs to simultaneously assess the activity of different CYP isoforms. To improve the clinical applicability of CYP phenotyping, the main objectives of this study were to develop a new cocktail based on probe drugs that are widely used in clinical practice and to test whether alternative sampling methods such as collection of dried blood spots (DBS) or saliva could be used to simplify the sampling process. In a randomized crossover study, a new combination of commercially available probe drugs (the Basel cocktail) was tested for simultaneous phenotyping of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Sixteen subjects received low doses of caffeine, efavirenz, losartan, omeprazole, metoprolol and midazolam in different combinations. All subjects were genotyped, and full pharmacokinetic profiles of the probe drugs and their main metabolites were determined in plasma, dried blood spots and saliva samples. The Basel cocktail was well tolerated, and bioequivalence tests showed no evidence of mutual interactions between the probe drugs. In plasma, single timepoint metabolic ratios at 2 h (for CYP2C19 and CYP3A4) or at 8 h (for the other isoforms) after dosing showed high correlations with corresponding area under the concentration-time curve (AUC) ratios (AUC0-24h parent/AUC0-24h metabolite) and are proposed as simple phenotyping metrics. Metabolic ratios in dried blood spots (for CYP1A2 and CYP2C19) or in saliva samples (for CYP1A2) were comparable to plasma ratios and offer the option of minimally invasive or non-invasive phenotyping of these isoforms. This new combination of phenotyping probe drugs can be used without mutual interactions. The proposed sampling timepoints have the potential to facilitate clinical application of phenotyping but require further validation in conditions of altered CYP activity. The use of DBS or saliva samples seems feasible for phenotyping of the

  13. Modulation of Hepatic and Renal Metabolism and Toxicity of Trichloroethylene and Perchloroethylene by Alterations in Status of Cytochrome P450 and Glutathione

    PubMed Central

    Lash, Lawrence H.; Putt, David A.; Huang, Paul; Hueni, Sarah E.; Parker, Jean C.

    2007-01-01

    The relative importance of metabolism of trichloroethylene (Tri) and perchloroethylene (Perc) by the cytochrome P450 (P450) and glutathione (GSH) conjugation pathways in their acute renal and hepatic toxicity was studied in isolated cells and microsomes from rat kidney and liver after various treatments to modulate P450 activity/expression or GSH status. Inhibitors of P450 stimulated GSH conjugation of Tri and, to a lesser extent, Perc, in both kidney cells and hepatocytes. Perc was a more potent, acute cytotoxic agent in isolated kidney cells than Tri but Perc-induced toxicity was less responsive than Tri-induced toxicity to modulation of P450 status. These observations are consistent with P450-dependent bioactivation being more important for Tri than for Perc. Incubation of isolated rat hepatocytes with Tri produced no acute cytotoxicity in isolated hepatocytes while Perc produced comparable cytotoxicity as in kidney cells. Modulation of P450 status in hepatocytes produced larger changes in Tri- and Perc-induced cytotoxicity than in kidney cells, with non-selective P450 inhibitors increasing toxicity. Induction of CYP2E1 with pyridine also markedly increased sensitivity of hepatocytes to Tri but had little effect on Perc-induced cytotoxicity. Increases in cellular GSH concentrations increased Tri- and Perc-induced cytotoxicity in kidney cells but not in hepatocytes, consistent with the role of GSH conjugation in Tri- and Perc-induced nephrotoxicity. In contrast, depletion of cellular GSH concentrations moderately decreased Tri- and Perc-induced cytotoxicity in kidney cells but increased cytotoxicity in hepatocytes, again pointing to the importance of different bioactivation pathways and modes of action in kidney and liver. PMID:17433522

  14. The Use of Human Liver Cell Model and Cytochrome P450 Substrate-Inhibitor Panel for Studies of Dasatinib and Warfarin Interactions.

    PubMed

    Zakharyants, A A; Burmistrova, O A; Poloznikov, A A

    2017-02-01

    The possibility of interactions between warfarin and dasatinib and their interactions with other drugs metabolized by cytochrome P450 isoform CYP3A4 was demonstrated using a previously created cytochrome P450 substrate-inhibitor panel for preclinical in vitro studies of drug biotransformation on a 3D histotypical microfluidic cell model of human liver (liver-on-a-chip technology). Dasatinib and warfarin are inhibitors of CYP2C19 isoform and hence, can interfere the drugs metabolized by this isoform. Our findings are in line with the data obtained on primary culture of human hepatocytes and suggest that the model can be used in preclinical in vitro studies of drugs.

  15. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis

    PubMed Central

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD. PMID:28270609

  16. Defining the in Vivo Role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5.

    PubMed

    Finn, Robert D; McLaughlin, Lesley A; Ronseaux, Sebastien; Rosewell, Ian; Houston, J Brian; Henderson, Colin J; Wolf, C Roland

    2008-11-14

    In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.

  17. Characterization and identification of an indirect cytochrome P-450-initiated denitrosation of 2,6-dichloro-4-nitroaniline in rat hepatic microsomes.

    PubMed

    Myers, L A; Witmer, C M; Gallo, M A

    1988-08-01

    The metabolism of 2,6-dichloro-4-nitroaniline (DCNA) to a unique denitrosated product, 3,5-dichloro-p-aminophenol (DCAP), was investigated in rat hepatic microsomes using an HPLC system containing a reverse-phase column and an electrochemical detector. The parent compound appears to induce its own metabolism. The characterization of this induction was studied by polyacrylamide gel electrophoresis, catalytic enzymatic activity, and immunochemistry. The in vitro microsomal aerobic production of DCAP was increased 4- to 6.5-fold with respect to controls after animals were treated with DCNA. The microsomal production of DCAP can be inhibited by the addition of specific antibodies to cytochrome P-450d, thus indicating that the removal of the nitro group and subsequent replacement with a hydroxyl group was initiated by cytochrome P-450d in the mixed-function oxidase system. Finally, it was demonstrated by the addition of H218O to the assay that this hydroxyl group came from H2O and not molecular oxygen. It is concluded that cytochrome P-450 initiated this novel reaction by the formation of an N-hydroxylamine, followed by a non-P-450-mediated attack of water causing the removal of nitrous acid and the formation of the phenol.

  18. Relationship between the hippocampal expression of selected cytochrome P450 isoforms and the animal performance in the hippocampus-dependent learning task.

    PubMed

    Gjota-Ergin, Sena; Gökçek-Saraç, Çiğdem; Adalı, Orhan; Jakubowska-Doğru, Ewa

    2018-04-23

    Despite very extensive studies on the molecular mechanisms of memory formation, relatively little is known about the molecular correlates of individual variation in the learning skills within a random population of young normal subjects. The role of cytochrome P450 (CYP) enzymes in the brain also remains poorly understood. On the other hand, these enzymes are known to be related to the metabolism of substances important for neural functions including steroids, fatty acids, and retinoic acid. In the present study, we examined the potential correlation between the animals' performance in a place learning task and the levels of selected CYP isoforms (CYP2E1, CYP2D1 and CYP7A1) in the rat hippocampus. According to their performance, rats were classified as "good" learners (percent error/number of trials to criterion ≤ group mean - 3SEM) or "poor" learners (percent error/number of trials to criterion ≥ group mean + 3SEM). The CYP enzyme levels were determined by Western Blot at the early, intermediary and advanced stages of the task acquisition (day 4, day 8 and after reaching a performance criterion of 83% correct responses). In this study, as expected, CYP2E1 and CYP2D1 isoforms have been found in the rat hippocampus. However, a putative CYP7A1 isoform was also visualized. Hippocampal expression of these enzymes was shown to be dependent on the stage of learning and animals' cognitive status. In "good" learners compared to "poor" learners, significantly higher levels of CYP2E1 were found at the early stage of training, significantly higher levels of CYP2D1 were found at the intermediate stage of training, and significantly higher levels of CYP7A1-like protein were found after reaching the acquisition criterion. These findings suggest that the differential expression of some CYP isoforms in the hippocampus may have impact on individual learning skills and that different CYP isoforms may play different roles during the learning process. Copyright © 2018

  19. Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

    PubMed Central

    Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-01-01

    Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported. PMID:23443101

  20. Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.

    PubMed

    Acharjee, B K; Mahanta, R

    2009-04-01

    Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.

  1. Limitations of in silico predictability of specificity of co-immobilised cytochromes P450 and mimics in food-bioprocessing.

    PubMed

    Wiseman, Alan

    2003-04-01

    Cytochromes P450 (EC 1.14.14.1) are mixed function oxidases (oxygenases) that can catalyse redox bioconversions of food components. Also, efficacious removal of undesirable components can be achieved using solid-support immobilised enzyme (IME) of a selection from 2700 isoforms of cytochromes P450 (CYP). Cytochromes P450 co-immobilised with other enzymes, or protein receptors, may be used to confer a secondary order of regio- or stereo-specificity of chiral bioconversion: these can be predictable in silico by utilisation of QSARs (quantitative structure/activity relationships).

  2. Human Hepatic Cytochrome P450-Specific Metabolism of the Organophosphorus Pesticides Methyl Parathion and Diazinon

    PubMed Central

    Tian, Yuan; Knaak, James B.; Kostyniak, Paul J.; Olson, James R.

    2012-01-01

    Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (Km and Vmax) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (Km = 1.25 μM; Vmax = 9.78 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 1.03 μM; Vmax = 4.67 nmol · min−1 · nmol P450−1), and CYP1A2 (Km = 1.96 μM; Vmax = 5.14 nmol · min−1 · nmol P450−1), and the bioactivation of diazinon was mediated primarily by CYP1A1 (Km = 3.05 μM; Vmax = 2.35 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 7.74 μM; Vmax = 4.14 nmol · min−1 · nmol P450−1), and CYP2B6 (Km = 14.83 μM; Vmax = 5.44 nmol · min−1 · nmol P450−1). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (Km = 16.8 μM; Vmax = 1.38 nmol · min−1 · nmol P450−1) and 3A4 (Km = 104 μM; Vmax = 5.15 nmol · min−1 · nmol P450−1), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (Km = 5.04 μM; Vmax = 5.58 nmol · min−1 · nmol P450−1). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure. PMID:21969518

  3. Immobilized Cytochrome P450 2C9 (CYP2C9): Applications for Metabolite Generation, Monitoring Protein-Protein Interactions, and Improving In-vivo Predictions Using Enhanced In-vitro Models

    NASA Astrophysics Data System (ADS)

    Wollenberg, Lance A.

    Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover

  4. Effect of ergot alkaloids associated with fescue toxicosis on hepatic cytochrome P450 and antioxidant proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settivari, Raja S.; Evans, Tim J.; Rucker, Ed

    Intake of ergot alkaloids found in endophyte-infected tall fescue grass is associated with decreased feed intake and reduction in body weight gain. The liver is one of the target organs of fescue toxicosis with upregulation of genes involved in xenobiotic metabolism and downregulation of genes associated with antioxidant pathways. It was hypothesized that short-term exposure of rats to ergot alkaloids would change hepatic cytochrome P450 (CYP) and antioxidant expression, as well as reduce antioxidant enzyme activity and hepatocellular proliferation rates. Hepatic gene expression of various CYPs, selected nuclear receptors associated with the CYP induction, and antioxidant enzymes were measured usingmore » real-time PCR. Hepatic expression of CYP, antioxidant and proliferating cell nuclear antigen (PCNA) proteins were measured using Western blots. The CYP3A1 protein expression was evaluated using primary rat hepatocellular cultures treated with ergovaline, one of the major ergot alkaloids produced by fescue endophyte, in order to assess the direct role of ergot alkaloids in CYP induction. The enzyme activities of selected antioxidants were assayed spectrophotometrically. While hepatic CYP and nuclear receptor expression were increased in ergot alkaloid-exposed rats, the expression and activity of antioxidant enzymes were reduced. This could potentially lead to increased oxidative stress, which might be responsible for the decrease in hepatocellular proliferation after ergot alkaloid exposure. This study demonstrated that even short-term exposure to ergot alkaloids can potentially induce hepatic oxidative stress which can contribute to the pathogenesis of fescue toxicosis.« less

  5. Effects of aging and rifampicin pretreatment on the pharmacokinetics of human cytochrome P450 probes caffeine, warfarin, omeprazole, metoprolol and midazolam in common marmosets genotyped for cytochrome P450 2C19.

    PubMed

    Toda, Akiko; Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Kusama, Takashi; Shimizu, Makiko; Uno, Yasuhiro; Mogi, Masayuki; Sasaki, Erika; Yamazaki, Hiroshi

    2018-07-01

    1. The pharmacokinetics were investigated for human cytochrome P450 probes after single intravenous and oral administrations of 0.20 and 1.0 mg/kg, respectively, of caffeine, warfarin, omeprazole, metoprolol and midazolam to aged (10-14 years old, n = 4) or rifampicin-treated/young (3 years old, n = 3) male common marmosets all genotyped as heterozygous for a cytochrome P450 2C19 variant. 2. Slopes of the plasma concentration-time curves after intravenous administration of warfarin and midazolam were slightly, but significantly (two-way analysis of variance), decreased in aged marmosets compared with young marmosets. The mean hepatic clearances determined by in silico fitting for individual pharmacokinetic models of warfarin and midazolam in the aged group were, respectively, 23% and 56% smaller than those for the young group. 3. Significantly enhanced plasma clearances of caffeine, warfarin, omeprazole and midazolam were evident in young marmosets pretreated with rifampicin (25 mg/kg daily for 4 days). Two- to three-fold increases in hepatic intrinsic clearance values were observed in the individual pharmacokinetic models. 4. The in vivo dispositions of multiple simultaneously administered drugs in old, young and P450-enzyme-induced marmosets were elucidated. The results suggest that common marmosets could be experimental models for aged, induced or polymorphic P450 enzymes in P450-dependent drug metabolism studies.

  6. Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network.

    PubMed

    Li, Xiang; Xu, Youjun; Lai, Luhua; Pei, Jianfeng

    2018-05-30

    Adverse side effects of drug-drug interactions induced by human cytochrome P450 (CYP450) inhibition is an important consideration in drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP450 isoform. In this study, we developed a multitask model for concurrent inhibition prediction of five major CYP450 isoforms, namely, 1A2, 2C9, 2C19, 2D6, and 3A4. The model was built by training a multitask autoencoder deep neural network (DNN) on a large dataset containing more than 13 000 compounds, extracted from the PubChem BioAssay Database. We demonstrate that the multitask model gave better prediction results than that of single-task models, previous reported classifiers, and traditional machine learning methods on an average of five prediction tasks. Our multitask DNN model gave average prediction accuracies of 86.4% for the 10-fold cross-validation and 88.7% for the external test datasets. In addition, we built linear regression models to quantify how the other tasks contributed to the prediction difference of a given task between single-task and multitask models, and we explained under what conditions the multitask model will outperform the single-task model, which suggested how to use multitask DNN models more effectively. We applied sensitivity analysis to extract useful knowledge about CYP450 inhibition, which may shed light on the structural features of these isoforms and give hints about how to avoid side effects during drug development. Our models are freely available at http://repharma.pku.edu.cn/deepcyp/home.php or http://www.pkumdl.cn/deepcyp/home.php .

  7. Glucocorticoid receptor contributes to the altered expression of hepatic cytochrome P450 upon cigarette smoking.

    PubMed

    Li, Xue; Yan, Zhongfang; Wu, Qi; Sun, Xin; Li, Fan; Zhang, Subei; Li, Kuan; Li, Li; Wu, Junping; Xu, Long; Feng, Jing; Ning, Wen; Liu, Zhixue; Chen, Huaiyong

    2016-12-01

    Cigarette smoking has been shown to cause pathological alterations in the liver. However, how hepatic metabolism is altered during cigarette smoking‑induced inflammation remains to be fully elucidated. In the present study, a rat model of smoking was established to examine the effects of cigarette smoking on inflammation, autophagy activity, and the expression of nuclear receptor and CYP in the liver. Elevated expression of interleukin 1β and activation of autophagy in the liver were observed upon smoking exposure in rats. Cigarette smoking induced a significant reduction in the mRNA expression levels of cytochromes, including cytochrome P450 (Cyp)1A2, Cyp2D4 and Cyp3A2. Accordingly, a decrease was also observed in glucocorticoid receptor (GR), a regulator of the expression of Cyp. Activation of the GR signal in human hepatic LO2 cells did not affect autophagic genes, however, it led to the upregulation of hCYP1A2, hCYP2C19 and hCYP3A4, and the downregulation of hCYP2C9. The GR antagonist, RU486, eliminated this effect, suggesting the importance of GR in liver metabolism upon cigarette smoking.

  8. In vitro characterization of sarizotan metabolism: hepatic clearance, identification and characterization of metabolites, drug-metabolizing enzyme identification, and evaluation of cytochrome p450 inhibition.

    PubMed

    Gallemann, Dieter; Wimmer, Elmar; Höfer, Constance C; Freisleben, Achim; Fluck, Markus; Ladstetter, Bernhard; Dolgos, Hugues

    2010-06-01

    In vitro biotransformation studies of sarizotan using human liver microsomes (HLM) showed aromatic and aliphatic monohydroxylation and dealkylation. Recombinant cytochromes P450 (P450) together with P450-selective inhibitors in HLM/hepatocyte cultures were used to evaluate the relative contribution of different P450s and revealed major involvement of CYP3A4, CYP2C9, CYP2C8, and CYP1A2 in sarizotan metabolism. The apparent K(m, u) and V(max) of sarizotan clearance, as investigated in HLM, were 9 microM and 3280 pmol/mg/min, predicting in vivo hepatic clearance of 0.94 l/h, which indicates that sarizotan is a low-clearance compound in humans and suggests nonsaturable metabolism at the targeted plasma concentration (< or =1 microM). This finding is confirmed by the reported human clearance (CL/F of 3.6-4.4 l/h) and by the dose-linear area under the curve increase observed with doses up to 25 mg. The inhibitory effect of sarizotan toward six major P450s was evaluated using P450-specific marker reactions in pooled HLM. K(i, u) values of sarizotan against CYP2C8, CYP2C19, and CYP3A4 were >10 microM, whereas those against CYP2D6 and CYP1A2 were 0.43 and 8.7 microM, respectively. Based on the estimates of sarizotan concentrations at the enzyme active sites, no clinically significant drug-drug interactions (DDIs) due to P450 inhibition are expected. This result has been confirmed in human DDI studies in which no inhibition of five major P450s was observed in terms of marker metabolite formation.

  9. Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae.

    PubMed

    Nazir, K H M Nazmul Hussain; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2011-05-01

    A functional library of cytochrome P450 monooxygenases from Aspergillus oryzae (AoCYPs) was constructed in which 121 isoforms were coexpressed with yeast NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. Using this functional library, novel catalytic functions of AoCYPs, such as catalytic potentials of CYP57B3 against genistein, were elucidated for the first time. Comprehensive functional screening promises rapid characterization of catalytic potentials and utility of AoCYPs.

  10. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: Evaluation of hepatic cytochrome p450 induction

    USGS Publications Warehouse

    Russell, J.S.; Halbrook, R.S.; Woolf, A.; French, J.B.; Melancon, M.J.

    2004-01-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with $-naphthoflavone ($NF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received $NF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  11. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: evaluation of hepatic cytochrome P450 induction.

    PubMed

    Russell, Julie S; Halbrook, Richard S; Woolf, Alan; French, John B; Melancon, Mark J

    2004-08-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with beta-naphthoflavone (betaNF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received betaNF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  12. Storage stability study of porcine hepatic and intestinal cytochrome P450 isoenzymes by use of a newly developed and fully validated highly sensitive HPLC-MS/MS method.

    PubMed

    Schelstraete, Wim; Devreese, Mathias; Croubels, Siska

    2018-02-01

    Microsomes are an ideal medium to investigate cytochrome P450 (CYP450) enzyme-mediated drug metabolism. However, before microsomes are prepared, tissues can be stored for a long time. Studies about the stability of these enzymes in porcine hepatic and intestinal tissues upon storage are lacking. To be able to investigate CYP450 stability in microsomes prepared from these tissues, a highly sensitive and rapid HPLC-MS/MS method for the simultaneous determination of six CYP450 metabolites in incubation medium was developed and validated. The metabolites, paracetamol (CYP1A), 7-hydroxy-coumarin (CYP2A), 1-hydroxy-midazolam (CYP3A), 4-hydroxy-tolbutamide (CYP2C), dextrorphan (CYP2D), and 6-hydroxy-chlorzoxazone (CYP2E) were extracted with ethyl acetate at pH 1.0, followed by evaporation and separation on an Agilent Zorbax Eclipse Plus C18 column. The method was fully validated in a GLP-compliant laboratory according to European guidelines and was highly sensitive (LOQ = 0.25-2.5 ng/mL), selective, had good precision (RSD-within, 1.0-9.1%; RSD-between, 1.0-18.4%) and accuracy (within-run, 83.3-102%; between-run, 78.5-102%), and showed no relative signal suppression and enhancement. Consequently, this method was applied to study the stability of porcine hepatic and intestinal CYP450 isoenzymes when tissues were stored at - 80 °C. The results indicate that porcine CYP450 isoenzymes are stable in tissues at least up to 4 months when snap frozen and stored at - 80 °C. Moreover, the results indicate differences in porcine CYP450 stability compared to rat, rabbit, and fish CYP450, as observed by other research groups, hence stressing the importance to investigate the CYP450 stability of a specific species.

  13. Physical Studies of P450P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures

    PubMed Central

    Reed, James R.; Backes, Wayne L.

    2017-01-01

    Cytochrome P450 enzymes, which catalyze oxygenation reactions of both exogenous and endogenous chemicals, are membrane bound proteins that require interaction with their redox partners in order to function. Those responsible for drug and foreign compound metabolism are localized primarily in the endoplasmic reticulum of liver, lung, intestine, and other tissues. More recently, the potential for P450 enzymes to exist as supramolecular complexes has been shown by the demonstration of both homomeric and heteromeric complexes. The P450 units in these complexes are heterogeneous with respect to their distribution and function, and the interaction of different P450s can influence P450-specific metabolism. The goal of this review is to examine the evidence supporting the existence of physical complexes among P450 enzymes. Additionally, the review examines the crystal lattices of different P450 enzymes derived from X-ray diffraction data to make assumptions regarding possible quaternary structures in membranes and in turn, to predict how the quaternary structures could influence metabolism and explain the functional effects of specific P450P450 interactions. PMID:28194112

  14. Enantioselective N-demethylation and hydroxylation of sibutramine in human liver microsomes and recombinant cytochrome p-450 isoforms.

    PubMed

    Shinde, Dhananjay D; Kim, Min-Jung; Jeong, Eun-Sook; Kim, Yang-Weon; Lee, Ji-Woo; Shin, Jae-Gook; Kim, Dong-Hyun

    2014-01-01

    The enantioselective metabolism of sibutramine was examined using human liver microsomes (HLM) and recombinant cytochrome P-450 (CYP) isoforms. This drug is metabolized to N-mono-desmethyl- (M1) and N,N-di-desmethylsibutramine (M2), and subsequent hydroxylation results in hydroxyl M1 (HM1) and hydroxyl M2 (HM2). No significant difference was noted in formation of M1from sibutramine between R- and S-sibutramine in HLM. However, S-enantiomers of M1 and M2 were preferentially metabolized to M2, HM1, and HM2compared to R-enantiomers in HLM, and intrinsic clearance (Clint) ratios of S-enantiomers/R-enantiomers were 1.97, 4.83, and 9.94 for M2, HM1, and HM2, respectively. CYP3A4 and CYP3A5 were only involved in the formation of M1, whereas CYP2B6 and CYP2C19 were responsible for all metabolic reactions of sibutramine. CYP2C19 and CYP3A5 displayed catalytic preference for S-sibutramine to S-M1, whereas CYP2B6 and CYP3A4 showed little or no stereoselectivity in metabolism of sibutramine to M1. In the case of M2 formation, CYP2B6 metabolized S-M1 more rapidly than R-M1 with a Clint ratio of 2.14. However, CYP2C19 catalyzed less S-M1 than R-M1 and the Clint ratio of S-M1 to R-M1 was 0.65. The most significant enantioselectivity was observed in formation of HM1 from M1, and HM2 from M2. CYP2B6 and CYP2C19 exhibited preferential catalysis of formation of hydroxyl metabolites from S-enantiomers rather than R-enantiomers. These results indicate that S-sibutramine was more rapidly metabolized by CYP isoforms than R-sibutramine, and that enantioselective metabolism needs to be considered in drug interactions involving sibutramine and co-administered drugs.

  15. Optimization and validation of a label-free MRM method for the quantification of cytochrome P450 isoforms in biological samples.

    PubMed

    Al Ali, Ahmad; Touboul, David; Le Caër, Jean-Pierre; Schmitz-Afonso, Isabelle; Flinois, Jean-Pierre; Marchetti, Catherine; De Waziers, Isabelle; Brunelle, Alain; Laprévote, Olivier; Beaune, Philippe

    2014-08-01

    Cytochromes P450 (CYPs) play critical roles in oxidative metabolism of many endogenous and exogenous compounds. Protein expression levels of CYPs in liver provide relevant information for a better understanding of the importance of CYPs in pharmacology and toxicology. This work aimed at establishing a simple method to quantify six CYPs (CYP3A4, CYP3A5, CYP1A2, CYP2D6, CYP2C9, and CYP2J2) in various biological samples without isotopic labeling. The biological matrix was spiked with the standard peptides prior to the digestion step to realize a label-free quantification by mass spectrometry. The method was validated and applied to quantify these six isoforms in both human liver microsomes and mitochondria, but also in recombinant expression systems such as baculosomes and the HepG2 cell line. The results showed intra-assay and interassay accuracy and precision within 16 % and 5 %, respectively, at the low quality control level, and demonstrated the advantages of the method in terms of reproducibility and cost.

  16. THE DIFFERENTIAL HEPATOTOXICITY AND CYTOCHROME P450 RESPONSE OF F344 RATS TO THE THREE ISOMERS OF DICHLOROBENZENE

    EPA Science Inventory

    The acute hepatotoxicity and response of hepatic cytochrome P450 to treatment with the three isomers of dichlorobenzene (DCB) have been investigated. The objectives were to estimate toxic thresholds and to further e1ucidate the role of cytochrome P450 in the metabolism and toxici...

  17. Effect of thalidomide on endotoxin-induced decreases in activity and expression of hepatic cytochrome P450 3A2.

    PubMed

    Ueyama, Jun; Nadai, Masayuki; Zhao, Ying Lan; Kanazawa, Hiroaki; Takagi, Kenji; Kondo, Takaaki; Takagi, Kenzo; Wakusawa, Shinya; Abe, Fumie; Saito, Hiroko; Miyamoto, Ken-Ichi; Hasegawa, Takaaki

    2008-08-01

    Thalidomide has been reported to inhibit the production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) that are involved in the down-regulation of hepatic cytochrome P450 (CYP) induced by endotoxin. In the present study, we investigated the effects of thalidomide on endotoxin-induced decreases in the activity and expression of hepatic CYP3A2 in rats. Thalidomide (50 mg/kg) was administered orally 22 h and 2 h before intraperitoneal injection of endotoxin (1 mg/kg). Twenty-four hours after the injection of endotoxin, antipyrine clearance experiments were conducted, in which the rats were sacrificed and protein levels of hepatic CYP3A2 were measured. There were no significant differences in the histopathological changes in the liver between the endotoxin-treated and endotoxin plus thalidomide-treated rats. Thalidomide had no effect on the systemic clearance of antipyrine, which is a proper indicator for hepatic CYP3A2 activity, whereas it enhanced endotoxin-induced decrease in the systemic clearance of antipyrine. Western blot analysis revealed that thalidomide had no effect on the protein levels of hepatic CYP3A2, whereas it enhanced the down-regulation of hepatic CYP3A2 by endotoxin. However, there were no significant differences in the concentrations of TNF-alpha and NO in plasma between the endotoxin-treated and endotoxin plus thalidomide-treated rats. The present findings suggest that thalidomide enhances endotoxin-induced decreases in the activity and expression of hepatic CYP3A2.

  18. Comparative evaluation of 12 immature citrus fruit extracts for the inhibition of cytochrome P450 isoform activities.

    PubMed

    Fujita, Tadashi; Kawase, Atsushi; Niwa, Toshiro; Tomohiro, Norimichi; Masuda, Megumi; Matsuda, Hideaki; Iwaki, Masahiro

    2008-05-01

    In a previous study we found that 50% ethanol extracts of immature fruits of Citrus unshiu (satsuma mandarin) have anti-allergic effects against the Type I, II and IV allergic reactions. However, many adverse interactions between citrus fruit, especially grapefruit juice, and drugs have been reported due to the inhibition of cytochrome P450 (CYP) activities. The purpose of this study was to examine the competitive inhibitory effects of extracts from immature citrus fruit on CYP activity. Extracts were prepared from 12 citrus species or cultivars, and were tested against three kinds of major CYPs, CYP2C9, CYP2D6 and CYP3A4, in human liver microsomes. We also estimated the amounts of flavonoids (narirutin, hesperidin, naringin and neohesperidin) and furanocoumarins (bergapten, 6',7'-dihydroxybergamottin and bergamottin) in each extract using HPLC. Citrus paradisi (grapefruit) showed the greatest inhibition of CYP activities, while Citrus unshiu which has an antiallergic effect, showed relatively weak inhibitory effects. Extracts having relatively strong inhibitory effects for CYP3A4 tended to contain higher amounts of naringin, bergamottin and 6',7'-dihydroxybergamottin. These results, providing comparative information on the inhibitory effects of citrus extracts on CYP isoforms, suggest that citrus extracts containing high levels of narirutin and hesperidin and lower levels of furanocoumarins such as C. unshiu are favorable as antiallergic functional ingredients.

  19. Characterization of the cytochrome P450 enzymes and enzyme kinetic parameters for metabolism of BVT.2938 using different in vitro systems.

    PubMed

    Baranczewski, Pawel; Edlund, Per Olof; Postlind, Hans

    2006-03-18

    An important step in the drug development process is identification of enzymes responsible for metabolism of drug candidates and determination of enzyme kinetic parameters. These data are used to increase understanding of the pharmacokinetics and possible metabolic-based drug interactions of drug candidates. The aim of the present study was to characterize the cytochrome P450 enzymes and enzyme kinetic parameters for metabolism of BVT.2938 [1-(3-{2-[(2-ethoxy-3-pyridinyl)oxy]ethoxy}-2-pyrazinyl)-2(R)-methylpiperazine], a potent and selective 5HT2c-receptor agonist. The enzyme kinetic parameters were determined for formation of three main metabolites of BVT.2938 using human liver microsomes and expressed cytochrome P450 (CYP) isoforms. The major metabolite was formed by hydroxylation of the pyridine ring (CL(int)=27 microl/mgmin), and was catalysed by both CYP2D6*1 and CYP1A1, with K(m) values corresponding to 1.4 and 2.7 microM, respectively. The results from enzyme kinetic studies were confirmed by incubation of BVT.2938 in the presence of the chemical inhibitor of CYP2D6*1, quinidine. Quinidine inhibited the formation of the major metabolite by approximately 90%. Additionally, studies with recombinant expressed CYP isoforms from rat indicated that formation of the major metabolite of BVT.2938 was catalysed by CYP2D2. This result was further confirmed by experiments with liver slices from different rat strains, where the formation of the metabolite correlated with phenotype of CYP2D2 isoform (Sprague-Dawley male, extensive; Dark Agouti male, intermediate; Dark Agouti female, poor metabolizer). The present study showed that the major metabolite of BVT.2938 is formed by hydroxylation of the pyridine ring and catalysed by CYP2D6*1. CYP1A1 is also involved in this reaction and its role in extra-hepatic metabolism of BVT.2938 might be significant.

  20. Regulation of cytochrome P-450 4A activity by peroxisome proliferator-activated receptors in the rat kidney.

    PubMed

    Ishizuka, Tsuneo; Ito, Osamu; Tan, Liping; Ogawa, Susumu; Kohzuki, Masahiro; Omata, Ken; Takeuchi, Kazuhisa; Ito, Sadayoshi

    2003-11-01

    The localization of cytochrome P-450 4A, peroxisome proliferator-activated receptor (PPAR) alpha, and PPARgamma proteins, and the inducibility of P-450 4A expression and activity by PPAR agonists were determined in the rat kidney. The expressions of these proteins in isolated nephron segments were evaluated by immunoblot analysis, and the production of 20-hydroxyeicosatetraenoic acid (20-HETE) was measured as P-450 4A activity. P-450 4A proteins were expressed predominantly in the proximal tubule (PT), with lower expression in the preglomerular arteriole (Art), glomerulus (Glm), and medullary thick ascending limb (mTAL), but their expression was not detected in the inner medullary collecting duct (IMCD). PPARalpha protein was expressed in the PT and mTAL, and PPARgamma protein was expressed in the IMCD and mTAL. Treatment with clofibrate, the PPARalpha agonist, increased P-450 4A protein levels and the production of 20-HETE in microsomes prepared from the renal cortex, whereas treatment with pioglitazone, the PPARgamma agonist, affected neither of them. These results indicate that PPARalpha and PPARgamma proteins are localized in different nephron segments and the inducibility of P-450 4A expression and activity by the PPAR agonists correlates with the nephron-specific localization of the respective PPAR isoforms.

  1. Tissue Specific Modulation of cyp2c and cyp3a mRNA Levels and Activities by Diet-Induced Obesity in Mice: The Impact of Type 2 Diabetes on Drug Metabolizing Enzymes in Liver and Extra-Hepatic Tissues

    PubMed Central

    Chamoun, Michel; Gravel, Sophie; Turgeon, Jacques; Michaud, Veronique

    2017-01-01

    Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The cyp450 mRNA expression levels for 15 different isoforms were determined in the liver and extra-hepatic tissues (kidneys, lungs and heart) of HFD-treated animals (n = 45). Modulation of cyp450 metabolic activities by HFD was assessed using eight known substrates for specific human ortholog CYP450 isoforms: in vitro incubations were conducted with liver and extra-hepatic microsomes. Expression levels of cyp3a11 and cyp3a25 mRNA were decreased in the liver (>2–14-fold) and kidneys (>2-fold) of HFD groups which correlated with a significant reduction in midazolam metabolism (by 21- and 5-fold in hepatic and kidney microsomes, respectively, p < 0.001). HFD was associated with decreased activities of cyp2b and cyp2c subfamilies in all organs tested except in the kidneys (for tolbutamide). Other cyp450 hepatic activities were minimally or not affected by HFD. Taken together, our data suggest that substrate-dependent and tissue-dependent modulation of cyp450 metabolic capacities by early phases of T2D are observed, which could modulate drug disposition and pharmacological effects in various tissues. PMID:28954402

  2. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    PubMed

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide.

    PubMed Central

    Bonkovsky, H L; Sinclair, J F; Healey, J F; Sinclair, P R; Smith, E L

    1984-01-01

    The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem

  4. Cytochrome P450 2E1 gene polymorphisms/haplotypes and anti-tuberculosis drug-induced hepatitis in a Chinese cohort.

    PubMed

    Tang, Shaowen; Lv, Xiaozhen; Zhang, Yuan; Wu, Shanshan; Yang, Zhirong; Xia, Yinyin; Tu, Dehua; Deng, Peiyuan; Ma, Yu; Chen, Dafang; Zhan, Siyan

    2013-01-01

    The pathogenic mechanism of anti-tuberculosis (anti-TB) drug-induced hepatitis is associated with drug metabolizing enzymes. No tagging single-nucleotide polymorphisms (tSNPs) of cytochrome P450 2E1(CYP2E1) in the risk of anti-TB drug-induced hepatitis have been reported. The present study was aimed at exploring the role of tSNPs in CYP2E1 gene in a population-based anti-TB treatment cohort. A nested case-control study was designed. Each hepatitis case was 14 matched with controls by age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected by using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing, and detected by using TaqMan allelic discrimination technology. Eighty-nine anti-TB drug-induced hepatitis cases and 356 controls were included in this study. 6 tSNPs (rs2031920, rs2070672, rs915908, rs8192775, rs2515641, rs2515644) were genotyped and minor allele frequencies of these tSNPs were 21.9%, 23.0%, 19.1%, 23.6%, 20.8% and 44.4% in the cases and 20.9%, 22.7%, 18.9%, 23.2%, 18.2% and 43.2% in the controls, respectively. No significant difference was observed in genotypes or allele frequencies of the 6 tSNPs between case group and control group, and neither of haplotypes in block 1 nor in block 2 was significantly associated with the development of hepatitis. Based on the Chinese anti-TB treatment cohort, we did not find a statistically significant association between genetic polymorphisms of CYP2E1 and the risk of anti-TB drug-induced hepatitis. None of the haplotypes showed a significant association with the development of hepatitis in Chinese TB population.

  5. In vitro metabolic clearance of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms

    EPA Science Inventory

    Species differences in the intrinsic clearance (CLint) and the enzymes involved in the metabolism of pyrethroid pesticides were examined in rat and human hepatic microsomes. The pyrethroids bifenthrin, S-bioallethrin, bioresmethrin, β-cyfluthrin, cypermethrin, cis-per...

  6. Contaminants in eggs of colonial waterbirds and hepatic cytochrome P450 enzyme levels in pipped tern embryos, Washington State.

    PubMed

    Blus, L J; Melancon, M J; Hoffman, D J; Henny, C J

    1998-10-01

    Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994.

  7. Contaminants in eggs of colonial waterbirds and hepatic cytochrome P450 enzyme levels in pipped tern embryos, Washington State

    USGS Publications Warehouse

    Blus, L.J.; Melancon, M.J.; Hoffman, D.J.; Henny, C.J.

    1998-01-01

    Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994.

  8. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function

    PubMed Central

    Scott, Emily E.; Wolf, C. Roland; Otyepka, Michal; Humphreys, Sara C.; Reed, James R.; Henderson, Colin J.; McLaughlin, Lesley A.; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P.; Barnaba, Carlo; Brozik, James A.; Jones, Jeffrey P.; Estrada, D. Fernando; Laurence, Jennifer S.; Park, Ji Won

    2016-01-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to “helicopter” above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  9. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  10. Nano-sized cytochrome P450 3A4 inhibitors to block hepatic metabolism of docetaxel

    PubMed Central

    Paolini, Marion; Poul, Laurence; Berjaud, Céline; Germain, Matthieu; Darmon, Audrey; Bergère, Maxime; Pottier, Agnès; Levy, Laurent; Vibert, Eric

    2017-01-01

    Most drugs are metabolized by hepatic cytochrome P450 3A4 (CYP3A4), resulting in their reduced bioavailability. In this study, we present the design and evaluation of bio-compatible nanocarriers trapping a natural CYP3A4-inhibiting compound. Our aim in using nanocarriers was to target the natural CYP3A4-inhibiting agent to hepatic CYP3A4 and leave drug-metabolizing enzymes in other organs undisturbed. In the design of such nanocarriers, we took advantage of the nonspecific accumulation of small nanoparticles in the liver. Specific targeting functionalization was added to direct nanocarriers toward hepatocytes. Nanocarriers were evaluated in vitro for their CYP3A4 inhibition capacity and in vivo for their biodistribution, and finally injected 24 hours prior to the drug docetaxel, for their ability to improve the efficiency of the drug docetaxel. Nanoparticles of poly(lactic-co-glycolic) acid (PLGA) with a hydrodynamic diameter of 63 nm, functionalized with galactosamine, showed efficient in vitro CYP3A4 inhibition and the highest accumulation in hepatocytes. When compared to docetaxel alone, in nude mice bearing the human breast cancer, MDA-MB-231 model, they significantly improved the delay in tumor growth (treated group versus docetaxel alone, percent treated versus control ratio [%T/C] of 32%) and demonstrated a major improvement in overall survival (survival rate of 67% versus 0% at day 55). PMID:28814868

  11. Evidence for concerted kinetic oxidation of progesterone by purified rat hepatic cytochrome P-450g

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinney, D.C.; Ryan, D.E.; Thomas, P.E.

    1988-07-26

    Purified cytochrome P-450g, a male-specific rat hepatic isozyme, was observed to metabolize progesterone to two primary metabolites (6..beta..-hydroxyprogesterone and 16..cap alpha..-hydroxyprogesterone), two secondary metabolites (6..beta..,16..cap alpha..-dihydroxyprogesterone and 6-ketoprogesterone), and one tertiary metabolite (6-keto-16..cap alpha..-hydroxyprogesterone). The K/sub m,app/ for the formation of these products from progesterone was determined to be approximately 0.5 ..mu..M, while the K/sub m,app/ for metabolism of 6..beta..- and 16..cap alpha..-hydroxyprogesterone was found to be 5-10 ..mu..M. The ratio of primary to secondary metabolites did not change significantly at progesterone concentrations from 6 to 150 ..mu..M, and a lag in formation of secondary metabolites was not observed inmore » 1-min incubations. Concerted oxidation of progesterone to secondary products without the intermediate products leaving the active site was suggested by these results and confirmed by isotopic dilution experiments in which little or no dilution of metabolically formed 6..beta..,16..cap alpha..-dihydroxyprogesterone and 6-keto-16..cap alpha..-hydroxyprogesterone was observed in incubations containing a mixture of radiolabeled progesterone and unlabeled 6..beta..-hydroxyprogesterone or 16..cap alpha..-hydroxyprogesterone. Incubation of 6..beta..-hydroxyprogesterone with a reconstituted system in an atmosphere of /sup 18/I/sub 2/ resulted in > 90% incorporation of /sup 18/O in the 16..cap alpha..-position of 6..beta..,16..cap alpha..-dihydroxyprogesterone but no incorporation of /sup 18/O into 6-ketoprogesterone, even though the reaction was dependent upon enzyme and O/sub 2/, and not inhibited by mannitol, catalase, or superoxide dismutase. Factors which characterize the metabolism of progesterone by cytochrome P-450g in terms of active-site constraints and the catalytic competence of the enzyme in microsomes were also explored.« less

  12. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450.

    PubMed

    Zong, Cai; Garner, C Edwin; Huang, Chinyen; Zhang, Xiao; Zhang, Lingyi; Chang, Jie; Toyokuni, Shinya; Ito, Hidenori; Kato, Masashi; Sakurai, Toshihiro; Ichihara, Sahoko; Ichihara, Gaku

    2016-09-06

    Neurotoxicity of 1-bromopropane (1-BP) has been reported in both human cases and animal studies. To date, neurotoxicity of 1-BP has been induced in rats but not in mice due to the lethal hepatotoxicity of 1-BP. Oxidization by cytochromes P450 and conjugation with glutathione (GSH) are two critical metabolism pathways of 1-BP and play important roles in toxicity of 1-BP. The aim of the present study was to establish a murine model of 1-BP neurotoxicity, by reducing the hepatotoxicity of 1-BP with 1-aminobenzotriazole (1-ABT); a commonly used nonspecific P450s inhibitor. The results showed that subcutaneous or intraperitoneal injection of 1-ABT at 50mg/kg body weight BID (100mg/kg BW/day) for 3days, inhibited about 92-96% of hepatic microsomal CYP2E1 activity, but only inhibited about 62-64% of CYP2E1 activity in brain microsomes. Mice treated with 1-ABT survived even after exposure to 1200ppm 1-BP for 4 weeks and histopathological studies showed that treatment with 1-ABT protected mice from 1-BP-induced hepatic necrosis, hepatocyte degeneration, and hemorrhage. After 4-week exposure to 1-BP, the brain weight of 1-ABT(+)/1200ppm 1-BP group was decreased significantly. In 1-ABT-treated groups, expression of hippocampal Ran protein and cerebral cortical GRP78 was dose-dependently increased by exposure to 1-BP. We conclude that the control of hepatic P450 activity allows the observation of effects of 1-BP on the murine brain at a higher concentration by reduction of hepatotoxicity. The study suggests that further experiments with liver-specific control of P450 activity using gene technology might provide better murine models for 1-bromopropane-induced neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. QUANTITATIVE EVALUATION OF BROMODICHLOROMETHANE METABOLISM BY RECOMBINANT RAT AND HUMAN CYTOCHROME P450S

    EPA Science Inventory

    ABSTRACT
    We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. BDCM is a drinking water disinfectant byproduct that has been implicated in liver, kidn...

  14. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium.

    PubMed

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-11-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system, mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosproium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed.

  15. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    PubMed

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  16. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  17. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  18. The Isoforms of the p53 Protein

    PubMed Central

    Khoury, Marie P.; Bourdon, Jean-Christophe

    2010-01-01

    p53 is a transcription factor with a key role in the maintenance of genetic stability and therefore preventing cancer formation. It belongs to a family of genes composed of p53, p63, and p73. The p63 and p73 genes have a dual gene structure with an internal promoter in intron-3 and together with alternative splicing, can express 6 and 29 mRNA variants, respectively. Such a complex expression pattern had not been previously described for the p53 gene, which was not consistent with our understanding of the evolution of the p53 gene family. Consequently, we revisited the human p53 gene structure and established that it encodes nine different p53 protein isoforms because of alternative splicing, alternative promoter usage, and alternative initiation sites of translation. Therefore, the human p53 gene family (p53, p63, and p73) has a dual gene structure. We determined that the dual gene structure is conserved in Drosophila and in zebrafish p53 genes. The conservation through evolution of the dual gene structure suggests that the p53 isoforms play an important role in p53 tumor-suppressor activity. We and others have established that the p53 isoforms can regulate cell-fate outcome in response to stress, by modulating p53 transcriptional activity in a promoter and stress-dependent manner. We have also shown that the p53 isoforms are abnormally expressed in several types of human cancers, suggesting that they play an important role in cancer formation. The determination of p53 isoforms' expression may help to link clinical outcome to p53 status and to improve cancer patient treatment. PMID:20300206

  19. Application of HC-AFW1 Hepatocarcinoma Cells for Mechanistic Studies: Regulation of Cytochrome P450 2B6 Expression by Dimethyl Sulfoxide and Early Growth Response 1.

    PubMed

    Petzuch, Barbara; Groll, Nicola; Schwarz, Michael; Braeuning, Albert

    2015-11-01

    Various exogenous compounds, for example, the drugs bupropione and propofol, but also various cytostatics, are metabolized in the liver by the enzyme cytochrome P450 (P450) CYP2B6. Transcription from the CYP2B6 gene is regulated mainly via the transcription factors constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR). Most hepatic cell lines express no or only low levels of CYP2B6 because of loss of these two regulators. Dimethyl sulfoxide (DMSO) is frequently used in liver cell cultivation and is thought to affect the expression of various P450 isoforms by inducing or preserving cellular differentiation. We studied the effects of up to 1.5% of DMSO as cell culture medium supplement on P450 expression in hepatocarcinoma cells from line HC-AFW1. DMSO did not induce differentiation of the HC-AFW1 cell line, as demonstrated by unaltered levels of selected mRNA markers important for hepatocyte differentiation, and also by the lack of a DMSO effect on a broader spectrum of P450s. By contrast, CYP2B6 mRNA was strongly induced by DMSO. This process was independent of CAR or PXR activation. Interestingly, elevated transcription of CYP2B6 was accompanied by a simultaneous induction of early growth response 1 (EGR1), a transcription factor known to influence the expression of CYP2B6. Expression of wild-type EGR1 or of a truncated, dominant-negative EGR1 mutant was able to mimic or attenuate the DMSO effect, respectively. These findings demonstrate that EGR1 is involved in the regulation of CYP2B6 by DMSO in HC-AFW1 cells. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Relationships among cytochromes P450 and dioxin equivalents in pipping heron embryos from Virginia, the Great Lakes and San Francisco Bay

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.

    1993-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge, VA) and industrialized (Cat Island, Green Bay, WI; San Francisco Bay, CA) locations. Hepatic P450 associated monooxygenases (AHH, EROD, BROD, ECOD) and P450 proteins (CYP1A, CYP2B) were induced up to 85-fold, and were associated with burdens of total PCBs and 11 AHH-active PCB congeners. Dioxin equivalents (TCDD-EQs) of sample extracts, derived by bioassay (H4I1E rat hepatoma cell) and mathematically (product of PCB congener concentration and relative TCDD potency), revealed greatest TCDD-EQs in Cat Island samples. TCDD-EQs were associated with P450s, especially BROD, EROD and CYP1A (r2 = 0.35 to 0.66). TCDD-EQs derived by bioassay were highly correlated with TCDD-EQs derived mathematically (r2 = 0.58 to 0.67) . Multiple regressions were also performed to investigate relationships among P450s and PCB congeners. In summary, these data demonstrate that hepatic P450s of heron embryos are biomarkers of exposure to dioxin-like compounds and provide further evidence that this species has considerable value for assessing wetland and estuarine contamination.

  1. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions

    PubMed Central

    Li, Guannan; Huang, Ke; Nikolic, Dejan

    2015-01-01

    Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interactions. Therefore, a rapid and comprehensive mass spectrometry–based in vitro high-throughput P450 cocktail inhibition assay was developed that uses 10 substrates simultaneously against nine CYP isoforms. Including probe substrates for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and two probes targeting different binding sites of CYP3A4/5, this cocktail simultaneously assesses at least as many P450 enzymes as previous assays while remaining among the fastest due to short incubation times and rapid analysis using ultrahigh pressure liquid chromatography–tandem mass spectrometry. The method was validated using known inhibitors of each P450 enzyme and then shown to be useful not only for single-compound testing but also for the evaluation of potential drug-botanical interactions using the botanical dietary supplement licorice (Glycyrrhiza glabra) as an example. PMID:26285764

  2. R-warfarin clearances from plasma associated with polymorphic cytochrome P450 2C19 and simulated by individual physiologically based pharmacokinetic models for 11 cynomolgus monkeys.

    PubMed

    Utoh, Masahiro; Kusama, Takashi; Miura, Tomonori; Mitsui, Marina; Kawano, Mirai; Hirano, Takahiro; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2018-02-01

    1. Cynomolgus monkey cytochrome P450 2C19 (formerly known as P450 2C75), homologous to human P450 2C19, has been identified as R-warfarin 7-hydroxylase. In this study, simulations of R-warfarin clearance in individual cynomolgus monkeys genotyped for P450 2C19 p.[(Phe100Asn; Ala103Val; Ile112Leu)] were performed using individual simplified physiologically based pharmacokinetic (PBPK) modeling. 2. Pharmacokinetic parameters and absorption rate constants, volumes of the systemic circulation, and hepatic intrinsic clearances for individual PBPK models were estimated for eleven cynomolgus monkeys. 3. One-way ANOVA revealed significant effects of the genotype (p < 0.01) on the observed elimination half-lives and areas under the curves of R-warfarin among the homozygous mutant, heterozygous mutant, and wild-type groups. R-Warfarin clearances in individual cynomolgus monkeys genotyped for P450 2C19 were simulated by simplified PBPK modeling. The modeled hepatic intrinsic clearances were significantly associated with the P450 2C19 genotypes. The liver microsomal elimination rates of R-warfarin for individual animals after in vivo administration showed significant reductions associated with the genotype (p < 0.01). 4. This study provides important information to help simulate clearances of R-warfarin and related medicines associated with polymorphic P450 2C19 in individual cynomolgus monkeys, thereby facilitating calculation of the fraction of hepatic clearance.

  3. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  4. Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade.

    PubMed

    Steuck, Maryvonne; Hellhake, Stefan; Schebb, Nils Helge

    2016-11-30

    The product of cytochrome P450 monooxygenase (P450) ω-hydroxylation of arachidonic acid (AA), 20- hydroxyeicosatetraenoic acid (HETE), is a potent vasoconstrictor. Utilizing microsomes as well as individual CYP4 isoforms we demonstrate here that flavonoids can block 20-HETE formation. Apigenin inhibits CYP4F2 with an IC 50 value of 4.6 μM and 20-HETE formation in human liver and kidney microsomes at 2.4-9.8 μM. Interestingly, the structurally similar naringenin shows no relevant effect on the formation of 20-HETE. Based on these in vitro data, it is impossible to evaluate if a relevant blockade of 20-HETE formation can result in humans from intake of polyphenols with the diet. However, the potency of apigenin is comparable to those of P450 inhibitors such as ketoconazole. Moreover, an IC 50 value in the micromolar range is also described for the inhibition of CYP-mediated drug metabolism leading to food-drug interactions. The modulation of the arachidonic acid cascade by food polyphenols therefore warrants further investigation.

  5. [Consumption of vitamin A in intact and castrated rats. Relation to tocopherol and cytochrome P 450].

    PubMed

    Ferrando, R; Truhaut, R; Fourlon, C

    1979-05-07

    There are significant differences between castrated and non castrated male Rats in regard to vitamine A hepatic storage and plasma level. Cytochrom P 450 levels are the same in both groups. Those results are discussed.

  6. Metabolism of 4-Aminopiperidine Drugs by Cytochrome P450s: Molecular and Quantum Mechanical Insights into Drug Design

    PubMed Central

    2011-01-01

    4-Aminopiperidines are a variety of therapeutic agents that are extensively metabolized by cytochrome P450s with CYP3A4 as a major isoform catalyzing their N-dealkylation reaction. However, its catalytic mechanism has not been fully elucidated in a molecular interaction level. Here, we applied theoretical approaches including the molecular mechanics-based docking to study the binding patterns and quantum mechanics-based reactivity calculations. They were supported by the experimental human liver microsomal clearance and P450 isoform phenotyping data. Our results herein suggested that the molecular interactions between substrates and CYP3A4 active site residues are essential for the N-dealkylation of 4-aminopiperidines. We also found that the serine 119 residue of CYP3A4 may serve as a key hydrogen-bonding partner to interact with the 4-amino groups of the studied drugs. The reactivity of the side chain α-carbon hydrogens drives the direction of catalysis as well. As a result, structure-based drug design approaches look promising to guide drug discovery programs into the optimized drug metabolism space. PMID:21841964

  7. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents.

    PubMed

    Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong

    2014-02-24

    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  8. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    PubMed Central

    2010-01-01

    Background Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is

  9. Protective effect of tea polyphenols against paracetamol-induced hepatotoxicity in mice is significantly correlated with cytochrome P450 suppression.

    PubMed

    Chen, Xia; Sun, Chang-Kai; Han, Guo-Zhu; Peng, Jin-Yong; Li, Ying; Liu, Yan-Xia; Lv, Yuan-Yuan; Liu, Ke-Xin; Zhou, Qin; Sun, Hui-Jun

    2009-04-21

    To investigate the hepatoprotective activity of tea polyphenols (TP) and its relation with cytochrome P450 (CYP450) expression in mice. Hepatic CYP450 and CYPb(5) levels were measured by UV-spectrophotometry in mice 2 d after intraperitoneal TP (25, 50 and 100 mg/kg per day). Then the mice were intragastricly pre-treated with TP (100, 200 and 400 mg/kg per day) for six days before paracetamol (1000 mg/kg) was given. Their acute mortality was compared with that of control mice. The mice were pre-treated with TP (100, 200, and 400 mg/kg per day) for five days before paracetamol (500 mg/kg) was given. Hepatic CYP2E1 and CYP1A2 protein and mRNA expression levels were evaluated by Western blotting, immunohistochemical staining and transcriptase-polymerase chain reaction. The hepatic CYP450 and CYPb(5) levels in mice of TP-treated groups (100, 200 and 400 mg/kg per day) were decreased in a dose-dependent manner compared with those in the negative control mice. TP significantly attenuated the paracetamol-induced hepatic injury and dramatically reduced the mortality of paracetamol-treated mice. Furthermore, TP reduced CYP2E1 and CYP1A2 expression at both protein and mRNA levels in a dose-dependent manner. TP possess potential hepatoprotective properties and can suppress CYP450 expression.

  10. Contributions of Human Cytochrome P450 Enzymes to Glyburide Metabolism*

    PubMed Central

    Zhou, Lin; Naraharisetti, Suresh B.; Liu, Li; Wang, Honggang; Lin, Yvonne S.; Isoherranen, Nina; Unadkat, Jashvant D.; Hebert, Mary F.; Mao, Qingcheng

    2011-01-01

    Glyburide (GLB) is a widely used oral sulfonylurea for the treatment of gestational diabetes. Therapeutic use of GLB is often complicated by a substantial inter-individual variability in the pharmacokinetics and pharmacodynamics of the drug in human populations, which might be caused by inter-individual variations in factors such as GLB metabolism. Therefore, there has been a continued interest in identifying human cytochrome P450 (CYP) isoforms that play a major role in the metabolism of GLB. However, contrasting data are available in the present literature in this regard. In the present study, we systematically investigated the contributions of various human CYP isoforms (CYP3A4, CYP3A5, CYP2C8, CYP2C9, and CYP2C19) to in vitro metabolism of GLB. GLB depletion and metabolite formation in human liver microsomes were most significantly inhibited by the CYP3A inhibitor ketoconazole compared with the inhibitors of other CYP isoforms. Furthermore, multiple correlation analysis between GLB depletion and individual CYP activities was performed, demonstrating a significant correlation between GLB depletion and the CYP3A probe activity in 16 individual human liver microsomal preparations, but not between GLB depletion and the CYP2C19, CYP2C8, or CYP2C9 probe activity. By using recombinant supersomes overexpressing individual human CYP isoforms, we found that GLB could be depleted by all the enzymes tested; however, the intrinsic clearance (Vmax/Km) of CYP3A4 for GLB depletion was 4 – 17 times greater than that of other CYP isoforms. These results confirm that human CYP3A4 is the major enzyme invovled in the in vitro metabolism of GLB. PMID:20437462

  11. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  12. Induction of cytochrome P450 enzymes in rat liver by two conazoles, myclobutanil and triadimefon.

    PubMed

    Sun, G; Grindstaff, R D; Thai, S F; Lambert, G R; Tully, D B; Dix, D J; Nesnow, S

    2007-02-01

    This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon, on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague Dawley rats. Rats were dosed with the conazoles at three dose levels by gavage for 14 days: myclobutanil (150, 75, and 10mgkg(-1) body weight day(-1); triadimefon (115, 50, and 10 mg kg(-1) body weight day-'), which included their maximum tolerated dose levels (MTD). Both myclobutanil and triadimefon significantly induced pentoxyresorufin O-depentylase activities at their MTD levels: myclobutanil, 8.1-fold at 150mgkg(-1) body weight day- ; and triadimefon, 18.5-fold at 115mgkg(-1) body weight day-'. Benzyloxyresorufin O-debenzylase activities were similarly increased: myclobutanil, 13.3-fold; triadimefon, 27.7-fold. Quantitative real-time reverse-transcription polymerase chain reaction assays were used to characterize the mRNA expression of specific CYP genes induced by these two conazoles. Myclobutanil and triadimefon treatment at their MTD levels significantly increased rat hepatic mRNA expression of CYP2B1 (14.3- and 54.6-fold), CYP3A23/3A1 (2.2- and 7.3-fold), and CYP3A2 (1.5- and 1.7-fold). Western immunoblots of rat hepatic microsomal proteins identified significantly increased levels of CYP isoforms after myclobutanil or triadimefon treatment at their MTD levels: CYP2BI/2 (4.8- and 5.3-fold), and CYP3A1 (2.2- and 2.9-fold). Triadimefon also increased CYP3A2 immunoreactive protein levels 1.8-fold. These results indicate that triadimefon and myclobutanil, like other triazole-containing conazoles, induced CYP2B and CYP3A families of cytochromes in rat liver.

  13. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  14. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks

    NASA Astrophysics Data System (ADS)

    Bayburt, Timothy H.; Sligar, Stephen G.

    2002-05-01

    The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy. Individual P450 molecules were observed protruding from the bilayer surface. Problems associated with deformation of the protein by the atomic force microscopy probe were avoided by analyzing force-dependent height measurements to quantitate the height of the protein above the bilayer surface. Measurements of the atomic force microscopy cantilever deflection as a function of probe-sample separation reveal that the top of the P450 opposite the N-terminal membrane anchor region sits 3.5 nanometers above the phospholipid-water boundary. Models of the orientation of the enzyme are presented and discussed in relation to membrane interactions and interaction with cytochrome P450 reductase.

  15. Time course for the modulation of hepatic cytochrome P450 after administration of ethylbenzene and its correlation with toluene metabolism.

    PubMed

    Yuan, W; Sequeira, D J; Cawley, G F; Eyer, C S; Backes, W L

    1997-03-01

    The goal of the present study was to examine the time course for changes in P450 expression and hydrocarbon metabolism after acute treatment with the simple aromatic hydrocarbon ethylbenzene (EB) and to correlate these alterations with the changes observed in alkylbenzene metabolism. Male Holtzman rats were treated with a single intraperitoneal injection of EB, and the effects on specific P450-dependent activities, immunoreactive P450 isozyme levels, and RNA levels were measured at various times after injection. Toluene was used as the test alkylbenzene for examination of the EB-mediated changes on in vitro hydrocarbon metabolism. In untreated rats, toluene was metabolized almost entirely by aliphatic hydroxylation (to benzyl alcohol); however, in EB-treated rats, significant quantities of benzyl alcohol, o-cresol, and p-cresol were produced. Interestingly, 5-10 h after EB treatment, there was a 40% decrease in benzyl alcohol production. By 24 h, rates of benzyl alcohol formation returned to control levels, whereas there was a 7-fold increase in o-cresol and a greater that 50-fold increase in p-cresol production. The changes in the disposition of toluene were then correlated with changes in particular P450 isozymes. Several P450 isozymes were induced after EB administration. P450 2B1/2-dependent testosterone 16 beta-hydroxylation and P450 2B1/2-immunoreactive protein were elevated 30-fold after EB administration, reaching maxima by 24 h and remaining elevated 48 h after exposure. Changes in P450 2B1 and 2B2 RNA preceded those of the proteins. Similar results were observed with P450 1A1. P450 2E1 RNA levels were elevated after a single EB injection. However, the elevation in P450 2E1-dependent activities and immunoreactive protein levels preceded the changes in RNA, suggesting that multiple steps are affected by EB exposure. In contrast to the increases in some isozymes, P450 2C11 protein was rapidly suppressed (within the first 2-10 h) after hydrocarbon exposure

  16. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  17. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  18. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  19. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4.

    PubMed

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-12-25

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver-Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4.

  20. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    PubMed

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  1. Induction of P450 3A1/2 and 2C6 by gemfibrozil in Sprague-Dawley rats.

    PubMed

    Liu, Aiming; Yang, Julin; Zhao, Xin; Jiao, Xiaolan; Zhao, Weihong; Ma, Qing; Tang, Zhiyuan; Dai, Renke

    2011-01-01

    Fibrates are a group of peroxisome proliferator-activated receptor α agonists used in the treatment of dyslipidemia; however, they have been reported to cause species-related hepatocarcinogenesis and clinical myotoxicity. Gemfibrozil is one of the most commonly used fibrates, and it shows the highest risk for myotoxicity among the fibrates. The inhibitory drug-drug interaction mechanism associated with gemfibrozil has been explored recently, and the induction of human P450 3A4 and 2C8 has been reported. In this study, in vivo induction of rat P450 by gemfibrozil was studied in Sprague-Dawley rats. After the rats were dosed with gemfibrozil by oral gavage, microsomes were prepared. The metabolic activities of P450 3A1/2, 2C6, and 2D2 were assayed using probe substrates, and the systemic concentration of gemfibrozil during its administration was determined. P450 3A1/2 and 2C6 activities were induced 32-77% in the rats by gemfibrozil when the exposure concentration was in the clinical range. These data indicate that the inducibility of homologous P450 isoforms by gemfibrozil is similar in Sprague-Dawley rats and in humans. Inductive drug-drug interactions and inhibitory actions are involved in the co-administration of gemfibrozil with other drugs, which suggests the relevance for a fibrate-toxicology investigation.

  2. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    PubMed Central

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation

  3. Molecular modeling of cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Szklarz, Grazyna D.; Halpert, James R.

    1997-05-01

    The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B' helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6β-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.

  4. Cytochrome P450 inactivation by serum from humans with a viral infection and serum from rabbits with a turpentine-induced inflammation: the role of cytokines.

    PubMed

    Bleau, A M; Levitchi, M C; Maurice, H; du Souich, P

    2000-08-01

    Serum from humans with an acute upper respiratory viral infection and from rabbits with turpentine-induced inflammation reduce the catalytic activity of hepatic cytochrome P450 (P450). The aim of this study was to identify the serum mediators responsible for the decrease in P450 activity. Rabbit and human sera were fractionated by size exclusion chromatography and the fractions tested for their ability to reduce the activity and amount of P450 after 4 h of incubation with hepatocytes from turpentine-treated rabbits (H(INF)). Rabbit and human sera decreased P450 activity by around 40% without any change in the amount of CYP1A1 and 1A2 apoproteins. In rabbit serum, the fraction containing proteins of M(r) 23-15 kDa decreased P450 content by 41%, but did not alter the amount of the apoproteins. Anti-IL-6 antibody added to the M(r) 23-15 kDa fraction restored P450 content to 97% of control values, while anti-IL-1beta, TNF-alpha and IFN-gamma antibodies had no effect. Supporting the role of IL-6, incubation of H(INF) in the presence of IL-6 for 4 h reduced P450 content by 40%. In human serum, the fraction containing proteins of M(r) >95 kDa lowered P450 content by 43% without modifying the amounts of CYP1A1/2. Neutralization experiments showed that IFN-gamma, IL-6, and IL-1beta contributed to the decrease in P450 content. In conclusion, the present results demonstrate that IL-6, and IFN-gamma, IL-6 and IL-1beta are the serum mediators released in vivo by a turpentine-induced inflammatory reaction in the rabbit and an upper respiratory viral infection in humans, respectively, inactivating hepatic P450.

  5. Cytochrome P450 inactivation by serum from humans with a viral infection and serum from rabbits with a turpentine-induced inflammation: the role of cytokines

    PubMed Central

    Bleau, Anne-Marie; Levitchi, Mihaela C; Maurice, Hélène; du Souich, Patrick

    2000-01-01

    Serum from humans with an acute upper respiratory viral infection and from rabbits with turpentine-induced inflammation reduce the catalytic activity of hepatic cytochrome P450 (P450). The aim of this study was to identify the serum mediators responsible for the decrease in P450 activity.Rabbit and human sera were fractionated by size exclusion chromatography and the fractions tested for their ability to reduce the activity and amount of P450 after 4 h of incubation with hepatocytes from turpentine-treated rabbits (HINF). Rabbit and human sera decreased P450 activity by around 40% without any change in the amount of CYP1A1 and 1A2 apoproteins.In rabbit serum, the fraction containing proteins of Mr 23–15 kDa decreased P450 content by 41%, but did not alter the amount of the apoproteins. Anti-IL-6 antibody added to the Mr 23–15 kDa fraction restored P450 content to 97% of control values, while anti-IL-1β, TNF-α and IFN-γ antibodies had no effect. Supporting the role of IL-6, incubation of HINF in the presence of IL-6 for 4 h reduced P450 content by 40%.In human serum, the fraction containing proteins of Mr >95 kDa lowered P450 content by 43% without modifying the amounts of CYP1A1/2. Neutralization experiments showed that IFN-γ, IL-6, and IL-1β contributed to the decrease in P450 content.In conclusion, the present results demonstrate that IL-6, and IFN-γ, IL-6 and IL-1β are the serum mediators released in vivo by a turpentine-induced inflammatory reaction in the rabbit and an upper respiratory viral infection in humans, respectively, inactivating hepatic P450. PMID:10952665

  6. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora.

    PubMed

    Syed, Khajamohiddin; Nelson, David R; Riley, Robert; Yadav, Jagjit S

    2013-01-01

    Genomewide annotation of cytochrome P450 monooxygenases (P450s) in three white-rot species of the fungal order Polyporales, namely Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora, revealed a large contingent of P450 genes (P450ome) in their genomes. A total of 199 P450 genes in B. adusta and 209 P450 genes each in Ganoderma sp. and P. brevispora were identified. These P450omes were classified into families and subfamilies as follows: B. adusta (39 families, 86 subfamilies), Ganoderma sp. (41 families, 105 subfamilies) and P. brevispora (42 families, 111 subfamilies). Of note, the B. adusta genome lacked the CYP505 family (P450foxy), a group of P450-CPR fusion proteins. The three polypore species revealed differential enrichment of individual P450 families in their genomes. The largest CYP families in the three genomes were CYP5144 (67 P450s), CYP5359 (46 P450s) and CYP5344 (43 P450s) in B. adusta, Ganoderma sp. and P. brevispora, respectively. Our analyses showed that tandem gene duplications led to expansions in certain P450 families. An estimated 33% (72 P450s), 28% (55 P450s) and 23% (49 P450s) of P450ome genes were duplicated in P. brevispora, B. adusta and Ganoderma sp., respectively. Family-wise comparative analysis revealed that 22 CYP families are common across the three Polypore species. Comparative P450ome analysis with Ganoderma lucidum revealed the presence of 143 orthologs and 56 paralogs in Ganoderma sp. Multiple P450s were found near the characteristic biosynthetic genes for secondary metabolites, namely polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), terpene cyclase and terpene synthase in the three genomes, suggesting a likely role of these P450s in secondary metabolism in these Polyporales. Overall, the three species had a richer P450 diversity both in terms of the P450 genes and P450 subfamilies as compared to the model white-rot and brown-rot polypore species Phanerochaete chrysosporium and Postia placenta.

  7. Inhibition of oxidative drug metabolism by orphenadrine: in vitro and in vivo evidence for isozyme-specific complexation of cytochrome P-450 and inhibition kinetics.

    PubMed

    Reidy, G F; Mehta, I; Murray, M

    1989-05-01

    The anti-parkinsonian agent orphenadrine has been shown to form an in vitro metabolic intermediate (MI) complex in hepatic microsomes isolated from phenobarbital (PB)-treated rats. The present study was undertaken to assess the cytochrome P-450 isozyme specificity of inhibition and MI complexation. Spectral studies with untreated and PB-induced rat hepatic microsomes confirmed earlier reports on the selectivity of P-450 complexation by orphenadrine; MI complex formation was only observed with PB-induced microsomes. Inhibition studies with the P-450 substrates androst-4-ene-3,17-dione (androstenedione) and 7-pentoxyresorufin revealed selective inhibition of P-450 PB-B/D-associated monooxygenase activity. Thus, in microsomes from untreated male rats, orphenadrine failed to significantly inhibit (less than 50% inhibition up to a concentration of 300 microM) any of the major pathways of P-450-associated androstenedione metabolism. Preincubation of these microsomal fractions with orphenadrine and NADPH was not associated with increased inhibition of androstenedione metabolism. However, in PB-induced microsomes, P-450 PB-B/D-specific androstenedione 16 beta-hydroxylase activity was significantly and selectively inhibited (IC50 = 90 microM). Preincubation of orphenadrine with NADPH-supplemented PB-induced microsomes for 2, 4, or 8 min before androstenedione addition resulted in increased inhibition toward 16 beta-hydroxylase activity, lowering the observed IC50 to 6.6, 0.47, and 0.06 microM), respectively. Preincubation did not affect the selectivity of inhibition. In the absence of preincubation, orphenadrine appeared to be a potent mixed (competitive/noncompetitive)-type inhibitor of P-450 PB-B/D-associated pentoxyresorufin O-depentylation (Ki = 3.8 microM). Preincubation of orphenadrine with NADPH-supplemented microsomal fractions for 4 min resulted in a 30-fold lowering of the apparent inhibitor constant (Ki = 0.13 microM) and a change in the apparent inhibition

  8. Antiepileptic drugs affect neuronal androgen signaling via a cytochrome P450-dependent pathway.

    PubMed

    Gehlhaus, Marcel; Schmitt, Nina; Volk, Benedikt; Meyer, Ralf P

    2007-08-01

    Recent data imply an important role for brain cytochrome P450 (P450) in endocrine signaling. In epileptic patients, treatment with P450 inducers led to reproductive disorders; in mouse hippocampus, phenytoin treatment caused concomitant up-regulation of CYP3A11 and androgen receptor (AR). In the present study, we established specific in vitro models to examine whether CYP3A isoforms cause enhanced AR expression and activation. Murine Hepa1c1c7 cells and neuronal-type rat PC-12 cells were used to investigate P450 regulation and its effects on AR after phenytoin and phenobarbital administration. In both cell lines, treatment with antiepileptic drugs (AEDs) led to concomitant up-regulation of CYP3A (CYP3A11 in Hepa1c1c7 and CYP3A2 in PC-12) and AR mRNA and protein. Inhibition of CYP3A expression and activity by the CYP3A inhibitor ketoconazole or by CYP3A11-specific short interfering RNA molecules reduced AR expression to basal levels. The initial up-regulation of AR signal transduction, measured by an androgen-responsive element chloramphenicol-acetyltransferase reporter gene assay, was completely reversed after specific inhibition of CYP3A11. Withdrawal of the CYP3A11 substrate testosterone prevented AR activation, whereas AR mRNA expression remained up-regulated. In addition, recombinant CYP3A11 was expressed heterologously in PC-12 cells, thereby eliminating any direct drug influence on the AR. Again, the initial up-regulation of AR mRNA and activity was reduced to basal levels after silencing of CYP3A11. In conclusion, we show here that CYP3A2 and CYP3A11 are crucial mediators of AR expression and signaling after AED application. These findings point to an important and novel function of P450 in regulation of steroid hormones and their receptors in endocrine tissues such as liver and brain.

  9. Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity.

    PubMed

    Gambaro, Sabrina E; Robert, Maria C; Tiribelli, Claudio; Gazzin, Silvia

    2016-02-01

    In the Crigler-Najjar type I syndrome, the genetic absence of efficient hepatic glucuronidation of unconjugated bilirubin (UCB) by the uridine 5'-diphospho-glucuronosyltransferase1A1 (UGT1A1) enzyme produces the rise of UCB level in blood. Its entry to central nervous system could generate toxicity and neurological damage, and even death. In the past years, a compensatory mechanism to liver glucuronidation has been indicated in the hepatic cytochromes P450 enzymes (Cyps) which are able to oxidize bilirubin. Cyps are expressed also in the central nervous system, the target of bilirubin toxicity, thus making them theoretically important to confer a protective activity toward bilirubin accumulation and neurotoxicity. We therefore investigated the functional induction (mRNA, EROD/MROD) and the ability to oxidize bilirubin of Cyp1A1, 1A2, and 2A3 in primary astrocytes cultures obtained from two rat brain region (cortex: Cx and cerebellum: Cll). We observed that Cyp1A1 was the Cyp isoform more easily induced by beta-naphtoflavone (βNF) in both Cx and Cll astrocytes, but oxidized bilirubin only after uncoupling by 3, 4,3',4'-tetrachlorobiphenyl (TCB). On the contrary, Cyp1A2 was the most active Cyp in bilirubin clearance without uncoupling, but its induction was confined only in Cx cells. Brain Cyp2A3 was not inducible. In conclusion, the exposure of astrocytes to βNF plus TCB significantly enhanced Cyp1A1 mediating bilirubin clearance, improving cell viability in both regions. These results may be a relevant groundwork for the manipulation of brain Cyps as a therapeutic approach in reducing bilirubin-induced neurological damage.

  10. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.

    PubMed

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-07-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members' duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes.

  11. Rat oesophageal cytochrome P450 (CYP) monooxygenase system: comparison to the liver and relevance in N-nitrosodiethylamine carcinogenesis.

    PubMed

    Pinto, L F; Moraes, E; Albano, R M; Silva, M C; Godoy, W; Glisovic, T; Lang, M A

    2001-11-01

    N-nitrosodiethylamine (NDEA) is able to induce tumours in the rat oesophagus. It has been suggested that this could be due to tissue specific expression of NDEA activating cytochrome P450 enzymes. We investigated this by characterizing the oesophageal monooxygenase complex of male Wistar rats and comparing it with that of the liver. Total amount of cytochrome P450, NADPH P450 reductase, cytochrome b5 and cytochrome b5 reductase of the oesophageal mucosa was approximately 7% of what was found in the liver. In addition, major differences were found in the cytochrome P450 isoenzyme composition between these organs: CYP 2B1/2B2 and CYP3A were found only in the liver, whereas CYP1A1 was constitutively expressed only in the oesophagus. Of the two well-known nitrosamine metabolizing enzymes, CYP2A3 was found only in the oesophagus whereas CYP2E1 was exclusively expressed in the liver. Catalytic studies, western blotting and RT-PCR analyses confirmed the expression of CYP2A3 in the oesophagus. CYP2A enzymes are known to be good catalysts of NDEA metabolism. Oesophageal microsomes had a K(m) for NDEA metabolism, which was about one-third of that of hepatic microsomes, but they showed similar activities when compared per nmol of total P450. NDEA activity in the oesophagus was significantly increased by coumarin (CO), which also induced oesophageal CYP2A3. Immunoinhibition of the microsomal NDEA activity showed that up to 70% of this reaction is catalysed by CYP2A3 in the oesophagus, whereas no inhibition of the hepatic NDEA activity could be achieved by the anti-CYP2A5 antibody. NDEA, but not N-nitrosodimethylamine (NDMA) inhibited the oesophageal metabolism of CO. The results of the present investigation show major differences in the enzyme composition of the oesophageal and hepatic monooxygenase complexes, and are in accordance with the hypothesis that the NDEA organotropism could, to a large extent, be due to the tissue specific expression of the activating enzymes.

  12. Altered pharmacokinetics and pharmacodynamics of repaglinide by ritonavir in rats with healthy, diabetic and impaired hepatic function.

    PubMed

    Goud, Thirumaleswara; Maddi, Srinivas; Nayakanti, Devanna; Thatipamula, Rajendra Prasad

    2016-06-01

    Ritonavir is an antiretroviral drug to treat HIV AIDS and inhibits cytochrome P450 3A4. To treat diabetes mellitus in HIV, repaglinide is coadministered with ritonavir in the clinic. Multiple cytochrome P450 (CYP) isoforms are involved in the metabolism of repaglinide like CYP2C8 and CYP 3A4. In order to predict and understand drug-drug interactions of these two drugs, the pharmacokinetics and pharmacodynamics (PK/PD) of repaglinide and ritonavir were studied in normal, diabetic and hepatic impaired rats. The purpose of the study was to assess the influence of ritonavir on the PK/PD of repaglinide in rats with normal, diabetic and impaired hepatic function. Human oral therapeutic doses of ritonavir and repaglinide were extrapolated to rats based on the body surface area. Ritonavir (20 mg/kg, p.o.), alone and along with repaglinide (0.5 mg/kg, p.o.), was given to normal, diabetic and hepatic impaired rats, and the PK/PD were studied. The pharmacokinetic parameters like peak plasma concentration (Cmax), area under the plasma concentration time profile (AUC) and elimination half life of repaglinide were significantly (p<0.0001) increased when compared to repaglinide control rats. The repaglinide clearance (CL) was significantly (p<0.0001) decreased in the presence of ritonavir treatment. In the presence of ritonavir, repaglinide hypoglycemic activity was increased significantly (p<0.0005) when compared with repaglinide control group. The significant difference in the PK/PD changes have been due to the increased plasma exposure and decreased total body clearance of repaglinide, which may be due to the inhibition of the CYP P450 metabolic system and organic anion-transporting polypeptide transporter by ritonavir.

  13. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    PubMed

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  14. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  15. Relative contributions of the major human CYP450 to the metabolism of icotinib and its implication in prediction of drug-drug interaction between icotinib and CYP3A4 inhibitors/inducers using physiologically based pharmacokinetic modeling.

    PubMed

    Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji; Hu, Pei

    2015-06-01

    Icotinib is an anticancer drug, but relative contributions of CYP450 have not been identified. This study was carried out to identify the contribution percentage of CYP450 to icotinib and use the results to develop a physiologically based pharmacokinetic (PBPK) model, which can help to predict drug-drug interaction (DDI). Human liver microsome (HLM) and supersome using relative activity factor (RAF) were employed to determine the relative contributions of the major human P450 to the net hepatic metabolism of icotinib. These values were introduced to develop a PBPK model using SimCYP. The model was validated by the observed data in a Phase I clinical trial in Chinese healthy subjects. Finally, the model was used to simulate the DDI with ketoconazole or rifampin. Final contribution of CYP450 isoforms determined by HLM showed that CYP3A4 provided major contributions to the metabolism of icotinib. The percentage contributions of the P450 to the net hepatic metabolism of icotinib were determined by HLM inhibition assay and RAF. The AUC ratio under concomitant use of ketoconazole and rifampin was 3.22 and 0.55, respectively. Percentage of contribution of CYP450 to icotinib metabolism was calculated by RAF. The model has been proven to fit the observed data and is used in predicting icotinib-ketoconazole/rifampin interaction.

  16. Cytochrome P450 responses and PCB congeners in pipping heron embryos from Virginia, the Great Lakes and San Francisco Bay

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.; Woodin, Bruce R.; Stegeman, John J.

    1992-01-01

    Pipping black-crowned night-heron (Nvcticorax nvcticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge VA; CNWR) and industrialized (Cat Island, Green Bay WI and San Francisco Bay, CA; SFB) locations. Hepatic monooxygenases (AHH, EROD, BROD, ECOD) were induced up to 100-fold, and were correlated (r=0.50 to 0.72) with total PCB burdens (N =61 embryos). A subset of 30 embryos have now been analyzed by GC/MS for 12 AHH-active PCB congeners and by Western blot for cytochromes P450lA and P450llB. At Cat Island, concentrations of 8 congeners were greater (P <0.05) than at CNWR. P450lA and P450llB were detected in 44% and 100% of the Cat Island embryos compared to 8% and 33% of the CNWR + SFB embryos. Cytochrome P450 parameters were correlated with the total PCBs (r =0.44 to 0.67) and with at least 9 PCB congeners (r =0.39 to 0.77). Since P450 responses might be affected by other contaminants, sample extract potency in the H411E rat hepatoma bioassay is being determined to study relationships among dioxin equivalents and cytochrome P450 parameters.

  17. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish.

    PubMed

    Lin, Chun-Hung; Chou, Pei-Hsin; Chen, Pei-Jen

    2014-07-30

    Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish populations in the aquatic environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4

    PubMed Central

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-01-01

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver–Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4. PMID:26712778

  19. Expression of Cytochrome P450s in the Liver of Rats Administered with Socheongryong-tang, a Traditional Herbal Formula

    PubMed Central

    Jin, Seong Eun; Ha, Hyekyung; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Jeong, Soo-Jin

    2016-01-01

    Objective: The purpose of this study was to investigate the potential influences of Socheongryong-tang (SCRT) on the messenger ribonucleic acid (mRNA) and protein expression of cytochrome P450 (CYP450) in vivo. Materials and Methods: SCRT was orally administered to either male or female Sprague-Dawley rats once daily at doses of 0, 1000, 2000, or 5000 mg/kg/day for 13 weeks. The mRNA expression of CYP450s (CYP1A1, 1A2, 2B1/2, 2C11, 2E1, 3A1, 3A2, and 4A1) in liver tissues was measured by reverse transcription polymerase chain reaction. And then, the protein expression of CYP1A1 and CYP2B1/2 in liver tissues was analyzed by the Western blot. Results: We found no significant influence in the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1 after repeated administration of SCRT for 13 weeks. By contrast, the mRNA and protein expression of hepatic CYP1A1 was increased by repeated SCRT treatment in male rats, but not in female rats. The mRNA and protein expression of hepatic CYP2B1/2 in both genders was increased by administration of SCRT. Conclusion: A caution is needed when SCRT is co-administered with substrates of CYP2B1/2 for clinical usage. In case of male, an attention is also required when SCRT and drugs metabolized by CYP1A1 are taken together. Our findings provide information regarding the safety and effectiveness of SCRT when combined with conventional drugs. SUMMARY Oral administration of Socheongryong-tang for 13 weeks did not affect the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1In male rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP1A1 and CYP2B1/2In female rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP2B1/2. Abbreviations used: SCRT: Socheongryong-tang, CYP450: Cytochrome P450, HPLC: High performance liquid chromatography, RT-PCR: Reverse transcription polymerase chain reaction. PMID

  20. Cytochrome P450 induction in mallard duck (MD), black-crowned night heron (BCNH) and Fisher-344 rat

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Stegeman, John J.

    1991-01-01

    P450 induction was studied in adult and pipping MDs, pipping BCNHs, and rats. Adult MDs and rats received i.p. injection of corn oil, 3-methylcholanthrene (MC) in corn oil (20 mg/kg), saline or phenobarbital (PB) in saline (80 mg/kg) for 3 days. MD and BCNH embryos received MC and PB by injection into the aircell approximately 2 days before pipping and were sacrificed at pipping. Hepatic microsomes were assayed for protein, arylhydrocarbon hydroxylase (AHH), benzphetamine-N-demethylase (BEND), ethoxy-resorufin-O-dealkylase (EROD), pentoxyresorufin-O-dealkylase (PROD), benzyloxyresorufin-O-dealkylase (BROD), ethoxycoumarin-O-dealkylase (ECOD), and by SDS-PAGE with western blot using a polyclonal anti-P4S0IIB antibody and a monoclonal anti-P450IA antibody (MAb 1-12-3). Although species and age caused substantial differences in responses, all treated groups showed an increase in one or more monooxygenase assays. All animals treated with MC showed a strong induction of a protein recognized by anti-P450IA, and all those treated with PB showed strong induction of a band recognized by anti-P450IIB.

  1. Inhibitory effects of cytostatically active 6-aminobenzo[c]phenanthridines on cytochrome P450 enzymes in human hepatic microsomes.

    PubMed

    Zebothsen, Inga; Kunze, Thomas; Clement, Bernd

    2006-07-01

    Besides assays for the evaluation of efficacy new drug candidates have to undergo extensive testings for enhancement of pharmaceutical drug safety and optimization of application. The objective of the present work was to investigate the pharmacokinetic drug drug interaction potential for the cytostatically active 6-aminobenzo[c]phenanthridines BP-11 (6-amino-11,12-dihydro-11-(4-hydroxy-3,5-dimethoxyphenyl)benzo[c]phenanthridine) and BP-D7 (6-amino-11-(3,4,5-trimethoxyphenyl)benzo[c]phenanthridine) in vitro through incubation with human hepatic microsomes and marker substrates. For these studies the cytochrome P-450 isoenzymes and corresponding marker substrates recommended by the EMEA (The European Agency for the Evaluation of Medicinal Products) were chosen. In detail these selective substrates were caffeine (CYP1A2), coumarin (CYP2A6), tolbutamide (CYP2C9), S-(+)-mephenytoin (CYP2C19), dextromethorphane (CYP2D6), chlorzoxazone (CYP2E1) and testosterone (CYP3A4). Incubations with each substrate were carried out without a possible inhibitor and in the presence of a benzo[c]phenanthridine or a selective inhibitor at varying concentrations. Marker activities were determined by HPLC (high performance liquid chromatography). For the isoenzymes showing more than 50% inhibition by the addition of 20 microM BP-11 or BP-D7 additional concentrations of substrate and inhibitor were tested for a characterization of the inhibition. The studies showed a moderate risk for BP-11 for interactions with the cytochrome P-450 isoenzymes CYP1A2, CYP2C9, CYP2D6 and CYP3A4. BP-D7, the compound with the highest cytotstatic efficacy, showed only a moderate risk for interactions with drugs, also metabolized by CYP3A4.

  2. Soybean meal fermented by Aspergillus awamori increases the cytochrome P-450 content of the liver microsomes of mice.

    PubMed

    Kishida, T; Ataki, H; Takebe, M; Ebihara, K

    2000-04-01

    The effect of soybean meal fermented by Aspergillus awamori on the acute lethality of acetaldehyde, pentobarbital sleeping time, and cytochrome P-450 content of the hepatic microsomes was studied in mice. Most of the daidzin and genistin in soybean meal (SBM) were converted into the respective aglycones, daidzein and genistein, by fermentation. In experiment 1, mice were fed isonitrogenic test diets with one of the following five protein sources for 28 d: casein, SBM, fermented and hot-air-dried SBM (FSBM-HD), fermented and freeze-dried SBM (FSBM-FD), or methanol-extracted FSBM-FD (FSMB-FD-R). The acute lethality of acetaldehyde in mice fed the FSBM-FD diet was significantly lower than that in mice fed the SBM, FSBM-HD, or FSBM-FD-R diet. In experiments 2 and 3, mice were fed isonitrogenic test diets with one of the following four protein sources for 28 d: casein, SBM, FSBM-FD, and FSBM-FD-R. The pentobarbital sleeping time was significantly shorter and the cytochrome P-450 content was significantly higher in the mice fed the FSBM-FD diet than the respective value in mice fed the other test diets. In experiment 4, mice were fed one of eight diets which contained different levels of aglycone obtained by varying the proportion of FSBM-FD and FSBM-FD-R, for 28 d. The cytochrome P-450 content in hepatic microsomes increased as the dietary level of isoflavonoid aglycones increased, but there was a saturation phenomenon. These results suggest that soy isoflavonoid aglycones are more potent inducers of cytochrome P-450 than isoflavonoid glycosides.

  3. Cytochrome P450 3A4 activity after surgical stress.

    PubMed

    Haas, Curtis E; Kaufman, David C; Jones, Carolyn E; Burstein, Aaron H; Reiss, William

    2003-05-01

    To evaluate the relationship between the acute inflammatory response after surgical trauma and changes in hepatic cytochrome P450 3A4 activity, compare changes in cytochrome P450 3A4 activity after procedures with varying degrees of surgical stress, and to explore the time course of any potential drug-cytokine interaction after surgery. Prospective, open-label study with each patient serving as his or her own control. University-affiliated, acute care, general hospital. A total of 16 patients scheduled for elective repair of an abdominal aortic aneurysm (n = 5), complete or partial colectomy (n = 6), or peripheral vascular surgery with graft (n = 5). Cytochrome P450 3A4 activity was estimated using the carbon-14 [14C]erythromycin breath test (ERMBT) before surgery and 24, 48, and 72 hrs after surgery. Abdominal aortic aneurysm and colectomy patients also had an ERMBT performed at discharge. Blood samples were obtained before surgery, immediately after surgery, and 6, 24, 32, 48, and 72 hrs after surgery for determination of plasma concentrations of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha. Clinical markers of surgical stress that were collected included duration of surgery, estimated blood loss, and volume of fluids administered in the operating room. ERMBT results significantly declined in all three surgical groups, with the lowest value at the time of the 72-hr study in all three groups. There was a trend toward differences in ERMBT results among groups that did not reach statistical significance (p =.06). The nadir ERMBT result was significantly and negatively correlated with both peak interleukin-6 concentration (r(s) = -.541, p =.03) and log interleukin-6 area under the curve from 0 to 72 hrs (r(s) = -.597, p =.014). Subjects with a peak interleukin-6 of >100 pg/mL had a significantly lower nadir ERMBT compared with subjects with a peak interleukin-6 of <100 pg/mL (35.5% +/- 5.2% vs. 74.7% +/- 5.1%, p <.001). Acute inflammation after

  4. Identification of human cytochrome P450 2D6 as major enzyme involved in the O-demethylation of the designer drug p-methoxymethamphetamine.

    PubMed

    Staack, Roland F; Theobald, Denis S; Paul, Liane D; Springer, Dietmar; Kraemer, Thomas; Maurer, Hans H

    2004-04-01

    p-Methoxymethamphetamine (PMMA) is a new designer drug, listed in many countries as a controlled substance. Several fatalities have been attributed to the abuse of this designer drug. Previous in vivo studies using Wistar rats had shown that PMMA was metabolized mainly by O-demethylation. The aim of the study presented here was to identify the human hepatic cytochrome P450 (P450) enzymes involved in the biotransformation of PMMA to p-hydroxymethamphetamine. Baculovirus-infected insect cell microsomes, pooled human liver microsomes (pHLMs), and CYP2D6 poor-metabolizer genotype human liver microsomes (PM HLMs) were used for this purpose. Only CYP2D6 catalyzed O-demethylation. The apparent K(m) and V(max) values in baculovirus-infected insect cell microsomes were 4.6 +/- 1.0 microM and 92.0 +/- 3.7 pmol/min/pmol P450, respectively, and 42.0 +/- 4.0 microM and 412.5 +/- 10.8 pmol/min/mg protein in pHLMs. Inhibition studies with 1 microM quinidine showed significant inhibition of the metabolite formation (67.2 +/- 0.6%; p < 0.0001), and comparison of the metabolite formation between pHLMs and PM HLMs revealed significantly lower metabolite formation in the incubations with PM HLMs (87.3 +/- 1.1%; p < 0.0001). According to these studies, CYP2D6 is the major P450 involved in O-demethylation of PMMA.

  5. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O- dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black- crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross- reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p'-DDE were detected in embryos from Cat Island. Cytochrome P450- associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  6. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  7. In vitro metabolism of an estrogen-related receptor γ modulator, GSK5182, by human liver microsomes and recombinant cytochrome P450s.

    PubMed

    Joo, Jeongmin; Wu, Zhexue; Lee, Boram; Shon, Jong Cheol; Lee, Taeho; Lee, In-Kyu; Sim, Taebo; Kim, Kyung-Hee; Kim, Nam Doo; Kim, Seong Heon; Liu, Kwang-Hyeon

    2015-04-01

    GSK5182 (4-[(Z)-1-[4-(2-dimethylaminoethyloxy)phenyl]-hydroxy-2-phenylpent-1-enyl]phenol) is a specific inverse agonist for estrogen-related receptor γ, a member of the orphan nuclear receptor family that has important functions in development and homeostasis. This study was performed to elucidate the metabolites of GSK5182 and to characterize the enzymes involved in its metabolism. Incubation of human liver microsomes with GSK5182 in the presence of NADPH resulted in the formation of three metabolites, M1, M2 and M3. M1 and M3 were identified as N-desmethyl-GSK5182 and GSK5182 N-oxide, respectively, on the basis of liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. M2 was suggested to be hydroxy-GSK5182 through interpretation of its MS/MS fragmentation pattern. In addition, the specific cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) isoforms responsible for GSK5182 oxidation to the three metabolites were identified using a combination of correlation analysis, chemical inhibition in human liver microsomes and metabolism by expressed recombinant P450 and FMO isoforms. GSK5182 N-demethylation and hydroxylation is mainly mediated by CYP3A4, whereas FMO1 and FMO3 contribute to the formation of GSK5182 N-oxide from GSK5182. The present data will be useful for understanding the pharmacokinetics and drug interactions of GSK5182 in vivo. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Generation of a mouse model with a reversible hypomorphic cytochrome P450 reductase gene: utility for tissue-specific rescue of the reductase expression, and insights from a resultant mouse model with global suppression of P450 reductase expression in extrahepatic tissues.

    PubMed

    Wei, Yuan; Zhou, Xin; Fang, Cheng; Li, Lei; Kluetzman, Kerri; Yang, Weizhu; Zhang, Qing-Yu; Ding, Xinxin

    2010-07-01

    A mouse model termed Cpr-low (CL) was recently generated, in which the expression of the cytochrome P450 reductase (Cpr) gene was globally down-regulated. The decreased CPR expression was accompanied by phenotypical changes, including reduced embryonic survival, decreases in circulating cholesterol, increases in hepatic P450 expression, and female infertility (accompanied by elevated serum testosterone and progesterone levels). In the present study, a complementary mouse model [named reversible-CL (r-CL)] was generated, in which the reduced CPR expression can be reversed in an organ-specific fashion. The neo cassette, which was inserted into the last Cpr intron in r-CL mice, can be deleted by Cre recombinase, thus returning the structure of the Cpr gene (and hence CPR expression) to normal in Cre-expressing cells. All previously identified phenotypes of the CL mice were preserved in the r-CL mice. As a first application of the r-CL model, we have generated an extrahepatic-CL (xh-CL) mouse for testing of the functions of CPR-dependent enzymes in all extrahepatic tissues. The xh-CL mice, generated by mating of r-CL mice with albumin-Cre mice, had normal CPR expression in hepatocytes but down-regulated CPR expression elsewhere. They were indistinguishable from wild-type mice in body and liver weights, circulating cholesterol levels, and hepatic microsomal P450 expression and activities; however, they still showed elevated serum testosterone and progesterone levels and sterility in females. Embryonic lethality was prevented in males, but apparently not in females, indicating a critical role for fetal hepatic CPR-dependent enzymes in embryonic development, at least in males.

  9. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  10. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  11. Effect of hypoxia alone or combined with inflammation and 3-methylcholanthrene on hepatic cytochrome P450 in conscious rabbits

    PubMed Central

    Kurdi, J; Maurice, H; El-Kadi, A O S; Ong, H; Dalkara, S; Bélanger, P M; du Souich, P

    1999-01-01

    To investigate the effect of moderate hypoxia alone or combined with an inflammatory reaction or after 3-methylcholanthrene (3MC) pre-treatment on cytochrome P450 (P450), conscious rabbits were exposed for 24 h to a fractional concentration of inspired O2 of 10% (mean PaO2 of 34 mmHg). Hypoxia decreased theophylline metabolic clearance (ClM) from 1.73±0.43 to 1.48±0.13 ml min−1 kg−1 (P<0.05), and reduced (P<0.05) the formation clearance of theophylline metabolites, 3-methylxanthine (3MX), 1-methyluric acid (1MU) and 1,3-dimethyluric acid (1,3DMU). Hypoxia reduced the amount of CYP1A1 and 1A2 but increased CYP3A6 proteins.Turpentine-induced inflammatory reaction reduced (P<0.05) the formation clearance of 3MX, 1MU, and 1,3DMU, and diminished the amount of CYP1A1, 1A2 and 3A6 proteins. However, when combined with hypoxia, inflammation partially prevented the decrease in ClM, especially by impeding the reduction of 1,3DMU. The amount of CYP1A1 and 1A2 remained reduced but the amount of CYP3A6 protein returned to normal values.Pre-treatment with 3MC augmented the ClM by 114% (P<0.05) due to the increase in the formation clearance of 3MX, 1MU and 1,3DMU. 3MC treatment increased the amount of CYP1A1 and 1A2 proteins. Pre-treatment with 3MC prevented the hypoxia-induced decrease in amount and activity of the P450.It is concluded that acute moderate hypoxia and an inflammatory reaction individually reduce the amount and activity of selected apoproteins of the P450. However, the combination of hypoxia and the inflammatory reaction restores P450 activity to near normal values. On the other hand, pre-treatment with 3MC prevents the hypoxia-induced depression of the P450. PMID:10510446

  12. Cytochrome P450 monooxygenases: perspectives for synthetic application.

    PubMed

    Urlacher, Vlada B; Eiben, Sabine

    2006-07-01

    Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.

  13. Metabolism of bilirubin by human cytochrome P450 2A6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Bakar, A'edah, E-mail: a.abubakar@uq.edu.au; Arthur, Dionne M.; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdinmore » and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the

  14. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  15. Santalbic acid from quandong kernels and oil fed to rats affects kidney and liver P450.

    PubMed

    Jones, G P; Watson, T G; Sinclair, A J; Birkett, A; Dunt, N; Nair, S S; Tonkin, S Y

    1999-09-01

    Kernels of the plant Santalum acuminatum (quandong) are eaten as Australian 'bush foods'. They are rich in oil and contain relatively large amounts of the acetylenic fatty acid, santalbic acid (trans-11-octadecen-9-ynoic acid), whose chemical structure is unlike that of normal dietary fatty acids. When rats were fed high fat diets in which oil from quandong kernels supplied 50% of dietary energy, the proportion of santalbic acid absorbed was more than 90%. Feeding quandong oil elevated not only total hepatic cytochrome P450 but also the cytochrome P450 4A subgroup of enzymes as shown by a specific immunoblotting technique. A purified methyl santalbate preparation isolated from quandong oil was fed to rats at 9% of dietary energy for 4 days and this also elevated cytochrome P450 4A in both kidney and liver microsomes in comparison with methyl esters from canola oil. Santalbic acid appears to be metabolized differently from the usual dietary fatty acids and the consumption of oil from quandong kernels may cause perturbations in normal fatty acid biochemistry.

  16. Insect P450 inhibitors and insecticides: challenges and opportunities.

    PubMed

    Feyereisen, René

    2015-06-01

    P450 enzymes are encoded by a large number of genes in insects, often over a hundred. They play important roles in insecticide metabolism and resistance, and growing numbers of P450 enzymes are now known to catalyse important physiological reactions, such as hormone metabolism or cuticular hydrocarbon synthesis. Ways to inhibit P450 enzymes specifically or less specifically are well understood, as P450 inhibitors are found as drugs, as fungicides, as plant growth regulators and as insecticide synergists. Yet there are no P450 inhibitors as insecticides on the market. As new modes of action are constantly needed to support insecticide resistance management, P450 inhibitors should be considered because of their high potential for insect selectivity, their well-known mechanisms of action and the increasing ease of rational design and testing. © 2014 Society of Chemical Industry.

  17. Sofosbuvir and ABT-450: terminator of hepatitis C virus?

    PubMed

    Zeng, Qing-Lei; Zhang, Ji-Yuan; Zhang, Zheng; Wang, Li-Feng; Wang, Fu-Sheng

    2013-06-07

    Combination therapy with peginterferon (pegIFN)-α and ribavirin (RBV) has been the standard of care (SOC) for chronic hepatitis C. Unfortunately, not all patients can achieve a sustained virologic response (SVR) with this regimen. SVR rates are approximately 80% in patients with hepatitis C virus (HCV) genotype 2, 3, 5 and 6 and 40%-50% in patients with genotype 1 and 4. Therefore, strategies to improve SVR rates have been an important issue for clinical physicians. Several direct acting antiviral agents (DAAs) have significantly higher SVR rates when combined with pegIFN-α and RBV than pegIFN-α and RBV alone. Treatments containing DAAs have several advantages over the previous SOC, including higher specificity and efficacy, shorter treatment durations, fewer side effects, and oral administration. Based on these advantages, treatment with pegIFN-α and RBV plus telaprevir or boceprevir has become the current SOC for patients with genotype 1 HCV infection. However, many patients are either not eligible for therapy or decline treatment due to coexisting relative or absolute contraindications as well as an inability to tolerate the hematological side effects and adverse events caused by the new SOC. These factors have contributed to the advent of pegIFN-α-free regimens. The newest therapeutic regimens containing sofosbuvir and ABT-450 have shown promising results. In this review, we summarize the development of anti-HCV agents and the clinical efficacy of sofosbuvir and ABT-450-based therapies as well as the potential for future HCV studies.

  18. Development of cytochromes P450 in avian species as a biomarker for environmental contaminant exposure and effect: Procedures and baseline values

    USGS Publications Warehouse

    Melancon, M.J.; Bengston, David A.; Henshel, Diane S.

    1996-01-01

    As in mammals and fish, birds respond to many environmental contaminants with induction of hepatic cytochromes P450. In order to monitor cytchromes P450 in specific avian species, for assessing the status of that species or the habitat it utilizes, it is necessary to have background information on the appropriate assay conditions and the responsiveness of cytochrome P450 induction in that species. Assay of four monooxygenases which give resorufin as product using a fluorescence microwell plate scanner has proven to be an effective approach. Information is provided on the incubation conditions and baseline activity for twenty avian species at ages ranging from pipping embryo to adult. Induction responsiveness is presented for sixteen of them. This information can serve as a guide for those who wish to utilize cytochrome P450 as a biomarker for contaminant exposure and effect to aid in selection of appropriate species, age, and monooxygenase assay(s).

  19. Protection by Nigella sativa against carbon tetrachloride-induced downregulation of hepatic cytochrome P450 isozymes in rats.

    PubMed

    Ibrahim, Zein S; Ishizuka, Mayumi; Soliman, Mohamed; ElBohi, Khlood; Sobhy, Wageh; Muzandu, Kaampwe; Elkattawy, Azza M; Sakamoto, Kentaro Q; Fujita, Shoichi

    2008-11-01

    Nigella sativa (family Ranunculaceae) is an annual plant that has been traditionally used on the Indian subcontinent and in Middle Eastern countries. In this study, we investigated the effect of N. sativa oil on the drug-metabolizing cytochrome P450 (CYP) enzymes and whether it has a protective effect against the acute hepatotoxicity of CCl4. Intraperitoneal injection of rats with CCl4 drastically decreased CYP2E1, CYP2B, CYP3A2, CYP2C11, and CYP1A2 mRNA and protein expressions. Oral administration of 1 ml/kg N. sativa oil every day for one week prior to CCl4 injection alleviated CCl4-induced suppression of CYP2B, CYP3A2, CYP2C11, and CYP1A2. Moreover, CCl4 increased iNOS and TNFalpha mRNA, while N. sativa oil administration for one week prior to CCl4 injection downregulated the CCl4-induced iNOS mRNA and up-regulated IL-10 mRNA. These results indicate that N. sativa oil administration has a protective effect against the CCl4-mediated suppression of hepatic CYPs and that this protective effect is partly due to the downregulation of NO production and up-regulation of the anti-inflammatory IL-10.

  20. A world of cytochrome P450s

    PubMed Central

    Nelson, David R.

    2013-01-01

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450. PMID:23297353

  1. Characterization of human cytochrome P450s involved in the bioactivation of tri-ortho-cresyl phosphate (ToCP).

    PubMed

    Reinen, Jelle; Nematollahi, Leyla; Fidder, Alex; Vermeulen, Nico P E; Noort, Daan; Commandeur, Jan N M

    2015-04-20

    Tri-ortho-cresyl phosphate (ToCP) is a multipurpose organophosphorus compound that is neurotoxic and suspected to be involved in aerotoxic syndrome in humans. It has been reported that not ToCP itself but a metabolite of ToCP, namely, 2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one (CBDP), may be responsible for this effect as it can irreversibly bind to human butyrylcholinesterase (BuChE) and human acetylcholinesterase (AChE). The bioactivation of ToCP into CBDP involves Cytochrome P450s (P450s). However, the individual human P450s responsible for this bioactivation have not been identified yet. In the present study, we aimed to investigate the metabolism of ToCP by different P450s and to determine the inhibitory effect of the in vitro generated ToCP-metabolites on human BuChE and AChE. Human liver microsomes, rat liver microsomes, and recombinant human P450s were used for that purpose. The recombinant P450s 2B6, 2C18, 2D6, 3A4 and 3A5 showed highest activity of ToCP-bioactivation to BuChE-inhibitory metabolites. Inhibition experiments using pooled human liver microsomes indicated that P450 3A4 and 3A5 were mainly involved in human hepatic bioactivation of ToCP. In addition, these experiments indicated a minor role for P450 1A2. Formation of CBDP by in-house expressed recombinant human P450s 1A2 and 3A4 was proven by both LC-MS and GC-MS analysis. When ToCP was incubated with P450 1A2 and 3A4 in the presence of human BuChE, CBDP-BuChE-adducts were detected by LC-MS/MS which were not present in the corresponding control incubations. These results confirmed the role of human P450s 1A2 and 3A4 in ToCP metabolism and demonstrated that CBDP is the metabolite responsible for the BuChE inactivation. Interindividual differences at the level of P450 1A2 and 3A4 might play an important role in the susceptibility of humans in developing neurotoxic effects, such as aerotoxic syndrome, after exposure to ToCP.

  2. Quantitation of Human Cytochrome P450 2D6 Protein with Immunoblot and Mass Spectrometry Analysis

    PubMed Central

    Yu, Ai-Ming; Qu, Jun; Felmlee, Melanie A.; Cao, Jin; Jiang, Xi-Ling

    2009-01-01

    Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorphic CYP2D6 drug-metabolizing enzyme and compare immunoblot and nano liquid chromatography coupled to mass spectrometry (nano-LC/MS) methods in identification and relative quantification of CYP2D6.1 and CYP2D6.2 allelic isozymes. Holoprotein content of in-house purified CYP2D6 isozymes was determined according to carbon monoxide difference spectrum, and total protein was quantified with bicinchoninic acid protein assay. Holoprotein/total CYP2D6 protein ratio was markedly higher for purified CYP2D6.1 (71.0%) than that calculated for CYP2D6.1 Supersomes (35.5%), resulting in distinct linear calibration range (0.05–0.50 versus 0.025–0.25 pmol) that was determined by densitometric analysis of immunoblot bands. Likewise, purified CYP2D6.2 and CYP2D6.10 and the CYP2D6.10 Supersomes all showed different holoprotein/total CYP2D6 protein ratios and distinct immunoblot linear calibration ranges. In contrast to immunoblot, nano-LC/MS readily distinguished CYP2D6.2 (R296C and S486T) from CYP2D6.1 by isoform-specific proteolytic peptides that contain the altered amino acid residues. In addition, relative quantitation of the two allelic isozymes was successfully achieved with label-free protein quantification, consistent with the nominated ratio. Because immunoblot and nano-LC/MS analyses measure total P450 protein (holoprotein and apoprotein) in a sample, complete understanding of holoprotein and apoprotein contents in P450 standards is desired toward reliable quantification. Our data also suggest that nano-LC/MS not only facilitates P450 quantitation but also provides genotypic

  3. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  4. Electrochemical Detection of Anti-Breast-Cancer Agents in Human Serum by Cytochrome P450-Coated Carbon Nanotubes

    PubMed Central

    Baj-Rossi, Camilla; De Micheli, Giovanni; Carrara, Sandro

    2012-01-01

    We report on the electrochemical detection of anti-cancer drugs in human serum with sensitivity values in the range of 8–925 nA/μM. Multi-walled carbon nanotubes were functionalized with three different cytochrome P450 isoforms (CYP1A2, CYP2B6, and CYP3A4). A model used to effectively describe the cytochrome P450 deposition onto carbon nanotubes was confirmed by Monte Carlo simulations. Voltammetric measurements were performed in phosphate buffer saline (PBS) as well as in human serum, giving well-defined current responses upon addition of increasing concentrations of anti-cancer drugs. The results assert the capability to measure concentration of drugs in the pharmacological ranges in human serum. Another important result is the possibility to detect pairs of drugs present in the same sample, which is highly required in case of therapies with high side-effects risk and in anti-cancer pharmacological treatments based on mixtures of different drugs. Our technology holds potentials for inexpensive multi-panel drug-monitoring in personalized therapy. PMID:22778656

  5. Differential Regulation of Aromatase Isoforms and Tissue Responses to Environmental Chemicals in Fish

    EPA Science Inventory

    As in mammals, aromatase plays a basic role in fish reproduction. Unlike most mammals, with only one form of aromatase, fish have two distinct forms. One isoform, P450aromA, predominates in ovaries. Ovarian aromatase activity controls circulating levels of estrogens and is critic...

  6. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans.

    PubMed

    Chiba, M; Xu, X; Nishime, J A; Balani, S K; Lin, J H

    1997-09-01

    Montelukast (L-706,631, MK-0476, SINGULAIR), a potent and selective leukotriene D4 (CysLT1) receptor antagonist, is currently under development for the treatment of asthma. In vitro studies were conducted using human liver microsomes to evaluate: 1) the difference in the metabolic kinetics of montelukast between adult and pediatric subjects; 2) the relative contribution of flavin-containing monooxygenase and cytochrome P450 (P450) to the sulfoxidation; and 3) the P450 isoforms responsible for montelukast oxidation. No statistically significant difference was observed in the in vitro kinetics for acyl glucuronidation and oxidative metabolism between the two age groups. Results from studies on heat inactivation of flavin-containing monooxygenase and immunochemical inhibition by an anti-rat NADPH P450 reductase antibody on montelukast oxidation indicated that all oxidative metabolism of montelukast-including diastereomeric sulfoxidations, as well as 21- and methyl-hydroxylations-are catalyzed exclusively by P450. Five in vitro approaches have been used to identify the P450 isoforms responsible for the human liver microsomal oxidation of montelukast. The experimental results consistently indicated that CYP3A4 catalyzes sulfoxidation and 21-hydroxylation, whereas CYP2C9 selectively mediates methyl-hydroxylation.

  7. Characterization of anti-liver-kidney microsome antibody (anti-LKM1) from hepatitis C virus-positive and -negative sera.

    PubMed

    Yamamoto, A M; Cresteil, D; Homberg, J C; Alvarez, F

    1993-06-01

    Hepatitis C virus-related antibodies were found in sera positive for antibodies to liver/kidney microsome antibody, usually considered a marker of autoimmune hepatitis. The aim of this study was to analyze the specificity of this autoantibody in sera from patients with and without hepatitis C virus infection. Fifteen anti-hepatitis C virus- and anti-liver kidney microsome-positive sera were compared with 11 sera from patients with autoimmune hepatitis, for reactivity against rat and human liver microsomal proteins, P450IID6 recombinant proteins, and various synthetic peptides spanning the 241-429 amino acids sequence of the P450IID6. Ten of 11 sera from patients with autoimmune hepatitis bound to recombinant proteins spanning the P450IID6 region between amino acids 72 and 458. These sera bound to the 254-271 peptide, and some also recognized the 321-351, 373-389 and 410-429 peptides. Four of 15 antihepatitis C virus recognized the fusion protein coded by the full-length P450IID6 complementary DNA; 3 of them also reacted with the P450IID6 region between amino acids 72-456. Only 1 sera recognized the 321-351 peptide. P450IID6 antigenic sites recognized by anti-hepatitis C virus-positive sera were different from those recognized by sera from patients with autoimmune hepatitis.

  8. Differential Properties of Cytomegalovirus pUL97 Kinase Isoforms Affect Viral Replication and Maribavir Susceptibility

    PubMed Central

    Webel, Rike; Hakki, Morgan; Prichard, Mark N.; Rawlinson, William D.; Marschall, Manfred

    2014-01-01

    ABSTRACT The human cytomegalovirus (HCMV)-encoded kinase pUL97 is required for efficient viral replication. Previous studies described two isoforms of pUL97, the full-length isoform (M1) and a smaller isoform likely resulting from translation initiation at codon 74 (M74). Here, we report the detection of a third pUL97 isoform during viral infection resulting from translation initiation at codon 157 (isoform M157). The consistent expression of isoform M157 as a minor component of pUL97 during infection with clinical and laboratory-adapted HCMV strains was suppressed when codon 157 was mutagenized. Viral mutants expressing specific isoforms were generated to compare their growth and drug susceptibility phenotypes, as well as pUL97 intracellular localization patterns and kinase activities. The exclusive expression of isoform M157 resulted in substantially reduced viral growth and resistance to the pUL97 inhibitor maribavir while retaining susceptibility to ganciclovir. Confocal imaging demonstrated reduced nuclear import of amino-terminal deletion isoforms compared to isoform M1. Isoform M157 showed reduced efficiency of various substrate protein interactions and autophosphorylation, whereas Rb phosphorylation was preserved. These results reveal differential properties of pUL97 isoforms that affect viral replication, with implications for the antiviral efficacy of maribavir. IMPORTANCE The HCMV UL97 kinase performs important functions in viral replication that are targeted by the antiviral drug maribavir. Here, we describe a naturally occurring short isoform of the kinase that when expressed by itself in a recombinant virus results in altered intracellular localization, impaired growth, and high-level resistance to maribavir compared to those of the predominant full-length counterpart. This is another factor to consider in explaining why maribavir appears to have variable antiviral activity in cell culture and in vivo. PMID:24522923

  9. Proliferation marker pKi-67 occurs in different isoforms with various cellular effects.

    PubMed

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Finniss, Susan; Bögler, Oliver; Duchrow, Michael

    2004-04-15

    The Ki-67 antigen, pKi-67, is a commonly used proliferation marker in research and pathology. It has been recognized that the protein exists in two different splice variants that differ in one exon. In the current work, we present three new splice variants of human pKi-67 consisting of two naturally occurring isoforms and one atypical version. Additionally, data is presented indicating that alternative splicing of the pKi-67 N-terminus is common in tumor cell lines. Analyzing 93 tissues mainly consisting of brain tumor specimens, we found evidence that long and short isoform can be expressed independently of each other. Induction of mitosis in human peripheral blood mononuclear cells revealed that short pKi-67 appears earlier in the cell cycle than the long isoform and reaches its expression maximum when transcription of the latter sets in. Finally, transfection of mammalian culture cells with exon 7 (specific for the long pKi-67 isoform and not present in the short isoform) in a tetracycline regulated expression system decreased the rate of cell proliferation without affecting the cell cycle. In summary, we present evidence that the pKi-67 N-terminus is differentially spliced resulting in at least five different isoforms with different functions. Copyright 2004 Wiley-Liss, Inc.

  10. Phase I metabolism of 3-methylindole, an environmental pollutant, by hepatic microsomes from carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Zlabek, Vladimir; Burkina, Viktoriia; Borrisser-Pairó, Francesc; Sakalli, Sidika; Zamaratskaia, Galia

    2016-05-01

    We studied the in vitro metabolism of 3-methylindole (3MI) in hepatic microsomes from fish. Hepatic microsomes from juvenile and adult carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) were included in the study. Incubation of 3MI with hepatic microsomes revealed the time-dependent formation of two major metabolites, 3-methyloxindole (3MOI) and indole-3-carbinol (I3C). The rate of 3MOI production was similar in both species at both ages. No differences in kinetic parameters were observed (p = 0.799 for Vmax, and p = 0.809 for Km). Production of I3C was detected only in the microsomes from rainbow trout. Km values were similar in juvenile and adult fish (p = 0.957); Vmax was higher in juvenile rainbow trout compared with adults (p = 0.044). In rainbow trout and carp, ellipticine reduced formation of 3MOI up to 53.2% and 81.9% and ketoconazole up to 65.8% and 91.3%, respectively. The formation of I3C was reduced by 53.7% and 51.5% in the presence of the inhibitors ellipticine and ketoconazole, respectively. These findings suggest that the CYP450 isoforms CYP1A and CYP3A are at least partly responsible for 3MI metabolism. In summary, 3MI is metabolised in fish liver to 3MOI and I3C by CYP450, and formation of these metabolites might be species-dependent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of Electro-Acupuncture on Ovarian P450arom, P450c17α and mRNA Expression Induced by Letrozole in PCOS Rats

    PubMed Central

    Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  12. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats.

    PubMed

    Sun, Jie; Jin, Chunlan; Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1) of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  13. Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Lack of production of 2,3-dihydroxybenzoate unless hydroxyl radical formation is permitted.

    PubMed Central

    Ingelman-Sundberg, M; Kaur, H; Terelius, Y; Persson, J O; Halliwell, B

    1991-01-01

    Attack by hydroxyl radicals (.OH) upon salicylate (2-hydroxybenzoate) leads to formation of both 2,3-dihydroxybenzoate (2,3-DHB) and 2,5-dihydroxybenzoate (gentisate, 2,5-DHB). It has been suggested that formation of 2,3-DHB from salicylate is a means of monitoring .OH formation. Production of 2,3-DHB and 2,5-DHB by liver microsomal fractions and isoforms of cytochrome P-450 was investigated. Liver microsomes prepared from variously treated rats and rabbits catalysed the formation of 2,5-DHB but not 2,3-DHB. Formation of 2,5-DHB was inhibited by CO, metyrapone and SKF-525A, but not by the .OH scavengers mannitol and formate or by the iron chelator desferrioxamine. Purified P-450s IIE1, IIB4 or IA2 from rabbit liver microsomes, reconstituted together with NADPH-cytochrome P-450 reductase, led to formation of equal amounts of 2,3-DHB and 2,5-DHB in reactions that were almost completely inhibited by mannitol or formate. Addition of Fe3+/EDTA either to microsomes or to membranes containing reconstituted P-450 caused formation of approximately equal amounts of 2,3-DHB and 2,5-DHB, consistent with an .OH-dependent attack on salicylate. The data indicate that the microsomal P-450 system catalyses hydroxylation of salicylate to 2,5-DHB, but not formation of 2,3-DHB. Hence measurement of 2,3-DHB might provide a means of monitoring .OH formation. Care must be taken in studies of substrate hydroxylation by microsomes or reconstituted P-450 systems to avoid artefacts resulting from .OH generation. PMID:2064611

  14. The Effects of Milk Thistle (Silybum marianum) on Human Cytochrome P450 Activity

    PubMed Central

    Kawaguchi-Suzuki, Marina; Frye, Reginald F.; Zhu, Hao-Jie; Brinda, Bryan J.; Chavin, Kenneth D.; Bernstein, Hilary J.

    2014-01-01

    Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities. PMID:25028567

  15. Cytochrome P450 systems--biological variations of electron transport chains.

    PubMed

    Hannemann, Frank; Bichet, Andreas; Ewen, Kerstin M; Bernhardt, Rita

    2007-03-01

    Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.

  16. Comparative Analysis of P450 Signature Motifs EXXR and CXG in the Large and Diverse Kingdom of Fungi: Identification of Evolutionarily Conserved Amino Acid Patterns Characteristic of P450 Family

    PubMed Central

    Syed, Khajamohiddin; Mashele, Samson Sitheni

    2014-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins distributed across the biological kingdoms. P450s are catalytically versatile and play key roles in organisms primary and secondary metabolism. Identification of P450s across the biological kingdoms depends largely on the identification of two P450 signature motifs, EXXR and CXG, in the protein sequence. Once a putative protein has been identified as P450, it will be assigned to a family and subfamily based on the criteria that P450s within a family share more than 40% homology and members of subfamilies share more than 55% homology. However, to date, no evidence has been presented that can distinguish members of a P450 family. Here, for the first time we report the identification of EXXR- and CXG-motifs-based amino acid patterns that are characteristic of the P450 family. Analysis of P450 signature motifs in the under-explored fungal P450s from four different phyla, ascomycota, basidiomycota, zygomycota and chytridiomycota, indicated that the EXXR motif is highly variable and the CXG motif is somewhat variable. The amino acids threonine and leucine are preferred as second and third amino acids in the EXXR motif and proline and glycine are preferred as second and third amino acids in the CXG motif in fungal P450s. Analysis of 67 P450 families from biological kingdoms such as plants, animals, bacteria and fungi showed conservation of a set of amino acid patterns characteristic of a particular P450 family in EXXR and CXG motifs. This suggests that during the divergence of P450 families from a common ancestor these amino acids patterns evolve and are retained in each P450 family as a signature of that family. The role of amino acid patterns characteristic of a P450 family in the structural and/or functional aspects of members of the P450 family is a topic for future research. PMID:24743800

  17. Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on hepatic cytochrome P450 levels in rats.

    PubMed

    Germer, Silke; Piersma, Aldert H; van der Ven, Leo; Kamyschnikow, Andreas; Fery, Yvonne; Schmitz, Hans-Joachim; Schrenk, Dieter

    2006-02-01

    The brominated flame retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) are found in the environment, e.g., in sediments and organisms, in food items, human blood samples and mother's milk. In this study, the effects of both compounds on rat hepatic cytochrome P450 (CYP) levels and activities were investigated. Juvenile/young male and female Wistar rats were treated orally with various doses via the feed (TBBPA) or by gavage (HBCD). After 28 days of treatment the animals were sacrificed and hepatic mRNA and microsomes were isolated. HBCD treatment led to a significant induction of CYP2B1 mRNA, CYP2B1/2B2 protein and 7-pentoxyresorufin O-depentylase (PROD) activity suggesting a phenobarbital-type of induction. Furthermore, a significant increase in CYP3A1/3A3 mRNA, CYP3A1 protein, and luciferin benzylether debenzylase (LBD) activity was found, being more pronounced in females than in males. The effect on CYP3A1/3A3 mRNA was significant in female rats at a daily dose of 3.0mg/kg body weight and above. HBCD exhibited no effects on CYP1A2 mRNA, CYP1A1/1A2 protein, or microsomal 7-ethoxyresorufin O-deethylase (EROD) activity suggesting lack of activation of the aryl hydrocarbon receptor. No significant effects on any of the parameters measured were obtained with TBBPA. Our findings suggest that oral exposure to HBCD induces drug-metabolising enzymes in rats probably via the CAR/PXR signalling pathway. Induction of CYPs and co-regulated enzymes of phase II of drug metabolism may affect homeostasis of endogenous substrates including steroid and thyroid hormones.

  18. Expression of C-terminal deleted p53 isoforms in neuroblastoma

    PubMed Central

    Goldschneider, David; Horvilleur, Emilie; Plassa, Louis-François; Guillaud-Bataille, Marine; Million, Karine; Wittmer-Dupret, Evelyne; Danglot, Gisèle; de Thé, Hughes; Bénard, Jean; May, Evelyne; Douc-Rasy, Sétha

    2006-01-01

    The tumor suppressor gene, p53, is rarely mutated in neuroblastomas (NB) at the time of diagnosis, but its dysfunction could result from a nonfunctional conformation or cytoplasmic sequestration of the wild-type p53 protein. However, p53 mutation, when it occurs, is found in NB tumors with drug resistance acquired over the course of chemotherapy. As yet, no study has been devoted to the function of the specific p53 mutants identified in NB cells. This study includes characterization and functional analysis of p53 expressed in eight cell lines: three wild-type cell lines and five cell lines harboring mutations. We identified two transcription-inactive p53 variants truncated in the C-terminus, one of which corresponded to the p53β isoform recently identified in normal tissue by Bourdon et al. [J. C. Bourdon, K. Fernandes, F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas, M. K. Saville and D. P. Lane (2005) Genes Dev., 19, 2122–2137]. Our results show, for the first time, that the p53β isoform is the only p53 species to be endogenously expressed in the human NB cell line SK-N-AS, suggesting that the C-terminus truncated p53 isoforms may play an important role in NB tumor development. PMID:17028100

  19. Inter-relation of cytochrome P450 and contaminants burdens in sibling heron embryos and nestlings

    USGS Publications Warehouse

    Rattner, B.; Melancon, M.; Custer, T.; Hothem, R.

    1995-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-day-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to the Chincoteague National Wildlife Refuge, Virginia) and three polluted sites (Cat Island, Green Bay, Lake Michigan, Wisconsin; Bair Island, San Francisco Bay, California; West Marin Island, San Francisco Bay, California). Activities of arylhydrocarbon hydroxylase (AHH) and benzyl-oxyresorufin-O-dealkylase (BROD) weremodestly elevated (p,p?DDE, other organochlorinepesticides and total PCBs in nestlings were greatest at contaminated sites, although much lower than found in concurrently collected eggs and pipping embryos. At these low pollutant concentrations there was little correlation between monooxygenase activity and contaminant levels in nestlings. These observations markedly contrast the pronounced monooxygenase induction (up to 85-fold) and its significant correlation with total PCBs, arylhydrocarbon receptor-active PCB congeners and toxic equivalents in concurrently collected night-heron embryos that were often siblings of the nestlings. The present findings suggest that cytochrome P450-associated monooxygenase activity of heron nestlings may have only limited value as a biomarker of exposure at this rapid-growth life stage.

  20. Cytochrome P{sub 450}-dependent toxic effects of primaquine on human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shobana; Department of Pharmacology, School of Pharmacy, University of Mississippi, University MS 38677; Tekwani, Babu L., E-mail: btekwani@olemiss.ed

    Primaquine, an 8-aminoquinoline, is the drug of choice for radical cure of relapsing malaria. Use of primaquine is limited due to its hemotoxicity, particularly in populations with glucose-6-phosphate dehydrogenase deficiency [G6PD(-)]. Biotransformation appears to be central to the anti-infective and hematological toxicities of primaquine, but the mechanisms are still not well understood. Metabolic studies with primaquine have been hampered due to the reactive nature of potential hemotoxic metabolites. An in vitro metabolism-linked hemotoxicity assay has been developed. Co-incubation of the drug with normal or G6PD(-) erythrocytes, microsomes or recombinant cytochrome P{sub 450} (CYP) isoforms has allowed in situ generation ofmore » potential hemotoxic metabolite(s), which interact with the erythrocytes to generate hemotoxicity. Methemoglobin formation, real-time generation of reactive oxygen intermediates (ROIs) and depletion of reactive thiols were monitored as multiple biochemical end points for hemotoxicity. Primaquine alone did not produce any hemotoxicity, while a robust increase was observed in methemoglobin formation and generation of ROIs by primaquine in the presence of human or mouse liver microsomes. Multiple CYP isoforms (CYP2E1, CYP2B6, CYP1A2, CYP2D6 and CYP3A4) variably contributed to the hemotoxicity of primaquine. This was further confirmed by significant inhibition of primaquine hemotoxicity by the selective CYP inhibitors, namely thiotepa (CYP2B6), fluoxetine (CYP2D6) and troleandomycin (CYP3A4). Primaquine caused similar methemoglobin formation in G6PD(-) and normal human erythrocytes. However, G6PD(-) erythrocytes suffered higher oxidative stress and depletion of thiols than normal erythrocytes due to primaquine toxicity. The results provide significant insights regarding CYP isoforms contributing to hemotoxicity and may be useful in controlling toxicity of primaquine to increase its therapeutic utility.« less

  1. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less

  2. Development of gold-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for in vitro to in vivo drug metabolism predictions

    NASA Astrophysics Data System (ADS)

    Kabulski, Jarod L.

    The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein

  3. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    PubMed

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-06-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  4. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    PubMed Central

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-01-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  5. Cytochrome P450 diversity in the tree of life.

    PubMed

    Nelson, David R

    2018-01-01

    Sequencing in all areas of the tree of life has produced >300,000 cytochrome P450 (CYP) sequences that have been mined and collected. Nomenclature has been assigned to >41,000 CYP sequences and the majority of the remainder has been sorted by BLAST searches into clans, families and subfamilies in preparation for naming. The P450 sequence space is being systematically explored and filled in. Well-studied groups like vertebrates are covered in greater depth while new insights are being added into uncharted territories like horseshoe crab (Limulus polyphemus), tardigrades (Hypsibius dujardini), velvet worm (Euperipatoides_rowelli), and basal land plants like hornworts, liverworts and mosses. CYPs from the fungi, one of the most diverse groups, are being explored and organized as nearly 800 fungal species are now sequenced. The CYP clan structure in fungi is emerging with 805 CYP families sorting into 32 CYP clans. >3000 bacterial sequences are named, mostly from terrestrial or freshwater sources. Of 18,379 bacterial sequences downloaded from the CYPED database, all are >43% identical to named CYPs. Therefore, they fit in the 602 named P450 prokaryotic families. Diversity in this group is becoming saturated, however 25% of 3305 seawater bacterial P450s did not match known P450 families, indicating marine bacterial CYPs are not as well sampled as land/freshwater based bacterial CYPs. Future sequencing plans of the Genome 10K project, i5k and GIGA (Global Invertebrate Genomics Alliance) are expected to produce more than one million cytochrome P450 sequences by 2020. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V., E-mail: amit@pandeylab.org

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizesmore » approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.« less

  7. Mobility of cytochrome P450 in the endoplasmic reticulum membrane.

    PubMed

    Szczesna-Skorupa, E; Chen, C D; Rogers, S; Kemper, B

    1998-12-08

    Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 x 10(-10) cm2/s. A coefficient only slightly larger (7.1 x 10(-10) cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.

  8. Development of cytochrome P450 2D6-specific LKM-autoantibodies following liver transplantation for Wilson's disease -- possible association with a steroid-resistant transplant rejection episode.

    PubMed

    Lohse, A W; Obermayer-Straub, P; Gerken, G; Brunner, S; Altes, U; Dienes, H P; Manns, M P; Meyer zum Büschenfelde, K H

    1999-07-01

    Antibodies to cytochrome P450 2D6, also known as LKM1-autoantibodies, are characteristic for a subgroup of patients with autoimmune hepatitis, but can also occasionally be found in hepatitis C. We observed the occurrence of LKM1-autoantibodies 4 months after liver transplantation for Wilson's disease, in close association with a steroid-resistant rejection episode, in the absence of evidence for autoimmune hepatitis or hepatitis C. Sera from several time points prior to and following transplantation were tested for LKM-reactivity by immunofluorescence, ELISA and Western blotting. Antigen specificity was confirmed by Western blotting analysis on different cytochrome P450 isoenzymes. The absence of viral hepatitis C and hepatitis G virus infection was confirmed by polymerase chain reaction. The serum of the organ donor was also tested. All the sera prior to transplantation and up to 4 months after transplantation were LKM-negative by all assay systems used. In the course of a steroid-resistant rejection episode at this time, the patient developed LKM antibodies at high titre (70% in inhibition ELISA) and has remained positive since (now more than 4 years). Reactivity was exclusively to the cytochrome isoenzyme 2D6. Hepatitis C infection never occurred, but hepatitis G was transiently present many years prior to transplantation. The donor serum was negative for all autoantibodies and for hepatitis C and G virus infection. We here describe a patient developing LKM1-autoantibodies without evidence of autoimmune or viral hepatitis. The close temporal association with a transplant rejection episode suggests immunological mechanisms of rejection together with hepatocellular injury as a pathogenetic mechanism.

  9. A current review of cytochrome P450 interactions of psychotropic drugs.

    PubMed

    Madhusoodanan, Subramoniam; Velama, Umamaheswararao; Parmar, Jeniel; Goia, Diana; Brenner, Ronald

    2014-05-01

    The number of psychotropic drugs has expanded tremendously over the past few decades with a proportional increase in drug-drug interactions. The majority of psychotropic agents are biotransformed by hepatic enzymes, which can lead to significant drug-drug interactions. Most drug-drug interactions of psychotropics occur at metabolic level involving the hepatic cytochrome P450 enzyme system. We searched the National Library of Medicine, PsycINFO, and Cochrane reviews from 1981 to 2012 for original studies including clinical trials, double-blind, placebo-controlled studies, and randomized controlled trials. In addition, case reports, books, review articles, and hand-selected journals were utilized to supplement this review. Based on the clinical intensity of outcome, cytochrome interactions can be classified as severe, moderate, and mild. Severe interactions include effects that might be acutely life threatening. They are mainly inhibitory interactions with cardiovascular drugs. Moderate interactions include efficacy issues. Mild interactions include nonserious side effects, such as somnolence. Psychotropic drugs may interact with other prescribed medications used to treat concomitant medical illnesses. A thorough understanding of the most prescribed medications and patient education will help reduce the likelihood of potentially fatal drug-drug interactions.

  10. Impacts of Blast-Induced Traumatic Brain Injury on Expressions of Hepatic Cytochrome P450 1A2, 2B1, 2D1, and 3A2 in Rats.

    PubMed

    Ma, Jie; Wang, Junrui; Cheng, Jingmin; Xiao, Wenjing; Fan, Kaihua; Gu, Jianwen; Yu, Botao; Yin, Guangfu; Wu, Juan; Ren, Jiandong; Hou, Jun; Jiang, Yan; Tan, Yonghong; Jin, Weihua

    2017-01-01

    The hepatic cytochrome P450 (CYP450) enzyme superfamily is one of the most important drug-metabolizing enzyme systems, which is responsible for the metabolism of a large number of clinically relevant medications used in traumatic brain injury (TBI) therapy. Modification of CYP450 expression may have important influences on drug metabolism and lead to untoward effects on those with narrow therapeutic windows. However, the impact of blast-induced TBI (bTBI) on the expression of CYP450 has received little attention. The subfamilies of CYP1A, 2B, 2D, and 3A account for about 85 % of all human drug metabolism of clinical significance. Therefore, in this study, we investigated the expressions of hepatic CYP1A2, CYP2B1, CYP2D1, and CYP3A2 in rats suffering bTBI. Meanwhile, we also measured some important cytokines in serum after injury, and calculated the correlation between these cytokines and the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. The results showed that bTBI could significantly reduce mRNA expressions of CYP1A2, CYP2D1, and CYP3A2 at the early stage and induce the expressions from 48 h to 1 week after injury. The protein expressions of these CYP450s had all been downregulated from 24 to 48 h post- injury, and then began to elevate at 48 h after bTBI. The cytokines, IL-1β, IL-2, IL-6, and TNF-α, increased significantly in the early phase, and began to reduce at the delayed phase of bTBI. The serum levels of IL-1β, IL-6, and TNF-α but not IL-2 were significantly negative correlated with the mRNA expressions of CYP2B1 and CYP2D1 and the proteins expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. In conclusion, our work has, for the first time, indicated that bTBI has significant impact on the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2, which may be related to the cytokines induced by the injury.

  11. Thermodynamics of interactions between mammalian cytochromes P450 and b5.

    PubMed

    Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis

    2017-04-01

    Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Enzymatic and biochemical properties of a novel human serine dehydratase isoform.

    PubMed

    Ogawa, Hirofumi; Gomi, Tomoharu; Nishizawa, Mikio; Hayakawa, Yumiko; Endo, Shunro; Hayashi, Kyoko; Ochiai, Hiroshi; Takusagawa, Fusao; Pitot, Henry C; Mori, Hisashi; Sakurai, Hiroaki; Koizumi, Keiichi; Saiki, Ikuo; Oda, Hirofumi; Fujishita, Takashi; Miwa, Toshiro; Maruyama, Muneharu; Kobayashi, Masashi

    2006-05-01

    A cDNA clone similar to human serine dehydratase (SDH) is deposited in the GenBank/EMBL databases, but its structural and functional bases remain unknown. Despite the occurrence of mRNA, the expected protein level was found to be low in cultured cells. To learn about physicochemical properties of the protein, we expressed the cDNA in Escherichia coli, and compared the expressed protein with that of a hepatic SDH. The purified protein showed l-serine and l-threonine dehydratase activity, demonstrating to be an isoform of SDH. However, their Km and Vmax constants were different in a range of two-order. Removal of Pro128 from the hepatic SDH consisting of 328 residues, which is missing in the corresponding position of the isoform consisting of 329 residues, significantly changed the Michaelis constants and Kd value for pyridoxal 5'-phosphate, whereas addition of a proline residue to the isoform was without effect. These findings suggest the difference in the structures of the active sites of the two enzymes. Another striking feature was that the expressed level of the isoform in E. coli was 7-fold lower than that of the hepatic SDH. Substitution of Val for Leu287 in the isoform dramatically increased the protein level. The high yield of the mutated isoform was also confirmed by the in vitro transcription and translation experiment. The poor expression of the isoform could be explained by the more stable secondary structure of the mRNA than that of the hepatic SDH mRNA. The present findings may provide a clue as to why the protein level in cultured cells is low.

  13. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  14. Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2*

    PubMed Central

    Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Wawrzak, Zdzislaw; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116–119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  15. Albendazole sulfonation by rat liver cytochrome P-450c.

    PubMed

    Souhaili-El Amri, H; Mothe, O; Totis, M; Masson, C; Batt, A M; Delatour, P; Siest, G

    1988-08-01

    The metabolism of albendazole (ABZ) was studied in perfused livers from control and ABZ-treated rats (10.6 mg/kg, per os, each day for 10 days). In the perfusion fluid, the concentration of ABZ-sulfoxide (SO-ABZ) remained unchanged in treated, as compared to control animals, whereas ABZ-sulfone (SO2-ABZ) was increased in treated animals. In bile, only SO-ABZ was present. The transformation kinetics of SO-ABZ to SO2-ABZ in microsomes from rats treated with ABZ, 3-methylcholanthrene, Aroclor and isosafrole were biphasic. This suggests that enzyme activity was a consequence of two enzyme systems, one characterized by low affinity and high capacity, the other by high affinity and low capacity, the latter could be induced by 3-methylcholanthrene, ABZ, Aroclor and isosafrole. Cytochrome P-450c was induced potently in vivo by ABZ as proven by increased monooxygenase (7-ethoxyresorufin and 7-ethoxycoumarin-O-deethylase) activities and by Elisa test (a 5-fold increase in hemoprotein concentration was observed). Purified and reconstituted cytochrome P-450c from 3-methylcholanthrene or ABZ-treated rat liver were able to produce SO2-ABZ (2.01 and 1.70 nmol/mg/15 min, respectively, whereas cytochrome P-450b produced 10 times less SO2-ABZ). Immunological assays, as well as activity measurements showed a relationship between cytochrome P-450c-3-methylcholanthrene and cytochrome P-450c-ABZ. We conclude that induction of cytochrome P-450c by ABZ is the probable explanation for the enhanced formation of SO2-ABZ in vivo.

  16. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity.

    PubMed

    Kawaguchi-Suzuki, Marina; Frye, Reginald F; Zhu, Hao-Jie; Brinda, Bryan J; Chavin, Kenneth D; Bernstein, Hilary J; Markowitz, John S

    2014-10-01

    Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    PubMed

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. In silico prediction of multiple-category classification model for cytochrome P450 inhibitors and non-inhibitors using machine-learning method.

    PubMed

    Lee, J H; Basith, S; Cui, M; Kim, B; Choi, S

    2017-10-01

    The cytochrome P450 (CYP) enzyme superfamily is involved in phase I metabolism which chemically modifies a variety of substrates via oxidative reactions to make them more water-soluble and easier to eliminate. Inhibition of these enzymes leads to undesirable effects, including toxic drug accumulations and adverse drug-drug interactions. Hence, it is necessary to develop in silico models that can predict the inhibition potential of compounds for different CYP isoforms. This study focused on five major CYP isoforms, including CYP1A2, 2C9, 2C19, 2D6 and 3A4, that are responsible for more than 90% of the metabolism of clinical drugs. The main aim of this study is to develop a multiple-category classification model (MCM) for the major CYP isoforms using a Laplacian-modified naïve Bayesian method. The dataset composed of more than 4500 compounds was collected from the PubChem Bioassay database. VolSurf+ descriptors and FCFP_8 fingerprint were used as input features to build classification models. The results demonstrated that the developed MCM using Laplacian-modified naïve Bayesian method was successful in classifying inhibitors and non-inhibitors for each CYP isoform. Moreover, the accuracy, sensitivity and specificity values for both training and test sets were above 80% and also yielded satisfactory area under the receiver operating characteristic curve and Matthews correlation coefficient values.

  19. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity.

    PubMed

    Brignac-Huber, Lauren M; Park, Ji Won; Reed, James R; Backes, Wayne L

    2016-12-01

    Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. An extensive cocktail approach for rapid risk assessment of in vitro CYP450 direct reversible inhibition by xenobiotic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaggiari, Dany, E-mail: dany.spaggiari@unige.ch

    Acute exposure to environmental factors strongly affects the metabolic activity of cytochrome P450 (P450). As a consequence, the risk of interaction could be increased, modifying the clinical outcomes of a medication. Because toxic agents cannot be administered to humans for ethical reasons, in vitro approaches are therefore essential to evaluate their impact on P450 activities. In this work, an extensive cocktail mixture was developed and validated for in vitro P450 inhibition studies using human liver microsomes (HLM). The cocktail comprised eleven P450-specific probe substrates to simultaneously assess the activities of the following isoforms: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6,more » 2E1, 2J2 and subfamily 3A. The high selectivity and sensitivity of the developed UHPLC-MS/MS method were critical for the success of this methodology, whose main advantages are: (i) the use of eleven probe substrates with minimized interactions, (ii) a low HLM concentration, (iii) fast incubation (5 min) and (iv) the use of metabolic ratios as microsomal P450 activities markers. This cocktail approach was successfully validated by comparing the obtained IC{sub 50} values for model inhibitors with those generated with the conventional single probe methods. Accordingly, reliable inhibition values could be generated 10-fold faster using a 10-fold smaller amount of HLM compared to individual assays. This approach was applied to assess the P450 inhibition potential of widespread insecticides, namely, chlorpyrifos, fenitrothion, methylparathion and profenofos. In all cases, P450 2B6 was the most affected with IC{sub 50} values in the nanomolar range. For the first time, mixtures of these four insecticides incubated at low concentrations showed a cumulative inhibitory in vitro effect on P450 2B6. - Highlights: • Ten P450 isoforms activities assessed simultaneously with only one incubation. • P450 activity levels measured using the metabolic ratio approach. • IC{sub 50} values

  1. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreamer, G.L.; Squibb, K.; Gioeli, D.

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached bymore » 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.« less

  2. Expansion of chemical space for natural products by uncommon P450 reactions.

    PubMed

    Zhang, Xingwang; Li, Shengying

    2017-08-30

    Covering: 2000 to 2017Cytochrome P450 enzymes (P450s) are the most versatile biocatalysts in nature. The catalytic competence of these extraordinary hemoproteins is broadly harnessed by numerous chemical defenders such as bacteria, fungi, and plants for the generation of diverse and complex natural products. Rather than the common tailoring reactions (e.g. hydroxylation and epoxidation) mediated by the majority of biosynthetic P450s, in this review, we will focus on the unusual P450 enzymes in relation to new chemistry, skeleton construction, and structure re-shaping via their own unique catalytic power or the intriguing protein-protein interactions between P450s and other proteins. These uncommon P450 reactions lead to a higher level of chemical space expansion for natural products, through which a broader spectrum of bioactivities can be gained by the host organisms.

  3. Evidence for complexation of P-450 IIC6 by an orphenadrine metabolite.

    PubMed

    Reidy, G F; Murray, M

    1990-01-30

    Removal of the orphenadrine metabolite from its complex with rat liver P-450 IIB1 is associated with a discrepancy in the reactivation of IIB1 activity. Two possible explanations are that either (1) NADPH-P-450-reductase is inaccessible to the restored IIB1, or (2) complexation of other P-450s may occur. Exogenous P-450 reductase increased all pathways of steroid hydroxylation (1.9 to 3.6-fold) but did not enhance reactivation of IIB1-dependent steroid 16 beta-hydroxylation. Instead, P-450 IIC6-dependent progesterone 21-hydroxylase activity was increased after dissociation to 122% of control. IIC6 activity was also inhibited in vitro in microsomes from phenobarbital-induced rats (ki = 151 microM). Thus, orphenadrine appears to complex P-450 IIC6 as well as IIB1 in rat liver.

  4. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2017-08-15

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  5. The crystal structure of P450-TT heme-domain provides the first structural insights into the versatile class VII P450s.

    PubMed

    Tavanti, Michele; Porter, Joanne L; Levy, Colin W; Gómez Castellanos, J Rubén; Flitsch, Sabine L; Turner, Nicholas J

    2018-07-02

    The first crystal structure of a class VII P450, CYP116B46 from Tepidiphilus thermophilus, has been solved at 1.9 Å resolution. The structure reveals overall conservation of the P450-fold and a water conduit around the I-helix. Active site residues have been identified and sequence comparisons have been made with other class VII enzymes. A structure similarity search demonstrated that the P450-TT structure is similar to enzymes capable of oxy-functionalization of fatty acids, terpenes, macrolides, steroids and statins. The insight gained from solving this structure will provide a guideline for future engineering and modelling studies on this catalytically promiscuous class of enzymes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Relationships among Ergot Alkaloids, Cytochrome P450 Activity, and Beef Steer Growth

    NASA Astrophysics Data System (ADS)

    Rosenkrans, Charles; Ezell, Nicholas

    2015-03-01

    Determining a grazing animal’s susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 μM of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 µM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 d of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 d. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins.

  7. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    PubMed

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to

  8. Electronic and structural aspects of p450-mediated drug metabolism.

    PubMed

    Lewis, David F V; Ito, Yuko; Lake, Brian G

    2009-04-01

    From a consideration of first principles for enzymes kinetics, we have employed theoretical methods which enable one to analyse the kinetics of cytochrome P450-mediated reactions which have been based on the known physicochemical principles underlying the majority of chemical or enzymatic reactions. A comparison is made between the correlation equations produced from the QSAR analysis of experimental P450 reaction rate data and those obtained from first principles, where there appears to be a generally satisfactory concordance between the two procedures. In this respect, we have developed expressions based on standard reaction kinetics theory which incorporate the Eyring and Marcus relationships. The analysis of P450-catalyzed reaction rates is elaborated to encompass a treatment of metabolic clearance, and satisfactory correlations are obtained with literature values for both intrinsic clearance and whole body clearance in terms of compound lipophilicity derived from log P data, where P is the octanol/water partition coefficient. The importance of ionization potential as a factor in the overall catalytic turnover of P450-mediated reactions is noted, especially in combination with the lipophilicity parameter, log P.

  9. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450.

    PubMed

    Jung, Christiane; Schünemann, Volker; Lendzian, Friedhelm; Trautwein, Alfred X; Contzen, Jörg; Galander, Marcus; Böttger, Lars H; Richter, Matthias; Barra, Anne-Laure

    2005-10-01

    From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.

  10. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells.

    PubMed

    Babeu, Jean-Philippe; Jones, Christine; Geha, Sameh; Carrier, Julie C; Boudreau, François

    2018-06-13

    HNF4α is a key nuclear receptor for regulating gene expression in the gut. While both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms may regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism while P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms are rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome thereby promoting colorectal cancer progression. © 2018. Published by The Company of Biologists Ltd.

  11. Luminogenic cytochrome P450 assays.

    PubMed

    Cali, James J; Ma, Dongping; Sobol, Mary; Simpson, Daniel J; Frackman, Susan; Good, Troy D; Daily, William J; Liu, David

    2006-08-01

    Luminogenic cytochrome P450 (CYP) assays couple CYP enzyme activity to firefly luciferase luminescence in a technology called P450-Glo(TM) (Promega). Luminogenic substrates are used in assays of human CYP1A1, -1A2, -1B1, -2C8, -2C9, -2C19, -2D6, -2J2, -3A4, -3A7, -4A11, -4F3B, -4F12 and -19. The assays detect dose-dependent CYP inhibition by test compounds against recombinant CYP enzymes or liver microsomes. Induction or inhibition of CYP activities in cultured hepatocytes is measured in a nonlytic approach that leaves cells intact for additional analysis. Luminogenic CYP assays offer advantages of speed and safety over HPLC and radiochemical-based methods. Compared with fluorogenic methods the approach offers advantages of improved sensitivity and decreased interference between optical properties of test compound and CYP substrate. These homogenous assays are sensitive and robust tools for high-throughput CYP screening in early drug discovery.

  12. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin?

    PubMed

    Singh, Paramjeet; Dar, Mohd Saleem; Dar, Mohd Jamal

    2016-09-01

    Class-1 phosphatidylinositol-3-kinases (PI3Ks) are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes. p110α and p110β are the two most studied isoforms of the class-1A PI3K signaling pathway. Although these two isoforms are ubiquitously expressed and play multiple redundant roles, they also have distinct functions within the cell. More recently, p110α and p110β isoforms have been shown to translocate into the nucleus and play a role in DNA replication and repair, and in cell cycle progression. In the following Review article, we discuss the overlapping and unique roles of p110α and p110β isoforms with a particular focus on their structure, expression analysis, subcellular localization, and signaling contributions in various cell types and model organisms. © 2016 Federation of European Biochemical Societies.

  13. INTERINDIVIDUAL VARIANCE OF CYTOCHROME P450 FORMS IN HUMAN HEPATIC MICROSOMES: CORRELATION OF INDIVIDUAL FORMS WITH XENOBIOTIC METABOLISM AND IMPLICATIONS IN RISK ASSESSMENT

    EPA Science Inventory

    Differences in biotransformation activities may alter the bioavailability or efficacy of drugs, provide protection from certain xenobiotic and environmental agents, or increase toxicity of others. Cytochrome P450 (CYP450) enzymes are responsible for the majority of oxidation reac...

  14. Cytochrome P450-mediated hepatic metabolism of new fluorescent substrates in cats and dogs.

    PubMed

    van Beusekom, C D; Schipper, L; Fink-Gremmels, J

    2010-12-01

    This study aimed to investigate the biotransformation of cat liver microsomes in comparison to dogs and humans using a high throughput method with fluorescent substrates and classical inhibitors specific for certain isozymes of the human cytochrome P450 (CYP) enzyme family. The metabolic activities associated with CYP1A, CYP2B, CYP2C, CYP2D, CYP2E and CYP3A were measured. Cat liver microsomes metabolized all substrates selected for the assessment of cytochrome P450 activity. The activities associated with CYP3A and CYP2B were higher than the activities of the other measured CYPs. Substrate selectivity could be demonstrated by inhibition studies with α-naphthoflavone (CYP1A), tranylcypromine/quercetine (CYP2C), quinidine (CYP2D), diethyldithiocarbamic acid (CYP2E) and ketoconazole (CYP3A) respectively. Other prototypical inhibitors used for characterization of human CYP activities such as furafylline (CYP1A), tranylcypromine (CYP2B) and sulfaphenazole (CYP2C) did not show significant effects in cat and dog liver microsomes. Moreover, IC50-values of cat CYPs differed from dog and human CYPs underlining the interspecies differences. Gender differences were observed in the oxidation of 7-ethoxy-4-trifluoromethylcoumarin (CYP2B) and 3-[2-(N, N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin (CYP2D), which were significantly higher in male cats than in females. Conversely, oxidation of the substrates dibenzylfluorescein (CYP2C) and 7-methoxy-4-trifluoromethylcoumarin (CYP2E) showed significant higher activities in females than in male cats. Overall CYP-activities in cat liver microsomes were lower than in those from dogs or humans, except for CYP2B. The presented difference between feline and canine CYP-activities are useful to establish dose corrections for feline patients of intensively metabolized drugs licensed for dogs or humans. © 2010 Blackwell Publishing Ltd.

  15. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens.

    PubMed

    Antonissen, Gunther; Devreese, Mathias; De Baere, Siegrid; Martel, An; Van Immerseel, Filip; Croubels, Siska

    2017-03-01

    Cytochrome P450 (CYP450) drug biotransformation enzymes and multidrug resistance (MDR) proteins may influence drug disposition processes. The first part of the study aimed to evaluate the effect of mycotoxins deoxynivalenol (DON) and/or fumonisins (FBs), at contamination levels approaching European Union guidance levels, on intestinal and hepatic CYP450 enzymes and MDR proteins gene expression in broiler chickens. mRNA expression of genes encoding CYP450 enzymes (CYP3A37, CYP1A4 and CYP1A5) and drug transporters (MDR1/ABCB1 and MRP2/ABCC2) was determined using qRT-PCR. A significant up-regulation of CYP1A4 (P = 0.037) and MDR1 (P = 0.036) was observed in the jejunum of chickens fed a diet contaminated with FBs. The second part of this study aimed to investigate the impact of feeding a FBs contaminated diet on the oral absorption of enrofloxacin (10 mg/kg BW), a MDR1 substrate. A significant (P = 0.045), however small, decreased area under the plasma concentration-time curve (AUC 0-48  h, mean ± SD) was observed for enrofloxacin in chickens fed the FBs contaminated diet compared to the control group, 16.28 ± 1.82 h μg/mL versus 18.27 ± 1.79 h μg/mL. These findings suggest that concurrent administration of drugs with FBs contaminated feed might alter the pharmacokinetic characteristics of CYP1A4 substrate drugs and MDR1 substrates, such as enrofloxacin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Interactions between Cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) Lead to Alterations in Toluene Disposition and P450 Uncoupling

    PubMed Central

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2013-01-01

    The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771

  17. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  18. P450 AND METABOLISM IN TOXICOLOGY

    EPA Science Inventory

    The cytochromes P450 catalyze the initial phase of detoxification of many environmental chemicals, xenobiotic, drugs and the secondary metabolic product of plants. Plant secondary chemicals can be highly toxic, and they evolved in a coevolving plant - animal warfare - the plants ...

  19. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography*

    PubMed Central

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N.; Nishida, Clinton R.; de Montellano, Paul R. Ortiz

    2015-01-01

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states. PMID:25670859

  20. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography

    DOE PAGES

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; ...

    2015-02-10

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop withmore » various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.« less

  1. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop withmore » various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.« less

  2. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens

    PubMed Central

    Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  3. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  4. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in this paper in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 μM), and higher intrinsic clearance at lower substrate concentrations (<0.07 μM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Finally, kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  5. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 µM), and higher intrinsic clearance at lower substrate concentrations (<0.07 µM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  6. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE PAGES

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree; ...

    2017-01-21

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in this paper in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 μM), and higher intrinsic clearance at lower substrate concentrations (<0.07 μM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Finally, kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  7. Conformational change of cytochrome P450 1A2 induced by phospholipids and detergents.

    PubMed

    Yun, C H; Song, M; Kim, H

    1997-08-08

    Recently, it was reported that the activity of rabbit P450 1A2 is markedly increased at elevated salt concentration (Yun, C-H., Song, M., Ahn, T., and Kim, H. (1996) J. Biol. Chem. 271, 31312-31316). The activity increase of P450 1A2 coincides with the raised alpha-helix content and decreased beta-sheet content. The presence of phospholipid magnified this effect. Here, possible structural change of rabbit P450 1A2 accompanying the phospholipid-induced increase in its enzyme activity was investigated by circular dichroism, fluorescence spectroscopy, and absorption spectroscopy. Studies with the reconstituted system supported by cumene hydroperoxide or NADPH showed that the P450 1A2 activities were found to be dependent on the head group and hydrocarbon chain length of phospholipid. Phosphatidylcholines having short hydrocarbon chains with a carbon number of 8-12 were very efficient for reconstitution of the P450-catalyzed reactions supported by both cumene hydroperoxide and NADPH. It was found that the phospholipid increased the alpha-helix content and lowered the beta-sheet content of P450. Intrinsic fluorescence intensity is also increased in the presence of phospholipid. The low spin iron configuration of P450 1A2 shifted toward the high spin configuration by most of the phospholipids in the endoplasmic reticulum. Some synthetic phospholipids having short hydrocarbon chains with a carbon number of 10-12 caused a shift in the spin equilibrium of P450 1A2 toward low spin. The effect of detergents on the activity and conformation of P450 1A2 was also studied. It was found that the addition of detergents to P450 1A2 solution increased the enzyme activity of P450 1A2. Detergents also increased the alpha-helix content and lowered the beta-sheet content of P450 1A2. Intrinsic fluorescence emissions also increased with the presence of detergents. Octyl glucoside and deoxycholate caused a shift toward high spin. On the other hand, cholate caused a shift toward low spin

  8. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    PubMed

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  9. MITA/STING and Its Alternative Splicing Isoform MRP Restrict Hepatitis B Virus Replication

    PubMed Central

    Liu, Shuhui; Zhao, Kaitao; Su, Xi; Lu, Lu; Zhao, He; Zhang, Xianwen; Wang, Yun; Wu, Chunchen; Chen, Jizheng; Zhou, Yuan; Hu, Xue; Wang, Yanyi; Lu, Mengji; Chen, Xinwen; Pei, Rongjuan

    2017-01-01

    An efficient clearance of hepatitis B virus (HBV) requires the coordinated work of both the innate and adaptive immune responses. MITA/STING, an adapter protein of the innate immune signaling pathways, plays a key role in regulating innate and adaptive immune responses to DNA virus infection. Previously, we identified an alternatively spliced isoform of MITA/STING, called MITA-related protein (MRP), and found that MRP could specifically block MITA-mediated interferon (IFN) induction while retaining the ability to activate NF-κB. Here, we asked whether MITA/STING and MRP were able to control the HBV replication. Both MITA/STING and MRP significantly inhibited HBV replication in vitro. MITA overexpression stimulated IRF3-IFN pathway; while MRP overexpression activated NF-κB pathway, suggesting these two isoforms may inhibit HBV replication through different ways. Using a hydrodynamic injection (HI) mouse model, we found that HBV replication was reduced following MITA/STING and MRP expression vectors in mice and was enhanced by the knockout of MITA/STING (MITA/STING-/-). The HBV specific humoral and CD8+ T cell responses were impaired in MITA/STING deficient mice, suggesting the participation of MITA/STING in the initiation of host adaptive immune responses. In summary, our data suggest that MITA/STING and MRP contribute to HBV control via modulation of the innate and adaptive responses. PMID:28056087

  10. MITA/STING and Its Alternative Splicing Isoform MRP Restrict Hepatitis B Virus Replication.

    PubMed

    Liu, Shuhui; Zhao, Kaitao; Su, Xi; Lu, Lu; Zhao, He; Zhang, Xianwen; Wang, Yun; Wu, Chunchen; Chen, Jizheng; Zhou, Yuan; Hu, Xue; Wang, Yanyi; Lu, Mengji; Chen, Xinwen; Pei, Rongjuan

    2017-01-01

    An efficient clearance of hepatitis B virus (HBV) requires the coordinated work of both the innate and adaptive immune responses. MITA/STING, an adapter protein of the innate immune signaling pathways, plays a key role in regulating innate and adaptive immune responses to DNA virus infection. Previously, we identified an alternatively spliced isoform of MITA/STING, called MITA-related protein (MRP), and found that MRP could specifically block MITA-mediated interferon (IFN) induction while retaining the ability to activate NF-κB. Here, we asked whether MITA/STING and MRP were able to control the HBV replication. Both MITA/STING and MRP significantly inhibited HBV replication in vitro. MITA overexpression stimulated IRF3-IFN pathway; while MRP overexpression activated NF-κB pathway, suggesting these two isoforms may inhibit HBV replication through different ways. Using a hydrodynamic injection (HI) mouse model, we found that HBV replication was reduced following MITA/STING and MRP expression vectors in mice and was enhanced by the knockout of MITA/STING (MITA/STING-/-). The HBV specific humoral and CD8+ T cell responses were impaired in MITA/STING deficient mice, suggesting the participation of MITA/STING in the initiation of host adaptive immune responses. In summary, our data suggest that MITA/STING and MRP contribute to HBV control via modulation of the innate and adaptive responses.

  11. INDUCTION AND SUPPRESSION OF CYTOCHROME P450 1A BY 3,3', 4,4', 5-PENTACHLOROBIPHENYL AND ITS RELATIONSHIP TO OXIDATIVE STRESS IN THE MARINE FISH SCUP (STENOTOMUS CHRYSOPS). (R827102)

    EPA Science Inventory

    Abstract

    <p>The planar polychlorinated biphenyl (PCB) 3,3',4,4'-tetrachlorobiphenyl (TCB) causes dose-dependent induction and post-transcriptional suppression of hepatic cytochrome P450 1A (CYP1A) in the marine teleost scup (Stenotomus chrysops). That suppr...

  12. An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm.

    PubMed

    Watanabe, J; Kanamura, S

    1991-05-01

    To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.

  13. Preclinical evaluation of the potential for cytochrome P450 inhibition and induction of the selective ALK inhibitor, alectinib.

    PubMed

    Sekiguchi, Nobuo; Nagao, Shunsuke; Takanashi, Kenji; Kato, Motohiro; Kaneko, Akihisa; Morita, Keiichi; Shindoh, Hidetoshi; Ishigai, Masaki

    2017-12-01

    1. A novel selective anaplastic lymphoma kinase (ALK) inhibitor, alectinib, has shown remarkable efficacy and safety in patients with ALK-positive non-small-cell lung cancer (NSCLC). The purpose of this study was to evaluate in vitro the potential to inhibit and induce cytochrome P450 (CYP) isoforms for alectinib and its major metabolite M4. 2. Alectinib and M4 did not show the meaningful direct inhibition of six major CYP isoforms (CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4) in human liver microsomes (HLM). Alectinib, but not M4, competitively inhibited CYP2C8, by which few marketed drugs are exclusively metabolized, with an inhibition constant of 1.98 μM. 3. Out of the seven CYP isoforms in HLM, alectinib and M4 showed time-dependent inhibition (TDI) of only CYP3A4, which suggests low TDI potential due to low inactivation efficiency. 4. Alectinib exhibited quite smaller induction of mRNA expression of CYP1A2, 2B6 and 3A4 genes in human hepatocytes compared to the respective positive controls, suggesting a low potential of enzyme induction. 5. In summary, the risk of alectinib causing drug-drug interactions with coadministered drugs is expected to be low due to the weak potential of CYP inhibition and induction estimated in the preclinical studies.

  14. Effect of Ketoconazole, a Cytochrome P450 Inhibitor, on the Efficacy of Quinine and Halofantrine against Schistosoma mansoni in Mice

    PubMed Central

    Sabra, Abdel-Nasser Abdel-Aal; Hammam, Olfat Ali; El-Lakkany, Naglaa Mohamed

    2013-01-01

    The fear that schistosomes will become resistant to praziquantel (PZQ) motivates the search for alternatives to treat schistosomiasis. The antimalarials quinine (QN) and halofantrine (HF) possess moderate antischistosomal properties. The major metabolic pathway of QN and HF is through cytochrome P450 (CYP) 3A4. Accordingly, this study investigates the effects of CYP3A4 inhibitor, ketoconazole (KTZ), on the antischistosomal potential of these quinolines against Schistosoma mansoni infection by evaluating parasitological, histopathological, and biochemical parameters. Mice were classified into 7 groups: uninfected untreated (I), infected untreated (II), infected treated orally with PZQ (1,000 mg/kg) (III), QN (400 mg/kg) (IV), KTZ (10 mg/kg)+QN as group IV (V), HF (400 mg/kg) (VI), and KTZ (as group V)+HF (as group VI) (VII). KTZ plus QN or HF produced more inhibition (P<0.05) in hepatic CYP450 (85.7% and 83.8%) and CYT b5 (75.5% and 73.5%) activities, respectively, than in groups treated with QN or HF alone. This was accompanied with more reduction in female (89.0% and 79.3%), total worms (81.4% and 70.3%), and eggs burden (hepatic; 83.8%, 66.0% and intestinal; 68%, 64.5%), respectively, and encountering the granulomatous reaction to parasite eggs trapped in the liver. QN and HF significantly (P<0.05) elevated malondialdehyde levels when used alone or with KTZ. Meanwhile, KTZ plus QN or HF restored serum levels of ALT, albumin, and reduced hepatic glutathione (KTZ+HF) to their control values. KTZ enhanced the therapeutic antischistosomal potential of QN and HF over each drug alone. Moreover, the effect of KTZ+QN was more evident than KTZ+HF. PMID:23710083

  15. Evaluation of Memory Enhancing Clinically Available Standardized Extract of Bacopa monniera on P-Glycoprotein and Cytochrome P450 3A in Sprague-Dawley Rats

    PubMed Central

    Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar

    2013-01-01

    Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp. PMID:24015255

  16. Evaluation of memory enhancing clinically available standardized extract of Bacopa monniera on P-glycoprotein and cytochrome P450 3A in Sprague-Dawley rats.

    PubMed

    Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar

    2013-01-01

    Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp.

  17. Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals.

    PubMed

    Usmani, Khawja A; Cho, Taehyeon M; Rose, Randy L; Hodgson, Ernest

    2006-09-01

    Cytochromes P450 (P450s) are major catalysts in the metabolism of xenobiotics and endogenous substrates such as estradiol (E2). It has previously been shown that E2 is predominantly metabolized in humans by CYP1A2 and CYP3A4 with 2-hydroxyestradiol (2-OHE2) the major metabolite. This study examines effects of deployment-related and other chemicals on E2 metabolism by human liver microsomes (HLM) and individual P450 isoforms. Kinetic studies using HLM, CYP3A4, and CYP1A2 showed similar affinities (Km) for E2 with respect to 2-OHE2 production. Vmax and CLint values for HLM are 0.32 nmol/min/mg protein and 7.5 microl/min/mg protein; those for CYP3A4 are 6.9 nmol/min/nmol P450 and 291 microl/min/nmol P450; and those for CYP1A2 are 17.4 nmol/min/nmol P450 and 633 microl/min/nmol P450. Phenotyped HLM use showed that individuals with high levels of CYP1A2 and CYP3A4 have the greatest potential to metabolize E2. Preincubation of HLM with a variety of chemicals, including those used in military deployments, resulted in varying levels of inhibition of E2 metabolism. The greatest inhibition was observed with organophosphorus compounds, including chlorpyrifos and fonofos, with up to 80% inhibition for 2-OHE2 production. Carbaryl, a carbamate pesticide, and naphthalene, a jet fuel component, inhibited ca. 40% of E2 metabolism. Preincubation of CYP1A2 with chlorpyrifos, fonofos, carbaryl, or naphthalene resulted in 96, 59, 84, and 87% inhibition of E2 metabolism, respectively. Preincubation of CYP3A4 with chlorpyrifos, fonofos, deltamethrin, or permethrin resulted in 94, 87, 58, and 37% inhibition of E2 metabolism. Chlorpyrifos inhibition of E2 metabolism is shown to be irreversible.

  18. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    PubMed

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    PubMed Central

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  20. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations.

    PubMed

    Miller, Walter L

    2012-10-23

    Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

  1. Effects of atrazine on cytochrome P450 enzymes of zebrafish (Danio rerio).

    PubMed

    Dong, Xiaoli; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Hou, Xinxin; Jia, Wentao

    2009-10-01

    In this study, the effects of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in males and females of adult zebrafish (Danio rerio) were studied. The liver microsomal cytochrome P450 content, NADPH-P450 reductase, aminopyrine N-demethylase (APND), and erythromycin N-demethylase (ERND) activity were measured. Zebrafish were exposed to control and 3 treatments (0.01, 0.1, and 1 mg L(-1)) of atrazine for 5, 10, 15, 20, and 25 days. The results indicated that, within the range of test atrazine concentrations, either P450 content or P450 isozyme activities could be induced by atrazine. Compared to controls, P450 content was significantly increased at all atrazine concentrations at days 10, 15, and 20; thereafter, at day 25, all concentrations decreased to approximately the control levels, both in males and females. In addition, the strongest induction of P450 content was observed on day 15 in males and day 10 in females at treatment concentrations of 1 mg L(-1). NADPH-P450 reductase activities showed mild increase in males; however, the females exhibited significant induction on days 15, 20, and 25; especially, at concentrations of 0.01 mg L(-1), the induction level was consistently increased during the experiment. The inducements of APND and ERND in males were mainly observed on the days 5, 10, and 15, which showed less distinct induction, while significant induction was observed in cases of treatments during all days in females. In conclusion, atrazine induces P450 enzymes in zebrafish, and the effects may function as significant toxicity mechanisms in zebrafish. Additionally, it also confirms the importance of using a combined multi-time and multi-index diagnostic method to enhance the sensitivity and effectiveness of the indices adopted.

  2. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    PubMed

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  3. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  4. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  5. Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.

    PubMed

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N; Nishida, Clinton R; de Montellano, Paul R Ortiz

    2015-04-17

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  7. CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY

    EPA Science Inventory

    The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

  8. Differential activation of p70 and p85 S6 kinase isoforms during cardiac hypertrophy in the adult mammal.

    PubMed

    Laser, M; Kasi, V S; Hamawaki, M; Cooper, G; Kerr, C M; Kuppuswamy, D

    1998-09-18

    An adult feline right ventricular pressure overload (RVPO) model was used to examine the two S6 kinase (S6K) isoforms, p70(S6K) and p85(S6K), that are involved in translational and transcriptional activation. Biochemical and confocal microscopy analyses at the level of the cardiocyte revealed that p70(S6K) is present predominantly in the cytosol, substantially activated in 1-h RVPO (>12 fold), and phosphorylated in the pseudosubstrate domain at the Ser-411, Thr-421, and Ser-424 sites. p85(S6K), which was localized exclusively in the nucleus, showed activation subsequent to p70(S6K), with a sustained increase in phosphorylation for up to 48 h of RVPO at equivalent sites of p70(S6K), Thr-421 and Ser-424, but not at Ser-411. Neither isoform translocated between the cytosol and the nucleus. Further studies to determine potential upstream elements of S6K activation revealed: (i) similar time course of activation for protein kinase C isoforms (alpha, gamma, and epsilon) and c-Raf, (ii) absence of accompanying phosphatidylinositol 3-kinase activation, (iii) activation of c-Src subsequent to p70(S6K), and (iv) similar changes in adult cardiocytes after treatment with 12-O-tetradecanoylphorbol-13-acetate. Thus, these studies suggest that a protein kinase C-mediated pathway couples pressure overload to growth induction via differential activation of S6K isoforms in cardiac hypertrophy.

  9. Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response.

    PubMed Central

    Waxman, D J; Morrissey, J J; Naik, S; Jauregui, H O

    1990-01-01

    The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove

  10. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. Themore » reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.« less

  11. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego.

    PubMed

    Fairhead, Michael; Giannini, Silva; Gillam, Elizabeth M J; Gilardi, Gianfranco

    2005-12-01

    The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (KM=1.84+/-0.09 mM and kcat of 2.98+/-0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (KM=0.65+/-0.08 mM and kcat of 0.95+/-0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

  12. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.

    PubMed

    Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo

    2014-07-01

    p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown. To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph. New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http://ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera

    PubMed Central

    Johnson, Reed M.; Mao, Wenfu; Pollock, Henry S.; Niu, Guodong; Schuler, Mary A.; Berenbaum, May R.

    2012-01-01

    Background Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. Methodology/Principal Findings We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. Conclusions/Significance These results suggest that regulation of

  14. A role for cytochrome b5 in the in vivo disposition of anti-cancer and cytochrome P450 probe drugs in mice

    PubMed Central

    Henderson, Colin J.; McLaughlin, Lesley A.; Finn, Robert D.; Ronseaux, Sebastien; Kapelyukh, Yury; Wolf, C. Roland

    2014-01-01

    The role of microsomal cytochrome b5 (Cyb5) in defining the rate of drug metabolism and disposition has been intensely debated for several decades. Recently we described mouse models involving the hepatic or global deletion of Cyb5, demonstrating its central role in in vivo drug disposition. We have now used the cytochrome b5 complete null (BCN) model to determine the role of Cyb5 in the metabolism of ten pharmaceuticals metabolised by a range of cytochrome P450s, including five anti-cancer drugs, in vivo and in vitro. The extent to which metabolism was significantly affected by the absence of Cyb5 was substrate-dependent, with AUC increased (75-245%), and clearance decreased (35-72%), for phenacetin, metoprolol and chlorzoxazone. Tolbutamide disposition was not significantly altered by Cyb5 deletion, while for midazolam clearance was decreased by 66%. The absence of Cyb5 had no effect on gefitinib and paclitaxel disposition, while significant changes in the in vivo pharmacokinetics of cyclophosphamide were measured (Cmax and terminal half-life increased 55% and 40%, respectively), tamoxifen (AUClast and Cmax increased 370% and 233%, respectively) and anastrozole (AUC and terminal half-life increased 125% and 62%, respectively; clearance down 80%). These data from provide strong evidence that both hepatic and extra-hepatic Cyb5 levels are an important determinant of in vivo drug disposition catalysed by a range of cytochrome P450s, including currently-prescribed anti-cancer agents, and that individuality in Cyb5 expression could be a significant determinant in rates of drug disposition in man. PMID:24115751

  15. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.

    PubMed

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  16. Recollection of the early years of the research on cytochrome P450

    PubMed Central

    OMURA, Tsuneo

    2011-01-01

    Since the publication of the first paper on “cytochrome P450” in 1962, the biochemical research on this novel hemoprotein expanded rapidly in the 1960s and the 1970s as its principal roles in various important metabolic processes including steroid hormone biosynthesis in the steroidogenic organs and drug metabolism in the liver were elucidated. Establishment of the purification procedures of microsomal and mitochondrial P450s in the middle of the 1970s together with the introduction of molecular biological techniques accelerated the remarkable expansion of the research on P450 in the following years. This review paper summarizes the important developments in the research on P450 in the early years, for about two decades from the beginning, together with my personal recollections. PMID:22156409

  17. Differential effects of clinically used derivatives and metabolites of artemisinin in the activation of constitutive androstane receptor isoforms

    PubMed Central

    Burk, O; Piedade, R; Ghebreghiorghis, L; Fait, JT; Nussler, AK; Gil, JP; Windshügel, B; Schwab, M

    2012-01-01

    BACKGROUND AND PURPOSE Widespread resistance to antimalarial drugs requires combination therapies with increasing risk of pharmacokinetic drug–drug interactions. Here, we explore the capacity of antimalarial drugs to induce drug metabolism via activation of constitutive androstane receptors (CAR) by ligand binding. EXPERIMENTAL APPROACH A total of 21 selected antimalarials and 11 major metabolites were screened for binding to CAR isoforms using cellular and in vitro CAR-coactivator interaction assays, combined with in silico molecular docking. Identified ligands were further characterized by cell-based assays and primary human hepatocytes were used to elucidate induction of gene expression. KEY RESULTS Only two artemisinin derivatives arteether and artemether, the metabolite deoxyartemisinin and artemisinin itself demonstrated agonist binding to the major isoforms CAR1 and CAR3, while arteether and artemether were also inverse agonists of CAR2. Dihydroartemisinin and artesunate acted as weak inverse agonists of CAR1. While arteether showed the highest activities in vitro, it was less active than artemisinin in inducing hepatic CYP3A4 gene expression in hepatocytes. CONCLUSIONS AND IMPLICATIONS Artemisinin derivatives and metabolites differentially affect the activities of CAR isoforms and of the pregnane X receptor (PXR). This negates a common effect of these drugs on CAR/PXR-dependent induction of drug metabolism and further provides an explanation for artemisinin consistently inducing cytochrome P450 genes in vivo, whereas arteether and artemether do not. All these drugs are metabolized very rapidly, but only artemisinin is converted to an enzyme-inducing metabolite. For better understanding of pharmacokinetic drug–drug interaction possibilities, the inducing properties of artemisinin metabolites should be considered. PMID:22577882

  18. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  19. Interplay between PTB and miR-1285 at the p53 3'UTR modulates the levels of p53 and its isoform Δ40p53α.

    PubMed

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit; Das, Saumitra

    2017-09-29

    p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry.

    PubMed

    Seibert, Cathrin; Davidson, Brian R; Fuller, Barry J; Patterson, Laurence H; Griffiths, William J; Wang, Yuqin

    2009-04-01

    Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total, 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labeled tryptic peptide and analyzed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labeled tryptic peptides and their natural unlabeled analogues quantification could be performed over the range of 0.1-1.5 pmol on column. Liver microsomes from four individuals were analyzed for CYP2E1 giving values of 88-200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 to 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP isoforms in a single sample.

  1. Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry

    PubMed Central

    Seibert, Cathrin; Davidson, Brian R.; Fuller, Barry J.; Patterson, Laurence H.; Griffiths, William J.; Wang, Yuqin

    2009-01-01

    Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labelled tryptic peptide and analysed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labelled tryptic peptides and their natural unlabelled analogues quantification could be performed over the range of 0.1 – 1.5 pmol on column. Liver microsomes from four individuals were analysed for CYP2E1 giving values of 88 - 200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 – 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP-isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP-isoforms in a single sample. PMID:19714871

  2. Pathophysiological implications of neurovascular P450 in brain disorders

    PubMed Central

    Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Dadas, Aaron; Marchi, Nicola; Janigro, Damir

    2016-01-01

    Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders. PMID:27312874

  3. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    PubMed

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes

    PubMed Central

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-01

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 (CYP) enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e. styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. Dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes, relative to that in the wild-type mouse lung microsomes. However, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knock–out and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed similar susceptibility to lung toxicity of styrene as the wild-type animals. However, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene. PMID:24320693

  5. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    PubMed

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  6. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    PubMed

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  7. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers.

    PubMed

    Yeh, Rosa F; Gaver, Vincent E; Patterson, Kristine B; Rezk, Naser L; Baxter-Meheux, Faustina; Blake, Michael J; Eron, Joseph J; Klein, Cheri E; Rublein, John C; Kashuba, Angela D M

    2006-05-01

    The effect of lopinavir/ritonavir (LPV/r) administration on cytochrome P450 (CYP) enzyme activity was quantified using a phenotyping biomarker cocktail. Changes in CYP2C9, CYP2C19, CYP3A, CYP1A2, N-acetyltransferase-2 (NAT-2), and xanthine oxidase (XO) activities were evaluated using warfarin (WARF) + vitamin K, omeprazole (OMP), intravenous (IV) and oral (PO) midazolam (MDZ), and caffeine (CAF). : Open-label, multiple-dose, pharmacokinetic study in healthy volunteers. Subjects (n = 14) simultaneously received PO WARF 10 mg, vitamin K 10 mg, OMP 40 mg, CAF 2 mg/kg, and IV MDZ 0.025 mg/kg on days (D) 1 and 14, and PO MDZ 5 mg on D2 and D15. LPV/r (400/100 mg twice daily) was administered on D4-17. CYP2C9 and CYP2C19 activities were quantified by S-WARF AUC0-inf and OMP/5-hydroxy OMP ratio, respectively. CYP1A2, NAT-2, and XO activities were quantified by urinary CAF metabolite ratios. Hepatic and intestinal + hepatic CYP3A activities were quantified by IV (CL) and PO (CL/F) MDZ clearance, respectively. After LPV/r therapy, CYP2C9, CYP2C19, and CYP1A2 activity increased by 29%, 100%, and 43% (P = 0.001, 0.046, and 0.001), respectively. No changes were seen in NAT-2 or XO activity. Hepatic and intestinal + hepatic CYP3A activity decreased by 77% (P < 0.001) and 92% (P = 0.001), respectively. LPV/r therapy results in modest induction of CYP1A2 and CYP2C9 and potent induction of CYP2C19 activity. Increasing doses of concomitant medications metabolized by these enzymes may be necessary. LPV/r inhibited intestinal CYP3A to a greater extent than hepatic CYP3A activity. Doses of concomitant CYP3A substrates should be reduced when combined with LPV/r, although intravenously administered compounds may require less of a relative dose reduction than orally administered compounds.

  8. Human cytochromes P450 in health and disease

    PubMed Central

    Nebert, Daniel W.; Wikvall, Kjell; Miller, Walter L.

    2013-01-01

    There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development. PMID:23297354

  9. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity.

    PubMed

    Kharasch, E D; Hankins, D C; Thummel, K E

    1995-03-01

    Methoxyflurane nephrotoxicity is mediated by cytochrome P450-catalyzed metabolism to toxic metabolites. It is historically accepted that one of the metabolites, fluoride, is the nephrotoxin, and that methoxyflurane nephrotoxicity is caused by plasma fluoride concentrations in excess of 50 microM. Sevoflurane also is metabolized to fluoride ion, and plasma concentrations may exceed 50 microM, yet sevoflurane nephrotoxicity has not been observed. It is possible that in situ renal metabolism of methoxyflurane, rather than hepatic metabolism, is a critical event leading to nephrotoxicity. We tested whether there was a metabolic basis for this hypothesis by examining the relative rates of methoxyflurane and sevoflurane defluorination by human kidney microsomes. Microsomes and cytosol were prepared from kidneys of organ donors. Methoxyflurane and sevoflurane metabolism were measured with a fluoride-selective electrode. Human cytochrome P450 isoforms contributing to renal anesthetic metabolism were identified by using isoform-selective inhibitors and by Western blot analysis of renal P450s in conjunction with metabolism by individual P450s expressed from a human hepatic complementary deoxyribonucleic acid library. Sevoflurane and methoxyflurane did undergo defluorination by human kidney microsomes. Fluoride production was dependent on time, reduced nicotinamide adenine dinucleotide phosphate, protein concentration, and anesthetic concentration. In seven human kidneys studied, enzymatic sevoflurane defluorination was minima, whereas methoxyflurane defluorination rates were substantially greater and exhibited large interindividual variability. Kidney cytosol did not catalyze anesthetic defluorination. Chemical inhibitors of the P450 isoforms 2E1, 2A6, and 3A diminished methoxyflurane and sevoflurane defluorination. Complementary deoxyribonucleic acid-expressed P450s 2E1, 2A6, and 3A4 catalyzed methoxyflurane and sevoflurane metabolism, in diminishing order of activity

  10. Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice

    PubMed Central

    Diaz-Castroverde, Sabela; Gómez-Hernández, Almudena; Fernández, Silvia; García-Gómez, Gema; Di Scala, Marianna; González-Aseguinolaza, Gloria; Fernández-Millán, Elisa; González-Rodríguez, Águeda; García-Bravo, María; Chambon, Pierre; Álvarez, Carmen; Perdomo, Liliana; Beneit, Nuria; Benito, Manuel

    2016-01-01

    ABSTRACT Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion. Previous in vitro data showed that insulin receptor isoform A, but not B, favours basal glucose uptake through its specific association with endogenous GLUT1/2 in murine hepatocytes and beta cells. With this background, we hypothesized that hepatic expression of insulin receptor isoform A in a mouse model of type 2 diabetes could potentially increase the glucose uptake of these cells, decreasing the hyperglycaemia and therefore ameliorating the diabetic phenotype. To assure this hypothesis, we have developed recombinant adeno-associated viral vectors expressing insulin receptor isoform A (IRA) or isoform B (IRB) under the control of a hepatocyte­-specific promoter. Our results demonstrate that in the long term, hepatic expression of IRA in diabetic mice is more efficient than IRB in ameliorating glucose intolerance. Consequently, it impairs the induction of compensatory mechanisms through beta cell hyperplasia and/or hypertrophy that finally lead to beta cell failure, reverting the diabetic phenotype in about 8 weeks. Our data suggest that long-term hepatic expression of IRA could be a promising therapeutic approach for the treatment of type 2 diabetes mellitus. PMID:27562101

  11. Genomic organization of human fetal specific P-450IIIA7 (cytochrome P-450HFLa)-related gene(s) and interaction of transcriptional regulatory factor with its DNA element in the 5' flanking region.

    PubMed

    Itoh, S; Yanagimoto, T; Tagawa, S; Hashimoto, H; Kitamura, R; Nakajima, Y; Okochi, T; Fujimoto, S; Uchino, J; Kamataki, T

    1992-03-24

    P-450IIIA7 is a form of cytochrome P-450 which was isolated from human fetal livers and termed P-450HFLa. This form has been clarified to be expressed during fetal life specifically (Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. and Kamataki, T. (1990) Biochemistry 29, 4430-4433). In the present study, we isolated five independent clones which probably corresponded to the human P-450IIIA7 gene. These clones were completely sequenced, all exons, exon-intron junctions and the 5' flanking region from the cap site to-869. Although the sequences in the coding region were completely identical to P-450IIIA7, it is possible that genomic fragments sequenced in this study encode portions of other P-450IIIA7-related genes since we could not obtain a complete overlapping set of genomic clones. Within its 5' flanking sequence, the putative binding sites of several transcriptional regulatory factors existed. Among them, it was shown that a basic transcription element binding factor (BTEB) actually interacted with the 5' flanking region of this gene.

  12. Valence tautomerism in synthetic models of cytochrome P450

    PubMed Central

    Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.; Lehnert, Nicolai

    2016-01-01

    CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948

  13. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  14. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  15. Benzo(a)pyrene (B(a)P) metabolism and in vitro formation of B(a)P-DNA adducts by hepatic microsomes from rats fed diets containing corn and menhaden oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharwadkar, S.; Bellow, J.; Ramanathan, R.

    1986-03-01

    Dietary unsaturated fat is required for maximum induction of hepatic mixed function oxidases responsible for activating carcinogens which may bind covalently to DNA. The aim of this study was to assess the influence of dietary fat type on in vitro B(a)P metabolism and B(a)P-DNA adduct formation. Male rats were starved 2 days and refed diet devoid of fat, or containing 20% corn oil (CO) or 20% menhaden oil (MO) for 4 days. Both dietary fats increased Vmax for B(a)P hydroxylation without affecting Km. Phenobarbital (PB) administration increased Vmax in all animals but Km was increased only in rats fed themore » fat diets. PB resulted in decreased B(a)P metabolism when conducted at 15 =M only in rats fed the two fat diets even in the presence of increased cytochrome P-450 (P-450). This effect was due to a decrease in B(a)P metabolism at low substrate concentrations in PB treated fat-fed animals. Binding of B(a)P to calf-thymus DNA was increased in animals fed both fats which was enhanced further by PB only in rats fed the CO and MO diets. When the data are calculated as B(a)P metabolized per unit of P-450, PB seems to induce a P-450 in fat-fed animals having lower affinity and capacity for B(a)P metabolism and activation.« less

  16. Molecular LEGO by domain-imprinting of cytochrome P450 BM3.

    PubMed

    Jetzschmann, K J; Yarman, A; Rustam, L; Kielb, P; Urlacher, V B; Fischer, A; Weidinger, I M; Wollenberger, U; Scheller, F W

    2018-04-01

    Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his 6 -tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his 6 -tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. Copyright © 2018. Published by Elsevier B.V.

  17. Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation.

    PubMed

    VandenBrink, Brooke M; Davis, John A; Pearson, Josh T; Foti, Robert S; Wienkers, Larry C; Rock, Dan A

    2012-11-01

    The propensity for cytochrome P450 (P450) enzymes to bioactivate xenobiotics is governed by the inherent chemistry of the xenobiotic itself and the active site architecture of the P450 enzyme(s). Accessible nucleophiles in the active site or egress channels of the P450 enzyme have the potential of sequestering reactive metabolites through covalent modification, thereby limiting their exposure to other proteins. Raloxifene, a drug known to undergo CYP3A-mediated reactive metabolite formation and time-dependent inhibition in vitro, was used to explore the potential for bioactivation and enzyme inactivation of additional P450 enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A5). Every P450 tested except CYP2E1 was capable of raloxifene bioactivation, based on glutathione adduct formation. However, raloxifene-mediated time-dependent inhibition only occurred in CYP2C8 and CYP3A4. Comparable inactivation kinetics were achieved with K(I) and k(inact) values of 0.26 μM and 0.10 min(-1) and 0.81 μM and 0.20 min(-1) for CYP2C8 and CYP3A4, respectively. Proteolytic digests of CYP2C8 and CYP3A4 Supersomes revealed adducts to Cys225 and Cys239 for CYP2C8 and CYP3A4, respectively. For each P450 enzyme, proposed substrate/metabolite access channels were mapped and active site cysteines were identified, which revealed that only CYP2C8 and CYP3A4 possess accessible cysteine residues near the active site cavities, a result consistent with the observed kinetics. The combined data suggest that the extent of bioactivation across P450 enzymes does not correlate with P450 inactivation. In addition, multiple factors contribute to the ability of reactive metabolites to form apo-adducts with P450 enzymes.

  18. Reduction of PTP1B induces differential expression of PI3-kinase (p85alpha) isoforms.

    PubMed

    Rondinone, Cristina M; Clampit, Jill; Gum, Rebecca J; Zinker, Bradley A; Jirousek, Michael R; Trevillyan, James M

    2004-10-15

    Protein tyrosine phosphatase 1B (PTP1B) inhibition increases insulin sensitivity and normalizes blood glucose levels in animals. The molecular events associated with PTP1B inhibition that increase insulin sensitivity remain controversial. Insulin resistant, diabetic ob/ob mice, dosed with PTP1B antisense for 3 weeks exhibited a decrease in PTP1B protein levels and a change in the expression level of p85alpha isoforms in liver, characterized by a reduction in p85alpha and an upregulation of the p50alpha and p55alpha isoforms. Transfection of mouse hepatocytes with PTP1B antisense caused a downregulation PTP1B and p85alpha protein levels. Furthermore, transfection of mouse hepatocytes with PTP1B siRNA downregulated p85alpha protein expression and enhanced insulin-induced PKB phosphorylation. Treatment of mouse hepatocytes with p85alpha antisense oligonucleotide caused a reduction of p85alpha and an increase in p50alpha and p55alpha isoforms and enhanced insulin-stimulated PKB activation. These results demonstrate that PTP1B inhibition causes a direct differential regulation of p85alpha isoforms of PI3-kinase in liver and that reduction of p85alpha may be one mechanism by which PTP1B inhibition improves insulin sensitivity and glucose metabolism in insulin-resistant states. Copyright 2004 Elsevier Inc.

  19. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model

    PubMed Central

    Patil, Avinash S.; Swamy, Geeta K.; Murtha, Amy P.; Heine, R. Phillips; Zheng, Xiaomei; Grotegut, Chad A.

    2015-01-01

    Objective: We seek to characterize the effect of progesterone metabolites on spontaneous and oxytocin-induced uterine contractility. Study Design: Spontaneous contractility was studied in mouse uterine horns after treatment with progesterone, 2α-hydroxyprogesterone, 6β-hydroxyprogesterone (6β-OHP), 16α-hydroxyprogesterone (16α-OHP), or 17-hydroxyprogesterone caproate (17-OHPC) at 10−9 to 10−6 mol/L. Uterine horns were exposed to progestins (10−6 mol/L), followed by increasing concentrations of oxytocin (1-100 nmol/L) to study oxytocin-induced contractility. Contraction parameters were compared for each progestin and matched vehicle control using repeated measures 2-way analysis of variance. In vitro metabolism of progesterone by recombinant cytochrome P450 3A (CYP3A) microsomes (3A5, 3A5, and 3A7) identified major metabolites. Results: Oxytocin-induced contractile frequency was decreased by 16α-OHP (P = .03) and increased by 6β-OHP (P = .05). Progesterone and 17-OHPC decreased oxytocin-induced contractile force (P = .02 and P = .04, respectively) and frequency (P = .02 and P = .03, respectively). Only progesterone decreased spontaneous contractile force (P = .02). Production of 16α-OHP and 6β-OHP metabolites were confirmed in all CYP3A isoforms tested. Conclusion: Progesterone metabolites produced by maternal or fetal CYP3A enzymes influence uterine contractility. PMID:26037300

  20. Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α

    PubMed Central

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit

    2017-01-01

    Abstract p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3′UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3′UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. PMID:28973454

  1. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE PAGES

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    2016-10-23

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  2. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  3. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  4. CYP2J2 and CYP2C19 Are the Major Enzymes Responsible for Metabolism of Albendazole and Fenbendazole in Human Liver Microsomes and Recombinant P450 Assay Systems

    PubMed Central

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk

    2013-01-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo. PMID:23959307

  5. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  6. Systematic Identification and Evolutionary Analysis of Catalytically Versatile Cytochrome P450 Monooxygenase Families Enriched in Model Basidiomycete Fungi

    PubMed Central

    Syed, Khajamohiddin; Shale, Karabo; Pagadala, Nataraj Sekhar; Tuszynski, Jack

    2014-01-01

    Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin’s theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our

  7. In vitro characterization of the inhibitory effects of ketoconazole on metabolic activities of cytochrome P-450 in canine hepatic microsomes.

    PubMed

    Kuroha, Masanori; Kuze, Yoji; Shimoda, Minoru; Kokue, Eiichi

    2002-06-01

    To evaluate the inhibitory potency of ketoconazole (KTZ) on the metabolic activities of isozymes of cytochrome P-450 (CYP) in dogs. 4 healthy 1-year-old male Beagles. Hepatic microsomes were harvested from 4 dogs after euthanasia. To investigate the effects of KTZ on CYP metabolic activities, 7-ethoxyresorufin, tolbutamide, bufuralol, and midazolam hydrochloride were used as specific substrates for CYP1A1/2, CYP2C21, CYP2D15, and CYP3A12, respectively. The concentrations of metabolites formed by CYP were measured by high-performance liquid chromatography, except for the resorufin concentrations that were measured by a fluorometric method. The reaction velocity-substrate concentration data were analyzed to obtain kinetic variables, including maximum reaction velocity, Michaelis-Menten constant, and inhibitory constant (Ki). KTZ competitively inhibited 7-ethoxyresorufin O-deethylation and midazolam 4-hydroxylation; it noncompetitively inhibited tolbutamide methylhydroxylation. Bufuralol 1'-hydroxylation was inhibited slightly by KTZ. The mean Ki values of KTZ were 10.6+/-6.0, 170+/-2.5, and 0.180+/-0.131 microM for 7-ethoxyresorufin O-deethylation, tolbutamide methylhydroxylation, and midazolam 4-hydroxylation, respectively. In dogs, KTZ at a therapeutic dose may change the pharmacokinetics of CYP3A12 substrates as a result of inhibition of their biotransformation. Furthermore, no influence of KTZ on the pharmacokinetics of CYP1A1/2, CYP2C21, and CYP2D15 substrates are likely. In clinical practice, adverse drug effects may develop when KTZ is administered concomitantly with a drug that is primarily metabolized by CYP3A12.

  8. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  9. Preparation and characterization of monoclonal antibodies recognizing unique epitopes on sexually differentiated rat liver cytochrome P-450 isozymes.

    PubMed

    Morgan, E T; Rönnholm, M; Gustafsson, J A

    1987-07-14

    Cytochrome P-450 isozymes P-450(16 alpha), P-450(15 beta), and P-450DEa are immunochemically related, as indicated by mutual cross-reactivity with polyclonal antibody preparations. We have isolated five monoclonal antibodies to P-450(15 beta) and one antibody to P-450(16 alpha) that show selectivity for the respective antigens. High frequencies of cross-reactivity were observed, indicating a high degree of homology among P-450(16 alpha), P-450(15 beta), and P-450DEa. All of the P-450(15 beta-specific antibodies bound to the same epitope, or closely grouped epitopes, supporting this conclusion. The specificity of each monoclonal antibody was characterized by enzyme-linked immunosorbent assay. Western immunoblotting, and antibody-Sepharose immunoadsorption of solubilized rat liver microsomes. Antibodies F22 and F23, which were apparently identical, were specific for P-450(15 beta) by these criteria. However, the apparent specificities of antibodies F3 and F20 for P-450(15 beta), and of M16 for P-450(16 alpha), were highly dependent on the analytical technique used. The five anti-P-450(15 beta) antibodies all inhibited the catalytic activity of microsomal P-450(15 beta), by a maximum of 70%. However, they also produced a similar inhibition of microsomal P-450(16 alpha-specific antibody M16 and F23 have a low-affinity interaction with an epitope on P-450(16 alpha). The P-450(16 alpha)-specific antibody M16 was not inhibitory. The results indicate that the apparent specificity of a monoclonal antibody for an antigen determined by, e.g., Western blotting does not allow the conclusive identification of a protein in another system, e.g., immunoprecipitation of in vitro translation reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450

    PubMed Central

    Chen, Taosheng

    2017-01-01

    Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s. PMID:29117101

  11. Diagnostic Significance of p38 Isoforms (p38α, p38β, p38γ, p38δ) in Head and Neck Squamous Cell Carcinoma: Comparative Serum Level Evaluation and Design of Novel Peptide Inhibitor Targeting the Same.

    PubMed

    Sahu, Vishal; Nigam, Lokesh; Agnihotri, Vertica; Gupta, Abhishek; Shekhar, Shashank; Subbarao, Naidu; Bhaskar, Suman; Dey, Sharmistha

    2018-05-09

    The p38 mitogen-activated protein kinase (MAPKs) play a crucial role in the production of pro-inflammatory cytokines and over-expression of it increase cytokines which promote cancer. Among four isoforms, p38α has been well studied in head and neck squamous cell carcinoma (HNSCC) and other cancers as a therapeutic target.p38δ has recently emerged as a potential disease-specific drug target. Elevated serum p38α level in HNSCC was reported earlier from our lab. This study aims to estimate the levels of p38 MAPK-isoforms in the serum of HNSCC and design peptide inhibitor targeting the same. Levels of p38 MAPK isoforms in the serum of HNSCC and healthy controls were quantified by surface plasmon resonance technology. The peptide inhibitor for p38 MAPK was designed by molecular modeling using Grid-based Ligand Docking with Energetics tools and compared with known specific inhibitors. We have observed highly elevated levels of all four isoforms of p38 MAPK in serum of HNSCC patients compared to the control group. Further, serum p38α, p38β, and p38δ levels were down regulated after therapy in follow up patients, while p38γ showed no response to the therapy. Present study screened designed peptide WFYH as a specific inhibitor against p38δ. The specific inhibitor of p38δ was found to have no effect on p38α due to great structural difference at ATP binding pocket. In this study, first time estimated the levels of p38 MAPK isoforms in the serum of HNSCC. It can be concluded that p38 MAPK isoforms can be a diagnostic and prognostic marker for HNSCC and p38δ as a therapeutic target.

  12. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  13. A possible role of NADPH-dependent cytochrome P450nor isozyme in glycolysis under denitrifying conditions.

    PubMed

    Watsuji, Tomo-o; Takaya, Naoki; Nakamura, Akira; Shoun, Hirofumi

    2003-05-01

    The denitrifying fungus Cylindrocarpon tonkinense contains two isozymes of cytochrome P450nor. One isozyme, P450nor1, uses NADH specifically as its electron donor whereas the other isozyme P450nor2 prefers NADPH to NADH. Here we show that P450nor1 is localized in both cytosol and mitochondria, like P450nor of Fusarium oxysporum, while P450nor2 is exclusively in cytosol. We also found that the addition of glucose as a carbon source to the culture media leads to the production of much more P450nor2 in the fungal cells than a non-fermentable substrate (glycerol or acetate) does. These results suggest that the NADP-dependent pentose phosphate cycle acts predominantly in C. tonkinense as the glycolysis pathway under the denitrifying conditions, which was confirmed by the observation that glucose induced enzyme activities involved in the cycle. These results showed that P450nor2 should act as the electron sink under anaerobic, denitrifying conditions to regenerate NADP+ for the pentose phosphate cycle.

  14. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Evolution of the scientific literature of cytochrome P450 from 1977 to 2008.

    PubMed

    Robert, Claude; Wilson, Concepción S; Guengerich, F Peter; Arreto, Charles-Daniel

    2010-02-01

    This study traces the evolution of the scientific literature on cytochrome P450 (P450) published during the last 30+ years (1977-2008). Using the Web of Science, P450 articles from the Science Citation Index Expanded published from 1977 to 2008 were retrieved and analyzed. The number of P450 papers has increased from 342 articles in 1977-1978 to 2,357 in 2007-2008, and the number of contributing countries has grown from 23 countries for 1977-1978 to 76 for 2007-2008. While the USA and Japan were the most productive countries, along with several industrialized countries (e.g. UK, Germany and Canada), two Asian countries have recently joined the group of leading countries (in 2007-2008 China ranked 4th and South Korea, 7th). During 1977-2008, the number of journals publishing papers in P450 research increased more than seven-fold (7.7): 94 journals in 1977-1978 and 724 in 2007-2008; however, citation by readers (as measured by the journal impact factor) of the top-ten leading journals increased only slightly from 3.25 for 1977-1978 to 3.81 for 2007-2008. While Biochemistry & Molecular Biology and Pharmacology and Pharmacy are the two main targeted subject areas for P450 research during the period considered, there has been a gradual shift from the biophysical and biochemical fields of interest to aspects of genomics and clinical approaches. The rapid evolution of P450 research in the last 30+ years was accompanied by important changes in the landscape of the contributing countries, in the subject domains, and consequently in the scientific journals targeted by researchers.

  16. Role of glucose utilization in the restoration of hypophysectomy-induced hepatic cytochrome P450 2E1 by growth hormone in rats.

    PubMed

    Son, M H; Kang, K W; Kim, E J; Ryu, J H; Cho, H; Kim, S H; Kim, W B; Kim, S G

    2000-06-15

    Growth hormone and insulin are the primary determinants for cytochrome P450 2E1 (CYP2E1) expression. The role of glucose on the induction of CYP2E1 by hypophysectomy and on the restorative effect by growth hormone was investigated in the rat liver. Western and Northern blot analyses revealed that hypophysectomy induced CYP2E1 by 5-fold at 1-4 weeks, relative to control, with a concomitant increase in CYP2E1 mRNA. Hypophysectomized rats (HXR) showed a 20% reduction in the plasma glucose level. Hypophysectomy-induced increase in the CYP2E1 mRNA was completely abolished by glucose feeding in drinking water (10%) for 7 days. Treatment of HXR with hGH (2 I.U./kg, twice a day, for 7 days) inhibited the increases in CYP2E1 protein and mRNA levels with restoration of the plasma glucose level. In contrast to the effect of human growth hormone (hGH) on CYP2E1 in HXR with free access to foods, CYP2E1 expression failed to be restored by hGH in starving HXR. However, glucose feeding of starving HXR abolished the induction of CYP2E1. Effects of hypophysectomy and hGH treatment were studied in streptozotocin-induced diabetic rats. Insulin, but not hGH, prevented an increase in CYP2E1 mRNA in diabetic rats. The hepatic CYP2E1 induction in hypophysectomized diabetic rats was inhibited by hGH treatment, indicating that the hGH effect on CYP2E1 expression did not involve insulin production. These results provide evidence that the induction of hepatic CYP2E1 by hypophysectomy may result from reduced glucose utilization, and that the effect of hGH on CYP2E1 expression may be mediated with enhanced glucose utilization, but not with insulin production.

  17. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide.

    PubMed Central

    O'Keefe, D. P.; Tepperman, J. M.; Dean, C.; Leto, K. J.; Erbes, D. L.; Odell, J. T.

    1994-01-01

    The Streptomyces griseolus gene encoding herbicide-metabolizing cytochrome P450SU1 (CYP105A1) was expressed in transgenic tobacco (Nicotiana tabacum). Because this P450 can be reduced by plant chloroplast ferredoxin in vitro, chloroplast-targeted and nontargeted expression were compared. Whereas P450SU1 antigen was found in the transgenic plants regardless of the targeting, only those with chloroplast-directed enzyme performed P450SU1-mediated N-dealkylation of the sulfonylurea 2-methylethyl-2,3-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1, 2-benzoisothiazole- 7-sulfonamide-1,1-dioxide (R7402). Chloroplast targeting appears to be essential for the bacterial P450 to function in the plant. Because the R7402 metabolite has greater phytotoxicity than R7402 itself, plants bearing active P450SU1 are susceptible to injury from R7402 treatment that is harmless to plants without P450SU1. Thus, P450SU1 expression and R7402 treatment can be used as a negative selection system in plants. Furthermore, expression of P450SU1 from a tissue-specific promoter can sequester production of the phytotoxic R7402 metabolite to a single plant tissue. In tobacco expressing P450SU1 from a tapetum-specific promoter, treatment of immature flower buds with R7402 caused dramatically lowered pollen viability. Such treatment could be the basis for a chemical hybridizing agent. PMID:12232216

  18. Cytochrome P450 peroxidase/peroxygenase mediated xenobiotic metabolic activation and cytotoxicity in isolated hepatocytes.

    PubMed

    Anari, M R; Khan, S; Liu, Z C; O'Brien, P J

    1995-12-01

    Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system.

  19. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase

    PubMed Central

    Pallan, Pradeep S.; Wang, Chunxue; Lei, Li; Yoshimoto, Francis K.; Auchus, Richard J.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants. PMID:25855791

  20. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes.

    PubMed

    Rinkel, Jan; Litzenburger, Martin; Bernhardt, Rita; Dickschat, Jeroen Sidney

    2018-04-26

    The cytochrome P450 monooxygenase CYP267B1 from Sorangium cellulosum was applied for enzymatic oxidation of the sesquiterpene alcohols T-muurolol and isodauc-8-en-11-ol. Various isotopically labelled geranyl and farnesyl diphosphates were used for product identification from micro-scale reactions, for determination of the absolute configurations of unknown compounds, to follow the stereochemical course of a cytochrome P450-catalysed hydroxylation step, and to investigate kinetic isotope effects. Overall, this study demonstrates that isotopically labelled terpene precursors are highly useful to follow cytochrome P450 dependent oxidations of terpenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Ontogeny of Cytochrome P450 Enzyme Activity and Protein Abundance in Conventional Pigs in Support of Preclinical Pediatric Drug Research.

    PubMed

    Millecam, Joske; De Clerck, Laura; Govaert, Elisabeth; Devreese, Mathias; Gasthuys, Elke; Schelstraete, Wim; Deforce, Dieter; De Bock, Lies; Van Bocxlaer, Jan; Sys, Stanislas; Croubels, Siska

    2018-01-01

    Since the implementation of several legislations to improve pediatric drug research, more pediatric clinical trials are being performed. In order to optimize these pediatric trials, adequate preclinical data are necessary, which are usually obtained by juvenile animal models. The growing piglet has been increasingly suggested as a potential animal model due to a high degree of anatomical and physiological similarities with humans. However, physiological data in pigs on the ontogeny of major organs involved in absorption, distribution, metabolism, and excretion of drugs are largely lacking. The aim of this study was to unravel the ontogeny of porcine hepatic drug metabolizing cytochrome P450 enzyme (CYP450) activities as well as protein abundances. Liver microsomes from 16 conventional pigs (8 males and 8 females) per age group: 2 days, 4 weeks, 8 weeks, and 6-7 months were prepared. Activity measurements were performed with substrates of major human CYP450 enzymes: midazolam (CYP3A), tolbutamide (CYP2C), and chlorzoxazone (CYP2E). Next, the hepatic scaling factor, microsomal protein per gram liver (MPPGL), was determined to correct for enzyme losses during the fractionation process. Finally, protein abundance was determined using proteomics and correlated with enzyme activity. No significant sex differences within each age category were observed in enzyme activity or MPPGL. The biotransformation rate of all three substrates increased with age, comparable with human maturation of CYP450 enzymes. The MPPGL decreased from birth till 8 weeks of age followed by an increase till 6-7 months of age. Significant sex differences in protein abundance were observed for CYP1A2, CYP2A19, CYP3A22, CYP4V2, CYP2C36, CYP2E_1, and CYP2E_2. Midazolam and tolbutamide are considered good substrates to evaluate porcine CYP3A/2C enzymes, respectively. However, chlorzoxazone is not advised to evaluate porcine CYP2E enzyme activity. The increase in biotransformation rate with age can be

  2. Organohalogens and their hydroxylated metabolites in the blood of pigs from an open waste dumping site in south India: association with hepatic cytochrome P450.

    PubMed

    Mizukawa, Hazuki; Nomiyama, Kei; Kunisue, Tatsuya; Watanabe, Michio X; Subramanian, Annamalai; Iwata, Hisato; Ishizuka, Mayumi; Tanabe, Shinsuke

    2015-04-01

    The concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and their hydroxylated metabolites (OH-PCBs and OH-PBDEs) were measured in the blood of Eurasian wild pigs (Sus scrofa) from a municipal waste open dumping site (DS) and a reference site (RS) in South India. We showed that contamination with OH-PCBs was higher in female pigs from the DS than in all other adult pigs. The highest OH-PCB concentrations were found in piglets from the DS. Moreover, the hepatic expression levels of CYP1A and CYP2B were higher in piglets than in their dam, implying metabolism of PCBs by cytochrome P450 (CYP) enzymes. The OH-PCB congener profiles differed according to sex and collection sites, possibly because of variations in the expression levels of phase I and phase II enzymes among individual pigs, differences in the exposure sources, and maternal transfer of parent PCBs. The hepatic CYP1A expression levels were positively correlated with the blood concentrations of 4OH-CB107, 4OH-CB162, and 4OH-CB187, implying CYP1A-dependent formation of these OH-PCBs in the pig liver. We found no significant correlations between the blood concentrations of OH-PCBs and thyroid hormones (THs); however, the thyroxin (T4) levels were lower in pigs from the DS than in pigs from the RS. Our limited dataset suggest that induced CYP enzymes accelerate the metabolism of xenobiotics and endogenous molecules in pigs. Thus, besides parental compounds, the risk of hydroxylated metabolites entering wildlife and humans living in and around municipal open waste dumping sites should be considered. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Reversible Human TGF-β Signal Shifting between Tumor Suppression and Fibro-Carcinogenesis: Implications of Smad Phospho-Isoforms for Hepatic Epithelial-Mesenchymal Transitions.

    PubMed

    Yoshida, Katsunori; Murata, Miki; Yamaguchi, Takashi; Matsuzaki, Koichi; Okazaki, Kazuichi

    2016-01-12

    Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are observed during both physiological liver wound healing and the pathological fibrotic/carcinogenic (fibro-carcinogenetic) process. TGF-β and pro-inflammatory cytokine are considered to be the major factors accelerating liver fibrosis and promoting liver carcinogenesis. Smads, consisting of intermediate linker regions connecting Mad homology domains, act as the intracellular mediators of the TGF-β signal transduction pathway. As the TGF-β receptors, c-Jun N-terminal kinase and cyclin-dependent kinase, differentially phosphorylate Smad2/3, we have generated numerous antibodies against linker (L) and C-terminal (C) phosphorylation sites in Smad2/3 and identified four types of phosphorylated forms: cytostatic COOH-terminally-phosphorylated Smad3 (pSmad3C), mitogenic pSmad3L (Ser-213) signaling, fibrogenic pSmad2L (Ser-245/250/255)/C signaling and migratory pSmad2/3L (Thr-220/179)/C signaling. After acute liver injury, TGF-β upregulates pSmad3C signaling and terminates pSmad3L (Ser-213)-mediated hepatocyte proliferation. TGF-β and pro-inflammatory cytokines cooperatively enhance collagen synthesis by upregulating pSmad2L (Thr-220)/C and pSmad3L (Thr-179)/C pathways in activated hepatic stellate cells. During chronic liver injuries, hepatocytes persistently affected by TGF-β and pro-inflammatory cytokines eventually become pre-neoplastic hepatocytes. Both myofibroblasts and pre-neoplastic hepatocyte exhibit the same carcinogenic (mitogenic) pSmad3L (Ser-213) and fibrogenic pSmad2L (Ser-245/250/255)/C signaling, with acquisition of fibro-carcinogenic properties and increasing risk of hepatocellular carcinoma (HCC). Firstly, we review phospho-Smad-isoform signalings in epithelial and mesenchymal cells in physiological and pathological conditions and then consider Smad linker phosphorylation as a potential target for pathological EMT during human fibro-carcinogenesis, because human

  4. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus.

    PubMed

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.

  5. The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in Saccharomyces cerevisiae

    PubMed Central

    Finnigan, Gregory C.; Hanson-Smith, Victor; Houser, Benjamin D.; Park, Hae J.; Stevens, Tom H.

    2011-01-01

    The vacuolar-type, proton-translocating ATPase (V-ATPase) is a multisubunit enzyme responsible for organelle acidification in eukaryotic cells. Many organisms have evolved V-ATPase subunit isoforms that allow for increased specialization of this critical enzyme. Differential targeting of the V-ATPase to specific subcellular organelles occurs in eukaryotes from humans to budding yeast. In Saccharomyces cerevisiae, the two subunit a isoforms are the only difference between the two V-ATPase populations. Incorporation of Vph1p or Stv1p into the V-ATPase dictates the localization of the V-ATPase to the vacuole or late Golgi/endosome, respectively. A duplication event within fungi gave rise to two subunit a genes. We used ancestral gene reconstruction to generate the most recent common ancestor of Vph1p and Stv1p (Anc.a) and tested its function in yeast. Anc.a localized to both the Golgi/endosomal network and vacuolar membrane and acidified these compartments as part of a hybrid V-ATPase complex. Trafficking of Anc.a did not require retrograde transport from the late endosome to the Golgi that has evolved for retrieval of the Stv1p isoform. Rather, Anc.a localized to both structures through slowed anterograde transport en route to the vacuole. Our results suggest an evolutionary model that describes the differential localization of the two yeast V-ATPase isoforms. PMID:21737673

  6. Relationship between hydrocarbon structure and induction of P450: effects on protein levels and enzyme activities.

    PubMed

    Backes, W L; Sequeira, D J; Cawley, G F; Eyer, C S

    1993-12-01

    1. Treatment of male rat with the small aromatic hydrocarbons, benzene, toluene, ethylbenzene, n-propylbenzene, m-xylene, and p-xylene increased several P450-dependent activities, with ethylbenzene, m-xylene, and n-propylbenzene producing the greatest response. Hydrocarbon treatment differentially affected toluene metabolism, producing a response dependent on the metabolite monitored. In untreated rats, benzyl alcohol was the major hydroxylation product of toluene metabolism, comprising > 99% of the total metabolites formed. Hydrocarbon treatment increased the overall rate of toluene metabolism by dramatically increasing the amount of aromatic hydroxylation. Ethylbenzene, n-propylbenzene and m-xylene were the most effective inducers of aromatic hydroxylation of toluene. In contrast, production of the major toluene metabolite benzyl alcohol was increased only after treatment with m-xylene. 2. P450 2B1/2B2 levels were induced by each of the hydrocarbons examined, with the magnitude of induction increasing with increasing hydrocarbon size. P450 1A1 was also induced after hydrocarbon exposure; however, the degree of induction was smaller than that observed for P450 2B1/2B2. P450 2C11 levels were suppressed after treatment with benzene, ethylbenzene and n-propylbenzene. 3. Taken together these results display two induction patterns. The first generally corresponds to changes in the P450 2B subfamily, where activities (e.g. the aromatic hydroxylations of toluene) were most effectively induced by ethylbenzene, n-propylbenzene and m-xylene. In the second, induction was observed only after m-xylene treatment, a pattern that was found when the metabolism of the substrate was catalysed by both the P450 2B subfamily and P450 2C11. Hydrocarbons that both induced P450 2B1/2B2 and suppressed P450 2C11 (such as ethylbenzene and n-propylbenzene) showed little change in activities catalysed by both isozymes (e.g. aliphatic hydroxylation of toluene, and aniline hydroxylation

  7. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the targetmore » tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.« less

  8. Differentiation‐associated urothelial cytochrome P450 oxidoreductase predicates the xenobiotic‐metabolizing activity of “luminal” muscle‐invasive bladder cancers

    PubMed Central

    Arlt, Volker M.; Indra, Radek; Joel, Madeleine; Stiborová, Marie; Eardley, Ian; Ahmad, Niaz; Otto, Wolfgang; Burger, Maximilian; Rubenwolf, Peter; Phillips, David H.; Southgate, Jennifer

    2018-01-01

    Extra‐hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self‐defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro‐carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier‐forming differentiated states in vitro. However, ethoxyresorufin O‐deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP‐DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain‐of‐function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle‐invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into “luminal” and “basal” groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over‐expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1‐activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over‐expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP‐function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies. PMID:29323757

  9. Cytochrome P450 Monooxygenases for Fatty Acids and Xenobiotics in Marine Macroalgae1

    PubMed Central

    Pflugmacher, Stephan; Sandermann, Heinrich

    1998-01-01

    The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants. PMID:9576781

  10. Toxicology: Bee P450s Take the Sting out of Cyanoamidine Neonicotinoids.

    PubMed

    Feyereisen, René

    2018-05-07

    The neonicotinoid insecticides have raised concerns regarding the health of bee pollinators. New research has identified a P450 enzyme that protects honey bees and bumble bees from the toxicity of two neonicotinoids, thiacloprid and acetamiprid. This P450 enzyme provides a margin of safety to bees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal

    PubMed Central

    Rana, Satiander; Lattoo, Surrinder K.; Dhar, Niha; Razdan, Sumeer; Bhat, Wajid Waheed; Dhar, Rekha S.; Vishwakarma, Ram

    2013-01-01

    Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis

  12. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.

    PubMed

    Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen

    2016-09-01

    The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of several pyrethroids on hepatic cytochrome P450 activities in rats.

    PubMed

    Abdou, Rania; Sasaki, Kazuaki; Khalil, Waleed; Shah, Syed; Murasawa, Youhei; Shimoda, Minoru

    2010-04-01

    Four commonly used pyrethroids (permethrin, bifenthrin, ethofenprox, and fenpropathrin) were orally administered to Sprague-Dawley rats for 5 days to study their effects on the liver cytochrome P450 (CYP) activities. Also Michaelis-Menten kinetics of the metabolic reactions catalyzed by liver CYPs were examined after adding these pyrethroids to the assay system to investigate their possible inhibitory effects on liver CYPs activities. These reactions included ethoxyresorufin O-deethylation, tolbutamide hydroxylation, bufuralol 1'-hydroxylation, and midazolam 4-hydroxylation, for CYP1A, 2C, 2D, and 3A activities, respectively. Results showed that oral administration of bifenthrin and ethofenprox highly induced CYP1A. The most potent inhibitors for CYP1A were fenpropathrin and cis-permethrin with K(i) values of 3.71 & 3.87 microM, respectively. CYP2D was slightly inhibited by both of fenpropathrin and cis-permethrin (K(i) values were 307.32 & 632.23 microM, respectively). On the other hand, none of CYP2C or 3A was inhibited by the tested pyrethroids. Since CYP1A may relate to biotransformation of many chemicals to reactive metabolites, bifenthrin and ethofenprox may potentiate mutagenicity of the chemicals through their inducing effects on CYP 1A. As permethrin and fenpropathrin were potent inhibitor for CYP1A, they may result in substantial accumulation of some chemicals. The resultant accumulation may lead to fatal toxicities in some case.

  14. Plant P450s as versatile drivers for evolution of species-specific chemical diversity

    PubMed Central

    Hamberger, Björn; Bak, Søren

    2013-01-01

    The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids. PMID:23297350

  15. Prevalent role of the insulin receptor isoform A in the regulation of hepatic glycogen metabolism in hepatocytes and in mice.

    PubMed

    Diaz-Castroverde, Sabela; Baos, Selene; Luque, María; Di Scala, Marianna; González-Aseguinolaza, Gloria; Gómez-Hernández, Almudena; Beneit, Nuria; Escribano, Oscar; Benito, Manuel

    2016-12-01

    In the postprandial state, the liver regulates glucose homeostasis by glucose uptake and conversion to glycogen and lipids. Glucose and insulin signalling finely regulate glycogen synthesis through several mechanisms. Glucose uptake in hepatocytes is favoured by the insulin receptor isoform A (IRA), rather than isoform B (IRB). Thus, we hypothesised that, in hepatocytes, IRA would increase glycogen synthesis by promoting glucose uptake and glycogen storage. We addressed the role of insulin receptor isoforms on glycogen metabolism in vitro in immortalised neonatal hepatocytes. In vivo, IRA or IRB were specifically expressed in the liver using adeno-associated virus vectors in inducible liver insulin receptor knockout (iLIRKO) mice, a model of type 2 diabetes. The role of IR isoforms in glycogen synthesis and storage in iLIRKO was subsequently investigated. In immortalised hepatocytes, IRA, but not IRB expression induced an increase in insulin signalling that was associated with elevated glycogen synthesis, glycogen synthase activity and glycogen storage. Similarly, elevated IRA, but not IRB expression in the livers of iLIRKO mice induced an increase in glycogen content. We provide new insight into the role of IRA in the regulation of glycogen metabolism in cultured hepatocytes and in the livers of a mouse model of type 2 diabetes. Our data strongly suggest that IRA is more efficient than IRB at promoting glycogen synthesis and storage. Therefore, we suggest that IRA expression in the liver could provide an interesting therapeutic approach for the regulation of hepatic glucose content and glycogen storage.

  16. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    PubMed

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  17. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  18. Complementary DNA cloning, functional expression and characterization of a novel cytochrome P450, CYP2D50, from equine liver.

    PubMed

    DiMaio Knych, H K; Stanley, S D

    2008-10-01

    Members of the CYP2D family constitute only about 2-4% of total hepatic CYP450s, however, they are responsible for the metabolism of 20-25% of commonly prescribed therapeutic compounds. CYP2D enzymes have been identified in a number of different species. However, vast differences in the metabolic activity of these enzymes have been well documented. In the horse, the presence of a member of the CYP2D family has been suggested from studies with equine liver microsomes, however its presence has not been definitively proven. In this study a cDNA encoding a novel CYP2D enzyme (CYP2D50) was cloned from equine liver and expressed in a baculovirus expression system. The nucleotide sequence of CYP2D50 was highly homologous to that of human CYP2D6 and therefore the activity of the enzyme was characterized using dextromethorphan and debrisoquine, two isoform selective substrates for the human orthologue. CYP2D50 displayed optimal catalytic activity with dextromethorphan using molar ratios of CYP2D50 to NADPH CYP450 reductase of 1:15. Although CYP2D50 and CYP2D6 shared significant sequence homology, there were striking differences in the catalytic activity between the two enzymes. CYP2D50 dextromethorphan-O-demethylase activity was nearly 180-fold slower than the human counterpart, CYP2D6. Similarly, rates of formation of 4-hydroxydebrisoquine activity were 50-fold slower for CYP2D50 compared to CYP2D6. The results of this study demonstrate substantial interspecies variability in metabolism of substrates by CYP2D orthologues in the horse and human and support the need to fully characterize this enzyme system in equids.

  19. Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch; Mallet, Delphine; Hofer, Gaby

    2011-09-09

    Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant PORmore » proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.« less

  20. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  1. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young Joo; Seoul National University Bundang Hospital, Seoul; Lee, Eun Kyung

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR{sup −/−} mice, but not in hypothyroid PXR{sup −/−} mice. In contrast, expression of Cyp2b10 was inducedmore » in both WT and PXR{sup −/−} hypothyroid mice, and this induction was abolished in CAR{sup −/−} mice and in and CAR{sup −/−} PXR{sup −/−} double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR{sup −/−} mice and lowest in WT and PXR{sup −/−} mice. Hypothyroid WT or PXR{sup −/−} mice survived chronic CBZ treatment, but all hypothyroid CAR{sup −/−} and CAR{sup −/−} PXR{sup −/−} mice died, with CAR{sup −/−}PXR{sup −/−} mice surviving longer than CAR{sup −/−} mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. -- Highlights: ► Hypothyroid status activates CAR in mice and induces Cyp2b10 expression. ► Hypothyroid status suppresses PXR activity in mice and represses Cyp3a11 expression. ► These responses balance each other out in normal

  2. Suicide inactivation of cytochrome P-450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, G.; Descatoire, V.; Beaune, P.

    Incubation of rat liver microsomes with (3H)methoxsalen and NADPH resulted in the covalent binding of a methoxsalen intermediate to proteins comigrating with cytochromes P-450 UT-A, PB-B/D, ISF-G and PCN-E. Binding was increased by pretreatments with phenobarbital, beta-naphthoflavone (beta NF) and dexamethasone. Such pretreatments also increased the loss of CO-binding capacity either after administration of methoxsalen, or after incubation of hepatic microsomes with methoxsalen and NADPH. Immunoprecipitation of the methoxsalen metabolite-protein adducts in phenobarbital-induced microsomes was moderate with anti-UT-A antibodies, but marked with anti-PB-B/D and anti-PCN-E antibodies. Immunoprecipitation was observed also with anti-ISF-G (anti-beta NF-B) antibodies in beta NF-induced microsomes. Methoxsalenmore » (0.25 mM) inhibited markedly the benzphetamine demethylase activity of phenobarbital-induced microsomes and the erythromycin demethylase activity of dexamethasone-induced microsomes. Whereas methoxsalen itself did not produce any binding spectrum, in contrast either in vivo administration of methoxsalen or incubation in vitro with methoxsalen and NADPH resulted in a low-to-high spin conversion of cytochrome P-450 as suggested by the appearance of a spectrum analogous to a type I binding spectrum. This low-to-high spin conversion was apparently due to a methoxsalen intermediate (probably, covalently bound to the protein and preventing partial sixth ligation of the iron). We conclude that suicide inactivation of cytochrome P-450 by methoxsalen is related to the covalent binding of a methoxsalen intermediate to the protein moiety of several cytochrome P-450 isoenzymes (including UT-A, PB-B/D, PCN-E as well as ISF-G and/or beta NF-B).« less

  3. Cytochrome P450 2C9-natural antiarthritic interactions: Evaluation of inhibition magnitude and prediction from in vitro data.

    PubMed

    Tan, Boon Hooi; Ahemad, Nafees; Pan, Yan; Palanisamy, Uma Devi; Othman, Iekhsan; Yiap, Beow Chin; Ong, Chin Eng

    2018-04-01

    Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC 50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC 50 value of 32.23 μM and K i value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC 50 of 6.08 μM and K i of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/K i ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates. Copyright © 2018 John Wiley & Sons, Ltd.

  4. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4

    PubMed Central

    Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH <7.4, the spectra are definitively type I, whereas at pH ≥7.4 the spectra have split Soret bands, including a red-shifted component characteristic of a P450-carbene complex. Variable-pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  5. Water Oxidation by a Cytochrome P450: Mechanism and Function of the Reaction

    PubMed Central

    Prasad, Brinda; Mah, Derrick J.; Lewis, Andrew R.; Plettner, Erika

    2013-01-01

    P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce. PMID:23634216

  6. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    PubMed

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. NAD(P)H-dependent Quinone Oxidoreductase 1 (NQO1) and Cytochrome P450 Oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells

    PubMed Central

    Gray, Joshua P.; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A.

    2017-01-01

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. PMID:27558805

  8. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei

    Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12more » variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.« less

  9. The effects of Andrographis paniculata (Burm.f.) Nees extract and diterpenoids on the CYP450 isoforms' activities, a review of possible herb-drug interaction risks.

    PubMed

    Tan, Mei Lan; Lim, Lin Ee

    2015-01-01

    Andrographis paniculata (Burm.f.) Nees is a popular medicinal plant and its components are used in various traditional product preparations. However, its herb-drug interactions risks remain unclear. This review specifically discusses the various published studies carried out to evaluate the effects of Andrographis paniculata (Burm.f.) Nees plant extracts and diterpenoids on the CYP450 metabolic enzyme and if the plant components pose a possible herb-drug interaction risk. Unfortunately, the current data are insufficient to indicate if the extracts or diterpenoids can be labeled as in vitro CYP1A2, CYP2C9 or CYP3A4 inhibitors. A complete CYP inhibition assay utilizing human liver microsomes and the derivation of relevant parameters to predict herb-drug interaction risks may be necessary for these isoforms. However, based on the current studies, none of the extracts and diterpenoids exhibited CYP450 induction activity in human hepatocytes or human-derived cell lines. It is crucial that a well-defined experimental design is needed to make a meaningful herb-drug interaction prediction.

  10. Functional expression and characterization of recombinant NADPH-P450 reductase from Malassezia globosa.

    PubMed

    Lee, Hwayoun; Park, Hyoung-Goo; Lim, Young-Ran; Lee, Im-Soon; Kim, Beom Joon; Seong, Cheul-Hun; Chun, Young-Jin; Kim, Donghak

    2012-01-01

    Malassezia globosa is a common pathogenic fungus that causes skin diseases including dandruff and seborrheic dermatitis in humans. Analysis of its genome identified a gene (MGL_1677) coding for a putative NADPH-P450 reductase (NPR) to support the fungal cytochrome P450 enzymes. The heterologously expressed recombinant M. globosa NPR protein was purified, and its functional features were characterized. The purified protein generated a single band on SDS-PAGE at 80.74 kDa and had an absorption maximum at 452 nm, indicating its possible function as an oxidized flavin cofactor. It evidenced NADPH-dependent reducing activity for cytochrome c or nitroblue tetrazolium. Human P450 1A2 and 2A6 were able to successfully catalyze the O-deethylation of 7- ethoxyresorufin and the 7-hydroxylation of coumarin, respectively, with the support of the purified NPR. These results demonstrate that purified NPR is an orthologous reductase protein that supports cytochrome P450 enzymes in M. globosa.

  11. Reduction of aromatic and heterocyclic aromatic N-hydroxylamines by human cytochrome P450 2S1.

    PubMed

    Wang, Kai; Guengerich, F Peter

    2013-06-17

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals, and there is also strong evidence of some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anticancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions [Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740-1751]. In the study presented here, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs.

  12. Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1

    PubMed Central

    Wang, Kai; Guengerich, F. Peter

    2013-01-01

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735

  13. Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol.

    PubMed

    Tuckey, Robert C; Nguyen, Minh N; Chen, Jianjun; Slominski, Andrzej T; Baldisseri, Donna M; Tieu, Elaine W; Zjawiony, Jordan K; Li, Wei

    2012-03-01

    Cytochrome P450scc (P450scc) catalyzes the cleavage of the side chain of both cholesterol and the vitamin D(3) precursor, 7-dehydrocholesterol. The aim of this study was to test the ability of human P450scc to metabolize ergosterol, the vitamin D(2) precursor, and define the structure of the major products. P450scc incorporated into the bilayer of phospholipid vesicles converted ergosterol to two major and four minor products with a k(cat) of 53 mol · min(-1) · mol P450scc(-1) and a K(m) of 0.18 mol ergosterol/mol phospholipid, similar to the values observed for cholesterol metabolism. The reaction of ergosterol with P450scc was scaled up to make enough of the two major products for structural analysis. From mass spectrometry, NMR, and comparison of the NMR data to that for similar molecules, we determined the structures of the two major products as 20-hydroxy-22,23-epoxy-22,23-dihydroergosterol and 22-keto-23-hydroxy-22,23-dihydroergosterol. Molecular modeling and nuclear Overhauser effect (or enhancement) spectroscopy spectra analysis helped to establish the configurations at C20, C22, and C23 and determine the final structures of major products as 22R,23S-epoxyergosta-5,7-diene-3β,20α-diol and 3β,23S-dihydroxyergosta-5,7-dien-22-one. It is likely that the formation of the second product is through a 22,23-epoxy (oxirane) intermediate followed by C22 hydroxylation with the formation of strained 22-hydroxy-22,23-epoxide (oxiranol), which is immediately transformed to the more stable α-hydroxyketone. Molecular modeling of ergosterol into the P450scc crystal structure positioned the ergosterol side chain consistent with formation of the above products. Thus, we have shown that P450scc efficiently catalyzes epoxide formation with ergosterol giving rise to novel epoxy, hydroxy, and keto derivatives, without causing cleavage of the side chain.

  14. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechurskaya, Tatiana A.; Harnastai, Ivan N.; Grabovec, Irina P.

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major rolemore » in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.« less

  15. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals

    PubMed Central

    2015-01-01

    Analyzing the literature resources used in our previous reports, we calculated the fractions of the oxidoreductase enzymes FMO (microsomal flavin-containing monooxygenase), AKR (aldo-keto reductase), MAO (monoamine oxidase), and cytochrome P450 participating in metabolic reactions. The calculations show that the fractions of P450s involved in the metabolism of all chemicals (general chemicals, natural, and physiological compounds, and drugs) are rather consistent in the findings that >90% of enzymatic reactions are catalyzed by P450s. Regarding drug metabolism, three-fourths of the human P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, and the largest fraction of the P450 reactions is catalyzed by P450 3A enzymes. P450 3A4 participation in metabolic reactions of drugs varied from 13% for general chemicals to 27% for drugs. PMID:25485457

  16. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    PubMed

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    PubMed

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  18. Contrasting Influence of NADPH and a NADPH-Regenerating System on the Metabolism of Carbonyl-Containing Compounds in Hepatic Microsomes

    EPA Science Inventory

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast ...

  19. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis.

    PubMed

    Harada, Hisashi; Shindo, Kazutoshi; Iki, Kanoko; Teraoka, Ayuko; Okamoto, Sho; Yu, Fengnian; Hattan, Jun-ichiro; Utsumi, Ryutaro; Misawa, Norihiko

    2011-04-01

    Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses. © Springer-Verlag 2011

  20. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    PubMed

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Differences in hepatic microsomal cytochrome P-450 isoenzyme induction by pyrazole, chronic ethanol, 3-methylcholanthrene, and phenobarbital in high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats.

    PubMed

    Lucas, D; Ménez, J F; Berthou, F; Cauvin, J M; Deitrich, R A

    1992-10-01

    High and low alcohol sensitivity (HAS and LAS) rats have been selected for their differences in ethanol-induced sleep time. Liver monooxygenase activities were studied in HAS and LAS rats before and after treatments with known inducers such as chronic ethanol, pyrazole, 3-methylcholanthrene (3-MC) and phenobarbital (PB) to determine whether the selection procedure also selected for differences in the cytochrome P-450 (P-450) inducibility. This previously has been shown with long sleep (LS) and short sleep (SS) mice, which were selected using a similar criterion. 3-MC and PB, in conjunction with chronic ethanol treatment, were used in order to evaluate the interactions of ethanol with these inducers. Prior to treatment, total P-450 content was slightly lower in LAS than in HAS rats. However, both lines displayed the same microsomal monooxygenase activities related to different P-450 isozymes. This was demonstrated by ethoxyresorufin deethylation (EROD) for cytochrome P-450 1A1 (CYP1A1), acetanilide hydroxylation (ACET) for CYP1A2, pentoxyresorufin dealkylation (PROD) for CYP2B, 1-butanol oxidation (BUTAN) and N-nitrosodimethylamine demethylation (NDMA) for CYP2E1. After the different treatments, HAS rats did not differ from LAS rats in their CYP2E1 inducibility. However, pyrazole, PB and 3-MC treatment led to differences in CYP1A and CYP2B monooxygenase activities between the two lines. The enhancement of PROD by pyrazole treatment was less prominent in LAS (1.7-fold of the control value) than in HAS rats (3.8-fold).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.).

    PubMed

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-03-10

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification.

  3. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.)

    PubMed Central

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W.; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-01-01

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification. PMID:25752830

  4. Flower colour and cytochromes P450

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  5. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    PubMed

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  6. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Structural features of cytochromes P450 and ligands that affect drug metabolism as revealed by X-ray crystallography and NMR.

    PubMed

    Gay, Sean C; Roberts, Arthur G; Halpert, James R

    2010-09-01

    Cytochromes P450 (P450s) play a major role in the clearance of drugs, toxins, and environmental pollutants. Additionally, metabolism by P450s can result in toxic or carcinogenic products. The metabolism of pharmaceuticals by P450s is a major concern during the design of new drug candidates. Determining the interactions between P450s and compounds of very diverse structures is complicated by the variability in P450-ligand interactions. Understanding the protein structural elements and the chemical attributes of ligands that dictate their orientation in the P450 active site will aid in the development of effective and safe therapeutic agents. The goal of this review is to describe P450-ligand interactions from two perspectives. The first is the various structural elements that microsomal P450s have at their disposal to assume the different conformations observed in X-ray crystal structures. The second is P450-ligand dynamics analyzed by NMR relaxation studies.

  8. [The role of cytochrome P450 in nonalcoholic fatty liver induced by high-fat diet: a gene expression profile analysis].

    PubMed

    Liu, Y; Cheng, F; Luo, Y X; Hu, P; Ren, H; Peng, M L

    2017-04-20

    Objective: To clarify the role of cytochrome P450 in nonalcoholic fatty liver disease (NAFLD) by RNA-Seq and bioinformatics analysis. Methods: A total of 20 male C57BL/6 mice were used. Ten mice were fed with high-fat diet (D12492, 60% kcal fat) for 16 weeks to establish a mouse model of NAFLD, and the other 10 mice were fed with low-fat diet (D12450B, 10% kcal fat) as control group. At the end of the experiment, the body weight, liver weight, and hepatic triglyceride (TG) content were measured. Meanwhile, HE staining and RNA-Seq analysis were performed for the liver tissues. The differentially expressed genes were screened out and subjected to bioinformatics analysis, including KEGG and GO BP enrichment analyses and interaction network analysis. Comparison of means between the two groups was made using t-test. Results: Compared with the control group, the mice in the model group were obviously obese, with significantly increased body weight (41.41 ± 6.01 g vs 28.78 ± 1.79 g, t = 6.04, P < 0.01) and liver weight (1.38 ± 0.30 g vs 1.08 ± 0.10 g, t = 2.89, P < 0.01). The mice in the model group showed obvious steatosis, accompanied by a small amount of inflammatory cell infiltration, but with no obvious fibrosis, according to the results of HE staining. In addition, the hepatic TG content in the model group was significantly increased compared with that in the control group (0.64 ± 0.01 mg/mg vs 0.29 ± 0.06 mg/mg, t = 10.11, P = 0.04). Compared with the control group, a total of 367 differentially expressed genes, including 211 down-regulated and 156 up-regulated ones, were identified in the model group according to the RNA-seq results. Meanwhile, 19 CYP450 subtypes, accounting for 5% of the differentially expressed genes, were identified, and CYP2E1, CYP2C70, CYP3A11, CYP3A25, CYP2D26, CYP4A10, CYP17A1, CYP2B10, and CYP2C38 were involved in oxidative stress, steroid hormone metabolism, fatty acid metabolism, arachidonic acid metabolism, and the PPAR signaling

  9. Expanding P450 catalytic reaction space through evolution and engineering

    PubMed Central

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  10. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  11. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics.

    PubMed

    Achour, Brahim; Russell, Matthew R; Barber, Jill; Rostami-Hodjegan, Amin

    2014-04-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes mediate a major proportion of phase I and phase II metabolism of xenobiotics. In vitro-in vivo extrapolation (IVIVE) of hepatic clearance in conjunction with physiologically-based pharmacokinetics (PBPK) has become common practice in drug development. However, prediction of xenobiotic kinetics in virtual populations requires knowledge of both enzyme abundances and the extent to which these correlate. A multiplexed quantification concatemer (QconCAT) strategy was used in this study to quantify the expression of several P450 and UGT enzymes simultaneously and to establish correlations between various enzyme abundances in 24 individual liver samples (ages 27-66, 14 male). Abundances were comparable to previously reported values, including CYP2C9 (40.0 ± 26.0 pmol mg(-1)), CYP2D6 (11.9 ± 13.2 pmol mg(-1)), CYP3A4 (68.1 ± 52.3 pmol mg(-1)), UGT1A1 (33.6 ± 34.0 pmol mg(-1)), and UGT2B7 (82.9 ± 36.1 pmol mg(-1)), expressed as mean ± S.D. Previous reports of correlations in expression of various P450 (CYP3A4/CYP3A5*1/*3, CYP2C8/CYP2C9, and CYP3A4/CYP2B6) were confirmed. New correlations were demonstrated between UGTs [including UGT1A6/UGT1A9 (r(s) = 0.82, P < 0.0001) and UGT2B4/UGT2B15 (r(s) = 0.71, P < 0.0001)]. Expression of some P450 and UGT enzymes were shown to be correlated [including CYP1A2/UGT2B4 (r(s) = 0.67, P = 0.0002)]. The expression of CYP3A5 in individuals with *1/*3 genotype (n = 11) was higher than those with *3/*3 genotype (n = 10) (P < 0.0001). No significant effect of gender or history of smoking or alcohol use on enzyme expression was observed; however, expression of several enzymes declined with age. The correlation matrix produced for the first time by this study can be used to generate more realistic virtual populations with respect to abundance of various enzymes.

  12. Significantly shorter Fe–S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase

    DOE PAGES

    Krest, Courtney M.; Silakov, Alexey; Rittle, Jonathan; ...

    2015-08-03

    Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate-ligated haem proteins that catalyse the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C–H bonds. In this paper, to provide insight into the differing reactivities of these intermediates, we examined CPO-I and P450-I using variable-temperature Mössbauer and X-ray absorption spectroscopies. These measurements indicate that the Fe–S bond is significantly shorter in P450-I than in CPO-I. This difference in Fe–S bond lengths can be understood in terms ofmore » variations in the hydrogen-bonding patterns within the ‘cys-pocket’ (a portion of the proximal helix that encircles the thiolate ligand). Weaker hydrogen bonding in P450-I results in a shorter Fe–S bond, which enables greater electron donation from the axial thiolate ligand. Finally, this observation may in part explain P450's greater propensity for C–H bond activation.« less

  13. Cationic drug pharmacokinetics in diseased livers determined by fibrosis index, hepatic protein content, microsomal activity, and nature of drug.

    PubMed

    Hung, Daniel Y; Chang, Ping; Cheung, Kee; McWhinney, Brett; Masci, Paul P; Weiss, Michael; Roberts, Michael S

    2002-06-01

    The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl(4))-induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)-acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P(app)) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl(4)-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P(app) or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.

  14. Induction of P450 genes in Nilaparvata lugens and Sogatella furcifera by two neonicotinoid insecticides.

    PubMed

    Yang, Yuan-Xue; Yu, Na; Zhang, Jian-Hua; Zhang, Yi-Xi; Liu, Ze-Wen

    2018-06-01

    Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD 85 ), and in N. lugens among three IMI doses (LD 15 , LD 50 and LD 85 ). When IMI and NMI at the LD 85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD 85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD 50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  15. Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley

    PubMed Central

    Koopmann, Edda; Hahlbrock, Klaus

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

  16. [Immunomodulators with an 8-azasteroid structure as inducers of liver cytochrome P-450].

    PubMed

    Kuz'mitskiĭ, B B; Dad'kov, I G; Mashkovich, A E; Stoma, O V; Slepneva, L M

    1990-01-01

    Two structural analogues of D-homo-8-azasteroids, both an immunostimulant and an immunodepressant, are inductors of the liver cytochrome P-450 in animals. This capability was shown by means of both a decrease of the hexenal sleep duration in the pharmacological test and an increase of the quantity of cytochrome P-450 and the rate of N-demethylation of aminopyrine in the biochemical assays.

  17. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes.

    PubMed

    Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen

    2016-12-01

    Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Degradation of Morpholine by an Environmental Mycobacterium Strain Involves a Cytochrome P-450

    PubMed Central

    Poupin, P.; Truffaut, N.; Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.

    1998-01-01

    A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring. PMID:9435074

  19. Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag.

    PubMed

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee; Jeong, Dabin; Kim, Donghak

    2017-05-28

    NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of NADP + in the affinity chromatography process. In the present study, the rat NPR clone containing a 6× Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using Ni 2+ -affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

  20. Characterization and profiling of hepatic cytochromes P450 and phase II xenobiotic-metabolizing enzymes in beluga whales (Delphinapterus leucas) from the St. Lawrence River Estuary and the Canadian Arctic.

    PubMed

    McKinney, Melissa A; Arukwe, Augustine; De Guise, Sylvain; Martineau, Daniel; Béland, Pierre; Dallaire, André; Lair, Stéphane; Lebeuf, Michel; Letcher, Robert J

    2004-07-30

    Cytochromes P450 (CYP, phase I) and conjugating (phase II) enzymes can be induced by and influence the toxicokinetics (metabolism) and toxicity of xenobiotic contaminants in exposed organisms. Beluga whale (Delphinapterus leucas) from the endangered St. Lawrence (SL) River Estuary population exhibit deleterious health effects and various severe pathologies that have been associated with contaminant exposure. In contrast, such effects (e.g. reproductive and immunological impairment) are generally less frequent in less exposed populations in the Canadian Arctic (CA). In the present study, opportunistic sampling resulted in the collection immediately after death of liver tissue from a single female neonate SL beluga (SL6) and male and female CA beluga (n=10) from the Arviat region of western Hudson Bay, in addition to sampling of stranded carcasses of male and female SL beluga (n=5) at least 12 h postmortem. We immunologically characterized cross-reactive proteins of hepatic microsomal CYP1A, CYP2B, CYP3A, CYP2E, epoxide hydrolase (EH) and uridine diphosphoglucuronosyl transferase (UDPGT) isozymes. Cross-reactive proteins were found in all SL and CA beluga using anti-rat CYP1A1, anti-rainbow trout CYP3A, anti-human CYP2E1, anti-rabbit EH and anti-human UDPGT1A1 polyclonal antibodies (Abs), whereas faintly cross-reactive CYP2B proteins were only found in SL6 and the CA samples using an anti-rabbit CYP2B1 Ab. In corresponding catalytic activity assessments, only SL6 and all CA beluga microsomal samples exhibited CYP1A-mediated 7-ethoxyresorufin O-deethylase (EROD) activity (51-260 pmol/mg/min), CYP3A-mediated activity (113-899 pmol/mg/min) based on the formation of 6beta-hydroxytestosterone using a testosterone hydroxylase assay, and UDPGT activity (830-4956 pmol/mg/min) based on 1-naphthylglucuronide formation. The marginal cross-reactivity with the anti-CYP2B1 Ab and lack of catalytically measurable hydroxytestosterone isomers associated with CYP2B-type activity in

  1. [Effects of electroacupuncture of "Guanyuan" (CV 4)-"Zhongji" (CV 3) on ovarian P450 arom and P450c 17alpha expression and relevant sex hormone levels in rats with polycystic ovary syndrome].

    PubMed

    Sun, Jie; Zhao, Ji-meng; Ji, Rong; Liu, Hui-rong; Shi, Yin; Jin, Chun-lan

    2013-12-01

    To observe the effect of electroacupuncture (EA) on ovarian P 450 arom and P 450 c 17 alpha (aromatases) expression and related sex hormone levels in polycystic ovary syndrome (PCOS) rats. Thirty SD rats were randomly divided into normal control group, model group and EA group (10 rats/group). PCOS model was made by intragastric administration of letrozole at 1 mg/kg per day for consecutive 21 days. "Guanyuan" (CV 4) and "Zhongji" (CV 3) acupoints were stimulated 20 min by EA (2 mA, 2 Hz), once daily for consecutive 14 days. The damp ovarian weight was weighed and the pathological changes of the ovarian tissue were observed after H. E. staining. Ultrastructural changes of the ovarian tissue were observed by transmission electron microscope. Immunohistochemical staining was adopted to detect ovarian follicle granulosa cell P 450 arom and follicle membrane cell P 450 c 17 alpha expression. The contents of estradiol (E 2), estrone (E 1), androstenedione (ASD), testosterone (T), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the ovarian tissue were measured by ELISA. Compared with the normal group, there was a significant increase in the damp weight of both left and right ovarian tissues in the model group (P < 0.01). After EA, the ovarian weight was remarkably reduced (P < 0.01). Pathological changes of the ovarian tissue such as thickening of the superficial albugineous coat of the ovary, thinning of the granular cell layer, and disappearance of the intraovular oocytes and coronaradiata under light microscope, and mitochondrion swelling, fracture or disappearance of mitochondrial cristae, and enlargement of the endoplasmic reticulum, etc. after modeling were obviously improved in the EA group. In comparison to the control group, the expression of the follicle granulosa cell P450 arom was significantly down-regulated and that of follicle membrane cell P 450 c 17 alpha was significantly upregulated in the model group (P < 0.01). After EA

  2. Engineering of a functional human NADH-dependent cytochrome P450 system

    PubMed Central

    Döhr, Olaf; Paine, Mark J. I.; Friedberg, Thomas; Roberts, Gordon C. K.; Wolf, C. Roland

    2001-01-01

    A functional human NADH-dependent cytochrome P450 system has been developed by altering the cofactor preference of human NADPH cytochrome P450 reductase (CPR), the redox partner for P450s. This has been achieved by a single amino acid change of the conserved aromatic amino acid Trp-676, which covers the re-side of the FAD isoalloxazine ring in the nicotinamide-binding site. Of the mutations made, the substitution of Trp-676 with alanine (W676A) resulted in a functional NADH-dependent enzyme, which catalyzed the reduction of cytochrome c and ferricyanide as well as facilitated the metabolism of 7-ethoxyresorufin by CYP1A2. Kinetic analysis measuring cytochrome c activity revealed that the NADH-dependent kcat of W676A is equivalent (90%) to the NADPH-dependent kcat of the wild-type enzyme, with W676A having an approximately 1,000-fold higher specificity for NADH. The apparent KMNADPH and KMNADH values of W676A are 80- and 150-fold decreased, respectively. In accordance with structural data, which show a bipartite binding mode of NADPH, substitution of Trp-676 does not affect 2′-AMP binding as seen by the inhibition of both wild-type CPR and the W676A mutant. Furthermore, NADPH was a potent inhibitor of the W676A NADH-dependent cytochrome c reduction and CYP1A2 activity. Overall, the results show that Trp-676 of human CPR plays a major role in cofactor discrimination, and substitution of this conserved aromatic residue with alanine results in an efficient NADH-dependent cytochrome P450 system. PMID:11136248

  3. Cytochrome P450 3A4 in vivo ketoconazole competitive inhibition: determination of Ki and dangers associated with high clearance drugs in general.

    PubMed

    Boxenbaum, H

    1999-01-01

    Assuming complete hepatic substrate metabolism and system linearity, quantitative effects of in vivo competitive inhibition are investigated. Following oral administration of a substrate in the presence of a competitive inhibitor, determination of the inhibition constant (Ki) is possible when plasma concentration-time profiles of both substrate and inhibitor are available. When triazolam is the P450 3A4 substrate and ketoconazole the competitive inhibitor, Ki approximately 1.2 microg/mL in humans. The effects of competitive inhibition can be divided into two components: first-pass hepatic metabolism and systemic metabolism. For drugs with high hepatic extraction ratios, the impact of competitive inhibition on hepatic first-pass metabolism can be particularly dramatic. For example, human terfenadine hepatic extraction goes from 95% in the absence of a competitive inhibitor to 35% in the presence of one (ketoconazole, 200 mg po Q 12 h dosed to steady-state). First-pass extraction therefore goes from 5% in the absence of the inhibitor to 65% in its presence. The combined effect on first-pass and systemic metabolism produces an approximate 37 fold increase in terfenadine area under the plasma concentration-time curve. Assuming intact drug is active and/or toxic, development of metabolized drugs with extensive first-pass metabolism should be avoided if possible, since inhibition of metabolism may lead to profound increases in exposure.

  4. Cytochrome P450 and ABCB1 genetics: association with quetiapine and norquetiapine plasma and cerebrospinal fluid concentrations and with clinical response in patients suffering from schizophrenia. A pilot study.

    PubMed

    Nikisch, Georg; Baumann, Pierre; Oneda, Beatrice; Kiessling, Bernhard; Weisser, Heike; Mathé, Aleksander A; Yoshitake, Takashi; Kehr, Jan; Wiedemann, Georg; Eap, Chin B

    2011-07-01

    Variability in response to atypical antipsychotic drugs is due to genetic and environmental factors. Cytochrome P450 (CYP) isoforms are implicated in the metabolism of drugs, while the P-glycoprotein transporter (P-gp), encoded by the ABCB1 gene, may influence both the blood and brain drug concentrations. This study aimed to identify the possible associations of CYP and ABCB1 genetic polymorphisms with quetiapine and norquetiapine plasma and cerebrospinal fluid (CSF) concentrations and with response to treatment. Twenty-two patients with schizophrenia receiving 600 mg of quetiapine daily were genotyped for four CYP isoforms and ABCB1 polymorphisms. Quetiapine and norquetiapine peak plasma and CSF concentrations were measured after 4 weeks of treatment. Stepwise multiple regression analysis revealed that ABCB1 3435C > T (rs1045642), 2677G > T (rs2032582) and 1236C > T (rs1128503) polymorphisms predicted plasma quetiapine concentrations, explaining 41% of the variability (p = 0.001). Furthermore, the ABCB1 polymorphisms predicted 48% (p = 0.024) of the variability of the Δ PANSS total score, with the non-carriers of the 3435TT showing higher changes in the score. These results suggest that ABCB1 genetic polymorphisms may be a predictive marker of quetiapine treatment in schizophrenia.

  5. Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams).

    PubMed

    Pua, Eng-Chong; Lee, Yi-Chuan

    2003-02-13

    As part of a study to understand the molecular basis of fruit ripening, this study reports the isolation and characterization of a banana cytochrome P450 (P450) cDNA, designated as MAP450-1, which was associated with fruit ripening of banana. MAP450-1 encoded a single polypeptide of 507 amino acid residues that shared an overall identity of 27-45% with that of several plant P450s, among which MAP450-1 was most related phylogenetically to the avocado P450 CYP71A1. The polypeptide that possessed residue domains conserved in all P450s was classified as CYP71N1. Expression of CYP71N1 varied greatly between banana organs. Transcripts were detected only in peel and pulp of the ripening fruit and not in unripe fruit tissues at all developmental stages or other organs (root, leaf, ovary and flower). During ripening, transcripts were barely detectable in pre-climacteric and climacteric fruits but, as ripening progressed, they began to accumulate and reached a maximum in post-climacteric fruits. CYP71N1 expression in pre-climacteric fruit could be upregulated by exogenous application of ethylene (1-5 ppm) and treatment of overripe fruit with exogenous sucrose (50-300 mM) but not glucose downregulated the expression. These results indicate that P450s may not play a role in fruit development and its expression is associated with ripening, which may be regulated, in part, by ethylene and/or sucrose, at the transcript level.

  6. [Effects of vitamins deficiency on the cytochrome P450 inducibility in rats].

    PubMed

    Trusov, N V; Guseva, G V; Beketova, N A; Aksenov, I V; Avrent'eva, L I; Kravchenko, L V

    2014-01-01

    The purpose of the study was to determine multi-vitamin deficiency effects on the inducibility of main isoforms of cytochrome P450 in the rat liver. The study was carried out on 4 groups of Wistar rats. Rats of the 1st and 3rd group received semi-synthetic diets containing adequate (100% of recommended vitamin level) level of vitamins, the 2nd and 4th--the semi-synthetic diet containing vitamins in the amount of 20% from adequate level. The duration of the experiment was 4 weeks. During the last week indole-3-carbinol (I-3-C) in dose of 20 mg/kg body weight was added to the diet of the 3rd and 4th group of rats. Vitamin E content in liver and blood serum declined by 59 and 34%, respectively in rats which were fed vitamin-deficient diet (2nd group); vitamin A level decreased by 5 times in the liver, but was not changed in blood serum. Multi-vitamin deficiency in the diet led to the increase in the liver ethoxyresorufin O-dealkylase (EROD) activity of CYP1A1, methoxyresorufin O-dealkylase (MROD) activity of CYP1A2 and testosteron 6beta-hydroxylase (6beta-TG) activity of CYP3A by 11, 80 and 53%, respectively, and gene expression of CYP1A1, CYP1A2, CYP3A and AhR by 8,5; 1,6; 2,4 and 3,6 fold. In rats fed diet with adequate levels of vitamins (3rd group) I-3-C increased activity of EROD and MROD by 4,4 and 5,5 fold, and the expression of CYP1A1, CYP1A2 and AhR genes by 148; 3 and 3,5 fold compared to the parameters of the 1st group (without I-3-C). Multi-vitamin deficiency increased I-3-C-related induction of EROD activity and expression of CYP1A1 and CYP1A2 genes, but decreased I-3-C-related induction of the MROD activity. Thus, 5-fold reducing of vitamin content in rat diet lead to significant changes in activity and inducibility of cytochrome P450 of CYP1A and 3A family, which play a key role in the detoxification and metabolism of drugs.

  7. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    PubMed

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.

  8. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    PubMed

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-05

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  9. Marmoset Cytochrome P450 3A4 Ortholog Expressed in Liver and Small-Intestine Tissues Efficiently Metabolizes Midazolam, Alprazolam, Nifedipine, and Testosterone.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Nakanishi, Kazuyuki; Ishii, Sakura; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-05-01

    Common marmosets ( Callithrix jacchus ), small New World primates, are increasingly attracting attention as potentially useful animal models for drug development. However, characterization of cytochrome P450 (P450) 3A enzymes involved in the metabolism of a wide variety of drugs has not investigated in marmosets. In this study, sequence homology, tissue distribution, and enzymatic properties of marmoset P450 3A4 ortholog, 3A5 ortholog, and 3A90 were investigated. Marmoset P450 3A forms exhibited high amino acid sequence identities (88-90%) to the human and cynomolgus monkey P450 3A orthologs and evolutionary closeness to human and cynomolgus monkey P450 3A orthologs compared with other P450 3A enzymes. Among the five marmoset tissues examined, P450 3A4 ortholog mRNA was abundant in livers and small intestines where P450 3A4 ortholog proteins were immunologically detected. Three marmoset P450 3A proteins heterologously expressed in Escherichia coli membranes catalyzed midazolam 1'- and 4-hydroxylation, alprazolam 4-hydroxylation, nifedipine oxidation, and testosterone 6 β -hydroxylation, similar to cynomolgus monkey and human P450 3A enzymes. Among the marmoset P450 3A enzymes, P450 3A4 ortholog effectively catalyzed midazolam 1'-hydroxylation, comparable to microsomes from marmoset livers and small intestines. Correlation analyses with 23 individual marmoset liver microsomes suggested contributions of P450 3A enzymes to 1'-hydroxylation of both midazolam (human P450 3A probe) and bufuralol (human P450 2D6 probe), similar to cynomolgus monkey P450 3A enzymes. These results indicated that marmoset P450 3A forms had functional characteristics roughly similar to cynomolgus monkeys and humans in terms of tissue expression patterns and catalytic activities, suggesting marmosets as suitable animal models for P450 3A-dependent drug metabolism. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    PubMed

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  11. Oxidation of Methyl and Ethyl Nitrosamines by Cytochromes P450 2E1 and 2B1

    PubMed Central

    Chowdhury, Goutam; Calcutt, M. Wade; Nagy, Leslie D.; Guengerich, F. Peter

    2012-01-01

    Cytochrome P450 (P450) 2E1 is the major enzyme that oxidizes N-nitrosodimethylamine (N,N-dimethylnitrosamine, DMN), a carcinogen and also a representative of some nitrosamines formed endogenously. Oxidation of DMN by rat or human P450 2E1 to HCHO showed a high apparent intrinsic kinetic deuterium isotope effect (KIE), ≥ 8. The KIE was not attenuated in non-competitive intermolecular experiments with rat liver microsomes (DV 12.5, D(V/K) 10.9, nomenclature of Northrop, D.B. (1982) Methods Enzymol. 87, 607–625) but was with purified human P450 2E1 (DV 3.3, D(V/K) 3.7), indicating that C-H bond breaking is partially rate-limiting with human P450 2E1. With N-nitrosodiethylamine (N,N-diethylnitrosamine, DEN), the intrinsic KIE was slightly lower and was not expressed (e.g., D(V/K) 1.2) in non-competitive intermolecular experiments. The same general pattern of KIEs was also seen in the D(V/K) results with DMN and DEN for the minor products resulting from the denitrosation reactions (CH3NH2, CH3CH2NH2, and NO2−). Experiments with deuterated N-nitroso-N-methyl,N-ethylamine demonstrated that the lower KIEs associated for ethyl compared to methyl oxidation could be distinguished within a single molecule. P450 2E1 oxidized DMN and DEN to aldehydes and then to the carboxylic acids. No kinetic lags were observed in acid formation; pulse-chase experiments with carrier aldehydes showed only limited equilibration with P450 2E1-bound aldehydes, indicative of processive reactions, as reported for P450 2A6 (Chowdhury, G. et al. (2010) J. Biol. Chem. 285, 8031–8044). These same features (no lag phase for HCO2H formation, lack of equilibration in pulse-chase assays) were also seen with (rat) P450 2B1, which has lower catalytic efficiency for DMN oxidation and a larger active site. Thus, the processivity of dialkylnitrosamine oxidation appears to be shared by a number of P450s. PMID:23186213

  12. Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation.

    PubMed Central

    Roberts, E S; Vaz, A D; Coon, M J

    1991-01-01

    As we have briefly described elsewhere, cytochrome P-450 catalyzes the oxidative deformylation of cyclohexane carboxaldehyde to yield cyclohexene and formic acid in a reaction believed to involve a peroxyhemiacetal-like adduct formed between the substrate and molecular oxygen-derived hydrogen peroxide. This reaction is a useful model for the demethylation reactions catalyzed by the steroidogenic P-450s, aromatase, and lanosterol demethylase. In the present study, the cytochrome P-450-catalyzed formation of olefinic products from a series of xenobiotic aldehydes has been demonstrated. Isobutyraldehyde and trimethylacetaldehyde, but not propionaldehyde, are converted to the predicted olefinic products, suggesting a requirement for branching at the alpha carbon. In addition, the four C5 aldehydes of similar hydrophobicity were compared for their ability to undergo the reaction. The straight-chain valeraldehyde gave no olefinic products with five different rabbit liver microsomal P-450 isozymes. However, increasing activity was seen with the other isomers in the order of isovaleraldehyde, 2-methylbutyraldehyde, and trimethylacetaldehyde, with all of the P-450 cytochromes. The catalytic rate with trimethylacetaldehyde is highest with antibiotic-inducible P-450 form 3A6, followed by phenobarbital-inducible form 2B4 and ethanol-inducible form 2E1. Citronellal, a beta-branched aldehyde that is found in many essential oils and is widely used as an odorant and a flavorant, was found to undergo the oxidative deformylation reaction to yield 2,6-dimethyl-1,5-heptadiene, but only with P-450 2B4. The oxidative cleavage reaction with olefin formation appears to be widespread, as judged by the variety of aldehydes that serve as substrates and of P-450 cytochromes that serve as catalysts. PMID:1924356

  13. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga.

    PubMed

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-02-07

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.

  14. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Yi-Hua; Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu; Baker, Angela A.

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling,more » a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.« less

  15. Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate.

    PubMed

    Venkatakrishnan, K; von Moltke, L L; Greenblatt, D J

    2001-04-01

    The relative activity factor (RAF) approach is being increasingly used in the quantitative phenotyping of multienzyme drug biotransformations. Using lymphoblast-expressed cytochromes P450 (CYPs) and the tricyclic antidepressant amitriptyline as a model substrate, we have tested the hypothesis that the human liver microsomal rates of a biotransformation mediated by multiple CYP isoforms can be mathematically reconstructed from the rates of the biotransformation catalyzed by individual recombinant CYPs using the RAF approach, and that the RAF approach can be used for the in vitro-in vivo scaling of pharmacokinetic clearance from in vitro intrinsic clearance measurements in heterologous expression systems. In addition, we have compared the results of two widely used methods of quantitative reaction phenotyping, namely, chemical inhibition studies and the prediction of relative contributions of individual CYP isoforms using the RAF approach. For the pathways of N-demethylation (mediated by CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and E-10 hydroxylation (mediated by CYPs 2B6, 2D6, and 3A4), the model-predicted biotransformation rates in microsomes from a panel of 12 human livers determined from enzyme kinetic parameters of the recombinant CYPs were similar to, and correlated with the observed rates. The model-predicted clearance via N-demethylation was 53% lower than the previously reported in vivo pharmacokinetic estimates. Model-predicted relative contributions of individual CYP isoforms to the net biotransformation rate were similar to, and correlated with the fractional decrement in human liver microsomal reaction rates by chemical inhibitors of the respective CYPs, provided the chemical inhibitors used were specific to their target CYP isoforms.

  16. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  17. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  18. Construction and engineering of a thermostable self-sufficient cytochrome P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C.more » Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.« less

  19. Detection and diversity of fungal nitric oxide reductase genes ( p450nor) in agricultural soils

    DOE PAGES

    Higgins, Steven A.; Welsh, Allana; Orellana, Luis H.; ...

    2016-03-11

    Members of the Fungi convert nitrate (NO 3 -) and nitrite (NO 2 -) to gaseous nitrous oxide (N 2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N 2O from added NO 3 - or NO 2 - in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups,more » of which 151 produced N 2O from NO 2 -. Novel PCR primers targeting the p450nor gene that encodes the nitric oxide (NO) reductase responsible for N 2O production in fungi yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54-98% amino acid identity to reference P450nor sequences within the phylum Ascomycota, and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N 2O from nitrite, whereas nirK (encoding the NO-forming nitrite reductase) was amplified in only 13-74% of the N 2O-forming isolates using two separate nirK primer sets. Altogether, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N 2O formation.« less

  20. Detection and diversity of fungal nitric oxide reductase genes ( p450nor) in agricultural soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Steven A.; Welsh, Allana; Orellana, Luis H.

    Members of the Fungi convert nitrate (NO 3 -) and nitrite (NO 2 -) to gaseous nitrous oxide (N 2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N 2O from added NO 3 - or NO 2 - in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups,more » of which 151 produced N 2O from NO 2 -. Novel PCR primers targeting the p450nor gene that encodes the nitric oxide (NO) reductase responsible for N 2O production in fungi yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54-98% amino acid identity to reference P450nor sequences within the phylum Ascomycota, and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N 2O from nitrite, whereas nirK (encoding the NO-forming nitrite reductase) was amplified in only 13-74% of the N 2O-forming isolates using two separate nirK primer sets. Altogether, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N 2O formation.« less

  1. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok

    2007-12-15

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD{sub 50}) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver ofmore » offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring.« less

  2. Cytochrome P450 2D6 polymorphism and character traits.

    PubMed

    Suzuki, Eiji; Kitao, Yoshie; Ono, Yutaka; Iijima, Yoshimi; Inada, Toshiya

    2003-06-01

    It has been suggested that cytochrome P450 2D6 (CYP2D6) is involved in dopamine metabolism within the brain. The dopamine system is suggested to play a role in determining normal character. The purpose of this study was to examine whether character traits are dependent on cytochrome P450 2D6 activity. We investigated the association between temperament and CYP2D6 gene polymorphism. The subjects were all Japanese and the polymorphism genotyped in the present study was CYP2D6*10. Character traits were assessed using the Temperament and Character Inventory. There was no overall or specific association between personality traits and the CYP2D6*10 allele and genotype frequencies. The present results do not support the hypothesis that CYP2D6 activity affects temperament and character.

  3. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    PubMed

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  4. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme.

    PubMed

    Robin, Aélig; Roberts, Gareth A; Kisch, Johannes; Sabbadin, Federico; Grogan, Gideon; Bruce, Neil; Turner, Nicholas J; Flitsch, Sabine L

    2009-05-14

    A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.

  5. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases.

    PubMed

    Navarro-Mabarak, Cynthia; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2018-05-01

    Cytochromes P450 (CYPs) constitute a family of enzymes that can be found in the endoplasmic reticulum (ER), mitochondria or the cell surface of the cells. CYPs are characterized by carrying out the oxidation of organic compounds and they are mainly recognized as mediators of the biotransformation of xenobiotics to polar hydrophilic metabolites that can be eliminated from the organism. However, these enzymes play a key role in many other physiological processes, being involved in diverse indispensable metabolic pathways since they metabolize many endogenous substrates. Various CYP isoforms are expressed in the brain, and it is believed that this could be in part due to the particular function of brain CYPs. In the brain, CYPs are involved in the cholesterol turnover, the biosynthesis of dopamine, serotonin, morphine, hormones, and protective lipid mediators (epoxyeicosatrienoic acids), in addition to their already recognized role in xenobiotics detoxification and psychotropic drug metabolism. Increasing evidence suggests that this group of enzymes is fundamental for the normal functioning and maintenance of brain homeostasis. This review is focused on highlighting the importance of CYP-mediated endogenous metabolism in the central nervous system (CNS) and its relationship with recent findings regarding CYP involvement in neurodegenerative diseases. Some therapeutic approaches focused on CYP regulation are also discussed.

  6. An integrated strategy for the quantitative analysis of endogenous proteins: A case of gender-dependent expression of P450 enzymes in rat liver microsome.

    PubMed

    Shao, Yuhao; Yin, Xiaoxi; Kang, Dian; Shen, Boyu; Zhu, Zhangpei; Li, Xinuo; Li, Haofeng; Xie, Lin; Wang, Guangji; Liang, Yan

    2017-08-01

    Liquid chromatography mass spectrometry based methods provide powerful tools for protein analysis. Cytochromes P450 (CYPs), the most important drug metabolic enzymes, always exhibit sex-dependent expression patterns and metabolic activities. To date, analysis of CYPs based on mass spectrometry is still facing critical technical challenges due to the complexity and diversity of CYP isoforms besides lack of corresponding standards. The aim of present work consisted in developing a label-free qualitative and quantitative strategy for endogenous proteins, and then applying to the gender-difference study for CYPs in rat liver microsomes (RLMs). Initially, trypsin digested RLM specimens were analyzed by the nanoLC-LTQ-Orbitrap MS/MS. Skyline, an open source and freely available software for targeted proteomics research, was then used to screen the main CYP isoforms in RLMs under a series of criteria automatically, and a total of 40 and 39 CYP isoforms were identified in male and female RLMs, respectively. More importantly, a robust quantitative method in a tandem mass spectrometry-multiple reaction mode (MS/MS-MRM) was built and optimized under the help of Skyline, and successfully applied into the CYP gender difference study in RLMs. In this process, a simple and accurate approach named 'Standard Curve Slope" (SCS) was established based on the difference of standard curve slopes of CYPs between female and male RLMs in order to assess the gender difference of CYPs in RLMs. This presently developed methodology and approach could be widely used in the protein regulation study during drug pharmacological mechanism research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter

    PubMed Central

    Reed, James R.; dela Cruz, Albert Leo N.; Lomnicki, Slawo M.; Backes, Wayne L.

    2015-01-01

    Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ≥ 230°C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50°C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR•P450 complex. PMID:25817938

  8. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    PubMed Central

    Chen, Song; Li, Xianchun

    2007-01-01

    Background Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes. PMID:17381843

  9. Immunohistochemical study of temporal variations in cytochrome P-450 isozymes in rat testis and their modifications by the inductive effects of cadinenes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhito; Motohashi, Yutaka; Miyazaki, Yoshifumi; Yatagai, Mitsuyoshi; Takano, Takehito

    1991-12-01

    Temporal variations in cytochrome P-450 isozymes of rat testis, PB-P-450 (forms of cytochrome P-450 strongly induced by phenobarbital) and MC-P-448 (forms of cytochrome P-450 strongly induced by 3-methylcholanthrene), were investigated immunohistochemically by the avidin-biotin-complex method using specific antibodies against PB-P-450 and MC-P-448 isozymes. Immunoreactivity to both PB-P-450 and MC-P-448 isozymes was observed in Leydig cells. The number of PB-P-450 positive Leydig cells was found to undergo significant time-of-day variation with a peak time of 0000 hours (light phase from 0800 to 2000 hours). Injection of cadinenes (300 mg/kg per day intraperitoneally at 48 and 96 h before sacrifice) induced PB-P-450 isozyme but did not induce MC-P-448 isozyme. The induction of PB-P-450 isozyme by cadinenes was time dependent, and the early dark phase (2000 and 0000 hours) was most sensitive. These results suggest that temporal variation of cytochrome P-450 isozymes is one of the important physiological variations in detoxification and activation of various xenobiotics and chemicals in the testis.

  10. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism

    PubMed Central

    van Herwaarden, Antonius E.; Wagenaar, Els; van der Kruijssen, Cornelia M.M.; van Waterschoot, Robert A.B.; Smit, Johan W.; Song, Ji-Ying; van der Valk, Martin A.; van Tellingen, Olaf; van der Hoorn, José W.A.; Rosing, Hilde; Beijnen, Jos H.; Schinkel, Alfred H.

    2007-01-01

    Cytochrome P450 3A (CYP3A) enzymes constitute an important detoxification system that contributes to primary metabolism of more than half of all prescribed medications. To investigate the physiological and pharmacological roles of CYP3A, we generated Cyp3a-knockout (Cyp3a–/–) mice lacking all functional Cyp3a genes. Cyp3a–/– mice were viable, fertile, and without marked physiological abnormalities. However, these mice exhibited severely impaired detoxification capacity when exposed to the chemotherapeutic agent docetaxel, displaying higher exposure levels in response to both oral and intravenous administration. These mice also demonstrated increased sensitivity to docetaxel toxicity, suggesting a primary role for Cyp3a in xenobiotic detoxification. To determine the relative importance of intestinal versus hepatic Cyp3a in first-pass metabolism, we generated transgenic Cyp3a–/– mice expressing human CYP3A4 in either the intestine or the liver. Expression of CYP3A4 in the intestine dramatically decreased absorption of docetaxel into the bloodstream, while hepatic expression aided systemic docetaxel clearance. These results suggest that CYP3A expression determines impairment of drug absorption and efficient systemic clearance in a tissue-specific manner. The genetic models used in this study provide powerful tools to further study CYP3A-mediated xenobiotic metabolism, as well as interactions between CYP3A and other detoxification systems. PMID:17975676

  11. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus.

    PubMed

    Liu, Nannan; Li, Ting; Reid, William R; Yang, Ting; Zhang, Lee

    2011-01-01

    Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.

  12. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants.

    PubMed

    Ohkawa, Hideo; Inui, Hideyuki

    2015-06-01

    A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity. © 2014 Society of Chemical Industry.

  13. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  14. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002.

    PubMed

    Shimada, T; Iwasaki, M; Martin, M V; Guengerich, F P

    1989-06-15

    A total of 57 procarcinogens was examined for induction of umu gene response in the chimeric plasmid pSK1002, carried in Salmonella typhimurium TA 1535, after incubation with a series of human liver microsomal preparations which had been selected on the basis of characteristic levels of individual cytochrome P-450 (P-450) enzymes. The 18 most active compounds were selected and further analyzed using the umu gene response and correlative studies with a larger number of microsomal preparations, enzyme reconstitution studies involving purified enzymes, immunochemical inhibition, and patterns of stimulation and inhibition of catalytic activity by 7,8-benzoflavone. The results collectively indicate that 16 of these 18 most potent genotoxins examined are activated primarily either by P-450NF (the nifedipine oxidase) or P-450PA (the phenacetin O-deethylase). P-450NF appears to be the major enzyme involved in the bioactivation of aflatoxin B1, aflatoxin G1, sterigmatocystin, trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, 6-aminochrysene, and tris-(2,3-dibromopropyl)phosphate in human liver. P-450PA appears to be the major enzyme involved in the bioactivation of 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,5-dimethylimidazo[4, 5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-aminoanthracene, 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole, 2-aminofluorene, 2-acetylaminofluorene, 4-aminobiphenyl, 3-amino-1-methyl-5H-pyrido[4,3-b] indole, and 2-aminodipyrido[1,2-a:3',2'-d]imidazole. More than one enzyme appears to contribute significantly to the bioactivation of the other two compounds examined, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b] indole and 6-nitrochrysene. The literature suggests that the two human liver P-450s involved in activation of these 16 procarcinogens are highly inducible by barbiturates, macrolide antibodies, and certain steroids (P-450NF) and by smoking and ingestion of charcoal-containing food (P-450PA); noninvasive assays are available

  15. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    PubMed

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese non-alcoholic fatty liver disease patients.

    PubMed

    Orellana, Myriam; Rodrigo, Ramón; Varela, Nelson; Araya, Julia; Poniachik, Jaime; Csendes, Attila; Smok, Gladys; Videla, Luis A

    2006-01-01

    The aim of the present study was to test the hypothesis that induction of cytochrome P450 2E1 (CYP2E1) in the liver of patients with non-alcoholic fatty liver disease (NAFLD) is correlated both with the in vivo activity of the cytochrome and with the development of liver injury. For this purpose, the liver content of CYP2E1 was determined by Western blot and the CYP2E1 activity by the in vivo hydroxylation of chlorzoxazone (CLZ). The study groups were obese women with an average body mass index (BMI) of 40.3kg/m(2), who underwent therapeutic gastroplasty or gastrectomy with a gastro-jejunal anastomosis. Further, the hepatic histology was determined to establish the pathological score grouping the subjects into three categories: control, steatosis and steatohepatitis. The liver CYP2E1 content and the CLZ hydroxylation of obese patients with steatosis and, particularly, with steatohepatitis were significantly higher than controls and correlated positively with both the severity of the liver damage. These data provide evidence that CYP2E1 would be involved in the mechanism of liver injury found in obese NAFLD patients. Also, the correlation between liver CYP2E1 content and in vivo CLZ hydroxylation would validate the latter as a reliable indicator of liver injury in NAFLD, thus providing a simple and not invasive method to study these patients.

  17. Alteration of high and low spin equilibrium by a single mutation of amino acid 209 in mouse cytochromes P450.

    PubMed

    Iwasaki, M; Juvonen, R; Lindberg, R; Negishi, M

    1991-02-25

    The identities of the amino acid at position 209 are most critical in determining specific coumarin 7- and steroid 15 alpha-hydroxylase activity in P450coh and P450(15)alpha, respectively. This system, therefore, provides us with an excellent model to study the structural basis for P450 specificity as a monooxygenase. We expressed in Saccharomyces cerevisiae a series of the mutated P450s in which residue 209 was substituted with the various amino acids and characterized the spectral property and hydroxylase activity of these mutated P450s. The positioning of a hydrophobic residue including Phe, Leu, and Val at position 209 resulted in shifting the P450 to the high-spin state, while a charged amino acid such as Lys or Asp produced the low-spin form. Moreover, a P450 with Asn or Gly in this position exhibited spectra indicating a mixture of the high- and low-spin forms. This spin alteration, depending upon the hydrophobicity and size of residue at position 209, indicates that this position is likely to reside close to the sixth axial ligand on the distal surface of the heme in these P450s. This proximity of residue 209 to the ligand may explain the critical role of this residue in determining the hydroxylase specificity and activity of these P450s.

  18. Importance of multi-P450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude and prediction from in vitro data

    PubMed Central

    Isoherranen, Nina; Lutz, Justin D; Chung, Sophie P; Hachad, Houda; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2012-01-01

    Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is co-administered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contributes half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo, and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database™. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450’s, were identified. Seventeen (45 %) multi-P450 inhibitors were strong inhibitors of at least one P450 and an additional 12 (32 %) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate

  19. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  20. Selective inhibition of ATPase activity during contraction alters the activation of p38 MAP kinase isoforms in skeletal muscle

    PubMed Central

    Brault, Jeffrey J.; Pizzimenti, Natalie M.; Dentel, John N.; Wiseman, Robert W.

    2013-01-01

    Muscle contractions strongly activate p38 MAP kinases, but the precise contraction-associated sarcoplasmic event(s) (e.g. force production, energetic demands and/or calcium cycling) that activate these kinases are still unclear. We tested the hypothesis that during contraction the phosphorylation of p38 isoforms is sensitive to the increase in ATP demand relative to ATP supply. Energetic demands were inhibited using N-benzyl-p-toluene sulphonamide (BTS, type II actomyosin) and cyclopiazonic acid (CPA, SERCA). Extensor digitorum longus muscles from Swiss Webster mice were incubated in Ringer’s solution (37°C) with or without inhibitors and then stimulated at 10 Hz for 15 min. Muscles were immediately freeze-clamped for metabolite and western blot analysis. BTS and BTS+CPA treatment decreased force production by 85%, as measured by the tension time integral, while CPA alone potentiated force by 310%. In control muscles, contractions resulted in a 73% loss of ATP content and a concomitant 7-fold increase in IMP content, a measure of sustained energetic imbalance. BTS or CPA treatment lessened the loss of ATP, but BTS+CPA treatment completely eliminated the energetic imbalance since ATP and IMP levels were nearly equal to those of non-stimulated muscles. The independent inhibition of cytosolic ATPase activities had no effect on contraction-induced p38 MAPK phosphorylation, but combined treatment prevented the increase in phosphorylation of the γ isoform while the α/βisoforms unaffected. These observations suggest that an energetic signal may trigger phosphorylation of the p38γ isoform while other factors are involved in activating the α/β isoforms, and also may explain how contractions differentially activate signaling pathways. PMID:23296747

  1. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica.

    PubMed

    Zhu, Fang; Li, Ting; Zhang, Lee; Liu, Nannan

    2008-09-25

    Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies. The expression of 3 P450 genes, CYP4D4v2, CYP4G2, and CYP6A38, was co-up-regulated by permethrin treatment in permethrin resistant ALHF house flies in a time and dose-dependent manner. Comparison of the deduced protein sequences of these three P450s from resistant ALHF and susceptible aabys and CS house flies revealed identical protein sequences. Genetic linkage analysis located CYP4D4v2 and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in ALHF, whereas CYP4G2 was located on autosome 3, where the major insecticide resistance factor(s) for ALHF had been mapped but no P450 genes reported prior to this study. Our study provides the first direct evidence that multiple P450 genes are co-up-regulated in permethrin resistant house flies through the induction mechanism, which increases overall expression levels of P450 genes in resistant house flies. Taken together with the significant induction of CYP4D4v2, CYP4G2, and CYP6A38 expression by permethrin only in permethrin resistant house flies and the correlation of the linkage of the genes with resistance and/or P450-mediated resistance in resistant ALHF house flies, this study sheds new light on the functional importance of P450

  2. Metabolism of aflatoxin B{sub 1} in Turkey liver microsomes: The relative roles of cytochromes P450 1A5 and 3A37

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawal, Sumit; Coulombe, Roger A., E-mail: roger@usu.edu

    The extreme sensitivity of turkeys to aflatoxin B{sub 1} (AFB{sub 1}) is associated with efficient epoxidation by hepatic cytochromes P450 (P450) 1A5 and 3A37 to exo-aflatoxin B{sub 1}-8,9-epoxide (exo-AFBO). The combined presence of 1A5 and 3A37, which obey different kinetic models, both of which metabolize AFB{sub 1} to the exo-AFBO and to detoxification products aflatoxin M{sub 1} (AFM{sub 1}) and aflatoxin Q{sub 1} (AFQ{sub 1}), respectively, complicates the kinetic analysis of AFB{sub 1} in turkey liver microsomes (TLMs). Antisera directed against 1A5 and 3A37, thereby individually removing the catalytic contribution of these enzymes, were used to identify the P450 responsiblemore » for epoxidating AFB{sub 1} in TLMs. In control TLMs, AFB{sub 1} was converted to exo-AFBO in addition to AFM{sub 1} and AFQ{sub 1} confirming the presence of functional 1A5 and 3A37. Pretreatment with anti-1A5 inhibited exo-AFBO formation, especially at low, submicromolar ({approx} 0.1 {mu}M), while anti-3A37, resulted in inhibition of exo-AFBO formation, but at higher (> 50 {mu}M) AFB{sub 1} concentrations. Metabolism in immunoinhibited TLMs resembled that of individual enzymes: 1A5 produced exo-AFBO and AFM{sub 1}, conforming to Michaelis-Menten, while 3A37 produced exo-AFBO and AFQ{sub 1} following the kinetic Hill equation. At 0.1 {mu}M AFB{sub 1}, close to concentrations in livers of exposed animals, 1A5 contributed to 98% of the total exo-AFBO formation. At this concentration, 1A5 accounted for a higher activation:detoxification (50:1, exo-AFBO: AFM{sub 1}) compared to 3A37 (0.15: 1, exo-AFBO: AFQ{sub 1}), suggesting that 1A5 is high, while 3A4 is the low affinity enzyme in turkey liver. The data support the conclusion that P450 1A5 is the dominant enzyme responsible for AFB{sub 1} bioactivation and metabolism at environmentally-relevant AFB{sub 1} concentrations in turkey liver. - Graphical abstract: Display Omitted Highlights: > Efficient bioactivation by P450s 1A5 and 3A

  3. Effects of dietary lead acetate on hepatic detoxication enzyme activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, D.J.

    1979-12-01

    Lead-containing compounds usually inhibit enzymic and metabolic processes. This inhibition is presumed to be the mechanism of intoxication by these compounds. Inhibition of detoxication activities of liver microsomal enzymes could be particularly detrimental because the toxicity of many different substances would be increased. Exposure of experimental animals to lead compounds in several studies has been associated with depressed activity of hepatic microsomal enzymes, reduced levels of hepatic cytochrome P-450, reduced levels of hepatic microsomal protein, and prolonged hexobarbital sleep times. The present report contains observations that under certain experimental conditions there is stimulated hepatic meicrosomal enzyme activity in rats fedmore » lead acetate.« less

  4. The p110α and p110β Isoforms of Class I Phosphatidylinositol 3-Kinase Are Involved in Toll-Like Receptor 5 Signaling in Epithelial Cells

    PubMed Central

    Ivison, Sabine M.; Khan, Mohammed A. S.; Graham, Nicholas R.; Shobab, Leila A.; Yao, Yu; Kifayet, Arnawaz; Sly, Laura M.; Steiner, Theodore S.

    2010-01-01

    Background. Bacterial flagellin triggers inflammation in mammalian cells via Toll-like receptor (TLR) 5. Release of the chemokine IL-8 in response to flagellin involves NF-κB, p38 MAP kinase, and phosphatidylinositol 3-kinase (PI3K). However, PI3K has been reported to be either pro- or anti-inflammatory in different model systems. We hypothesized that this could be due to different activities of the p110α and β isoforms of PI3K. Results. PI3K and Akt were rapidly activated in Caco-2 colon carcinoma cells by flagellin. Using a plasmid-based shRNA delivery system and novel p110 isoform-specific inhibitors, we found that flagellin-induced IL-8 production was dependent on both p110α and p110β. However in the mouse, inhibition of p110β but not p110α reduced the increase of serum IL-6 levels induced by intraperitoneal injection of flagellin. Conclusions. These data demonstrate that the p110α and β isoforms of class IA PI3K are both required for the proinflammatory response to flagellin. PMID:20953381

  5. Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils

    PubMed Central

    Welsh, Allana; Orellana, Luis H.; Konstantinidis, Konstantinos T.; Chee-Sanford, Joanne C.; Sanford, Robert A.; Schadt, Christopher W.

    2016-01-01

    ABSTRACT Members of the Fungi convert nitrate (NO3−) and nitrite (NO2−) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3− or NO2− in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, 151 of which produced N2O from NO2−. Novel PCR primers targeting the p450nor gene, which encodes the nitric oxide (NO) reductase responsible for N2O production in fungi, yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54 to 98% amino acid identity with reference P450nor sequences within the phylum Ascomycota and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from NO2−, whereas nirK (encoding the NO-forming NO2− reductase) was amplified in only 13 to 74% of the N2O-forming isolates using two separate nirK primer sets. Collectively, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation. IMPORTANCE A comprehensive understanding of the microbiota controlling soil N loss and greenhouse gas (N2O) emissions is crucial for sustainable agricultural practices and addressing climate change concerns. We report the design and application of a novel PCR primer set targeting fungal p450nor, a biomarker for fungal N2O production, and demonstrate the utility of the new approach to assess fungal denitrification

  6. Key Mutations Alter the Cytochrome P450 BM3 Conformational Landscape and Remove Inherent Substrate Bias*

    PubMed Central

    Butler, Christopher F.; Peet, Caroline; Mason, Amy E.; Voice, Michael W.; Leys, David; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) have enormous potential in the production of oxychemicals, due to their unparalleled regio- and stereoselectivity. The Bacillus megaterium P450 BM3 enzyme is a key model system, with several mutants (many distant from the active site) reported to alter substrate selectivity. It has the highest reported monooxygenase activity of the P450 enzymes, and this catalytic efficiency has inspired protein engineering to enable its exploitation for biotechnologically relevant oxidations with structurally diverse substrates. However, a structural rationale is lacking to explain how these mutations have such effects in the absence of direct change to the active site architecture. Here, we provide the first crystal structures of BM3 mutants in complex with a human drug substrate, the proton pump inhibitor omeprazole. Supported by solution data, these structures reveal how mutation alters the conformational landscape and decreases the free energy barrier for transition to the substrate-bound state. Our data point to the importance of such “gatekeeper” mutations in enabling major changes in substrate recognition. We further demonstrate that these mutants catalyze the same 5-hydroxylation reaction as performed by human CYP2C19, the major human omeprazole-metabolizing P450 enzyme. PMID:23828198

  7. A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues.

    PubMed

    Sethi, Isha; Romano, Rose-Anne; Gluck, Christian; Smalley, Kirsten; Vojtesek, Borivoj; Buck, Michael J; Sinha, Satrajit

    2015-08-07

    The transcription factor p63 belongs to the p53/p63/p73 family and plays key functional roles during normal epithelial development and differentiation and in pathological states such as squamous cell carcinomas. The human TP63 gene, located on chromosome 3q28 is driven by two promoters that generate the full-length transactivating (TA) and N-terminal truncated (ΔN) isoforms. Furthermore alternative splicing at the C-terminus gives rise to additional α, β, γ and likely several other minor variants. Teasing out the expression and biological function of each p63 variant has been both the focus of, and a cause for contention in the p63 field. Here we have taken advantage of a burgeoning RNA-Seq based genomic data-sets to examine the global expression profiles of p63 isoforms across commonly utilized human cell-lines and major tissues and organs. Consistent with earlier studies, we find ΔNp63 transcripts, primarily that of the ΔNp63α isoforms, to be expressed in most cells of epithelial origin such as those of skin and oral tissues, mammary glands and squamous cell carcinomas. In contrast, TAp63 is not expressed in the majority of normal cell-types and tissues; rather it is selectively expressed at moderate to high levels in a subset of Burkitt's and diffuse large B-cell lymphoma cell lines. We verify this differential expression pattern of p63 isoforms by Western blot analysis, using newly developed ΔN and TA specific antibodies. Furthermore using unsupervised clustering of human cell lines, tissues and organs, we show that ΔNp63 and TAp63 driven transcriptional networks involve very distinct sets of molecular players, which may underlie their different biological functions. In this study we report comprehensive and global expression profiles of p63 isoforms and their relationship to p53/p73 and other potential transcriptional co-regulators. We curate publicly available data generated in part by consortiums such as ENCODE, FANTOM and Human Protein Atlas to

  8. [Cytochrome P-450 and the response to antimalarial drugs].

    PubMed

    Guzmán, Valentina; Carmona-Fonseca, Jaime

    2006-01-01

    To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other

  9. A comparative study of P450 gene expression in field and laboratory Musca domestica L. strains.

    PubMed

    Højland, Dorte H; Vagn Jensen, Karl-Martin; Kristensen, Michael

    2014-08-01

    The housefly is a global pest that has developed resistance to most insecticides applied for its control. Resistance has been associated with cytochrome P450 monooxygenases (P450s). The authors compare the expression of six genes possibly associated with insecticide resistance in three unselected strains: a multiresistant strain (791a), a neonicotinoid-resistant strain (766b) and a new field strain (845b). CYP4G2 was highly expressed throughout the range of strains and proved to be the one of the most interesting expression profiles of all P450s analysed. CYP6G4 was expressed up to 11-fold higher in 766b than in WHO-SRS. Significant differences between expression of P450 genes between F1 flies from 845b and established laboratory strains were shown. In general, P450 gene expression in 845b was 2-14-fold higher than in the reference strain (P < 0.0101) and 2-23-fold higher than in the multiresistant strain (P < 0.0110). The newly collected field strain 845b had significantly higher constitutive gene expression than both WHO-SRS and 791a. High constitutive expression of CYP4G2 in houseflies indicates a possible role of this gene in metabolic resistance. There is a strong indication that CYP6G4 is a major insecticide resistance gene involved in neonicotinoid resistance. © 2013 Society of Chemical Industry.

  10. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Role of cytochrome P450 IA2 in acetanilide 4-hydroxylation as determined with cDNA expression and monoclonal antibodies.

    PubMed

    Liu, G; Gelboin, H V; Myers, M J

    1991-02-01

    The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.

  12. Synergistic Effects of Mutations in Cytochrome P450cam Designed to Mimic CYP101D1

    PubMed Central

    Batabyal, Dipanwita; Li, Huiying; Poulos, Thomas L.

    2013-01-01

    A close ortholog to the cytochrome P450cam (CYP101A1) that catalyzes the same hydroxylation of camphor to 5-exo hydroxycamphor is CYP101D1. There are potentially important differences in and around the active site that could contribute to subtle functional differences. Adjacent to the heme iron ligand, Cys357, is Leu358 in P450cam while this residue is Ala in CYP101D1. Leu358 plays a role in binding of the P450cam redox partner, putidaredoxin (Pdx). On the opposite side of the heme about 15 – 20 Å away Asp251 in P450cam plays a critical role in a proton relay network required for O2 activation but forms strong ion pairs with Arg186 and Lys178. In CYP101D1 a Gly replaces Lys178. Thus, the local electrostatic environment and ion pairing is substantially different in CYP101D1. These sites have been systematically mutated in P450cam to the corresponding residues in CYP101D1 and the mutants analyzed by crystallography, kinetics, and UV/Vis spectroscopy. Individually the mutants have little effect on activity or structure but in combination there is a major drop in enzyme activity. This loss in activity is due the mutants being locked in the low-spin state which prevents electron transfer from the P450cam redox partner, Pdx. These studies illustrate the strong synergistic effects on well separated parts of the structure in controlling the equilibrium between the open (low-spin) and closed (high-spin) conformational states. PMID:23865948

  13. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.

    PubMed

    Zhang, Jing; Ji, Li; Liu, Weiping

    2015-08-17

    Predicting the biotransformation of xenobiotics is important in toxicology; however, as more compounds are synthesized than can be investigated experimentally, powerful computational methods are urgently needed to prescreen potentially useful candidates. Cytochrome P450 enzymes (P450s) are the major enzymes involved in xenobiotic metabolism, and many substances are bioactivated by P450s to form active compounds. An example is the conversion of olefinic substrates to epoxides, which are intermediates in the metabolic activation of many known or suspected carcinogens. We have calculated the activation energies for epoxidation by the active species of P450 enzymes (an iron-oxo porphyrin cation radical oxidant, compound I) for a diverse set of 36 olefinic substrates with state-of-the-art density functional theory (DFT) methods. Activation energies can be estimated by the computationally less demanding method of calculating the ionization potentials of the substrates, which provides a useful and simple predictive model based on the reaction mechanism; however, the preclassification of these diverse substrates into weakly polar and strongly polar groups is a prerequisite for the construction of specific predictive models with good predictability for P450 epoxidation. This approach has been supported by both internal and external validations. Furthermore, the relation between the activation energies for the regioselective epoxidation and hydroxylation reactions of P450s and experimental data has been investigated. The results show that the computational method used in this work, single-point energy calculations with the B3LYP functional including zero-point energy and solvation and dispersion corrections based on B3LYP-optimized geometries, performs well in reproducing the experimental trends of the epoxidation and hydroxylation reactions.

  14. DrugMetZ DB: an anthology of human drug metabolizing Chytochrome P450 enzymes.

    PubMed

    Antony, Tresa Remya Thomas; Nagarajan, Shanthi

    2006-11-14

    Understandings the basics of Cytochrome P450 (P450 or CYP) will help to discern drug metabolism. CYP, a super-family of heme-thiolate proteins, are found in almost all living organisms and is involved in the biotransformation of a diverse range of xenobiotics, therapeutic drugs and toxins. Here, we describe DrugMetZ DB, a database for CYP metabolizing drugs. The DB is implemented in MySQL, PHP and HTML. www.bicpu.edu.in/DrugMetZDB/

  15. Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes

    PubMed Central

    Slominski, Andrzej T.; Kim, Tae-Kang; Chen, Jianjun; Nguyen, Minh N.; Li, Wei; Yates, Charles R.; Sweatman, Trevor; Janjetovic, Zorica; Tuckey, Robert C.

    2012-01-01

    The discovery that 7-dehydrocholesterol (7DHC) is an excellent substrate for cytochrome P450scc (CYP11A1) opens up new possibilities in biochemistry. To elucidate its biological significance we tested ex-vivo P450scc-dependent metabolism of 7DHC by tissues expressing high and low levels of P450scc activity, placenta and epidermal keratinocytes, respectively. Incubation of human placenta fragments with 7DHC led to its conversion to 7-dehydropregnenolone (7DHP), which was inhibited by DL-aminoglutethimide, and stimulated by forskolin. Final proof for P450scc involvement was provided in isolated placental mitochondria where production of 7DHP was almost completely inhibited by 22R-hydroxycholesterol. 7DHC was metabolized by placental mitochondria at a faster rate than exogenous cholesterol, under both limiting and saturating conditions of substrate transport, consistent with higher catalytic efficiency (kcat/Km) with 7DHC as substrate than with cholesterol. Ex-vivo experiments showed five 5,7-dienal intermediates with MS spectra of dihydroxy and mono-hydroxy-7DHC and retention time corresponding to 20,22(OH)27DHC and 22(OH)7DHC. The chemical structure of 20,22(OH)27DHC was defined by NMR. 7DHP was further metabolized by either placental fragments or placental microsomes to 7-dehydroprogesterone as defined by UV, MS and NMR, and to an additional product with a 5,7-dienal structure and MS corresponding to hydroxy-7DHP. Furthermore, epidermal keratinocytes transformed either exogenous or endogenous 7DHC to 7DHP. 7DHP inhibited keratinocytes proliferation, while the product of its pholytic transformation, pregcalciferol, lost this capability. In conclusion, tissues expressing P450scc can metabolize 7DHC to biologically active 7DHP with 22(OH)7DHC and 20,22(OH)27DHC serving as intermediates, and with further metabolism to 7-dehydroprogesterone and (OH)7DHP. PMID:22877869

  16. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyanagi, Takashi

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form canmore » function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.« less

  17. Identification of novel cytochrome P450s in the Acari

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450s are the major phase I drug metabolising enzymes found in most organisms, including arthropods. Much of the work within the area of xenobiotic metabolism in this group of animals has centered around mosquito species, e.g. Anopheles gambiae and Culex quinquefasciatus, due to their rol...

  18. Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum.

    PubMed Central

    Kahn, R A; Bak, S; Svendsen, I; Halkier, B A; Møller, B L

    1997-01-01

    A cytochrome P450, designated P450ox, that catalyzes the conversion of (Z)-p-hydroxyphenylacetaldoxime (oxime) to p-hydroxymandelonitrile in the biosynthesis of the cyanogenic glucoside beta-D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile (dhurrin), has been isolated from microsomes prepared from etiolated seedlings of sorghum (Sorghum bicolor L. Moench). P450ox was solubilized using nonionic detergents, and isolated by ion-exchange chromatography, Triton X-114 phase partitioning, and dye-column chromatography. P450ox has an apparent molecular mass of 55 kD, its N-terminal amino acid sequence is -ATTATPQLLGGSVP, and it contains the internal sequence MDRLVADLDRAAA. Reconstitution of P450ox with NADPH-P450 oxidoreductase in micelles of L-alpha-dilauroyl phosphatidylcholine identified P450ox as a multifunctional P450 catalyzing dehydration of (Z)-oxime to p-hydroxyphenylaceto-nitrile (nitrile) and C-hydroxylation of p-hydroxyphenylacetonitrile to nitrile. P450ox is extremely labile compared with the P450s previously isolated from sorghum. When P450ox is reconstituted in the presence of a soluble uridine diphosphate glucose glucosyltransferase, oxime is converted to dhurrin. In vitro reconstitution of the entire dhurrin biosynthetic pathway from tyrosine was accomplished by the insertion of CYP79 (tyrosine N-hydroxylase), P450ox, and NADPH-P450 oxidoreductase in lipid micelles in the presence of uridine diphosphate glucose glucosyltransferase. The catalysis of the conversion of Tyr into nitrile by two multifunctional P450s explains why all intermediates in this pathway except (Z)-oxime are channeled. PMID:9414567

  19. Investigations on the human hepatic cytochrome P450 isozymes involved in the metabolism of 3,4-methylenedioxy-amphetamine (MDA) and benzodioxolyl-butanamine (BDB) enantiomers.

    PubMed

    Meyer, Markus R; Peters, Frank T; Maurer, Hans H

    2009-10-08

    3,4-Methylenedioxy-amphetamine (MDA) and benzodioxolyl-butanamine (BDB) are chiral designer drugs distributed on the illicit drug market and they are also N-dealkyl metabolites of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy, Adam), 3,4-methylenedioxyethylamphetamine (MDEA, Eve), and N-methyl-benzodioxolyl-butanamine (MBDB, Eden), respectively. MDA and BDB are mainly metabolized via demethylenation to the corresponding catecholamines. The aim of the present work was to elucidate the contribution of the relevant human P450s in the demethylenation of the MDA and BDB enantiomers. They were incubated using heterologously expressed human P450s and the corresponding metabolites dihydroxyamphetamine and 1,2-dihydroxy-4-[2-amino-butyl]benzene were determined. Highest contributions to the demethylenation as calculated from the enzyme kinetic data were obtained for CYP2D6 (MDA and BDB) and additionally CYP3A4 in the case of BDB at substrate concentrations corresponding to plasma concentrations of recreational users. A preferred transformation of the S-enantiomer could be observed for the CYP2D6- and CYP3A4-catalyzed reactions.

  20. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    PubMed

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  1. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea).

    PubMed

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-03-06

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  2. EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2

    EPA Science Inventory

    EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2. T M Ross1, B P Anderson1, G Zhao2, R A Pegram1 and J W Allis1. 1U.S. EPA, ORD, NHEERL, Research Triangle Park, NC; 2University of North Carolina, Chapel Hill, NC.
    Sponsor: H Barton

    Bromodichlorometh...

  3. Induction of cytochrome P450-associated monooxygenases in northern leopard frogs, Rana pipiens, by 3,3{prime},4,4{prime},5-pentachlorobiphenyl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Jung, R.E.; Karasov, W.H.

    1998-08-01

    In the past decade, biochemical and physiological characteristics such as hepatic detoxifying system. DNA adducts, thyroid malfunction, and acetylcholinesterase inhibition have been used extensively as biomarkers for contaminant exposure. Northern leopard frogs (Rana pipiens) were injected intraperitoneally either with a solution of polychlorinated biphenyl (PCB) 126 m corn oil at a concentration of 0.2, 0.7, 2.3, or 7.8 mg/kg body weight or with corn oil alone. Appropriate assay conditions with hepatic microsomes were determined for four cytochrome P450-associated monooxygenases: ethoxyresorufin-O-dealkylase (EROD), methoxy-ROD (MROD), benzyloxy-ROD (BROD), and pentoxy-ROD (PROD). One week after PCB administration, the specific activities of EROD, MROD, BROD,more » and PROD were not elevated at doses {le}0.7 mg/kg (p > 0.05) but were significantly increased at doses {ge}2.3 mg/kg compared to the control groups (p < 0.05). The increased activities of these four enzymes were 3 to 6.4 times those in the control groups. The increased activities were maintained for at least 4 weeks. Because of a lack of induction at low doses of PCB 126, which were still relatively high compared to currently known environmental concentration, the authors suspect that EROD, MROD, BROD, and PROD activities are not sensitive biomarkers for coplanar PCB exposure in leopard frogs.« less

  4. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  5. Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations.

    PubMed

    Rydzewski, J; Nowak, W

    2017-08-10

    Understanding the mechanisms of ligand binding to enzymes is of paramount importance for the design of new drugs. Here, we report on the use of a novel biased molecular dynamics (MD) methodology to study the mechanism of camphor binding to cytochrome P450cam. Microsecond-long MD simulations allowed us to observe reaction coordinates characterizing ligand diffusion from the active site of cytochrome P450cam to solvent via three egress routes. These atomistic simulations were used to estimate thermodynamic quantities along the reaction coordinates and indicate diverse binding configurations. The results suggest that the diffusion of camphor along the pathway near the substrate recognition site (SRS) is thermodynamically preferred. In addition, we show that the diffusion near the SRS is triggered by a transition from a heterogeneous collection of closed ligand-bound conformers to the basin comprising the open conformations of cytochrome P450cam. The conformational change accompanying this switch is characterized by the retraction of the F and G helices and the disorder of the B' helix. These results are corroborated by experimental studies and provide detailed insight into ligand binding and conformational behavior of the cytochrome family. The presented methodology is general and can be applied to other ligand-protein systems.

  6. The usage of a three-compartment model to investigate the metabolic differences between hepatic reductase null and wild-type mice.

    PubMed

    Hill, Lydia; Chaplain, Mark A J; Wolf, Roland; Kapelyukh, Yury

    2017-03-01

    The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. , 13480-13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  7. Cytochrome P450 drug interactions with statin therapy.

    PubMed

    Goh, Ivanna Xin Wei; How, Choon How; Tavintharan, Subramaniam

    2013-03-01

    Statins are commonly used in the treatment of hyperlipidaemia. Although the benefits of statins are well-documented, they have the potential to cause myopathy and rhabdomyolysis due to the complex interactions of drugs, comorbidities and genetics. The cytochrome P450 family consists of major enzymes involved in drug metabolism and bioactivation. This article aims to highlight drug interactions involving statins, as well as provide updated recommendations and approaches regarding the safe and appropriate use of statins in the primary care setting.

  8. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast.

    PubMed

    Banerjee, Subhrajit; Kane, Patricia M

    2017-09-15

    Luminal pH and phosphoinositide content are fundamental features of organelle identity. Vacuolar H + -ATPases (V-ATPases) drive organelle acidification in all eukaryotes, and membrane-bound a-subunit isoforms of the V-ATPase are implicated in organelle-specific targeting and regulation. Earlier work demonstrated that the endolysosomal lipid PI(3,5)P 2 activates V-ATPases containing the vacuolar a-subunit isoform in Saccharomyces cerevisiae Here we demonstrate that PI(4)P, the predominant Golgi phosphatidylinositol (PI) species, directly interacts with the cytosolic amino terminal (NT) domain of the yeast Golgi V-ATPase a-isoform Stv1. Lysine-84 of Stv1NT is essential for interaction with PI(4)P in vitro and in vivo, and interaction with PI(4)P is required for efficient localization of Stv1-containing V-ATPases. The cytosolic NT domain of the human V-ATPase a2 isoform specifically interacts with PI(4)P in vitro, consistent with its Golgi localization and function. We propose that NT domains of V o a-subunit isoforms interact specifically with PI lipids in their organelles of residence. These interactions can transmit organelle-specific targeting or regulation information to V-ATPases. © 2017 Banerjee and Kane. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Hepatic p38α regulates gluconeogenesis by suppressing AMPK.

    PubMed

    Jing, Yanyan; Liu, Wei; Cao, Hongchao; Zhang, Duo; Yao, Xuan; Zhang, Shengjie; Xia, Hongfeng; Li, Dan; Wang, Yu-cheng; Yan, Jun; Hui, Lijian; Ying, Hao

    2015-06-01

    It is proposed that p38 is involved in gluconeogenesis, however, the genetic evidence is lacking and precise mechanisms remain poorly understood. We sought to delineate the role of hepatic p38α in gluconeogenesis during fasting by applying a loss-of-function genetic approach. We examined fasting glucose levels, performed pyruvate tolerance test, imaged G6Pase promoter activity, as well as determined the expression of gluconeogenic genes in mice with a targeted deletion of p38α in liver. Results were confirmed both in vivo and in vitro by using an adenoviral dominant-negative form of p38α (p38α-AF) and the constitutively active mitogen-activated protein kinase 6, respectively. Adenoviral dominant-negative form of AMP-activated protein kinase α (DN-AMPKα) was employed to test our proposed model. Mice lacking hepatic p38α exhibited reduced fasting glucose level and impaired gluconeogenesis. Interestingly, hepatic deficiency of p38α did not result in an alteration in CREB phosphorylation, but led to an increase in AMPKα phosphorylation. Adenoviral DN-AMPKα could abolish the effect of p38α-AF on gluconeogenesis. Knockdown of up-steam transforming growth factor β-activated kinase 1 decreased the AMPKα phosphorylation induced by p38α-AF, suggesting a negative feedback loop. Consistently, inverse correlations between p38 and AMPKα phosphorylation were observed during fasting and in diabetic mouse models. Importantly, adenoviral p38α-AF treatment ameliorated hyperglycemia in diabetic mice. Our study provides evidence that hepatic p38α functions as a negative regulator of AMPK signaling in maintaining gluconeogenesis, dysregulation of this regulatory network contributes to unrestrained gluconeogenesis in diabetes, and hepatic p38α could be a drug target for hyperglycemia. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope.

    PubMed

    Porter, Joanne L; Sabatini, Selina; Manning, Jack; Tavanti, Michele; Galman, James L; Turner, Nicholas J; Flitsch, Sabine L

    2018-06-01

    Cytochrome P450 monooxygenases are able to catalyse a range of synthetically challenging reactions ranging from hydroxylation and demethylation to sulfoxidation and epoxidation. As such they have great potential for biocatalytic applications but are underutilised due to often-poor expression, stability and solubility in recombinant bacterial hosts. The use of self-sufficient P450 s with fused haem and reductase domains has already contributed heavily to improving catalytic efficiency and simplifying an otherwise more complex multi-component system of P450 and redox partners. Herein, we present a new addition to the class VII family with the cloning, sequencing and characterisation of the self-sufficient CYP116B62 Hal1 from Halomonas sp. NCIMB 172, the genome of which has not yet been sequenced. Hal1 exhibits high levels of expression in a recombinant E. coli host and can be utilised from cell lysate or used in purified form. Hal1 favours NADPH as electron donor and displays a diverse range of activities including hydroxylation, demethylation and sulfoxidation. These properties make Hal1 suitable for future biocatalytic applications or as a template for optimisation through engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, James R., E-mail: rreed@lsuhsc.edu; Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu; Lomnicki, Slawo M., E-mail: slomni1@lsu.edu

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductasemore » and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450.

  12. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar.

    PubMed

    Jiang, Yousheng; Husain, Mansourah; Qi, Zhitao; Bird, Steve; Wang, Tiehui

    2015-08-01

    Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reversible phospho-Smad3 signalling between tumour suppression and fibrocarcinogenesis in chronic hepatitis B infection.

    PubMed

    Deng, Y-R; Yoshida, K; Jin, Q L; Murata, M; Yamaguchi, T; Tsuneyama, K; Moritoki, Y; Niu, J Q; Matsuzaki, K; Lian, Z-X

    2014-04-01

    Transforming growth factor (TGF)-β, type I receptor (TβRI) and c-Jun N-terminal kinases (JNK) phosphorylate Smad3 differentially to create 2 isoforms phosphorylated (p) at the COOH-terminus (C) or at the linker region (L) and regulate hepatocytic fibrocarcinogenesis. This study aimed to compare the differences between how hepatitis B virus (HBV) infection affected hepatocytic Smad3 phosphorylated isoforms before and after anti-viral therapy. To clarify the relationship between Smad3 phosphorylation and liver disease progression, we studied 10 random patients in each stage of HBV-related fibrotic liver disease (F1-4) and also 10 patients with HBV-associated HCC. To examine changes in phosphorylated Smad3 signalling before and after anti-HBV therapies, we chose 27 patients with chronic hepatitis B who underwent baseline and follow-up biopsies at 52 weeks from the start of nucleoside analogue treatments (Lamivudine 100 mg daily or Telbivudine 600 mg daily). Fibrosis stage, inflammatory activity and phosphorylated Smad3 positivity in the paired biopsy samples were compared. Hepatocytic pSmad3C signalling shifted to fibrocarcinogenic pSmad3L signalling as the livers progressed from chronic hepatitis B infection to HCC. After nucleoside analogue treatment, serum alanine aminotransferase (ALT) and HBV-DNA levels in 27 patients with HBV-related chronic liver diseases were decreased dramatically. Decrease in HBV-DNA restored pSmad3C signalling in hepatocytes, while eliminating prior fibrocarcinogenic pSmad3L signalling. Oral nucleoside analogue therapies can suppress fibrosis and reduce HCC incidence by successfully reversing phosphorylated Smad3 signalling; even liver disease progressed to cirrhosis in chronic hepatitis B patients. © 2013 British Society for Immunology.

  14. Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: radical processes involving iron porphyrins.

    PubMed Central

    Brault, D

    1985-01-01

    Haloalkane toxicity originates from attack on biological targets by reactive intermediates derived from haloalkane metabolism by a hemoprotein, cytochrome P-450. Carbon-centered radicals and their peroxyl derivatives are most likely involved. The reactions of iron porphyrin--a model for cytochrome P-450--with various carbon-centered and peroxyl radicals generated by pulse radiolysis are examined. Competition between iron porphyrin and unsaturated fatty acids for attack by peroxyl radicals is pointed out. These kinetic data are used to derive a model for toxicity of haloalkanes with particular attention to carbon tetrachloride and halothane. The importance of local oxygen concentration and structural arrangement of fatty acids around cytochrome P-450 is emphasized. PMID:3007100

  15. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities.

    PubMed

    Li, Xue-Qing; Andersson, Tommy B; Ahlström, Marie; Weidolf, Lars

    2004-08-01

    The human clearance of proton pump inhibitors (PPIs) of the substituted benzimidazole class is conducted primarily by the hepatic cytochrome P450 (P450) system. To compare the potency and specificity of the currently used PPIs (i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole) as inhibitors of four cytochrome P450 enzymes (CYP2C9, 2C19, 2D6, and 3A4), we performed in vitro studies using human liver microsomal preparations and recombinant CYP2C19. Sample analysis was done using selected reaction monitoring liquid chromatography/tandem mass spectometry. With several systems for CYP2C19 activity (two marker reactions, S-mephenytoin 4'-hydroxylation and R-omeprazole 5-hydroxylation, tested in either human liver microsomes or recombinant CYP2C19), the five PPIs showed competitive inhibition of CYP2C19 activity with K(i) of 0.4 to 1.5 microM for lansoprazole, 2 to 6 microM for omeprazole, approximately 8 microM for esomeprazole, 14 to 69 microM for pantoprazole, and 17 to 21 microM for rabeprazole. Pantoprazole was a competitive inhibitor of both CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP3A4-catalyzed midazolam 1'-hydroxylation (K(i) of 6 and 22 microM, respectively), which were at least 2 times more potent than the other PPIs. All PPIs were poor inhibitors of CYP2D6-mediated bufuralol 1'-hydroxylation with IC(50) > 200 microM. The inhibitory potency of a nonenzymatically formed product of rabeprazole, rabeprazole thioether, was also investigated and showed potent, competitive inhibition with K(i) values of 6 microM for CYP2C9, 2 to 8 microM for CYP2C19, 12 microM for CYP2D6, and 15 microM for CYP3A4. The inhibitory potency of R-omeprazole on the four studied P450 enzymes was also studied and showed higher inhibitory potency than its S-isomer on CYP2C9 and 2C19 activities. Our data suggest that, although the inhibitory profiles of the five studied PPIs were similar, lansoprazole and pantoprazole are the most potent in vitro inhibitors

  16. Seasonal changes in the activity of cytochrome P450(C17) from the testis of Bufo arenarum.

    PubMed

    Solari, J J F; Pozzi, A G; Ceballos, N R

    2002-12-01

    In Bufo arenarum, the biosynthesis of testosterone and 5alpha-dihydrotestosterone takes place through a complete 5-ene pathway, 5-androsten-3beta,17beta-diol being the immediate precursor of testosterone. Besides androgens, testes are able to synthesise 5alpha-pregnan-3,20-dione and several 3alpha and 20alpha reduced derivatives. During the breeding season, steroid biosynthesis turns from androgen to C21-steroid production. As a consequence, the cytochrome P450 17-hydroxylase, C17,20-lyase (CypP450(c17)) could be a key enzyme in that metabolic shift. The present study demonstrates that in testes of B. arenarum, CypP450(c17) co-localises with glucose-6-phosphatase in the microsomal fraction. CypP450(c17) possesses more affinity for pregnenolone than for progesterone in both non-reproductive (Km = 43.76 +/- 4.63 nM and 2,170 +/- 630 nM, respectively) and reproductive (Km = 37.46 +/- 4.19 nM and 3,060 +/- 190 nM, respectively) seasons. These results could explain the predominance of the 5-ene pathway for testosterone biosynthesis. Toad CypP450(c17) activity is higher in the non-reproductive period than the reproductive period, suggesting that this enzyme is an important factor in toad steroidogenic changes. Animals in reproductive conditions showed a significant reduction in circulating androgens. This is in agreement with the decrease in Vmax of cytochrome P450 17-hydroxylase activity, enhancing the physiological relevance of these in vitro results.

  17. The use of electrochemistry for the synthesis of 17 alpha-hydroxyprogesterone by a fusion protein containing P450c17.

    PubMed

    Estabrook, R W; Shet, M S; Faulkner, K; Fisher, C W

    1996-11-01

    A method has been developed for the commercial application of the unique oxygen chemistry catalyzed by various cytochrome P450s. This is illustrated here for the synthesis of hydroxylated steroids. This method requires the preparation of large amounts of enzymatically functional P450 proteins that can serve as catalysts and a technique for providing electrons at an economically acceptable cost. To generate large amounts of enzymatically active recombinant P450s we have engineered the cDNAs for various P450s, including bovine adrenal P450c17, by linking them to a modified cDNA for rat NADPH-P450 reductase and placing them in the plasmid pCWori+. Transformation of E. coli results in the high level expression of an enzymatically active protein that can be easily purified by affinity chromatography. Incubation of the purified enzyme with steroid in a reaction vessel containing a platinum electrode and a Ag/AgCl electrode couple poised at -650 mV, together with the electromotively active redox mediator, cobalt sepulchrate, results in the 17 alpha-hydroxylation of progesterone at rates as high as 25 nmoles of progesterone hydroxylated/min/nmole of P450. Thus, high concentrations of hydroxylated steroids can be produced with incubation conditions of hours duration without the use of costly NADPH. Similar experiments have been carried out for the generation of the 6 beta-hydroxylation product of testosterone (using a fusion protein containing human P450 3A4). It is apparent that this method is applicable to many other P450 catalyzed reactions for the synthesis of large amounts of hydroxylated steroid metabolites. The electrochemical system is also applicable to drug discovery studies for the characterization of drug metabolites.

  18. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity in liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, L.S.L.; Acebo, A.L.; Alworth, W.L.

    The preparation of 1-ethynylpyrene (EP) by incubation of EP with liver microsomes in the presence of NADPH yields fluorescent products briefly. Addition of microsomes restores the original rate. The metabolism of EP is initially more rapid in microsomes from 5,6-benzoflavone- (BF) pretreated rats than in those from phenobarbital (PB) pretreated rats or controls. Ep inhibits the hydroxylation of benzo(a)pyrene (BP) by liver microsomes. Ep more effectively inhibits the oxidation of BP in liver microsomes from BF rats than from PB rats or from controls. The inhibition of BP hydroxylation activity due to EP is dependent upon NADPH and is apparentlymore » irreversible. Kinetic analyses show that the inhibition of BP hydroxylation is due to loss of the activity by a process that is first order in EP and that reaches a limiting value at infinite EP concentrations. A self-catalyzed inhibition of the cytochrome P-450 dependent BP hydroxylation may occur in the presence of EP. Incubation with EP under conditions that result in loss of BP hydroxylase activity in microsomes from BF rats and 66% of the activity from PB rats causes the loss of 6 and 12% of the cytochrome P-450, respectively. Thus the loss of P-450 content is an insensitive measure of the effect of this inhibitor upon this cytochrome P-450 dependent enzyme activity. Selectivity of the loss of P-450 due to the incubation of the different microsomal preparations with EP is observed to be different than the selectivity for loss of BP hydroxylase activity. It is proposed that the inhibition of cytochrome P-450 dependent enzymes by alkynes need not involve heme alkylation and a resulting loss of P-450 content. In vivo EP does not cause a significant change in the cytochrome P-450 content in the microsomes isolated, or result in the change in BP hydroxylation.« less

  19. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    PubMed Central

    Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre

    2015-01-01

    Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205

  20. Different structure of the complexes of two cytochrome P-450 isozymes with acetanilide by 1H-NMR relaxation and spectrophotometry.

    PubMed

    Woldman YaYu; Weiner, L M; Lyakhovich, V V

    1993-05-28

    The functional and spectral characteristics of the interaction of acetanilide with phenobarbital- and methylcholanthrene- induced rat liver microsomes, as well as with corresponding major isozymes (cytochromes P-450b and P-450c) have been compared. The magnitude of the reverse 1st type binding spectra proved to be negatively correlated with the acetanilide oxidation on isozymes under study. The data on paramagnetic relaxation of acetanilide protons in the presence of P-450 have shown the structure of the enzyme-substrate complex to be different for two isozymes, acetanilide molecule being closer to Fe ion in the active site in the case of P-450c, which is active towards acetanilide oxidation. For the P-450c-acetanilide complex the group oxidized (phenyl) is the closest to Fe ion.

  1. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides.

    PubMed

    Giraudo, M; Hilliou, F; Fricaux, T; Audant, P; Feyereisen, R; Le Goff, G

    2015-02-01

    Spodoptera frugiperda is a polyphagous lepidopteran pest that encounters a wide range of toxic plant metabolites in its diet. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYP). Forty-two sequences coding for P450s were identified and most of the transcripts were found to be expressed in the midgut, Malpighian tubules and fat body of S. frugiperda larvae. Relatively few P450s were expressed in the established cell line Sf9. In order to gain information on how these genes respond to different chemical compounds, larvae and Sf9 cells were exposed to plant secondary metabolites (indole, indole-3-carbinol, quercetin, 2-tridecanone and xanthotoxin), insecticides (deltamethrin, fipronil, methoprene, methoxyfenozide) or model inducers (clofibrate and phenobarbital). Several genes were induced by plant chemicals such as P450s from the 6B, 321A and 9A subfamilies. Only a few genes responded to insecticides, belonging principally to the CYP9A family. There was little overlap between the response in vivo measured in the midgut and the response in vitro in Sf9 cells. In addition, regulatory elements were detected in the promoter region of these genes. In conclusion, several P450s were identified that could potentially be involved in the adaptation of S. frugiperda to its chemical environment. © 2014 The Royal Entomological Society.

  3. Identification of in vitro cytochrome P450 modulators to detect induction by prototype inducers in the mallard duckling (Anas platyrhynchos

    USGS Publications Warehouse

    Renauld, A.E.; Melancon, M.J.; Sordillo, L.M.

    1999-01-01

    Seven modulators of mammalian monooxygenase activity were screened for their ability to selectively stimulate or inhibit in vitro monooxygenase activities of hepatic microsomes from mallard ducklings treated with phenobarbital, β-naphthoflavone, 3,3′,4,4′,5-pentachlorobiphenyl or vehicle. Microsomes were assayed fluorometrically for four monooxygenases: benzyloxy-, ethoxy-, methoxy-, and pentoxyresorufin-O-dealkylase, in combination with each of the seven modulators. Four combinations: α-naphthoflavone and 2-methylbenzimidazole with benzyloxyresorufin, and Proadifen with methoxy- and ethoxyresorufin, respectively, were evaluated further. β-Naphthoflavone-treated groups were clearly distinguished from the corn oil vehicle control group by all of the assays and by the effects of the modulators in three of the four assay/modulator combinations. Enzyme activities of the phenobarbital and saline groups were statistically similar (P≥0.05) when assayed without modulator added, but each assay/modulator combination distinguished between these groups. The PCB-treated group was distinguished from the corn oil vehicle control group only for BROD activity, with or without the presence of modulator. Graphing of per cent modulation of BROD activity versus initial BROD activity provided the clearest distinction between all of the study groups. Identification of these selective in vitro modulators may improve detection and measurement of low level cytochrome P450 induction in avian species. Also, both the monooxygenase activities induced and the impacts of the modulators indicated differences between mammalian and avian cytochromes P450.

  4. Contrasting influence of NADPH and a NADPH-regenerating system on the metabolism of carbonyl-containing compounds in hepatic microsomes.

    PubMed

    Mazur, Christopher S; Kenneke, John F; Goldsmith, Michael-Rock; Brown, Cather

    2009-09-01

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast to oxidative P450 transformations, which occur on the periphery of a microsome vesicle, intraluminal carbonyl reduction depends on transport of cofactors across the endoplasmic reticulum (ER) membrane into the lumen. Glucose 6-phosphate, a natural cofactor and component of the NRS matrix, is readily transported across the ER membrane and facilitates intraluminal NADPH production, whereas direct addition of NADPH has limited access to the lumen. In this study, we compared the effects of direct addition of NADPH and use of an NRS on the P450-mediated transformation of propiconazole and 11 beta-hydroxysteroid dehydrogenase type 1 (HSD1) carbonyl reduction of cortisone and the xenobiotic triadimefon in hepatic microsomes. Our results demonstrate that the use of NADPH rather than NRS can underestimate the kinetic rates of intraluminal carbonyl reduction, whereas P450-mediated transformations were unaffected. Therefore, in vitro depletion rates measured for a carbonyl-containing xenobiotic susceptible to both intraluminal carbonyl reduction and P450 processes may not be properly assessed with direct addition of NADPH. In addition, we used in silico predictions as follows: 1) to show that 11 beta-HSD1 carbonyl reduction was energetically more favorable than oxidative P450 transformation; and 2) to calculate chemical binding score and the distance between the carbonyl group and the hydride to be transferred by NADPH to identify other 11 beta-HSD1 substrates for which reaction kinetics may be underestimated by direct addition of NADPH.

  5. Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes.

    PubMed

    Barton, H A; Tang, J; Sey, Y M; Stanko, J P; Murrell, R N; Rockett, J C; Dix, D J

    2006-09-01

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil was metabolized more rapidly than triadimefon, which is consistent with metabolism of the n-butyl side-chain in the former and the t-butyl group in the latter compound. Human and rat CYP2C and CYP3A enzymes were the most active. Metabolism was similar in microsomes prepared from livers of control and low-dose rats. High-dose (115 mg kg-1 day-1 of triadimefon or 150 mg kg-1 day-1 of myclobutanil) rats showed increased liver weight, induction of total CYP, and increased metabolism of the two triazoles, though the apparent Km appeared unchanged relative to the control. These data identify CYP enzymes important for the metabolization of these two triazoles. Estimated hepatic clearances suggest that CYP induction may have limited impact in vivo.

  6. Expression patterns of bark beetle cytochromes P450 during host colonization: Likely physiological functions and potential targets for pest management

    Treesearch

    Dezene P. W. Huber; Melissa Erickson; Christian Leutenegger; Joerg Bohlmann; Steven J. Seybold

    2007-01-01

    Cytochromes P450 family genes (P450s) are found in a diverse array of organisms ranging from bacteria to mammals to plants to arthropods. Although there are exceptions to this rule, organisms generally contain a fairly large number of P450 genes and pseudogenes in their genomes. For instance, among arthropods whose genomes are well characterized, the mosquito,

  7. Preparation of trout liver microsomes for iron speciation in P-450 enzymes by AE-FPLC with ICP-(ORS)MS detection.

    PubMed

    Rodríguez-Cea, Andrés; de la Campa, María Rosario Fernández; Sanz-Medel, Alfredo

    2005-01-01

    Cytochromes P-450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiological and xenobiotic compounds in eukaryotes and prokaryotes. The multiplicity of this group of enzymes has been widely studied by chromatographic techniques, mainly high-performance liquid chromatography (HPLC). Because these enzymes are membrane-bound proteins, sample preparation for chromatographic separation of P-450 enzymes requires a solubilization step. The sample-preparation procedures are critical, because detergents affect not only the efficiency of protein solubilization but also their further chromatographic resolution. Trout liver microsomes have been taken here as a model sample to investigate iron speciation in cytochrome P-450. Trouts were treated intraperitoneally with beta-naphthoflavone, a potent inducer of some P-450 enzymes, and a microsomal suspension containing 7.4+/-0.1 nmol mL(-1) P-450 enzymes was obtained by ultracentrifugation. Lubrol PX was selected as detergent for solubilization, resulting in about 90% solubilization recovery. The solubilized cytochromes P-450 were further separated by AE-FPLC, with UV detection, or coupled to ICP-MS with an octapole reaction system, ICP-(ORS)MS (monitoring Fe signals at masses 54, 56, and 57). A sampling procedure and chromatographic conditions are developed and were successfully applied to iron speciation in trout liver P-450 enzymes. ICP-(ORS)MS detection of P-450 enzymes is Fe-specific and so will give accurate information on the prosthetic group of the protein, which can constitute an advantageous alternative to classical methods for detection of these hemoproteins.

  8. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation.more » The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.« less

  9. Binding of Diverse Environmental Chemicals with Human Cytochromes P450 2A13, 2A6, and 1B1 and Enzyme Inhibition

    PubMed Central

    Shimada, Tsutomu; Kim, Donghak; Murayama, Norie; Tanaka, Katsuhiro; Takenaka, Shigeo; Nagy, Leslie D.; Folkman, Lindsay M.; Foroozesh, Maryam K.; Komori, Masayuki; Yamazaki, Hiroshi; Guengerich, F. Peter

    2014-01-01

    A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e. the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2’,5’-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2’-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2’-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family

  10. Why there is no cookbook approach to palliative care: implications of the P450 enzyme system.

    PubMed

    Kuebler, Kim K; Varga, James; Mihelic, Ronald A

    2003-01-01

    A plethora of literature describes the impact of the P450 enzyme system, but this information is limited regarding its relevancy to nursing practice. However, oncology nurses providing palliative symptom management must have a working knowledge of the P450 enzyme system to recognize the variability that exists among individual medication reactions or why a "cookbook approach" to symptom management is not always effective and appropriate. This article describes the variations associated with medication metabolism with reference to ethnic differences. Having a basic understanding of the P450 enzyme system and, more specifically, the CYP2D6 influence on the metabolism of common medications used in palliative symptom management can help to prevent medication toxicity or underdosing, which interferes with patients' quality of life.

  11. Metabolism of 2-chloro-1,1-difluoroethene to glyoxylic and glycolic acid in rat hepatic microsomes.

    PubMed

    Baker, M T; Vasquez, M T; Bates, J N; Chiang, C K

    1990-01-01

    The complete metabolic fate of the volatile anesthetic halothane is unclear since 2-chloro-1,1-diflurorethene (CDE), a reductive halothane metabolite, is known to readily release inorganic fluoride upon oxidation by cytochrome P-450. This study sought to clarify the metabolism of CDE by determining its metabolites and the roles of induce cytochrome P-450 forms in its metabolism. Upon incubation of [14C]CDE with rat hepatic microsomes, two major radioactive products were found which accounted for greater than 94% of the total metabolites. These compounds were determined to be the nonhalogenated compounds, glyoxylic and glycolic acids, which were formed in a ratio of approximately 1 to 2 of glyoxylic to glycolic acid. No other radioactive metabolites could be detected. Following incubation of CDE with hepatic microsomes isolated from rats treated with cytochrome P-450 inducers, measurement of fluoride release showed that phenobarbital induced CDE metabolism to the greatest degree at high CDE levels, isoniazid was the most effective inducer at low CDE concentrations, and beta-naphthoflavone was ineffective as an inducer. These results suggest that CDE biotransformation primarily involves the generation of an epoxide intermediate, which undergoes mechanisms of decay leading to total dehalogenation of the molecule, and that this metabolism is preferentially carried out by the phenobarbital- and ethanol-inducible forms of cytochrome P-450.

  12. Novel P450nor Gene Detection Assay Used To Characterize the Prevalence and Diversity of Soil Fungal Denitrifiers.

    PubMed

    Novinscak, Amy; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Chantigny, Martin H; Filion, Martin

    2016-08-01

    Denitrifying fungi produce nitrous oxide (N2O), a potent greenhouse gas, as they generally lack the ability to convert N2O to dinitrogen. Contrary to the case for bacterial denitrifiers, the prevalence and diversity of denitrifying fungi found in the environment are not well characterized. In this study, denitrifying fungi were isolated from various soil ecosystems, and novel PCR primers targeting the P450nor gene, encoding the enzyme responsible for the conversion of nitric oxide to N2O, were developed, validated, and used to study the diversity of cultivable fungal denitrifiers. This PCR assay was also used to detect P450nor genes directly from environmental soil samples. Fungal denitrification capabilities were further validated using an N2O gas detection assay and a PCR assay targeting the nirK gene. A collection of 492 facultative anaerobic fungi was isolated from 15 soil ecosystems and taxonomically identified by sequencing the internal transcribed spacer sequence. Twenty-seven fungal denitrifiers belonging to 10 genera had the P450nor and the nirK genes and produced N2O from nitrite. N2O production is reported in strains not commonly known as denitrifiers, such as Byssochlamys nivea, Volutella ciliata, Chloridium spp., and Trichocladium spp. The prevalence of fungal denitrifiers did not follow a soil ecosystem distribution; however, a higher diversity was observed in compost and agricultural soils. The phylogenetic trees constructed using partial P450nor and nirK gene sequences revealed that both genes clustered taxonomically closely related strains together. A PCR assay targeting the P450nor gene involved in fungal denitrification was developed and validated. The newly developed P450nor primers were used on fungal DNA extracted from a collection of fungi isolated from various soil environments and on DNA directly extracted from soil. The results indicated that approximatively 25% of all isolated fungi possessed this gene and were able to convert nitrite to

  13. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involvesmore » release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP

  14. Simultaneous Detection of Human C-Terminal p53 Isoforms by Single Template Molecularly Imprinted Polymers (MIPs) Coupled with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Targeted Proteomics.

    PubMed

    Jiang, Wenting; Liu, Liang; Chen, Yun

    2018-03-06

    Abnormal expression of C-terminal p53 isoforms α, β, and γ can cause the development of cancers including breast cancer. To date, much evidence has demonstrated that these isoforms can differentially regulate target genes and modulate their expression. Thus, quantification of individual isoforms may help to link clinical outcome to p53 status and to improve cancer patient treatment. However, there are few studies on accurate determination of p53 isoforms, probably due to sequence homology of these isoforms and also their low abundance. In this study, a targeted proteomics assay combining molecularly imprinted polymers (MIPs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous quantification of C-terminal p53 isoforms. Isoform-specific surrogate peptides (i.e., KPLDGEYFTLQIR (peptide-α) for isoform α, KPLDGEYFTLQDQTSFQK (peptide-β) for isoform β, and KPLDGEYFTLQMLLDLR (peptide-γ) for isoform γ) were first selected and used in both MIPs enrichment and mass spectrometric detection. The common sequence KPLDGEYFTLQ of these three surrogate peptides was used as single template in MIPs. In addition to optimization of imprinting conditions and characterization of the prepared MIPs, binding affinity and cross-reactivity of the MIPs for each surrogate peptide were also evaluated. As a result, a LOQ of 5 nM was achieved, which was >15-fold more sensitive than that without MIPs. Finally, the assay was validated and applied to simultaneous quantitative analysis of C-terminal p53 isoforms α, β, and γ in several human breast cell lines (i.e., MCF-10A normal cells, MCF-7 and MDA-MB-231 cancer cells, and drug-resistant MCF-7/ADR cancer cells). This study is among the first to employ single template MIPs and cross-reactivity phenomenon to select isoform-specific surrogate peptides and enable simultaneous quantification of protein isoforms in LC-MS/MS-based targeted proteomics.

  15. Building Structure Feature-based Models for Predicting Isoform-specific Human Cytochrome P-450 (hCYP 3A4, 2D6 and 2C9) Inhibition Assay Results in ToxCast

    EPA Science Inventory

    EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...

  16. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    EPA Science Inventory

    The human cytochrome P450 (CYP450) enzyme family is involved in the biotransformation of many environmental chemicals. As part of the U.S. Tox21 effort, we profiled the CYP450 activity of ~2800 chemicals predominantly of environmental concern against CYP1A2, CYP2C19, CYP2C9, CYP2...

  17. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  18. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  19. Ancestry-Adjusted Vitamin D Metabolite Concentrations in Association With Cytochrome P450 3A Polymorphisms.

    PubMed

    Wilson, Robin Taylor; Masters, Loren D; Barnholtz-Sloan, Jill S; Salzberg, Anna C; Hartman, Terryl J

    2018-04-01

    We investigated the association between genetic polymorphisms in cytochrome P450 (CYP2R1, CYP24A1, and the CYP3A family) with nonsummer plasma concentrations of vitamin D metabolites (25-hydroxyvitamin D3 (25(OH)D3) and proportion 24,25-dihydroxyvitamin D3 (24,25(OH)2D3)) among healthy individuals of sub-Saharan African and European ancestry, matched on age (within 5 years; n = 188 in each ancestral group), in central suburban Pennsylvania (2006-2009). Vitamin D metabolites were measured using high-performance liquid chromatography with tandem mass spectrometry. Paired multiple regression and adjusted least-squares mean analyses were used to test for associations between genotype and log-transformed metabolite concentrations, adjusted for age, sex, proportion of West-African genetic ancestry, body mass index, oral contraceptive (OC) use, tanning bed use, vitamin D intake, days from summer solstice, time of day of blood draw, and isoforms of the vitamin D receptor (VDR) and vitamin D binding protein. Polymorphisms in CYP2R1, CYP3A43, vitamin D binding protein, and genetic ancestry proportion remained associated with plasma 25(OH)D3 after adjustment. Only CYP3A43 and VDR polymorphisms were associated with proportion 24,25(OH)2D3. Magnitudes of association with 25(OH)D3 were similar for CYP3A43, tanning bed use, and OC use. Significant least-squares mean interactions (CYP2R1/OC use (P = 0.030) and CYP3A43/VDR (P = 0.013)) were identified. A CYP3A43 genotype, previously implicated in cancer, is strongly associated with biomarkers of vitamin D metabolism. Interactive associations should be further investigated.

  20. Human Liver Cytochrome P450 3A4 Ubiquitination

    PubMed Central

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J.; Liu, Yi; Burlingame, A. L.; Correia, Maria Almira

    2015-01-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  1. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    PubMed

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium.

    PubMed

    Subramanian, Venkataramanan; Yadav, Jagjit S

    2009-09-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (approximately 75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant.

  3. Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus Phanerochaete chrysosporium▿

    PubMed Central

    Subramanian, Venkataramanan; Yadav, Jagjit S.

    2009-01-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (∼75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant. PMID:19542331

  4. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli

    PubMed Central

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; Ajikumar, Parayil Kumaran

    2016-01-01

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature’s favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities. PMID:26951651

  5. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli.

    PubMed

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; De Mey, Marjan; Ajikumar, Parayil Kumaran

    2016-03-22

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.

  6. Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology.

    PubMed

    Jennings, Brett L; Sahan-Firat, Seyhan; Estes, Anne M; Das, Kanak; Farjana, Nasreen; Fang, Xiao R; Gonzalez, Frank J; Malik, Kafait U

    2010-10-01

    Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study showing that angiotensin II-induced vascular smooth muscle cell growth depends on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg per minute) or mice (1000 μg/kg per day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased vascular reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor 2,3',4,5'-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1(-/-) mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3',4,5'-tetramethoxystilbene, which prevents both cytochrome P450 1B1-dependent and -independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases.

  7. CYTOCHROME P450 1B1 CONTRIBUTES TO ANGIOTENSIN II-INDUCED HYPERTENSION AND ASSOCIATED PATHOPHYSIOLOGY

    PubMed Central

    Jennings, Brett L.; Sahan-Firat, Seyhan; Estes, Anne M.; Das, Kanak; Farjana, Nasreen; Fang, Xiao R.; Gonzalez, Frank J.; Malik, Kafait U.

    2010-01-01

    Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study that angiotensin II-induced vascular smooth muscle cell growth is dependent on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg/min) or mice (1000 μg/kg/day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor, 2,3′,4,5′-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1-/- mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3′,4,5′-tetramethoxystilbene which prevents both cytochrome P450 1B1-dependent and independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases. PMID:20805442

  8. Point mutation of Arg440 to his in cytochrome P450c17 causes severe 17{alpha}-hydroxylase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fardella, C.E.; Hum, D.W.; Miller, W.L.

    Genetic disorders in the gene encoding P450c17 cause 17{alpha}-hydroxylase deficiency. The consequent defects in the synthesis of cortisol and sex steroids cause sexual infantilism and a female phenotype in both genetic sexes as well as mineralorcorticoid excess and hypertension. A 15-yr-old patient from Germany was seen for absent pubertal development and mild hypertension with hypokalemia, high concentrations of 17-deoxysteroids, and hypergonadotropic hypogonadism. Analysis of her P450c17 gene by polymerase chain reaction amplification and direct sequencing showed mutation of codon 440 from CGC (Arg) to CAC (His). Expression of a vector encoding this mutated form of P450c17 in transfected nonsteroidogenic COS-1more » cells showed that the mutant P450c17 protein was produced, but it lacked both 17{alpha}-hydroxylase and 17,20-lyase activities. To date, 15 different P450c17 mutations have been described in 23 patients with 17{alpha}-hydroxylase deficiency, indicating that mutations in this gene are due to random events. 36 refs., 3 figs., 2 tabs.« less

  9. An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae.

    PubMed

    Agnew, Christopher R J; Warrilow, Andrew G S; Burton, Nicholas M; Lamb, David C; Kelly, Steven L; Brady, R Leo

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.

  10. An Enlarged, Adaptable Active Site in CYP164 Family P450 Enzymes, the Sole P450 in Mycobacterium leprae

    PubMed Central

    Agnew, Christopher R. J.; Warrilow, Andrew G. S.; Burton, Nicholas M.; Lamb, David C.; Kelly, Steven L.

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin “open” conformation of the enzyme (Kd [dissociation constant] of 0.1 μM), with binding to the low-spin “closed” form being significantly hindered (Kd of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy. PMID:22037849

  11. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    PubMed

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  12. FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch

    PubMed Central

    Day, Nancy F; Kimball, Todd Haswell; Aamodt, Caitlin M; Heston, Jonathan B; Hilliard, Austin T; Xiao, Xinshu; White, Stephanie A

    2018-01-01

    Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans. PMID:29360038

  13. Peroxisome proliferator activated receptor alpha regulates a male-specific cytochrome P450 in mouse liver.

    PubMed

    Jeffery, Brett; Choudhury, Agharul I; Horley, Neill; Bruce, Mary; Tomlinson, Simon R; Roberts, Ruth A; Gray, Tim J B; Barrett, David A; Shaw, P Nicholas; Kendall, David; Bell, David R

    2004-09-15

    We set out to find if the strain-specific, male-specific hepatic expression of Cyp4a protein in mouse was due to expression of Cyp4a12 and to understand the genetic basis for reported differences in expression. 12-Lauric acid hydroxylase (LAH) activity was found to show higher levels in male ddY, but not C57Bl/6, mouse liver microsomes. The expression of Cyp4a12 mRNA was studied using RNAase protection assays in male and female liver and kidney of nine mouse strains. Cyp4a12 was found to be highly expressed in male liver and kidney, but at much lower levels in female liver and kidney, in all strains studied. Western blotting with an antibody specific for Cyp4a12 confirmed that Cyp4a12 was expressed in a male specific fashion in C57Bl/6 mouse liver. RNAase protection analysis for Cyp4a10 and 14 in ddY mice revealed that neither of these genes showed male-specific expression. To further investigate genetic factors that control male-specific Cyp4a12 expression, PPARalpha+/+ and -/- mice were studied, showing that total P450 and 12-LAH activity was male-specific in +/+, but not -/- mice. RNAase protection assays were used to confirm that Cyp4a12 was lower in -/- mice. However, the male-specific Slp and MUP-1 genes retained hepatic male-specific levels of expression in +/+ and -/- mice, showing that the decrease in Cyp4a12 was not a general effect on male-specific expression. Thus, PPARalpha has a specific effect on constitutive expression of Cyp4a12.

  14. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes.

    PubMed

    Mahmood, Khalid; Højland, Dorte H; Asp, Torben; Kristensen, Michael

    2016-01-01

    Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s in xenobiotic detoxification.

  15. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes

    PubMed Central

    Asp, Torben; Kristensen, Michael

    2016-01-01

    Background Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. Results The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Conclusion Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s

  16. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  17. Radiometric assay for cytochrome P-450-catalyzed progesterone 16 alpha-hydroxylation and determination of an apparent isotope effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Y.; Coon, M.J.

    1987-08-01

    In the course of studies on the oxygenation of steroids by purified P-450 cytochromes, particularly rabbit liver microsomal cytochrome P-450 form 3b, a rapid and reliable radiometric assay has been devised for progesterone 16 alpha-hydroxylation. In view of the lack of a commercially available, suitably tritiated substrate, (1,2,6,7,16,17-3H)progesterone was treated with alkali to remove the label from potential hydroxylation sites other than the 16 alpha position. The resulting (1,7,16-3H)progesterone was added to a reconstituted enzyme system containing cytochrome P-450 form 3b, NADPH-cytochrome P-450 reductase, and NADPH, and the rate of 16 alpha-hydroxylation was measured by the formation of /sup 3/H/submore » 2/O. This reaction was shown to be linear with respect to time and to the cytochrome P-450 concentration. An apparent tritium isotope effect of 2.1 was observed by comparison of the rates of formation of tritium oxide and 16 alpha-hydroxyprogesterone, and the magnitude of the isotope effect was confirmed by an isotope competition assay in which a mixture of (1,7,16-/sup 3/H)progesterone and (4-14C)progesterone was employed.« less

  18. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    PubMed

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Identification and analysis of cytochrome P450IID6 antigenic sites recognized by anti-liver-kidney microsome type-1 antibodies (LKM1).

    PubMed

    Yamamoto, A M; Cresteil, D; Boniface, O; Clerc, F F; Alvarez, F

    1993-05-01

    Anti-liver-kidney microsome type-1 antibodies (LKM1), present in sera from a group of patients with autoimmune hepatitis, are directed against P450IID6. Previous work, using cDNA constructions spanning most of the P450IID6 protein defined the main immunogenic site between the amino acids (aa), 254-271 and predicted the presence of other putative immunogenic sites in the molecule. Fusion proteins from new cDNA constructions, spanning so-far-untested regions between aa 1-125 and 431-522, were not recognized by LKM1-positive sera. Synthetic peptides, representing sequences from putative immunogenic regions or previously untested regions, allowed a precise definition of four antigenic sites located between peptides 257-269, 321-351, 373-389 and 410-429, which were recognized, respectively, by 14, 8, 1 and 2 out of 15 LKM1-positive sera tested. The minimal sequence of the main antigenic site (peptide 257-269) recognized by the autoantibody was established to be WDPAQPPRD (peptide 262-270). In addition, deletion and replacement experiments showed that aa 263 (Asp) was essential for the binding of the autoantibody to peptide 262-270. Analysis of the second most frequently recognized peptide between aa 321-351, was performed using peptides 321-339 and 340-351 in competitive inhibition studies. Complete elimination of antibody binding to peptide 321-351 obtained by absorption of both shorter peptides indicated that peptide 321-351 is a discontinuous antigenic site. LKM1-positive sera reacting against peptide 321-351 recognized either both the shorter peptides or just one of them preferentially. Results of the present study suggest that the production of LKM1 antibodies is an antigen-driven, poly- or oligoclonal B cell response. The identification of antigenic sites will allow: (i) the development of specific diagnostic tests and (ii) further studies on the pathogenic value of LKM1 antibodies in autoimmune hepatitis.

  20. The Caffeine Cytochrome P450 1A2 Metabolic Phenotype Does Not Predict the Metabolism of Heterocyclic Aromatic Amines in Humans

    PubMed Central

    Turesky, Robert J.; White, Kami K.; Wilkens, Lynne R.; Marchand, Loïc Le

    2015-01-01

    2-Amino-1-methylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are carcinogenic heterocyclic aromatic amines (HAAs) formed in well-done cooked meats. Chemicals that induce cytochrome P450 (P450) 1A2, a major enzyme involved in the bioactivation of HAAs, also form in cooked meat. Therefore, well-done cooked meat may pose an increase in cancer risk because it contains both inducers of P450 1A2 and procarcinogenic HAAs. We examined the influence of components in meat to modulate P450 1A2 activity and the metabolism of PhIP and MeIQx in volunteers during a 4 week feeding study of well-done cooked beef. The mean P450 1A2 activity, assessed by caffeine metabolic phenotyping, ranged from 6.3 to 7.1 before the feeding study commenced and from 9.6 to 10.4 during the meat feeding period: the difference in means was significant (P < 0.001). Unaltered PhIP, MeIQx, and their P450 1A2 metabolites, N2-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N2-Gl); N3-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N3-Gl); 2-amino-3-methylimidazo-[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH); and 2-amino-8-(hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH2OH-IQx) were measured in urine during days 2, 14, and 28 days of the meat diet. Significant correlations were observed on these days between the levels of the unaltered HAAs and their oxidized metabolites, when expressed as percent of dose ingested or as metabolic ratios. However, there was no statistically significant correlation between the caffeine P450 1A2 phenotype and any urinary HAA biomarker. Although the P450 1A2 activity varied by greater than 20-fold among the subjects, there was a large intra-individual variation of the P450 1A2 phenotype and inconsistent responses to inducers of P450 1A2. The coefficient of variation of the P450 1A2 phenotype within-individual ranged between 1 to 112% (median=40