Science.gov

Sample records for hepatic vagus nerve

  1. Vagus Nerve Stimulation

    MedlinePlus

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  2. Does hepatic vagus nerve modulate the progression of biliary fibrosis in rats?

    PubMed

    Hajiasgharzadeh, Khalil; Tavangar, Seyed Mohammad; Javan, Mohammad; Dehpour, Ahmad R; Mani, Ali R

    2014-10-01

    Recent studies have shown that vagus nerve activation inhibits cytokine production in a variety of non-neural cells though activation of α7 nicotinic acetylcholine receptor (α7nAChR). Since chronic inflammation plays a pivotal role in liver fibrosis, this study was designed to investigate the role of hepatic vagus nerve in the progression of hepatic fibrosis in rats. Cirrhosis was induced by chronic ligation of the bile duct. Hepatic hydroxyproline level, portal pressure, serum transaminase level, hepatic TIMP-1 (tissue inhibitor of metalloproteinase-1) and MCP-1 (monocyte chemoattractant peptide-1) expression were measured in order to assess the progression of liver cirrhosis. α7nAChR expression was assessed using RT-PCR as well as immunostaining. RT-PCR analysis of the liver showed that α7nAChR mRNA is expressed in rat liver. Immunostaining study demonstrated that hepatic α7nAChR is mainly expressed in the hepatocytes of cirrhotic liver with minimum α7nAChR expression in biliary epithelium or myofibroblasts. Bile duct ligation was associated with portal hypertension, increased hepatic hydroxyproline level as well as TIMP-1 and MCP-1 expression in the liver. However neither selective hepatic vagotomy nor methyllycaconitine (an α7nAChR antagonist) could significantly affect development of portal hypertension or hepatic fibrosis in rats. Selective hepatic vagotomy could only attenuate serum aspartate aminotransferase level in bile duct ligated rats but did not have a significant effect on hepatic inflammation as assessed by MCP-1 mRNA expression. Our study provides evidence against a crucial role for the hepatic vagus nerve as an intrinsic protective mechanism in modulation of hepatic fibrosis in a rat model of biliary cirrhosis.

  3. Vagus Nerve Stimulation.

    PubMed

    Howland, Robert H

    2014-06-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality.

  4. Vagus Nerve Stimulation

    PubMed Central

    Howland, Robert H.

    2014-01-01

    The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality. PMID:24834378

  5. Vagus nerve is involved in lack of blood reflow into sinusoids after rat hepatic ischemia.

    PubMed

    Nishida, T; Ueshima, S; Kazuo, H; Ito, T; Seiyama, A; Matsuda, H

    2000-05-01

    Although recovery of microcirculation is an important determinant for ischemia-reperfusion injury, little information is available about hepatic blood flow after ischemia. To examine regulatory mechanisms of postischemic hepatic microcirculation, we studied the sinusoidal blood flow after portal triad clamping of rat livers for 5, 15, or 30 min. Hepatic tissue blood flow and erythrocyte blood flow in sinusoids were measured using a laser-Doppler flowmeter and an intravital microspectroscope, respectively. There was a time of no blood flow (lag time) in sinusoids after declamping, dependent on the ischemic time. Cholinergic blockade agents eliminated the lag time, whereas nerve stimulation at the hiatus esophagus or on the hepatoduodenal ligament during reperfusion prolonged it. Chemical denervation with 10% phenol or surgical denervation on the hepatoduodenal ligament eliminated the lag time. The prolongation of lag time by nerve stimulation was completely abrogated by truncal vagotomy. These results suggest that the cholinergic vagus nerve is involved in causing the lag time of sinusoidal blood flow in hepatic ischemia-reperfusion.

  6. Vagus Nerve Stimulation

    PubMed Central

    Ekmekçi, Hakan; Kaptan, Hülagu

    2017-01-01

    BACKGROUND: The vagus nerve stimulation (VNS) is an approach mainly used in cases of intractable epilepsy despite all the efforts. Also, its benefits have been shown in severe cases of depression resistant to typical treatment. AIM: The aim of this study was to present current knowledge of vagus nerve stimulation. MATERIAL AND METHODS: A new value has emerged just at this stage: VNS aiming the ideal treatment with new hopes. It is based on the placement of a programmable generator on the chest wall. Electric signals from the generator are transmitted to the left vagus nerve through the connection cable. Control on the cerebral bioelectrical activity can be achieved by way of these signal sent from there in an effort for controlling the epileptic discharges. RESULTS: The rate of satisfactory and permanent treatment in epilepsy with monotherapy is around 50%. This rate will increase by one-quarters (25%) with polytherapy. However, there is a patient group roughly constituting one-thirds of this population, and this group remains unresponsive or refractory to all the therapies and combined regimes. The more the number of drugs used, the more chaos and side effects are observed. The anti-epileptic drugs (AEDs) used will have side effects on both the brain and the systemic organs. Cerebral resection surgery can be required in some patients. The most commonly encountered epilepsy type is the partial one, and the possibility of benefiting from invasive procedures is limited in most patients of this type. Selective amygdala-hippocampus surgery is a rising value in complex partial seizures. Therefore, as epilepsy surgery can be performed in very limited numbers and rather developed centres, success can also be achieved in limited numbers of patients. The common ground for all the surgical procedures is the target of preservation of memory, learning, speaking, temper and executive functions as well as obtaining a good control on seizures. However, the action mechanism of VNS

  7. Schwannomatosis of Cervical Vagus Nerve

    PubMed Central

    Sasi, M. P.

    2016-01-01

    Cervical vagal schwannoma is a rare entity among lesions presenting as a neck mass. They are usually slow-growing benign lesions closely associated with the vagus nerve. They are usually solitary and asymptomatic. Multiple schwannomas occurring in patients without neurofibromatosis (NF) are rare and have recently been referred to as schwannomatosis. Here, we present a case of a neck mass that had imaging features suggestive of vagal schwannoma and was operated upon. Intraoperatively, it was discovered to be a case of multiple vagal cervical schwannoma, all directly related to the right vagus nerve, and could be resected from the nerve in toto preserving the function of the vagus nerve. Final HPR confirmed our pre-op suspicion of vagal schwannomatosis. PMID:27807496

  8. Vagus Nerve Stimulation for Treating Epilepsy

    MedlinePlus

    ... and their FAMILIES VAGUS NERVE STIMULATION FOR TREATING EPILEPSY This information sheet is provided to help you ... how vagus nerve stimulation (VNS) may help treat epilepsy. The American Academy of Neurology (AAN) is the ...

  9. Vagus nerve stimulation in clinical practice.

    PubMed

    Farmer, Adam D; Albu-Soda, Ahmed; Aziz, Qasim

    2016-11-02

    The diverse array of end organ innervations of the vagus nerve, coupled with increased basic science evidence, has led to vagus nerve stimulation becoming a management option in a number of clinical disorders. This review discusses methods of electrically stimulating the vagus nerve and its current and potential clinical uses.

  10. Vagus nerve stimulation regulates hemostasis in swine.

    PubMed

    Czura, Christopher J; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M; Pavlov, Valentin A; Redl, Heinz; Tracey, Kevin J

    2010-06-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses proinflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre-electrical vagus nerve stimulation = 1033 +/- 210 s versus post-electrical vagus nerve stimulation = 585 +/- 111 s; P < 0.05) and total blood loss (pre-electrical vagus nerve stimulation = 48.4 +/- 6.8 mL versus post-electrical vagus nerve stimulation = 26.3 +/- 6.7 mL; P < 0.05). Reduced bleeding time after vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity.

  11. Solitary fibrous tumour of the vagus nerve.

    PubMed

    Scholsem, Martin; Scholtes, Felix

    2012-04-01

    We describe the complete removal of a foramen magnum solitary fibrous tumour in a 36-year-old woman. It originated on a caudal vagus nerve rootlet, classically described as the 'cranial' accessory nerve root. This ninth case of immunohistologically confirmed cranial or spinal nerve SFT is the first of the vagus nerve.

  12. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    PubMed

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  13. Hepatic Branch Vagus Nerve Plays a Critical Role in the Recovery of Post-Ischemic Glucose Intolerance and Mediates a Neuroprotective Effect by Hypothalamic Orexin-A

    PubMed Central

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PMID:24759941

  14. Modulation of innate immune response by the vagus nerve in experimental hepatic amebiasis in rats.

    PubMed

    Martínez-Jaimes, Mercedes D; García-Lorenzana, Mario; Muñoz-Ortega, Martin H; Quintanar-Stephano, Andrés; Ávila-Blanco, Manuel E; García-Agueda, Carlos E; Ventura-Juárez, Javier

    2016-10-01

    The parasympathetic nervous system has a crucial role in immunomodulation of the vagus nerve, its structure provides a pathogen detection system, and a negative feedback to the immune system after the pathogenic agent has been eliminated. Amebiasis is a disease caused by the protozoan parasite Entamoeba histolytica, considered the third leading cause of death in the world. The rats are used as a natural resistance model to amoebic liver infection. The aim of this study is to analyze the interaction of Entamoeba histolytica with neutrophils, macrophages, and NK cells in livers of intact and vagotomized rats. Six groups were studied (n = 4): Intact (I), Intact + amoeba (IA), Sham (S), Sham + amoeba (SA), Vagotomized (V) and Vagotomized + amoeba (VA). Animals were sacrificed at 8 h post-inoculation of E. histolytica. Then, livers were obtained and fixed in 4% paraformaldehyde. Tissue liver slides were stained with H-E, PAS and Masson. The best development time for E. histolytica infection was at 8 h. Amoeba was identified with a monoclonal anti-220 kDa E. histolytica lectin. Neutrophils (N) were identified with rabbit anti-human neutrophil myeloperoxidase, macrophages (Mɸ) with anti-CD68 antibody and NK cells (NK) with anti-NK. Stomachs weight and liver glycogen were higher in V. Collagen increased in VA, whereas vascular and neutrophilic areas were decreased. There were fewer N, Mɸ, NK around the amoeba in the following order IA > SA > VA (p < 0.05 between IA and VA). In conclusion, these results suggest that the absence of parasympathetic innervation affects the participation of neutrophils, macrophages and NK cells in the innate immune response, apparently by parasympathetic inhibition on the cellular functions and probably for participation in sympathetic activity.

  15. Vagus nerve stimulation inhibits cortical spreading depression.

    PubMed

    Chen, Shih-Pin; Ay, Ilknur; de Morais, Andreia Lopes; Qin, Tao; Zheng, Yi; Sadeghian, Homa; Oka, Fumiaki; Simon, Bruce; Eikermann-Haerter, Katharina; Ayata, Cenk

    2016-04-01

    Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura and is a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its antimigraine effect. Unilateral vagus nerve stimulation was delivered either noninvasively through the skin or directly by electrodes placed around the nerve. Systemic physiology was monitored throughout the study. Both noninvasive transcutaneous and invasive direct vagus nerve stimulations significantly suppressed spreading depression susceptibility in the occipital cortex in rats. The electrical stimulation threshold to evoke a spreading depression was elevated by more than 2-fold, the frequency of spreading depressions during continuous topical 1 M KCl was reduced by ∼40%, and propagation speed of spreading depression was reduced by ∼15%. This effect developed within 30 minutes after vagus nerve stimulation and persisted for more than 3 hours. Noninvasive transcutaneous vagus nerve stimulation was as efficacious as direct invasive vagus nerve stimulation, and the efficacy did not differ between the ipsilateral and contralateral hemispheres. Our findings provide a potential mechanism by which vagus nerve stimulation may be efficacious in migraine and suggest that susceptibility to spreading depression is a suitable platform to optimize its efficacy.

  16. Vagus Nerve Stimulation and Headache.

    PubMed

    Yuan, Hsiangkuo; Silberstein, Stephen D

    2017-04-01

    Neuromodulation is an emerging area in headache management. Through neurostimulation, multiple brain areas can be modulated to alleviate pain, hence reducing the pharmacological need. In this review, we discuss the recent development of the vagus nerve stimulation (VNS) for headache management. Early case series from epilepsy and depression cohorts using invasive VNS showed a serendipitous reduction in headache frequency and/or severity. Noninvasive VNS (nVNS), which stimulates the carotid vagus nerve with the use of a personal handheld device, also demonstrated efficacy for acute migraine or cluster headache attacks. Long-term use of nVNS seemed to exert a prophylactic effect for both chronic migraine and chronic cluster headache. In animal studies, nVNS modulated multiple pain pathways and even lessen cortical spreading depression. Progression in nVNS clinical efficacy over time suggests an underlying disease-modifying neuromodulation. Noninvasive VNS appears to be as effective as the invasive counterpart for many indications. With an enormous potential therapeutic gain and a high safety profile, further development and application of nVNS is promising. © 2015 American Headache Society.

  17. Human Vagus Nerve Branching in the Cervical Region

    PubMed Central

    Hammer, Niels; Glätzner, Juliane; Feja, Christine; Kühne, Christian; Meixensberger, Jürgen; Planitzer, Uwe; Schleifenbaum, Stefan; Tillmann, Bernhard N.; Winkler, Dirk

    2015-01-01

    Background Vagus nerve stimulation is increasingly applied to treat epilepsy, psychiatric conditions and potentially chronic heart failure. After implanting vagus nerve electrodes to the cervical vagus nerve, side effects such as voice alterations and dyspnea or missing therapeutic effects are observed at different frequencies. Cervical vagus nerve branching might partly be responsible for these effects. However, vagus nerve branching has not yet been described in the context of vagus nerve stimulation. Materials and Methods Branching of the cervical vagus nerve was investigated macroscopically in 35 body donors (66 cervical sides) in the carotid sheath. After X-ray imaging for determining the vertebral levels of cervical vagus nerve branching, samples were removed to confirm histologically the nerve and to calculate cervical vagus nerve diameters and cross-sections. Results Cervical vagus nerve branching was observed in 29% of all cases (26% unilaterally, 3% bilaterally) and proven histologically in all cases. Right-sided branching (22%) was more common than left-sided branching (12%) and occurred on the level of the fourth and fifth vertebra on the left and on the level of the second to fifth vertebra on the right side. Vagus nerves without branching were significantly larger than vagus nerves with branches, concerning their diameters (4.79 mm vs. 3.78 mm) and cross-sections (7.24 mm2 vs. 5.28 mm2). Discussion Cervical vagus nerve branching is considerably more frequent than described previously. The side-dependent differences of vagus nerve branching may be linked to the asymmetric effects of the vagus nerve. Cervical vagus nerve branching should be taken into account when identifying main trunk of the vagus nerve for implanting electrodes to minimize potential side effects or lacking therapeutic benefits of vagus nerve stimulation. PMID:25679804

  18. Endocrine tumors associated with the vagus nerve.

    PubMed

    Varoquaux, Arthur; Kebebew, Electron; Sebag, Fréderic; Wolf, Katherine; Henry, Jean-François; Pacak, Karel; Taïeb, David

    2016-09-01

    The vagus nerve (cranial nerve X) is the main nerve of the parasympathetic division of the autonomic nervous system. Vagal paragangliomas (VPGLs) are a prime example of an endocrine tumor associated with the vagus nerve. This rare, neural crest tumor constitutes the second most common site of hereditary head and neck paragangliomas (HNPGLs), most often in relation to mutations in the succinate dehydrogenase complex subunit D (SDHD) gene. The treatment paradigm for VPGL has progressively shifted from surgery to abstention or therapeutic radiation with curative-like outcomes. Parathyroid tissue and parathyroid adenoma can also be found in close association with the vagus nerve in intra or paravagal situations. Vagal parathyroid adenoma can be identified with preoperative imaging or suspected intraoperatively by experienced surgeons. Vagal parathyroid adenomas located in the neck or superior mediastinum can be removed via initial cervicotomy, while those located in the aortopulmonary window require a thoracic approach. This review particularly emphasizes the embryology, molecular genetics, and modern imaging of these tumors.

  19. Subdiaphragmatic vagus nerve activity and hepatic venous glucose are differentially regulated by the central actions of insulin in Wistar and SHR

    PubMed Central

    Ribeiro, Izabela Martina R; Ferreira-Neto, Hildebrando C; Antunes, Vagner R

    2015-01-01

    Glucose is the most important energy substrate for the maintenance of tissues function. The liver plays an essential role in the control of glucose production, since it is able to synthesize, store, and release glucose into the circulation under different situations. Hormones like insulin and catecholamines influence hepatic glucose production (HGP), but little is known about the role of the central actions of physiological doses of insulin in modulating HGP via the autonomic nervous system in nonanesthetized rats especially in SHR where we see a high degree of insulin resistance and metabolic dysfunction. Wistar and SHR received ICV injection of insulin (100 nU/μL) and hepatic venous glucose concentration (HVGC) was monitored for 30 min, as an indirect measure of HGP. At 10 min after insulin injection, HVGC decreased by 27% in Wistar rats, with a negligible change (3%) in SHR. Pretreatment with atropine totally blocked the reduction in HVGC, while pretreatment with propranolol and phentolamine induced a decrease of 8% in HVGC after ICV insulin injection in Wistar. Intracarotid infusion of insulin caused a significant increase in subdiaphragmatic vagus nerve (SVN) activity in Wistar (12 ± 2%), with negligible effects on the lumbar splanchnic sympathetic nerve (LSSN) activity (−6 ± 3%). No change was observed in SVN (−2 ± 2%) and LSSN activities (2 ± 3%) in SHR after ICA insulin infusion. Taken together, these results show, in nonanesthetized animals, the importance of the parasympathetic nervous system in controlling HVGC, and subdiaphragmatic nerve activity following central administration of insulin; a mechanism that is impaired in the SHR. PMID:25948821

  20. [Primitive neuroectodermal tumor of the vagus nerve].

    PubMed

    Pegbessou, E; Diom, E S; Ndiaye, M; Dieng, P A; Nao, E E M; Thiam, A; Diouf, M S; Boube, D; Ndiaye, C; Kossinda, F; Tall, A; Diallo, B K; Ndiaye, I C; Diouf, R; Diop, E M

    2013-12-01

    Primitive neuroectodermal tumors are a rare type of malignant neuroectodermal tumor that is very aggressive. Cervicofacial location is rare, even exceptional. We report a case of a 4-month-old male infant, referred from the pediatric clinic for severe supralaryngeal dyspnea, a firm mass under the left mandibular angle, mobile and extended to the parotid area, painful, with a curve of the left side wall of the oropharynx. Cervical computed tomodensitometry showed a well-limited mass in the carotid area, enhanced by the contrast product. A vascularized mass, which had developed at the expense of the vagus nerve, was removed surgically. Histology found a primitive neuroectodermal tumor.

  1. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury.

    PubMed

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-09-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.

  2. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  3. Vagus nerve stimulation in Lafora body disease☆

    PubMed Central

    Hajnsek, Sanja; Petelin Gadze, Zeljka; Borovecki, Fran; Nankovic, Sibila; Mrak, Goran; Gotovac, Kristina; Sulentic, Vlatko; Kovacevic, Ivana; Bujan Kovac, Andreja

    2013-01-01

    Introduction Lafora body disease (LBD) is a rare autosomal recessive disorder characterized by progression to inexorable dementia and frequent occipital seizures, in addition to myoclonus and generalized tonic–clonic seizures (GTCSs). It belongs to the group of progressive myoclonus epilepsies (PMEs), rare inherited neurodegenerative diseases with great clinical and genetic differences, as well as poor prognosis. Since those patients have a pharmacoresistant disease, an adjunctive treatment option is vagus nerve stimulation (VNS). To date, there are four reported cases of the utility of VNS in PME — in Unverricht–Lundborg disease (ULD), myoclonic epilepsy with ragged-red fibers (MERRF), Gaucher's disease, and in one case that remained unclassified. Case presentation A 19-year-old male patient had progressive myoclonus, GTCSs that often progressed to status epilepticus (SE), progressive cerebellar and extrapyramidal symptomatology, and dementia, and his disease was pharmacoresistant. We confirmed the diagnosis of LBD by genetic testing. After VNS implantation, in the one-year follow-up period, there was a complete reduction of GTCS and SE, significant regression of myoclonus, and moderate regression of cerebellar symptomatology. Conclusion To our knowledge, this is the first reported case of the utility of VNS in LBD. Vagus nerve stimulation therapy may be considered a treatment option for different clinical entities of PME. Further studies with a larger number of patients are needed. PMID:25667850

  4. Vagus nerve stimulation and magnet use: optimizing benefits.

    PubMed

    Tatum, William O; Helmers, Sandra L

    2009-07-01

    More than 10 years ago, the vagus nerve stimulator became the first device approved by the Food and Drug Administration for use in persons with epilepsy. The vagus nerve stimulator has subsequently served to spearhead the concept of neurostimulation for seizures. Chronic intermittent electrical stimulation of the left vagus nerve is the foundation for vagus nerve stimulation, yet little is known about its capability to deliver acute, on-demand, activation of stimulation through use of a magnet. Thus far, clinical use of magnet-induced vagus nerve stimulation has not been elucidated. In an effort to help guide management, we highlight current and potential uses of acute abortive therapy with vagus nerve stimulation. We review the current evidence that is available for vagus nerve stimulator magnet use, discuss potential clinical applications that exist, offer a protocol for magnet application within the institutional setting, provide our approach to titrating the magnet parameters, and make recommendations for magnet use that support an evolving standard of care.

  5. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I.

    PubMed

    Yuan, Hsiangkuo; Silberstein, Stephen D

    2016-01-01

    The vagus nerve (VN), the "great wondering protector" of the body, comprises an intricate neuro-endocrine-immune network that maintains homeostasis. With reciprocal neural connections to multiple brain regions, the VN serves as a control center that integrates interoceptive information and responds with appropriate adaptive modulatory feedbacks. While most VN fibers are unmyelinated C-fibers from the visceral organs, myelinated A- and B-fiber play an important role in somatic sensory, motor, and parasympathetic innervation. VN fibers are primarily cholinergic but other noncholinergic nonadrenergic neurotransmitters are also involved. VN has four vagal nuclei that provide critical controls to the cardiovascular, respiratory, and alimentary systems. Latest studies revealed that VN is also involved in inflammation, mood, and pain regulation, all of which can be potentially modulated by vagus nerve stimulation (VNS). With a broad vagal neural network, VNS may exert a neuromodulatory effect to activate certain innate "protective" pathways for restoring health.

  6. Organ-specific activation of the gastric branch of the efferent vagus nerve by ghrelin in urethane-anesthetized rats.

    PubMed

    Habara, Hiromi; Hayashi, Yujiro; Inomata, Norio; Niijima, Akira; Kangawa, Kenji

    2014-01-01

    Ghrelin plays multiple physiological roles such as growth hormone secretion and exerting orexigenic actions; however, its physiological roles in the electrical activity of autonomic nerves remain unclear. Here, we investigated the effects of human ghrelin on several autonomic nerve activities in urethane-anesthetized rats using an electrophysiological method. Intravenous injection of ghrelin at 3 μg/kg significantly and transiently potentiated the efferent activity of the gastric vagus nerve; however, it did not affect the efferent activity of the hepatic vagus nerve. The activated response to ghrelin in the gastric efferent vagus nerve was not affected by the gastric afferent vagotomy, suggesting that this effect was not induced via the gastric afferent vagus nerve. Ghrelin did not affect the efferent activity of the brown adipose tissue, adrenal gland sympathetic nerve, and the renal sympathetic nerve. In addition, rectal temperature and the plasma concentrations of norepinephrine, corticosterone, and renin were also not changed by ghrelin. These findings demonstrate that ghrelin stimulates the gastric efferent vagus nerve in an organ-specific manner without affecting the gastric afferent vagus nerve and that ghrelin does not acutely affect the efferent basal activity of the sympathetic nerve in rats.

  7. Vagus Nerve Stimulation in Experimental Heart Failure

    PubMed Central

    Sabbah, Hani N.; Ilsar, Itamar; Zaretsky, Asaph; Rastogi, Sharad; Wang, Mengjun; Gupta, Ramesh C.

    2013-01-01

    Chronic heart failure (HF) is associated with autonomic dysregulation characterized by a sustained increase of sympathetic drive and by withdrawal of parasympathetic activity. Sympathetic overdrive and increased heart rate are predictors of poor long-term outcome in patients with HF. Considerable evidence exists that supports the use of pharmacologic agents that partially inhibit sympathetic activity as effective long-term therapy for patients with HF; the classic example is the wide use of selective and non-selective beta-adrenergic receptor blockers. In contrast, modulation of parasympathetic activation as potential therapy for HF has received only limited attention over the years given its complex cardiovascular effects. In this article, we review results of recent experimental animal studies that provide support for the possible use of electrical Vagus nerve stimulation (VNS) as a long-term therapy for the treatment of chronic HF. In addition to exploring the effects of chronic VNS on left ventricular (LV) function, the review will also address the effects of VNS on potential modifiers of the HF state that include cytokine production and nitric oxide elaboration. Finally, we will briefly review other nerve stimulation approaches also currently under investigation as potential therapeutic modalities for treating chronic HF. PMID:21128115

  8. Alternative Paradigm of Selective Vagus Nerve Stimulation Tested on an Isolated Porcine Vagus Nerve

    PubMed Central

    2014-01-01

    Alternative paradigm for spatial and fibre-type selective vagus nerve stimulation (VNS) was developed using realistic structural topography and tested in an isolated segment of a porcine cervical left vagus nerve (LVN). A spiral cuff (cuff) containing a matrix of ninety-nine electrodes was developed for selective VNS. A quasitrapezoidal stimulating pulse (stimulus) was applied to the LVN via an appointed group of three electrodes (triplet). The triplet and stimulus were configured to predominantly stimulate the B-fibres, minimizing stimulation of the A-fibres and by-passing the stimulation of the C-fibres. To assess which fibres made the most probable contribution to the neural response (NR) during selective VNS, the distribution of conduction velocity (CV) within the LVN was considered. Experimental testing of the paradigm showed the existence of certain parameters and waveforms of the stimulus, for which the contribution of the A-fibres to the NR was slightly reduced and that of the B-fibres was slightly enlarged. The cuff provided satisfactory fascicle discrimination in selective VNS as well as satisfactory fascicle discrimination during NR recording. However, in the present stage of development, fibre-type VNS remained rather limited. PMID:24683328

  9. Modulation of brain dead induced inflammation by vagus nerve stimulation.

    PubMed

    Hoeger, S; Bergstraesser, C; Selhorst, J; Fontana, J; Birck, R; Waldherr, R; Beck, G; Sticht, C; Seelen, M A; van Son, W J; Leuvenink, H; Ploeg, R; Schnuelle, P; Yard, B A

    2010-03-01

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability (HRV) was assessed by ECG. The vagus nerve was electrically stimulated (BD + STIM) during BD. Intestine, kidney, heart and liver were recovered after 6 hours. Affymetrix chip-analysis was performed on intestinal RNA. Quantitative PCR was performed on all organs. Serum was collected to assess TNFalpha concentrations. Renal transplantations were performed to address the influence of vagus nerve stimulation on graft outcome. HRV was significantly lower in BD animals. Vagus nerve stimulation inhibited the increase in serum TNFalpha concentrations and resulted in down-regulation of a multiplicity of pro-inflammatory genes in intestinal tissue. In renal tissue vagal stimulation significantly decreased the expression of E-selectin, IL1beta and ITGA6. Renal function was significantly better in recipients that received a graft from a BD + STIM donor. Our study demonstrates impairment of the parasympathetic nervous system during BD and inhibition of serum TNFalpha through vagal stimulation. Vagus nerve stimulation variably affected gene expression in donor organs and improved renal function in recipients.

  10. Vagus nerve stimulation for partial seizures.

    PubMed

    Panebianco, Mariangela; Rigby, Alexandra; Weston, Jennifer; Marson, Anthony G

    2015-04-03

    Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with medically refractory epilepsy. VNS consists of chronic intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator. The majority of people given a diagnosis of epilepsy have a good prognosis, and their seizures will be controlled by treatment with a single antiepileptic drug (AED), but up to 20%-30% of patients will develop drug-resistant epilepsy, often requiring treatment with combinations of AEDs. The aim of this systematic review was to overview the current evidence for the efficacy and tolerability of vagus nerve stimulation when used as an adjunctive treatment for people with drug-resistant partial epilepsy. This is an updated version of a Cochrane review published in Issue 7, 2010. To determine:(1) The effects on seizures of VNS compared to controls e.g. high-level stimulation compared to low-level stimulation (presumed sub-therapeutic dose); and(2) The adverse effect profile of VNS compared to controls e.g. high-level stimulation compared to low-level stimulation. We searched the Cochrane Epilepsy Group's Specialised Register (23 February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 23 February 2015), MEDLINE (1946 to 23 February 2015), SCOPUS (1823 to 23 February 2015), ClinicalTrials.gov (23 February 2015) and ICTRP (23 February 2015). No language restrictions were imposed. The following study designs were eligible for inclusion: randomised, double-blind, parallel or crossover studies, controlled trials of VNS as add-on treatment comparing high and low stimulation paradigms (including three different stimulation paradigms - duty cycle: rapid, mid and slow) and VNS stimulation versus no stimulation or a different intervention. Eligible participants were adults or children with drug-resistant partial seizures not eligible for surgery or who failed

  11. An autopsy case of vagus nerve stimulation following acupuncture.

    PubMed

    Watanabe, Mayumi; Unuma, Kana; Fujii, Yusuke; Noritake, Kanako; Uemura, Koichi

    2015-03-01

    Acupuncture is one of the most popular oriental medical techniques in China, Korea and Japan. This technique is also popular as alternative therapy in the Western World. Serious adverse events are rare following acupuncture, and fatal cases have been rarely reported. A male in his late forties died right after acupuncture treatment. A medico-legal autopsy disclosed severe haemorrhaging around the right vagus nerve in the neck. Other organs and laboratory data showed no significant findings. Thus, it was determined that the man could have died from severe vagal bradycardia and/or arrhythmia resulting from vagus nerve stimulation following acupuncture. To the best of our knowledge, this is the first report of a death due to vagus nerve injury after acupuncture.

  12. Vagus nerve stimulation for the treatment of intractable epilepsy.

    PubMed

    Amar, Arun Paul

    2007-12-01

    Vagus nerve stimulation is a safe and reliable treatment adjunct for patients with medically intractable epilepsy. It is both a preventive and abortive form of therapy, potentially effective against both partial and generalized seizures in adults and children. Vagus nerve stimulation also has a number of serendipitous effects on mood, memory and attention, and has been approved for the treatment of refractory depression. Owing to its pleiotropic effects, it also holds promise for several other diseases. Its principal limitations are its unknown mechanism of action, the low likelihood of complete cure and the inability to predict which patients will derive substantial benefit. This article reviews the theoretical rationale, practical background and clinical applications of vagus nerve stimulation therapy.

  13. Gastric Emptying and Vagus Nerve Function After Laparoscopic Partial Fundoplication

    PubMed Central

    Lindeboom, Maud Y. A.; Ringers, Jan; van Rijn, Pieter J. J.; Neijenhuis, Peter; Stokkel, Marcel P. M.; Masclee, Ad A. M.

    2004-01-01

    Objective: To establish the relation between vagus nerve dysfunction, gastric emptying, and antireflux surgery. Summary Background Data: Delayed gastric emptying occurs in up to 40% of reflux patients. After antireflux surgery, gastric emptying becomes normal or is even accelerated. Occasionally, severe gastric stasis is found and is associated with a negative outcome of the antireflux procedure. It has been suggested that injury to the vagus nerve could be the cause of this delayed emptying. Methods: We evaluated in a prospective study gastric emptying of solids and vagus nerve function (pancreatic polypeptide response to hypoglycemia) before and after surgery in 41 patients (22 women; age 43 ± 1.6 years) who underwent laparoscopic hemifundoplication. Results: All patients had relief of reflux symptoms varying from adequate (n = 8) to complete relief (n = 33). Gastric emptying of solids increased significantly (P < 0.001) after operation: lag phase from 19 ± 2 to 10 ± 1 minute, emptying rate (%/h) from 37 ± 2 to 48 ± 5 and half emptying time from 110 ± 8 to 81 ± 4 minutes. Gastric emptying improved to a similar extent in patients with delayed and normal preoperative gastric emptying. Postoperative signs of vagus nerve damage (PP peak < 47pmol/L) were present in 4 patients (10%). In these 4 patients gastric emptying both before and after operation did not differ from patients with normal vagus nerve function. In fact, none of the 41 patients had severely delayed emptying after laparoscopic hemifundoplication. Conclusions: Laparoscopic hemifundoplication affects vagus nerve integrity in 10% of patients, but this does not lead to a delay in gastric emptying. In fact, gastric emptying improved significantly after fundoplication. PMID:15492559

  14. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part III.

    PubMed

    Yuan, Hsiangkuo; Silberstein, Stephen D

    2016-03-01

    Vagus nerve stimulation (VNS) is currently undergoing multiple trials to explore its potential for various clinical disorders. To date, VNS has been approved for the treatment of refractory epilepsy and depression. It exerts antiepileptic or antiepileptogenic effect possibly through neuromodulation of certain monoamine pathways. Beyond epilepsy, VNS is also under investigation for the treatment of inflammation, asthma, and pain. VNS influences the production of inflammatory cytokines to dampen the inflammatory response. It triggers the systemic release of catecholamines that alleviates the asthma attack. VNS induces antinociception by modulating multiple pain-associated structures in the brain and spinal cord affecting peripheral/central nociception, opioid response, inflammation process, autonomic activity, and pain-related behavior. Progression in VNS clinical efficacy over time suggests an underlying disease-modifying neuromodulation, which is an emerging field in neurology. With multiple potential clinical applications, further development of VNS is encouraging.

  15. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II.

    PubMed

    Yuan, Hsiangkuo; Silberstein, Stephen D

    2016-02-01

    The development of vagus nerve stimulation (VNS) began in the 19th century. Although it did not work well initially, it introduced the idea that led to many VNS-related animal studies for seizure control. In the 1990s, with the success of several early clinical trials, VNS was approved for the treatment of refractory epilepsy, and later for the refractory depression. To date, several novel electrical stimulating devices are being developed. New invasive devices are designed to automate the seizure control and for use in heart failure. Non-invasive transcutaneous devices, which stimulate auricular VN or carotid VN, are also undergoing clinical trials for treatment of epilepsy, pain, headache, and others. Noninvasive VNS (nVNS) exhibits greater safety profiles and seems similarly effective to their invasive counterpart. In this review, we discuss the history and development of VNS, as well as recent progress in invasive and nVNS.

  16. Magnetoencephalographic analysis in patients with vagus nerve stimulator

    PubMed Central

    Tanaka, Naoaki; Thiele, Elizabeth A.; Madsen, Joseph R.; Bourgeois, Blaise F.; Stufflebeam, Steven M.

    2009-01-01

    The purpose of this study is to assess the feasibility of magnetoencephalography in epilepsy patients with vagus nerve stimulator. We performed magnetoencephalography in two patients (Patient 1 and 2) with medically intractable epilepsy who had a vagus nerve stimulator. Due to the artifacts caused by a vagus nerve stimulator, no spikes could be identified in the original magnetoencephalographic data in either patient. The temporally extended signal space separation method was used for removing artifacts. After processing by this method, left temporo-parietal spikes were clearly identified in Patient 1. Equivalent current dipoles calculated from these spikes were localized in the left posterior-temporal and parietal lobes. The location of the dipoles was consistent with the spike distribution on intracranial EEG. In Patient 2, bilateral, diffuse spikes were seen in the processed data. The contour maps demonstrated a bilateral pattern, not in agreement of single focal source. These findings supported the diagnosis of symptomatic generalized epilepsy in this patient. The present study demonstrates that magnetoencephalography may be a valuable option for evaluating intractable epilepsy patients with the vagus nerve stimulator. PMID:19818944

  17. Magnetoencephalographic analysis in patients with vagus nerve stimulator.

    PubMed

    Tanaka, Naoaki; Thiele, Elizabeth A; Madsen, Joseph R; Bourgeois, Blaise F; Stufflebeam, Steven M

    2009-11-01

    The objective of this study was to assess the feasibility of magnetoencephalography in epilepsy patients with a vagus nerve stimulator. Magnetoencephalography was performed in two patients with medically intractable epilepsy who had a vagus nerve stimulator. Because of the artifacts caused by the vagus nerve stimulator, no spikes could be identified in the original magnetoencephalographic data in either patient. The temporally extended signal space separation method was used to remove artifacts. After processing by this method, left temporoparietal spikes were clearly identified in patient 1. Equivalent current dipoles calculated from these spikes were localized in the left posterior-temporal and parietal lobes. The location of the dipoles was consistent with the spike distribution on intracranial electroencephalography. In patient 2, bilateral diffuse spikes were seen in the processed data. The contour maps demonstrated a bilateral pattern, not in agreement with a single focal source. These findings supported the diagnosis of symptomatic generalized epilepsy in this patient. Magnetoencephalography may thus be a useful option for evaluating patients with intractable epilepsy who have a vagus nerve stimulator.

  18. Plexiform neurofibroma of the cervical portion of the vagus nerve.

    PubMed

    Galli, J; Almadori, G; Paludetti, G; Rosignoli, M; Corina, L; Ieraci, A

    1992-07-01

    The authors describe a rare case of plexiform neurofibroma of the cervical portion of the vagus nerve, and discuss its aetiopathogenesis, clinical, histological and therapeutic features, emphasizing the difference from other benign tumours of the vagus nerve. The clinical characteristics of the mass, ultrasound tomography, CT scanning and digital subtraction angiography were useful in defining its extension and relationships with the surrounding structures. Surgery is the treatment of choice. After mentioning the most commonly employed surgical approaches, they emphasize the advantages of the lateral-cervical approach which allows a wide exposure of the possible sites of origin of the tumour and its complete removal. Finally they stress the need of an accurate histological and immunohistochemical examination in order to differentiate neurofibromas from neurilemmomas.

  19. Vagus nerve stimulation therapy for epilepsy in older adults.

    PubMed

    Sirven, J I; Sperling, M; Naritoku, D; Schachter, S; Labar, D; Holmes, M; Wilensky, A; Cibula, J; Labiner, D M; Bergen, D; Ristanovic, R; Harvey, J; Dasheiff, R; Morris, G L; O'Donovan, C A; Ojemann, L; Scales, D; Nadkarni, M; Richards, B; Sanchez, J D

    2000-03-14

    The authors assessed the efficacy, safety, and tolerability of vagus nerve stimulation (VNS) for refractory epilepsy in 45 adults 50 years of age and older. They determined seizure frequency, adverse effects, and quality of life. At 3 months, 12 patients had a >50% decrease in seizure frequency; at 1 year, 21 of 31 studied individuals had a >50% seizure decrease. Side effects were mild and transient. Quality of life scores improved significantly with time.

  20. Effect of vagus nerve stimulation on thermal injury in rats.

    PubMed

    Song, Xue-Min; Li, Jian-Guo; Wang, Yan-Lin; Liang, Hui; Huang, Yue; Yuan, Xiang; Zhou, Qing; Zhang, Zong-Ze

    2010-02-01

    To investigate the effects of vagus nerve stimulation on haemodynamics, pulmonary histopathology, arterial blood gas and pro-inflammatory responses to thermal injury. Forty-eight male Sprague-Dawley (SD) rats were randomly divided into six equal groups: normal control (NC) group; thermal injury (TEM) group subjected to 40% total body surface area (%TBSA) third-degree thermal injury; vagotomy (VGX) group subjected to bilateral cervical vagotomy after thermal injury; electrical stimulation (STM) group subjected to bilateral cervical vagotomy plus the left vagus nerve trunk electrical stimulation (5 V, 2 ms and 1 Hz) after thermal injury; the antagonist of muscarinic acetylcholine receptor (MRA) group administrated with atropine (0.1 mg kg(-1)) before electrical stimulation and the antagonist of nicotinic acetylcholine receptor (NRA) group administrated with hexamethonium (10 mg kg(-1)) before electrical stimulation. The haemodynamics, histopathology of lung tissue, arterial blood gas, lactic acid, tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) levels were measured. Vagus nerve electrical stimulation not only significantly increased the mean arterial pressure (MAP) and heart rate (HR), but also decreased the infiltration of inflammatory cells into interstitial and alveolar spaces after thermal challenge and attenuated TNF-alpha and IL-6 production. Hexamethonium pre-treatment significantly reversed the effects of vagal electrical stimulation, but atropine administration before electrical stimulation had no such effects. Direct electrical stimulation of the vagus nerve might produce therapeutic effect on thermal injury. The effect may be realised by limiting the inflammatory response via nicotinic acetylcholine receptors in rats. Copyright (c) 2009 Elsevier Ltd and ISBI. All rights reserved.

  1. Vagus nerve stimulation therapy in partial epilepsy: a review.

    PubMed

    Panebianco, Mariangela; Zavanone, Chiara; Dupont, Sophie; Restivo, Domenico A; Pavone, Antonino

    2016-09-01

    Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked epileptic seizures. The majority of people given a diagnosis of epilepsy have a good prognosis, but 20-30 % will develop drug-resistant epilepsy. Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with medically refractory epilepsy. It consists of chronic intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator (Neuro-Cybernetic Prosthesis). In 1997, the Food and Drug Administration approved VNS as adjunctive treatment for medically refractory partial-onset seizures in adults and adolescents. This article reviews the literature from 1988 to nowadays. We discuss thoroughly the anatomy and physiology of vagus nerve and the potential mechanisms of actions and clinical applications involved in VNS therapy, as well as the management, safety, tolerability and effectiveness of VNS therapy. VNS for partial seizures appears to be an effective and well tolerated treatment in adult and pediatric patients. People noted improvements in feelings of well-being, alertness, memory and thinking skills, as well as mood. The adverse effect profile is substantially different from the adverse effect profile associated with antiepileptic drugs, making VNS a potential alternative for patients with difficulty tolerating antiepileptic drug adverse effects. Despite the passing years and the advent of promising neuromodulation technologies, VNS remains an efficacy treatment for people with medically refractory epilepsy. Past and ongoing investigations in other indications have provided signals of the therapeutic potential in a wide variety of conditions.

  2. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  3. Vagus nerve stimulation: An evolving adjunctive treatment for cardiac disease

    PubMed Central

    Akdemir, Barış; Benditt, David G.

    2016-01-01

    The vagus nerve is a major component of the autonomic nervous system and plays a critical role in many body functions including for example, speech, swallowing, heart rate and respiratory control, gastric secretion, and intestinal motility. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, with electrical stimulation being the most important. Implantable devices for VNS are approved therapy for refractory epilepsy and for treatment-resistant depression. In the case of heart disease applications, implantable VNS has been shown to be beneficial for treating heart failure in both preclinical and clinical studies. Adverse effects of implantable VNS therapy systems are generally associated with the implantation procedure or continuous on-off stimulation. The most serious implantation-associated adverse effect is infection. The effectiveness of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, heart failure, and other conditions remains under investigation. VNS merits further study for its potentially favorable effects on cardiovascular disease, especially heart failure. PMID:27723668

  4. Endoscopic laryngeal patterns in vagus nerve stimulation therapy for drug-resistant epilepsy.

    PubMed

    Felisati, Giovanni; Gardella, Elena; Schiavo, Paolo; Saibene, Alberto Maria; Pipolo, Carlotta; Bertazzoli, Manuela; Chiesa, Valentina; Maccari, Alberto; Franzini, Angelo; Canevini, Maria Paola

    2014-01-01

    In 30% of patients with epilepsy seizure control cannot be achieved with medications. When medical therapy is not effective, and epilepsy surgery cannot be performed, vagus nerve stimulator (VNS) implantation is a therapeutic option. Laryngeal patterns in vagus nerve stimulation have not been extensively studied yet. The objective was to evaluate laryngeal patterns in a cohort of patients affected by drug-resistant epilepsy after implantation and activation of a vagus nerve stimulation therapy device. 14 consecutive patients underwent a systematic otolaryngologic examination between 6 months and 5 years after implantation and activation of a vagus nerve stimulation therapy device. All patients underwent fiberoptic endoscopic evaluation, which was recorded on a portable device allowing a convenient slow-motion analysis of laryngeal patterns. All recordings were blindly evaluated by two of the authors. We observed three different laryngeal patterns. Four patients showed left vocal cord palsy at the baseline and during vagus nerve stimulation; seven showed left vocal cord palsy at the baseline and left vocal cord adduction during vagus nerve stimulation; and three patients showed a symmetric pattern at the baseline and constant left vocal cord adduction during vagus nerve stimulation. These laryngeal findings are here described for the first time in the literature and can be only partially explained by existing knowledge of laryngeal muscles and vagus nerve physiology. This might represent a new starting point for studies concerning laryngeal physiology and phonation, while the vagus nerve stimulation therapy could act as a new and ethical experimental model for human laryngeal physiology.

  5. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    PubMed

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation.

  6. Vagus nerve stimulation therapy summary: five years after FDA approval.

    PubMed

    Schachter, Steven C

    2002-09-24

    With more than 16,000 patients implanted with the vagus nerve stimulation (VNS) therapy system (Cyberonics, Inc., Houston, Texas), VNS therapy has assumed an increasingly important role in the treatment of medically refractory seizures since its approval 5 years ago by the United States FDA. This review discusses the clinical trials that provided evidence for the approval, long-term efficacy, efficacy in special populations and co-morbid conditions, and safety and tolerability. Additional studies are suggested to further explore the capabilities of VNS therapy.

  7. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog

    NASA Astrophysics Data System (ADS)

    Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.

    2013-04-01

    Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.

  8. Neurilemmoma of the Vagus Nerve in the Poststyloid Parapharyngeal Space.

    PubMed

    Shinohara, Yuji; Matsumoto, Takashi; Kiga, Norifumi; Tojyo, Itaru; Fujita, Shigeyuki

    2016-01-01

    We report a large vagal neurilemmoma in the poststyloid compartment of the parapharyngeal space. A 52-year-old man was referred to our hospital with a feeling of discomfort in the left upper neck. Computed tomography showed a 30mm x 30mm x 40mm mass with inhomogeneous internal enhancement in the left carotid space. Magnetic resonance imaging revealed a 30mm × 30mm × 40mm heterogeneous mass in the area of the bifurcation of the common carotid artery. We gave a provisional diagnosis of neurilemmoma or vagal paraganglioma in the parapharyngeal space preoperatively based on the results of physical examination and imaging. We selected a transcervical-transmandibular approach. Under general anaesthesia, a tumour originating from the vagus nerve was completely extirpated while protecting the internal and external carotid arteries. Although mild postvagotomy dysphagia and hoarseness were seem for 6 months postoperatively, symptoms resolved and the patient showed a satisfactory course without recurrence after 10 years. Histological examination of the excised specimen showed antoni A and antoni B pattern. Positive immunoreactivity for S-100 protein was identified, but negative results were obtained for neuron-specific enolase, chromogranin and neurofilament. The tumour was diagnosed as neurilemmoma of the vagus nerve.

  9. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals.

    PubMed

    Jacobs, Heidi I L; Riphagen, Joost M; Razat, Chantalle M; Wiese, Svenja; Sack, Alexander T

    2015-05-01

    Direct vagus nerve stimulation (dVNS) is known to improve mood, epilepsy, and memory. Memory improvements have been observed in Alzheimer's disease patients after long-term stimulation. The potential of transcutaneous vagus nerve stimulation (tVNS), a noninvasive alternative to dVNS, to alter memory performance remains unknown. We aimed to investigate the effect of a single-session tVNS on associative memory performance in healthy older individuals. To investigate this, we performed a single-blind sham-controlled randomized crossover pilot study in healthy older individuals (n = 30, 50% female). During the stimulation or sham condition, participants performed an associative face-name memory task. tVNS enhanced the number of hits of the memory task, compared with the sham condition. This effect was specific to the experimental task. Participants reported few side effects. We conclude that tVNS is a promising neuromodulatory technique to improve associative memory performance in older individuals, even after a single session. More research is necessary to investigate its underlying neural mechanisms, the impact of varying stimulation parameters, and its applicability in patients with cognitive decline.

  10. Neurilemmoma of the Vagus Nerve in the Poststyloid Parapharyngeal Space

    PubMed Central

    Matsumoto, Takashi; Kiga, Norifumi; Tojyo, Itaru; Fujita, Shigeyuki

    2016-01-01

    We report a large vagal neurilemmoma in the poststyloid compartment of the parapharyngeal space. A 52-year-old man was referred to our hospital with a feeling of discomfort in the left upper neck. Computed tomography showed a 30mm x 30mm x 40mm mass with inhomogeneous internal enhancement in the left carotid space. Magnetic resonance imaging revealed a 30mm × 30mm × 40mm heterogeneous mass in the area of the bifurcation of the common carotid artery. We gave a provisional diagnosis of neurilemmoma or vagal paraganglioma in the parapharyngeal space preoperatively based on the results of physical examination and imaging. We selected a transcervical-transmandibular approach. Under general anaesthesia, a tumour originating from the vagus nerve was completely extirpated while protecting the internal and external carotid arteries. Although mild postvagotomy dysphagia and hoarseness were seem for 6 months postoperatively, symptoms resolved and the patient showed a satisfactory course without recurrence after 10 years. Histological examination of the excised specimen showed antoni A and antoni B pattern. Positive immunoreactivity for S-100 protein was identified, but negative results were obtained for neuron-specific enolase, chromogranin and neurofilament. The tumour was diagnosed as neurilemmoma of the vagus nerve. PMID:26894190

  11. Vagus nerve electrical stimulation inhibits serum levels of S100A8 protein in septic shock rats.

    PubMed

    Lei, Ming; Liu, Xin-Xin

    2016-05-01

    The vagus nerve and the released acetylcholine exert anti-inflammatory effects and inhibit septic shock. However, their detailed mechanisms remain to be elucidated. The present study aimed to investigate the effects of vagus nerve electrical stimulation on serum S100A8 levels in septic shock rats. A total of 36 male Sprague-Dawley rats were randomly divided into six equal groups: i) Sham group, receiving sham operation; ii) CLP group, subjected to cecal ligation and puncture (CLP) to establish a model of polymicrobial sepsis; iii) VGX group, subjected to CLP and bilateral cervical vagotomy; iv) STM group, subjected to CLP, bilateral cervical vagotomy and electrical stimulation on the left vagus nerve trunk; v) α‑bungarotoxin (BGT) group was administered α‑BGT prior to electrical stimulation; vi) Anti‑receptor for advanced glycation end products (RAGE) group, administered intraperitoneal injection of anti‑RAGE antibody prior to electrical stimulation. The right carotid artery was cannulated to monitor mean artery pressure (MAP). The serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to assess the liver function. Serum S100A8 and advanced glycation end product (AGE) levels were measured using enzyme‑linked immunosorbent assays. The expression of hepatic RAGE was determined by western blotting. The present study revealed that Sprague‑Dawley rats exhibited progressive hypotension and significantly increased serum AST and ALT levels following CLP challenge compared with the sham group. The levels of S100A8 and AGEs, and the protein expression of hepatic RAGE were significantly increased following CLP compared with the sham group. Vagus nerve electrical stimulation significantly prevented the development of CLP‑induced hypotension, alleviated the hepatic damage, reduced serum S100A8 and AGEs production, and reduced the expression of hepatic RAGE. The inhibitory effect of vagus nerve electrical

  12. The pig as preclinical model for laparoscopic vagus nerve stimulation.

    PubMed

    Wolthuis, A M; Stakenborg, N; D'Hoore, A; Boeckxstaens, G E

    2016-02-01

    Cervical vagus nerve stimulation (VNS) prevents manipulation-induced intestinal inflammation and improves intestinal transit in a mouse model of postoperative ileus (POI). Cervical VNS, however, is accompanied by cardiovascular and respiratory side effects. In view of potential clinical application, we therefore evaluated the safety and feasibility of abdominal VNS via laparoscopic approach in a porcine model. Six pigs were used in a non-survival study for both cervical and abdominal VNS. Two cardiac pacing electrodes were positioned around the right cervical and posterior abdominal vagus nerve and connected to an external stimulator. VNS was performed using four different settings (5 and 20 Hz, 0.5 and 1 ms pulse width) during 2 min with ECG recording. Laparoscopic VNS was timed and videotaped, and technical difficulties were noted. A validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire was used to evaluate the task and workload. The procedure was completed in all pigs with 4-port laparoscopic technique. Cervical and abdominal VNS were performed after correct identification and isolation of the nerve, and positioning of the electrodes around the nerve. Median laparoscopic operating time was 16 min (range 8-33 min), and median NASA-TLX was 31 (range 11-74). No major complications were encountered. Reduction of heart rate was between 5.5 and 14% for cervical VNS and undetectable for abdominal VNS. In a porcine model, laparoscopic VNS is feasible and safe with cardiac pacing electrodes and may lead to a similar novel approach in humans in the near future.

  13. Peripheral Nerve Sheath Tumor of the Vagus Nerve in a Dog.

    PubMed

    Yap, Fui; Pratschke, Kathryn

    2016-01-01

    A peripheral nerve sheath tumor was diagnosed in a female, neutered Labrador retriever with a 6 mo history of coughing, retching, ptyalism, and left-sided Horner's syndrome. Computed tomography scan of the neck revealed a mass lesion between the carotid artery and esophagus in the mid-cervical region. Exploratory surgery was performed and an 18 cm section of thickened vagus nerve was excised. Histopathological findings and immunochemistry staining confirmed a malignant peripheral nerve sheath tumor. The tumor showed microscopic signs of malignancy, but there were no macroscopic signs of local extension or distant metastasis. This report documents a peripheral nerve sheath tumor of rare origin in dogs.

  14. Removal of Vagus Nerve Stimulator Leads and Reuse of Same Site for Reimplantation: Technique and Experience.

    PubMed

    Kumar, Ramesh; Winston, Ken R; Folzenlogen, Zach

    2016-07-01

    This report describes the authors' experience and technique in removing vagus nerve stimulator leads, including coils, and reuse of the same site on the vagus nerve for implantation of new coils. The charts of all patients who underwent complete removal by the authors of vagus nerve stimulator leads between 1 September 2001 and 1 July 2015 were retrospectively reviewed. Thirty patients underwent 31 surgeries for removal of vagus nerve stimulator leads. Complete removal, including proximal coils around the vagus nerve, was achieved in all cases. Reimplantation was performed immediately at the same location in 24 patients, delayed in 1 patient, and never replaced in 6. Long-term vocal cord paralysis followed 2 of 9 surgeries performed with sharp dissection and followed one of 22 surgeries in which dissection was performed with monopolar microneedle electrocautery. Vagus nerve stimulator coils can be removed from the vagus nerve, via monopolar microneedle electrocautery, and the same site reused for immediate reimplantation with relative safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Is the vagus nerve stimulation a way to decrease body weight in humans?

    PubMed

    Bugajski, Andrzej; Gil, Krzysztof

    2012-01-01

    Obesity and its complications constitute an important health problem in growing number of people. Behavioral and pharmacological treatment is not much effective and surgical treatment carries too many threats. Promising method to be used is pharmacological or electric manipulation of vagus nerves. Regulation of food intake and energy utilization is a complex process regulated by centers in hypothalamus and brainstem which are receiving information from the peripheral via afferent neural pathways and sending peripherally adequate instructions by efferent neural pathways. In these signals conduction an important role plays vagus nerve. Additionally central nervous system stays under influence of endocrine, paracrine and neuroendocrine signals taking part in these regulations, functioning directly onto the centre or on the afferent neural endings. 80-90% fibers of vagus nerve are afferent fibers, so their action is mainly afferent, but possible contribution of the efferent fibers cannot be excluded. Efferent stimulation induces motility and secretion in the intestinal tract. Afferent unmyelinated C-type fibres of the vagus nerve are more sensitive and easily electrically stimulated. Information from vagus nerve is transmitted to nucleus tractus solitarius, which has projections to nucleus arcuate of the medio-basal hypothalamus, involved in the control of feeding behavior. It is suggested, that interaction onto the vagus nerve (stimulation or blocking) can be an alternative for other ways of obesity treatment. Through the manipulation of the vagus nerve activity the goal is achieved by influence on central nervous system regulating the energy homeostasis.

  16. The "vagal ansa": a source of complication in vagus nerve stimulation.

    PubMed

    Gopalakrishnan, Chittur Viswanathan; Kestle, John R W; Connolly, Mary B

    2015-05-01

    A 16-year-old boy underwent vagus nerve stimulation for treatment-resistant multifocal epilepsy. During intraoperative system diagnostics, vigorous contraction of the ipsilateral sternomastoid muscle was observed. On re-exploration, a thin nerve fiber passing from the vagus to the sternomastoid was found hooked up in the upper electrode. Detailed inspection revealed an abnormal course of the superior root of the ansa cervicalis, which descended down as a single nerve trunk with the vagus and separated to join the inferior root. The authors discuss the variation in the course of the ansa cervicalis and how this could be a reason for postoperative neck muscle contractions.

  17. Vagus nerve stimulation for treatment of epilepsy in Rett syndrome.

    PubMed

    Wilfong, Angus A; Schultz, Rebecca J

    2006-08-01

    This case series presents the outcomes of seven females with Rett syndrome and medically refractory epilepsy who were treated with adjunctive vagus nerve stimulation (VNS) therapy for a minimum of 12 months. Patients ranged in age from 1 to 14 years (median age 9 y) at the time of implantation, had experienced seizures for a median period of approximately 6 years, and had failed at least two trials of antiepileptic drugs before receiving VNS. The median number of seizures per month was 150 (range 12-3600). At 12 months, six females had >or=50% reduction in seizure frequency. VNS was safe and well tolerated, with no surgical complications and no patients requiring explantation of the device. Quality of life outcomes of note among these patients included reports at 12 months of increased alertness among all seven patients. No change in mood or communication abilities was noted.

  18. Treatment of epilepsy by stimulation of the vagus nerve.

    PubMed

    Uthman, B M; Wilder, B J; Penry, J K; Dean, C; Ramsay, R E; Reid, S A; Hammond, E J; Tarver, W B; Wernicke, J F

    1993-07-01

    We treated 14 patients with medically refractory partial seizures by stimulation of the vagus nerve in two single-blind pilot studies. Patients received stimulation through an implantable, programmable NeuroCybernetic Prosthesis, consisting of a pulse generator and a lead-electrode assembly. The mean reduction in seizure frequency after 14 to 35 months of vagal stimulation was 46.6%. Of the 14 patients, five (35.7%) had a 50% or greater reduction in seizure frequency. Two patients, one of whom had had 10 to 100 seizures per day before stimulation, have been seizure-free for over 1 year. Adverse events were primarily limited to initial hoarseness and a tingling sensation at the electrode site in the neck when the device was activated. Most patients tolerated the device and stimulation well. There were no permanent adverse events. Some cases of medically refractory partial seizures are improved by vagal stimulation.

  19. Vagus nerve stimulation modulates visceral pain-related affective memory.

    PubMed

    Zhang, Xu; Cao, Bing; Yan, Ni; Liu, Jin; Wang, Jun; Tung, Vivian Oi Vian; Li, Ying

    2013-01-01

    Within a biopsychosocial model of pain, pain is seen as a conscious experience modulated by mental, emotional and sensory mechanisms. Recently, using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Electrical vagus nerve stimulation (VNS) has become an established therapy for treatment-resistant epilepsy. VNS has also been shown to enhance memory performance in rats and humans. High-intensity VNS (400 μA) immediately following conditional training significantly increases the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, VNS (400 μA) had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). Low-intensity VNS (40 μA) had no effect on CRD-induced CPA. Electrophysiological recording showed that VNS (400 μA) had no effect on basal and CRD-induced ACC neuronal firing. Further, VNS did not alter CRD-induced visceral pain responses suggesting high intensity VNS facilitates visceral pain aversive memory independent of sensory discriminative aspects of visceral pain processing. The findings that vagus nerve stimulation facilities visceral pain-related affective memory underscore the importance of memory in visceral pain perception, and support the theory that postprandial factors may act on vagal afferents to modulate ongoing nature of visceral pain-induced affective disorder observed in the clinic, such as irritable bowel syndrome. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Topography and extent of pulmonary vagus nerve supply with respect to transthoracic oesophagectomy.

    PubMed

    Weijs, Teus J; Ruurda, Jelle P; Luyer, Misha D P; Nieuwenhuijzen, Grard A P; van Hillegersberg, Richard; Bleys, Ronald L A W

    2015-10-01

    Pulmonary complications are frequently observed after transthoracic oesophagectomy. These complications may be reduced by sparing the vagus nerve branches to the lung. However, current descriptions of the regional anatomy are insufficient. Therefore, we aimed to provide a highly detailed description of the course of the pulmonary vagus nerve branches. In six fixed adult human cadavers, bilateral microscopic dissection of the vagus nerve branches to the lungs was performed. The level of branching and the number, calibre and distribution of nerve branches were described. Nerve fibres were identified using neurofilament immunohistochemistry, and the nerve calibre was measured using computerized image analysis. Both lungs were supplied by a predominant posterior and a smaller anterior nerve plexus. The right lung was supplied by 13 (10-18) posterior and 3 (2-3) anterior branches containing 77% (62-100%) and 23% (0-38%) of the lung nerve supply, respectively. The left lung was supplied by a median of 12 (8-13) posterior and 3 (2-4) anterior branches containing 74% (60-84%) and 26% (16-40%) of the left lung nerve supply, respectively. During transthoracic oesophagectomy with en bloc lymphadenectomy and transection of the vagus nerves at the level of the azygos vein, 68-100% of the right lung nerve supply and 86-100% of the inferior left lung lobe nerve supply were severed. When vagotomy was performed distally to the last large pulmonary branch, 0-8% and 0-13% of the nerve branches to the right middle/inferior lobes and left inferior lobe, respectively, were lost. In conclusion, this study provides a detailed description of the extensive pulmonary nerve supply provided by the vagus nerves. During oesophagectomy, extensive mediastinal lymphadenectomy denervates the lung to a great extent; however, this can be prevented by performing the vagotomy distal to the caudalmost large pulmonary branch. Further research is required to determine the feasibility of sparing the

  1. A Rare Case of Vagus Nerve Schwannoma Presenting as a Neck Mass.

    PubMed

    Ramdass, Adesh A; Yao, Mike; Natarajan, Suneetha; Bakshi, Parampreet K

    2017-08-21

    BACKGROUND Vagus nerve schwannoma is a benign neoplasm that usually presents as an asymptomatic slow growing mass, and its presentation as a neck mass is rare. The diagnosis can be difficult to make and complete surgical excision is challenging due to the proximity of the vagus nerve fibers from which it originates. The most common symptom associated with vagus nerve schwannoma arising in the neck is hoarseness due to vocal cord palsy. CASE REPORT We report a case of a 55-year-old woman who presented to the clinic complaining of throat irritation and feeling of something stuck in her throat for the past three months. On examination, a bulging left parapharyngeal mass was noted, displacing the left tonsil and uvula medially. A contrast-enhanced computed tomography (CT) scan of the neck showed a large, hypervascular soft tissue mass with splaying of the left internal carotid artery. Intraoperatively, the tumor was found to be arising from the vagus nerve. Macroscopic surgical pathology examination showed a tan-red, ovoid, and firm mass. Histopathology showed a benign spindle cell tumor with Antoni A areas with palisading cell nuclei and some degenerative change, confirming the diagnosis of vagus nerve schwannoma. CONCLUSIONS Vagus nerve schwannomas should be distinguished from other tumors that arise in the neck before planning surgery, to minimize the risk of nerve injury. Physicians need to be aware of the differential diagnosis of a neck mass, investigations required, the surgical treatment and the potential postoperative complications.

  2. Vagus Nerve Stimulation for Electrographic Status Epilepticus in Slow-Wave Sleep.

    PubMed

    Carosella, Christopher M; Greiner, Hansel M; Byars, Anna W; Arthur, Todd M; Leach, James L; Turner, Michele; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2016-07-01

    Electrographic status epilepticus in slow sleep or continuous spike and waves during slow-wave sleep is an epileptic encephalopathy characterized by seizures, neurocognitive regression, and significant activation of epileptiform discharges during nonrapid eye movement sleep. There is no consensus on the diagnostic criteria and evidence-based optimal treatment algorithm for children with electrographic status epilepticus in slow sleep. We describe a 12-year-old girl with drug-resistant electrographic status epilepticus in slow wave sleep that was successfully treated with vagus nerve stimulation. Her clinical presentation, presurgical evaluation, decision-making, and course after vagus nerve stimulator implantation are described in detail. After vagus nerve stimulator implantation, the girl remained seizure free for more than a year, resolved the electrographic status epilepticus in slow sleep pattern on electroencephalography, and exhibited significant cognitive improvement. Vagus nerve stimulation may be considered for electrographic status epilepticus in slow sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ganglioneuromas involving the hypoglossal nerve and the vagus nerve in a child: Surgical difficulties.

    PubMed

    Bakshi, Jaimanti; Mohammed, Abdul Wadood; Lele, Saudamini; Nada, Ritambra

    2016-02-01

    Ganglioneuromas are benign tumors that arise from the Schwann cells of the autonomic nervous system. They are usually seen in the posterior mediastinum and the paraspinal retroperitoneum in relation to the sympathetic chain. In the head and neck, they are usually related to the cervical sympathetic ganglia or to the ganglion nodosum of the vagus nerve or the hypoglossal nerve. We describe what we believe is the first reported case of multiple ganglioneuromas of the parapharyngeal space in which two separate cranial nerves were involved. The patient was a 10-year-old girl who presented with a 2-year history of a painless and slowly progressive swelling on the left side of her neck and a 1-year history hoarseness. She had no history of relevant trauma or surgery. Intraoperatively, we found two tumors in the left parapharyngeal space-one that had arisen from the hypoglossal nerve and the other from the vagus nerve. Both ganglioneuromas were surgically removed, but the affected nerves had to be sacrificed. Postoperatively, the patient exhibited hypoglossal nerve and vocal fold palsy, but she was asymptomatic. In addition to the case description, we discuss the difficulties we faced during surgical excision.

  4. Kilohertz frequency nerve block enhances anti-inflammatory effects of vagus nerve stimulation

    PubMed Central

    Patel, Yogi A.; Saxena, Tarun; Bellamkonda, Ravi V.; Butera, Robert J.

    2017-01-01

    Efferent activation of the cervical vagus nerve (cVN) dampens systemic inflammatory processes, potentially modulating a wide-range of inflammatory pathological conditions. In contrast, afferent cVN activation amplifies systemic inflammatory processes, leading to activation of the hypothalamic-pituitary-adrenal (HPA) axis, the sympathetic nervous system through the greater splanchnic nerve (GSN), and elevation of pro-inflammatory cytokines. Ideally, to clinically implement anti-inflammatory therapy via cervical vagus nerve stimulation (cVNS) one should selectively activate the efferent pathway. Unfortunately, current implementations, in animal and clinical investigations, activate both afferent and efferent pathways. We paired cVNS with kilohertz electrical stimulation (KES) nerve block to preferentially activate efferent pathways while blocking afferent pathways. Selective efferent cVNS enhanced the anti-inflammatory effects of cVNS. Our results demonstrate that: (i) afferent, but not efferent, cVNS synchronously activates the GSN in a dose-dependent manner; (ii) efferent cVNS enabled by complete afferent KES nerve block enhances the anti-inflammatory benefits of cVNS; and (iii) incomplete afferent KES nerve block exacerbates systemic inflammation. Overall, these data demonstrate the utility of paired efferent cVNS and afferent KES nerve block for achieving selective efferent cVNS, specifically as it relates to neuromodulation of systemic inflammation. PMID:28054557

  5. Right-sided vagus nerve stimulation in humans: an effective therapy?

    PubMed

    Spuck, Sebastian; Nowak, Georg; Renneberg, Axel; Tronnier, Volker; Sperner, Jürgen

    2008-12-01

    Vagus nerve stimulation (VNS) is an additive treatment option for refractory epilepsy. The electrode is placed on the cervical trunk of the left vagus nerve. In patients who are not suitable for left-sided vagus nerve stimulation (L-VNS) right-sided vagus nerve stimulation (R-VNS) may be as effective. In animal models epilepsy is sufficiently suppressed by R-VNS. In a 16 years old boy suffering from medically refractory psychomotoric seizures with secondary generalisation, L-VNS reduced the frequency of generalized seizures. A deep wound infection required the removal of the system eight weeks later. Cicatrisation did not allow preparation of the left vagus nerve, therefore we implanted R-VNS with sufficient seizure suppression. However, compared to L-VNS, the effect occurred months later and cardiac symptoms were induced by stimulation of the right vagus nerve. R-VNS seems to be an effective and alternative therapy in selected patients responding to L-VNS where a left-sided reimplantation is not possible. Placement and adjustment of the device should be performed under ECG control. Further studies are necessary to compare the efficacy of L-VNS and R-VNS.

  6. Operative and technical complications of vagus nerve stimulator implantation.

    PubMed

    Spuck, Sebastian; Tronnier, Volker; Orosz, Iren; Schönweiler, Rainer; Sepehrnia, Abolgassem; Nowak, Georg; Sperner, Jürgen

    2010-12-01

    The treatment of refractory epilepsy by vagus nerve stimulation (VNS) is a well-established therapy option for patients not suitable for epilepsy surgery and therapy refractory depressions. To analyze surgical and technical complications after implantation of left-sided VNS in patients with therapy-refractory epilepsy and depression. One hundred five patients receiving a VNS or VNS-related operations (n = 118) from 1999 to 2008 were investigated retrospectively. At the time of operation, 84 patients were younger than 18 years, with a mean age of 10.5 years. Twenty (19%) patients had technical problems or complications. In 6 (5.7%) patients these problems were caused by the operation. The device was removed in 8 cases. The range of surgically and technically induced complications included electrode fractures, early and late onset of deep wound infections, transient vocal cord palsy, cardiac arrhythmia under test stimulation, electrode malfunction, and posttraumatic dysfunction of the stimulator. VNS therapy is combined with a wide spread of possible complications. Technical problems are to be expected, including electrode fracture, dislocation, and generator malfunction. The major complication in younger patients is the electrode fracture, which might be induced by growth during adolescence. Surgically induced complications of VNS implantation are comparably low. Cardiac symptoms and recurrent nerve palsy need to be taken into consideration.

  7. Intraoperative Vagus Nerve Monitoring: A Transnasal Technique during Skull Base Surgery

    PubMed Central

    Schutt, Christopher A.; Paskhover, Boris; Judson, Benjamin L.

    2014-01-01

    Objectives Intraoperative vagus nerve monitoring during skull base surgery has been reported with the use of an oral nerve monitoring endotracheal tube. However, the intraoral presence of an endotracheal tube can limit exposure by its location in the operative field during transfacial approaches and by limiting superior mobilization of the mandible during transcervical approaches. We describe a transnasal vagus nerve monitoring technique. Design and Participants Ten patients underwent open skull base surgery. Surgical approaches included transcervical (five), transfacial/maxillary swing (three), and double mandibular osteotomy (two). The vagus nerve was identified, stimulated, and monitored in all cases. Main Outcome Measures Intraoperative nerve stimulation, pre- and postoperative vagus nerve function through the use of flexible laryngoscopy in conjunction with assessment of subjective symptoms of hoarseness, voice change, and swallowing difficulty. Results Three patients had extensive involvement of the nerve by tumor with complete postoperative nerve deficit, one patient had a transient deficit following dissection of tumor off of nerve with resolution, and the remaining patients had nerve preservation. One patient experienced minor epistaxis during monitor tube placement that was managed conservatively. Conclusions Transnasal vagal nerve monitoring is a simple method that allows for intraoperative monitoring during nerve preservation surgery without limiting surgical exposure. PMID:25844292

  8. Intraoperative Vagus Nerve Monitoring: A Transnasal Technique during Skull Base Surgery.

    PubMed

    Schutt, Christopher A; Paskhover, Boris; Judson, Benjamin L

    2015-03-01

    Objectives Intraoperative vagus nerve monitoring during skull base surgery has been reported with the use of an oral nerve monitoring endotracheal tube. However, the intraoral presence of an endotracheal tube can limit exposure by its location in the operative field during transfacial approaches and by limiting superior mobilization of the mandible during transcervical approaches. We describe a transnasal vagus nerve monitoring technique. Design and Participants Ten patients underwent open skull base surgery. Surgical approaches included transcervical (five), transfacial/maxillary swing (three), and double mandibular osteotomy (two). The vagus nerve was identified, stimulated, and monitored in all cases. Main Outcome Measures Intraoperative nerve stimulation, pre- and postoperative vagus nerve function through the use of flexible laryngoscopy in conjunction with assessment of subjective symptoms of hoarseness, voice change, and swallowing difficulty. Results Three patients had extensive involvement of the nerve by tumor with complete postoperative nerve deficit, one patient had a transient deficit following dissection of tumor off of nerve with resolution, and the remaining patients had nerve preservation. One patient experienced minor epistaxis during monitor tube placement that was managed conservatively. Conclusions Transnasal vagal nerve monitoring is a simple method that allows for intraoperative monitoring during nerve preservation surgery without limiting surgical exposure.

  9. Role of the vagus nerve in the development and treatment of diet-induced obesity.

    PubMed

    de Lartigue, Guillaume

    2016-10-15

    This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie-rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high-fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade-induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity.

  10. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation.

    PubMed

    Browning, Kirsteen N; Verheijden, Simon; Boeckxstaens, Guy E

    2017-03-01

    Although the gastrointestinal tract contains intrinsic neural plexuses that allow a significant degree of independent control over gastrointestinal functions, the central nervous system provides extrinsic neural inputs that modulate, regulate, and integrate these functions. In particular, the vagus nerve provides the parasympathetic innervation to the gastrointestinal tract, coordinating the complex interactions between central and peripheral neural control mechanisms. This review discusses the physiological roles of the afferent (sensory) and motor (efferent) vagus in regulation of appetite, mood, and the immune system, as well as the pathophysiological outcomes of vagus nerve dysfunction resulting in obesity, mood disorders, and inflammation. The therapeutic potential of vagus nerve modulation to attenuate or reverse these pathophysiological outcomes and restore autonomic homeostasis is also discussed. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Mechanical Ptosis in Neurofibromatosis Type 1 Heralding the Diagnosis of Right Sided Cervical Vagus Nerve Neurofibroma: A Rare Case Report

    PubMed Central

    Parija, Sucheta; Panda, Bijnya; Pujahari, Susanta; Jena, Satyaswarup

    2016-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant, multisystem disorder. In NF1, involvement of vagus nerve can occur in the form of neurofibroma. A few cases of neurofibroma of thoracic vagus nerve have been reported while neurofibroma of cervical vagus nerve with NF1 is quite rare. A 19-year-old male came with complaints of decreased vision of both eyes and right sided drooping of eyelid since childhood. He was diagnosed as having NF1 with neurofibroma of right cervical vagus nerve. PMID:27504321

  12. Photostimulation of sensory neurons of the rat vagus nerve

    NASA Astrophysics Data System (ADS)

    Rhee, Albert Y.; Li, Gong; Wells, Jonathon; Kao, Joseph P. Y.

    2008-02-01

    We studied the effect of infrared (IR) stimulation on rat sensory neurons. Primary sensory neurons were prepared by enzymatic dissociation of the inferior (or "nodose") ganglia from the vagus nerves of rats. The 1.85-μm output of a diode laser, delivered through a 200-μm silica fiber, was used for photostimulation. Nodose neurons express the vanilloid receptor, TRPV1, which is a non-selective cation channel that opens in response to significant temperature jumps above 37 C. Opening TRPV1 channels allows entry of cations, including calcium (Ca 2+), into the cell to cause membrane depolarization. Therefore, to monitor TRPV1 activation consequent to photostimulation, we used fura-2, a fluorescent Ca 2+ indicator, to monitor the rise in intracellular Ca 2+ concentration ([Ca 2+]i). Brief trains of 2-msec IR pulses activated TRPV1 rapidly and reversibly, as evidenced by transient rises in [Ca 2+]i (referred to as Ca 2+ transients). Consistent with the Ca 2+ transients arising from influx of Ca 2+, identical photostimulation failed to evoke Ca 2+ responses in the absence of extracellular Ca 2+. Furthermore, the photo-induced Ca 2+ signals were abolished by capsazepine, a specific blocker of TRPV1, indicating that the responses were indeed mediated by TRPV1. We discuss the feasibility of using focal IR stimulation to probe neuronal circuit properties in intact neural tissue, and compare IR stimulation with another photostimulation technique-focal photolytic release of "caged" molecules.

  13. Vagus nerve stimulation for refractory epilepsy: a transatlantic experience.

    PubMed

    Vonck, Kristl; Thadani, Vijay; Gilbert, Karen; Dedeurwaerdere, Stefanie; De Groote, Liesbeth; De Herdt, Veerle; Goossens, Lut; Gossiaux, Fleur; Achten, Erik; Thiery, Evert; Vingerhoets, Guy; Van Roost, Dirk; Caemaert, Jacques; De Reuck, Jacques; Roberts, David; Williamson, Peter; Boon, Paul

    2004-01-01

    Vagus nerve stimulation (VNS) is an alternative treatment for medically or surgically refractory epilepsy. The long-term efficacy and safety of VNS were evaluated in a large patient series at Ghent University Hospital and Dartmouth-Hitchcock Medical Center. Between March 1995 and February 2003, seizure frequency and type as well as prescribed antiepileptic drugs and side effects were prospectively assessed in 131 patients treated with VNS in either center. Patients with a minimum follow-up duration of 6 months were included in the efficacy and safety analysis. A total of 118 of 131 implanted patients had a minimum postimplantation follow-up period of 6 months (mean, 33 months). The mean age of these patients was 32 years and the mean duration of refractory epilepsy was 22 years. The mean reduction in monthly seizure frequency in all patients was 55% (range, 0-100; SD = 31.6). Seven percent of patients were free of seizures with impaired consciousness, 50% of patients had a seizure frequency reduction of more than 50%, and 21% of patients were nonresponders. Fifteen patients reported stimulation-related side effects such as hoarseness or gagging. In a large patient series from two geographically distinct epilepsy centers located in two different continents, VNS proved to be efficacious and safe during long-term follow-up.

  14. Corpus callosotomy for childhood-onset drug-resistant epilepsy unresponsive to vagus nerve stimulation.

    PubMed

    Arya, Ravindra; Greiner, Hansel M; Horn, Paul S; Turner, Michele; Holland, Katherine D; Mangano, Francesco T

    2014-12-01

    Corpus callosotomy and vagus nerve stimulation are common palliative options for people with drug-resistant epilepsy when resective epilepsy surgery is not feasible. Because most of the published corpus callosotomy experience comes from a period before vagus nerve stimulation was approved and widely used, there is a paucity of data about efficacy of corpus callosotomy in patients with inadequate response to vagus nerve stimulation. We report seven patients who had complete corpus callosotomy after an inadequate response to vagus nerve stimulation. At the time of surgery, these patients had failed a median of six antiseizure medications, three patients also had failed a trial of ketogenic diet, and all the patients had a vagus nerve stimulation implanted for a mean duration of 2.5 years with maximal tolerated settings. There was a decrease in total daily seizure frequency of 34.7% (± 94.7; median, 71.4%; interquartile range, 55.3) after corpus callosotomy at a mean follow-up of 2.6 years (± 1.4). One patient achieved complete seizure freedom and five patients had ≥ 50% reduction in seizure frequency. Six patients continued to have partial-onset seizures though the frequency was decreased. Drop attacks and tonic seizures stopped in all the patients. Seizure outcomes after corpus callosotomy in our series are most likely a result of complex dynamic interaction between the natural history of epilepsy, the effect of the surgery, ongoing vagus nerve stimulation modulation, and modification in antiseizure drugs. Our study supports the clinical decision to try corpus callosotomy in patients having nonlateralizing drug-resistant epilepsy with inadequate response to vagus nerve stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Vagus nerve stimulation therapy: indications, programing, and outcomes.

    PubMed

    Yamamoto, Takamichi

    2015-01-01

    Vagus nerve stimulation (VNS) provides palliation of seizure reduction for patients with medically refractory epilepsy. VNS is indicated for symptomatic localization-related epilepsy with multiple and bilateral independent foci, symptomatic generalized epilepsy with diffuse epileptogenic abnormalities, refractory idiopathic generalized epilepsy, failed intracranial epilepsy surgery, and other several reasons of contraindications to epilepsy surgery. Programing of the parameters is a principal part in VNS. Output current and duty cycle should be adjusted to higher settings particularly when a patient does not respond to the initial setting, since the pivotal randomized trials performed in the United States demonstrated high stimulation made better responses in seizure frequency. These trials revealed that a ≥ 50% seizure reduction occurred in 36.8% of patients at 1 year, in 43.2% at 2 years, and in 42.7% at 3 years in 440 patients. Safety of VNS was also confirmed because side effects including hoarseness, throat discomfort, cough, paresthesia, and headache improved progressively during the period of 3 years. The largest retrospective study with 436 patients demonstrated the mean seizure reduction of 55.8% in nearly 5 years, and also found 75.5% at 10 years in 65 consecutive patients. The intermediate analysis report of the Japan VNS Registry showed that 60% of 164 cases got a ≥ 50% seizure reduction in 12 months. In addition to seizure reduction, VNS has positive effects in mood and improves energy level, memory difficulties, social aspects, and fear of seizures. VNS is an effective and safe option for patients who are not suitable candidates for intracranial epilepsy surgery.

  16. Vagus Nerve Stimulation Therapy: Indications, Programing, and Outcomes

    PubMed Central

    YAMAMOTO, Takamichi

    2015-01-01

    Vagus nerve stimulation (VNS) provides palliation of seizure reduction for patients with medically refractory epilepsy. VNS is indicated for symptomatic localization-related epilepsy with multiple and bilateral independent foci, symptomatic generalized epilepsy with diffuse epileptogenic abnormalities, refractory idiopathic generalized epilepsy, failed intracranial epilepsy surgery, and other several reasons of contraindications to epilepsy surgery. Programing of the parameters is a principal part in VNS. Output current and duty cycle should be adjusted to higher settings particularly when a patient does not respond to the initial setting, since the pivotal randomized trials performed in the United States demonstrated high stimulation made better responses in seizure frequency. These trials revealed that a ≥ 50% seizure reduction occurred in 36.8% of patients at 1 year, in 43.2% at 2 years, and in 42.7% at 3 years in 440 patients. Safety of VNS was also confirmed because side effects including hoarseness, throat discomfort, cough, paresthesia, and headache improved progressively during the period of 3 years. The largest retrospective study with 436 patients demonstrated the mean seizure reduction of 55.8% in nearly 5 years, and also found 75.5% at 10 years in 65 consecutive patients. The intermediate analysis report of the Japan VNS Registry showed that 60% of 164 cases got a ≥ 50% seizure reduction in 12 months. In addition to seizure reduction, VNS has positive effects in mood and improves energy level, memory difficulties, social aspects, and fear of seizures. VNS is an effective and safe option for patients who are not suitable candidates for intracranial epilepsy surgery. PMID:25925759

  17. [ELECTRIC STIMULATION OF VAGUS NERVE MODULATES A PROPAGATION OF OXYGEN EPILEPSY IN RABBITS].

    PubMed

    Zhilyaev, S Yu; Moskvin, A N; Platonova, T F; Demchenko, I T

    2015-11-01

    The activation of autonomic afferents (achieved through the vagus nerve (VN) electrical stimulation) on CNS O2 toxicity and cardiovascular function was investigated. In conscious rabbits at 5 ATA 02, prodromal signs of CNS O2 toxicity and convulsion latency were determined with and without vagus nerve (VN) stimulation. EEG, ECG and respiration were also recorded. In rabbits at 5 ATA, sympathetic overdrive and specific patterns on the EEG (synchronization of slow-waves), ECG (tachycardia) and respiration (respiratory minute volume increase) preceded motor convulsions. Vagus nerve stimulation increased parasympathetic component of autonomic drive and significantly delayed prodromal signs of oxygen toxicity and convulsion latency. Autonomic afferent input to the brain is a novel target for preventing CNS toxicity in HBO2.

  18. The Role of the Vagus Nerve: Modulation of the Inflammatory Reaction in Murine Polymicrobial Sepsis

    PubMed Central

    Kessler, Wolfram; Diedrich, Stephan; Menges, Pia; Ebker, Tobias; Nielson, Michael; Partecke, Lars Ivo; Traeger, Tobias; Cziupka, Katharina; van der Linde, Julia; Puls, Ralf; Busemann, Alexandra; Heidecke, Claus-Dieter; Maier, Stefan

    2012-01-01

    The particular importance of the vagus nerve for the pathophysiology of peritonitis becomes more and more apparent. In this work we provide evidence for the vagal modulation of inflammation in the murine model of colon ascendens stent peritonitis (CASP). Vagotomy significantly increases mortality in polymicrobial sepsis. This effect is not accounted for by the dilatation of gastric volume following vagotomy. As the stimulation of cholinergic receptors by nicotine has no therapeutic effect, the lack of nicotine is also not the reason for the reduced survival rate. In fact, increased septic mortality is a consequence of the absent modulating influence of the vagus nerve on the immune system: we detected significantly elevated serum corticosterone levels in vagotomised mice 24 h following CASP and a decreased ex vivo TNF-alpha secretion of Kupffer cells upon stimulation with LPS. In conclusion, the vagus nerve has a modulating influence in polymicrobial sepsis by attenuating the immune dysregulation. PMID:22547905

  19. The vagus nerve and the inflammatory reflex--linking immunity and metabolism.

    PubMed

    Pavlov, Valentin A; Tracey, Kevin J

    2012-12-01

    The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders.

  20. The vagus nerve and the inflammatory reflex—linking immunity and metabolism

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2014-01-01

    The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders. PMID:23169440

  1. Optimization of epilepsy treatment with vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Uthman, Basim; Bewernitz, Michael; Liu, Chang-Chia; Ghacibeh, Georges

    2007-11-01

    Epilepsy is one of the most common chronic neurological disorders that affects close to 50 million people worldwide. Antiepilepsy drugs (AEDs), the main stay of epilepsy treatment, control seizures in two thirds of patients only. Other therapies include the ketogenic diet, ablative surgery, hormonal treatments and neurostimulation. While other approaches to stimulation of the brain are currently in the experimental phase vagus nerve stimulation (VNS) has been approved by the FDA since July 1997 for the adjunctive treatment of intractable partial onset epilepsy with and without secondary generalization in patients twelve years of age or older. The safety and efficacy of VNS have been proven and duplicated in two subsequent double-blinded controlled studies after two pilot studies demonstrated the feasibility of VNS in man. Long term observational studies confirmed the safety of VNS and that its effectiveness is sustained over time. While AEDs influence seizure thresholds via blockade or modulation of ionic channels, inhibit excitatory neurotransmitters or enhance inhibitory neurotransmitters the exact mechanism of action of VNS is not known. Neuroimaging studies revealed that VNS increases blood flow in certain regions of the brain such as the thalamus. Chemical lesions in the rat brains showed that norepinephrine is an important link in the anticonvulsant effect of VNS. Analysis of cerebrospinal fluid obtained from patients before and after treatment with VNS showed modest decreases in excitatory neurotransmitters. Although Hammond et al. reported no effect of VNS on scalp EEG by visual analysis and Salinsky et al. found no effect of VNS on scalp EEG by spectral analysis, Kuba et al. suggested that VNS reduces interictal epileptiform activity. Further, nonlinear dynamical analysis of the electroencephalogram in the rat and man have reportedly shown predictable changes (decrease in the short term Lyapunov exponent STLmax and T-index) more than an hour prior to the

  2. Chronic migraine headache prevention with noninvasive vagus nerve stimulation

    PubMed Central

    Calhoun, Anne H.; Lipton, Richard B.; Grosberg, Brian M.; Cady, Roger K.; Dorlas, Stefanie; Simmons, Kristy A.; Mullin, Chris; Liebler, Eric J.; Goadsby, Peter J.; Saper, Joel R.

    2016-01-01

    Objective: To evaluate the feasibility, safety, and tolerability of noninvasive vagus nerve stimulation (nVNS) for the prevention of chronic migraine (CM) attacks. Methods: In this first prospective, multicenter, double-blind, sham-controlled pilot study of nVNS in CM prophylaxis, adults with CM (≥15 headache d/mo) entered the baseline phase (1 month) and were subsequently randomized to nVNS or sham treatment (2 months) before receiving open-label nVNS treatment (6 months). The primary endpoints were safety and tolerability. Efficacy endpoints in the intent-to-treat population included change in the number of headache days per 28 days and acute medication use. Results: Fifty-nine participants (mean age, 39.2 years; mean headache frequency, 21.5 d/mo) were enrolled. During the randomized phase, tolerability was similar for nVNS (n = 30) and sham treatment (n = 29). Most adverse events were mild/moderate and transient. Mean changes in the number of headache days were −1.4 (nVNS) and −0.2 (sham) (Δ = 1.2; p = 0.56). Twenty-seven participants completed the open-label phase. For the 15 completers initially assigned to nVNS, the mean change from baseline in headache days after 8 months of treatment was −7.9 (95% confidence interval −11.9 to −3.8; p < 0.01). Conclusions: Therapy with nVNS was well-tolerated with no safety issues. Persistent prophylactic use may reduce the number of headache days in CM; larger sham-controlled studies are needed. ClinicalTrials.gov identifier: NCT01667250. Classification of evidence: This study provides Class II evidence that for patients with CM, nVNS is safe, is well-tolerated, and did not significantly change the number of headache days. This pilot study lacked the precision to exclude important safety issues or benefits of nVNS. PMID:27412146

  3. [The inflammatory reflex: the role of the vagus nerve in regulation of immune functions].

    PubMed

    Mravec, B

    2011-01-01

    Experimental studies published in past years have shown an important role of the vagus nerve in regulating immune functions. Afferent pathways of this cranial nerve transmit signals related to tissue damage and immune reactions to the brain stem. After central processing of these signals, activated efferent vagal pathways modulate inflammatory reactions through inhibiting the synthesis and secretion of pro-inflammatory cytokines by immune cells. Therefore, pathways localized in the vagus nerve constitute the afferent and efferent arms of the so-called "inflammatory reflex" that participates in negative feedback regulation of inflammation in peripheral tissues. Activation of efferent pathways of the vagus nerve significantly reduces tissue damage in several models of diseases in experimental animals. Clinical studies also indicate the importance of the vagus nerve in regulating inflammatory reactions in humans. It is suggested that alteration of the inflammatory reflex underlies the etiopathogenesis of diseases characterized by exaggerated production of pro-inflammatory mediators. Therefore, research into the inflammatory reflex may create the basis for developing new approaches in the treatment of diseases with inflammatory components.

  4. Vagus nerve stimulation for complex partial seizures: surgical technique, safety, and efficacy.

    PubMed

    Landy, H J; Ramsay, R E; Slater, J; Casiano, R R; Morgan, R

    1993-01-01

    Electrical stimulation of the vagus nerve has shown efficacy in controlling seizures in experimental models, and early clinical trials have suggested possible benefit in humans. Eleven patients with complex partial seizures were subjected to implantation of vagus nerve stimulators. Electrode contacts embedded in silicone rubber spirals were placed on the left vagus nerve in the low cervical area. A transcutaneously programmable stimulator module was placed in an infraclavicular subcutaneous pocket and connected to the electrode. One patient required replacement of the system due to electrode fracture. Another patient developed delayed ipsilateral vocal-cord paralysis; the technique was then modified to allow more tolerance for postoperative nerve edema. A third patient showed asymptomatic vocal-cord paresis on immediate postoperative laryngoscopy. Vagus nerve stimulation produces transient vocal-cord dysfunction while the current is on. Nine patients were randomly assigned to receive either high- or low-current stimulation, and seizure frequency was recorded. The high-current stimulation group showed a median reduction in seizure frequency of 27.7% compared to the preimplantation baseline, while the low-current stimulation group showed a median increase of 6.3%. This difference approached statistical significance. The entire population then received maximally tolerable stimulation. The high-current stimulation group showed a further 14.3% reduction, while the low-current stimulation group showed a 25.4% reduction compared to the blinded period. The efficacy of vagus nerve stimulation seemed to depend on stimulus parameters, and a cumulative effect was evident. These results are encouraging, and further study of this modality as an adjunct treatment for epilepsy is warranted.

  5. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis.

    PubMed

    Ji, H; Rabbi, M F; Labis, B; Pavlov, V A; Tracey, K J; Ghia, J E

    2014-03-01

    The cholinergic anti-inflammatory pathway is an efferent vagus nerve-based mechanism that regulates immune responses and cytokine production through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Decreased efferent vagus nerve activity is observed in inflammatory bowel disease. We determined whether central activation of this pathway alters inflammation in mice with colitis and the mediating role of a vagus nerve-to-spleen circuit and α7nAChR signaling. Two experimental models of colitis were used in C57BL/6 mice. Central cholinergic activation induced by the acetylcholinesterase inhibitor galantamine or a muscarinic acetylcholine receptor agonist treatments resulted in reduced mucosal inflammation associated with decreased major histocompatibility complex II level and pro-inflammatory cytokine secretion by splenic CD11c⁺ cells mediated by α7nAChR signaling. The cholinergic anti-inflammatory efficacy was abolished in mice with vagotomy, splenic neurectomy, or splenectomy. In conclusion, central cholinergic activation of a vagus nerve-to-spleen circuit controls intestinal inflammation and this regulation can be explored to develop novel therapeutic strategies.

  6. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis

    PubMed Central

    Koopman, Frieda A.; Chavan, Sangeeta S.; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P. Richard; Mehta, Ashesh D.; Levine, Yaakov A.; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J.; Tak, Paul P.

    2016-01-01

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the “inflammatory reflex,” is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  7. Vagus Nerve Stimulation Reduces Cocaine Seeking and Alters Plasticity in the Extinction Network

    ERIC Educational Resources Information Center

    Childs, Jessica E.; DeLeon, Jaime; Nickel, Emily; Kroener, Sven

    2017-01-01

    Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic…

  8. Vagus Nerve Stimulation Reduces Cocaine Seeking and Alters Plasticity in the Extinction Network

    ERIC Educational Resources Information Center

    Childs, Jessica E.; DeLeon, Jaime; Nickel, Emily; Kroener, Sven

    2017-01-01

    Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic…

  9. An electron microscope study of vagus nerve composition in the ferret.

    PubMed

    Asala, S A; Bower, A J

    1986-01-01

    The total number of axons in the cervical and abdominal vagus nerves of the ferret was counted. The ratio of myelinated to non-myelinated, and afferent to efferent axons was determined. The fibre diameter spectrum of myelinated axons was measured. The total number of axons in the ferret cervical vagus is similar to other mammals (approximately 28,000); the majority of axons are afferent (approx. 24,000) and also the majority of axons are nonmyelinated (approx. 27,000). The dorsal abdominal trunk is about twice the size of the ventral trunk although both trunks have the same number of efferent axons. The abdominal vagal trunks are over 90% afferent.

  10. The strange case of the ear and the heart: The auricular vagus nerve and its influence on cardiac control.

    PubMed

    Murray, Aaron R; Atkinson, Lucy; Mahadi, Mohd K; Deuchars, Susan A; Deuchars, Jim

    2016-08-01

    The human ear seems an unlikely candidate for therapies aimed at improving cardiac function, but the ear and the heart share a common connection: the vagus nerve. In recent years there has been increasing interest in the auricular branch of the vagus nerve (ABVN), a unique cutaneous subdivision of the vagus distributed to the external ear. Non-invasive electrical stimulation of this nerve through the skin may offer a simple, cost-effective alternative to the established method of vagus nerve stimulation (VNS), which requires a surgical procedure and has generated mixed results in a number of clinical trials for heart failure. This review discusses the available evidence in support of modulating cardiac activity using this strange auricular nerve.

  11. Optogenetic Stimulation of Peripheral Vagus Nerves using Flexible OLED Display Technology to Treat Chronic Inflammatory Disease and Mental Health Disorders

    DTIC Science & Technology

    2016-03-31

    Optogenetic Stimulation of Peripheral Vagus Nerves using Flexible OLED Display Technology to Treat Chronic Inflammatory Disease and Mental Health...using a non-invasive drug-free optogenetics -based therapy that treats patients by optically stimulating afferent branches of the auricular vagus...therapeutic optical stimulation in optogenetically modified neural tissue. Keywords: Optogenetics ; neuromodulation; organic light emitting diode

  12. Catecholamine-containing nerve fibres in the human abdominal vagus.

    PubMed

    Lundberg, J; Ahlman, H; Dahlström, A; Kewenter, J

    1976-03-01

    The vagal nerve of man has been investigated for the presence of adrenergic nerve fibres using the histochemical fluorescence method of Hillarp and Falck. Following 30-60 min of nerve ligation during surgical operations, the right anterior main trunk (subdiafragmatic level) from one patient, and the anterior nerve of Latarget of 5 patients were found to contain unmyelinated nerve fibres with accumulations of green fluorescent material representing a catecholamine. The observations indicate the presence of adrenergic nerve fibres running caudally in the human vagal nerve, in accordance with similar findings in other mammals, e.g. cats and dogs.

  13. Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders.

    PubMed

    Jin, Yu; Kong, Jian

    2016-01-01

    Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain regions associated with Autism Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment effects for comorbid disorders of ASD such as epilepsy and depression. We thus hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid epilepsy and depression, but also for the core symptoms of ASD. The goal of this manuscript is to summarize the findings and rationales for applying tVNS to treat ASD and propose potential parameters for tVNS treatment of ASD.

  14. Activation of vagus nerve by semapimod alters substance P levels and decreases breast cancer metastasis.

    PubMed

    Erin, Nuray; Duymuş, Ozlem; Oztürk, Saffet; Demir, Necdet

    2012-11-10

    Chronic inflammation is involved in initiation as well as in progression of cancer. Semapimod, a tetravalent guanylhydrazon and formerly known as CNI-1493, inhibits the release of inflammatory cytokines from activated macrophages and this effect is partly mediated by the vagus nerve. Our previous findings demonstrated that inactivation of vagus nerve activity as well sensory neurons enhanced visceral metastasis of 4THM breast carcinoma. Hence semapimod by activating vagus nerve may inhibit breast cancer metastasis. Here, effects of semapimod on breast cancer metastasis, the role of vagal sensory neurons on this effect and changes in mediators of the neuroimmune connection, such as substance P (SP) as well as neprilysin-like activity, were examined. Vagotomy was performed on half of the control animals that were treated with semapimod following orthotopic injection of 4THM breast carcinoma cells. Semapimod decreased lung and liver metastases in control but not in vagotomized animals with an associated increased SP levels in sensory nerve endings. Semapimod also increased neprilysin-like activity in lung tissue of control animals but not in tumor-bearing animals. This is the first report demonstrating that semapimod enhances vagal sensory nerve activity and may have anti-tumoral effects under in-vivo conditions. Further studies, however, are required to elucidate the conditions and the mechanisms involved in anti-tumoral effects of semapimod.

  15. Hemiatrophy of the tongue caused by an extensive vagus nerve schwannoma masquerading as a carotid chemodectoma.

    PubMed

    Rallis, George; Mourouzis, Konstantinos; Maltezos, Chrysostomos; Stathopoulos, Panagiotis

    2015-03-01

    Carotid chemodectomas or carotid body tumors are rare neoplasms, generally benign and frequently asymptomatic, which represent 0.6 % of all head and neck tumours. Schwannomas or neurilemmomas are benign, slow growing tumours that derive from the sheath of peripheral and cranial nerves. Of all neurilemmomas, 25-45 % originate from the head and neck region, with the vagus nerve being one the most encountered sites of occurrence. We describe a schwannoma originating from the vagus nerve mimicking a carotid body tumour and compromising the function of the hypoglossal nerve. Patients with lateral neck masses near the bifurcation of the carotid artery are often referred to the maxillofacial surgeon. The differential diagnosis of these lesions includes a variety of tumours among which carotid chemodectomas and vagus nerve schwannomas have a significant incidence. Both lesions may appear as completely asymptomatic, thus it is very difficult to identify the origin of the tumour based on physical examination. In making a differential diagnosis of the cervical tumours imaging studies play a key role. A diagnostic algorithm based on contemporary imaging modalities, which can be useful in order to distinguish between these two pathological entities is presented.

  16. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    PubMed Central

    Xiang, Yao-xian; Wang, Wen-xin; Xue, Zhe; Zhu, Lei; Wang, Sheng-bao; Sun, Zheng-hui

    2015-01-01

    Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and interleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression. PMID:26170817

  17. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05.

    PubMed

    Morris, G L; Mueller, W M

    1999-11-10

    To perform an open-label, long-term efficacy and safety/tolerability study of vagus nerve stimulation (VNS) of 454 patients with refractory epilepsy. Subjects were enrolled from five clinical trials of VNS between 1988 and 1995 after undergoing an implantation of a pulse generator in the chest and a left cervical vagus nerve-stimulating lead coil. Patients were assessed at 6-month intervals until device approval. Seizure frequencies, medication treatment, and adverse events (AEs) were recorded and entered into a database. A total of 454 patients were implanted, and 440 patients yielded assessable data. A > or =50% seizure reduction postimplantation occurred in 36.8% of patients at 1 year, in 43.2% at 2 years, and in 42.7% at 3 years. Median seizure reductions compared with baseline were 35% at 1 year, 44.3% at 2 years, and 44.1% at 3 years. Most common AEs postimplantation at 1 year were hoarseness (28%) and paraesthesias (12%), at 2 years were hoarseness (19.8%) and headache (4.5%), and at 3 years was shortness of breath (3.2%). Continuation rates were 96.7% at 1 year, 84.7% at 2 years, and 72.1% at 3 years. Long-term, open-label vagus nerve stimulation (VNS) provided seizure reduction similar to or greater than acute studies, for median reductions and for those reaching a > or =50% seizure reduction. VNS remained safe and well tolerated, with nearly three-quarters of the patients choosing to continue therapy.

  18. Isolated glossopharyngeal and vagus nerves palsy due to fracture involving the left jugular foramen.

    PubMed

    Alberio, N; Cultrera, F; Antonelli, V; Servadei, F

    2005-07-01

    This report describes a case of delayed post-traumatic glossopharyngeal and vagus nerves palsy (i.e. dysphonia and swallowing dysfunction). A high resolution CT study of the cranial base detected a fracture rim encroaching on the left jugular foramen. Treatment consisted in supportive measures with incomplete recovery during a one-year follow-up period. Lower cranial nerves palsies after head trauma are rare and, should they occur, a thorough investigation in search of posterior cranial base and cranio-cervical lesions is warranted. The presumptive mechanism in our case is a fracture-related oedema and ischemic damage to the nerves leading to the delayed occurrence of the palsy.

  19. Vagus nerve pain referred to the craniofacial region. A case report and literature review with implications for referred cardiac pain.

    PubMed

    Myers, D E

    2008-02-23

    The pain of angina pectoris and myocardial infarction is sometimes referred to the head and neck region. The mechanism for this effect remains obscure. A case is presented here that reports that electrical stimulation of a cardiac branch of the left vagus nerve in humans can cause referred craniofacial pain. This leads to the hypothesis that the vagus nerve plays a role in mediating this pain. A review of the clinical and physiologic literature supports this hypothesis.

  20. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity.

    PubMed

    Giordano, Flavio; Zicca, Anna; Barba, Carmen; Guerrini, Renzo; Genitori, Lorenzo

    2017-04-01

    Indications for vagus nerve stimulation (VNS) therapy include focal, multifocal epilepsy, drop attacks (tonic/atonic seizures), Lennox-Gastaut syndrome, tuberous sclerosis complex (TSC)-related multifocal epilepsy, and unsuccessful resective surgery. Surgical outcome is about 50-60% for seizures control, and may also improve mood, cognition, and memory. On this basis, VNS has also been proposed for the treatment of major depression and Alzheimer's' disease. The vagus nerve stimulator must be implanted with blunt technique on the left side to avoid cardiac side effects through the classic approach for anterior cervical discectomy. The actual device is composed of a wire with three helical contacts (two active contacts, one anchoring) and a one-pin battery. VNS is usually started 2 weeks after implantation with recommended settings of stimulation (1.0-2.0 mA; 500 μs pulse width; 20-30 Hz; 30 s ON, 5 min OFF). The complications of VNS therapy are early (related to surgery) and late (related to the device and to stimulation of the vagus nerve). Early complications include the following: intraoperative bradycardia and asystole during lead impedance testing, peritracheal hematoma, infections (3-8%), and vagus nerve injury followed by hoarseness, dyspnea, and dysphagia because of left vocal cord paralysis. Delayed morbidity due to the device includes late infections or problems in wound healing; other more rare events are due to late injury of the nerve. Late complications due to nerve stimulation include delayed arrhythmias, laryngopharyngeal dysfunction (hoarseness, dyspnea, and coughing), obstructive sleep apnea, stimulation of phrenic nerve, tonsillar pain mimicking glossopharyngeal neuralgia, and vocal cord damage during prolonged endotracheal intubation. The laryngopharyngeal dysfunction occurs in about 66% of patients and is usually transitory and due to the stimulation of the inferior (recurrent) laryngeal nerve. A true late paralysis of the left vocal cord

  1. Interactions between splanchnic and vagus nerves in the control of mean intragastric pressure in the ferret.

    PubMed Central

    Andrews, P L; Lawes, I N

    1984-01-01

    To determine whether splanchnic nerves relax the stomach by direct or indirect mechanisms, ramp inflations of the stomach, section and electrical stimulation of the vagus and greater splanchnic nerves, and step inflations of the duodenum were used. A high threshold, sustained inhibition of the gastric pressure response to ramp inflation was mediated by the vagus. Prior splanchnectomy increased vagal inhibition. The greater splanchnic nerves had no effect on gastric responses to inflation, although after vagotomy they were shown to be mediators of a low threshold, powerful but transient inhibition of the stomach. This was not dependent on intrinsic neurones with nicotinic receptors. Electrical stimulation of the greater splanchnic nerves produced a relaxation of the stomach, the magnitude of which was determined by resting pressure. Splanchnically mediated relaxation was not abolished by atropine, nor was it reduced by concurrent vagal stimulation. At submaximal levels of vagal stimulation the two nerves had a partially additive effective on relaxation. Duodenal inflation had an effect on intracorpus pressure similar to that of electrical stimulation of the greater splanchnic nerves on intragastric pressure. Reflex relaxation of the corpus evoked by duodenal distension was decreased by atropine but greatly increased by atropine coupled with vagotomy. These changes were caused by variations in resting pressure. It was concluded that the principal effect of splanchnic nerves on mean gastric pressure is direct and does not depend on inhibition of cholinergic neurones either centrally or peripherally. Evidence is presented for central interactions between the vagus and the greater splanchnic nerves in the anaesthetized ferret. PMID:6747874

  2. Intractable episodic bradycardia resulting from progressive lead traction in an epileptic child with a vagus nerve stimulator: a delayed complication.

    PubMed

    Clark, Aaron J; Kuperman, Rachel A; Auguste, Kurtis I; Sun, Peter P

    2012-04-01

    Vagus nerve stimulation (VNS) is used as palliation for adult and pediatric patients with intractable epilepsy who are not candidates for curative resection. Although the treatment is generally safe, complications can occur intraoperatively, perioperatively, and in a delayed time frame. In the literature, there are 2 reports of pediatric patients with implanted VNS units who had refractory bradycardia that resolved after the stimulation was turned off. The authors report the case of a 13-year-old boy with a history of vagus nerve stimulator placement at 2 years of age, who developed intractable episodic bradycardia that persisted despite the cessation of VNS and whose imaging results suggested vagus nerve tethering by the leads. He was subsequently taken to the operating room for exploration, where it was confirmed that the stimulator lead was exerting traction on the vagus nerve, which was displaced from the carotid sheath. After the vagus nerve was untethered and the leads were replaced, the bradycardia eventually resolved with continual effective VNS therapy. When placing a VNS unit in a very young child, accommodations must be made for years of expected growth. Delayed intractable bradycardia can result from a vagus nerve under traction by tethered stimulator leads.

  3. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial.

    PubMed

    Stefan, Hermann; Kreiselmeyer, Gernot; Kerling, Frank; Kurzbuch, Katrin; Rauch, Christophe; Heers, Marcel; Kasper, Burkhard S; Hammen, Thilo; Rzonsa, Martina; Pauli, Elisabeth; Ellrich, Jens; Graf, Wolfgang; Hopfengärtner, Rüdiger

    2012-07-01

    To elucidate, in a pilot-study, whether noninvasive transcutaneous vagus nerve stimulation (t-VNS) is a safe and tolerable alternative treatment option in pharmacoresistant epilepsy. t-VNS was applied to 10 patients with pharmacoresistant epilepsies. Stimulation via the auricular branch of the vagus nerve of the left tragus was delivered three times per day for 9 months. Subjective documentation of stimulation effects was obtained from patients' seizure diaries. For a more reliable assessment of seizure frequency, we carried out prolonged outpatient video-electroencephalography (EEG) monitoring. In addition, computerized testing of cognitive, affective, and emotional functions was performed. Three patients aborted the study. Of the remaining seven patients, an overall reduction of seizure frequency was observed in five patients after 9 months of t-VNS. The noninvasive t-VNS stimulation is a safe and well-tolerated method for relatively long periods, and might be an alternative treatment option for patients with epilepsy.

  4. Vagus nerve stimulation therapy in pediatric patients with refractory epilepsy: retrospective study.

    PubMed

    Helmers, S L; Wheless, J W; Frost, M; Gates, J; Levisohn, P; Tardo, C; Conry, J A; Yalnizoglu, D; Madsen, J R

    2001-11-01

    This six-center, retrospective study evaluated the effectiveness, tolerability, and safety of vagus nerve stimulation in children. Data were available for 125 patients at baseline, 95 patients at 3 months, 56 patients at 6 months, and 12 patients at 12 months. The typical patient, aged 12 years, had onset of seizures at age 2 years and had tried nine anticonvulsants before implantation. Collected data included preimplant history, seizures, implant, device settings, quality of life, and adverse events. Average seizure reduction was 36.1% at 3 months and 44.7% at 6 months. Common adverse events included voice alteration and coughing during stimulation. Rare adverse events, unique to this age group, included increased drooling and increased hyperactivity. Quality of life improved in alertness, verbal communication, school performance, clustering of seizures, and postictal periods. We concluded that vagus nerve stimulation is an effective treatment for medically refractory epilepsy in children.

  5. Case Report of Lewis and Sumner Syndrome with Bilateral Vagus Nerves Paralysis for 16 Years.

    PubMed

    Vasaghi, Attiyeh; Ashraf, Alireza; Shirzadi, Alireza; Petramfar, Peyman

    2016-12-01

    This report describes a patient with dysphonia for 16 years in combination with asymmetric and progressive decrease in sense and power of both upper and lower extremities for the past 3 years. Electrophysiological study revealed asymmetric conduction block and abnormal sensory action potential in 4 limbs. The vagus nerves palsy and abnormal electrodiagnosis of the limbs led us to diagnose the disease as Lewis and Sumner syndrome, also called multifocal acquired demyelinating sensory and motor neuropathy diagnosis, which improved by corticosteroid consumption to some extent. This case is uncommon by its long time presentation and progression. To the best of the authors' knowledge, this is the first report of simultaneous bilateral vagus nerve palsy in combination with upper and lower limbs' demyelinating neuropathy. In conclusion, persistent dysphonia can be a part of the presentation of demyelinating neuropathy.

  6. Adaptation of Continuous Intraoperative Vagus Nerve Stimulation for Monitoring of Recurrent Laryngeal Nerve During Minimally Invasive Esophagectomy.

    PubMed

    Tsang, Raymond K; Law, Simon

    2016-01-01

    Esophagectomy has risk of recurrent laryngeal nerve (RLN) injury. Conventional nerve monitoring has been used to help identify and protect the RLN. A new concept of continuous intraoperative nerve monitoring (CIONM) by stimulation of the ipsilateral vagus nerve has been used in thyroidectomy. The current report describes adapting the CIONM method for use in video-assisted thoracoscopic (VATS) esophagectomy. The nerve monitor employed is NIM 3.0 with automatic periodic stimulation (Medtronics Inc., USA). Patient is intubated with NIM contact-reinforced EMG endotracheal tube (Medtronics Inc., USA). The operation starts with a left lower neck incision, and the stimulating electrode is secured around the left vagus nerve. The patient is then turned to the left lateral position for VATS esophagectomy. CIONM of the left RLN is achieved by regular stimulation of the left vagus nerve, and intact nerve conduction is detected by the electromyography (EMG) of the left vocalis muscle. The alarm is set to activate when EMG amplitude reduces by 50% or latency prolongs by 10%. Initial experience of ten cases showed that a mean time of 35 min was required to complete the electrode insertion in the neck. There was one event in which there was more than 50% reduction of EMG amplitude that persisted but the patient had no vocal cord paralysis after operation. In another patient, the EMG reduced by 75% and persisted. The patient had temporary vocal cord paralysis. CIONM is feasible during VATS esophagectomy and can alert the surgeon of imminent injury to the RLNs, thereby preventing permanent injury.

  7. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial.

    PubMed

    Handforth, A; DeGiorgio, C M; Schachter, S C; Uthman, B M; Naritoku, D K; Tecoma, E S; Henry, T R; Collins, S D; Vaughn, B V; Gilmartin, R C; Labar, D R; Morris, G L; Salinsky, M C; Osorio, I; Ristanovic, R K; Labiner, D M; Jones, J C; Murphy, J V; Ney, G C; Wheless, J W

    1998-07-01

    The purpose of this multicenter, add-on, double-blind, randomized, active-control study was to compare the efficacy and safety of presumably therapeutic (high) vagus nerve stimulation with less (low) stimulation. Chronic intermittent left vagus nerve stimulation has been shown in animal models and in preliminary clinical trials to suppress the occurrence of seizures. Patients had at least six partial-onset seizures over 30 days involving complex partial or secondarily generalized seizures. Concurrent antiepileptic drugs were unaltered. After a 3-month baseline, patients were surgically implanted with stimulating leads coiled around the left vagus nerve and connected to an infraclavicular subcutaneous programmable pacemaker-like generator. After randomization, device initiation, and a 2-week ramp-up period, patients were assessed for seizure counts and safety over 3 months. The primary efficacy variable was the percentage change in total seizure frequency compared with baseline. Patients receiving high stimulation (94 patients, ages 13 to 54 years) had an average 28% reduction in total seizure frequency compared with a 15% reduction in the low stimulation group (102 patients, ages 15 to 60 year; p = 0.04). The high-stimulation group also had greater improvements on global evaluation scores, as rated by a blinded interviewer and the patient. High stimulation was associated with more voice alteration and dyspnea. No changes in physiologic indicators of gastric, cardiac, or pulmonary functions occurred. Vagus nerve stimulation is an effective and safe adjunctive treatment for patients with refractory partial-onset seizures. It represents the advent of a new, nonpharmacologic treatment for epilepsy.

  8. Transcutaneous auricular vagus nerve stimulation for pediatric epilepsy: study protocol for a randomized controlled trial.

    PubMed

    He, Wei; Wang, Xiao-Yu; Zhou, Li; Li, Zhi-Mei; Jing, Xiang-Hong; Lv, Zhong-Li; Zhao, Yu-Feng; Shi, Hong; Hu, Ling; Su, Yang-Shuai; Zhu, Bing

    2015-08-21

    Recently, clinical observations reported the potential benefit of vagus nerve stimulation (VNS) for pediatric epilepsy. Transcutaneous auricular vagus nerve stimulation (ta-VNS) is a newer non-invasive VNS, making it more accessible for treating pediatric epilepsy, yet there is limited clinical evidence for its effectiveness. A three-center, randomized, parallel, controlled trial will be carried out to evaluate whether ta-VNS improves pediatric epilepsy. Pediatric patients aged 2 to 14 years with epilepsy will be recruited and randomly assigned to transcutaneous auricular vagus nerve stimulation (ta-VNS) group, transcutaneous auricular non-vagus nerve stimulation (tan-VNS) group, and control group with a 1:1: sqrt(2) allocation, as per a computer generated randomization schedule stratified by study center using permuted blocks of random sizes. We will use Zelen's design, in which randomization occurs before informed consent. Patients in the stimulation groups will receive tan-VNS or ta-VNS three times a day for 6 months. Patients in the control group will not be provided with any stimulation during the 6 months. The guardians of the patients are required to keep a detailed diary to record the data. Outcome assessment including seizure frequency, electroencephalogram (EEG), heart rate variability (HRV) analysis, quality of life (QOL) and adverse events will be made at baseline and 2, 4 and 6 months after ta-VNS initiation. The seizure frequency and adverse events will be followed up at 1 year and 1.5 years after ta-VNS initiation. Results of this trial will help clarify whether ta-VNS treatment is beneficial for pediatric patients, and will make clear whether the anticonvulsive effect of ta-VNS is correlated with the improvement of sympathovagal imbalance. NCT02004340 . Registration date: 13 November 2013.

  9. Radiofrequency energy ablation in a child with an implanted vagus nerve stimulator.

    PubMed

    Radolec, Mackenzy M; Beerman, Lee B; Arora, Gaurav

    2015-10-01

    An 8-year-old girl with supraventricular tachycardia and an implanted vagus nerve stimulator underwent radiofrequency ablation of her supraventricular tachycardia substrate. No known literature exists addressing the potential interaction of these two technologies, although there are reported cases of interaction between radiofrequency and other implanted stimulating devices such as pacemakers. The procedure was performed successfully without observed interaction, and the patient's family reported no significant change in frequency of seizure control.

  10. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. The Vagus Nerve Stimulation Study Group.

    PubMed

    1995-02-01

    Preliminary reports have suggested that chronic, intermittent stimulation of the vagus nerve (VNS) is an alternative treatment for patients with medically refractory seizures. We performed a multicenter, randomized, controlled trial to evaluate the efficacy and safety of adjunctive VNS in patients with poorly controlled partial seizures. An implanted, programmable pacemaker-like device was connected to two stimulating electrodes wrapped around the left vagus nerve. One hundred fourteen patients were randomized to receive 14 weeks of high-level stimulation (presumed therapeutic dose) or low-level stimulation (presumed subtherapeutic dose) using a blinded, parallel study design. Seizure frequency was compared with a 12-week baseline. Mean reduction in seizure frequency was 24.5% for the "high" stimulation group versus 6.1% for the "low" stimulation group (p = 0.01). Thirty-one percent of patients receiving high stimulation had a seizure frequency reduction of > or = 50%, versus 13% of patients in the low group (p = 0.02). Treatment emergent side effects were largely limited to a transient hoarseness occurring during the stimulation train. One patient with no previous history of cardiac disease experienced a myocardial infarction during the third month of vagal stimulation. VNS may be an effective alternative treatment for patients who have failed antiepileptic drug therapy and are not optimal candidates for epilepsy surgery.

  11. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat.

    PubMed

    Roosevelt, Rodney W; Smith, Douglas C; Clough, Richard W; Jensen, Robert A; Browning, Ronald A

    2006-11-13

    The vagus nerve is an important source of afferent information about visceral states and it provides input to the locus coeruleus (LC), the major source of norepinephrine (NE) in the brain. It has been suggested that the effects of electrical stimulation of the vagus nerve on learning and memory, mood, seizure suppression, and recovery of function following brain damage are mediated, in part, by the release of brain NE. The hypothesis that left vagus nerve stimulation (VNS) at the cervical level results in increased extracellular NE concentrations in the cortex and hippocampus was tested at four stimulus intensities: 0.0, 0.25, 0.5, and 1.0 mA. Stimulation at 0.0 and 0.25 mA had no effect on NE concentrations, while the 0.5 mA stimulation increased NE concentrations significantly in the hippocampus (23%), but not the cortex. However, 1.0 mA stimulation significantly increased NE concentrations in both the cortex (39%) and hippocampus (28%) bilaterally. The increases in NE were transient and confined to the stimulation periods. VNS did not alter NE concentrations in either structure during the inter-stimulation baseline periods. No differences were observed between NE levels in the initial baseline and the post-stimulation baselines. These findings support the hypothesis that VNS increases extracellular NE concentrations in both the hippocampus and cortex.

  12. In situ repair of vagus nerve stimulator lead damage: technical note.

    PubMed

    Ralston, Ashley; Ogden, Patti; Kohrman, Michael H; Frim, David M

    2016-12-01

    Vagus nerve stimulators (VNSs) are currently an accepted treatment for intractable epilepsy not amenable to ablative surgery. Battery death and lead damage are the main reasons for reoperation in patients with VNSs. In general, any damage to the lead requires revision surgery to remove the helical electrodes from the vagus nerve and replace the electrode array and wire. The electrodes are typically scarred and difficult to remove from the vagus nerve without injury. The authors describe 6 patients with VNSs who presented with low lead impedance on diagnostic testing, leading to the intraoperative finding of lead insulation disruption, or who were found incidentally at the time of implantable pulse generator battery replacement to have a tear in the outer insulation of the electrode wire. Instead of replacement, the wire insulation was repaired and reinforced in situ, leading to normal impedance testing. All 6 devices remained functional over a follow-up period of up to 87 months, with 2 of the 6 patients having a relatively shorter follow-up of only 12 months. This technique, applicable in a subset of patients with VNSs requiring lead exploration, obviates the need for lead replacement with its attendant risks.

  13. Transcutaneous Vagus Nerve Stimulation: Retrospective Assessment of Cardiac Safety in a Pilot Study

    PubMed Central

    Kreuzer, Peter M.; Landgrebe, Michael; Husser, Oliver; Resch, Markus; Schecklmann, Martin; Geisreiter, Florian; Poeppl, Timm B.; Prasser, Sarah Julia; Hajak, Goeran; Langguth, Berthold

    2012-01-01

    Background: Vagus nerve stimulation has been successfully used as a treatment strategy for epilepsy and affective disorders for years. Transcutaneous vagus nerve stimulation (tVNS) is a new non-invasive method to stimulate the vagus nerve, which has been shown to modulate neuronal activity in distinct brain areas. Objectives: Here we report effects of tVNS on cardiac function from a pilot study, which was conducted to evaluate the feasibility and safety of tVNS for the treatment of chronic tinnitus. Methods: Twenty-four patients with chronic tinnitus underwent treatment with tVNS over 3–10 weeks in an open single-armed pilot study. Safety criteria and practical usability of the neurostimulating device were to investigate by clinical examination and electrocardiography at baseline and at several visits during and after tVNS treatment (week 2, 4, 8, 16, and 24). Results: Two adverse cardiac events (one classified as a severe adverse event) were registered but considered very unlikely to have been caused by the tVNS device. Retrospective analyses of electrocardiographic parameters revealed a trend toward shortening of the QRS complex after tVNS. Conclusion: To our knowledge this is one of the first studies investigating feasibility and safety of tVNS in a clinical sample. In those subjects with no known pre-existing cardiac pathology, preliminary data do not indicate arrhythmic effects of tVNS. PMID:22891061

  14. Ablation of the sphenopalatine ganglion does not attenuate the infarct reducing effect of vagus nerve stimulation

    PubMed Central

    Ay, Ilknur; Ay, Hakan

    2013-01-01

    Electrical stimulation of the cervical vagus nerve reduces infarct size by approximately 50% after cerebral ischemia in rats. The mechanism of ischemic protection by vagus nerve stimulation (VNS) is not known. In this study, we investigated whether the infarct reducing effect of VNS was mediated by activation of the parasympathetic vasodilator fibers that originate from the sphenopalatine ganglion (SPG) and innervate the anterior cerebral circulation. We examined the effects of electrical stimulation of the cervical vagus nerve in two groups of rats: one with and one without SPG ablation. Electrical stimulation was initiated 30 min after induction of ischemia, and lasted for 1h. Measurement of infarct size 24h later revealed that the volume of ischemic damage was smaller in those animals that received VNS treatment (41.32 ± 2.07% vs. 24.19 ± 2.62% of the contralateral hemispheric volume, n=6 in both; p<0.05). SPG ablation did not abolish this effect; the reduction in infarct volume following VNS was 58% in SPG-damaged animals, 41% in SPG-intact animals (p>0.05). In both SPG-intact and SPG-damaged animals VNS treatment resulted in better motor outcome (p<0.05 vs. corresponding controls for both). Our findings show that VNS can protect the brain against acute ischemic injury, and that this effect is not mediated by SPG projections. PMID:23273773

  15. Rapid Remission of Conditioned Fear Expression with Extinction Training Paired with Vagus Nerve Stimulation

    PubMed Central

    Peña, David F.; Engineer, Navzer D.; McIntyre, Christa K.

    2012-01-01

    Background Fearful experiences can produce long-lasting and debilitating memories. Extinction of conditioned fear requires consolidation of new memories that compete with fearful associations. In human subjects, as well as rats, posttraining stimulation of the vagus nerve enhances memory consolidation. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear. The objective of this study was to determine whether vagus nerve stimulation (VNS) can enhance the consolidation of extinction of conditioned fear. Methods Male Sprague-Dawley rats were trained on an auditory fear conditioning task followed by 1–10 days of extinction training. Treatment with vagus nerve or sham stimulation was administered concurrently with exposure to the fear conditioned stimulus. Another group was given VNS and extinction training but the VNS was not paired with exposure to conditioned cues. Retention of fear conditioning was tested 24 hours after each treatment. Results VNS paired with exposure to conditioned cues enhanced the extinction of conditioned fear. After a single extinction trial, rats given VNS stimulation demonstrated a significantly lower level of freezing, compared to that of sham controls. When extinction trials were extended to 10 days, paired VNS accelerated extinction of the conditioned response. Conclusions Extinction paired with VNS is more rapid than extinction paired with sham stimulation. As it is currently approved by the Federal Food and Drug Administration for depression and seizure prevention, VNS is a readily-available and promising adjunct to exposure therapy for the treatment of severe anxiety disorders. PMID:23245749

  16. Increased Extracellular Concentrations of Norepinephrine in Cortex and Hippocampus Following Vagus Nerve Stimulation in the Rat.

    PubMed Central

    Roosevelt, Rodney W.; Smith, Douglas C.; Clough, Richard W.; Jensen, Robert A.; Browning, Ronald A.

    2006-01-01

    The vagus nerve is an important source of afferent information about visceral states and it provides input to the locus coeruleus (LC), the major source of norepinephrine (NE) in the brain. It has been suggested that the effects of electrical stimulation of the vagus nerve on learning and memory, mood, seizure suppression, and recovery of function following brain damage are mediated, in part, by the release of brain NE. The hypothesis that left vagus nerve stimulation (VNS) at the cervical level results in increased extracellular NE concentrations in the cortex and hippocampus was tested at four stimulus intensities 0.0, 0.25, 0.5, and 1.0 mA. Stimulation at 0.0 and 0.25 mA had no effect on NE concentrations, while the 0.5 mA stimulation increased NE concentrations significantly in the hippocampus (23%), but not the cortex. However, 1.0 mA stimulation significantly increased NE concentrations in both the cortex (39%) and hippocampus (28%) bilaterally. The increases in NE were transient and confined to the stimulation periods. VNS did not alter NE concentrations in either structure during the inter-stimulation baseline periods. No differences were observed between NE levels in the initial baseline and the post-stimulation baselines. These findings support the hypothesis that VNS increases extracellular NE concentrations in both the hippocampus and cortex. PMID:16962076

  17. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study.

    PubMed

    Kreuzer, Peter M; Landgrebe, Michael; Husser, Oliver; Resch, Markus; Schecklmann, Martin; Geisreiter, Florian; Poeppl, Timm B; Prasser, Sarah Julia; Hajak, Goeran; Langguth, Berthold

    2012-01-01

    Vagus nerve stimulation has been successfully used as a treatment strategy for epilepsy and affective disorders for years. Transcutaneous vagus nerve stimulation (tVNS) is a new non-invasive method to stimulate the vagus nerve, which has been shown to modulate neuronal activity in distinct brain areas. Here we report effects of tVNS on cardiac function from a pilot study, which was conducted to evaluate the feasibility and safety of tVNS for the treatment of chronic tinnitus. Twenty-four patients with chronic tinnitus underwent treatment with tVNS over 3-10 weeks in an open single-armed pilot study. Safety criteria and practical usability of the neurostimulating device were to investigate by clinical examination and electrocardiography at baseline and at several visits during and after tVNS treatment (week 2, 4, 8, 16, and 24). Two adverse cardiac events (one classified as a severe adverse event) were registered but considered very unlikely to have been caused by the tVNS device. Retrospective analyses of electrocardiographic parameters revealed a trend toward shortening of the QRS complex after tVNS. To our knowledge this is one of the first studies investigating feasibility and safety of tVNS in a clinical sample. In those subjects with no known pre-existing cardiac pathology, preliminary data do not indicate arrhythmic effects of tVNS.

  18. Vagus nerve stimulation for depression: rationale, anatomical and physiological basis of efficacy and future prospects.

    PubMed

    Park, M C; Goldman, M A; Carpenter, L L; Price, L H; Friehs, G M

    2007-01-01

    Treatment-resistant depression (TRD) is a major public health concern due to its high costs to society. One of the novel approaches for the treatment of depression is the vagus nerve stimulation (VNS). Therapeutic brain stimulation through delivery of pulsed electrical impulses to the left cervical vagus nerve now has established safety and efficacy as an adjunct treatment for medication-resistant epilepsy and has recently been approved as an adjunct long-term treatment for chronic or recurrent depression. There is considerable evidence from both animal and human neurochemical and neuroimaging studies, that the vagus nerve and its stimulation influence limbic and higher cortical brain regions implicated in mood disorders, providing a rationale for its possible role in the treatment of psychiatric disorders. Clinical studies (open-label and comparator with treatment in naturalistic setting) in patients with TRD have produced promising results, especially when the response rates at longer-term (one- and two-year) follow-up time points are considered. Ongoing research efforts will help determine the place of VNS in the armament of therapeutic modalities available for major depression.

  19. Persistent cough associated with osteophyte formation and vagus nerve impingement following cervical spinal surgery: case report.

    PubMed

    Orhan, Kadir Serkan; Acar, Senol; Ulusan, Murat; Aydoseli, Aydın; Güldiken, Yahya

    2013-08-01

    Persistent cough due to irritation of the vagus nerve by osteophytes resulting from cervical spinal surgery is a very rare condition. The authors report the case of a 49-year-old woman who presented with a persistent cough subsequent to cervical spinal surgery. One year after the initial operation, the patient underwent surgery to free the larynx from the prevertebral fascia and cut the pharyngeal plexus, but her symptoms persisted. In order to control the cough, she used a soft cervical collar with padding inserted in the left side so that the larynx would be pushed to the right, a solution she discovered on her own. Without the collar, she coughed uncontrollably. A CT scan was performed and showed an osteophyte that had developed at the level of the prosthesis. Based on these findings, the authors hypothesized that the cough was caused by vagus nerve irritation due to the osteophyte. The osteophyte was resected and the vagus nerve was moved to a position anterior to the carotid artery and was isolated by means of an autogenous tensor fascia lata graft. The patient's symptom disappeared immediately after the surgery. At the most recent follow-up visit, 18 months after surgery, the patient was symptom free and was pursuing regular daily activities without using a cervical collar.

  20. Effect of electrical stimulation of the vagus nerve on insulinemia and glycemia in Acomys cahirinus mice.

    PubMed

    Ionescu, E; Jeanrenaud, B

    1988-08-01

    To investigate the parasympathetic regulation of the endocrine pancreas in spiny mice (Acomys cahirinus), unilateral electrical stimulations of the left cervical vagus nerve were performed in these animals and their controls, the albino mice. Plasma insulin and glucose levels were measured before and after the stimulation. The stimulation parameters were: 2-2.5 V, 14 Hz, 1 msec for the albino mice and 3 V, 14 Hz, 1 msec or 15-20 V, 20 Hz, 1 msec for the spiny mice. Already 2 min after the start of the stimulation, the acomys as well as the albino mice showed a significant increase in plasma insulin levels which was accompanied by a weak but significant increase in glycemia. However, the total insulin output in the acomys mice was half than that of the albino mice. Carbachol administration had no effect on insulin secretion in the acomys mice, while it increased that of the controls. Atropine pretreatment failed to abolish the insulin release elicited by electrical stimulation of the vagus nerve in the acomys mice, while it abolished it in the albino ones. It is proposed that the vagus-nerve mediated insulin release that is present in the acomys mice is exerted, not via muscarinic receptors as in controls, but possibly via other neurotransmitter(s).

  1. Vagus nerve stimulation for intractable seizures in children: the University of Puerto Rico experience.

    PubMed

    Pastrana, Emil A; Estronza, Samuel; Sosa, Ivan J

    2011-09-01

    Vagus nerve stimulation (VNS) is considered an alternative treatment for patients with medically refractory epilepsy who are not candidates for resective surgery. It consists of intermittent electrical stimulation of the left vagus nerve in the neck. Such stimulation has been demonstrated to be efficacious, safe, and well tolerated, offering these patients another option for seizure control. The aim of this study was to evaluate the experience of VNS at the University of Puerto Rico, and to examine demographic data, types of seizures, and seizure-control outcomes among treated subjects. This study is the first account of VNS in a pediatric population living in the Caribbean area. A retrospective analysis of 13 patients treated at the University Pediatric Hospital in San Juan, Puerto Rico, was undertaken. Different types of seizures were identified and managed. The mean age at implantation was 12 years; 77% of patients were female. The most common type of seizure treated was generalized tonic-clonic (24%), followed by complex partial (23%). Sixty-nine percent of patients demonstrated a reduction in monthly seizure frequency. Ninety-three percent of caregivers reported improvements in alertness and communication. Vagus nerve stimulation is a safe and effective way to treat medically refractory epilepsy and should be considered as a non-pharmacological treatment for select patients with medically refractory epilepsy.

  2. Reflex control of inflammation by sympathetic nerves, not the vagus.

    PubMed

    Martelli, D; Yao, S T; McKinley, M J; McAllen, R M

    2014-04-01

    We investigated a neural reflex that controls the strength of inflammatory responses to immune challenge - the inflammatory reflex. In anaesthetized rats challenged with intravenous lipopolysaccharide (LPS, 60 μg kg(-1)), we found strong increases in plasma levels of the key inflammatory mediator tumour necrosis factor α (TNFα) 90 min later. Those levels were unaffected by previous bilateral cervical vagotomy, but were enhanced approximately 5-fold if the greater splanchnic sympathetic nerves had been cut. Sham surgery had no effect, and plasma corticosterone levels were unaffected by nerve sections, so could not explain this result. Electrophysiological recordings demonstrated that efferent neural activity in the splanchnic nerve and its splenic branch was strongly increased by LPS treatment. Splenic nerve activity was dependent on inputs from the splanchnic nerves: vagotomy had no effect on the activity in either nerve. Together, these data demonstrate that immune challenge with this dose of LPS activates a neural reflex that is powerful enough to cause an 80% suppression of the acute systemic inflammatory response. The efferent arm of this reflex is in the splanchnic sympathetic nerves, not the vagi as previously proposed. As with other physiological responses to immune challenge, the afferent pathway is presumptively humoral: the present data show that vagal afferents play no measurable part. Because inflammation sits at the gateway to immune responses, this reflex could play an important role in immune function as well as inflammatory diseases.

  3. Collateral projections of the dorsal motor nucleus of the vagus nerve to the stomach and the intestines in the rat.

    PubMed

    Hayakawa, Tetsu; Kuwahara-Otani, Sachi; Maeda, Seishi; Tanaka, Koichi; Seki, Makoto

    2013-01-01

    The vagal motor neurons project to the gastrointestinal tract by way of the gastric, celiac and hepatic branches of the vagus trunk. We have examined whether single neurons in the dorsal motor nucleus of the vagus nerve (DMV) have collateral projections to the stomach, the duodenum and the intestines using a double-labeling tracing method. Following application of Fluorogold to the cut end of the accessory celiac branch and injection of cholera toxin subunit b (CTb) into the body of stomach, many Fluorogold- and CTb-labeled neurons were found throughout the DMV. Most CTb-labeled neurons (about 90%) were also labeled with Fluorogold. When Fluorogold was applied to the cut end of the accessory celiac or the gastric branch and CTb was injected into the duodenum, many Fluorogold-labeled neurons and CTb-labeled neurons were found in the DMV. About 20% of CTb-labeled neurons were also labeled with Fluorogold. These results indicate that many neurons in the DMV send collateral projections to both the stomach and the intestines innervated by way of the celiac branch. However, many neurons in the DMV projecting to the duodenum do not project to the stomach or the intestines caudal to the duodenum.

  4. Refractory epilepsy in tuberous sclerosis: vagus nerve stimulation with or without subsequent resective surgery.

    PubMed

    Elliott, Robert E; Carlson, Chad; Kalhorn, Stephen P; Moshel, Yaron A; Weiner, Howard L; Devinsky, Orrin; Doyle, Werner K

    2009-11-01

    The goal of the work described here was to assess the efficacy and safety of vagus nerve stimulation in a cohort of patients with tuberous sclerosis complex with refractory epilepsy. Furthermore, we examined the impact of vagus nerve stimulation failure on the ultimate outcome following subsequent intracranial epilepsy surgery. A retrospective review was performed on 19 patients with refractory epilepsy and TSC who underwent vagus nerve stimulator (VNS) implantation. There were 11 (58%) females and 8 (42%) males aged 2 to 44 years when the VNS was implanted (mean: 14.7+/-12 years). Twelve patients underwent primary VNS implantation after having failed a mean of 7.1 antiepileptic drugs. Two patients (17%) had generalized epilepsy, one had a single seizure focus, three (25%) had multifocal epilepsy, and six (50%) had multifocal and generalized epilepsy. Seven patients were referred for device removal and evaluation for intracranial procedures. One patient in the primary implantation group was lost to follow-up and excluded from outcome analysis. All implantations and removals were performed without permanent complications. The duration of treatment for primary VNS implants varied from 8.5 months to 9.6 years (mean: 4.9 years). Mean seizure frequency significantly improved following VNS implantation (mean reduction: 72%, P<0.002). Two patients had Engel Class I (18%), one had Class II (9%), seven had Class III (64%), and one had Class IV (9%) outcome. Three patients with poor response to vagus nerve stimulation therapy at our center underwent resection of one or more seizure foci (Engel Class I, two patients; Engel Class III, one patient). Seven patients referred to our center for VNS removal and craniotomy underwent seizure focus resection (6) or corpus callosotomy (1) (Engel Class II: 2, Engel III: 2; Engel IV: 3). In total, 8 of 10 (80%) patients experienced improved seizure control following intracranial surgery (mean reduction: 65%, range: 0-100%, P<0.05). VNS is

  5. Noninvasive vagus nerve stimulation in the management of cluster headache: clinical evidence and practical experience

    PubMed Central

    Holle-Lee, Dagny; Gaul, Charly

    2016-01-01

    The efficacy of invasive vagal nerve stimulation as well as other invasive neuromodulatory approaches such as deep brain stimulation, occipital nerve stimulation, and ganglion sphenopalatine stimulation has been shown in the treatment of headache disorders in several studies in the past. However, these invasive treatment options were quite costly and often associated with perioperative and postoperative side effects, some severe. As such, they were predominantly restricted to chronic and therapy refractory patients. Transcutaneous vagal nerve stimulation now offers a new, noninvasive neuromodulatory treatment approach. Recently published studies showed encouraging results of noninvasive vagus nerve stimulation (nVNS), especially with respect to cluster headache, with high tolerability and a low rate of side effects; however, randomized controlled trials are needed to prove its efficacy. Further data also indicate therapeutic benefits regarding treatment of migraine and medication overuse headache. This review summarizes current knowledge and personal experiences of nVNS in the treatment of cluster headache. PMID:27134678

  6. Effects of high-frequency alternating current on axonal conduction through the vagus nerve

    NASA Astrophysics Data System (ADS)

    Waataja, Jonathan J.; Tweden, Katherine S.; Honda, Christopher N.

    2011-10-01

    High-frequency alternating current (HFAC) is known to disrupt axonal conduction in peripheral nerves, and HFAC has much potential as a therapeutic approach for a number of pathological conditions. Many previous studies have utilized motor output as a bioassay of effects of HFAC on conduction through medium- to large-diameter motor axons. However, little is known about the effectiveness of HFAC on smaller, more slowly conducting nerve fibres. The present study tested whether HFAC influences axonal conduction through sub-diaphragmatic levels of the rat vagus nerve, which consists almost entirely of small calibre axons. Using an isolated nerve preparation, we tested the effects of HFAC on electrically evoked compound action potentials (CAPs). We found that delivery of charge-balanced HFAC at 5000 Hz for 1 min was effective in producing reversible blockade of axonal conduction. Both Aδ and C components of the vagus CAP were attenuated, and the degree of blockade as well as time to recovery was proportional to the amount of HFAC current delivered. The Aδ waves were more sensitive than C waves to HFAC blockade, but they required more time to recover.

  7. Diagnosis and Management of Schwannomas Originating from the Cervical Vagus Nerve

    PubMed Central

    Rout, TK; Pattanayak, S

    2015-01-01

    Introduction A schwannoma is a benign, slow growing, encapsulated nerve sheath tumour. Presentation of a schwannoma is a diagnostic and management challenge. Methods Internet searches of PubMed/MEDLINE® for all articles listing schwannomas of the vagus nerve in the cervical/neck region (1980–2012) were undertaken to ascertain diagnostic pitfalls. The references of all articles were cross-checked to include all pertinent contributions. Further articles were traced through reference lists. Results Schwannomas are solitary, well circumscribed and medial to the carotid sheath. Preoperative diagnoses of schwannomas in the lateral part of the neck can cause confusion with its nerve of origin (ie whether it arises from the vagus nerve or a sympathetic chain). Computed tomography and magnetic resonance imaging reveal valuable information regarding the location and origin of the tumour as well as aiding surgical planning. The diagnosis can be confirmed intraoperatively. Postoperative recovery of neurological function is dependent on the type of surgery. Histopathological studies searching for classical features and immunohistochemical staining for S100 also confirm the diagnosis. Conclusions Schwannomas should be considered in the differential diagnoses of unusual masses in the neck. Preoperative imaging elicits valuable information regarding the location and origin of schwannomas and histopathology confirms the diagnosis. PMID:25723683

  8. Vagus Nerve Stimulation to Augment Recovery from Severe Traumatic Brain Injury Impeding Consciousness: A Prospective Pilot Clinical Trial

    PubMed Central

    Shi, Chen; Flanagan, Steven R.; Samadani, Uzma

    2015-01-01

    Objectives Traumatic brain injury has a high morbidity and mortality in both civilian and military populations. Blast and other mechanisms of traumatic brain injury damage the brain by causing neurons to disconnect and atrophy. Such traumatic axonal injury can lead to persistently vegetative and minimally conscious states, for which limited treatment options exist, including physical, occupational, speech and cognitive therapies. More than 60,000 patients have received vagus nerve stimulation for epilepsy and depression. In addition to decreased seizure frequency and severity, patients report enhanced mood, reduced daytime sleepiness independent of seizure control, increased slow wave sleep, and improved cognition, memory, and quality of life. Early stimulation of the vagus nerve accelerates the rate and extent of behavioral and cognitive recovery after fluid percussion brain injury in rats. Methods We recently obtained FDA approval for a pilot prospective randomized crossover trial to demonstrate objective improvement in clinical outcome by placement of a vagus nerve stimulator in patients who are recovering from severe traumatic brain injury. Our hypothesis is that stimulation of the vagus nerve results in increased cerebral blood flow and metabolism in the forebrain, thalamus and reticular formation, which promotes arousal and improved consciousness, thereby improving outcome after traumatic brain injury resulting in minimally conscious or persistent vegetative states. Discussion If this study demonstrates that vagus nerve stimulation can safely and positively impact outcome, then a larger randomized prospective crossover trial will be proposed. PMID:23485054

  9. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  10. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model.

    PubMed

    Yamakawa, Kazuma; Matsumoto, Naoya; Imamura, Yukio; Muroya, Takashi; Yamada, Tomoki; Nakagawa, Junichiro; Shimazaki, Junya; Ogura, Hiroshi; Kuwagata, Yasuyuki; Shimazu, Takeshi

    2013-01-01

    This study was performed to gain insights into novel therapeutic approaches for the treatment of heatstroke. The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical vagus nerve stimulation (VNS) reportedly suppresses pro-inflammatory cytokine release in several models of inflammatory disease. Here, we evaluated whether electrical VNS attenuates severe heatstroke, which induces a systemic inflammatory response. Anesthetized rats were subjected to heat stress (41.5°C for 30 minutes) with/without electrical VNS. In the VNS-treated group, the cervical vagus nerve was stimulated with constant voltage (10 V, 2 ms, 5 Hz) for 20 minutes immediately after completion of heat stress. Sham-operated animals underwent the same procedure without stimulation under a normothermic condition. Seven-day mortality improved significantly in the VNS-treated group versus control group. Electrical VNS significantly suppressed induction of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in the serum 6 hours after heat stress. Simultaneously, the increase of soluble thrombomodulin and E-selectin following heat stress was also suppressed by VNS treatment, suggesting its protective effect on endothelium. Immunohistochemical analysis using tissue preparations obtained 6 hours after heat stress revealed that VNS treatment attenuated infiltration of inflammatory (CD11b-positive) cells in lung and spleen. Interestingly, most cells with increased CD11b positivity in response to heat stress did not express α7 nicotinic acetylcholine receptor in the spleen. These data indicate that electrical VNS modulated cholinergic anti-inflammatory pathway abnormalities induced by heat stress, and this protective effect was associated with improved mortality. These findings may provide a novel therapeutic strategy to combat severe heatstroke in the critical care

  11. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects.

    PubMed

    De Couck, M; Cserjesi, R; Caers, R; Zijlstra, W P; Widjaja, D; Wolf, N; Luminet, O; Ellrich, J; Gidron, Y

    2017-03-01

    The vagus nerve is strategically located in the body, and has multiple homeostatic and health-promoting effects. Low vagal activity predicts onset and progression of diseases. These are the reasons to activate this nerve. This study examined the effects of transcutaneous vagus nerve stimulation (t-VNS) on a main index of vagal activity, namely heart rate variability (HRV). In Study 1, we compared short (10min) left versus right ear t-VNS versus sham (no stimulation) in a within-subjects experimental design. Results revealed significant increases in only one HRV parameter (standard deviation of the RR intervals (SDNN)) following right-ear t-VNS. Study 2 examined the prolonged effects of t-VNS (1h) in the right ear. Compared to baseline, right-t-VNS significantly increased the LF and LF/HF components of HRV, and SDNN in women, but not in men. These results show limited effects of t-VNS on HRV, and are discussed in light of neuroanatomical and statistical considerations and future directions are proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders

    PubMed Central

    Jin, Yu; Kong, Jian

    2017-01-01

    Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain regions associated with Autism Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment effects for comorbid disorders of ASD such as epilepsy and depression. We thus hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid epilepsy and depression, but also for the core symptoms of ASD. The goal of this manuscript is to summarize the findings and rationales for applying tVNS to treat ASD and propose potential parameters for tVNS treatment of ASD. PMID:28163670

  13. BOLD fMRI activation induced by vagus nerve stimulation in seizure patients

    PubMed Central

    Liu, W; Mosier, K; Kalnin, A; Marks, D

    2003-01-01

    Design: Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI) was employed to detect areas of the brain activated by vagus nerve stimulation in five patients with documented complex partial seizures. Methods: Functional MRI was done on a GE 1.5T Echospeed horizon scanner. Before each patient entered the scanner, the vagal nerve stimulator was set to a specific ON–OFF paradigm so that the data could be analysed using a box-car type of design. The brains were scanned both anatomically and functionally. The functional images were corrected for head motion and co-registered to the anatomical images. Maps of the activated areas were generated and analysed using the brain mapping software, SPM99. The threshold for activation was chosen as p < 0.001. Results: All patients showed activation in the frontal and occipital lobes. However, activation in the thalamus was seen only in the two patients with improved seizure control. Conclusions: BOLD fMRI can detect activation associated with vagus nerve stimulation. There may be a relation between thalamic activation and a favourable clinical outcome. PMID:12754361

  14. Efficacy of vagus nerve stimulation for epilepsy by patient age, epilepsy duration, and seizure type.

    PubMed

    Englot, Dario J; Chang, Edward F; Auguste, Kurtis I

    2011-10-01

    Medically refractory epilepsy is a morbid condition, and many patients are poor candidates for surgical resection because of multifocal seizure origin or eloquence near epileptic foci. Vagus nerve stimulation (VNS) was approved in 1997 by the US Food and Drug Administration as an adjunctive treatment of intractable epilepsy for individuals aged 12 years and more with partial epilepsy. Controversy persists regarding the efficacy of VNS for epilepsy and about which patient populations respond best to therapy. In this article, the authors retrospectively studied a patient outcome registry and report the largest, to their knowledge, analysis of VNS outcomes in epilepsy. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. 18F-FDG PET/CT diagnosis of vagus nerve neurolymphomatosis.

    PubMed

    Tsang, Hailey Hoi Ching; Lee, Elaine Yuen Phin; Anthony, Marina-Portia; Khong, Pek-Lan

    2012-09-01

    A 62-year-old woman was in remission from previously treated stage IV diffuse large B-cell lymphoma with cranial involvement. She presented with new-onset hoarseness of voice and choking; MRI of the brain showed disease recurrence in the left cavernous sinus. She was subsequently referred for F-FDG PET/CT with contrast for further evaluation of lymphomatous recurrence. F-FDG PET/CT not only revealed hypermetabolic activity in the left cavernous sinus correlating to the MRI findings but also showed an interesting manifestation explaining the patient's hoarseness of voice, being neurolymphomatosis along the left vagus nerve.

  16. Stimulating parameters and de-synchronization in vagus nerve stimulation therapy for epilepsy

    NASA Astrophysics Data System (ADS)

    Li, Y.-L.; Chen, Z.-Y.; Ma, J.; Feng, W.-J.

    2008-02-01

    The influence of the stimulation parameters on the de-synchronization of small world Hindmarsh-Rose (H-R) neural network is numerically investigated in the vagus nerve stimulation therapy for epilepsy. The simulation shows that synchronization evolves into de-synchronization when a part of neurons (about 10 percent) is stimulated with a pulse current signal. The network de-synchronization appears to be sensitive to the stimulation parameters. For the case of the same stimulation intensity, those weakly coupled networks reach de-synchronization more easily than strongly coupled networks. There exist an optimal stimulation interval and period of continuous stimulation time when other stimulation parameters remain invariable.

  17. Failure of a vagus nerve stimulator following a nearby lightning strike.

    PubMed

    Terry, Garth E; Conry, Joan A; Taranto, Eleanor; Yaun, Amanda

    2011-01-01

    We recently reported our experience with implanted vagus nerve stimulators (VNS) in 62 children over a 7-year period. Here, we present a case of a VNS that successfully reduced the number and severity of seizures in a patient with an unusual seizure pattern, and failed to function shortly after a lightning storm. To our knowledge, the failure of VNS or any implantable electrical devices by lightning has not been reported in the literature. This mechanism of electrical interference, while unusual, may require more attention as these devices are expected to be used more frequently.

  18. Vagus nerve prolonged stimulation in cats: effects on epileptogenesis (amygdala electrical kindling): behavioral and electrographic changes.

    PubMed

    Fernández-Guardiola, A; Martínez, A; Valdés-Cruz, A; Magdaleno-Madrigal, V M; Martínez, D; Fernández-Mas, R

    1999-07-01

    To analyze the effect of prolonged (daily) electrical vagus nerve stimulation (VNS) on daily amygdaloid kindling (AK) in freely moving cats. Fifteen adult male cats were implanted in both temporal lobe amygdalae, both lateral geniculate bodies, and prefrontal cortices. A bipolar hook (5-mm separation) stainless steel electrode also was implanted in the unsectioned left vagus nerve. AK only was performed on five of the cats as a control. The remaining 10 cats were recorded under the following experimental conditions: VNS (1.2-2.0 mA, 0.5-ms pulses, 30 Hz) for 1 min along with AK (1-s train, 1-ms pulses, 60 Hz, 300-600 microA), followed by VNS alone for 1 min, four times between 11:00 a.m. and 2 p.m. At different times, VNS was arrested, and AK was continued until stage VI kindling was reached. The behavioral changes evoked by VNS were as follows: left miosis, blinking, licking, abdominal contractions, swallowing, and eventually yawning, meowing, upward gaze, and short head movements. Compulsive eating also was present with a variable latency. Outstanding polygraphic changes consisted of augmentation of eye movements and visual evoked potentials while the animal was awake and quiet, with immobility and upward gaze. An increase of the pontogeniculooccipital (PGO) wave density in rapid eye movement (REM) sleep also was noticeable. AK was completed (to stage VI) in the control animals without a vagus nerve implantation in 23.4+/-3.7 trials. In animals with VNS, the AK was significantly delayed, remaining for a long time in the behavioral stages I-III and showing a reduction of afterdischarge duration and frequency. Stage VI was never reached despite 50 AK trials, except when the vagus nerve electrodes were accidentally broken or vagal stimulation was intentionally arrested. Under these circumstances, 24.4+/-8.16 AK trials alone were necessary to reach stage VI of kindling. Our results indicate that left, electrical VNS interferes with AK epileptogenesis. This

  19. Effects of vagus nerve stimulation on cortical excitability in epileptic patients.

    PubMed

    Di Lazzaro, V; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Meglio, M; Colicchio, G; Barba, C; Papacci, F; Tonali, P A

    2004-06-22

    Vagus nerve stimulation (VNS) is used as adjunctive treatment for medically refractory epilepsy, but little is known about its mechanisms of action. The effects of VNS on the excitatory and inhibitory circuits of the motor cortex were evaluated in five patients with epilepsy using single- and paired-pulse transcranial magnetic stimulation (TMS). Patients were examined with the stimulator on and off. VNS determined a selective and pronounced increase in the inhibition produced by paired-pulse TMS with no effects on the excitability by single-pulse TMS.

  20. Rat vagus nerve stimulation model of seizure suppression: nNOS and ΔFos B changes in the brainstem.

    PubMed

    Rijkers, K; Majoie, H J M; Aalbers, M W; Philippens, M; Doenni, V M; Vles, J S H; Steinbusch, H M W; Moers-Hornikx, V M P; Hopkins, D A; Hoogland, G

    2012-12-01

    Vagus nerve stimulation (VNS) is a moderately effective treatment for intractable epilepsy. However, the mechanism of action is poorly understood. The effect of left VNS in amygdala kindled rats was investigated by studying changes in nNOS and ΔFos B expression in primary and secondary vagus nerve projection nuclei: the nucleus of the solitary tract (NTS), dorsal motor nucleus of the vagus nerve (DMV), parabrachial nucleus (PBN) and locus coeruleus (LC). Rats were fully kindled by stimulation of the amygdala. Subsequently, when the fully kindled state was reached and then maintained for ten days, rats received a single 3-min train of VNS starting 1min prior to the kindling stimulus and lasting for 2min afterwards. In control animals the vagus nerve was not stimulated. Animals were sacrificed 48h later. The brainstems were stained for neuronal nitric oxide synthase (nNOS) and ΔFos B. VNS decreased seizure duration with more than 25% in 21% of rats. No VNS associated changes in nNOS immunoreactivity were observed in the NTS and no changes in ΔFos B were observed in the NTS, PBN, or LC. High nNOS immunopositive cell densities of >300cells/mm(2) were significantly more frequent in the left DMV than in the right (χ(2)(1)=26.2, p<0.01), independent of whether the vagus nerve was stimulated. We conclude that the observed nNOS immunoreactivity in the DMV suggests surgery-induced axonal damage. A 3-min train of VNS in fully kindled rats does not affect ΔFos B expression in primary and secondary projection nuclei of the vagus nerve.

  1. The hepatic vagus mediates fat-induced inhibition of diabetic hyperphagia.

    PubMed

    la Fleur, Susanne E; Ji, Hong; Manalo, Sotara L; Friedman, Mark I; Dallman, Mary F

    2003-09-01

    Diabetic rats both overeat high-carbohydrate diet and have altered hypothalamic neuropeptide Y (NPY) and corticotropin-releasing factor (CRF). In contrast, a high-fat diet reduces caloric intake of diabetics to normal, reflected by normal hypothalamic NPY and CRF content. How the brain senses these changes in diet is unknown. To date, no hormonal changes explain these diet-induced changes in caloric intake. We tested whether the common branch of the hepatic vagus mediates the fat signal. We presented fat in two ways. First, diabetic and vehicle-treated rats were offered a cup of lard in addition to their normal high-carbohydrate diet. Second, we switched diabetic rats from high-carbohydrate diet to high-fat diet, without choice. In streptozotocin-treated rats, both methods resulted in fat-induced inhibition of caloric intake and normalization of hypothalamic neuropeptides to nondiabetic levels. Strikingly, common branch hepatic vagotomy (unlike gastroduodenal vagotomy) entirely blocked these fat-induced changes. Although a shift in hepatic energy status did not explain the lard-induced changes in diabetic rats, the data suggested that common hepatic branch vagotomy does not interfere with hepatic energy status. Furthermore, common branch hepatic vagotomy without diabetes induced indexes of obesity. Abnormal function of the hepatic vagus, as occurs in diabetic neuropathy, may contribute to diabetic obesity.

  2. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats.

    PubMed

    Szczerbowska-Boruchowska, Magdalena; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Wrobel, Pawel; Bukowczan, Mateusz; Zizak, Ivo

    2012-07-01

    Recent studies of Parkinson's disease indicate that dorsal motor nucleus of nerve vagus is one of the earliest brain areas affected by alpha-synuclein and Lewy bodies pathology. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats is investigated. Synchrotron radiation based X-ray fluorescence was applied to the elemental micro-imaging and quantification in thin tissue sections. It was found that elements such as P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br and Rb are present in motor cortex, corpus striatum, nucleus accumbens, substantia nigra, ventral tectal area, and dorsal motor nucleus of vagus. The topographic analysis shows that macro-elements like P, S, Cl and K are highly concentrated within the fiber bundles of corpus striatum. In contrast the levels of trace elements like Fe and Zn are the lowest in these structures. It was found that statistically significant differences between the animals with electrical stimulation of vagus nerve and the control are observed in the left side of corpus striatum for P (p = 0.04), S (p = 0.02), Cl (p = 0.05), K (p = 0.02), Fe (p = 0.04) and Zn (p = 0.02). The mass fractions of these elements are increased in the group for which the electrical stimulation of vagus nerve was performed. Moreover, the contents of Ca (p = 0.02), Zn (p = 0.07) and Rb (p = 0.04) in substantia nigra of right hemisphere are found to be significantly lower in the group with stimulation of vagus nerve than in the control rats.

  3. Vagus nerve stimulation does not lead to significant changes in body weight in patients with epilepsy.

    PubMed

    Koren, Mikhail S; Holmes, Mark D

    2006-02-01

    Vagus nerve stimulation (VNS) is an FDA-approved treatment for medically intractable epilepsy. The effect of this therapy on body weight is unclear. VNS could cause weight loss by engaging vagal afferents from the gastrointestinal tract mediating satiety. We performed a retrospective analysis of body weight changes over a period up to 2 years following VNS implantation. We studied 21 patients (13 M/8 F) 35 +/- 12 years old, who received a Cyberonics VNS Therapy System for medically intractable epilepsy between April 1998 and May 2004. The mean +/- SD duration of follow-up was 613.1 +/- 389.1 days. The study had 80% power with a type I error of 0.05 to detect a 5% weight change. Data were analyzed with repeated-measures ANOVA. Weight changes relative to baseline at 30, 60, 120, 360, 480, and 720 days were -0.17 +/- 2.33, +0.33 +/- 2.64, -0.32 +/- 3.56, +1.09 +/- 5.97, +1.06 +/- 7.47, and +0.33 +/- 3.69%, respectively. At all time points these differences failed to reach statistical significance. Vagus nerve stimulation with parameters typically used in the treatment of patients with epilepsy was not associated with clinically significant weight changes. A well-controlled prospective study is necessary for more precise evaluation of the effect of VNS therapy on body weight.

  4. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes.

    PubMed

    Steenbergen, Laura; Sellaro, Roberta; Stock, Ann-Kathrin; Verkuil, Bart; Beste, Christian; Colzato, Lorenza S

    2015-06-01

    The ever-changing environment we are living in requires us to apply different action control strategies in order to fulfill a task goal. Indeed, when confronted with multiple response options it is fundamental to prioritize and cascade different actions. So far, very little is known about the neuromodulation of action cascading. In this study we assessed the causal role of the gamma-aminobutyric acid (GABA)-ergic and noradrenergic system in modulating the efficiency of action cascading by applying transcutaneous vagus nerve stimulation (tVNS), a new non-invasive and safe method to stimulate the vagus nerve and to increase GABA and norepinephrine concentrations in the brain. A single-blind, sham-controlled, between-group design was used to assess the effect of on-line (i.e., stimulation overlapping with the critical task) tVNS in healthy young volunteers (n=30)-on a stop-change paradigm. Results showed that active, as compared to sham stimulation, enhanced response selection functions during action cascading and led to faster responses when two actions were executed in succession. These findings provide evidence for the important role of the GABA-ergic and noradrenergic system in modulating performance in action cascading.

  5. Vagus nerve controls resolution and pro-resolving mediators of inflammation.

    PubMed

    Mirakaj, Valbona; Dalli, Jesmond; Granja, Tiago; Rosenberger, Peter; Serhan, Charles N

    2014-06-02

    Resolution of inflammation is now recognized as a biosynthetically active process involving pro-resolving mediators. Here, we show in zymosan-initiated peritoneal inflammation that the vagus nerve regulates local expression of netrin-1, an axonal guidance molecule that activates resolution, and that vagotomy reduced local pro-resolving mediators, thereby delaying resolution. In netrin-1(+/-) mice, resolvin D1 (RvD1) was less effective in reducing neutrophil influx promoting resolution of peritonitis compared with Ntn1(+/+). Netrin-1 shortened the resolution interval, decreasing exudate neutrophils, reducing proinflammatory mediators, and stimulating the production of resolvins, protectins, and lipoxins. Human monocytes incubated with netrin-1 produced proresolving mediators, including resolvins and lipoxins. Netrin-1 and RvD1 displayed bidirectional activation in that they stimulated each other's expression and enhanced efferocytosis. These results indicate that the vagus nerve regulates both netrin-1 and pro-resolving lipid mediators, which act in a bidirectional fashion to stimulate resolution, and provide evidence for a novel mechanism for local neuronal control of resolution.

  6. Vagus Nerve Stimulation in Ischemic Stroke: Old Wine in a New Bottle

    PubMed Central

    Cai, Peter Y.; Bodhit, Aakash; Derequito, Roselle; Ansari, Saeed; Abukhalil, Fawzi; Thenkabail, Spandana; Ganji, Sarah; Saravanapavan, Pradeepan; Shekar, Chandana C.; Bidari, Sharatchandra; Waters, Michael F.; Hedna, Vishnumurthy Shushrutha

    2014-01-01

    Vagus nerve stimulation (VNS) is currently Food and Drug Administration-approved for treatment of both medically refractory partial-onset seizures and severe, recurrent refractory depression, which has failed to respond to medical interventions. Because of its ability to regulate mechanisms well-studied in neuroscience, such as norepinephrine and serotonin release, the vagus nerve may play an important role in regulating cerebral blood flow, edema, inflammation, glutamate excitotoxicity, and neurotrophic processes. There is strong evidence that these same processes are important in stroke pathophysiology. We reviewed the literature for the role of VNS in improving ischemic stroke outcomes by performing a systematic search for publications in Medline (1966–2014) with keywords “VNS AND stroke” in subject headings and key words with no language restrictions. Of the 73 publications retrieved, we identified 7 studies from 3 different research groups that met our final inclusion criteria of research studies addressing the role of VNS in ischemic stroke. Results from these studies suggest that VNS has promising efficacy in reducing stroke volume and attenuating neurological deficits in ischemic stroke models. Given the lack of success in Phase III trials for stroke neuroprotection, it is important to develop new therapies targeting different neuroprotective pathways. Further studies of the possible role of VNS, through normally physiologically active mechanisms, in ischemic stroke therapeutics should be conducted in both animal models and clinical studies. In addition, recent advent of a non-invasive, transcutaneous VNS could provide the potential for easier clinical translation. PMID:25009531

  7. Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury

    PubMed Central

    Schmid, Ariel N.; Kim, Lily J.; Abe, Caroline M.; Trieu, Jenny L.; Choua, Connie; Hays, Seth A.; Kilgard, Michael P.; Rennaker, Robert L.

    2016-01-01

    Abstract Traumatic Brain Injury (TBI) is one of the largest health problems in the United States, and affects nearly 2 million people every year. The effects of TBI, including weakness and loss of coordination, can be debilitating and last years after the initial injury. Recovery of motor function is often incomplete. We have developed a method using electrical stimulation of the vagus nerve paired with forelimb use by which we have demonstrated enhanced recovery from ischemic and hemorrhagic stroke. Here we have tested the hypothesis that vagus nerve stimulation (VNS) paired with physical rehabilitation could enhance functional recovery after TBI. We trained rats to pull on a handle to receive a food reward. Following training, they received a controlled-cortical impact (CCI) in the forelimb area of motor cortex opposite the trained forelimb, and were then randomized into two treatment groups. One group of animals received VNS paired with rehabilitative therapy, whereas another group received rehabilitative therapy without VNS. Following CCI, volitional forelimb strength and task success rate in all animals were significantly reduced. VNS paired with rehabilitative therapy over a period of 5 weeks significantly increased recovery of both forelimb strength and success rate on the isometric pull task compared with rehabilitative training without VNS. No significant improvement was observed in the Rehab group. Our findings indicate that VNS paired with rehabilitative therapy enhances functional motor recovery after TBI. PMID:26058501

  8. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation.

    PubMed

    Rong, Peijing; Liu, Aihua; Zhang, Jianguo; Wang, Yuping; Yang, Anchao; Li, Liang; Ben, Hui; Li, Liping; Liu, Rupeng; He, Wei; Liu, Huanguang; Huang, Feng; Li, Xia; Wu, Peng; Zhu, Bing

    2014-01-01

    Previous studies demonstrated that vagus nerve stimulation (VNS) is an effective therapy for drug-resistant epilepsy. Acupuncture is also used to treat epilepsy. This study was designed to examine the safety and effectiveness of transcutaneous auricular vagus nerve stimulation (ta-VNS) for patients with drug-resistant epilepsy. A total of 50 volunteer patients with drug-resistant epilepsy were selected for a random clinical trial to observe the therapeutic effect of ta-VNS. The seizure frequency, quality of life, and severity were assessed in weeks 8, 16, and 24 of the treatment according to the percentage of seizure frequency reduction. In the pilot study, 47 of the 50 epilepsy patients completed the 24-week treatment; three dropped off. After 8-week treatment, six of the 47 patients (12%) were seizure free and 12 (24%) had a reduction in seizure frequency. In week 16 of the continuous treatment, six of the 47 patients (12%) were seizure free; 17 (34%) had a reduction in seizure frequency. After 24 weeks' treatment, eight patients (16%) were seizure free; 19 (38%) had reduced seizure frequency. Similar to the therapeutic effect of VNS, ta-VNS can suppress epileptic seizures and is a safe, effective, economical, and widely applicable treatment option for drug-resistant epilepsy. (ChiCTR-TRC-10001023).

  9. Vagus nerve stimulation for essential tremor: a pilot efficacy and safety trial.

    PubMed

    Handforth, A; Ondo, W G; Tatter, S; Mathern, G W; Simpson, R K; Walker, F; Sutton, J P; Hubble, J P; Jankovic, J

    2003-11-25

    To assess the safety and efficacy of vagus nerve stimulation (VNS) for essential tremor (ET). This was a pilot open-treatment trial at three centers, with masked videotape tremor assessments. Inclusion required a severity score of 3 or 4 on the Tremor Rating Scale (TRS) in one or both hands. At baseline, tremor was assessed with TRS and Unified Tremor Rating Assessment (UTRA), accelerometry, and a videotape protocol. The VNS device was implanted with leads placed around the left cervical vagus nerve. Stimulation was adjusted over 4 weeks before the repeat tremor assessments. Two raters masked to the study visit scored the videotapes. Nine subjects participated, with a mean age of 65 years and a mean age at onset of tremor of 24. Investigators rated hand tremor as mildly improved (TRS 2.3 +/- 0.7 during VNS vs 3.0 +/- 0.4 during baseline, p = 0.06). Accelerometry-measured total power improved 50.2 +/- 31.8% (p < 0.01). Videotape tremor scores were highly correlated between the masked raters and revealed no changes in tremor scores with treatment. VNS was well tolerated, with the most common adverse events being stimulation related. VNS was judged by investigators to mildly improve upper extremity tremor. This finding was not confirmed in videotape scoring by masked raters. VNS is not likely to have a clinically meaningful effect on ET.

  10. Non-Invasive Vagus Nerve Stimulation as Treatment for Trigeminal Allodynia

    PubMed Central

    Oshinsky, Michael L.; Murphy, Angela L.; Hekierski, Hugh; Cooper, Marnie; Simon, Bruce J.

    2014-01-01

    Implanted vagus nerve stimulation (VNS) has been used to treat seizures and depression. In this study, we explore the mechanism of action of non-invasive vagus nerve stimulation (nVNS) for the treatment of trigeminal allodynia. Rats were repeatedly infused with inflammatory mediators directly onto the dura, which leads to chronic trigeminal allodynia. nVNS for 2min decreases periorbital sensitivity in rats with periorbital trigeminal allodynia for up to 3.5hr after stimulation. Using microdialysis, we quantified levels of extracellular neurotransmitters in the trigeminal nucleus caudalis (TNC). Allodynic rats showed a 7.7±0.9 fold increase in extracellular glutamate in the TNC following i.p. administration of the chemical headache trigger, glyceryl trinitrate (GTN; 0.1mg/kg). Allodynic rats, which received nVNS, had only a 2.3±0.4 fold increase in extracellular glutamate following GTN similar to the response in control naive rats. When nVNS was delayed until 120min after GTN treatment, the high levels of glutamate in the TNC were reversed following nVNS. The nVNS stimulation parameters used in this study did not produce significant changes in blood pressure or heart rate. These data suggest that nVNS may be used to treat trigeminal allodynia. PMID:24530613

  11. Transcutaneous Vagus Nerve Stimulation (tVNS) does not increase prosocial behavior in Cyberball.

    PubMed

    Sellaro, Roberta; Steenbergen, Laura; Verkuil, Bart; van IJzendoorn, Marinus H; Colzato, Lorenza S

    2015-01-01

    Emerging research suggests that individuals experience vicarious social pain (i.e., ostracism). It has been proposed that observing ostracism increases activity in the insula and in the prefrontal cortex (PFC), two key brain regions activated by directly experiencing ostracism. Here, we assessed the causal role of the insula and PFC in modulating neural activity in these areas by applying transcutaneous Vagus Nerve Stimulation (tVNS), a new non-invasive and safe method to stimulate the vagus nerve that has been shown to activate the insula and PFC. A single-blind, sham-controlled, within-subjects design was used to assess the effect of on-line (i.e., stimulation overlapping with the critical task) tVNS in healthy young volunteers (n = 24) on the prosocial Cyberball game, a virtual ball-tossing game designed to measure prosocial compensation of ostracism. Active tVNS did not increase prosocial helping behavior toward an ostracized person, as compared to sham (placebo) stimulation. Corroborated by Bayesian inference, we conclude that tVNS does not modulate reactions to vicarious ostracism, as indexed by performance in a Cyberball game.

  12. A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation.

    PubMed

    Grimonprez, Annelies; Raedt, Robrecht; De Taeye, Leen; Larsen, Lars Emil; Delbeke, Jean; Boon, Paul; Vonck, Kristl

    2015-12-01

    Vagus nerve stimulation (VNS) is a treatment for refractory epilepsy and depression. Previous studies using invasive recording electrodes showed that VNS induces laryngeal motor-evoked potentials (LMEPs) through the co-activation of the recurrent laryngeal nerve and subsequent contractions of the laryngeal muscles. The present study investigates the feasibility of recording LMEPs in chronically VNS-implanted rats, using a minimally-invasive technique, to assess effective current delivery to the nerve and to determine optimal VNS output currents for vagal fiber activation. Three weeks after VNS electrode implantation, signals were recorded using an electromyography (EMG) electrode in the proximity of the laryngeal muscles and a reference electrode on the skull. The VNS output current was gradually ramped up from 0.1 to 1.0 mA in 0.1 mA steps. In 13/27 rats, typical LMEPs were recorded at low VNS output currents (median 0.3 mA, IQR 0.2-0.3 mA). In 11/27 rats, significantly higher output currents were required to evoke electrophysiological responses (median 0.7 mA, IQR 0.5-0.7 mA, p < 0.001). The latencies of these responses deviated significantly from LMEPs (p < 0.05). In 3/27 rats, no electrophysiological responses to simulation were recorded. Minimally invasive LMEP recordings are feasible to assess effective current delivery to the vagus nerve. Furthermore, our results suggest that low output currents are sufficient to activate vagal fibers.

  13. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats.

    PubMed

    Surowka, Artur Dawid; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Chrobak, Adrian Andrzej; Szczerbowska-Boruchowska, Magdalena

    2015-06-01

    Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders.

  14. Cannabinoid receptor 1 in the vagus nerve is dispensable for body weight homeostasis but required for normal gastrointestinal motility.

    PubMed

    Vianna, Claudia R; Donato, Jose; Rossi, Jari; Scott, Michael; Economides, Kyriakos; Gautron, Lauren; Pierpont, Stephanie; Elias, Carol F; Elmquist, Joel K

    2012-07-25

    The cannabinoid receptor 1 (CB(1)R) is required for body weight homeostasis and normal gastrointestinal motility. However, the specific cell types expressing CB(1)R that regulate these physiological functions are unknown. CB(1)R is widely expressed, including in neurons of the parasympathetic branches of the autonomic nervous system. The vagus nerve has been implicated in the regulation of several aspects of metabolism and energy balance (e.g., food intake and glucose balance), and gastrointestinal functions including motility. To directly test the relevance of CB(1)R in neurons of the vagus nerve on metabolic homeostasis and gastrointestinal motility, we generated and characterized mice lacking CB(1)R in afferent and efferent branches of the vagus nerve (Cnr1(flox/flox); Phox2b-Cre mice). On a chow or on a high-fat diet, Cnr1(flox/flox); Phox2b-Cre mice have similar body weight, food intake, energy expenditure, and glycemia compared with Cnr1(flox/flox) control mice. Also, fasting-induced hyperphagia and after acute or chronic pharmacological treatment with SR141716 [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole carboxamide] (CB(1)R inverse agonist) paradigms, mutants display normal body weight and food intake. Interestingly, Cnr1(flox/flox); Phox2b-Cre mice have increased gastrointestinal motility compared with controls. These results unveil CB(1)R in the vagus nerve as a key component underlying normal gastrointestinal motility.

  15. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: An electrophysiological study in healthy volunteers.

    PubMed

    Nonis, Romain; D'Ostilio, Kevin; Schoenen, Jean; Magis, Delphine

    2017-01-01

    Background Benefits of cervical non-invasive vagus nerve stimulation (nVNS) devices have been shown in episodic cluster headache and preliminarily suggested in migraine, but direct evidence of vagus nerve activation using such devices is lacking. Vagal somatosensory evoked potentials (vSEPs) associated with vagal afferent activation have been reported for invasive vagus nerve stimulation (iVNS) and non-invasive auricular vagal stimulation. Here, we aimed to show and characterise vSEPs for cervical nVNS. Methods vSEPs were recorded for 12 healthy volunteers who received nVNS over the cervical vagus nerve, bipolar electrode/DS7A stimulation over the inner tragus, and nVNS over the sternocleidomastoid (SCM) muscle. We measured peak-to-peak amplitudes (P1-N1), wave latencies, and N1 area under the curve. Results P1-N1 vSEPs were observed for cervical nVNS (11/12) and auricular stimulation (9/12), with latencies similar to those described previously, whereas SCM stimulation revealed only a muscle artefact with a much longer latency. A dose-response analysis showed that cervical nVNS elicited a clear vSEP response in more than 80% of the participants using an intensity of 15 V. Conclusion Cervical nVNS can activate vagal afferent fibres, as evidenced by the recording of far-field vSEPs similar to those seen with iVNS and non-invasive auricular stimulation.

  16. Vagus Nerve Stimulation Increases Energy Expenditure: Relation to Brown Adipose Tissue Activity

    PubMed Central

    Vijgen, Guy H. E. J.; Bouvy, Nicole D.; Leenen, Loes; Rijkers, Kim; Cornips, Erwin; Majoie, Marian; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2013-01-01

    Background Human brown adipose tissue (BAT) activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS) is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT. Methods and Findings Fifteen patients with stable VNS therapy (age: 45±10yrs; body mass index; 25.2±3.5 kg/m2) were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR) was significantly higher when VNS was turned on (mean change; +2.2%). Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUVMean; 0.55±0.25 versus 0.67±0.46, P = 0.619). However, the change in energy expenditure upon VNS intervention (On-Off) was significantly correlated to the change in BAT activity (r = 0.935, P<0.001). Conclusions VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy. Trial Registration The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282. PMID:24194874

  17. The superior laryngeal nerve: its projection to the dorsal motor nucleus of the vagus in the guinea pig.

    PubMed

    Basterra, J; Chumbley, C C; Dilly, P N

    1988-01-01

    The distribution of neurons in the dorsal motor nucleus of the vagus nerve (DMNV) that innervate the supraglottic and glottic areas of the larynx of the guinea pig have been studied using the horseradish peroxidase (HRP) technique. Following soaking of the superior laryngeal nerve in a solution of HRP, labeled neurons were always located ipsilaterally, at levels between the estria acustica and the caudal end of the inferior olivary nucleus. Characteristically, the neurons were small or medium in size.

  18. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation.

    PubMed

    Brack, Kieran E; Coote, John H; Ng, G André

    2011-08-01

    The role of the vagus in the ventricle is controversial, although the vagus can protect against ventricular fibrillation (VF) via nitric oxide (NO). This study aims to determine whether the mechanisms involved are dependent on post-ganglionic release and muscarinic receptor activation. For this purpose, NO release and electrophysiological effects of vagus nerve stimulation (VNS) were evaluated in relation to acetylcholine and vasoactive intestinal peptide (VIP). In addition, the role of the coronary endothelium and afferent nerves was tested. Using the isolated innervated rabbit heart, we measured ventricular NO release using 4,5-diaminofluorescein (DAF-2) fluorescence and ventricular fibrillation threshold (VFT) during VNS after muscarinic, ganglionic, and VIP inhibition [atropine, hexamethonium, and VIP (6-28), respectively] and after Triton-X endothelial functional dysfunction. The vagal-mediated increases in NO and VFT were not significantly affected (P> 0.05) during (i) atropine perfusion [increase in NO: 196.8 ± 35.2 mV (control) vs. 156.1 ± 20.3 mV (atropine) and VFT 3.1 ± 0.5 mA (control) vs. 2.7 ± 0.4 mA (atropine)], (ii) VIP inhibition-increase in NO: 243.0 ± 42.4 mV (control) vs. 203.9 ± 28.5 mV [VIP(6-28)] and VFT 3.3 ± 0.3 mA (control) vs. 3.9 ± 0.6 mA [VIP(6-28)], or (iii) after endothelial functional dysfunction [increase in NO: 127.7 ± 31.7 mV (control) vs. 172.1 ± 31.5 mV (Triton-X) and VFT 2.6 ± 0.4 mA (control) vs. 2.5 ± 0.5 mA (Triton-X)]. However, the vagal effects were inhibited during ganglionic blockade [increase in NO: 175.1 ± 38.1 mV (control) vs. 0.6 ± 25.3 mV (hexamethonium) and VFT 3.3 ± 0.5 mA (control) vs. -0.3 ± 0.3 mA (hexamethonium)]. We show that the vagal anti-fibrillatory action in the rabbit ventricle occurs via post-ganglionic efferent nerve fibres, independent of muscarinic receptor activation, VIP, and the endothelium. Together with our previous publications, our data support the possibility of a novel

  19. Vagus nerve stimulation for children with treatment-resistant epilepsy: a consecutive series of 141 cases.

    PubMed

    Elliott, Robert E; Rodgers, Shaun D; Bassani, Luigi; Morsi, Amr; Geller, Eric B; Carlson, Chad; Devinsky, Orrin; Doyle, Werner K

    2011-05-01

    The authors undertook this study to analyze the efficacy of vagus nerve stimulation (VNS) in a large consecutive series of children 18 years of age and younger with treatment-resistant epilepsy and compare the safety and efficacy in children under 12 years of age with the outcomes in older children. The authors retrospectively reviewed 141 consecutive cases involving children (75 girls and 66 boys) with treatment-resistant epilepsy in whom primary VNS implantation was performed by the senior author between November 1997 and April 2008 and who had at least 1 year of follow-up since implantation. The patients' mean age at vagus nerve stimulator insertion was 11.1 years (range 1-18 years). Eighty-six children (61.0%) were younger than 12 years at time of VNS insertion (which constitutes off-label usage of this device). Follow-up was complete for 91.8% of patients and the mean duration of VNS therapy in these patients was 5.2 years (range 25 days-11.4 years). Seizure frequency significantly improved with VNS therapy (mean reduction 58.9%, p < 0.0001) without a significant reduction in antiepileptic medication burden (median number of antiepileptic drugs taken 3, unchanged). Reduction in seizure frequency of at least 50% occurred in 64.8% of patients and 41.4% of patients experienced at least a 75% reduction. Major (3) and minor (6) complications occurred in 9 patients (6.4%) and included 1 deep infection requiring device removal, 1 pneumothorax, 2 superficial infections treated with antibiotics, 1 seroma/hematoma treated with aspiration, persistent cough in 1 patient, severe but transient neck pain in 1 patient, and hoarseness in 2 patients. There was no difference in efficacy or complications between children 12 years of age and older (FDA-approved indication) and those younger than 12 years of age (off-label usage). Linear regression analyses did not identify any demographic and clinical variables that predicted response to VNS. Vagus nerve stimulation is a safe and

  20. Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: long-term outcomes and predictors of response.

    PubMed

    Elliott, Robert E; Morsi, Amr; Kalhorn, Stephen P; Marcus, Joshua; Sellin, Jonathan; Kang, Matthew; Silverberg, Alyson; Rivera, Edwin; Geller, Eric; Carlson, Chad; Devinsky, Orrin; Doyle, Werner K

    2011-01-01

    The goal of this study was to assess the efficacy and safety of vagus nerve stimulation in a consecutive series of adults and children with treatment-resistant epilepsy (TRE). In this retrospective review of a prospectively created database of 436 consecutive patients who underwent vagus nerve stimulator implantation for TRE between November 1997 and April 2008, there were 220 (50.5%) females and 216 (49.5%) males ranging in age from 1 to 76 years at the time of implantation (mean: 29.0 ± 16.5). Thirty-three patients (7.6%) in the primary implantation group had inadequate follow-up (<3 months from implantation) and three patients had early device removal because of infection and were excluded from seizure control outcome analyses. Duration of vagus nerve stimulation treatment varied from 10 days to 11 years (mean: 4.94 years). Mean seizure frequency significantly improved following implantation (mean reduction: 55.8%, P<0.0001). Seizure control ≥ 90% was achieved in 90 patients (22.5%), ≥ 75% seizure control in 162 patients (40.5%), ≥ 50% improvement in 255 patients (63.75%), and <50% improvement in 145 patients (36.25%). Permanent injury to the vagus nerve occurred in 2.8% of patients. Vagus nerve stimulation is a safe and effective palliative treatment option for focal and generalized TRE in adults and children. When used in conjunction with a multidisciplinary and multimodality treatment regimen including aggressive antiepileptic drug regimens and epilepsy surgery when appropriate, more than 60% of patients with TRE experienced at least a 50% reduction in seizure burden. Good results were seen in patients with non-U.S. Food and Drug Administration-approved indications. Prospective, randomized trials are needed for patients with generalized epilepsies and for younger children to potentially expand the number of patients who may benefit from this palliative treatment. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Vagus nerve stimulation therapy (VNST) in epilepsy - implications for dental practice.

    PubMed

    Lisowska, P; Daly, B

    2012-01-27

    Epilepsy is a chronic condition which affects about 1% of the population. It is important that the dental team is aware of the management of epileptic seizures and epileptic syndromes including recent advances in seizure management. As people with epilepsy often get a warning aura before seizures begin, the management of the condition has increasingly involved measures to prevent the seizure, once the aura has begun. Vagus nerve stimulation therapy (VNST) in epilepsy involves the use of an implantable electronic device and is being increasingly used in the UK to control severe treatment resistant epilepsy. As a result, more patients will be presented to clinicians in the primary healthcare setting and hospital services with these devices in place. Members of the dental team need to understand the principles of epilepsy control, how VNST is used in the management of intractable epilepsy, how the VNST system operates and the implications of VNST use for dental practice including medical devices, interactions and safety features.

  2. Vagus nerve stimulation: a novel approach for prevention and control of refractory seizures.

    PubMed

    Bhattacharya, S K; Das, B P; Rauniar, G P; Sangraula, H

    2007-01-01

    In order to understand the brain function and to treat various neuropsychiatric illnesses including epilepsy, continued search and discovery of newer antiepileptic drugs has failed to revolutionize the approach in the management of this complex disorder. Moreover, in close to 30% of epilepsy patients, the seizure control is either not satisfactory or it is intractable to pharmacotherapy. Amongst the non-pharmacological treatment options for refractory epilepsy, vagus nerve stimulation occupies a unique position as an adjunctive treatment in prevention and control of partial-onset seizures in adults and adolescents older than 12 years. Though the precise mode of action of VNS is still debatable an honest attempt has been mode here to review all possible literatures available on VNS to establish its role in the management of this complex disorder.

  3. Early experiences with tachycardia-triggered vagus nerve stimulation using the AspireSR stimulator.

    PubMed

    El Tahry, Riëm; Hirsch, Martin; Van Rijckevorsel, Kenou; Santos, Susana Ferrao; de Tourtchaninoff, Marianne; Rooijakkers, Herbert; Coenen, Volker; Schulze-Bonhage, Andreas

    2016-06-01

    Many epilepsy patients treated with vagus nerve stimulation additionally use an "on-demand" function, triggering an extra stimulation to terminate a seizure or diminish its severity. Nevertheless, a substantial number of patients are not able to actively trigger stimulations by use of a magnet, due to the absence of an aura or inability for voluntary actions in the early phase of a seizure. To address this need, a novel implantable pulse generator, the AspireSR VNS system, was developed to provide automated ictal stimulation triggered by a seizure-detecting algorithm. We report our experience with three patients in assessing the functionality of ictal stimulation, illustrating the detection system in practice. Detection of ictal tachycardia and variable additional detections of physiological tachycardia depended on the individual seizure-detecting algorithm settings.

  4. Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy

    PubMed Central

    Rolston, John D.; Wright, Clinton W.; Hassnain, Kevin H.; Chang, Edward F.

    2015-01-01

    BACKGROUND: Neuromodulation-based treatments have become increasingly important in epilepsy treatment. Most patients with epilepsy treated with neuromodulation do not achieve complete seizure freedom, and, therefore, previous studies of vagus nerve stimulation (VNS) therapy have focused instead on reduction of seizure frequency as a measure of treatment response. OBJECTIVE: To elucidate rates and predictors of seizure freedom with VNS. METHODS: We examined 5554 patients from the VNS therapy Patient Outcome Registry, and also performed a systematic review of the literature including 2869 patients across 78 studies. RESULTS: Registry data revealed a progressive increase over time in seizure freedom after VNS therapy. Overall, 49% of patients responded to VNS therapy 0 to 4 months after implantation (≥50% reduction seizure frequency), with 5.1% of patients becoming seizure-free, while 63% of patients were responders at 24 to 48 months, with 8.2% achieving seizure freedom. On multivariate analysis, seizure freedom was predicted by age of epilepsy onset >12 years (odds ratio [OR], 1.89; 95% confidence interval [CI], 1.38-2.58), and predominantly generalized seizure type (OR, 1.36; 95% CI, 1.01-1.82), while overall response to VNS was predicted by nonlesional epilepsy (OR, 1.38; 95% CI, 1.06-1.81). Systematic literature review results were consistent with the registry analysis: At 0 to 4 months, 40.0% of patients had responded to VNS, with 2.6% becoming seizure-free, while at last follow-up, 60.1% of individuals were responders, with 8.0% achieving seizure freedom. CONCLUSION: Response and seizure freedom rates increase over time with VNS therapy, although complete seizure freedom is achieved in a small percentage of patients. ABBREVIATIONS: AED, antiepileptic drug VNS, vagus nerve stimulation PMID:26645965

  5. Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy.

    PubMed

    Englot, Dario J; Rolston, John D; Wright, Clinton W; Hassnain, Kevin H; Chang, Edward F

    2016-09-01

    Neuromodulation-based treatments have become increasingly important in epilepsy treatment. Most patients with epilepsy treated with neuromodulation do not achieve complete seizure freedom, and, therefore, previous studies of vagus nerve stimulation (VNS) therapy have focused instead on reduction of seizure frequency as a measure of treatment response. To elucidate rates and predictors of seizure freedom with VNS. We examined 5554 patients from the VNS therapy Patient Outcome Registry, and also performed a systematic review of the literature including 2869 patients across 78 studies. Registry data revealed a progressive increase over time in seizure freedom after VNS therapy. Overall, 49% of patients responded to VNS therapy 0 to 4 months after implantation (≥50% reduction seizure frequency), with 5.1% of patients becoming seizure-free, while 63% of patients were responders at 24 to 48 months, with 8.2% achieving seizure freedom. On multivariate analysis, seizure freedom was predicted by age of epilepsy onset >12 years (odds ratio [OR], 1.89; 95% confidence interval [CI], 1.38-2.58), and predominantly generalized seizure type (OR, 1.36; 95% CI, 1.01-1.82), while overall response to VNS was predicted by nonlesional epilepsy (OR, 1.38; 95% CI, 1.06-1.81). Systematic literature review results were consistent with the registry analysis: At 0 to 4 months, 40.0% of patients had responded to VNS, with 2.6% becoming seizure-free, while at last follow-up, 60.1% of individuals were responders, with 8.0% achieving seizure freedom. Response and seizure freedom rates increase over time with VNS therapy, although complete seizure freedom is achieved in a small percentage of patients. AED, antiepileptic drugVNS, vagus nerve stimulation.

  6. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder

    PubMed Central

    Fang, Jiliang; Rong, Peijing; Hong, Yang; Fan, Yangyang; Liu, Jun; Wang, Honghong; Zhang, Guolei; Chen, Xiaoyan; Shi, Shan; Wang, Liping; Liu, Rupeng; Hwang, Jiwon; Li, Zhengjie; Tao, Jing; Wang, Yang; Zhu, Bing; Kong, Jian

    2016-01-01

    Background Depression is the most common form of mental disorder in community and health care settings and current treatments are far from satisfactory. Vagus nerve stimulation (VNS) is an FDA-approved somatic treatment for treatment-resistant depression. However, the involvement of surgery has limited VNS only to patients who have failed to respond to multiple treatment options. Transcutaneous VNS (tVNS) is a relatively new, non-invasive VNS method based on the rationale that there is afferent / efferent vagus nerve distribution on the surface of the ear. The safe and low-cost characteristics of tVNS have the potential to significantly expand the clinical application of VNS. Methods In this study, we investigated how tVNS can modulate the default mode network (DMN) functional connectivity (FC) in mild or moderate major depressive disorder (MDD) patients. Forty-nine MDD patients were recruited, and received tVNS or sham tVNS (stVNS) treatments. Result 34 patients completed the study and were included in data analysis. After one month of tVNS treatment, the 24-item Hamilton Depression Rating Scale (HAMD) score reduced significantly in the tVNS group as compared to the stVNS group. The FC between the DMN and anterior insula and parahippocampus decreased; the FC between the DMN and precuneus and orbital prefrontal cortex increased compared to stVNS. All these FC increases are also associated with HAMD reduction. Conclusions tVNS can significantly modulate the DMN FC of MDD patients; our results provide insights to elucidate the brain mechanism of tVNS treatment for MDD patients. PMID:25963932

  7. Evaluation of electrical activity after vagus nerve-preserving distal gastrectomy using multichannel electrogastrography

    PubMed Central

    Murakami, Haruaki; Matsumoto, Hideo; Kubota, Hisako; Higashida, Masaharu; Nakamura, Masafumi; Hirai, Toshihiro

    2013-01-01

    Background Multichannel electrogastrography (M-EGG) can be used to evaluate gastrointestinal motility. The myoelectric activity of the remnant stomach after surgery has not been measured by M-EGG. This study examined whether myoelectric activity varied with surgical technique and compared vagus nerve-preserving distal gastrectomy (VP-DG) with standard distal gastrectomy without vagus nerve preservation (DG). Furthermore, we examined the relationship between the M-EGG findings and patients' postoperative symptoms. Methods Twenty-six patients who underwent VP-DG, 20 who underwent DG, and 12 healthy volunteers as controls were examined with M-EGG. The Gastrointestinal Symptom Rating Scale (GSRS) was used to assess postoperative symptoms. Results Longer periods of normal gastric function (normogastria, 2.0–4.0 cycle min–1) were detected in channel 1 in the VP-DG group than in the DG group in either the fasted or fed state (P<0.05). The percentage of slow wave coupling (%SWC) in the fed state correlated negatively with GSRS scores (reflux, r=–0.59, P=0.02; abdominal pain, r=–0.51, P=0.04, indigestion, r=–0.59, P=0.02 and total score, r=–0.75, P=0.02). Conclusions Slow waves can be recorded non-invasively using M-EGG in the remnant stomach following gastrectomy. The VP-DG group showed better preserved gastric myoelectric activity than the DG group, and the %SWC showed a significant negative correlation with scores of GSRS (reflux, abdominal pain, indigestion and total score) in the VP-DG group. PMID:23832614

  8. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study

    PubMed Central

    Rong, Peijing; Liu, Jun; Wang, Liping; Liu, Rupeng; Fang, Ji-Liang; Zhao, Jingjun; Zhao, Yufeng; Wang, Honghong; Vangel, Mark; Sun, Sharon; Ben, Hui; Park, Joel; Li, Shaoyuan; Meng, Hong; Zhu, Bing; Kong, Jian

    2016-01-01

    Background Depression presents a significant burden to both patients and society. One treatment that has emerged is vagus nerve stimulation (VNS), an FDA-approved physical treatment for depressive disorders. However, the application of this intervention has been limited by the involvement of surgery and potential side effects. The aim of this study is to explore the effectiveness of stimulating the superficial branches of the vagus nerve as a solo treatment for MDD. Methods This is a nonrandomized, controlled study. The first cohort of patients (n = 91) only received transcutaneous auricular VNS (taVNS) for 12 weeks. In the second cohort (n = 69), patients first received 4 weeks of sham taVNS followed by 8 weeks of taVNS. All treatments were self-administered by the patients at home after they received training from the hospitals. The primary outcome measurement was the 24-item Hamilton Depression Rating Scale measured at weeks 0, 4, 8, and 12. Data analysis included a timelag analysis comparing 1) real and sham taVNS groups at week 4; 2) the real taVNS group at week 4 vs the sham taVNS group at week 8 (fourth week of real taVNS following 4 weeks of sham); and 3) the real taVNS group at week 8 vs the sham taVNS group at week 12 (eighth week of real taVNS following sham). Results After four weeks of treatment, MDD patients in the taVNS group showed greater improvement than that of the sham taVNS group as indicated by both Hamilton score changes as well as response and remission rates at week four. In addition, we also found that the clinical improvements continued until week 12 during taVNS. Limitations Patients were not randomized in this study. Conclusions Our results suggest that taVNS is a promising, safe, and cost-effective therapeutic method for mild and moderate MDD. PMID:26896810

  9. TRANSCUTANEOUS CERVICAL VAGUS NERVE STIMULATION AMELIORATES ACUTE ISCHEMIC INJURY IN RATS

    PubMed Central

    Ay, Ilknur; Nasser, Rena; Simon, Bruce; Ay, Hakan

    2016-01-01

    Background Direct stimulation of the vagus nerve in the neck via surgically implanted electrodes is protective in animal models of stroke. We sought to determine the safety and efficacy of a non-invasive cervical VNS (nVNS) method using surface electrodes applied to the skin overlying the vagus nerve in the neck in a model of middle cerebral artery occlusion (MCAO). Methods nVNS was initiated variable times after MCAO hour in rats (n=33). Control animals received sham stimulation (n=33). Infarct volume and functional outcome were assessed on day 7. Brains were processed by immunohistochemistry for microglial activation and cytokine levels. The ability of nVNS to activate the nucleus tractus solitarius (NTS) was assessed using c-Fos immunohistochemistry. Results Infarct volume was 43.15±3.36 percent of the contralateral hemisphere (PCH) in control and 28.75±4.22 PCH in nVNS-treated animals (p<0.05). The effect of nVNS on infarct size was consistent when stimulation was initiated up to 4 hours after MCAO. There was no difference in heart rate and blood pressure between control and nVNS-treated animals. The number of c-Fos positive cells was 32.4±10.6 and 6.2±6.3 in the ipsilateral NTS (p<0.05) and 30.4±11.2 and 5.8±4.3 in the contralateral NTS (p<0.05) in nVNS-treated and control animals, respectively. nVNS reduced the number of Iba-1, CD68, and TNF-α positive cells and increased the number of HMGB1 positive cells. Conclusions nVNS inhibits ischemia-induced immune activation and reduces the extent of tissue injury and functional deficit in rats without causing cardiac or hemodynamic adverse effects when initiated up to 4 hours after MCAO. PMID:26723020

  10. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression.

    PubMed

    Fang, Jiliang; Egorova, Natalia; Rong, Peijing; Liu, Jun; Hong, Yang; Fan, Yangyang; Wang, Xiaoling; Wang, Honghong; Yu, Yutian; Ma, Yunyao; Xu, Chunhua; Li, Shaoyuan; Zhao, Jingjun; Luo, Man; Zhu, Bing; Kong, Jian

    2017-01-01

    Transcutaneous vagus nerve stimulation (tVNS), a non-invasive method of brain stimulation through the auricular branch of the vagus nerve, has shown promising results in treating major depressive disorder (MDD) in several pilot studies. However, the neural mechanism by which the effect on depression might be achieved has not been fully investigated, with only a few neuroimaging studies demonstrating tVNS-induced changes in the brains of healthy volunteers. Identifying specific neural pathways, which are influenced by tVNS compared with sham in depressed individuals, as well as determining neurobiomarkers of tVNS treatment success are needed to advance the application of tVNS for MDD. In order to address these questions, we measured fMRI brain activity of thirty-eight depressed patients assigned to undergo tVNS (n = 17) or sham (n = 21) treatment for 4 weeks, during the first stimulation session. The results showed significant fMRI signal increases in the left anterior insula, revealed by a direct comparison of tVNS and sham stimulation. Importantly, the insula activation level during the first stimulation session in the tVNS group was significantly associated with the clinical improvement at the end of the four-week treatment, as indicated by the Hamilton Depression Rating Scale (HAM-D) score. Our findings suggest that anterior insula fMRI activity could serve as a potential cortical biomarker and an early predictor of tVNS longitudinal treatment success.

  11. Lactate is released and taken up by isolated rabbit vagus nerve during aerobic metabolism.

    PubMed

    Véga, C; Poitry-Yamate, C L; Jirounek, P; Tsacopoulos, M; Coles, J A

    1998-07-01

    To determine if lactate is produced during aerobic metabolism in peripheral nerve, we incubated pieces of rabbit vagus nerve in oxygenated solution containing D-[U-14C]glucose while stimulating electrically. After 30 min, nearly all the radioactivity in metabolites in the nerve was in lactate, glucose 6-phosphate, glutamate, and aspartate. Much lactate was released to the bath: 8.2 pmol (microg dry wt)(-1) from the exogenous glucose and 14.2 pmol (microg dry wt)(-1) from endogenous substrates. Lactate release was not increased when bath PO2 was decreased, indicating that it did not come from anoxic tissue. When the bath contained [U-14C]lactate at a total concentration of 2.13 mM and 1 mM glucose, 14C was incorporated in CO2 and glutamate. The initial rate of formation of CO2 from bath lactate was more rapid than its formation from bath glucose. The results are most readily explained by the hypothesis that has been proposed for brain tissue in which glial cells supply lactate to neurons.

  12. Role of the vagus nerve and its recurrent laryngeal branch in the development of the human ductus arteriosus.

    PubMed

    Leonard, M E; Hutchins, G M; Moore, G W

    1983-07-01

    The reason that the normal ductus arteriosus has a muscular media, contrasting with the elastic lamellar structure of the adjacent great arteries, is unknown. We examined the hypothesis that the anatomic relationship of the ductus arteriosus to the vagus and recurrent laryngeal nerves during early development might be of importance in influencing ductal morphology. Normal human embryos from the Carnegie Embryological Collection and embryos and fetuses from the Hopkins Pathology Collection were studied microscopically, by reconstructions made from serial histologic sections, or by gross dissection. At Carnegie stage 16 the recurrent laryngeal nerves pass medially from the vagus nerve to the laryngeal area and are caudal to the bilaterally symmetric sixth aortic arches. By stage 18 the right sixth aortic arch has disappeared and the left sixth aortic arch is in a more caudal position relative to the larynx. The left vagus nerve and its recurrent laryngeal branch form a sling supporting the distal (or ductus arteriosus component) of the left sixth aortic arch. In subsequent development there is greater relative separation of the larynx and ductus arteriosus. The media of the ductus arteriosus beneath the supporting nerves is thinner and has less elastic fiber formation than the elastic lamellar media of the adjacent aortic arches. The study shows that the vagus and recurrent laryngeal nerves are in a position to provide mechanical support to the ductus arteriosus during its development and that the morphology of the media of the supported ductus arteriosus differs from that of the adjacent unsupported aortic arches. It is suggested that this local mechanical support may be the reason that the normal ductus arteriosus differentiates as a muscular artery and is therefore able to obliterate its lumen in postnatal life. Without such support the ductal media could develop the abundant elastic fibers characteristic of the normal unsupported aorta and pulmonary trunk and

  13. Characterization of the anandamide induced depolarization of guinea-pig isolated vagus nerve

    PubMed Central

    Kagaya, Manabu; Lamb, Jasmine; Robbins, Jon; Page, Clive P; Spina, Domenico

    2002-01-01

    There is considerable interest in elucidating potential endogenously derived agonists of the vanilloid receptor and the role of anandamide in this regard has received considerable attention. In the present study, we have used an electrophysiological technique to investigate the mechanism of activation of vanilloid receptors in an isolated vagal preparation. Both capsaicin and anandamide depolarized de-sheathed whole vagal nerve preparations that was antagonized by the VR1 antagonist, capsazepine (P<0.05) whilst this response was unaltered by the cannabinoid (CB1) selective antagonist SR141716A or the CB2 selective antagonist, SR144528, thereby ruling out a role for cannabinoid receptors in this response. The PKC activator, phorbol-12-myristate-13-acetate (PMA) augmented depolarization to both anandamide and capsaicin and this response was significantly inhibited with the PKC inhibitor, bisindolylmaleimide (BIM) (P<0.05). The role of lipoxygenase products in the depolarization to anandamide was investigated in the presence of the lipoxygenase inhibitor, 5,8,11-Eicosatriynoic acid (ETI). Depolarization to anandamide and arachidonic acid was significantly inhibited in the presence of ET1 (P<0.05). However, in the absence of calcium depolarization to anandamide was not inhibited by ETI. Using confocal microscopy we have demonstrated the presence of vanilloid receptors on both neuropeptide containing nerves and nerves that did not stain for sensory neuropeptides. These results demonstrate that anandamide evokes depolarization of guinea-pig vagus nerve, following activation of vanilloid receptors, a component of which involves the generation of lipoxygenase products. Furthermore, these receptors are distributed in both neuropeptide and non-neuropeptide containing nerves. PMID:12183329

  14. On the peculiar morphology and development of the hypoglossal, glossopharyngeal and vagus nerves and hypobranchial muscles in the hagfish.

    PubMed

    Oisi, Yasuhiro; Fujimoto, Satoko; Ota, Kinya G; Kuratani, Shigeru

    2015-01-01

    The vertebrate body is characterized by its dual segmental organization: pharyngeal arches in the head and somites in the trunk. Muscular and nervous system morphologies are also organized following these metameric patterns, with distinct differences between head and trunk; branchiomeric nerves innervating pharyngeal arches are superficial to spinal nerves innervating somite derivatives. Hypobranchial muscles originate from rostral somites and occupy the "neck" at the head-trunk interface. Hypobranchial muscles, unlike ventral trunk muscles in the lateral body wall, develop from myocytes that migrate ventrally to occupy a space that is ventrolateral to the pharynx and unassociated with coelomic cavities. Occipitospinal nerves innervating these muscles also extend ventrally, thereby crossing the vagus nerve laterally. In hagfishes, the basic morphological pattern of vertebrates is obliterated by the extreme caudal shift of the posterior part of the pharynx. The vagus nerve is found unusually medially, and occipitospinal nerves remain unfasciculated, appearing as metameric spinal nerves as in the posterior trunk region. Moreover, the hagfish exhibits an undifferentiated body plan, with the hypobranchial muscles not well dissociated from the abaxial muscles in the trunk. Comparative embryological observation showed that this hagfish-specific morphology is established by secondary modification of the common vertebrate embryonic pattern, and the hypobranchial muscle homologue can be found in the rostral part of the oblique muscle with pars decussata. The morphological pattern of the hagfish represents an extreme case of heterotopy that led to the formation of the typical hypoglossal nerve, and can be regarded as an autapomorphic trait of the hagfish lineage.

  15. Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial

    PubMed Central

    2012-01-01

    Background Depressive disorders are the most common form of mental disorders in community and health care settings. Unfortunately, the treatment of Major Depressive Disorder (MDD) is far from satisfactory. Vagus nerve stimulation (VNS) is a relatively new and promising physical treatment for depressive disorders. One particularly appealing element of VNS is the long-term benefit in mood regulation. However, because this intervention involves surgery, perioperative risks, and potentially significant side effects, this treatment has been limited to those patients with treatment-resistant depression who have failed medication trials and exhausted established somatic treatments for major depression, due to intolerance or lack of response. This double-blinded randomized clinical trial aims to overcome these limitations by introducing a novel method of stimulating superficial branches of the vagus nerve on the ear to treat MDD. The rationale is that direct stimulation of the afferent nerve fibers on the ear area with afferent vagus nerve distribution should produce a similar effect as classic VNS in reducing depressive symptoms without the burden of surgical intervention. Design One hundred twenty cases (60 males) of volunteer patients with mild and moderate depression will be randomly divided into transcutaneous vagus nerve stimulation group (tVNS) and sham tVNS group. The treatment period lasts 4 months and all clinical and physiological measurements are acquired at the beginning and the end of the treatment period. Discussion This study has the potential to significantly extend the application of VNS treatment for MDD and other disorders (including epilepsy, bipolar disorder, and morbid obesity), resulting in direct benefit to the patients suffering from these highly prevalent disorders. In addition, the results of this double-blinded clinical trial will shed new light on our understanding of acupuncture point specificity, and development of methodologies in clinical

  16. Giant neurilemmoma of the vagus nerve: a case report and review of literature.

    PubMed

    Dhull, Anil Kumar; Kaushal, Vivek; Atri, Rajeev; Dhankhar, Rakesh; Kataria, Sant Parkash

    2012-12-01

    Cervical vagal neurilemmomas are rare, usually asymptomatic, slow-growing tumours and defined as a benign, encapsulated neoplasm that arises in the nerve fibre. Magnetic resonant imaging (MRI) plays a central role in diagnosing vagal nerve neoplasm and in fact, provides important pre-operative information useful in planning optimal surgical treatment. A rare case of giant neurilemmoma is presented with a large swelling in the right side of the neck associated with breathlessness and paroxysmal cough. X-ray chest revealed large homogenous opacity in apical area of the right lung extending into the lower neck. MRI revealed a large 6 x 8 x 13 cm soft tissue, well defined mass with lobulated contours on the right side of the neck. The mass was pushing sternomastoid muscle anteriorly and carotid artery was pushed anteromedially. The mass was abutting the brachial plexus and compressing internal jugular vein. The mass was extending into the mediastinum up to the level of carina. The mass was also pushing the vessels in superior mediastinum towards left and was compressing the veins. Tumour was extending posterior to trachea and pushing trachea anteriorly and towards left and also compressing it. There was also erosion of adjacent anterior aspect of the right upper ribs. Subclavian artery was also encased by the mass. Multiple enlarged lymph nodes were seen in right cervical area. A provisional diagnosis of malignant schwannoma of right vagus nerve was made. Cytology from the fine needle aspirate of the right lower Cervical region of the swelling revealed features of neurilemmoma. Complete surgical resection is the treatment of choice with excellent prognosis, as the tumour was benign, and recurrence is nearly unknown, so it is possible and indeed recommended to preserve nerve integrity with careful dissection.

  17. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction

    PubMed Central

    Beaumont, Eric; Southerland, Elizabeth M.; Hardwick, Jean C.; Wright, Gary L.; Ryan, Shannon; Li, Ying; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  18. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction.

    PubMed

    Beaumont, Eric; Southerland, Elizabeth M; Hardwick, Jean C; Wright, Gary L; Ryan, Shannon; Li, Ying; KenKnight, Bruce H; Armour, J Andrew; Ardell, Jeffrey L

    2015-10-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.

  19. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study.

    PubMed

    Goadsby, P J; Grosberg, B M; Mauskop, A; Cady, R; Simmons, K A

    2014-10-01

    We sought to assess a novel, noninvasive, portable vagal nerve stimulator (nVNS) for acute treatment of migraine. Participants with migraine with or without aura were eligible for an open-label, single-arm, multiple-attack study. Up to four migraine attacks were treated with two 90-second doses, at 15-minute intervals delivered to the right cervical branch of the vagus nerve within a six-week time period. Subjects were asked to self-treat at moderate or severe pain, or after 20 minutes of mild pain. Of 30 enrolled patients (25 females, five males, median age 39), two treated no attacks, and one treated aura only, leaving a Full Analysis Set of 27 treating 80 attacks with pain. An adverse event was reported in 13 patients, notably: neck twitching (n = 1), raspy voice (n = 1) and redness at the device site (n = 1). No unanticipated, serious or severe adverse events were reported. The pain-free rate at two hours was four of 19 (21%) for the first treated attack with a moderate or severe headache at baseline. For all moderate or severe attacks at baseline, the pain-free rate was 12/54 (22%). nVNS may be an effective and well-tolerated acute treatment for migraine in certain patients. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series.

    PubMed

    De Ridder, Dirk; Vanneste, Sven; Engineer, Navzer D; Kilgard, Michael P

    2014-02-01

    Classical neuromodulation applies current to the nervous system in an attempt to alter ongoing activity. However, classical neuromodulation interferes with activity but does not drive it in a controlled way. Recently, an animal study demonstrated it is possible to drive plasticity in a controlled way by using stimulation of the vagus nerve paired with tones. This reversed the tinnitus percept and pathological neural plasticity in noise-exposed rats with behavioral characteristics of tinnitus. The aim of the current study was to translate this innovative neuromodulation method to humans suffering from tinnitus. Ten patients with severe chronic tinnitus were implanted with electrodes on their left vagus nerve. Two and a half hours each day for 20 days, the patients heard tones, excluding the tinnitus-matched frequency, paired with brief electrical stimulation of the vagus nerve. The therapy was well tolerated, and no patient withdrew from the study due to complications or side-effects. Four of the ten patients exhibited clinically meaningful improvements in their tinnitus, both for the affective component, as quantified by the Tinnitus Handicap Inventory, and for the sound percept, as quantified by the minimum masking level. These improvements were stable for more than two months after the end of therapy. Of the ten patients, five were on medications that included muscarinic antagonists, norepinephrine agonists, and γ-amino butyric acid agonists, thereby possibly interfering with acetylcholine and norepinephrine release induced by vagus nerve stimulation (VNS) and essential for inducing plasticity. These patients had no improvement in contrast to medication-free patients. VNS paired with tones excluding the tinnitus-matched frequency is safe and feasible. It seems to exert a beneficial effect in nonmedication-taking patients, both with regard to the perceived sound and the distress. Further studies are therefore mandated. © 2013 International Neuromodulation

  1. Can we predict the response in the treatment of epilepsy with vagus nerve stimulation?

    PubMed

    Arcos, A; Romero, L; Gelabert, M; Prieto, A; Pardo, J; Osorio, X Rodriguez; Arráez, M A

    2014-10-01

    Despite the introduction of new antiepileptic drugs and advances in the surgical treatment of epilepsy, an important group of patients still remains uncontrolled by any of these methods. The relatively recent introduction of vagus nerve stimulation is yet another possible treatment for refractory epilepsy. This safe, simple, and adjustable technique reduces the number of seizures and multiple publications support its increasing efficacy and effectiveness, with few adverse effects. The goal of our study is to determine the efficacy of this procedure and the factors predicting a response, particularly in the presence of a temporal lobe discharge on the video electroencephalogram (video-EEG) and magnetic resonance imaging (MRI) lesions. We undertook a retrospective study of all the patients with refractory epilepsy who underwent implantation of a vagus nerve stimulator between 2003 and 2009, and with a minimum follow-up of 6 months. The statistical analysis was done with SPSS for Windows. The stimulator was implanted in 40 patients, of whom 38 had a minimum follow-up of 6 months. In one patient, the device had to be removed due to infection, so the series comprised 37 patients. These were divided into different groups, according to the epidemiologic, clinical, radiologic, and electroencephalographic data. In addition, an analysis of the response was performed. The efficacy of the procedure was established according to the reduction in the mean seizure frequency. The baseline value of these seizures was 80.97 ± 143.59, falling to 37 ± 82.51 at the last revision. The response rate (reduction in seizures ≥ 50 %) at 6 months was 51.4 %, with 62.2 % of the patients showing this reduction at the last evaluation. Significant differences in the response were seen for the variables: baseline frequency of seizures, temporal lobe discharge on VideoEEG and MRI lesions. The mean time to response was 10 months in patients with lower rate of seizures versus 25 months of those

  2. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study

    PubMed Central

    2014-01-01

    Background Impaired glucose tolerance (IGT) is a pre-diabetic state of hyperglycemia that is associated with insulin resistance, increased risk of type II diabetes, and cardiovascular pathology. Recently, investigators hypothesized that decreased vagus nerve activity may be the underlying mechanism of metabolic syndrome including obesity, elevated glucose levels, and high blood pressure. Methods In this pilot randomized clinical trial, we compared the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) and sham taVNS on patients with IGT. 72 participants with IGT were single-blinded and were randomly allocated by computer-generated envelope to either taVNS or sham taVNS treatment groups. In addition, 30 IGT adults were recruited as a control population and not assigned treatment so as to monitor the natural fluctuation of glucose tolerance in IGT patients. All treatments were self-administered by the patients at home after training at the hospital. Patients were instructed to fill in a patient diary booklet each day to describe any side effects after each treatment. The treatment period was 12 weeks in duration. Baseline comparison between treatment and control group showed no difference in weight, BMI, or measures of systolic blood pressure, diastolic blood pressure, fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), or glycosylated hemoglobin (HbAlc). Results 100 participants completed the study and were included in data analysis. Two female patients (one in the taVNS group, one in the sham taVNS group) dropped out of the study due to stimulation-evoked dizziness. The symptoms were relieved after stopping treatment. Compared with sham taVNS, taVNS significantly reduced the two-hour glucose tolerance (F(2) = 5.79, p = 0.004). In addition, we found that taVNS significantly decreased (F(1) = 4.21, p = 0.044) systolic blood pressure over time compared with sham taVNS. Compared with the no-treatment control group, patients

  3. Ultrasound-Induced Heart Rate Decrease: Role of the Vagus Nerve

    PubMed Central

    Coiado, Olivia C.; Buiochi, Elaine B.; O’Brien, William D.

    2015-01-01

    The goal of this study is to investigate the role of the vagus nerve (VN) in the ultrasound (US)-induced negative chronotropic effect (deceased heart rate). One of the functions of the VN is to mediate lowering of the heart rate. A previous study showed a decrease of ~20% in the heart rate but the mechanism of the effect was not investigated. Sprague Dawley rats (n = 20) were exposed transthoracically to ultrasonic pulses at an approximate duty factor of 1% with sequentially 2.0, 2.5, and 3.0 MPa peak rarefactional pressure amplitudes (PRPAs). The ultrasonic exposure parameters herein were chosen to match those of the previous study to have confidence that an ultrasound-induced negative chronotropic effect would occur. For each of the three PRPA sequences, the pulse repetition frequency (PRF) started slightly greater than the rat’s heart rate and then was decreased sequentially in 1-Hz steps every 10 s (i.e., 6, 5, and 4 Hz for a total duration of 30 s). The experiments were organized in a standard (2 × 2) factorial design with VN (cut versus intact) as one factor and US (on versus off) as another factor. VN (intact/cut) and US (on/off) groups were divided into four groups each consisting of 5 animals: 1) VN intact-US off, 2) VN intact-US on, 3) VN cut-US off, and 4) VN cut-US on. Two-way analysis of variance for repeated measures was used to compare heart rate, cardiac output, systolic volume, ejection fraction, end-diastolic volume, end-systolic volume, respiratory rate, and arterial pressure before and after ultrasound stimulation. In this study, the heart rate decreased ~4% for the non-vagotomy and vagotomy groups. The ultrasound effect was significant for heart rate (p = 0.02) and cardiac output (p = 0.005) at 3 min post US exposure; the vagotomy effect was not significant. For heart rate, the Bonferroni test showed no differences between the four groups. The vagotomy group showed similar ultrasound-induced cardiac effects compared with the non

  4. ON THE DIFFERENCES IN THE EFFECTS OF STIMULATION OF THE TWO VAGUS NERVES ON RATE AND CONDUCTION OF THE DOG'S HEART

    PubMed Central

    Cohn, Alfred E.

    1912-01-01

    It may be concluded from the results obtained in these experiments : 1. That stimulation of the right vagus nerve in the dog usually causes arrest of all the chambers of the heart. 2. That stimulation of the left vagus nerve exerts a moderate negative chronotropic effect on the auricles. 3. That stimulation of the left vagus nerve has a profound effect on the conduction of impulses over the auriculoventricular system. 4. That the degree of effect exercised on the auriculoventricular system by stimulation of the left vagus nerve varies. In some dogs conduction is depressed to an extent which causes only a delay in the conduction of impulses from auricles to ventricles (P-R time) ; in other dogs the conduction is depressed to a degree which results in incomplete heart-block; while in still other dogs conduction is so depressed that although the auricles continue to contract, no impulses pass from them to the ventricles. 5. That when stimulation of either the right or left vagus nerve causes asystole of nomotopic ventricular contractions, ectopic ventricular contractions may occur. 6. That the time which elapses before ectopic ventricular contractions occur depends upon the irritability of the ventricular muscle, and this may vary in different dogs. 7. That stimulation of the left vagus nerve may rarely cause sino-auricular block. Possibly stimulation of the right nerve may also produce this effect. 8. That there is consequently usually a great qualitative difference in the action of the two vagus nerves on the heart of the dog. PMID:19867609

  5. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control.

    PubMed

    Ardell, Jeffrey L; Nier, Heath; Hammer, Matthew; Southerland, E Marie; Ardell, Christopher L; Beaumont, Eric; KenKnight, Bruce H; Armour, J Andrew

    2017-09-01

    The evoked cardiac response to bipolar cervical vagus nerve stimulation (VNS) reflects a dynamic interaction between afferent mediated decreases in central parasympathetic drive and suppressive effects evoked by direct stimulation of parasympathetic efferent axons to the heart. The neural fulcrum is defined as the operating point, based on frequency-amplitude-pulse width, where a null heart rate response is reproducibly evoked during the on-phase of VNS. Cardiac control, based on the principal of the neural fulcrum, can be elicited from either vagus. Beta-receptor blockade does not alter the tachycardia phase to low intensity VNS, but can increase the bradycardia to higher intensity VNS. While muscarinic cholinergic blockade prevented the VNS-induced bradycardia, clinically relevant doses of ACE inhibitors, beta-blockade and the funny channel blocker ivabradine did not alter the VNS chronotropic response. While there are qualitative differences in VNS heart control between awake and anaesthetized states, the physiological expression of the neural fulcrum is maintained. Vagus nerve stimulation (VNS) is an emerging therapy for treatment of chronic heart failure and remains a standard of therapy in patients with treatment-resistant epilepsy. The objective of this work was to characterize heart rate (HR) responses (HRRs) during the active phase of chronic VNS over a wide range of stimulation parameters in order to define optimal protocols for bidirectional bioelectronic control of the heart. In normal canines, bipolar electrodes were chronically implanted on the cervical vagosympathetic trunk bilaterally with anode cephalad to cathode (n = 8, 'cardiac' configuration) or with electrode positions reversed (n = 8, 'epilepsy' configuration). In awake state, HRRs were determined for each combination of pulse frequency (2-20 Hz), intensity (0-3.5 mA) and pulse widths (130-750 μs) over 14 months. At low intensities and higher frequency VNS, HR increased during the

  6. Anti-Inflammatory Effects of Acupuncture Stimulation via the Vagus Nerve

    PubMed Central

    Lim, Hee-Don; Kim, Min-Hee; Lee, Chan-Yong; Namgung, Uk

    2016-01-01

    Although acupuncture therapy is widely used in traditional Asian medicine for the treatment of diverse internal organ disorders, its underlying biological mechanisms are largely unknown. Here, we investigated the functional involvement of acupuncture stimulation (AS) in the regulation of inflammatory responses. TNF-α production in mouse serum, which was induced by lipopolysaccharide (LPS) administration, was decreased by manual acupuncture (MAC) at the zusanli acupoint (stomach36, ST36). In the spleen, TNF-α mRNA and protein levels were also downregulated by MAC and were recovered by using a splenic neurectomy and a vagotomy. c-Fos, which was induced in the nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMV) by LPS and electroacupuncture (EAC), was further increased by focal administration of the AMPA receptor blocker CNQX and the purinergic receptor antagonist PPADS. TNF-α levels in the spleen were decreased by CNQX and PPADS treatments, implying the involvement of inhibitory neuronal activity in the DVC. In unanesthetized animals, both MAC and EAC generated c-Fos induction in the DVC neurons. However, MAC, but not EAC, was effective in decreasing splenic TNF-α production. These results suggest that the therapeutic effects of acupuncture may be mediated through vagal modulation of inflammatory responses in internal organs. PMID:26991319

  7. Anti-Inflammatory Effects of Acupuncture Stimulation via the Vagus Nerve.

    PubMed

    Lim, Hee-Don; Kim, Min-Hee; Lee, Chan-Yong; Namgung, Uk

    2016-01-01

    Although acupuncture therapy is widely used in traditional Asian medicine for the treatment of diverse internal organ disorders, its underlying biological mechanisms are largely unknown. Here, we investigated the functional involvement of acupuncture stimulation (AS) in the regulation of inflammatory responses. TNF-α production in mouse serum, which was induced by lipopolysaccharide (LPS) administration, was decreased by manual acupuncture (MAC) at the zusanli acupoint (stomach36, ST36). In the spleen, TNF-α mRNA and protein levels were also downregulated by MAC and were recovered by using a splenic neurectomy and a vagotomy. c-Fos, which was induced in the nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMV) by LPS and electroacupuncture (EAC), was further increased by focal administration of the AMPA receptor blocker CNQX and the purinergic receptor antagonist PPADS. TNF-α levels in the spleen were decreased by CNQX and PPADS treatments, implying the involvement of inhibitory neuronal activity in the DVC. In unanesthetized animals, both MAC and EAC generated c-Fos induction in the DVC neurons. However, MAC, but not EAC, was effective in decreasing splenic TNF-α production. These results suggest that the therapeutic effects of acupuncture may be mediated through vagal modulation of inflammatory responses in internal organs.

  8. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy.

    PubMed

    Aihua, Liu; Lu, Song; Liping, Li; Xiuru, Wang; Hua, Lin; Yuping, Wang

    2014-10-01

    This study explored the efficacy and safety of transcutaneous vagus nerve stimulation (t-VNS) in patients with pharmacoresistant epilepsy. A total of 60 patients were randomly divided into two groups based on the stimulation zone: the Ramsay-Hunt zone (treatment group) and the earlobe (control group). Before and after the 12-month treatment period, all patients completed the Self-Rating Anxiety Scale (SAS), the Self-Rating Depression Scale (SDS), the Liverpool Seizure Severity Scale (LSSS), and the Quality of Life in Epilepsy Inventory (QOLIE-31). Seizure frequency was determined according to the patient's seizure diary. During our study, the antiepileptic drugs were maintained at a constant level in all subjects. After 12 months, the monthly seizure frequency was lower in the treatment group than in the control group (8.0 to 4.0; P=0.003). This reduction in seizure frequency was correlated with seizure frequency at baseline and duration of epilepsy (both P>0.05). Additionally, all patients showed improved SAS, SDS, LSSS, and QOLIE-31 scores that were not correlated with a reduction in seizure frequency. The side effects in the treatment group were dizziness (1 case) and daytime drowsiness (3 cases), which could be relieved by reducing the stimulation intensity. In the control group, compared with baseline, there were no significant changes in seizure frequency (P=0.397), SAS, SDS, LESS, or QOLIE-31. There were also no complications in this group.

  9. Vagus Nerve Stimulation as a Tool to Induce Plasticity in Pathways Relevant for Extinction Learning.

    PubMed

    Childs, Jessica E; Alvarez-Dieppa, Amanda C; McIntyre, Christa K; Kroener, Sven

    2015-08-21

    Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory.

  10. Vagus nerve stimulation blocks vascular permeability following burn in both local and distal sites.

    PubMed

    Ortiz-Pomales, Yan T; Krzyzaniak, Michael; Coimbra, Raul; Baird, Andrew; Eliceiri, Brian P

    2013-02-01

    Recent studies have shown that vagus nerve stimulation (VNS) can block the burn-induced systemic inflammatory response (SIRS). In this study we examined the potential for VNS to modulate vascular permeability (VP) in local sites (i.e. skin) and in secondary sites (i.e. lung) following burn. In a 30% total body surface area burn model, VP was measured using intravascular fluorescent dextran for quantification of the VP response in skin and lung. A peak in VP of the skin was observed 24h post-burn injury, that was blocked by VNS. Moreover, in the lung, VNS led to a reduction in burn-induced VP compared to sham-treated animals subjected to burn alone. The protective effects of VNS in this model were independent of the spleen, suggesting that the spleen was not a direct mediator of VNS. These studies identify a role for VNS in the regulation of VP in burns, with the translational potential of attenuating lung complications following burn.

  11. Biclustering EEG data from epileptic patients treated with vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Busygin, Stanislav; Boyko, Nikita; Pardalos, Panos M.; Bewernitz, Michael; Ghacibeh, Georges

    2007-11-01

    We present a pilot study of an application of consistent biclustering to analyze scalp EEG data obtained from epileptic patients undergoing treatment with a vagus nerve stimulator (VNS). The ultimate goal of this study is to develop a physiologic marker for optimal VNS parameters (e.g. output current, signal frequency, etc.) using measures of scalp EEG signals. A time series of STLmax values was computed for each scalp EEG channel recorded from two epileptic patients and used as a feature of the two datasets. The averaged samples from stimulation periods were then separated from averaged samples from non-stimulation periods by feature selection performed within the consistent biclustering routine. The obtained biclustering results allow us to assume that signals from certain parts of the brain consistently change their characteristics when VNS is switched on and could provide a basis for desirable VNS stimulation parameters. A physiologic marker of optimal VNS effect could greatly reduce the cost, time, and risk of calibrating VNS stimulation parameters in newly implanted patients compared to the current method of clinical response.

  12. Safety of a dedicated brain MRI protocol in patients with a vagus nerve stimulator.

    PubMed

    de Jonge, Jeroen C; Melis, Gerrit I; Gebbink, Tineke A; de Kort, Gérard A P; Leijten, Frans S S

    2014-11-01

    Although implanted metallic devices constitute a relative contraindication to magnetic resonance imaging (MRI) scanning, the safety of brain imaging in a patient with a vagus nerve stimulator (VNS) is classified as "conditional," provided that specific manufacturer guidelines are followed when a transmit and receive head coil is used at 1.5 or 3.0 Tesla. The aim of this study was to evaluate the safety of performing brain MRI scans in patients with the VNS. From September 2009 until November 2011, 101 scans were requested in 73 patients with the VNS in The Netherlands. Patients were scanned according to the manufacturer's guidelines. No patient reported any side effect, discomfort, or pain during or after the MRI scan. In one patient, a lead break was detected based on device diagnostics after the MRI-scan. However, because no system diagnostics had been performed prior to MR scanning in this patient, it is unclear whether MR scanning was responsible for the lead break. The indication for most scans was epilepsy related. Twenty-six scans (26%) were part of a (new) presurgical evaluation and could probably better have been performed prior to VNS implantation. Performing brain MRI scans in patients with an implanted VNS is safe when a modified MRI protocol is followed.

  13. Heart rate regulation in diving sea lions: the vagus nerve rules.

    PubMed

    Ponganis, Paul J; McDonald, Birgitte I; Tift, Michael S; Williams, Cassondra L

    2017-04-15

    Recent publications have emphasized the potential generation of morbid cardiac arrhythmias secondary to autonomic conflict in diving marine mammals. Such conflict, as typified by cardiovascular responses to cold water immersion in humans, has been proposed to result from exercise-related activation of cardiac sympathetic fibers to increase heart rate, combined with depth-related changes in parasympathetic tone to decrease heart rate. After reviewing the marine mammal literature and evaluating heart rate profiles of diving California sea lions (Zalophus californianus), we present an alternative interpretation of heart rate regulation that de-emphasizes the concept of autonomic conflict and the risk of morbid arrhythmias in marine mammals. We hypothesize that: (1) both the sympathetic cardiac accelerator fibers and the peripheral sympathetic vasomotor fibers are activated during dives even without exercise, and their activities are elevated at the lowest heart rates in a dive when vasoconstriction is maximal, (2) in diving animals, parasympathetic cardiac tone via the vagus nerve dominates over sympathetic cardiac tone during all phases of the dive, thus producing the bradycardia, (3) adjustment in vagal activity, which may be affected by many inputs, including exercise, is the primary regulator of heart rate and heart rate fluctuations during diving, and (4) heart beat fluctuations (benign arrhythmias) are common in marine mammals. Consistent with the literature and with these hypotheses, we believe that the generation of morbid arrhythmias because of exercise or stress during dives is unlikely in marine mammals. © 2017. Published by The Company of Biologists Ltd.

  14. Pairing Speech Sounds With Vagus Nerve Stimulation Drives Stimulus-specific Cortical Plasticity.

    PubMed

    Engineer, Crystal T; Engineer, Navzer D; Riley, Jonathan R; Seale, Jonathan D; Kilgard, Michael P

    2015-01-01

    Individuals with communication disorders, such as aphasia, exhibit weak auditory cortex responses to speech sounds and language impairments. Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with tones or tone trains can enhance both the spectral and temporal processing of sounds in auditory cortex, and can be used to reverse pathological primary auditory cortex (A1) plasticity in a rodent model of chronic tinnitus. We predicted that pairing VNS with speech sounds would strengthen the A1 response to the paired speech sounds. The speech sounds 'rad' and 'lad' were paired with VNS three hundred times per day for twenty days. A1 responses to both paired and novel speech sounds were recorded 24 h after the last VNS pairing session in anesthetized rats. Response strength, latency and neurometric decoding were compared between VNS speech paired and control rats. Our results show that VNS paired with speech sounds strengthened the auditory cortex response to the paired sounds, but did not strengthen the amplitude of the response to novel speech sounds. Responses to the paired sounds were faster and less variable in VNS speech paired rats compared to control rats. Neural plasticity that was specific to the frequency, intensity, and temporal characteristics of the paired speech sounds resulted in enhanced neural detection. VNS speech sound pairing provides a novel method to enhance speech sound processing in the central auditory system. Delivery of VNS during speech therapy could improve outcomes in individuals with receptive language deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability.

    PubMed

    Ben-Menachem, E; Revesz, D; Simon, B J; Silberstein, S

    2015-09-01

    Vagus nerve stimulation (VNS) is effective in refractory epilepsy and depression and is being investigated in heart failure, headache, gastric motility disorders and asthma. The first VNS device required surgical implantation of electrodes and a stimulator. Adverse events (AEs) are generally associated with implantation or continuous on-off stimulation. Infection is the most serious implantation-associated AE. Bradycardia and asystole have also been described during implantation, as has vocal cord paresis, which can last up to 6 months and depends on surgical skill and experience. The most frequent stimulation-associated AEs include voice alteration, paresthesia, cough, headache, dyspnea, pharyngitis and pain, which may require a decrease in stimulation strength or intermittent or permanent device deactivation. Newer non-invasive VNS delivery systems do not require surgery and permit patient-administered stimulation on demand. These non-invasive VNS systems improve the safety and tolerability of VNS, making it more accessible and facilitating further investigations across a wider range of uses. © 2015 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.

  16. Two-year outcome of vagus nerve stimulation in treatment-resistant depression.

    PubMed

    Bajbouj, Malek; Merkl, Angela; Schlaepfer, Thomas E; Frick, Caroline; Zobel, Astrid; Maier, Wolfgang; O'Keane, Veronica; Corcoran, Ciaran; Adolfsson, Rolf; Trimble, Michael; Rau, Harald; Hoff, Hans-Joachim; Padberg, Frank; Müller-Siecheneder, Florian; Audenaert, Kurt; van den Abbeele, Dirk; Matthews, Keith; Christmas, David; Eljamel, Sam; Heuser, Isabella

    2010-06-01

    One of the major goals of antidepressant treatment is a sustained response and remission of depressive symptoms. Some of the previous studies of vagus nerve stimulation (VNS) have suggested antidepressant effects. Our naturalistic study assessed the efficacy and the safety of VNS in 74 European patients with therapy-resistant major depressive disorder. Psychometric measures were obtained after 3, 12, and 24 months of VNS. Mixed-model repeated-measures analysis of variance revealed a significant reduction (P < or = 0.05) at all the 3 time points in the 28-item Hamilton Rating Scale for Depression (HRSD28) score, the primary outcome measure. After 2 years, 53.1% (26/49) of the patients fulfilled the response criteria (> or =50% reduction in the HRSD28 scores from baseline) and 38.9% (19/49) fulfilled the remission criteria (HRSD28 scores < or = 10). The proportion of patients who fulfilled the remission criteria remained constant as the duration of VNS treatment increased. Voice alteration, cough, and pain were the most frequently reported adverse effects. Two patients committed suicide during the study; no other deaths were reported. No statistically significant differences were seen in the number of concomitant antidepressant medications. The results of this 2-year open-label trial suggest a clinical response and a comparatively benign adverse effect profile among patients with treatment-resistant depression.

  17. The mechanism of action of vagus nerve stimulation for refractory epilepsy: the current status.

    PubMed

    Vonck, K; Van Laere, K; Dedeurwaerdere, S; Caemaert, J; De Reuck, J; Boon, P

    2001-09-01

    Vagus nerve stimulation (VNS) is a neurophysiologic treatment for patients with medically or surgically refractory epilepsy. Since the first human implant in 1989, more than 10,000 patients have been treated with VNS. The precise mechanism of action remains to be elucidated. Animal experiments with VNS were initially performed to demonstrate efficacy and safety preceding the clinical trials in human patients. Mechanism of action research involving animal experiments can provide essential clues. Animal experiments are often labor-intensive even in the hands of experienced researchers, however, and the results remain only a reflection of the complicated pathophysiologic systems of the human brain. Mechanism of action research in human patients treated with VNS is particularly challenging because of safety concerns, the large number of patients required, and the heterogeneous nature of various small patient series. This study provides an overview of the progress that has been made in the past 10 years through neurophysiologic, neuroanatomic, neurochemical, and cerebral blood flow studies in animals and patients treated with VNS. Further elucidation of the mechanism of action of VNS may increase its clinical efficacy. It may also provide inspiration for the development of new therapeutic modalities for refractory epilepsy.

  18. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures.

    PubMed

    DeGiorgio, C M; Schachter, S C; Handforth, A; Salinsky, M; Thompson, J; Uthman, B; Reed, R; Collins, S; Tecoma, E; Morris, G L; Vaughn, B; Naritoku, D K; Henry, T; Labar, D; Gilmartin, R; Labiner, D; Osorio, I; Ristanovic, R; Jones, J; Murphy, J; Ney, G; Wheless, J; Lewis, P; Heck, C

    2000-09-01

    To determine the long-term efficacy of vagus nerve stimulation (VNS) for refractory seizures. VNS is a new treatment for refractory epilepsy. Two short-term double-blind trials have demonstrated its safety and efficacy, and one long-term study in 114 patients has demonstrated a cumulative improvement in efficacy at 1 year. We report the largest prospective long-term study of VNS to date. Patients with six or more complex partial or generalized tonic-clonic seizures enrolled in the pivotal EO5 study were prospectively evaluated for 12 months. The primary outcome variable was the percentage reduction in total seizure frequency at 3 and 12 months after completion of the acute EO5 trial, compared with the preimplantation baseline. Subjects originally randomized to low stimulation (active-control group) were crossed over to therapeutic stimulation settings for the first time. Subjects initially randomized to high settings were maintained on high settings throughout the 12-month study. The median reduction at 12 months after completion of the initial double-blind study was 45%. At 12 months, 35% of 195 subjects had a >50% reduction in seizures, and 20% of 195 had a >75% reduction in seizures. The efficacy of VNS improves during 12 months, and many subjects sustain >75% reductions in seizures.

  19. Cortical Map Plasticity as a Function of Vagus Nerve Stimulation Intensity

    PubMed Central

    M. S., Borland; W. A., Vrana; N. A., Moreno; E. A., Fogarty; E. P., Buell; P., Sharma; C. T., Engineer; M. P., Kilgard

    2015-01-01

    Background Pairing sensory or motor events with vagus nerve stimulation (VNS) can reorganize sensory or motor cortex. Repeatedly pairing a tone with a brief period of VNS increases the proportion of primary auditory cortex (A1) responding to the frequency of the paired tone. However, the relationship between VNS intensity and cortical map plasticity is not known. Objective/Hypothesis The primary goal of this study was to determine the range of VNS intensities that can be used to direct cortical map plasticity. Methods The rats were exposed to a 9 kHz tone paired with VNS at intensities of 0.4, 0.8, 1.2, or 1.6 mA. Results In rats that received moderate (0.4-0.8 mA) intensity VNS, seventy-five percent more cortical neurons were tuned to frequencies near the paired tone frequency. A two-fold effective range is broader than expected based on previous VNS studies. Rats that received high (1.2-1.6 mA) intensity VNS had significantly fewer neurons tuned to the same frequency range compared to the moderate intensity group. Conclusion This result is consistent with previous results documenting that VNS is memory enhancing as a non-monotonic relationship of VNS intensity. PMID:26460200

  20. Safety and efficacy of Vagus Nerve Stimulation in treatment-resistant depression. A systematic review.

    PubMed

    Daban, Claire; Martinez-Aran, Anabel; Cruz, Nuria; Vieta, Eduard

    2008-09-01

    The main objective of this review of the literature was to evaluate the safety and efficacy of Vagus Nerve Stimulation (VNS) in treatment-resistant depression (TRD) by means of systematic review and meta-analysis. A systematic review of the literature was made using the major databases (Medline, Psychological Abstracts, Current Contents), beginning in January 2000 and ending in September 2007. Ninety-eight references were found, but only 18 add-on studies met the required quality criteria and were included in this review. Only one double-blind, randomized study was available and therefore a meta-analysis was not feasible. In a majority of the preliminary open studies selected for this review, VNS was associated with a significant reduction of the depressive symptoms (primary outcome: Hamilton Depression Rating Scale, HDRS) in the short and long term. Unfortunately, the only double-blind study gave rather inconclusive results. Generally, VNS is reported to be a safe and feasible procedure, despite its invasive nature. VNS seems to be an interesting new approach to treating TRD. However, despite the promising results reported mainly in open studies, further clinical trials are needed to confirm its efficacy in major depression. Moreover, studies on its mechanism of action and cost-effectiveness are also required to better understand and develop VNS therapy for affective disorder.

  1. Long-term Expectations of Vagus Nerve Stimulation: A Look at Battery Replacement and Revision Surgery.

    PubMed

    Couch, Jonathan D; Gilman, Arthur M; Doyle, Werner K

    2016-01-01

    Vagus nerve stimulation (VNS) is an established surgical treatment for medically intractable epilepsy with more than 75 000 devices implanted worldwide. While there are many reports documenting efficacy, complications, and clinical use, there are very few reports concerning VNS battery replacement and revision surgeries. To review our experience with VNS battery replacement and revision surgery. We retrospectively reviewed 1144 consecutive VNS procedures performed by a single surgeon between 1998 and 2012. Six hundred forty-four of those procedures were the initial placement of the VNS device. These patients were then followed to determine when a battery change occurred and what type of revision or removal was necessary. In the study, 46% of patients required at least 1 or more type of battery replacement or revision surgery. The most common types of surgery were for generator battery depletion (27%), poor efficacy (9%), and lead malfunction (8%). Only 2% of patients were noted to have an infection. VNS battery replacement, revisions, and removals account for almost one-half of all VNS procedures. Our findings suggest important long-term expectations for VNS including expected complications, battery life, and other surgical issues. Review of the literature suggests that this is the first large review of VNS revisions by a single center. Our findings are important to better characterize long-term surgical expectations of VNS therapy. A significant portion of patients undergoing VNS therapy will eventually require revision.

  2. Vagus Nerve Stimulation as a Tool to Induce Plasticity in Pathways Relevant for Extinction Learning

    PubMed Central

    Childs, Jessica E.; Alvarez-Dieppa, Amanda C.; McIntyre, Christa K.; Kroener, Sven

    2015-01-01

    Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory. PMID:26325100

  3. Vagus nerve stimulation blocks vascular permeability following burn injury in both local and distal sites

    PubMed Central

    Ortiz-Pomales, Yan T; Krzyzaniak, Michael; Coimbra, Raul; Baird, Andrew; Eliceiri, Brian P.

    2012-01-01

    Recent studies have shown that vagus nerve stimulation (VNS) can block the burn injury-induced systemic inflammatory response (SIRS). In this study we examined the potential for VNS to modulate vascular permeability (VP) in local sites (i.e. skin) and in secondary sites (i.e. lung) following burn injury. In a 30% total body surface area burn injury model, VP was measured using intravascular fluorescent dextran for quantification of the VP response in skin and lung. A peak in VP of the skin was observed 24 hours post-burn injury, that was blocked by VNS. Moreover, in the lung, VNS led to a reduction in burn-induced VP compared to sham-treated animals subjected to burn injury alone. The protective effects of VNS in this model were independent of the spleen, suggesting that the spleen was not a direct mediator of VNS. These studies identify a role for VNS in the regulation of VP in burns, with the translational potential of attenuating lung complications following burn injury. PMID:22694873

  4. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders.

    PubMed

    Engineer, Crystal T; Hays, Seth A; Kilgard, Michael P

    2017-01-01

    Many children with autism and other neurodevelopmental disorders undergo expensive, time-consuming behavioral interventions that often yield only modest improvements. The development of adjunctive interventions that can increase the benefit of rehabilitation therapies is essential in order to improve the lives of individuals with neurodevelopmental disorders. Vagus nerve stimulation (VNS) is an FDA approved therapy that is safe and effective in reducing seizure frequency and duration in individuals with epilepsy. Individuals with neurodevelopmental disorders often exhibit decreased vagal tone, and studies indicate that VNS can be used to overcome an insufficient vagal response. Multiple studies have also documented significant improvements in quality of life after VNS therapy in individuals with neurodevelopmental disorders. Moreover, recent findings indicate that VNS significantly enhances the benefits of rehabilitative training in animal models and patients, leading to greater recovery in a variety of neurological diseases. Here, we review these findings and provide a discussion of how VNS paired with rehabilitation may yield benefits in the context of neurodevelopmental disorders. VNS paired with behavioral therapy may represent a potential new approach to enhance rehabilitation that could significantly improve the outcomes of individuals with neurodevelopmental disorders.

  5. Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.

    PubMed

    Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P

    2016-01-01

    Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Corpus callosotomy versus vagus nerve stimulation for atonic seizures and drop attacks: A systematic review☆

    PubMed Central

    Rolston, John D.; Englot, Dario J.; Wang, Doris D.; Garcia, Paul A.; Chang, Edward F.

    2017-01-01

    Atonic seizures are debilitating and poorly controlled with antiepileptic medications. Two surgical options are primarily used to treat medically refractory atonic seizures: corpus callosotomy (CC) and vagus nerve stimulation (VNS). However, given the uncertainty regarding relative efficacy and surgical complications, the best approach for affected patients is unclear. The PubMed database was queried for all articles describing the treatment of atonic seizures and drop attacks with either corpus callosotomy or VNS. Rates of seizure freedom, >50% reduction in seizure frequency, and complications were compared across the two patient groups. Patients were significantly more likely to achieve a >50% reduction in seizure frequency with CC versus VNS (85.6% versus 57.6%; RR: 1.5; 95% CI: 1.1–2.1). Adverse events were more common with VNS, though typically mild (e.g., 22% hoarseness and voice changes), compared with CC, where the most common complication was the disconnection syndrome (13.2%). Both CC and VNS are well tolerated for the treatment of refractory atonic seizures. Existing studies suggest that CC is potentially more effective than VNS in reducing seizure frequency, though a direct study comparing these techniques is required before a definitive conclusion can be reached. PMID:26247311

  7. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.

    PubMed

    Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P

    2012-01-01

    The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits.

  8. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation.

    PubMed

    Hulsey, Daniel R; Riley, Jonathan R; Loerwald, Kristofer W; Rennaker, Robert L; Kilgard, Michael P; Hays, Seth A

    2017-03-01

    Vagus nerve stimulation (VNS) has emerged as a therapy to treat a wide range of neurological disorders, including epilepsy, depression, stroke, and tinnitus. Activation of neurons in the locus coeruleus (LC) is believed to mediate many of the effects of VNS in the central nervous system. Despite the importance of the LC, there is a dearth of direct evidence characterizing neural activity in response to VNS. A detailed understanding of the brain activity evoked by VNS across a range of stimulation parameters may guide selection of stimulation regimens for therapeutic use. In this study, we recorded neural activity in the LC and the mesencephalic trigeminal nucleus (Me5) in response to VNS over a broad range of current amplitudes, pulse frequencies, train durations, inter-train intervals, and pulse widths. Brief 0.5s trains of VNS drive rapid, phasic firing of LC neurons at 0.1mA. Higher current intensities and longer pulse widths drive greater increases in LC firing rate. Varying the pulse frequency substantially affects the timing, but not the total amount, of phasic LC activity. VNS drives pulse-locked neural activity in the Me5 at current levels above 1.2mA. These results provide insight into VNS-evoked phasic neural activity in multiple neural structures and may be useful in guiding the selection of VNS parameters to enhance clinical efficacy.

  9. Optimal Vagus Nerve Stimulation Frequency for Suppression of Spike-and-Wave Seizures in Rats.

    PubMed

    Jiao, Jianhang; Harreby, Kristian R; Sevcencu, Cristian; Jensen, Winnie

    2016-06-01

    Vagus nerve stimulation (VNS) is used as an adjunctive therapy for drug-resistant epilepsy and results in a 50% seizure reduction in up to 50% of treated patients. The VNS frequency used in the clinic today is in the range of 10-30 Hz. The evidence for choosing the stimulation frequency is limited, and little knowledge is available on the effect of other VNS frequencies. Deep brain, trigeminal nerve, or spinal cord stimulation studies have suggested the use of stimulation frequencies above 80 Hz for seizure control. Therefore, our objective for the present study was to investigate if VNS using frequencies higher than those currently used in the clinic could be more effective in attenuating seizures. Spike-and-wave (SW) discharges were induced in 11 rats, which then were subjected to VNS sessions applied at the frequencies of 10, 30, 80, 130, and 180 Hz combined with control intervals without stimulation. The anticonvulsive effect of VNS was evaluated by comparing the normalized mean power (nMP) and frequency (nMSF) of the SW discharges derived from intracortical recordings collected during the stimulation and control intervals. Compared with the control intervals, all the tested VNS frequencies significantly reduced the nMP (in the range of 9-21%). However, we found that 130 and 180 Hz VNS induced a 50% larger attenuation of seizures than that achieved by 30 Hz VNS. In addition, we found that 80, 130, and 180 Hz VNS induced a significant reduction of the nMSF, that is by 5, 7, and 8%, respectively. These results suggest that a VNS stimulation frequency in the range of 130-180 Hz may be more effective in inhibiting seizures than the 30 Hz VNS applied in the clinic today.

  10. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure.

    PubMed

    De Ferrari, Gaetano M; Crijns, Harry J G M; Borggrefe, Martin; Milasinovic, Goran; Smid, Jan; Zabel, Markus; Gavazzi, Antonello; Sanzo, Antonio; Dennert, Robert; Kuschyk, Juergen; Raspopovic, Srdjan; Klein, Helmut; Swedberg, Karl; Schwartz, Peter J

    2011-04-01

    In chronic heart failure (CHF), reduced vagal activity correlates with increased mortality and acute decompensation. Experimentally, chronic vagus nerve stimulation (VNS) improved left ventricular (LV) function and survival; clinically, it is used for the treatment of drug-refractory epilepsy. We assessed safety and tolerability of chronic VNS in symptomatic CHF patients, using a novel implantable nerve stimulation system. The secondary goal was to obtain preliminary data on clinical efficacy. This multi-centre, open-label phase II, two-staged study (8-patient feasibility phase plus 24-patient safety and tolerability phase) enrolled 32 New York Heart Association (NYHA) class II-IV patients [age 56 ± 11 years, LV ejection fraction (LVEF) 23 ± 8%]. Right cervical VNS with CardioFit (BioControl Medical) implantable system started 2-4 weeks after implant, slowly raising intensity; patients were followed 3 and 6 months thereafter with optional 1-year follow-up. Overall, 26 serious adverse events (SAEs) occurred in 13 of 32 patients (40.6%), including three deaths and two clearly device-related AEs (post-operative pulmonary oedema, need of surgical revision). Expected non-serious device-related AEs (cough, dysphonia, and stimulation-related pain) occurred early but were reduced and disappeared after stimulation intensity adjustment. There were significant improvements (P < 0.001) in NYHA class quality of life, 6-minute walk test (from 411 ± 76 to 471 ± 111 m), LVEF (from 22 ± 7 to 29 ± 8%), and LV systolic volumes (P = 0.02). These improvements were maintained at 1 year. This open-label study shows that chronic VNS in CHF patients with severe systolic dysfunction may be safe and tolerable and may improve quality of life and LV function. A controlled clinical trial appears warranted.

  11. Can natural ways to stimulate the vagus nerve improve seizure control?

    PubMed

    Yuen, Alan W C; Sander, Josemir W

    2017-02-01

    The vagus nerve (VN) is the longest cranial nerve, innervating the neck, thorax and abdomen, with afferent fibers transmitting a range of interoceptive stimuli and efferent fibres to somatic structures and autonomic preganglions. Over the last few decades, electrical stimulation of the VN using implanted devices (VNS) has been developed leading to its approval for the treatment of epilepsy and depression. More recently, non-invasive devices to stimulation the VN have been developed. The VN has many functions and the activity that is most amenable to assessment is its effect in controlling the cardiac rhythm. This can be easily assessed by measuring heart rate variability (HRV). Decreased HRV is a result of poorer vagal parasympathetic tone and is associated with a wide range of ill health conditions including a higher risk of early mortality. People with epilepsy, particularly those with poorly controlled seizures, have been shown to have impaired parasympathetic tone. So, might natural ways to stimulate the VN, shown to improve parasympathetic tone as indicated by increased HRV, improve seizure control? There are numerous natural ways that have been shown to stimulate the VN, improving HRV and hence parasympathetic tone. These natural ways fall mainly into 3 categories - stress reduction, exercise, and nutrition. Though the natural ways to stimulate the VN have been shown to increase HRV, they have not been shown to reduce seizures. The exception is listening to Mozart's music, which has been shown to increase parasympathetic tone and decrease seizures. Clearly much more work is required to examine the effect of the various ways to increase HRV on seizure occurrence. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Electrical Stimulation of the Vagus Nerve Enhances Cognitive and Motor Recovery following Moderate Fluid Percussion Injury in the Rat

    PubMed Central

    SMITH, DOUGLAS C.; MODGLIN, ARLENE A.; ROOSEVELT, RODNEY W.; NEESE, STEVEN L.; JENSEN, ROBERT A.; BROWNING, RONALD A.; CLOUGH, RICHARD W.

    2006-01-01

    Intermittent, chronically delivered electrical stimulation of the vagus nerve (VNS) is an FDA-approved procedure for the treatment of refractory complex/partial epilepsy in humans. Stimulation of the vagus has also been shown to enhance memory storage processes in laboratory rats and human subjects. Recent evidence suggests that some of these effects of VNS may be due to the activation of neurons in the nucleus locus coeruleus resulting in the release of norepinephrine (NE) throughout the neuraxis. Because antagonism of NE systems has been shown to delay recovery of function following brain damage, it is possible that enhanced release of NE in the CNS may facilitate recovery of function. To evaluate this hypothesis the lateral fluid percussion injury (LFP) model of traumatic brain injury was used and a variety of motor and cognitive behavioral tests were employed to assess recovery in pre-trained stimulated, control, and sham-injured laboratory rats. Two hours following moderate LFP, vagus nerve stimulation (30.0-sec trains of 0.5 mA, 20.0 Hz, biphasic pulses) was initiated. Stimulation continued in each animal’s home cage at 30-min intervals for a period of 14 days, with the exception of brief periods when the animals were disconnected for behavioral assessments. Motor behaviors were evaluated every other day following LFP and tests included beam walk, locomotor placing, and skilled forelimb reaching. In each measure an enhanced rate of recovery and/or level of final performance was observed in the VNS-LFP animals compared to non-stimulated LFP controls. Behavior in the Morris water maze was assessed on days 11–14 following injury. Stimulated LFP animals showed significantly shorter latencies to find the hidden platform than did controls. Despite these behavioral effects, neurohistological examination did not reveal significant differences in lesion extent, density of fluorojade positive neurons, reactive astrocytes or numbers of spared neurons in the CA3

  13. [A Case of Left Vertebral Artery Aneurysm Showing Evoked Potentials on Bilateral Electrode by the Left Vagus Nerve Stimulation to Electromyographic Tracheal Tube].

    PubMed

    Kadoya, Tatsuo; Uehara, Hirofumi; Yamamoto, Toshinori; Shiraishi, Munehiro; Kinoshita, Yuki; Joyashiki, Takeshi; Enokida, Kengo

    2016-02-01

    Previously, we reported a case of brainstem cavernous hemangioma showing false positive responses to electromyographic tracheal tube (EMG tube). We concluded that the cause was spontaneous respiration accompanied by vocal cord movement. We report a case of left vertebral artery aneurysm showing evoked potentials on bilateral electrodes by the left vagus nerve stimulation to EMG tube. An 82-year-old woman underwent clipping of a left unruptured vertebral artery-posterior inferior cerebellar artery aneurysm. General anesthesia was induced with remifentanil, propofol and suxamethonium, and was maintained with oxygen, air, remifentanil and propofol. We monitored somatosensory evoked potentials, motor evoked potentials, and electromyogram of the vocal cord. When the manipulation reached brainstem and the instrument touched the left vagus nerve, evoked potentials appeared on bilateral electrodes. EMG tube is equipped with two electrodes on both sides. We concluded that the left vagus nerve stimulation generated evoked potentials of the left laryngeal muscles, and they were simultaneously detected as potential difference between two electrodes on both sides. EMG tube is used to identify the vagus nerve. However, it is necessary to bear in mind that each vagus nerve stimulation inevitably generates evoked potentials on bilateral electrodes.

  14. A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders.

    PubMed

    George, Mark S; Ward, Herbert E; Ninan, Philip T; Pollack, Mark; Nahas, Ziad; Anderson, Berry; Kose, Samet; Howland, Robert H; Goodman, Wayne K; Ballenger, James C

    2008-04-01

    Vagus nerve stimulation (VNS) is an effective anticonvulsant device and has shown antidepressant effects in chronic treatment resistant depression. Because the vagus nerve sends information to brain regions important in anxiety regulation (locus coeruleus, orbitofrontal cortex, insula, hippocampus and amygdala), this pathway might be involved in perceiving or manifesting various somatic and cognitive symptoms that characterize anxiety disorders. On the basis of this reasoning and reports of anxiolytic effects of VNS in patients treated for epilepsy and depression, we organized an open-label pilot acute trial of adjunctive VNS on top of stable medications, followed by long-term follow-up, to assess the safety and potential efficacy of VNS for patients with treatment resistant anxiety disorders. Eleven adult outpatients with treatment resistant obsessive-compulsive disorder (OCD), panic disorder (PD), or posttraumatic stress disorder (PTSD) were recruited. Patients had failed several medication trials as well as cognitive behavioral therapy (CBT). All patients were rated with the Hamilton Anxiety Scale (HAM-A) and the clinical global impressions improvement scale (CGI-I). Patients with OCD were also rated with the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). Patients were maintained on their current psychotropic medications at fixed doses during the acute 12-week phase. Changes in medications and VNS stimulus parameters were allowed during the long-term follow-up. Response was defined as a 50% or greater improvement on the HAM-A for all patients and a 25% or greater improvement on the Y-BOCS for patients with OCD. Eleven patients were recruited. Seven patients had a primary diagnosis of OCD, two had PTSD, and one had PD. One OCD patient changed their mind and was never implanted. One patient with OCD withdrew consent before the end of the acute phase, so long-term results were available for nine patients. Three patients were acute responders, based on the HAM

  15. Vagus nerve stimulation: outcome and predictors of seizure freedom in long-term follow-up.

    PubMed

    Ghaemi, Kazem; Elsharkawy, Alaa Eldin; Schulz, Reinhard; Hoppe, Matthias; Polster, Tilman; Pannek, Heinz; Ebner, Alois

    2010-06-01

    To present long-term outcome and to identify predictors of seizure freedom after vagus nerve stimulation (VNS). All patients who had undergone VNS implantation in the Epilepsy Centre Bethel were retrospectively reviewed. There were 144 patients who had undergone complete presurgical evaluation, including detailed clinical history, magnetic resonance imaging, and long-term video-EEG with ictal and interictal recordings. After implantation, all patients were examined at regular intervals of 4 weeks for 6-9 months. During this period the antiepileptic medication remained constant. All patients included in this study were followed up for a minimum of 2 years. Ten patients remained seizure-free for more than 1 year after VNS implantation (6.9%). Seizures improved in 89 patients (61.8%) but no changes were observed in 45 patients (31.3%). The following factors were significant in the univariate analysis: age at implantation, multifocal interictal epileptiform discharges, unilateral interictal epileptiform discharge, cortical dysgenesis, and psychomotor seizure. Stepwise multivariate analysis showed that unilateral interictal epileptiform discharges (IEDs), P=0.014, HR=0.112 (95% CIs, 0.019-0.642), cortical dysgenesis P=0.007, HR=0.065 (95% CIs, 0.009-0.481) and younger age at implantation P=0.026, HR=7.533 (95% CIs 1.28-44.50) were independent predictors of seizure freedom in the long-term follow-up. VNS implantation may render patients with some forms of cortical dysgenesis (parietooccipital polymicrogyria, macrogyria) seizure-free. Patients with unilateral IEDs and earlier implantation achieved the most benefit from VNS. Copyright 2010 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  16. Quantification of the impact of vagus nerve stimulation parameters on electroencephalographic measures

    NASA Astrophysics Data System (ADS)

    Bewernitz, Michael; Ghacibeh, Georges; Seref, Onur; Pardalos, Panos M.; Liu, Chang-Chia; Uthman, Basim

    2007-11-01

    This study presents an application of support vector machines (SVMs) to the analysis of electroencephalograms (EEG) obtained from the scalp of patients with epilepsy implanted with the vagus nerve stimulator (VNS) used in VNS Therapy®. The purpose of this study is to devise a physiologic marker using scalp EEG for determining optimal VNS parameters. Scalp EEG recordings were obtained from six patients with history of intractable partial onset epilepsy treated with VNS as adjunctive therapy to medicines. Averaged scalp EEG samples were used as features for separation. SVM classification accuracy was used as a measure of EEG similarity to separate a time segment during the beginning of stimulation from all the successive non-overlapping time segments within a full VNS on/off cycle. This analysis was performed for all the automated VNS cycles occurring during approximately twenty-four hours of 25 channels of scalp EEG. The patient that resulted in the lowest degree of EEG pattern similarity had the highest VNS stimulation frequency and experienced a monthly seizure rate among the lowest of all six patients included in this study The patient with the greatest degree of pattern similarity had the lowest VNS stimulation frequency, shortest VNS pulse width, and experienced the greatest monthly seizure rate of all six patients included in this study. It is possible that VNS exerts its therapeutic effect by mimicking a theorized seizure effect for which a seizure has been observed to "reset" the brain from an unfavorable preictal state to a more favorable interictal state. These encouraging results suggest that data mining tools may be able to extract EEG patterns which could be used as an electrographic marker of optimal VNS stimulation parameters.

  17. Vagus nerve stimulator stability and interference on radiation oncology x-ray beams

    NASA Astrophysics Data System (ADS)

    Gossman, Michael S.; Ketkar, Amruta; Liu, Arthur K.; Olin, Bryan

    2012-10-01

    Five different models of Cyberonics, Inc. vagus nerve stimulation (VNS) therapy pulse generators were investigated for their stability under radiation and their ability to change the absorbed dose from incident radiation. X-ray beams of 6 MV and 18 MV were used to quantify these results up to clinical doses of 68-78 Gy delivered in a single fraction. In the first part, the effect on electronic stimulation signaling of each pulse generator was monitored during and immediately afterwards with computer interrogation. In the second part, the effects of having the pulse generators scatter or attenuate the x-ray beam was also characterized from dose calculations on a treatment planning system as well as from actual radiation measurements. Some device models were found to be susceptible to radiation interference when placed directly in the beam of high energy therapeutic x-ray radiation. While some models exhibited no effect at all, others showed an apparent loss of stimulation output immediately after radiation was experienced. Still, other models were observed to have a cumulative dose effect with a reduced output signal, followed by battery depletion above 49 Gy. Absorbed dose changes on computer underestimated attenuation by nearly half for both energies amongst all pulse generators, although the computer did depict the proper shape of the changed distribution of dose around the device. Measured attenuation ranged from 7.0% to 11.0% at 6 MV and 4.2% to 5.2% at 18 MV for x-rays. Processes of back-scatter and side-scatter were deemed negligible although recorded. Identical results from 6 MV and 18 MV x-ray beams conclude no neutron effect was induced for the 18 MV beam. As there were documented effects identified in this research regarding pulse generation, it emphasizes the importance of caution when considering radiation therapy on patients with implanted VNS devices with observed malfunctions consequential.

  18. Complications and safety of vagus nerve stimulation: 25 years of experience at a single center.

    PubMed

    Révész, David; Rydenhag, Bertil; Ben-Menachem, Elinor

    2016-07-01

    OBJECTIVE The goal of this paper was to investigate surgical and hardware complications in a longitudinal retrospective study. METHODS The authors of this registry study analyzed the surgical and hardware complications in 247 patients who underwent the implantation of a vagus nerve stimulation (VNS) device between 1990 and 2014. The mean follow-up time was 12 years. RESULTS In total, 497 procedures were performed for 247 primary VNS implantations. Complications related to surgery occurred in 8.6% of all implantation procedures that were performed. The respective rate for hardware complications was 3.7%. Surgical complications included postoperative hematoma in 1.9%, infection in 2.6%, vocal cord palsy in 1.4%, lower facial weakness in 0.2%, pain and sensory-related complications in 1.4%, aseptic reaction in 0.2%, cable discomfort in 0.2%, surgical cable break in 0.2%, oversized stimulator pocket in 0.2%, and battery displacement in 0.2% of patients. Hardware-related complications included lead fracture/malfunction in 3.0%, spontaneous VNS turn-on in 0.2%, and lead disconnection in 0.2% of patients. CONCLUSIONS VNS implantation is a relatively safe procedure, but it still involves certain risks. The most common complications are postoperative hematoma, infection, and vocal cord palsy. Although their occurrence rates are rather low at about 2%, these complications may cause major suffering and even be life threatening. To reduce complications, it is important to have a long-term perspective. The 25 years of follow-up of this study is of great strength considering that VNS can be a life-long treatment for many patients. Thus, it is important to include repeated surgeries such as battery and lead replacements, given that complications also may occur with these surgeries.

  19. The effect of vagus nerve stimulation on cardiorespiratory parameters during rest and exercise.

    PubMed

    Mulders, Daphne M; de Vos, Cecile C; Vosman, Ilse; van Putten, Michel J A M

    2015-12-01

    Vagus nerve stimulation (VNS) has been successfully applied to reduce seizure frequency in numerous patients with epilepsy. However, various side effects, including dyspnea and bradycardia have been reported, that appear exercise related in some patients. This pilot study aims to obtain insight in the cardiorespiratory effects of VNS during both rest and exercise. Patients with a VNS device who experience side effects during exercise are compared with patients without side effects. Respiratory and cardiac parameters measured during rest and exercise include heart rate, breathing frequency and tidal volume. Sixty-two episodes of VNS in five patients with and five patients without side effects were recorded. In addition, five control subjects have been measured. During rest, all subjects showed stable values for the cardiorespiratory parameters. During the first minutes of exercise, heart rate, breathing frequency and tidal volume increased. Thereafter, a steady state was reached again for all subjects. During VNS episodes, eight out of 10 patients showed a small but consistent decrease in heart rate, along with an increase in breathing frequency in eight out of nine patients. Tidal volumes decreased during VNS episodes. These effects, induced by VNS, occurred during both rest and exercise. Magnitude of these effects varied between patients, but was not necessarily related to the intensity of the experienced side effects. This pilot study shows that VNS causes an increase in breathing frequency and a decrease in tidal volume and heart rate in the majority of patients, during both rest and exercise. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. Pairing speech sounds with vagus nerve stimulation drives stimulus-specific cortical plasticity

    PubMed Central

    Engineer, Crystal T.; Engineer, Navzer D.; Riley, Jonathan R.; Seale, Jonathan D.; Kilgard, Michael P.

    2015-01-01

    Background Individuals with communication disorders, such as aphasia, exhibit weak auditory cortex responses to speech sounds and language impairments. Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with tones or tone trains can enhance both the spectral and temporal processing of sounds in auditory cortex, and can be used to reverse pathological primary auditory cortex (A1) plasticity in a rodent model of chronic tinnitus. Objective/Hypothesis We predicted that pairing VNS with speech sounds would strengthen the A1 response to the paired speech sounds. Methods The speech sounds ‘rad’ and ‘lad’ were paired with VNS three hundred times per day for twenty days. A1 responses to both paired and novel speech sounds were recorded twenty four hours after the last VNS pairing session in anesthetized rats. Response strength, latency and neurometric decoding were compared between VNS speech paired and control rats. Results Our results show that VNS paired with speech sounds strengthened the auditory cortex response to the paired sounds, but did not strengthen the amplitude of the response to novel speech sounds. Responses to the paired sounds were faster and less variable in VNS speech paired rats compared to control rats. Neural plasticity that was specific to the frequency, intensity, and temporal characteristics of the paired speech sounds resulted in enhanced neural detection. Conclusion VNS speech sound pairing provides a novel method to enhance speech sound processing in the central auditory system. Delivery of VNS during speech therapy could improve outcomes in individuals with receptive language deficits. PMID:25732785

  1. Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study.

    PubMed

    Kreuzer, Peter M; Landgrebe, Michael; Resch, Markus; Husser, Oliver; Schecklmann, Martin; Geisreiter, Florian; Poeppl, Timm B; Prasser, Sarah J; Hajak, Goeran; Rupprecht, Rainer; Langguth, Berthold

    2014-01-01

    Vagus nerve stimulation represents an established treatment strategy for epilepsy and affective disorders. Recently, positive effects were also shown in animals and humans with tinnitus. Here we report the results of an open pilot study exploring feasibility, safety and efficacy of tVNS in the treatment of chronic tinnitus. Fifty patients with chronic tinnitus underwent tVNS in an open single-armed pilot study which was conducted in two phases applying two different stimulating devices (Cerbomed CM02 and NEMOS). Clinical assessment was based on Tinnitus Questionnaire (TQ), Tinnitus Handicap Inventory (THI), Beck Depression Inventory (BDI), WHO Quality of Life, and various numeric rating scales. Primary outcome was defined as change in TQ (baseline vs. final visit in week 24). The study has been registered with clinicaltrials.gov (NCT01176734). Primary analysis indicated mean TQ reductions of 3.7 points (phase 1) and 2.8 points (phase 2) significant for the first study phase. Secondary analyses indicated a significant BDI reduction for phase 1 (uncorrected for multiple testing), but no further systematic or significant effects. Adverse events included twitching and pressure at electrode placement site. The occurrence of one hospitalization because of palpations and the development of a left bundle branch block were considered as unrelated to the intervention. Cognitive testing revealed no significant changes. Our data demonstrate the feasibility of tVNS over a period of 6 months. There was no clinically relevant improvement of tinnitus complaints. Our data suggest tVNS to be considered safe in patients without a history of cardiac disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Dynamic Causal Modelling and physiological confounds: a functional MRI study of vagus nerve stimulation.

    PubMed

    Reyt, Sébastien; Picq, Chloé; Sinniger, Valérie; Clarençon, Didier; Bonaz, Bruno; David, Olivier

    2010-10-01

    Dynamic Causal Modelling (DCM) has been proposed to estimate neuronal connectivity from functional magnetic resonance imaging (fMRI) using a biophysical model that links synaptic activity to hemodynamic processes. However, it is well known that fMRI is sensitive not only to neuronal activity, but also to many other psychophysiological responses which may be task-related, such as changes in cardio-respiratory activity. They are not explicitly taken into account in the generative models of DCM and their effects on estimated neuronal connectivity are not known. The main goal of this study was to report the face validity of DCM in the presence of strong physiological confounds that presumably cannot be corrected for, using an fMRI experiment of vagus nerve stimulation (VNS) performed in rats. First, a simple simulation was used to evaluate the principled ability of DCM to recover directed connectivity in the presence of a confounding factor. Second, we tested the experimental validity using measures of the BOLD correlates of left 5Hz VNS. Because VNS mostly activates the central autonomic regulation system, fMRI signals were likely to represent both direct and indirect vascular responses to such activation. In addition to the inference of standard statistical parametric maps, DCM was thus used to estimate directed neural connectivity in a small brain network including the nucleus tractus solitarius (NTS) known to receive vagal afferents. Though blood pressure changes may constitute a major physiological confound in this dataset, model comparison of DCMs still allowed the identification of the NTS as the input station of the VNS pathway to the brain. Our study indicates that current developments of DCM are robust to psychophysiological responses to some extent, but does not exclude the need to develop specific models of brain - body interactions within the DCM framework to better estimate neuronal connectivity from fMRI time series. Copyright 2010 Elsevier Inc. All

  3. Vagus nerve stimulation in the treatment of patients with pharmacoresistant epilepsy: our experiences.

    PubMed

    Hajnsek, Sanja; Petelin, Zeljka; Poljaković, Zdravka; Mrak, Goran; Paladino, Josip; Desnica, Andrej

    2011-09-01

    Vagus nerve stimulation (VNS) for the treatment of refractory partial epileptic seizures with or without secondary generalisation in patients older than 12 years was approved in Europe in 1994 and in the United States in 1997. We have studied the efficacy of VNS in patients with pharmacoresistant epilepsy hospitalized in the Neurology Department of the University Hospital Centre Zagreb. From 1997 to 2001 we have implanted VNS in 11 patients with pharmacoresistant epilepsy, who were magnetic resonance imaging (MRI) negative and from May 2007 to May 2009 in 11 patients with pharmacoresistant epilepsy, 9 of them were MRI positive, and were inoperable due to localisation of the pathomorphologic changes (ganglioglioma, hamartoma, various types of cortical dysplasia, porencephalic cysts), 2 were MR negative. In the group of MRI negative patients 1 patient had complex partial seizures (CPS), 6 patients had CPS with secondary generalisation, 2 patients had primary generalized epilepsy (PGE) including myoclonic, absence, atonic and tonic-clonic seizures, one patient had PGE and CPS, and 3 patients had Lennox-Gastaut syndrome (LGS). In the group of MRI positive patients one patient had elementary partial seizures (EPS) and CPS, two patients had EPS and CPS with secondary generalisation, one patient had CPS, 3 patients had CPS with secondary generalisation, and 2 patients had CPS with secondary generalisation as well as atonic seizures. After continuous follow-up of 11 MRI negative patients during 5 years and 2 MRI negative patients during one year there was decrease in mean-seizure frequency of 51.67%. After continuous follow-up of 9 MRI positive patients during 2 years there was decrease in mean-seizure frequency of 61.9%. The most frequent side effects were hoarseness, throat pain and cough in the "on phase" of the VNS, but they were mild and transitory. We can conclude that VNS was effective mode of therapy in our group of patients with pharmacoresistant epilepsy.

  4. Evidence-based guideline update: Vagus nerve stimulation for the treatment of epilepsy

    PubMed Central

    Morris, George L.; Gloss, David; Buchhalter, Jeffrey; Mack, Kenneth J.; Nickels, Katherine; Harden, Cynthia

    2013-01-01

    Objective: To evaluate the evidence since the 1999 assessment regarding efficacy and safety of vagus nerve stimulation (VNS) for epilepsy, currently approved as adjunctive therapy for partial-onset seizures in patients >12 years. Methods: We reviewed the literature and identified relevant published studies. We classified these studies according to the American Academy of Neurology evidence-based methodology. Results: VNS is associated with a >50% seizure reduction in 55% (95% confidence interval [CI] 50%–59%) of 470 children with partial or generalized epilepsy (13 Class III studies). VNS is associated with a >50% seizure reduction in 55% (95% CI 46%–64%) of 113 patients with Lennox-Gastaut syndrome (LGS) (4 Class III studies). VNS is associated with an increase in ≥50% seizure frequency reduction rates of ∼7% from 1 to 5 years postimplantation (2 Class III studies). VNS is associated with a significant improvement in standard mood scales in 31 adults with epilepsy (2 Class III studies). Infection risk at the VNS implantation site in children is increased relative to that in adults (odds ratio 3.4, 95% CI 1.0–11.2). VNS is possibly effective for seizures (both partial and generalized) in children, for LGS-associated seizures, and for mood problems in adults with epilepsy. VNS may have improved efficacy over time. Recommendations: VNS may be considered for seizures in children, for LGS-associated seizures, and for improving mood in adults with epilepsy (Level C). VNS may be considered to have improved efficacy over time (Level C). Children should be carefully monitored for site infection after VNS implantation. PMID:23986299

  5. Transcutaneous Auricular Vagus Nerve Stimulation Triggers Melatonin Secretion and Is Antidepressive in Zucker Diabetic Fatty Rats

    PubMed Central

    Rong, Peijing; McCabe, Michael F.; Zhao, Jingjun; Ben, Hui; Wang, Xing; Wang, Shuxing

    2014-01-01

    Decreased circulating melatonin is implicated in depression. We recently found that Zucker diabetic fatty rats (ZDF, fa/fa) develop depression-like behaviors and that transcutaneous auricular vagus nerve stimulation (taVNS) is antidepressive in ZDF rats. Here we studied whether the ZDF rats could be used as a depression rodent model and whether the antidepressive effect of taVNS is mediated through modulation of melatonin secretion. Adult male ZDF and Zucker lean (ZL, fa/+) littermates were used. 30 min-taVNS procedures (2/15 Hz, 2 mA) were administered once daily under anesthesia for 34 consecutive days in pineal intact ZDF (n = 8) and ZL (n = 6) rats, as well as in pinealectomized ZDF rats (n = 8). Forced swimming test (FST) was used to determine depression-like behavior and ELISA to detect plasma melatonin concentration on day 35. We found that naïve ZDF rats had a longer immobility time in FST and that long-term (34 days) taVNS treatment ameliorated the depression-like behavior. In both pineal intact and pinealectomized ZDF rats, taVNS induced acute melatonin secretion, both during and after the taVNS session. A low melatonin level is related to the poor FST performance in ZDF rats (R = −0.544) in contrast to ZL rats (R = 0.247). In conclusion, our results show that ZDF rats are ideal candidates of innate depression and that taVNS is antidepressive through triggering melatonin secretion and increasing its production. PMID:25347185

  6. Parenting stress in parents of children with refractory epilepsy before and after vagus nerve stimulation implantation.

    PubMed

    Li, Sung-Tse; Chiu, Nan-Chang; Kuo, Yung-Ting; Shen, Ein-Yiao; Tsai, Pei-Chieh; Ho, Che-Sheng; Wu, Wen-Hsiang; Chen, Juei-Chao

    2017-05-17

    The purpose of this study was to evaluate parenting stress in parents of children with refractory epilepsy before and after their children received vagus nerve stimulation (VNS) implantation. Parents of children with refractory epilepsy completed the Parenting Stress Index (PSI) under a psychologist's assessment before and at least 12 months after their children received VNS implantation. The PSI questionnaire measures parenting stress in two domains; a parent domain with seven subscales, and a child domain with six. Age, gender, epilepsy comorbidity, VNS implantation date, seizure frequency, and anticonvulsant history before and after VNS implantation were obtained from reviews of medical charts. In total, 30 parents completed the first and follow-up PSI questionnaires. Seventeen of their children (56.7%) were boys. The children aged from 1 to 12 years (7.43 ± 3.59 years, mean ± SD). After VNS implantation, the mean total parenting stress scores decreased from 282.1 ± 38.0 to 272.4 ± 42.9. A significant decrease was found on the spouse subscale of the parent domain. For the parents of boys, the mean total parenting stress scores decreased significantly. The mean total parenting stress scores also decreased significantly for parents of epileptic children without autism and who did not taper off the number of different anticonvulsants used after VNS. VNS is an advisable choice to treat refractory epilepsy. Our study showed that 12 months or more after VNS implantation, seizure frequency and parenting stress typically decreased. However, in some special cases the parenting stress may increase, and external help may be required to support these patients and their parents. Copyright © 2017. Published by Elsevier B.V.

  7. Time perception in patients with major depressive disorder during vagus nerve stimulation.

    PubMed

    Biermann, T; Kreil, S; Groemer, T W; Maihöfner, C; Richter-Schmiedinger, T; Kornhuber, J; Sperling, W

    2011-07-01

    Affective disorders may affect patients' time perception. Several studies have described time as a function of the frontal lobe. The activating eff ects of vagus nerve stimulation on the frontal lobe might also modulate time perception in patients with major depressive disorder (MDD). Time perception was investigated in 30 patients with MDD and in 7 patients with therapy-resistant MDD. In these 7 patients, a VNS system was implanted and time perception was assessed before and during stimulation. A time estimation task in which patients were asked "How many seconds have passed?" tested time perception at 4 defined time points (34 s, 77 s, 192 s and 230 s). The differences between the estimated and actual durations were calculated and used for subsequent analysis. Patients with MDD and healthy controls estimated the set time points relatively accurately. A general linear model revealed a significant main eff ect of group but not of age or sex. The passing of time was perceived as significantly slower in patients undergoing VNS compared to patients with MDD at all time points (T34: t = − 4.2; df = 35; p < 0.001; T77: t = − 4.8; df = 35; p < 0.001; T192: t = − 2.0; df = 35; p = 0.059; T230 t = −2.2; df = 35; p = 0.039) as well as compared to healthy controls (at only T77: t = 4.1; df = 35; p < 0.001). There were no differences in time perception with regard to age, sex or polarity of depression (uni- or bipolar). VNS is capable of changing the perception of time. This discovery furthers the basic research on circadian rhythms in patients with psychiatric disorders.

  8. Neurological results of the modified treatment of epilepsy by stimulation of the vagus nerve.

    PubMed

    Vaiman, Michael; Heyman, Eli; Lotan, Gad

    2017-07-08

    The vagus nerve stimulation (VNS) is used for treatment of drug-resistant epilepsy but laryngeal side effects are common. We tried to improve VNS by modifying the implantation procedure. The aim was to reduce the rate of side effects that have prevented using VNS to its full capacity. We operated on 74 pediatric patients for VNS device implantation using a modified surgical protocol incorporating lower neck incision for electrode placement and 36 patients who were operated by standard technique were used for control group. We retrospectively analyzed reduction in frequency of seizures, reduction in severity of seizures (assessed by the shortened Ictal/post-ictal subscale of the Liverpool Seizure Severity Scale that included falling to the ground, postictal headache and sleepiness, incontinence, tongue biting, and injury during attack). Using the new implantation technique, side effects related directly to VNS therapy occurred in six cases (8.1%) showing statistically sound improvement over the standard implantation technique (p ˂ 0.05). To achieve good results, the maximum stimulation (3.5 mA) was used in 24 patients (32.4%), with no laryngeal side effects detected. Twelve patients (16.2%) were seizure-free after the first year of VNS treatment. 74.3% of patients experienced a 50% reduction in seizure frequency and improved ictal or postictal activity. To minimize laryngeal complications in implantation surgery for VNS devices, the surgical technique may be modified, and lower neck incision could be used. A low rate of laryngeal side effects allows using the VNS device to its full electrical capacity.

  9. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  10. Vagus Nerve Stimulation (VNS) and Treatment of Depression: To the Brainstem and Beyond

    PubMed Central

    Cristancho, Pilar; Peshek, Andrew D.

    2006-01-01

    Neuromodulation appears to be emerging gradually as a new therapeutic field in psychiatric treatment. It encompasses neuropsychiatric medical devices, such as vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and electroconvulsive therapy (ECT). As a therapeutic approach to affective disorders, neuromodulation shifts the focus from the monoamine synapse to neural circuitry of the brain, which is dysregulated in depression. This neural circuitry has been elaborated on over the course of 15 years of neuroimaging research in mood disorders and is now believed to encompass disturbances in a frontolimbic network. These include reduced metabolism and blood flow in the prefrontal cortex and anterior cingulate and pathologically increased activity in the subgenual cingulate and amygdala. VNS is an implanted device that has established efficacy in pharmaco-resistant epilepsy. It was approved by the FDA for the treatment of severe, recurrent unipolar and bipolar depression in July of 2005. VNS adopts a bottom-up approach to modulating the neural circuitry of depression by stimulating vagal afferent fibers in the neck, which carry impulses to the brain stem to target there the locus ceruleus and dorsal raphe nucleus. Now that VNS has moved beyond the experimental phase and into the clinic, psychiatrists are faced with deciding who is an appropriate patient for this surgical implant and how to integrate VNS into existing treatment in order to optimize both efficacy and safety. This review of VNS will assess the efficacy and safety data that led to the FDA approval. We will also review for the busy clinician how VNS is likely to translate into clinical practice as a treatment option for patients in need who are suffering from severe depression. PMID:21103178

  11. The central localization of the vagus nerve in the ferret (Mustela putorius furo) and the mink (Mustela vison).

    PubMed

    Ranson, R N; Butler, P J; Taylor, E W

    1993-05-01

    The location of vagal preganglionic neurones (VPN) has been determined in nine ferrets (Mustela putorius furo) and seven mink (M. vison) using neuronal tract-tracing techniques employing horseradish peroxidase (HRP) and wheat-germ agglutinin conjugated HRP (WGA-HRP) mixtures injected into the nodose ganglion of the vagus nerve. Labelled VPN were located ipsilaterally in the dorsal motor nucleus of the vagus (DmnX), nucleus ambiguus (nA), and reticular formation (rf) of the medulla oblongata. In four of the ferrets, labelled VPN were also identified in the nucleus dorsomedialis (ndm) and the nucleus of the spinal accessory nerve (nspa). In a single mink a few labelled cells were observed in the ndm but no labelled VPN were found in the nspa. Labelling of afferent components of the vagus nerve was seen in two ferrets and two mink with the best labelling obtained following an injection of an HRP/WGA-HRP mixture into the nodose ganglion. Labelled afferents were observed to cross the ipsilateral spinal trigeminal tract (SpV) before entering the tractus solitarius (TS) in regions separate from the motor axons which exit the medulla in separate fasicles. Sensory terminal fields were identified bilaterally in the nucleus of the tractus solitarius (nTS) in both species and bilaterally in the area postrema (ap) of the ferret; however, the contralateral labelling was sparse in comparison to the densely labelled ipsilateral nTS/ap. Maximal terminal labelling was seen in regions just rostral and caudal to obex in both species.

  12. Aberrant fecal flora observed in guinea pigs with pressure overload is mitigated in animals receiving vagus nerve stimulation therapy.

    PubMed

    Phillips Campbell, Regenia B; Duffourc, Michelle M; Schoborg, Robert V; Xu, Yanji; Liu, Xinyi; KenKnight, Bruce H; Beaumont, Eric

    2016-10-01

    Altered gut microbial diversity has been associated with several chronic disease states, including heart failure. Stimulation of the vagus nerve, which innervates the heart and abdominal organs, is proving to be an effective therapeutic in heart failure. We hypothesized that cervical vagus nerve stimulation (VNS) could alter fecal flora and prevent aberrations observed in fecal samples from heart failure animals. To determine whether microbial abundances were altered by pressure overload (PO), leading to heart failure and VNS therapy, a VNS pulse generator was implanted with a stimulus lead on either the left or right vagus nerve before creation of PO by aortic constriction. Animals received intermittent, open-loop stimulation or sham treatment, and their heart function was monitored by echocardiography. Left ventricular end-systolic and diastolic volumes, as well as cardiac output, were impaired in PO animals compared with baseline. VNS mitigated these effects. Metagenetic analysis was then performed using 16S rRNA sequencing to identify bacterial genera present in fecal samples. The abundance of 10 genera was significantly altered by PO, 8 of which were mitigated in animals receiving either left- or right-sided VNS. Metatranscriptomics analyses indicate that the abundance of genera that express genes associated with ATP-binding cassette transport and amino sugar/nitrogen metabolism was significantly changed following PO. These gut flora changes were not observed in PO animals subjected to VNS. These data suggest that VNS prevents aberrant gut flora following PO, which could contribute to its beneficial effects in heart failure patients. Copyright © 2016 the American Physiological Society.

  13. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet.

    PubMed

    Gil, Krzysztof; Bugajski, A; Thor, P

    2011-12-01

    There is growing evidence that vagus nerve stimulation (VNS) has a suppressive effect on both short- and long-term feeding in animal models. We previously showed that long-term VNS (102 days) with low-frequency electrical impulses (0.05 Hz) decreased food intake and body weight in rats. In the present study, we investigated the effect of high frequency (10 Hz) VNS on feeding behavior and appetite in rats fed a high-fat diet; peptide secretion and other parameters were assessed as well. Adult male Wistar rats were each implanted subcutaneously with a microstimulator (MS) and fed a high-fat diet throughout the entire study period (42 days). The left vagus nerve was stimulated by rectangular electrical pulses (10 ms, 200 mV, 10 Hz, 12 h a day) generated by the MS. Body weight and food intake were measured each morning. At the end of the experimental period, animals were euthanized and blood samples were taken. Serum levels of ghrelin, leptin and nesfatin-1 were assessed using radioimmunoassays. Adipose tissue content was evaluated by weighing epididymal fat pads, which were incised at the time of sacrifice. To determine whether VNS activated the food-related areas of the brain, neuronal c-Fos induction in the nuclei of the solitary tract (NTS) was assessed. Chronic vagus nerve stimulation significantly decreased food intake, body weight gain and epididymal fat pad weight in animals that received VNS compared with control animals. Significant neuronal responses in the NTS were observed following VNS. Finally, serum concentrations of ghrelin were increased, while serum levels of leptin were decreased. Although not significant, serum nesfatin-1 levels were also elevated. These results support the theory that VNS leads to reductions in food intake, body weight gain and adipose tissue by increasing brain satiety signals conducted through the vagal afferents. VNS also evoked a feed-related hormonal response, including elevated blood concentrations of nesfatin-1.

  14. Association of vagus nerve severance and decreased risk of subsequent type 2 diabetes in peptic ulcer patients

    PubMed Central

    Wu, Shih-Chi; Chen, William Tzu-Liang; Fang, Chu-Wen; Muo, Chih-Hsin; Sung, Fung-Chang; Hsu, Chung Y.

    2016-01-01

    Abstract Vagus nerve may play a role in serum glucose modulation. The complicated peptic ulcer patients (with perforation or/and bleeding) who received surgical procedures with or without vagotomy provided 2 patient populations for studying the impact of vagus nerve integrity. We assessed the risk of developing type 2 diabetes in peptic ulcer patients without and with complications by surgical treatment received in a retrospective population study using the National Health Insurance database in Taiwan. A cohort of 163,385 patients with peptic ulcer and without Helicobacter pylori infection in 2000 to 2003 was established. A randomly selected cohort of 163,385 persons without peptic ulcer matched by age, sex, hypertension, hyperlipidemia, Charlson comorbidity index score, and index year was utilized for comparison. The risks of developing diabetes in both cohorts and in the complicated peptic ulcer patients who received truncal vagotomy or simple suture/hemostasis (SSH) were assessed at the end of 2011. The overall diabetes incidence was higher in patients with peptic ulcer than those without peptic ulcer (15.87 vs 12.60 per 1000 person-years) by an adjusted hazard ratio (aHR) of 1.43 (95% confidence interval [CI] = 1.40–1.47) based on the multivariable Cox proportional hazards regression analysis (competing risk). Comparing ulcer patients with truncal vagotomy and SSH or those without surgical treatment, the aHR was the lowest in the vagotomy group (0.48, 95% CI = 0.41–0.56). Peptic ulcer patients have an elevated risk of developing type 2 diabetes. Moreover, there were associations of vagus nerve severance and decreased risk of subsequent type 2 diabetes in complicated peptic ulcer patients. PMID:27930533

  15. A comprehensive review with potential significance during skull base and neck operations, Part II: glossopharyngeal, vagus, accessory, and hypoglossal nerves and cervical spinal nerves 1-4.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Shokouhi, Ghaffar; Griessenauer, Christoph J; Chern, Joshua J; Rizk, Elias B; Loukas, Marios; Miller, Joseph H; Tubbs, R Shane

    2014-01-01

    Knowledge of the possible neural interconnections found between the lower cranial and upper cervical nerves may prove useful to surgeons who operate on the skull base and upper neck regions in order to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections between the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized into two parts. Part I discusses the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches and other nerve trunks or branches in the vicinity. Part II deals with the anastomoses between the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or between these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part II is presented in this article. Extensive and variable neural anastomoses exist between the lower cranial nerves and between the upper cervical nerves in such a way that these nerves with their extra-axial communications can be collectively considered a plexus. Copyright © 2013 Wiley Periodicals, Inc.

  16. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes

    PubMed Central

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-sang J.; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Guyenet, Patrice G.

    2016-01-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  17. TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release.

    PubMed

    Weller, K; Reeh, P W; Sauer, S K

    2011-12-01

    Vagal sensory afferents innervating airways and abdominal tissues express TRPV1 and TRPA1, two depolarizing calcium permeable ion channels playing a major role in sensing environmental irritants and endogenous metabolites which cause neuropeptide release and neurogenic inflammation. Here we have studied axonal chemosensitivity and control of neuropeptide release from the isolated rat and mouse vagus nerve by using prototypical agonists of these transduction channels - capsaicin, mustard oil and the specific endogenous activators, anandamide (methyl arachidonyl ethanolamide, mAEA), and acrolein, respectively. Capsaicin evoked iCGRP release from the rat vagus nerve with an EC₅₀ of 0.12 μM. Co-application of mAEA had a dual effect: nanomolar concentrations of mAEA (0.01 μM) significantly reduced capsaicin-evoked iCGRP release while concentrations ≥ 1 μM mAEA had sensitizing effects. Only 100 μM mAEA directly augmented iCGRP release by itself. In the mouse, 310 μM mAEA increased release in wildtype and TRPA1-/- mice which could be inhibited by capsazepine (10 μM) and was completely absent in TRPV1-/- mice. CB1-/- and CB1/CB2 double -/- mice equally displayed increased sensitivity to mAEA (100 μM) and a sensitizing effect to capsaicin, in contrast to wildtypes. Acrolein and mustard oil (MO)--at μM concentrations--induced a TRPA1-dependent iCGRP release; however, millimolar concentrations of mustard oil (>1mM) evoked iCGRP release by activating TRPV1, confirming recent evidence for TRPV1 agonism of high mustard oil concentrations. Taken together, we present evidence for functional expression of excitatory TRPV1, TRPA1, and inhibitory CB1 receptors along the sensory fibers of the vagus nerve which lend pathophysiological relevance to the axonal membrane and the control of neuropeptide release that may become important in cases of inflammation or neuropathy. Sensitization and possible ectopic discharge may contribute to the development of autonomic

  18. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    NASA Astrophysics Data System (ADS)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  19. Non-invasive vagus nerve stimulation for the treatment of acute asthma exacerbations-results from an initial case series.

    PubMed

    Steyn, Elmin; Mohamed, Zunaid; Husselman, Carla

    2013-03-19

    A prospective multicentre clinical study was initiated to evaluate the safety and potential clinical benefit of non-invasive vagus nerve stimulation (nVNS) for the treatment of bronchoconstriction exacerbations in asthmatics. Due to slow enrolment and design changes of the device, the study was prematurely terminated after enrolment of four eligible patients. Three of the four patients were considered treatment successes based on improvement in FEV1, improvement in VAS dyspnoea scoring, and the absence of device-related adverse events. ClinicalTrials.gov Identifier: NCT01385306.

  20. Axonal transport of neurotrophins by visceral afferent and efferent neurons of the vagus nerve of the rat.

    PubMed

    Helke, C J; Adryan, K M; Fedorowicz, J; Zhuo, H; Park, J S; Curtis, R; Radley, H E; Distefano, P S

    1998-03-30

    The receptor-mediated axonal transport of [125I]-labeled neurotrophins by afferent and efferent neurons of the vagus nerve was determined to predict the responsiveness of these neurons to neurotrophins in vivo. [125I]-labeled neurotrophins were administered to the proximal stump of the transected cervical vagus nerve of adult rats. Vagal afferent neurons retrogradely transported [125I]neurotrophin-3 (NT-3), [125I]nerve growth factor (NGF), and [125I]neurotrophin-4 (NT-4) to perikarya in the ipsilateral nodose ganglion, and transganglionically transported [125I]NT-3, [125I]NGF, and [125I]NT-4 to the central terminal field, the nucleus tractus solitarius (NTS). Vagal afferent neurons showed minimal accumulation of [125I]brain-derived neurotrophic factor (BDNF). In contrast, efferent (parasympathetic and motor) neurons located in the dorsal motor nucleus of the vagus and nucleus ambiguus retrogradely transported [125I]BDNF, [125I]NT-3, and [125I]NT-4, but not [125I]NGF. The receptor specificity of neurotrophin transport was examined by applying [125I]-labeled neurotrophins with an excess of unlabeled neurotrophins. The retrograde transport of [125I]NT-3 to the nodose ganglion was reduced by NT-3 and by NGF, and the transport of [125I]NGF was reduced only by NGF, whereas the transport of [125I]NT-4 was significantly reduced by each of the neurotrophins. The competition profiles for the transport of NT-3 and NGF are consistent with the presence of TrkA and TrkC and the absence of TrkB in the nodose ganglion, whereas the profile for NT-4 suggests a p75 receptor-mediated transport mechanism. The transport profiles of neurotrophins by efferent vagal neurons in the dorsal motor nucleus of the vagus and nucleus ambiguus are consistent with the presence of TrkB and TrkC, but not TrkA, in these nuclei. These observations describe the unique receptor-mediated axonal transport of neurotrophins in adult vagal afferent and efferent neurons and thus serve as a template to discern

  1. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function

    PubMed Central

    Rajendran, Pradeep S.; Nier, Heath A.; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. PMID:26371171

  2. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    PubMed

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy.

  3. Brain blood-flow change with acute vagus nerve stimulation in treatment-refractory major depressive disorder.

    PubMed

    Conway, Charles R; Sheline, Yvette I; Chibnall, John T; Bucholz, Richard D; Price, Joseph L; Gangwani, Sunil; Mintun, Mark A

    2012-04-01

    Existing neuroimaging studies of vagus nerve stimulation (VNS) in treatment resistant major depression (TRMD) suggest that many brain regions (eg, prefrontal cortex, thalamus, cingulate cortex, insular cortex) associated with mood disorders undergo alterations in blood flow/metabolism. Positron emission tomography (PET oxygen-15 labeled water or PET [(15)O] H(2)O) was used to identify changes in regional cerebral blood flow (rCBF) in response to immediate VNS in 13 subjects with TRMD. We hypothesized rCBF changes along the afferent pathway of the vagus and in regions associated with depression (eg, orbitofrontal cortex, amygdala, insular cortex). Six 90-second PET [(15)O] H(2)O scans were performed on 13 subjects in a VNS off-on sequence. After normalization for global uptake and realignment to standard atlas space, statistical t images (P < .005) were used to evaluate rCBF change. VNS induced significant rCBF decreases in the left and right lateral orbitofrontal cortex and left inferior temporal lobe. Significant increases were found in the right dorsal anterior cingulate, left posterior limb of the internal capsule/medial putamen, the right superior temporal gyrus, and the left cerebellar body. Post hoc analysis found small-to-moderate correlations between baseline acute change in rCBF and antidepressant response after 12 months of VNS. Regions undergoing rCBF change in response to acute VNS are consistent with the known afferent pathway of the vagus nerve and models of brain network in depression. Larger studies assessing the correlation between acute stimulation patterns and antidepressant outcomes with VNS are needed. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Ambiguous effect of signals transmitted by the vagus nerve on fibrosarcoma incidence and survival of tumor-bearing rats.

    PubMed

    Mikova, Lucia; Horvathova, Lubica; Ondicova, Katarina; Tillinger, Andrej; Vannucci, Luca E; Bizik, Jozef; Gidron, Yori; Mravec, Boris

    2015-04-23

    While the parasympathetic nervous system appears to be involved in the regulation of tumor progression, its exact role is still unclear. Therefore, using a rat BP6-TU2 fibrosarcoma tumor model, we investigated the effect of (1) reduction of vagal activity produced by subdiaphragmatic vagotomy; and (2) enhancement of vagal activity produced by continuous delivery of electric impulses to the cervical part of the vagus nerve on tumor development and survival of tumor-bearing rats. We also evaluated the expression of cholinergic receptors within in vitro cultivated BP6-TU2 cells. Interestingly, we found that both, vagal stimulation and subdiaphragmatic vagotomy slightly reduced tumor incidence. However, survival of tumor-bearing rats was not affected by any of the experimental approaches. Additionally, we detected mRNA expression of the α1, α2, α5, α7, and α10 subunits of nicotinic receptors and the M1, M3, M4, and M5 subtypes of muscarinic receptors within in vitro cultivated BP6-TU2 cells. Our data indicate that the role of the vagus nerve in modulation of fibrosarcoma development is ambiguous and uncertain and requires further investigation.

  5. Vagus Nerve Stimulation Alters Phase Synchrony of the Anterior Cingulate Cortex and Facilitates Decision Making in Rats

    PubMed Central

    Cao, Bing; Wang, Jun; Shahed, Mahadi; Jelfs, Beth; Chan, Rosa H. M.; Li, Ying

    2016-01-01

    Vagus nerve stimulation (VNS) can enhance memory and cognitive functions in both rats and humans. Studies have shown that VNS influenced decision-making in epileptic patients. However, the sites of action involved in the cognitive-enhancement are poorly understood. By employing a conscious rat model equipped with vagus nerve cuff electrode, we assess the role of chronic VNS on decision-making in rat gambling task (RGT). Simultaneous multichannel-recordings offer an ideal setup to test the hypothesis that VNS may induce alterations of in both spike-field-coherence and synchronization of theta oscillations across brain areas in the anterior cingulate cortex (ACC) and basolateral amygdala (BLA). Daily VNS, administered immediately following training sessions of RGT, caused an increase in ‘good decision-maker’ rats. Neural spikes in the ACC became synchronized with the ongoing theta oscillations of local field potential (LFP) in BLA following VNS. Moreover, cross-correlation analysis revealed synchronization between the ACC and BLA. Our results provide specific evidence that VNS facilitates decision-making and unveils several important roles for VNS in regulating LFP and spike phases, as well as enhancing spike-phase coherence between key brain areas involved in cognitive performance. These data may serve to provide fundamental notions regarding neurophysiological biomarkers for therapeutic VNS in cognitive impairment. PMID:27731403

  6. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Corsi-Zuelli, Fabiana Maria das Graças; Brognara, Fernanda; Quirino, Gustavo Fernando da Silva; Hiroki, Carlos Hiroji; Fais, Rafael Sobrano; Del-Ben, Cristina Marta; Ulloa, Luis; Salgado, Helio Cesar; Kanashiro, Alexandre; Loureiro, Camila Marcelino

    2017-01-01

    Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR). Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I) the immune-to-brain pathogenesis of schizophrenia; (II) the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III) the role of the vagus nerve and α7nAChR in schizophrenia. PMID:28620379

  7. Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide.

    PubMed

    Meneses, G; Bautista, M; Florentino, A; Díaz, G; Acero, G; Besedovsky, H; Meneses, D; Fleury, A; Del Rey, A; Gevorkian, G; Fragoso, G; Sciutto, E

    2016-01-01

    Neuroinflammation (NI) is a key feature in the pathogenesis and progression of infectious and non-infectious neuropathologies, and its amelioration usually improves the patient outcome. Peripheral inflammation may promote NI through microglia and astrocytes activation, an increased expression of inflammatory mediators and vascular permeability that may lead to neurodegeneration. Several anti-inflammatory strategies have been proposed to control peripheral inflammation. Among them, electrical stimulation of the vagus nerve (VNS) recently emerged as an alternative to effectively attenuate peripheral inflammation in a variety of pathological conditions with few side effects. Considering that NI underlies several neurologic pathologies we explored herein the possibility that electrically VNS can also exert anti-inflammatory effects in the brain. NI was experimentally induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS) in C57BL/6 male mice; VNS with constant voltage (5 Hz, 0.75 mA, 2 ms) was applied for 30 s, 48 or 72 h after lipopolysaccharide injection. Twenty four hours later, pro-inflammatory cytokines (IL-1β, IL-6, TNFα) levels were measured by ELISA in brain and spleen extracts and total brain cells were isolated and microglia and macrophage proliferation and activation was assessed by flow cytometry. The level of ionized calcium binding adaptor molecule (Iba-1) and glial fibrillary acidic protein (GFAP) were estimated in whole brain extracts and in histologic slides by Western blot and immunohistochemistry, respectively. VNS significantly reduced the central levels of pro-inflammatory cytokines and the percentage of microglia (CD11b/CD45(low)) and macrophages (CD11b/CD45(high)), 24 h after the electrical stimulus in LPS stimulated mice. A significantly reduced level of Iba-1 expression was also observed in whole brain extracts and in the hippocampus, suggesting a reduction in activated microglia. VNS is a feasible therapeutic tool

  8. Placebo-controlled vagus nerve stimulation paired with tones in a patient with refractory tinnitus: a case report.

    PubMed

    De Ridder, Dirk; Kilgard, Michael; Engineer, Navzer; Vanneste, Sven

    2015-04-01

    Classical neuromodulation consists of applying electrical or magnetic stimuli to the nervous system to modulate ongoing activity and connectivity. However, recently, an exciting novel neuromodulation technique was developed in which stimulation of the vagal nerve was paired with simultaneous presentation of tones, demonstrating that it reverses a tinnitus percept in noise-exposed rats. To determine whether this therapy could also be effective in humans, we delivered a similar therapy in a patient with chronic tinnitus unresponsive to previous therapies. In this report, we describe the case of a 59-year-old man who suffered from bilateral tinnitus for 14 years that arose after a cervical fusion operation. Pharmacotherapy, transcranial magnetic stimulation, transcranial direct current stimulation, neurofeedback, and bilateral auditory cortex stimulation via implanted electrodes did not improve the tinnitus. After implanting the vagal nerve stimulator, the patient received daily vagus nerve stimulation tone pairings for 4 weeks in a non-placebo-controlled way. At the end of therapy, the patient experienced a significant reduction in tinnitus symptoms that lasted for 2 months after treatment. Tinnitus Handicap Inventory and Tinnitus Reaction Questionnaire were reduced by 48% and 68%, respectively. Symptoms of depression were also improved by 40%, as quantified by the Beck Depression Inventory. Three months after ending therapy, placebo stimulation was performed consisting of only tone presentation without the simultaneous electrical stimuli. This resulted in further continuation of the gradual relapse to the baseline state, without renewed improvement. Our results suggest that vagus nerve stimulation paired with tones could become an effective therapy for the treatment of tinnitus.

  9. A permissive role for the vagus nerves in the genesis of antro-antral reflexes in the anaesthetized ferret.

    PubMed Central

    Grundy, D; Hutson, D; Scratcherd, T

    1986-01-01

    1. The role of the vagus nerves in the genesis of antro-antral reflexes was investigated in the urethane-anaesthetized, splanchnectomized ferret. 2. Antral distension stimulated antral contractions with a threshold volume of 3.5 +/- 0.9 ml (corresponding to an intra-antral pressure of 0.27 +/- 0.11 kPa) by a vagal-dependent mechanism as indicated by the attenuated response seen during vagal blockade by cooling. Atropine (1 mg/kg) abolished the antral response to distension. 3. In vagotomized animals, close arterial infusions of acetylcholine at a dose sufficient to return antral motility to basal levels led to the reappearance of the reflex. Low-frequency electrical stimulation of the preganglionic vagal neurones had a similar effect. These effects were also abolished by atropine (1 mg/kg). 4. Hexamethonium (10-25 mg/kg) suppressed the potentiating effect of acetylcholine, indicating a ganglionic site of action. The attenuated response to antral distension seen in vagotomized animals in the absence of exogenous acetylcholine or electrical vagal stimulation was not sensitive to hexamethonium but abolished by atropine (1 mg/kg). 5. The results are consistent with the vagus performing a permissive role in the genesis of antro-antral reflexes mediated through local enteric pathways. PMID:2887649

  10. Long-term seizure and psychosocial outcomes of vagus nerve stimulation for intractable epilepsy.

    PubMed

    Wasade, Vibhangini S; Schultz, Lonni; Mohanarangan, Karthik; Gaddam, Aryamaan; Schwalb, Jason M; Spanaki-Varelas, Marianna

    2015-12-01

    Vagus nerve stimulation (VNS) is a widely used adjunctive treatment option for intractable epilepsy. Most studies have demonstrated short-term seizure outcomes, usually for up to 5 years, and thus far, none have reported psychosocial outcomes in adults. We aimed to assess long-term seizure and psychosocial outcomes in patients with intractable epilepsy on VNS therapy for more than 15 years. We identified patients who had VNS implantation for treatment of intractable epilepsy from 1997 to 2013 at our Comprehensive Epilepsy Program and gathered demographics including age at epilepsy onset and VNS implantation, epilepsy type, number of antiepilepsy drugs (AEDs) and seizure frequency before VNS implantation and at the last clinic visit, and the most recent stimulation parameters from electronic medical records (EMR). Phone surveys were conducted by research assistants from May to November 2014 to determine patients' current seizure frequency and psychosocial metrics, including driving, employment status, and use of antidepressants. Seizure outcomes were based on modified Engel classification (I: seizure-free/rare simple partial seizures; II: >90% seizure reduction (SR), III: 50-90% SR, IV: <50% SR; classes I to III (>50% SR)=favorable outcome). A total of 207 patients underwent VNS implantation, 15 of whom were deceased at the time of the phone survey, and 40 had incomplete data for medical abstraction. Of the remaining 152, 90 (59%) were contacted and completed the survey. Of these, 51% were male, with the mean age at epilepsy onset of 9.4 years (range: birth to 60 years). There were 35 (39%) patients with extratemporal epilepsy, 19 (21%) with temporal, 18 (20%) with symptomatic generalized, 5 (6%) with idiopathic generalized, and 13 (14%) with multiple types. Final VNS settings showed 16 (18%) patients with an output current >2 mA and 14 (16%) with rapid cycling. Of the 80 patients with seizure frequency information, 16 (20%) had a modified Engel class I outcome, 14

  11. [The Importance of Vagus Nerve Afferent in the Formation of Emotions in Attention-Deficit Hyperactivity Disorder Model Rat].

    PubMed

    Hida, Hideki

    2016-06-01

    It is of interest to know how environmental stimuli contribute to the formation of emotion during development. In a rat model of attention-deficit hyperactivity disorder, monosodium L- glutamate (MSG), a taste substance of umami, was administered for 5 weeks during developmental period, followed by emotional behavior tests such as open-field test and social interaction test in adulthood. Although no significant change was observed in anxiety-like behavior, MSG intake caused a reduction in aggressive behavior. Vagotomy under the level of diaphragm resulted in eliminating the MSG effect on aggression, indicating the importance of neuronal activity of the vagus nerve in this effect. Futher studies will focus on futher questions regarding the gut-brain axis such as the change of microbiota and the mechanism of the axis in the brain.

  12. Epinephrine administration increases neural impulses propagated along the vagus nerve: Role of peripheral beta-adrenergic receptors.

    PubMed

    Miyashita, T; Williams, C L

    2006-03-01

    A significant number of animal and human studies demonstrate that memories for new experiences are encoded more effectively under environmental or laboratory conditions which elevate peripheral concentrations of the hormone epinephrine and in turn, induce emotional arousal. Although this phenomenon has been replicated across several learning paradigms, understanding of how this arousal related hormone affects memory processing remains obscure because epinephrine does not freely enter into the central circulation to produce any direct effects on the brain. This study examined whether epinephrine's actions on the CNS may be mediated by the initial activation of peripheral vagal fibers that project to the brain. The vagus was selected as a candidate for this role since it is densely embedded with beta-adrenergic receptors and the peripheral endings of this nerve innervate a broad spectrum of sensory organs that are directly affected by epinephrine release. Electrophysiological recordings of cervical vagal activity was measured over 110 min in urethane-anesthetized Sprague-Dawley rats given saline, epinephrine (0.3 mg/kg), the peripherally acting beta-adrenergic antagonist sotalol (2.0 mg/kg), or a combination of sotalol followed 15 min later by an injection of epinephrine. Epinephrine produced a significant increase in vagal nerve firing 10 min post-injection (p < .05) relative to controls and neural impulses recorded from the vagus remained significantly elevated for the remaining 55 min collection period. The excitatory actions of epinephrine were not observed in groups given an identical dose of the hormone after peripheral beta-adrenergic receptor blockade with sotalol. These findings demonstrate that neural discharge in vagal afferent fibers is increased by elevations in peripheral concentrations of epinephrine and the significance of these findings in understanding how epinephrine modulates brain limbic structures to encode and store new information into memory

  13. Induction of the 27-kDa heat shock protein (Hsp27) in the rat medulla oblongata after vagus nerve injury.

    PubMed

    Hopkins, D A; Plumier, J C; Currie, R W

    1998-10-01

    The 27-kDa heat shock protein (Hsp27) is constitutively expressed in motor and sensory neurons of the brainstem. Hsp27 is also rapidly induced in the nervous system following oxidative and cellular metabolic stress. In this study, we examined the distribution of Hsp27 in the rat medulla oblongata by means of immunohistochemistry after the vagus nerve was cut or crushed. After vagal injury, rats were allowed to survive for 6, 12, 24 h, 2, 4, 7, 10, 14, 30, or 90 days. Vagus nerve lesions resulted in a time-dependent up-regulation of Hsp27 in vagal motor and nodose ganglion sensory neurons that expressed Hsp27 constitutively and de novo induction in neurons that did not express Hsp27 constitutively. In the dorsal motor nucleus of the vagus nerve (DMV) and nucleus ambiguus, the levels of Hsp27 in motor neurons were elevated within 24 h of injury and persisted for up to 90 days. Vagal afferents to the nucleus of the tractus solitarius (NTS) and area postrema showed increases in Hsp27 levels within 4 days that were still present 90 days postinjury. In addition, increases in Hsp27 staining of axons in the NTS and DMV suggest that vagus nerve injury resulted in sprouting of afferent axons and spread into areas of the dorsal vagal complex not normally innervated by the vagus. Our observations are consistent with the possibility that Hsp27 plays a role in long-term survival of distinct subpopulations of injured vagal motor and sensory neurons.

  14. Evidence of vagus nerve sprouting to innervate the urinary bladder and clitoris in a canine model of lower motoneuron lesioned bladder.

    PubMed

    Barbe, Mary F; Gomez-Amaya, Sandra; Braverman, Alan S; Brown, Justin M; Lamarre, Neil S; Massicotte, Vicky S; Lewis, Jennifer K S; Dachert, Stephen R; Ruggieri, Michael R

    2017-01-01

    Complete spinal cord injury does not block perceptual responses or inferior solitary nucleus activation after genital self-stimulation, even though the vagus is not thought to innervate pelvic structures. We tested if vagus nerve endings sprout after bladder decentralization to innervate genitourinary structures in canines with decentralized bladders. Four reinnervation surgeries were performed in female hounds: bilateral genitofemoral nerve transfer to pelvic nerve with vesicostomy (GNF-V) or without (GFN-NV); and left femoral nerve transfer (FNT-V and FNT-NV). After 8 months, retrograde dyes were injected into genitourinary structures. Three weeks later, at euthanasia, reinnervation was evaluated as increased detrusor pressure induced by functional electrical stimulation (FES). Controls included un-operated, sham-operated, and decentralized animals. Increased detrusor pressure was seen in 8/12 GFNT-V, 4/5 GFNT-NV, 5/5 FNT-V, and 4/5 FNT-NV animals after FES, but not decentralized controls. Lumbar cord segments contained cells labeled from the bladder in all nerve transfer animals with FES-induced increased detrusor pressure. Nodose ganglia cells labeled from the bladder were observed in 5/7 nerve transfer animals (1/2 GNT-NV; 4/5 FNT-V), and from the clitoris were in 6/7 nerve transfer animals (2/2 GFNT-NV; 4/5 FNT-V). Dorsal motor nucleus vagus cells labeled from the bladder were observed in 3/5 nerve transfer animals (1/2 GFNT-NV; 2/3 FNT-V), and from the clitoris in 4/5 nerve transfer animals (1/2 GFNT-NV; 3/3 FNT-V). Controls lacked this labeling. Evidence of vagal nerve sprouting to the bladder and clitoris was observed in canines with lower motoneuron lesioned bladders. Neurourol. Urodynam. 36:91-97, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Effects of certain metabolites on pancreatic endocrine responses to stimulation of the vagus nerves in conscious calves.

    PubMed Central

    Bloom, S R; Edwards, A V

    1985-01-01

    The effects of exogenous glucose (0.05 mmol/kg . min) and vamin (0.02 mmol/kg . min) on the pancreatic endocrine responses to stimulation of the peripheral ends of the vagus nerves have been investigated in conscious 3-6-week-old calves with cut splanchnic nerves. Exogenous glucose potentiated both the basal release of insulin and that which occurred in response to vagal stimulation, while inhibiting both the basal release of glucagon and that during vagal stimulation. Vamin significantly inhibited basal release of insulin but not that which occurred during vagal stimulation although it significantly inhibited vagal release of glucagon. The inhibitory effect of exogenous glucose on the basal and vagally stimulated release of pancreatic glucagon were both significantly reduced in the presence of vamin. Neither glucose nor mixed amino acids were found to affect the release of pancreatic polypeptide either at rest or during nerve stimulation. It is concluded that the effects of vagal activity on the alpha- and beta-cells of the islets of Langerhans are normally modified by the existing concentration of both glucose and amino acids in these animals. PMID:3894623

  16. Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat

    NASA Technical Reports Server (NTRS)

    Niijima, Akira; Jiang, Zheng-Yao; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    The afferent nerve activity was recorded from a nerve filament isolated from the peripheral cut end of the gastric branch of the vagus nerve. The gastric perfusion of 4 ml of two different concentrations (0.04 percent and 0.08 percent) of CuSO4 solution provoked an increase in afferent activity. The stimulating effect of the 0.08 percent solution was stronger than that of the 0.04 percent solution, and lasted for a longer period of time. The observations suggest a possible mechanism by which CuSO4 elicits emesis.

  17. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig

    PubMed Central

    Beaumont, Eric; Wright, Gary L.; Southerland, Elizabeth M.; Li, Ying; Chui, Ray; KenKnight, Bruce H.; Armour, J. Andrew

    2016-01-01

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15–20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling. PMID:26993230

  18. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig.

    PubMed

    Beaumont, Eric; Wright, Gary L; Southerland, Elizabeth M; Li, Ying; Chui, Ray; KenKnight, Bruce H; Armour, J Andrew; Ardell, Jeffrey L

    2016-05-15

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15-20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling.

  19. Single vagus nerve stimulation reduces early postprandial C-peptide levels but not other hormones or postprandial metabolism.

    PubMed

    Tang, M W; van Nierop, F S; Koopman, F A; Eggink, H M; Gerlag, D M; Chan, M W; Zitnik, R; Vaz, F M; Romijn, J A; Tak, P P; Soeters, M R

    2017-04-08

    A recent study in rheumatoid arthritis (RA) patients using electrical vagus nerve stimulation (VNS) to activate the inflammatory reflex has shown promising effects on disease activity. Innervation by the autonomic nerve system might be involved in the regulation of many endocrine and metabolic processes and could therefore theoretically lead to unwanted side effects. Possible effects of VNS on secretion of hormones are currently unknown. Therefore, we evaluated the effects of a single VNS on plasma levels of pituitary hormones and parameters of postprandial metabolism. Six female patients with RA were studied twice in balanced assignment (crossover design) to either VNS or no stimulation. The patients selected for this substudy had been on VNS therapy daily for at least 3 months and at maximum of 24 months. We compared 10-, 20-, and 30-min poststimulus levels to baseline levels, and a 4-h mixed meal test was performed 30 min after VNS. We also determined energy expenditure (EE) by indirect calorimetry before and after VNS. VNS did not affect pituitary hormones (growth hormone, thyroid stimulating hormone, adrenocorticotropic hormone, prolactin, follicle-stimulating hormone, and luteinizing hormone), postprandial metabolism, or EE. Of note, VNS reduced early postprandial insulin secretion, but not AUC of postprandial plasma insulin levels. Cortisol and catecholamine levels in serum did not change significantly. Short stimulation of vagal activity by VNS reduces early postprandial insulin secretion, but not other hormone levels and postprandial response. This suggests VNS as a safe treatment for RA patients.

  20. Transection of the Pelvic or Vagus Nerve Forestalls Ripening of the Cervix and Delays Birth in Rats1

    PubMed Central

    Clyde, Lindsey A.; Lechuga, Thomas J.; Ebner, Charlotte A.; Burns, Alexandra E.; Kirby, Michael A.; Yellon, Steven M.

    2010-01-01

    Innervation of the cervix is important for normal timing of birth because transection of the pelvic nerve forestalls birth and causes dystocia. To discover whether transection of the parasympathetic innervation of the cervix affects cervical ripening in the process of parturition was the objective of the present study. Rats on Day 16 of pregnancy had the pelvic nerve (PnX) or the vagus nerve (VnX) or both pathways (PnX+VnX) transected, sham-operated (Sham) or nonpregnant rats served as controls. Sections of fixed peripartum cervix were stained for collagen or processed by immunohistochemistry to identify macrophages and nerve fibers. All Sham controls delivered by the morning of Day 22 postbreeding, while births were delayed in more than 75% of neurectomized rats by more than 12 h. Dystocia was evident in more than 25% of the PnX and PnX+VnX rats. Moreover, on prepartum Day 21, serum progesterone was increased severalfold in neurectomized versus Sham rats. Assessments of cell nuclei counts indicated that the cervix of neurectomized rats and Sham controls had become equally hypertrophied compared to the unripe cervix in nonpregnant rats. Collagen content and structure were reduced in the cervix of all pregnant rats, whether neurectomized or Shams, versus that in nonpregnant rats. Stereological analysis of cervix sections found reduced numbers of resident macrophages in prepartum PnX and PnX+VnX rats on Day 21 postbreeding, as well as in VnX rats on Day 22 postbreeding compared to that in Sham controls. Finally, nerve transections blocked the prepartum increase in innervation that occurred in Sham rats on Day 21 postbreeding. These findings indicate that parasympathetic innervation of the cervix mediates local inflammatory processes, withdrawal of progesterone in circulation, and the normal timing of birth. Therefore, pelvic and vagal nerves regulate macrophage immigration and nerve fiber density but may not be involved in final remodeling of the extracellular matrix

  1. Transection of the pelvic or vagus nerve forestalls ripening of the cervix and delays birth in rats.

    PubMed

    Clyde, Lindsey A; Lechuga, Thomas J; Ebner, Charlotte A; Burns, Alexandra E; Kirby, Michael A; Yellon, Steven M

    2011-03-01

    Innervation of the cervix is important for normal timing of birth because transection of the pelvic nerve forestalls birth and causes dystocia. To discover whether transection of the parasympathetic innervation of the cervix affects cervical ripening in the process of parturition was the objective of the present study. Rats on Day 16 of pregnancy had the pelvic nerve (PnX) or the vagus nerve (VnX) or both pathways (PnX+VnX) transected, sham-operated (Sham) or nonpregnant rats served as controls. Sections of fixed peripartum cervix were stained for collagen or processed by immunohistochemistry to identify macrophages and nerve fibers. All Sham controls delivered by the morning of Day 22 postbreeding, while births were delayed in more than 75% of neurectomized rats by more than 12 h. Dystocia was evident in more than 25% of the PnX and PnX+VnX rats. Moreover, on prepartum Day 21, serum progesterone was increased severalfold in neurectomized versus Sham rats. Assessments of cell nuclei counts indicated that the cervix of neurectomized rats and Sham controls had become equally hypertrophied compared to the unripe cervix in nonpregnant rats. Collagen content and structure were reduced in the cervix of all pregnant rats, whether neurectomized or Shams, versus that in nonpregnant rats. Stereological analysis of cervix sections found reduced numbers of resident macrophages in prepartum PnX and PnX+VnX rats on Day 21 postbreeding, as well as in VnX rats on Day 22 postbreeding compared to that in Sham controls. Finally, nerve transections blocked the prepartum increase in innervation that occurred in Sham rats on Day 21 postbreeding. These findings indicate that parasympathetic innervation of the cervix mediates local inflammatory processes, withdrawal of progesterone in circulation, and the normal timing of birth. Therefore, pelvic and vagal nerves regulate macrophage immigration and nerve fiber density but may not be involved in final remodeling of the extracellular matrix

  2. Vagus nerve stimulation for standardized monitoring: technical notes for conventional and endoscopic thyroidectomy.

    PubMed

    Dionigi, Gianlorenzo; Kim, Hoon Yub; Wu, Che-Wei; Lavazza, Matteo; Ferrari, Cesare; Leotta, Andrea; Spampatti, Sebastiano; Rovera, Francesca; Rausei, Stefano; Boni, Luigi; Chiang, Feng-Yu

    2013-09-01

    Standardization of the intraoperative neuromonitoring (IONM) technique is an essential aspect of modern monitored thyroid surgery. The standardized technique involves vagal nerve stimulation. VN stimulation is useful for technical problem solving, detecting non-recurrent laryngeal nerve (non-RLN), recognizing any recurrent laryngeal nerve (RLN) lesions, and precisely predicting RLN postoperative function. Herein, we present technical notes for the VN identification to achieve the critical view of safety of the VN stimulation with or without dissection.

  3. Motor and sensory re-innervation of the lung and heart after re-anastomosis of the cervical vagus nerve in rats.

    PubMed

    Bregeon, Fabienne; Alliez, Jean Roch; Héry, Géraldine; Marqueste, Tanguy; Ravailhe, Sylvie; Jammes, Yves

    2007-06-15

    There is no study in the literature dealing with re-innervation of the cardiopulmonary vagus nerve after its transection followed by re-anastomosis. In the present study, we explored the bronchomotor, heart rate and respiratory responses in rats at 2, 3 and 6 months after re-anastomosis of one cervical vagus trunk. The conduction velocity of A, B and C waves was calculated in the compound vagal action potential. We searched for afferent vagal activities in phase with pulmonary inflation to assess the persistence of pulmonary stretch receptor (PSR) discharge in re-innervated lungs. In each animal, data from the stimulation or recording of one re-anastomosed vagus nerve were compared with those obtained in the contra-lateral intact one. Two and three months after surgery, the conduction velocities of A and B waves decreased, but recovery of conduction velocity was complete at 6 months. By contrast, the conduction velocity of the C wave did not change until 6 months, when it was doubled. The PSR activity was present in 50% of re-anastomosed vagus nerves at 2 and 3 months and in 75% at 6 months. Respiratory inhibition evoked by vagal stimulation was significantly weaker from the re-anastomosed than intact nerve at 2 but not 3 months. Vagal stimulation did not elicit cardiac slowing or bronchoconstriction 6 months after re-anastomosis. Our study demonstrates the capacity of pulmonary vagal sensory neurones to regenerate after axotomy followed by re-anastomosis, and the failure of the vagal efferents to re-innervate both the lungs and heart.

  4. Motor and sensory re-innervation of the lung and heart after re-anastomosis of the cervical vagus nerve in rats

    PubMed Central

    Bregeon, Fabienne; Alliez, Jean Roch; Héry, Géraldine; Marqueste, Tanguy; Ravailhe, Sylvie; Jammes, Yves

    2007-01-01

    There is no study in the literature dealing with re-innervation of the cardiopulmonary vagus nerve after its transection followed by re-anastomosis. In the present study, we explored the bronchomotor, heart rate and respiratory responses in rats at 2, 3 and 6 months after re-anastomosis of one cervical vagus trunk. The conduction velocity of A, B and C waves was calculated in the compound vagal action potential. We searched for afferent vagal activities in phase with pulmonary inflation to assess the persistence of pulmonary stretch receptor (PSR) discharge in re-innervated lungs. In each animal, data from the stimulation or recording of one re-anastomosed vagus nerve were compared with those obtained in the contra-lateral intact one. Two and three months after surgery, the conduction velocities of A and B waves decreased, but recovery of conduction velocity was complete at 6 months. By contrast, the conduction velocity of the C wave did not change until 6 months, when it was doubled. The PSR activity was present in 50% of re-anastomosed vagus nerves at 2 and 3 months and in 75% at 6 months. Respiratory inhibition evoked by vagal stimulation was significantly weaker from the re-anastomosed than intact nerve at 2 but not 3 months. Vagal stimulation did not elicit cardiac slowing or bronchoconstriction 6 months after re-anastomosis. Our study demonstrates the capacity of pulmonary vagal sensory neurones to regenerate after axotomy followed by re-anastomosis, and the failure of the vagal efferents to re-innervate both the lungs and heart. PMID:17430986

  5. The role of the vagus nerve in the migrating motor complex and ghrelin- and motilin-induced gastric contraction in suncus.

    PubMed

    Miyano, Yuki; Sakata, Ichiro; Kuroda, Kayuri; Aizawa, Sayaka; Tanaka, Toru; Jogahara, Takamichi; Kurotani, Reiko; Sakai, Takafumi

    2013-01-01

    The upper gastrointestinal (GI) tract undergoes a temporally coordinated cyclic motor pattern known as the migrating motor complex (MMC) in both dogs and humans during the fasted state. Feeding results in replacement of the MMC by a pattern of noncyclic, intermittent contractile activity termed as postprandial contractions. Although the MMC is known to be stimulated by motilin, recent studies have shown that ghrelin, which is from the same peptide family as motilin, is also involved in the regulation of the MMC. In the present study, we investigated the role of the vagus nerve on gastric motility using conscious suncus-a motilin- and ghrelin-producing small animal. During the fasted state, cyclic MMC comprising phases I, II, and III was observed in both sham-operated and vagotomized suncus; however, the duration and motility index (MI) of phase II was significantly decreased in vagotomized animals. Motilin infusion (50 ng·kg(-1)·min(-1) for 10 min) during phase I had induced phase III-like contractions in both sham-operated and vagotomized animals. Ghrelin infusion (0.1, 0.3, 1, 3, or 10 µg·kg(-1)·min(-1) for 10 min) enhanced the amplitude of phase II MMC in sham-operated animals, but not in vagotomized animals. After feeding, phase I was replaced by postprandial contractions, and motilin infusion (50 ng·kg(-1)·min(-1) for 10 min) did not induce phase III-like contractions in sham-operated suncus. However, in vagotomized suncus, feeding did not evoke postprandial contractions, but exogenous motilin injection strongly induced phase III-like contractions, as noted during the phase I period. Thus, the results indicate that ghrelin stimulates phase II of the MMC via the vagus nerve in suncus. Furthermore, the vagus nerve is essential for initiating postprandial contractions, and inhibition of the phase III-like contractions induced by motilin is highly dependent on the vagus nerve.

  6. Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS)

    PubMed Central

    George, Mark S; Aston-Jones, Gary

    2010-01-01

    Although the preceding chapters discuss much of the new knowledge of neurocircuitry of neuropsychiatric diseases, and an invasive approach to treatment, this chapter describes and reviews the noninvasive methods of testing circuit-based theories and treating neuropsychiatric diseases that do not involve implanting electrodes into the brain or on its surface. These techniques are transcranial magnetic stimulation, vagus nerve stimulation, and transcranial direct current stimulation. Two of these approaches have FDA approval as therapies. PMID:19693003

  7. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve.

    PubMed

    Honig, Gerard; Mader, Simone; Chen, Huiyi; Porat, Amit; Ochani, Mahendar; Wang, Ping; Volpe, Bruce T; Diamond, Betty

    2016-01-01

    Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.

  8. Modulation of Muscle Tone and Sympathovagal Balance in Cervical Dystonia Using Percutaneous Stimulation of the Auricular Vagus Nerve.

    PubMed

    Kampusch, Stefan; Kaniusas, Eugenijus; Széles, Jozsef C

    2015-10-01

    Primary cervical dystonia is characterized by abnormal, involuntary, and sustained contractions of cervical muscles. Current ways of treatment focus on alleviating symptomatic muscle activity. Besides pharmacological treatment, in severe cases patients may receive neuromodulative intervention such as deep brain stimulation. However, these (highly invasive) methods have some major drawbacks. For the first time, percutaneous auricular vagus nerve stimulation (pVNS) was applied in a single case of primary cervical dystonia. Auricular vagus nerve stimulation was already shown to modulate the (autonomous) sympathovagal balance of the body and proved to be an effective treatment in acute and chronic pain, epilepsy, as well as major depression. pVNS effects on cervical dystonia may be hypothesized to rely upon: (i) the alteration of sensory input to the brain, which affects structures involved in the genesis of motoric and nonmotoric dystonic symptoms; and (ii) the alteration of the sympathovagal balance with a sustained impact on involuntary movement control, pain, quality of sleep, and general well-being. The presented data provide experimental evidence that pVNS may be a new alternative and minimally invasive treatment in primary cervical dystonia. One female patient (age 50 years) suffering from therapy refractory cervical dystonia was treated with pVNS over 20 months. Significant improvement in muscle pain, dystonic symptoms, and autonomic regulation as well as a subjective improvement in motility, sleep, and mood were achieved. A subjective improvement in pain recorded by visual analog scale ratings (0-10) was observed from 5.42 to 3.92 (medians). Muscle tone of the mainly affected left and right trapezius muscle in supine position was favorably reduced by about 96%. Significant reduction of muscle tone was also achieved in sitting and standing positions of the patient. Habituation to stimulation leading to reduced stimulation efficiency was observed and

  9. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.

    PubMed

    Beaumont, Eric; Campbell, Regenia P; Andresen, Michael C; Scofield, Stephanie; Singh, Krishna; Libbus, Imad; KenKnight, Bruce H; Snyder, Logan; Cantrell, Nathan

    2017-08-01

    Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts.NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents but

  10. Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study.

    PubMed

    Hasan, Alkomiet; Wolff-Menzler, Claus; Pfeiffer, Sebastian; Falkai, Peter; Weidinger, Elif; Jobst, Andrea; Hoell, Imke; Malchow, Berend; Yeganeh-Doost, Peyman; Strube, Wolfgang; Quast, Silke; Müller, Norbert; Wobrock, Thomas

    2015-10-01

    Despite many pharmacological and psychosocial treatment options, schizophrenia remains a debilitating disorder. Thus, new treatment strategies rooted in the pathophysiology of the disorder are needed. Recently, vagus nerve stimulation (VNS) has been proposed as a potential treatment option for various neuropsychiatric disorders including schizophrenia. The objective of this study was to investigate for the first time the feasibility, safety and efficacy of transcutaneous VNS in stable schizophrenia. A bicentric randomized, sham-controlled, double-blind trial was conducted from 2010 to 2012. Twenty schizophrenia patients were randomly assigned to one of two treatment groups. The first group (active tVNS) received daily active stimulation of the left auricle for 26 weeks. The second group (sham tVNS) received daily sham stimulation for 12 weeks followed by 14 weeks of active stimulation. Primary outcome was defined as change in the Positive and Negative Symptom Scale total score between baseline and week 12. Various other secondary measures were assessed to investigate safety and efficacy. The intervention was well tolerated with no relevant adverse effects. We could not observe a statistically significant difference in the improvement of schizophrenia psychopathology during the observation period. Neither psychopathological and neurocognitive measures nor safety measures showed significant differences between study groups. Application of tVNS was well tolerated, but did not improve schizophrenia symptoms in our 26-week trial. While unsatisfactory compliance questions the feasibility of patient-controlled neurostimulation in schizophrenia, the overall pattern of symptom change might warrant further investigations in this population.

  11. Vagus nerve stimulation for chronic major depressive disorder: 12-month outcomes in highly treatment-refractory patients.

    PubMed

    Christmas, David; Steele, J Douglas; Tolomeo, Serenella; Eljamel, M Sam; Matthews, Keith

    2013-09-25

    There are limited treatment options for patients with chronic, treatment-refractory major depression who do not respond to routinely-available treatments. Vagus Nerve Stimulation (VNS) may represent an alternative to ablative neurosurgery for a specific group of patients. 12-month response rates for 28 patients with chronic (≥2 years) major depression who had failed to respond to ≥4 adequate treatment trials in the D03 European open clinical trial of VNS were described along with response rates for 13 consecutive patients who underwent VNS within the neurosurgical treatment programme in Dundee. In the D03 cohort (N=28), the response rate at 12 months (defined as a 50% reduction in symptom score) was 35.7%. In the Dundee VNS case series (N=13), the equivalent response rate was 30.8%. These data are from unblinded and open studies, and there is no control group. Other factors may have contributed to some of the improvement seen, although this is unlikely in very chronic populations. Outcomes are not reported beyond 12 months. Response rates at 12 months for patients with chronic and highly-refractory major depression are broadly consistent with previously published results in more heterogeneous and less refractory clinical trial populations. In highly treatment-resistant patients, the rate of response with VNS at 12 m is at least twice that anticipated with 'treatment-as-usual'. © 2013 Elsevier B.V. All rights reserved.

  12. Vagus nerve stimulation balanced disrupted default-mode network and salience network in a postsurgical epileptic patient

    PubMed Central

    Wang, Kailiang; Chai, Qi; Qiao, Hui; Zhang, Jianguo; Liu, Tinghong; Meng, Fangang

    2016-01-01

    Introduction In recent years, treatment of intractable epilepsy has become more challenging, due to an increase in resistance to antiepileptic drugs, as well as diminished success following resection surgery. Here, we present the case of a 19-year old epileptic patient who received vagus nerve stimulation (VNS) following unsuccessful left parietal–occipital lesion-resection surgery, with results indicating an approximate 50% reduction in seizure frequency and a much longer seizure-free interictal phase. Materials and methods Using resting-state functional magnetic resonance imaging, we measured the changes in resting-state brain networks between pre-VNS treatment and 6 months post-VNS, from the perspective of regional and global variations, using regional homogeneity and large-scale functional connectives (seeding posterior cingulate cortex and anterior cingulate cortex), respectively. Results After 6 months of VNS therapy, the resting-state brain networks were slightly reorganized in regional homogeneity, mainly in large-scale functional connectivity, where excessive activation of the salience network was suppressed, while at the same time the suppressed default-mode network was activated. Conclusion With regard to resting-state brain networks, we propose a hypothesis based on this single case study that VNS acts on intractable epilepsy by modulating the balance between salience and default-mode networks through the integral hub of the anterior cingulate cortex. PMID:27785033

  13. Chronic vagus nerve stimulation for treatment-resistant depression increases regional cerebral blood flow in the dorsolateral prefrontal cortex.

    PubMed

    Kosel, Markus; Brockmann, Holger; Frick, Caroline; Zobel, Astrid; Schlaepfer, Thomas E

    2011-03-31

    The purpose of the present study was to assess the effects of vagus nerve stimulation (VNS) therapy on regional cerebral blood flow (rCBF) in depressed patients. Regional cerebral blood flow (rCBF) was assessed by [(99m)Tc]-HMPAO-single photon emission computed tomography (SPECT) before and after 10weeks of VNS in patients participating in an open, uncontrolled European multi-center study investigating efficacy and safety of VNS. Patients suffered from major depression, with a baseline score of≥20 on the 24-item Hamilton Depression Rating Scale (HDRS) and had been unsuccessfully treated with at least two adequately prescribed antidepressant drugs. Data of 15 patients could be analyzed using SPM 2. After 10weeks of VNS (20Hz, 500μs pulse width, stimulation during 30s every 5min at the maximal comfortable level) rCBF was increased in the left dorsolateral/ventrolateral prefrontal cortex (Brodmann areas 46 and 47) and decreased in the right posterior cingulate area, the lingual gyrus and the left insula. Our findings are in line with earlier results which showed that VNS increases rCBF in the left dorsolateral prefrontal cortex. The modulation of the activity in this region could be associated with the antidepressant efficacy of VNS. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Adjunctive vagus nerve stimulation for treatment-resistant bipolar disorder: managing device failure or the end of battery life.

    PubMed

    Pardo, José V

    2016-03-07

    The vagus nerve stimulation (VNS) device is used not only to treat refractory seizure disorders but also mood disorders; the latter indication received CE Mark approval in 2001 and Food and Drug Administration approval in 2005. Original estimates for the end of battery life (EOBL) were approximately 6-10 years. Many neuropsychiatric patients have or will soon face EOBL. A patient with severe, life-threatening, treatment-resistant bipolar disorder underwent 9 years of stable remission following 20 months of adjunctive VNS. The device ceased operation at EOBL. Because of logistical issues, re-initiation of VNS was delayed over several months. The patient relapsed with depression, mania and mixed states, and regained remission 17 months after device replacement. This case dictates prudence in managing stable patients in remission with VNS. If the device malfunctions, urgent surgical replacement is warranted with subsequent rapid titration to previous parameters as tolerated. Several months' delay may trigger relapse and prove difficult to re-establish remission.

  15. 3T-MRI in patients with pharmacoresistant epilepsy and a vagus nerve stimulator: a pilot study.

    PubMed

    Rösch, Julie; Hamer, Hajo M; Mennecke, Angelika; Kasper, Burkhard; Engelhorn, Tobias; Doerfler, Arnd; Graf, Wolfgang

    2015-02-01

    For safe 3T-MRI of patients with VNS (vagus nerve stimulator), specific conditions are mandatory. However, application of these conditions can lead to a loss of image quality. In this work, we evaluated the diagnostic value of 3T-MRI in VNS patients with pharmacoresistant epilepsy. Using a transmit-and-receive head coil and adapting our sequences to allow for low SAR (specific absorption rate), we examined 15 patients with pharmacoresistant epilepsy. Diagnostic quality was assessed by comparison of the SNR (signal to noise ratio) and CNR (contrast to noise ratio) of the hippocampus, the grey-white matter contrast and epileptogenic lesions to images of patients without VNS acquired with our routine 3T-MRI protocol and the 32-channel head coil. 3T-MRI is feasible in VNS-patients. Image quality is adequate for detection and follow-up of epileptogenic lesions such as ganglioglioma or PNH (periventricular nodular heterotopia). Due to a significant reduction of SNR and CNR, the diagnostic value for subtle lesions may be decreased. Overall, the feasibility of 3T-MRI is beneficial in the diagnostic workup and follow-up of epilepsy-patients with VNS. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The organization of the brainstem nuclei associated with the vagus nerve in the Agouti (Dasyprocta leporina). A neurohistological study.

    PubMed

    Phillips, C M; Odekunle, A

    2011-01-01

    A total of six adult animals were used for the study. Following anaesthesia via intraperitoneal injection of a mixture of ketamin and bombazine in ratio 2:1, thoracotomy was performed to exteriorize the heart for intracardial perfusion. The perfusion canular was inserted into the left ventricle and animal perfused sequentially with normal saline and 10% formal saline. Following perfusion, craniotomy was performed to remove the entire brain along with the upper segments of the spinal cord. The brain specimen was then dehydrated, cleared and infiltrated with paraffin wax. The specimen was then cut in 15 micron thick serial sections. The sections were then processed for neurohistological analyses using a Nikon microscope to which was attached Nikon camera. Analyses of the sections revealed bilateral representation of the dorsal motor nucleus of the vagus nerve in the medulla oblongata. The nucleus ambiguus, nucleus of the tractus solitarius, hypoglossal nucleus and the area postrema were also identified in the medulla oblongata. The implications of our findings are discussed in the text of the article.

  17. Clinical outcome of lower esophageal sphincter- and vagus-nerve-preserving partial cardiectomy for early gastric cancer of the subcardia.

    PubMed

    Matsumoto, Hideo; Murakami, Haruaki; Kubota, Hisako; Higashida, Masaharu; Nakamura, Masafumi; Hirai, Toshihiro

    2015-07-01

    No definitive operative method has been established for the treatment of early subcardial gastric cancer. Our newly developed technique involves local resection of the subcardia while preserving the lower esophageal sphincter and vagus nerve. A new fornix is constructed to accept the transposed esophagus. Thirty patients underwent this procedure between July 2003 and December 2010. Continuous gastric pH monitoring was performed immediately after surgery, and esophageal manometry was undertaken 1 month later. Serum total protein, albumin, total cholesterol, cholinesterase, and body mass index (BMI) were recorded every 3 months. Pre- and postoperative oral intake were compared, reflux symptoms were recorded, and reflux esophagitis was assessed by endoscopy after 1 year. Twenty-five patients (86 %) reported no symptoms of reflux, and 27 (92.8 %) patients could eat 70 % or more of what they had eaten before surgery. Lower esophageal pressures were found to be >10 mmHg in 66.7 % of patients, and the fraction of time that pH <4 was <5 % of the 24-h monitoring period in 70 %. Serum parameters and BMI were unchanged. This surgical technique is a useful means of preserving postoperative quality of life after local gastrectomy by preventing reflux and maintaining nutritional status.

  18. Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control - A Study Using Transcutaneous Vagus Nerve Stimulation.

    PubMed

    Beste, Christian; Steenbergen, Laura; Sellaro, Roberta; Grigoriadou, Stamatoula; Zhang, Rui; Chmielewski, Witold; Stock, Ann-Kathrin; Colzato, Lorenza

    Inhibitory control processes are a central executive function. Several lines of evidence suggest that the GABAergic and the norepinephrine (NE) system modulate inhibitory control processes. Yet, the effects of conjoint increases in the GABAergic and NE system activity on inhibitory control have not been examined. We examine the conjoint effects of the GABA and NE system for inhibitory control. We used transcutaneous vagus nerve stimulation (tVNS), which has been shown to modulate both the GABAergic and NE system. We examine the effects of tVNS in two experimental paradigms examining different aspect of inhibitory control; i.e. a backward inhibition paradigm and a response inhibition paradigm modulating working memory load. There were no effects of tVNS on backward inhibition processes, but on response inhibition processes. Yet, these only emerged when working memory processes were needed to control response inhibition. Compared to a sham stimulation, tVNS induced better response inhibition performance (i.e. fewer false alarms). A concomitant modulation of the GABAergic and NE system, as induced by tVNS, affects inhibitory control processes, but only when working memory processes play an important role for inhibitory control. Even though both the GABAergic and the NE system are modulated by tVNS, the results suggest that the modulation of the NE system is most important for the emerging effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Exercise benefits cardiovascular health in hyperlipidemia rats correlating with changes of the cardiac vagus nerve.

    PubMed

    Wang, You-Hua; Hu, Hao; Wang, Sheng-Peng; Tian, Zhen-Jun; Zhang, Quan-Jiang; Li, Qiu-Xia; Li, You-You; Yu, Xiao-Jiang; Sun, Lei; Li, Dong-Ling; Jia, Bing; Liu, Bing-Hang; Zang, Wei-Jin

    2010-02-01

    The role of exercise training on hemodynamic parameters, blood lipid profiles, inflammatory cytokines, cholinesterase-positive nerves and muscarinic cholinergic (M(2)) receptors expression in the heart was investigated in Sprague-Dawley male rats with hyperlipidemia (HL). The rats were subjected to a high-fat diet and exercise training for 8 weeks, and then the hemodynamic parameters, the profiles of blood lipid and inflammatory cytokines, and the expression of cholinesterase-positive nerves and M(2) receptors were measured. HL rats displayed cardiac dysfunction, dysregulation of inflammatory cytokines, and decreased cholinesterase-positive nerves and M(2) receptors expression. The combination of hyperlipidemia with exercise training (AT) restored the profiles of blood lipids and the levels of inflammatory cytokines. In addition, AT and HL + AT improved cardiac function with increasing cholinesterase-positive nerves and M(2) receptors expression. Overall, these data show that the increased expression of cholinesterase-positive nerves and M(2) receptors in the heart is partially responsible for the benefits of exercise training on cardiac function in hyperlipidemia rats.

  20. Vagus Nerve Stimulator Placement in Dogs: Surgical Implantation Technique, Complications, Long-Term Follow-Up, and Practical Considerations.

    PubMed

    Martlé, Valentine; Van Ham, Luc M L; Boon, Paul; Caemaert, Jacques; Tshamala, Mulenda; Vonck, Kristl; Raedt, Robrecht; Polis, Ingeborgh; Bhatti, Sofie

    2016-01-01

    To describe a modified implantation procedure of a vagus nerve stimulation (VNS) device in dogs and to report short- and long-term complications. Descriptive, experimental study. Healthy, adult Beagle dogs (n = 10). A VNS Therapy(®) System was implanted in the left cervical region of anesthetized dogs. During and within 48 hours after surgery, electrocardiography (ECG) and impedance testing of the system were performed. Dogs were monitored daily and the impedance of the system was determined regularly until VNS devices were surgically removed 3 years after implantation. The implantation procedure was successful in all dogs without intraoperative complications. ECG monitoring and impedance tests were within normal limits during and within 48 hours after surgery. Postoperative seroma formation was common (70%). One dog developed an irreversible Horner's syndrome leading to removal of the device 5 months after implantation. Another dog developed trauma-induced damage of the lead requiring surgical revision. The device could be safely removed in all dogs; however, electrodes were left in place to avoid nerve damage. At removal, the anchor tether was dislodged in 40% of dogs and the lead was twisted in 50% of dogs. Implantation of a VNS Therapy(®) System is safe and feasible in dogs; however, seroma formation, twisting of the lead, and dislodgement of the anchor tether were common. Practical improvements in the technique include stable device placement, use of a compression bandage, and exercise restriction. Regular evaluation of lead impedance is important, as altered values can indicate serious complications. © Copyright 2015 by The American College of Veterinary Surgeons.

  1. Transcompartmental reversal of single fibre hyperexcitability in juxtaparanodal Kv1.1-deficient vagus nerve axons by activation of nodal KCNQ channels

    PubMed Central

    Glasscock, Edward; Qian, Jing; Kole, Matthew J; Noebels, Jeffrey L

    2012-01-01

    Kv1.1 channels cluster at juxtaparanodes of myelinated axons in the vagus nerve, the primary conduit for parasympathetic innervation of the heart. Kcna1-null mice lacking these channels exhibit neurocardiac dysfunction manifested by atropine-sensitive atrioventricular conduction blocks and bradycardia that may culminate in sudden death. To evaluate whether loss of Kv1.1 channels alters electrogenic properties within the nerve, we compared the intrinsic excitability of single myelinated A- and Aδ-axons from excised cervical vagus nerves of young adult Kcna1-null mice and age-matched, wild-type littermate controls. Although action potential shapes and relative refractory periods varied little between genotypes, Kv1.1-deficient large myelinated A-axons showed a fivefold increase in susceptibility to 4-aminopyridine (4-AP)-induced spontaneous ectopic firing. Since the repolarizing currents of juxtaparanodal Kv1 channels and nodal KCNQ potassium channels both act to dampen repetitive activity, we examined whether augmenting nodal KCNQ activation could compensate for Kv1.1 loss and reverse the spontaneous hyperexcitability in Kv1.1-deficient A-axons. Application of the selective KCNQ opener flupirtine raised A-axon firing threshold while profoundly suppressing 4-AP-induced spontaneous firing, demonstrating a functional synergy between the two compartments. We conclude that juxtaparanodal Kv1.1-deficiency causes intrinsic hyperexcitability in large myelinated axons in vagus nerve which could contribute to autonomic dysfunction in Kcna1-null mice, and that KCNQ openers reveal a transcompartmental synergy between Kv1 and KCNQ channels in regulating axonal excitability. PMID:22641786

  2. Association of cerebral metabolic activity changes with vagus nerve stimulation antidepressant response in treatment-resistant depression

    PubMed Central

    Conway, Charles R.; Chibnall, John T.; Gebara, Marie Anne; Price, Joseph L.; Snyder, Abraham Z.; Mintun, Mark A.; (Bud) Craig, A.D.; Cornell, Martha E.; Perantie, Dana C.; Giuffra, Luis A.; Bucholz, Richard D.; Sheline, Yvette I.

    2014-01-01

    Background Vagus nerve stimulation (VNS) has antidepressant effects in treatment resistant major depression (TRMD); these effects are poorly understood. This trial examines associations of subacute (3 months) and chronic (12 months) VNS with cerebral metabolism in TRMD. Objective 17Fluorodeoxyglucose positron emission tomography was used to examine associations between 12-month antidepressant VNS response and cerebral metabolic rate for glucose (CMRGlu) changes at 3 and 12 months. Methods Thirteen TRMD patients received 12 months of VNS. Depression assessments (Hamilton Depression Rating Scale [HDRS]) and PET scans were obtained at baseline (pre-VNS) and 3/12 months. CMRGlu was assessed in eight a priori selected brain regions (bilateral anterior insular [AIC], orbitofrontal [OFC], dorsolateral prefrontal [DLPFC], and anterior cingulate cortices [ACC]). Regional CMRGlu changes over time were studied in VNS responders (decreased 12 month HDRS by ≥50%) and nonresponders. Results A significant trend (decreased 3 month CMRGlu) in the right DLPFC was observed over time in VNS responders (n = 9; P = 0.006). An exploratory whole brain analysis (Puncorrected = 0.005) demonstrated decreased 3 month right rostral cingulate and DLPFC CMRGlu, and increased 12 month left ventral tegmental CMRGlu in responders. Conclusions/Limitations VNS response may involve gradual (months in duration) brain adaptations. Early on, this process may involve decreased right-sided DLPFC/cingulate cortical activity; longer term effects (12 months) may lead to brainstem dopaminergic activation. Study limitations included: a) a small VNS nonresponders sample (N = 4), which limited conclusions about nonresponder CMRGlu changes; b) no control group; and, c) patients maintained their psychotropic medications. PMID:23485649

  3. Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired With Upper-Limb Rehabilitation After Ischemic Stroke.

    PubMed

    Dawson, Jesse; Pierce, David; Dixit, Anand; Kimberley, Teresa J; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P; Rennaker, Robert L; Cramer, Steven C; Walters, Matthew; Engineer, Navzer

    2016-01-01

    Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl-Meyer Assessment-Upper Extremity). Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl-Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, -0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl-Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. © 2015 The Authors.

  4. Superiority of resection over enucleation for schwannomas of the cervical vagus nerve: A retrospective cohort study of 22 consecutive patients.

    PubMed

    Illuminati, Giulio; Pizzardi, Giulia; Minni, Antonio; Masci, Federica; Ciamberlano, Bernardo; Pasqua, Rocco; Calio, Francesco G; Vietri, Francesco

    2016-05-01

    Schwannoma of the cervical vagus nerve is rare. Treatment options include intracapsular enucleation and en bloc resection. The purpose of this study was to compare the outcomes of enucleation and resection in terms of postoperative mortality and morbidity, freedom from vocal cord palsy, freedom from local recurrence, quality-adjusted life-year (QALY) and vocal handicap index (VHI). Twentytwo consecutive patients were divided into two groups. Patients in group A (n = 9) underwent intracapsular enucleation, whereas patients in Group B (n = 13) underwent en bloc resection. Main endpoints of the study were postoperative mortality and morbidity, freedom from vocal cord palsy, freedom from local recurrence and quality of life. The quality of life after surgery was assessed according to the quality-adjusted life-year (QALY) EQ-5D-5L methodology, and calculation of the voice handicap index (VHI). Postoperative mortality was nil. Morbidity included 1 wound dehiscence in group A and 2 transitory dysphagias in group B. Freedom from vocal cord palsy was 22% in group A and zero in group B (p = 0.15). Operation-specific local recurrence rate was 33% (3/9 patients) in group A and nil in group B (0/23 patients) (p = 0.05). QALYs was 0.55 in group A and 0.54 in group B (p = 1.0). VHI was 23.77 in group A and 26.15 in group B (p = 1.00). Resection is superior to enucleation in terms of freedom from local recurrence. Functional results are comparable for both techniques. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): A randomised controlled study

    PubMed Central

    Diener, Hans-Christoph; Silver, Nicholas; Magis, Delphine; Reuter, Uwe; Andersson, Annelie; Liebler, Eric J; Straube, Andreas

    2015-01-01

    Background Chronic cluster headache (CH) is a debilitating disorder for which few well-controlled studies demonstrate effectiveness of available therapies. Non-invasive vagus nerve stimulation (nVNS) was examined as adjunctive prophylactic treatment of chronic CH. Methods PREVA was a prospective, open-label, randomised study that compared adjunctive prophylactic nVNS (n = 48) with standard of care (SoC) alone (control (n = 49)). A two-week baseline phase was followed by a four-week randomised phase (SoC plus nVNS vs control) and a four-week extension phase (SoC plus nVNS). The primary end point was the reduction in the mean number of CH attacks per week. Response rate, abortive medication use and safety/tolerability were also assessed. Results During the randomised phase, individuals in the intent-to-treat population treated with SoC plus nVNS (n = 45) had a significantly greater reduction in the number of attacks per week vs controls (n = 48) (−5.9 vs −2.1, respectively) for a mean therapeutic gain of 3.9 fewer attacks per week (95% CI: 0.5, 7.2; p = 0.02). Higher ≥50% response rates were also observed with SoC plus nVNS (40% (18/45)) vs controls (8.3% (4/48); p < 0.001). No serious treatment-related adverse events occurred. Conclusion Adjunctive prophylactic nVNS is a well-tolerated novel treatment for chronic CH, offering clinical benefits beyond those with SoC. PMID:26391457

  6. The potential role of vagus-nerve stimulation in the treatment of HIV-associated depression: a review of literature

    PubMed Central

    Nicholson, William C; Kempf, Mirjam-Colette; Moneyham, Linda; Vance, David E

    2017-01-01

    Depression is the most common comorbidity and neuropsychiatric complication in HIV. Estimates suggest that the prevalence rate for depression among HIV-infected individuals is three times that of the general population. The association between HIV and clinical depression is complex; however, chronic activation of inflammatory mechanisms, which disrupt central nervous system (CNS) function, may contribute to this association. Disruptions in CNS function can result in cognitive disorders, social withdrawal, fatigue, apathy, psychomotor impairment, and sleep disturbances, which are common manifestations in depression and HIV alike. Interestingly, the parasympathetic system-associated vagus nerve (VN) has primary homeostatic properties that restore CNS function following a stress or inflammatory response. Unfortunately, about 30% of adults with HIV are resistant to standard psychotherapeutic and psychopharmacological treatments for depression, thus suggesting the need for alternative treatment approaches. VN stimulation (VNS) and its benefits as a treatment for depression have been well documented, but remain unexplored in the HIV population. Historically, VNS has been delivered using a surgically implanted device; however, transcutanous VNS (tVNS) with nonsurgical auricular technology is now available. Although it currently lacks Food and Drug Administration approval in the US, evidence suggests several advantages of tVNS, including a reduced side-effect profile when compared to standard treatments and comparable results to implantable VNS in treating depression. Therefore, tVNS could offer an alternative for managing depression in HIV via regulating CNS function; moreover, tVNS may be useful for treatment of other symptoms common in HIV. From this, implications for nursing research and practice are provided. PMID:28721049

  7. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): A randomised controlled study.

    PubMed

    Gaul, Charly; Diener, Hans-Christoph; Silver, Nicholas; Magis, Delphine; Reuter, Uwe; Andersson, Annelie; Liebler, Eric J; Straube, Andreas

    2016-05-01

    Chronic cluster headache (CH) is a debilitating disorder for which few well-controlled studies demon.strate effectiveness of available therapies. Non-invasive vagus nerve stimulation (nVNS) was examined as adjunctive prophylactic treatment of chronic CH. PREVA was a prospective, open-label, randomised study that compared adjunctive prophylactic nVNS (n = 48) with standard of care (SoC) alone (control (n = 49)). A two-week baseline phase was followed by a four-week randomised phase (SoC plus nVNS vs control) and a four-week extension phase (SoC plus nVNS). The primary end point was the reduction in the mean number of CH attacks per week. Response rate, abortive medication use and safety/tolerability were also assessed. During the randomised phase, individuals in the intent-to-treat population treated with SoC plus nVNS (n = 45) had a significantly greater reduction in the number of attacks per week vs controls (n = 48) (-5.9 vs -2.1, respectively) for a mean therapeutic gain of 3.9 fewer attacks per week (95% CI: 0.5, 7.2; p = 0.02). Higher ≥50% response rates were also observed with SoC plus nVNS (40% (18/45)) vs controls (8.3% (4/48); p < 0.001). No serious treatment-related adverse events occurred. Adjunctive prophylactic nVNS is a well-tolerated novel treatment for chronic CH, offering clinical benefits beyond those with SoC. © International Headache Society 2015.

  8. The effects of vagus nerve stimulation therapy on patients with intractable seizures and either Landau-Kleffner syndrome or autism.

    PubMed

    Park, Yong D

    2003-06-01

    Acquired and developmental comorbid conditions, including language and behavioral disorders, are often associated with epilepsy. Although the relationship between these disorders is not fully understood, their close association may indicate that they share common features, suggesting that these conditions may respond to the same therapies. Not only has vagus nerve stimulation (VNS) therapy been proven to reduce the frequency of pharmacoresistant seizures in epilepsy patients, but preliminary studies also indicate that VNS therapy may improve neurocognitive performance. On the basis of these findings, we hypothesized that VNS therapy would improve the quality of life of patients with either Landau-Kleffner syndrome (LKS) or autism, independent of its effects on seizures. Data were retrospectively queried from the VNS therapy patient outcome registry (Cyberonics, Inc; Houston, TX, USA). A constant cohort of 6 LKS patients and 59 autistic patients were identified. Among the LKS patients, 3 patients at 6 months experienced at least a 50% reduction in seizure frequency as compared with baseline. Physicians reported quality-of-life improvements in all areas assessed for at least 3 of the 6 children. More than half of the patients with autism (58%) experienced at least a 50% reduction in seizure frequency at 12 months. Improvements in all areas of quality of life monitored were reported for most patients, particularly for alertness (76% at 12 months). Although these preliminary findings are encouraging, a prospective study using standardized measurement tools specific to these disorders and a longer-term follow-up are necessary to better gauge the efficacy of VNS therapy among these patient populations.

  9. Transcutaneous vagus nerve stimulation induces tidal melatonin secretion and has an antidiabetic effect in Zucker fatty rats.

    PubMed

    Wang, Shuxing; Zhai, Xu; Li, Shaoyuan; McCabe, Michael F; Wang, Xing; Rong, Peijing

    2015-01-01

    Melatonin plays a protective role in type 2 diabetes (T2D) through regulation of glucose metabolism. Whether transcutaneous vagus nerve stimulation (taVNS) is antidiabetic and whether a modulated melatonin production is involved in the antidiabetic mechanism of taVNS is unknown. In this study, once daily 30 min noninvasive taVNS was administered in Zucker diabetic fatty (ZDF, fa/fa) and Zucker lean (ZL, +/fa) littermates under anesthesia for 5 consecutive weeks. The acute and chronic influences of taVNS on the secretion of melatonin were studied as well as the effects of taVNS on blood glucose metabolism. We found that naïve ZDF rats develop hyperglycemia naturally with age. Each taVNS session would trigger a tidal secretion of melatonin both during and after the taVNS procedure and induce an acute two-phase glycemic change, a steep increase followed by a gradual decrease. Once daily taVNS sessions eventually reduced the glucose concentration to a normal level in seven days and effectively maintained the normal glycemic and plasma glycosylated hemoglobin (HbAlc) levels when applied for five consecutive weeks. These beneficial effects of taVNS also exist in pinealectomized rats, which otherwise would show overt and continuous hyperglycemia, hyperinsulinemia, and high HbAlc levels. We concluded that multiple taVNS sessions are antidiabetic in T2D through triggering of tidal secretion of melatonin. This finding may have potential importance in developing new approaches to the treatment of T2D, which is highly prevalent, incurable with any current approaches, and very costly to the world.

  10. Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired With Upper-Limb Rehabilitation After Ischemic Stroke

    PubMed Central

    Pierce, David; Dixit, Anand; Kimberley, Teresa J.; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P.; Rennaker, Robert L.; Cramer, Steven C.; Walters, Matthew; Engineer, Navzer

    2016-01-01

    Background and Purpose— Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Methods— Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl–Meyer Assessment-Upper Extremity). Results— Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl–Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, −0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl–Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). Conclusions— This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. PMID:26645257

  11. Central connections of the sensory and motor nuclei of the vagus nerve.

    PubMed

    Sawchenko, P E

    1983-10-01

    Recent morphological and immunohistochemical studies bearing on the central pathways involved in processing vagal afferent information and in modulating the activity of vagal preganglionic neurons are summarized. The nucleus of the solitary tract (NTS), the principal recipient of first order vagal afferent inputs, projects to preganglionic cell groups of both divisions of the autonomic nervous system, to motor nuclei of cranial nerves that supply the face and tongue, to a series of 'relay' nuclei in the brainstem, and to a number of cell groups in the hypothalamus and the limbic region of the telencephalon that integrate autonomic, neuroendocrine and regulatory behavioral responses. With the exception of the cranial nerve motor nuclei, each cell group in receipt of direct inputs from the NTS projects back to this region and/or to the vagal motor nuclei, and is thereby in a position to influence vagal motor outflow. This central vagal system is further characterized by the presence of neurons that contain an impressive diversity of neuropeptides and monoamines. Examples are cited to illustrate how biochemically specified projections within this system are organized, and how they provide potential substrates for encoding information transfer between its components.

  12. Association of vagus nerve severance and decreased risk of subsequent type 2 diabetes in peptic ulcer patients: An Asian population cohort study.

    PubMed

    Wu, Shih-Chi; Chen, William Tzu-Liang; Fang, Chu-Wen; Muo, Chih-Hsin; Sung, Fung-Chang; Hsu, Chung Y

    2016-12-01

    Vagus nerve may play a role in serum glucose modulation. The complicated peptic ulcer patients (with perforation or/and bleeding) who received surgical procedures with or without vagotomy provided 2 patient populations for studying the impact of vagus nerve integrity. We assessed the risk of developing type 2 diabetes in peptic ulcer patients without and with complications by surgical treatment received in a retrospective population study using the National Health Insurance database in Taiwan.A cohort of 163,385 patients with peptic ulcer and without Helicobacter pylori infection in 2000 to 2003 was established. A randomly selected cohort of 163,385 persons without peptic ulcer matched by age, sex, hypertension, hyperlipidemia, Charlson comorbidity index score, and index year was utilized for comparison. The risks of developing diabetes in both cohorts and in the complicated peptic ulcer patients who received truncal vagotomy or simple suture/hemostasis (SSH) were assessed at the end of 2011.The overall diabetes incidence was higher in patients with peptic ulcer than those without peptic ulcer (15.87 vs 12.60 per 1000 person-years) by an adjusted hazard ratio (aHR) of 1.43 (95% confidence interval [CI] = 1.40-1.47) based on the multivariable Cox proportional hazards regression analysis (competing risk). Comparing ulcer patients with truncal vagotomy and SSH or those without surgical treatment, the aHR was the lowest in the vagotomy group (0.48, 95% CI = 0.41-0.56).Peptic ulcer patients have an elevated risk of developing type 2 diabetes. Moreover, there were associations of vagus nerve severance and decreased risk of subsequent type 2 diabetes in complicated peptic ulcer patients.

  13. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala

    PubMed Central

    Peña, David Frausto; Childs, Jessica E.; Willett, Shawn; Vital, Analicia; McIntyre, Christa K.; Kroener, Sven

    2014-01-01

    Fearful experiences can produce long-lasting and debilitating memories. Extinction of the fear response requires consolidation of new memories that compete with fearful associations. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear, which is associated with decreased ventromedial prefrontal cortex (vmPFC) control over amygdala activity. Vagus nerve stimulation (VNS) enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here we investigated whether pairing VNS with extinction learning facilitates plasticity between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA). Rats were trained on an auditory fear conditioning task, which was followed by a retention test and 1 day of extinction training. Vagus nerve stimulation or sham-stimulation was administered concurrently with exposure to the fear-conditioned stimulus and retention of fear conditioning was tested again 24 h later. Vagus nerve stimulation-treated rats demonstrated a significant reduction in freezing after a single extinction training session similar to animals that received 5× the number of extinction pairings. To study plasticity in the IL-BLA pathway, we recorded evoked field potentials (EFPs) in the BLA in anesthetized animals 24 h after retention testing. Brief burst stimulation in the IL produced LTD in the BLA field response in fear-conditioned and sham-treated animals. In contrast, the same stimulation resulted in potentiation of the IL-BLA pathway in the VNS-treated group. The present findings suggest that VNS promotes plasticity in the IL-BLA pathway to facilitate extinction of conditioned fear responses (CFRs). PMID:25278857

  14. Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock.

    PubMed

    Levy, Gal; Fishman, Jordan E; Xu, Dazhong; Chandler, Benjamin T J; Feketova, Eleonora; Dong, Wei; Qin, Yong; Alli, Vamsi; Ulloa, Luis; Deitch, Edwin A

    2013-01-01

    We tested if vagus nerve stimulation (VNS) would prevent gut injury, mesenteric lymph toxicity, and systemic multiple organ dysfunction syndrome following trauma-hemorrhagic shock (T/HS). Four groups of experiments were performed. The first tested whether VNS (5 V for 10 min) would protect against T/HS-induced increases in gut and lung permeability as well as neutrophil priming. In the second experiment, mesenteric lymph was collected from rats subjected to T/HS or trauma-sham shock with or without VNS and then injected into naive mice to assess its biologic activity. Lung permeability, neutrophil priming, and red blood cell deformability were measured. Next, the role of the spleen in VNS-mediated protection was tested by measuring gut and lung injury in splenectomized rats subjected to sham or actual VNS. Lastly, the ability of nicotine to replicate the gut-protective effect of VNS was tested. Vagus nerve stimulation protected against T/HS-induced gut injury, lung injury, and neutrophil priming (P < 0.05). Not only did VNS limit organ injury after T/HS, but in contrast to the mesenteric lymph collected from the sham-VNS T/HS rats, the mesenteric lymph from the VNS T/HS rats did not cause lung injury, neutrophil priming, or loss of red blood cell deformability (P < 0.05) when injected into naive mice. Removal of the spleen did not prevent the protective effects of VNS on gut or lung injury after T/HS. Similar to VNS, the administration of nicotine also protected the gut from injury after T/HS. Vagus nerve stimulation prevents T/HS-induced gut injury, lung injury, neutrophil priming, and the production of biologically active mesenteric lymph. This protective effect of VNS was not dependent on the spleen but appeared to involve a cholinergic nicotinic receptor, because its beneficial effects could be replicated with nicotine.

  15. Carotid Space Mass Proximal to Vagus Nerve Causing Asystole and Syncope

    PubMed Central

    2016-01-01

    Manipulation of vagal nerve rootlets, whether surgical or through mass effect of a neoplasm, can result in asystole and hypotension, accompanied by ST depression and right bundle branch block. There are few case reports of a neoplasm causing these effects, and this case describes a patient with such a mass presenting with syncopal episodes. A 43-year-old man with a past medical history of HIV, bipolar disorder, and epilepsy was admitted to the neurology service for a video electroencephalogram (vEEG) to characterize syncopal episodes that were felt to be epileptic in origin. During the study, he experienced symptoms of his typical aura, which correlated with a transient symptomatic high degree AV block on telemetry, and an absence of epileptic findings on vEEG. Magnetic Resonance Imaging (MRI) of the brain showed a mass in the left posterior carotid space at the skull base. The patient underwent permanent dual chamber MRI-compatible pacemaker placement for his heart block. His syncopal episodes resolved, but presyncopal symptoms persisted. We discuss the presentation and treatment of vagal neoplasms. PMID:27516914

  16. NDP-α-MSH attenuates heart and liver responses to myocardial reperfusion via the vagus nerve and JAK/ERK/STAT signaling.

    PubMed

    Ottani, Alessandra; Giuliani, Daniela; Neri, Laura; Calevro, Anita; Canalini, Fabrizio; Vandini, Eleonora; Cainazzo, Maria Michela; Ruberto, Ippazio Antonio; Barbieri, Alberto; Rossi, Rosario; Guarini, Salvatore

    2015-12-15

    Melanocortin peptides afford cardioprotection during myocardial ischemia/reperfusion via janus kinases (JAK), extracellular signal-regulated kinases (ERK) and signal transducers/activators of transcription (STAT) pathways. Here we investigated whether melanocortin-induced modulation of the JAK/ERK/STAT signaling occurs via the cholinergic anti-inflammatory pathway, focusing our study on cardiac and hepatic responses to prolonged myocardial ischemia/reperfusion. Ischemia was produced in rats by ligature of the left anterior descending coronary artery for 30min; effects of ischemia/reperfusion were evaluated using Western blot of heart and liver proteins. Intravenous treatment, during coronary artery occlusion, with the melanocortin analog (Nle(4), D-Phe(7))α-melanocyte-stimulating hormone (NDP-α-MSH) induced a left ventricle up-regulation of the cardioprotective transcription factors pJAK2, pERK1/2 and pTyr-STAT3 (JAK-dependent), and a reduction in the levels of the inflammatory mediators tumor necrosis factor-α (TNF-α) and pJNK (a transcription factor also involved in apoptosis), as assessed at the end of the 2-h reperfusion period. Further, these beneficial effects of NDP-α-MSH were associated with heart over-expression of the pro-survival proteins heme oxygenase-1 (HO-1) and Bcl-XL, and decrease of ventricular arrhythmias and infarct size. In the liver NDP-α-MSH induced a decrease in the pJAK2 and pTyr-STAT3 levels, and strongly reduced pERK1/2 expression. In the liver of ischemic rats NDP-α-MSH also blunted pJNK activity and TNF-α expression, and up-regulated Bcl-XL. Bilateral cervical vagotomy prevented all effects of NDP-α-MSH, both in the heart and liver. These results indicate that melanocortins inhibit heart and liver damage triggered by prolonged myocardial ischemia/reperfusion likely, as main mechanism, via the vagus nerve-mediated modulation of the JAK/STAT/ERK signaling pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dietary 2’-Fucosyllactose Enhances Operant Conditioning and Long-Term Potentiation via Gut-Brain Communication through the Vagus Nerve in Rodents

    PubMed Central

    Vazquez, Enrique; Barranco, Alejandro; Ramirez, Maria; Gruart, Agnes; Delgado-Garcia, Jose M.; Jimenez, Maria L.; Buck, Rachael; Rueda, Ricardo

    2016-01-01

    2´-fucosyllactose (2´-FL) is an abundant human milk oligosaccharide (HMO) in human milk with diverse biological effects. We recently reported ingested 2´-FL stimulates central nervous system (CNS) function, such as hippocampal long term potentiation (LTP) and learning and memory in rats. Conceivably the effect of 2´-FL on CNS function may be via the gut-brain axis (GBA), specifically the vagus nerve, and L-fucose (Fuc) may play a role. This study had two aims: (1) determine if the effect of ingested 2´-FL on the modulation of CNS function is dependent on the integrity of the molecule; and (2) confirm if oral 2´-FL modified hippocampal LTP and associative learning related skills in rats submitted to bilateral subdiaphragmatic vagotomy. Results showed that 2´-FL but not Fuc enhanced LTP, and vagotomy inhibited the effects of oral 2´-FL on LTP and associative learning related paradigms. Taken together, the data show that dietary 2´-FL but not its Fuc moiety affects cognitive domains and improves learning and memory in rats. This effect is dependent on vagus nerve integrity, suggesting GBA plays a role in 2´-FL-mediated cognitive benefits. PMID:27851789

  18. Dietary 2'-Fucosyllactose Enhances Operant Conditioning and Long-Term Potentiation via Gut-Brain Communication through the Vagus Nerve in Rodents.

    PubMed

    Vazquez, Enrique; Barranco, Alejandro; Ramirez, Maria; Gruart, Agnes; Delgado-Garcia, Jose M; Jimenez, Maria L; Buck, Rachael; Rueda, Ricardo

    2016-01-01

    2´-fucosyllactose (2´-FL) is an abundant human milk oligosaccharide (HMO) in human milk with diverse biological effects. We recently reported ingested 2´-FL stimulates central nervous system (CNS) function, such as hippocampal long term potentiation (LTP) and learning and memory in rats. Conceivably the effect of 2´-FL on CNS function may be via the gut-brain axis (GBA), specifically the vagus nerve, and L-fucose (Fuc) may play a role. This study had two aims: (1) determine if the effect of ingested 2´-FL on the modulation of CNS function is dependent on the integrity of the molecule; and (2) confirm if oral 2´-FL modified hippocampal LTP and associative learning related skills in rats submitted to bilateral subdiaphragmatic vagotomy. Results showed that 2´-FL but not Fuc enhanced LTP, and vagotomy inhibited the effects of oral 2´-FL on LTP and associative learning related paradigms. Taken together, the data show that dietary 2´-FL but not its Fuc moiety affects cognitive domains and improves learning and memory in rats. This effect is dependent on vagus nerve integrity, suggesting GBA plays a role in 2´-FL-mediated cognitive benefits.

  19. Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity

    SciTech Connect

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1982-07-01

    The presence and transport of muscarinic cholinergic binding sites have been detected in the rat vagus nerve. These binding sites accumulate both proximal and distal to ligatures in a time-dependent manner. The results of double ligature and colchicine experiments are compatible with the notion that the anterogradely transported binding sites move by fast transport. Most of the sites accumulating proximal to ligatures bind the agonist carbachol with high affinity, while most of the sites accumulating distally bind carbachol with a low affinity. Also, the receptors transported in the anterograde direction are affected by a guanine nucleotide analogue (GppNHp), while those transported in the retrograde direction are less, or not, affected. The bulk of the sites along the unligated nerve trunk bind carbachol with a low affinity and are less sensitive to GppNHp modulation than the anterogradely transported sites. These results suggest that some receptors in the vagus may undergo axonal transport in association with regulatory proteins and that receptor molecules undergo changes in their binding and regulatory properties during their life cycle. These data also support the notion that the high and low affinity agonist form of the muscarinic receptor represent different modulated forms of a single receptor molecule.

  20. Degenerative changes of neurons in the superior cervical ganglion following an injection of Ricinus communis agglutinin-60 into the vagus nerve in hamsters.

    PubMed

    Ling, E A; Shieh, J Y; Wen, C Y; Chan, Y G; Wong, W C

    1990-02-01

    The present study describes neuronal changes in the superior cervical ganglion of hamsters following injection of Ricinus communis agglutinin-60 (RCA-60) into the ipsilateral vagus nerve in the cervical region. There were no noticeable structural changes in the ganglion 1 day after injection. Between 3 and 15 days after injection, a small number of neurons located in the caudal part of the ganglion underwent degenerative changes including disappearance of rough endoplasmic reticulum and cytoplasmic vacuolation. The structural alterations were most acute 7 days after the injection when some neurons showed signs of total vacuolation and lysis. A second phase of neuronal change occurred after longer survival periods extending from 60 to 120 days after injection. The most striking feature of such neurons was darkening of their dendrites associated with abnormally high density cytoplasm that contained mitochondria with disrupted cristae. As distinct from the early phase in which cell necrosis was observed, there was no evidence of cell death of neurons bearing darkened dendrites. Since examples of exfoliation of the affected dendrites and their phagocytosis by satellite cells were extremely rare, it is postulated that these structural alterations are probably reversible but over an extended period. The significance of the two phases of degenerative change is discussed in connection with the acute and possible chronic effects of the toxic lectin. The present study also confirms the presence of postganglionic sympathetic axons in the cervical vagus nerve.

  1. Therapeutic Effect of Vagus Nerve Stimulation on Depressive-Like Behavior, Hyperglycemia and Insulin Receptor Expression in Zucker Fatty Rats

    PubMed Central

    Rong, Peijing; McCabe, Michael F.; Wang, Xing; Zhao, Jingjun; Ben, Hui; Wang, Shuxing

    2014-01-01

    Depression and type 2 diabetes (T2D) are common comorbid diseases and highly prevalent in the clinical setting with an unclarified mechanism. Zucker diabetic fatty (ZDF, fa/fa) rats natively develop T2D with hyperglycemia and hyperinsulinemia. Here we studied whether ZDF rats also innately develop depression, what a correlation is between depression and T2D, whether insulin receptor (IR) expression is involved in, and whether transcutaneous auricular vagus nerve stimulation (taVNS) would be beneficial in amelioration of the comorbidity. Six week old male ZDF and Zucker lean (ZL, fa/+) littermates were randomly divided into naïve (ZDF, n = 6; ZL, n = 7) and taVNS (ZDF-taVNS, n = 8; ZL-taVNS, n = 6) groups. Once daily 30 min-taVNS sessions were administrated under anesthesia for 34 consecutive days in taVNS groups. Blood glucose levels were tested weekly, and plasma glycosylated hemoglobin (HbAlc) level and immobility time in forced swimming test were determined on day 35 in all groups. The expression of insulin receptor (IR) in various tissues was also detected by immunostaining and Western blot. We found that naïve ZDF rats developed hyperglycemia steadily. These ZDF rats showed a strong positive correlation between longer immobility time and higher plasma HbAlC level. Long term taVNS treatment simultaneously prevented the development of depression-like behavior and progression of hyperglycemia in ZDF rats. The expression of IR in various tissues of naïve ZDF rats is lower than in naïve ZL and long-term taVNS treated ZDF rats. Collectively, our results indicate that in ZDF rats, i) depression and T2D develop simultaneously, ii) immobility time and HbAlc concentrations are highly and positively correlated, iii) a low expression of IR may be involved in the comorbidity of depression and T2D, and iv) taVNS is antidiabetic and antidepressive possibly through IR expression upregulation. PMID:25365428

  2. Sensitivity Analysis of Vagus Nerve Stimulation Parameters on Acute Cardiac Autonomic Responses: Chronotropic, Inotropic and Dromotropic Effects

    PubMed Central

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2016-01-01

    Although the therapeutic effects of Vagus Nerve Stimulation (VNS) have been recognized in pre-clinical and pilot clinical studies, the effect of different stimulation configurations on the cardiovascular response is still an open question, especially in the case of VNS delivered synchronously with cardiac activity. In this paper, we propose a formal mathematical methodology to analyze the acute cardiac response to different VNS configurations, jointly considering the chronotropic, dromotropic and inotropic cardiac effects. A latin hypercube sampling method was chosen to design a uniform experimental plan, composed of 75 different VNS configurations, with different values for the main parameters (current amplitude, number of delivered pulses, pulse width, interpulse period and the delay between the detected cardiac event and VNS onset). These VNS configurations were applied to 6 healthy, anesthetized sheep, while acquiring the associated cardiovascular response. Unobserved VNS configurations were estimated using a Gaussian process regression (GPR) model. In order to quantitatively analyze the effect of each parameter and their combinations on the cardiac response, the Sobol sensitivity method was applied to the obtained GPR model and inter-individual sensitivity markers were estimated using a bootstrap approach. Results highlight the dominant effect of pulse current, pulse width and number of pulses, which explain respectively 49.4%, 19.7% and 6.0% of the mean global cardiovascular variability provoked by VNS. More interestingly, results also quantify the effect of the interactions between VNS parameters. In particular, the interactions between current and pulse width provoke higher cardiac effects than the changes on the number of pulses alone (between 6 and 25% of the variability). Although the sensitivity of individual VNS parameters seems similar for chronotropic, dromotropic and inotropic responses, the interacting effects of VNS parameters provoke

  3. Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart--a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation.

    PubMed

    Ng, G A; Brack, K E; Coote, J H

    2001-05-01

    A novel isolated Langendorff perfused rabbit heart preparation with intact dual autonomic innervation is described. This preparation allows the study of the effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart. These hearts (n = 10) had baseline heart rates of 146 +/- 2 beats x min(-1) which could be increased to 240 +/- 11 beats x min(-1) by sympathetic stimulation (15 Hz) and decreased to 74 +/- 11 beats x min(-1) by stimulation of the vagus nerve (right vagus, 7 Hz). This model has the advantage of isolated preparations, with the absence of influence from circulating hormones and haemodynamic reflexes, and also that of in vivo preparations where direct nerve stimulation is possible without the need to use pharmacological agents. Data are presented characterising the preparation with respect to the effects of autonomic nerve stimulation on intrinsic heart rate and atrioventricular conduction at different stimulation frequencies. We show that stimulation of the right and left vagus nerve have differential effects on heart rate and atrioventricular conduction.

  4. Utility of a Novel Biofeedback Device for Within-Breath Modulation of Heart Rate in Rats: A Quantitative Comparison of Vagus Nerve vs. Right Atrial Pacing

    PubMed Central

    O'Callaghan, Erin L.; Chauhan, Ashok S.; Zhao, Le; Lataro, Renata M.; Salgado, Helio C.; Nogaret, Alain; Paton, Julian F. R.

    2016-01-01

    In an emerging bioelectronics era, there is a clinical need for physiological devices incorporating biofeedback that permits natural and demand-dependent control in real time. Here, we describe a novel device termed a central pattern generator (CPG) that uses cutting edge analog circuitry producing temporally controlled, electrical stimulus outputs based on the real time integration of physiological feedback. Motivated by the fact that respiratory sinus arrhythmia (RSA), which is the cyclical changes in heart rate every breath, is an essential component of heart rate variability (HRV) (an indicator of cardiac health), we have explored the versatility and efficiency of the CPG for producing respiratory modulation of heart rate in anesthetized, spontaneously breathing rats. Diaphragmatic electromyographic activity was used as the input to the device and its output connected to either the right cervical vagus nerve or the right atrium for pacing heart rate. We found that the CPG could induce respiratory related heart rate modulation that closely mimicked RSA. Whether connected to the vagus nerve or right atrium, the versatility of the device was demonstrated by permitting: (i) heart rate modulation in any phase of the respiratory cycle, (ii) control of the magnitude of heart rate modulation, and (iii) instant adaptation to changes in respiratory frequency. Vagal nerve pacing was only possible following transection of the nerve limiting its effective use chronically. Pacing via the right atrium permitted better flexibility and control of heart rate above its intrinsic level. This investigation now lays the foundation for future studies using this biofeedback technology permitting closer analysis of both the function and dysfunction of RSA. PMID:26869940

  5. Numerical modeling of percutaneous auricular vagus nerve stimulation: a realistic 3D model to evaluate sensitivity of neural activation to electrode position.

    PubMed

    Samoudi, Amine M; Kampusch, Stefan; Tanghe, Emmeric; Széles, Jozsef C; Martens, Luc; Kaniusas, Eugenijus; Joseph, Wout

    2017-02-13

    Percutaneous stimulation of the auricular branch of the vagus nerve (pVNS) by miniaturized needle electrodes in the auricle gained importance as a treatment for acute and chronic pain. The objective is to establish a realistic numerical model of pVNS and investigate the effects of stimulation waveform, electrodes' depth, and electrodes' position on nerve excitation threshold and the percentage of stimulated nerves. Simulations were performed with Sim4Life. An electrostatic solver and neural tissue models were combined for electromagnetic and neural simulation. The numerical model consisted of a realistic high-resolution model of a human ear, blood vessels, nerves, and three needle electrodes. A novel 3D ear model was established, including blood vessels and nerves. The electric field distribution was extracted and evaluated. Maximum sensitivity to needles' depth and displacement was evaluated to be 9.8 and 15.5% per 0.1 mm, respectively. Stimulation was most effective using biphasic compared to mono-phasic pulses. The established model allows easy and quantitative evaluation of various stimulation setups, enabling optimization of pVNS in experimental settings. Results suggest a high sensitivity of pVNS to the electrodes' position and depth, implying the need for precise electrode positioning. Validation of the model needs to be performed.

  6. Simulation study of stimulation parameters in desynchronisation based on the Hodgkin-Huxley small-world neural networks and its possible implications for vagus nerve stimulation.

    PubMed

    Li, Yan-Long; Chen, Zhao-Yang; Ma, Jun; Chen, Yu-Hong

    2008-02-01

    Adopting small-world neural networks of the Hodgkin-Huxley (HH) model, the stimulation parameters in desynchronisation and its possible implications for vagus nerve stimulation (VNS) are numerically investigated. With the synchronisation status of networks to represent epilepsy, then, adding pulse to stimulations to 10% of neurons to simulate the VNS, we obtain the desynchronisation status of networks (representing antiepileptic effects). The simulations show that synchronisation evolves into desynchronisation in the HH neural networks when a part (10%) of neurons are stimulated with a pulse current signal. The network desynchronisation appears to be sensitive to the stimulation parameters. For the case of the same stimulation intensity, weakly coupled networks reach desynchronisation more easily than strongly coupled networks. The network desynchronisation reduced by short-stimulation interval is more distinct than that of induced by long stimulation interval. We find that there exist the optimal stimulation interval and optimal stimulation intensity when the other stimulation parameters remain certain.

  7. Non-invasive vagus nerve stimulation (nVNS) as symptomatic treatment of migraine in young patients: a preliminary safety study.

    PubMed

    Grazzi, Licia; Egeo, Gabriella; Liebler, Eric; Padovan, Anna Maria; Barbanti, Piero

    2017-05-01

    Recent clinical experiences and clinical trials have demonstrated the safety, tolerability, and efficacy of non-invasive vagus nerve stimulation (nVNS; gammaCore(®)) for the acute and prophylactic treatment of migraine. nVNS has a favorable adverse event profile, making it an attractive option for sensitive patient populations. We explored the safety, tolerability, and efficacy of nVNS as acute migraine treatment in adolescents. A group of adolescent patients suffering from migraine without aura were trained to use gammaCore to manage their migraine attacks. 46.8% of the treated migraine attacks (22/47) were considered successfully treated and did not require any rescue medication. No device-related adverse events were recorded. This preliminary study suggests that nVNS may represent a safe, well-tolerated, and effective for acute migraine treatment in adolescents.

  8. Lack of effects of vagus nerve stimulation on drug-resistant epilepsy in eight pediatric patients with autism spectrum disorders: a prospective 2-year follow-up study.

    PubMed

    Danielsson, Susanna; Viggedal, Gerd; Gillberg, Christopher; Olsson, Ingrid

    2008-02-01

    Vagus nerve stimulation (VNS) therapy has been reported to reduce seizure frequency in some children with drug-resistant epilepsy who are not suitable candidates for epilepsy surgery. It has been suggested that there may be positive cognitive and/or behavioral effects independent of seizure control. We describe the effects of VNS with respect to seizure frequency, cognition, and autistic symptoms and behavior in eight children and adolescents with medically intractable epilepsy and autism. In comparison to baseline, seizure frequency had not decreased in anyone in our series at the 2-year follow-up. In three cases, minor improvements in general functioning were noted, but there were no positive cognitive effects. This open prospective pilot study highlights the need for more prospective studies to prevent false expectations of improvement in this severely disabled group.

  9. Adamantinoma-like Ewing family tumor of soft tissue associated with the vagus nerve: a case report and review of the literature.

    PubMed

    Kikuchi, Yoshinao; Kishimoto, Takashi; Ota, Satoshi; Kambe, Michiyo; Yonemori, Yoko; Chazono, Hideaki; Yamasaki, Kazuki; Ochiai, Hidemasa; Hiroshima, Kenzo; Tanaka, Mio; Tanaka, Yukichi; Horie, Hiroshi; Nakatani, Yukio

    2013-05-01

    Adamantinoma-like Ewing family tumor (EFT) is a rare subset of EFTs showing mixed features of Ewing sarcoma and adamantinoma of the long bones. All currently reported cases of the adamantinoma-like type have been associated with bone. Recently, a unique type of EFT was reported showing complex epithelial differentiation associated with the vagus nerve. Here we describe another unique type of EFT arising in the soft tissue of the neck associated with the vagus nerve. An 11-year-old girl presented to our hospital with a neck tumor on her right side. Surgical resection was performed, and histopathologic examination demonstrated a high-grade malignant neoplasm. The tumor was composed of sheets of small round proliferating cells, basaloid tumor nests with marked squamous differentiation, biphasic growth pattern with epithelioid tumor nests, and spindle cell proliferation. Immunohistochemically, the tumor cells showed diffuse expression of CD99 and FLI-1. In addition, small round cells and basaloid/squamoid components were immunoreactive for AE1/AE3, CAM5.2, cytokeratin 5/6, high-molecular weight keratin, p63, and p40 (ΔNp63). Reverse transcription polymerase chain reaction and direct sequencing analysis revealed that the tumor harbored a t(11;22) translocation, involving EWSR1 and FLI-1, which are characteristic of EFTs. According to these findings, our case has characteristics of both a subset of adamantinoma-like EFT and EFT with complex epithelial differentiation. We suggest that EFT with complex epithelial differentiation is in a common spectrum with the adamantinoma-like type and that adamantinoma-like EFTs can arise in soft tissue, leading to difficulty in differential diagnosis with malignant epithelial tumors.

  10. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-κB signaling pathway in ovariectomized rats.

    PubMed

    Li, Ping; Liu, Huaipu; Sun, Peng; Wang, Xiaoyu; Wang, Chen; Wang, Ling; Wang, Tinghuai

    2016-02-01

    Vagus nerve stimulation (VNS), a method for activating cholinergic anti-inflammatory pathways, could suppress endothelial activation and minimize tissue injury during inflammation. The aim of this study was to investigate the effects of chronic VNS on endothelial impairments and the inflammatory profile in ovariectomized (OVX) rats. Sprague-Dawley rats (7-8 months old) were randomly assigned to the following four groups: sham-OVX, OVX, OVX+sham-VNS, and OVX+VNS. Throughout the experimental period, the OVX+VNS group received VNS for 3h (20.0 Hz, 1.0 mA, and 10.00 ms pulse width) at the same time every other day. After 12 weeks of VNS, blood samples and thoracic aortas were collected for further analyses. Light microscopy and electron microscopy analyses showed that chronic VNS prevented endothelial swelling, desquamation and even necrosis in the OVX rats. In addition, it obviously improved endothelial function in the OVX rats by restoring the endothelial nitric oxide synthase (e-NOS) and serum endothelin-1 level. Increased expression of cell adhesion molecules (VCAM-1, ICAM-1 and E-selectin) in the thoracic aortas and increases in the levels of circulating cytokines (TNF-α, IL-6, MCP-1, and CINC/KC) were also observed in the OVX rats. Chronic VNS significantly restored these detrimental changes partly by increasing the ACh concentrations in vascular walls and blocking NF-κB pathway activity. The results of this in vivo study have shown that the administration of chronic VNS during, in the early stage of estrogen deficiency, protects OVX rats from endothelial impairments and the inflammatory profile. These findings indicate that activation of the vagus nerve could be a promising supplemental therapy for reducing the risks of suffering from further CVDs in postmenopausal women.

  11. Automatic Vagus Nerve Stimulation Triggered by Ictal Tachycardia: Clinical Outcomes and Device Performance--The U.S. E-37 Trial.

    PubMed

    Fisher, Robert S; Afra, Pegah; Macken, Micheal; Minecan, Daniela N; Bagić, Anto; Benbadis, Selim R; Helmers, Sandra L; Sinha, Saurabh R; Slater, Jeremy; Treiman, David; Begnaud, Jason; Raman, Pradheep; Najimipour, Bita

    2016-02-01

    The Automatic Stimulation Mode (AutoStim) feature of the Model 106 Vagus Nerve Stimulation (VNS) Therapy System stimulates the left vagus nerve on detecting tachycardia. This study evaluates performance, safety of the AutoStim feature during a 3-5-day Epilepsy Monitoring Unit (EMU) stay and long- term clinical outcomes of the device stimulating in all modes. The E-37 protocol (NCT01846741) was a prospective, unblinded, U.S. multisite study of the AspireSR(®) in subjects with drug-resistant partial onset seizures and history of ictal tachycardia. VNS Normal and Magnet Modes stimulation were present at all times except during the EMU stay. Outpatient visits at 3, 6, and 12 months tracked seizure frequency, severity, quality of life, and adverse events. Twenty implanted subjects (ages 21-69) experienced 89 seizures in the EMU. 28/38 (73.7%) of complex partial and secondarily generalized seizures exhibited ≥20% increase in heart rate change. 31/89 (34.8%) of seizures were treated by Automatic Stimulation on detection; 19/31 (61.3%) seizures ended during the stimulation with a median time from stimulation onset to seizure end of 35 sec. Mean duty cycle at six-months increased from 11% to 16%. At 12 months, quality of life and seizure severity scores improved, and responder rate was 50%. Common adverse events were dysphonia (n = 7), convulsion (n = 6), and oropharyngeal pain (n = 3). The Model 106 performed as intended in the study population, was well tolerated and associated with clinical improvement from baseline. The study design did not allow determination of which factors were responsible for improvements. © 2015 The Authors. Neuromodulation: Technology at the Neural Interface published by Wiley Periodicals, Inc. on behalf of International Neuromodulation Society.

  12. Infiltration of carbon-labelled monocytes into the dorsal motor nucleus following an intraneural injection of ricinus communis agglutinin-60 into the vagus nerve in rats.

    PubMed

    Ling, E A; Leong, S K

    1988-08-01

    A marked increase in the number of non-neuronal cells occurred in the neuropil of the ipsilateral dorsal motor nucleus (DMN) 6 days after an intraneural injection of Ricinus communis agglutinin-60 into the vagus nerve in the cervical region of rats. Other structural changes in the DMN were the hypertrophy and reduction in number of the neurons. In order to verify the origin of the non-neuronal cells, a single intravenous injection of carbon was administered into these rats 4 days before, simultaneously, or 4 days after, the injection of the RCA-60. Thus, in rats given carbon 4 days before the RCA-60 injection, none of the non-neuronal cells were labelled. A few labelled cells, however, were observed in rats given carbon and RCA-60 simultaneously. Labelled non-neuronal cells were most common in rats given carbon 4 days after the RCA-60 injection. They were located in the neuropil as well as in the walls of blood vessels. Some blood elements in the lumen of blood vessels in the DMN were also labelled by carbon. Histochemical study at the electron microscopical level showed that some of the non-neuronal cells present in the neuropil of DMN were stained positively for non-specific esterase. They were located in the perivascular region and in the neuropil far removed from the blood vessels. Occasional non-specific esterase-positive mononuclear cells were observed seemingly in their passage through the endothelium of blood vessels. It was concluded from this study that a small proportion of non-neuronal cells which appear in the DMN following a RCA-60 injection into the vagus nerve are derived from blood monocytes. The infiltration of these cells, which had been labelled by intravenous carbon injection, is probably elicited by the degenerating neurons destroyed by the retrograde transport of RCA-60.

  13. [Case of median nerve paralysis after hepatic segmentectomy].

    PubMed

    Yoshimatsu, Aya; Hoshi, Takuo; Tanaka, Makoto

    2011-05-01

    We report a case of a median nerve palsy. Hepatic segmentectomy and lymphnode dissection were performed in a 21-year-old man for multiple liver and retroperitoneal lymph nodes metastasis of seminoma. After surgery, patient complained of motor paralysis and hypesthesia of the left palm side of the thumb, first finger and radial half of the middle finger. He was diagnosed as having median nerve palsy. Motor paralysis and hypesthesia gradually disappeared over the two weeks after surgery. We should pay attention to appropriate positioning of the arm during surgery, and preoperative use of paclitaxel needs to be considered as etiology for perioperative peripheral nerve palsy.

  14. Effect of Low-level Vagus Nerve Stimulation on Cardiac Remodeling in a Rapid Atrial Pacing-induced Canine Model of Atrial Fibrillation.

    PubMed

    Lu, Yanmei; Sun, Juan; Zhou, Xianhui; Zhang, Ling; Ma, Mei; Tang, Baopeng

    2016-03-01

    The aim of this study was to establish a rapid atrial pacing-induced canine model of atrial fibrillation in studying the effects of low-level vagus nerve stimulation (LLVNS) on atrial fibrillation and the underlying mechanisms for those effects. Adult beagle dogs were randomly assigned to 3 groups: a sham operation group (sham group), a fast left atrial appendage 12-hour pacing group (pacing group), and a 12-hour pacing + LLVNS group (LLVNS group). All dogs underwent tests for their left and right atrial effective refractory period at various time points, after which they were killed, and samples of atrial and anterior right ganglionated plexi tissue were removed and microscopically examined. As pacing times increased, the mean effective refractory period in the pacing group became significantly shortened. The pacing group and the LLVNS group did show significant differences (P < 0.001). Three groups showed significant differences in their atrial myocardial periodic acid-Schiff-positive area staining densities. Anterior right ganglionated plexi expressions of nerve growth factor and neurturin (NRTN) in the sham group and the LLVNS group were lower than those in the pacing group (nerve growth factor in 3 groups were (36.35 ± 6.18) × 1000, (86.35 ± 5.63) × 1000, and (40.50 ± 7.24) × 1000 μm²/mm², P < 0.001; NRTN in 3 groups were (39.28 ± 7.80) × 1000, (80.24 ± 6.56) × 1000, (40.45 ± 6.97) × 1000 μm²/mm², P < 0.001). Therefore, LLVNS not only reverses the effect of fast pacing-induced atrial electrical remodeling in dogs but also exerts structural effects and stimulates remodeling of autonomic nerves.

  15. Risk of postprandial insulin resistance: the liver/vagus rapport.

    PubMed

    Macedo, Maria Paula; Lima, Inês S; Gaspar, Joana M; Afonso, Ricardo A; Patarrão, Rita S; Kim, Young-Bum; Ribeiro, Rogério T

    2014-03-01

    Ingestion of a meal is the greatest challenge faced by glucose homeostasis. The surge of nutrients has to be disposed quickly, as high concentrations in the bloodstream may have pathophysiological effects, and also properly, as misplaced reserves may induce problems in affected tissues. Thus, loss of the ability to adequately dispose of ingested nutrients can be expected to lead to glucose intolerance, and favor the development of pathologies. Achieving interplay of several organs is of upmost importance to maintain effectively postprandial glucose clearance, with the liver being responsible of orchestrating global glycemic control. This dogmatic role of the liver in postprandial insulin sensitivity is tightly associated with the vagus nerve. Herein, we uncover the behaviour of metabolic pathways determined by hepatic parasympathetic function status, in physiology and in pathophysiology. Likewise, the inquiry expands to address the impact of a modern lifestyle, especially one's feeding habits, on the hepatic parasympathetic nerve control of glucose metabolism.

  16. Risk of postprandial insulin resistance: The liver/vagus rapport

    PubMed Central

    Macedo, Maria Paula; Lima, Inês S.; Gaspar, Joana M.; Afonso, Ricardo A; Patarrão, Rita S.; Kim, Young-Bum; Ribeiro, Rogério T

    2014-01-01

    Ingestion of a meal is the greatest challenge faced by glucose homeostasis. The surge of nutrients has to be disposed quickly, as high concentrations in the bloodstream may have pathophysiological effects, and also properly, as misplaced reserves may induce problems in affected tissues. Thus, loss of the ability to adequately dispose of ingested nutrients can be expected to lead to glucose intolerance, and favor the development of pathologies. Achieving interplay of several organs is of upmost importance to maintain effectively postprandial glucose clearance, with the liver being responsible of orchestrating global glycemic control. This dogmatic role of the liver in postprandial insulin sensitivity is tightly associated with the vagus nerve. Herein, we uncover the behaviour of metabolic pathways determined by hepatic parasympathetic function status, in physiology and in pathophysiology. Likewise, the inquiry expands to address the impact of a modern lifestyle, especially one’s feeding habits, on the hepatic parasympathetic nerve control of glucose metabolism. PMID:24174131

  17. Low-level transcutaneous electrical stimulation of the auricular branch of vagus nerve ameliorates left ventricular remodeling and dysfunction by downregulation of matrix metalloproteinase 9 and transforming growth factor β1.

    PubMed

    Wang, Zhuo; Yu, Lilei; Huang, Bing; Wang, Songyun; Liao, Kai; Saren, Gaowa; Zhou, Xiaoya; Jiang, Hong

    2015-04-01

    Vagus nerve stimulation improves left ventricular (LV) remodeling by downregulation of matrix metalloproteinase 9 (MMP-9) and transforming growth factor β1 (TGF-β1). Our previous study found that low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve (LL-TS) could be substituted for vagus nerve stimulation to reverse cardiac remodeling. So, we hypothesize that LL-TS could ameliorate LV remodeling by regulation of MMP-9 and TGF-β1 after myocardial infarction (MI). Twenty-two beagle dogs were randomly divided into a control group (MI was induced by permanent ligation of the left coronary artery, n = 8), an LL-TS group (MI with long-term intermittent LL-TS, n = 8), and a normal group (sham ligation without stimulation, n = 6). At the end of 6 weeks follow-up, LL-TS significantly reduced LV end-systolic and end-diastolic dimensions, improved ejection fraction and ratio of early (E) to late (A) peak mitral inflow velocity. LL-TS attenuated interstitial fibrosis and collagen degradation in the noninfarcted myocardium compared with the control group. Elevated level of MMP-9 and TGF-β1 in LV tissue and peripheral plasma were diminished in the LL-TS treated dogs. LL-TS improves cardiac function and prevents cardiac remodeling in the late stages after MI by downregulation of MMP-9 and TGF-β1 expression.

  18. Transcutaneous Vagus Nerve Stimulation (tVNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial (cMPsE02).

    PubMed

    Bauer, S; Baier, H; Baumgartner, C; Bohlmann, K; Fauser, S; Graf, W; Hillenbrand, B; Hirsch, M; Last, C; Lerche, H; Mayer, T; Schulze-Bonhage, A; Steinhoff, B J; Weber, Y; Hartlep, A; Rosenow, F; Hamer, H M

    2016-01-01

    Various brain stimulation techniques are in use to treat epilepsy. These methods usually require surgical implantation procedures. Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive technique to stimulate the left auricular branch of the vagus nerve at the ear conch. We performed a randomized, double-blind controlled trial (cMPsE02) to assess efficacy and safety of tVNS vs. control stimulation in patients with drug-resistant epilepsy. Primary objective was to demonstrate superiority of add-on therapy with tVNS (stimulation frequency 25 Hz, n = 39) versus active control (1 Hz, n = 37) in reducing seizure frequency over 20 weeks. Secondary objectives comprised reduction in seizure frequency from baseline to end of treatment, subgroup analyses and safety evaluation. Treatment adherence was 84% in the 1 Hz group and 88% in the 25 Hz group, respectively. Stimulation intensity significantly differed between the 1 Hz group (1.02 ± 0.83 mA) and the 25 Hz group (0.50 ± 0.47 mA; p = 0.006). Mean seizure reduction per 28 days at end of treatment was -2.9% in the 1 Hz group and 23.4% in the 25 Hz group (p = 0.146). In contrast to controls, we found a significant reduction in seizure frequency in patients of the 25 Hz group who completed the full treatment period (20 weeks; n = 26, 34.2%, p = 0.034). Responder rates (25%, 50%) were similar in both groups. Subgroup analyses for seizure type and baseline seizure frequency revealed no significant differences. Adverse events were usually mild or moderate and comprised headache, ear pain, application site erythema, vertigo, fatigue, and nausea. Four serious adverse events were reported including one sudden unexplained death in epilepsy patients (SUDEP) in the 1 Hz group which was assessed as not treatment-related. tVNS had a high treatment adherence and was well tolerated. Superiority of 25 Hz tVNS over 1 Hz tVNS could not be proven in this relatively small

  19. A Randomized Controlled Trial of Vagus Nerve-preserving Distal Gastrectomy Versus Conventional Distal Gastrectomy for Postoperative Quality of Life in Early Stage Gastric Cancer Patients.

    PubMed

    Kim, Su Mi; Cho, Juhee; Kang, Danbee; Oh, Seung Jong; Kim, Ae Ran; Sohn, Tae Sung; Noh, Jae Hyoung; Kim, Sung

    2016-06-01

    To compare the postoperative quality of life of vagus nerve preserving distal gastrectomy (VPG) vs conventional distal gastrectomy (CG) in patients with early-stage gastric cancer. Randomized controlled clinical trial. Large tertiary comprehensive cancer center in Korea. One hundred sixty-three patients with early gastric cancer 18 years of age or older expected to undergo curative gastric resection. Patients were randomized 1:1 to VPG (n = 85) or CG (n = 78). European Organization for Research and Treatment of Cancer (EORTC) gastric module (STO22). Patients assigned to VPG showed less diarrhea 3 and 12 months after surgery (P = 0.040 and 0.048, respectively) and less appetite loss at 12 months (P = 0.011) compared with those assigned to CG. In both groups, fatigue, anxiety, eating restriction, and body image deteriorated at 3 months after surgery and did not regain baseline levels 12 months after surgery. There were no significant differences between the 2 groups in cancer recurrence and death over 5 years of follow-up. Early gastric cancer patients undergoing VPG reported significantly less diarrhea and appetite loss at 12 months postsurgery compared with those undergoing CG, with no differences in long-term clinical outcomes. VPG may improve the quality of life after gastrectomy in early gastric cancer patients compared with CG.

  20. Electrical Stimulation at the ST36 Acupoint Protects against Sepsis Lethality and Reduces Serum TNF Levels through Vagus Nerve- and Catecholamine-Dependent Mechanisms

    PubMed Central

    Villegas-Bastida, Albino; Torres-Rosas, Rafael; Arriaga-Pizano, Lourdes Andrea; Flores-Estrada, Javier; Gustavo-Acosta, Altamirano; Moreno-Eutimio, Mario Adan

    2014-01-01

    Electrical vagus nerve (VN) stimulation during sepsis attenuates tumor necrosis factor (TNF) production through the cholinergic anti-inflammatory pathway, which depends on the integrity of the VN and catecholamine production. To characterize the effect of electroacupuncture at ST36 (EA-ST36) on serum TNF, IL-6, nitrite, and HMGB1 levels and survival rates, based on VN integrity and catecholamine production, a sepsis model was induced in rats using cecal ligation and puncture (CLP). The septic rats were subsequently treated with EA-ST36 (CLP+ST36), and serum samples were collected and analyzed for cytokines levels. The serum TNF, IL-6, nitrite, and HMGB1 levels in the CLP+ST36 group were significantly lower compared with the group without treatment, the survival rates were significantly higher (P < 0.05), and the acute organ injury induced by CLP was mitigated by EA-ST36; however, when subdiaphragmatic vagotomy was performed, the serum levels of TNF in the CLP+ST36 group did not show a significant difference compared with the group without electrostimulation, and, similarly, no significant difference in serum TNF levels was found under the pharmacological blockade of catecholamines. These results suggest that in rats with CLP sepsis models EA-ST36 reduces serum TNF levels through VN- and atecholamine-dependent mechanisms. PMID:25057275

  1. Neurosurgical Treatments for Patients with Chronic, Treatment-Refractory Depression: A Retrospective, Consecutive, Case Series Comparison of Anterior Capsulotomy, Anterior Cingulotomy and Vagus Nerve Stimulation.

    PubMed

    Christmas, David; Matthews, Keith

    2015-01-01

    The evidence base to guide therapeutic choices for patients with chronic and treatment-refractory depression (TRD) remains weak. There is limited comparative information available to guide the choice of intervention for patients with the most severe and disabling forms of illness. The aim of this work was to describe the 12-month clinical outcomes of patients with chronic TRD treated with anterior capsulotomy (ACAPS; n = 5), anterior cingulotomy (ACING; n = 5) or vagus nerve stimulation (VNS; n = 5). We performed a retrospective, consecutive, case series comparison. With clinical response defined as a ≥50% reduction from the baseline MADRS score, response rates were 40% for ACAPS, 60% for ACING and 20% for VNS. Adverse effects from all three procedures were relatively mild, consistent with previous reports and, in most cases, transient. Adverse effects from VNS were related to active stimulation, and were modifiable and diminished in severity over time. There were no deaths. Although based on a small sample, our data represent a unique comparison of ACAPS, ACING and VNS for chronic TRD. The three cohorts were broadly equivalent in terms of baseline clinical characteristics, indices of chronicity, illness severity and estimates of previous failed treatments. ACING and ACAPS, but not VNS, were associated with favourable response rates at 12 months. © 2015 S. Karger AG, Basel.

  2. Vagus Nerve Stimulation Paired with Tones for the Treatment of Tinnitus: A Prospective Randomized Double-blind Controlled Pilot Study in Humans.

    PubMed

    Tyler, Richard; Cacace, Anthony; Stocking, Christina; Tarver, Brent; Engineer, Navzer; Martin, Jeffrey; Deshpande, Aniruddha; Stecker, Nancy; Pereira, Melissa; Kilgard, Michael; Burress, Chester; Pierce, David; Rennaker, Robert; Vanneste, Sven

    2017-09-20

    The aim of the pilot study was to evaluate the effect of Vagus Nerve Stimulation (VNS) paired with sounds in chronic tinnitus patients. All participants were implanted and randomized to a paired VNS (n = 16) or control (n = 14) group. After 6 weeks of home therapy, all participants received paired VNS. The device was used on 96% of days with good compliance. After 6 weeks, the paired VNS group improved on the Tinnitus Handicap Inventory (THI) (p = 0.0012) compared to controls (p = 0.1561). The between-group difference was 10.3% (p = 0.3393). Fifty percent of the participants in the paired VNS group showed clinically meaningful improvements compared to 28% in controls. At one year, 50% of participants had a clinically meaningful response. The therapy had greater benefits for participants with tonal and non-blast induced tinnitus at the end of 6 (24.3% vs. 2%, p = 0.05) and 12 weeks (34% vs. 2%, p = 0.004) compared to controls with 80% and 70% responding at 6 months and 1 year, respectively. Adverse effects were mild and well-tolerated and the therapy had a similar safety profile to VNS for epilepsy. VNS paired with tones may be effective for a subgroup of tinnitus patients and provides impetus for a larger pivotal study.

  3. Ultrastructural changes of the nodose ganglion cells following an intraneural injection of Ricinus communis agglutinin-60 into the vagus nerve in hamsters.

    PubMed

    Ling, E A; Wen, C Y; Shieh, J Y; Yick, T Y; Wong, W C

    1991-12-01

    Virtually all the ganglion cells in the nodose ganglion in hamsters underwent rapid degeneration following an intraneural injection of RCA-60 into the vagus nerve in the cervical region. The earliest signs of neuronal degeneration were evident in animals which survived 5 days after the ricin application. A remarkable feature was the appearance of a variable number of granular dense bodies measuring 1-4 microns in diameter in the cytoplasm. They were composed of closely stacked cisternae which were continuous at the periphery with those of the rough endoplasmic reticulum. Associated with the membranous cisternae were large accumulations of glycogen. With longer survival time, these glycogen-membrane complexes appeared to disintegrate. Numerous vacuoles and neurofilaments accumulated in their vicinity. Satellite cells were activated between the 7th and 10th postoperative days. These penetrated deeply into the degenerating neurons dividing them into numerous fragments by their extensive cytoplasmic prolongations. The cytoplasmic fragments of the RCA-poisoned neurons eventually became necrotic and disintegrated in the satellite cells, suggesting a rapid mode of neuronophagia. The biosynthesis of acetylcholinesterase was inhibited by the ricin injected as shown by the drastic reduction of the enzyme activity in the rough endoplasmic reticulum and nuclear envelope. Some isolated ganglion cells apparently survived the RCA injection as shown by their occurrence in long surviving animals (30-90 days). A few of them displayed an enhanced density of their cytoplasm and neurites. It is postulated that this was induced by the RCA released from the RCA-poisoned neurons.

  4. The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy.

    PubMed

    De Taeye, Leen; Vonck, Kristl; van Bochove, Marlies; Boon, Paul; Van Roost, Dirk; Mollet, Lies; Meurs, Alfred; De Herdt, Veerle; Carrette, Evelien; Dauwe, Ine; Gadeyne, Stefanie; van Mierlo, Pieter; Verguts, Tom; Raedt, Robrecht

    2014-07-01

    Currently, the mechanism of action of vagus nerve stimulation (VNS) is not fully understood, and it is unclear which factors determine a patient's response to treatment. Recent preclinical experiments indicate that activation of the locus coeruleus noradrenergic system is critical for the antiepileptic effect of VNS. This study aims to evaluate the effect of VNS on noradrenergic signaling in the human brain through a noninvasive marker of locus coeruleus noradrenergic activity: the P3 component of the event-related potential. We investigated whether VNS differentially modulates the P3 component in VNS responders versus VNS nonresponders. For this purpose, we recruited 20 patients with refractory epilepsy who had been treated with VNS for at least 18 months. Patients were divided into 2 groups with regard to their reduction in mean monthly seizure frequency: 10 responders (>50 %) and 10 nonresponders (≤50 %). Two stimulation conditions were compared: VNS OFF and VNS ON. In each condition, the P3 component was measured during an auditory oddball paradigm. VNS induced a significant increase of the P3 amplitude at the parietal midline electrode, in VNS responders only. In addition, logistic regression analysis showed that the increase of P3 amplitude can be used as a noninvasive indicator for VNS responders. These results support the hypothesis that activation of the locus coeruleus noradrenergic system is associated with the antiepileptic effect of VNS. Modulation of the P3 amplitude should be further investigated as a noninvasive biomarker for the therapeutic efficacy of VNS in patients with refractory epilepsy.

  5. Low-Level Vagus Nerve Stimulation Reverses Cardiac Dysfunction and Subcellular Calcium Handling in Rats With Post-Myocardial Infarction Heart Failure.

    PubMed

    Zhang, Yunhe; Chen, Ao; Song, Lei; Li, Min; Luo, Zhangyuan; Zhang, Wenzan; Chen, Yingmin; He, Ben

    2016-05-25

    Vagus nerve stimulation (VNS), targeting the imbalanced autonomic nervous system, is a promising therapeutic approach for chronic heart failure (HF). Moreover, calcium cycling is an important part of cardiac excitation-contraction coupling (ECC), which also participates in the antiarrhythmic effects of VNS. We hypothesized that low-level VNS (LL-VNS) could improve cardiac function by regulation of intracellular calcium handling properties. The experimental HF model was established by ligation of the left anterior descending coronary artery (LAD). Thirty-two male Sprague-Dawley rats were divided into 3 groups as follows; control group (sham operated without coronary ligation, n = 10), HF-VNS group (HF rats with VNS, n = 12), and HF-SS group (HF rats with sham nerve stimulation, n = 10). After 8 weeks of treatment, LL-VNS significantly improved left ventricular ejection fraction (LVEF) and attenuated myocardial interstitial fibrosis in the HF-VNS group compared with the HF-SS group. Elevated plasma norepinephrine and dopamine, but not epinephrine, were partially reduced by LL-VNS. Additionally, LL-VNS restored the protein and mRNA levels of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a), Na(+)-Ca(2+) exchanger 1 (NCX1), and phospholamban (PLB) whereas the expression of ryanodine receptor 2 (RyR2) as well as mRNA level was unaffected. Thus, our study results suggest that the improvement of cardiac performance by LL-VNS is accompanied by the reversal of dysfunctional calcium handling properties including SERCA2a, NCX1, and PLB which may be a potential molecular mechanism of VNS for HF.

  6. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve

    PubMed Central

    Bravo, Javier A.; Forsythe, Paul; Chew, Marianne V.; Escaravage, Emily; Savignac, Hélène M.; Dinan, Timothy G.; Bienenstock, John; Cryan, John F.

    2011-01-01

    There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABAAα2 mRNA expression in the prefrontal cortex and amygdala, but increased GABAAα2 in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut–brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression. PMID:21876150

  7. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.

    PubMed

    Bravo, Javier A; Forsythe, Paul; Chew, Marianne V; Escaravage, Emily; Savignac, Hélène M; Dinan, Timothy G; Bienenstock, John; Cryan, John F

    2011-09-20

    There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABA(B1b) mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABA(Aα2) mRNA expression in the prefrontal cortex and amygdala, but increased GABA(Aα2) in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut-brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.

  8. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the guideline development subcommittee of the american academy of neurology.

    PubMed

    Morris, George L; Gloss, David; Buchhalter, Jeffrey; Mack, Kenneth J; Nickels, Katherine; Harden, Cynthia

    2013-11-01

    To evaluate the evidence since the 1999 assessment regarding efficacy and safety of vagus nerve stimulation (VNS) for epilepsy, currently approved as adjunctive therapy for partial-onset seizures in patients >12 years. We reviewed the literature and identified relevant published studies. We classified these studies according to the American Academy of Neurology evidence-based methodology. VNS is associated with a >50% seizure reduction in 55% (95% confidence interval [CI] 50%-59%) of 470 children with partial or generalized epilepsy (13 Class III studies). VNS is associated with a >50% seizure reduction in 55% (95% CI 46%-64%) of 113 patients with Lennox-Gastaut syndrome (LGS) (4 Class III studies). VNS is associated with an increase in ≥50% seizure frequency reduction rates of ~7% from 1 to 5 years postim-plantation (2 Class III studies). VNS is associated with a significant improvement in standard mood scales in 31 adults with epilepsy (2 Class III studies). Infection risk at the VNS implantation site in children is increased relative to that in adults (odds ratio 3.4, 95% CI 1.0-11.2). VNS is possibly effective for seizures (both partial and generalized) in children, for LGS-associated seizures, and for mood problems in adults with epilepsy. VNS may have improved efficacy over time. VNS may be considered for seizures in children, for LGS-associated seizures, and for improving mood in adults with epilepsy (Level C). VNS may be considered to have improved efficacy over time (Level C). Children should be carefully monitored for site infection after VNS implantation. Neurology® 2013;81:1-7.

  9. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the Guideline Development Subcommittee of the American Academy of Neurology.

    PubMed

    Morris, George L; Gloss, David; Buchhalter, Jeffrey; Mack, Kenneth J; Nickels, Katherine; Harden, Cynthia

    2013-10-15

    To evaluate the evidence since the 1999 assessment regarding efficacy and safety of vagus nerve stimulation (VNS) for epilepsy, currently approved as adjunctive therapy for partial-onset seizures in patients >12 years. We reviewed the literature and identified relevant published studies. We classified these studies according to the American Academy of Neurology evidence-based methodology. VNS is associated with a >50% seizure reduction in 55% (95% confidence interval [CI] 50%-59%) of 470 children with partial or generalized epilepsy (13 Class III studies). VNS is associated with a >50% seizure reduction in 55% (95% CI 46%-64%) of 113 patients with Lennox-Gastaut syndrome (LGS) (4 Class III studies). VNS is associated with an increase in ≥ 50% seizure frequency reduction rates of ≈ 7% from 1 to 5 years postimplantation (2 Class III studies). VNS is associated with a significant improvement in standard mood scales in 31 adults with epilepsy (2 Class III studies). Infection risk at the VNS implantation site in children is increased relative to that in adults (odds ratio 3.4, 95% CI 1.0-11.2). VNS is possibly effective for seizures (both partial and generalized) in children, for LGS-associated seizures, and for mood problems in adults with epilepsy. VNS may have improved efficacy over time. VNS may be considered for seizures in children, for LGS-associated seizures, and for improving mood in adults with epilepsy (Level C). VNS may be considered to have improved efficacy over time (Level C). Children should be carefully monitored for site infection after VNS implantation.

  10. L-PGDS Mediates Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Suppressing the Apoptotic Response.

    PubMed

    Zhang, Lina; Ma, Jingxi; Jin, Xinhao; Jia, Gongwei; Jiang, Ying; Li, Changqing

    2017-02-01

    The role of lipocalin prostaglandin D2 synthase (L-PGDS) in brain ischemia has not been fully clarified to date. Vagus nerve stimulation (VNS) protects against cerebral ischemia/reperfusion (I/R) injury, but the mechanisms involved need further exploration. This study investigated the role of L-PGDS in cerebral I/R and whether this process was involved in the mechanism of VNS-mediated neuroprotection. Male Sprague-Dawley rats were pretreated with a lentiviral vector (LV) through intracerebroventricular injection, followed by middle cerebral artery occlusion (MCAO) and VNS treatment. The expression of L-PGDS in the peri-infarct cortex was examined. The localization of L-PGDS was determined using double immunofluorescence staining. Neurologic scores, infarct volume and neuronal apoptosis were evaluated at 24 h after reperfusion. The expression of apoptosis-related molecules was measured by western blot analysis. The expression of L-PGDS in the peri-infarct cortex increased at 12 h, reached a peak at 24 h after reperfusion, and lasted up to 3 days. VNS treatment further enhanced the expression of L-PGDS following ischemic stroke. L-PGDS was mainly expressed in neurons in the peri-infarct cortex. I/R rats treated with VNS showed better neurological deficit scores, reduced infarct volume, and decreased neuronal apoptosis as indicated by the decreased levels of Bax and cleaved caspase-3 as well as increased levels of Bcl-2. Strikingly, the beneficial effects of VNS were weakened after L-PGDS down-regulation. In general, our results suggest that L-PGDS is a potential mediator of VNS-induced neuroprotection against I/R injury.

  11. Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children.

    PubMed

    Orosz, Iren; McCormick, David; Zamponi, Nelia; Varadkar, Sophia; Feucht, Martha; Parain, Dominique; Griens, Roger; Vallée, Louis; Boon, Paul; Rittey, Christopher; Jayewardene, Amara K; Bunker, Mark; Arzimanoglou, Alexis; Lagae, Lieven

    2014-10-01

    To gain insight into the long-term impact of vagus nerve stimulation (with VNS Therapy) in children with drug-resistant epilepsy, we conducted the largest retrospective multicenter study to date over an extended follow-up period of up to 24 months. The primary objective was to assess change in seizure frequency of the predominant seizure type (defined as the most disabling seizure) following VNS device implantation. Treating physicians collected data from patient records from baseline to 6, 12, and 24 months of follow-up. The analysis population included 347 children (aged 6 months to 17.9 years at the time of implant). At 6, 12, and 24 months after implantation, 32.5%, 37.6%, and 43.8%, respectively, of patients had ≥ 50% reduction in baseline seizure frequency of the predominant seizure type. The responder rate was higher in a subgroup of patients who had no change in antiepileptic drugs (AEDs) during the study. Favorable results were also evident for all secondary outcome measures including changes in seizure duration, ictal severity, postictal severity, quality of life, clinical global impression of improvement, and safety. Post hoc analyses demonstrated a statistically significant correlation between VNS total charge delivered per day and an increase in response rate. VNS Therapy is indicated as adjunctive therapy in children with focal, structural epilepsies, who for any reason are not good candidates for surgical treatment following the trial of two or more AEDs. Children with predominantly generalized seizures from genetic, structural epilepsies, like Dravet syndrome or Lennox-Gastaut syndrome, could also benefit from VNS Therapy. The results demonstrate that adjunctive VNS Therapy in children with drug-resistant epilepsy reduces seizure frequency and is well tolerated over a 2-year follow-up period. No new safety issues were identified. A post hoc analysis revealed a dose-response correlation for VNS in patients with epilepsy. Wiley Periodicals, Inc.

  12. Efficacy of vagus nerve stimulation over time: review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS > 10 years.

    PubMed

    Elliott, Robert E; Morsi, Amr; Tanweer, Omar; Grobelny, Bartosz; Geller, Eric; Carlson, Chad; Devinsky, Orrin; Doyle, Werner K

    2011-03-01

    Studies have reported improved seizure control with increased duration of vagus nerve stimulation (VNS) but are prone to methodological biases. We analyzed the efficacy of VNS over time in patients with treatment-resistant epilepsy (TRE) who underwent VNS therapy 10 or more years. We retrospectively reviewed 65 consecutive patients (29 females) who underwent VNS therapy ≥ 10 years. The mean age at VNS insertion was 30.0 years. Forty-four adults (≥ 18 years; 67.7%) and 21 children (32.3%) were included. Seizure frequency and antiepileptic drug (AED) regimens were recorded prior to VNS and, following VNS insertion, at 6 months, 1 year, 2 years, and every 2 years thereafter. The mean duration of VNS therapy for this group was 10.4 years, and the mean decrease in seizure frequency at last follow-up was 76.3%. The mean reduction in seizures at 6 months and years 1, 2, 4, 6, 8, and 10 years was 35.7, 52.1, 58.3, 60.4, 65.7, 75.5, and 75.5%, respectively. Seizure frequency was significantly reduced from baseline at each of the recorded intervals (P<0.001). There was a trend toward increased AED burden in the latter years of the follow-up period. Following a "ramp-up" and accommodation period throughout the initial 24 months after VNS implantation, seizure control improved slightly over the subsequent years of therapy and eventually stabilized. Variation in seizure frequency, however, was common, and frequent changes in AED regimens or stimulation parameters were likely an important and possibly synergistic component of seizure control. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans

    PubMed Central

    Frangos, Eleni; Ellrich, Jens; Komisaruk, Barry R.

    2014-01-01

    Background Tract-tracing studies in cats and rats demonstrated that the auricular branch of the vagus nerve (ABVN) projects to the nucleus tractus solitarii (NTS); it has remained unclear as to whether or not the ABVN projects to the NTS in humans. Objective To ascertain whether non-invasive electrical stimulation of the cymba conchae, a region of the external ear exclusively innervated by the ABVN, activates the NTS and the “classical” central vagal projections in humans. Methods Twelve healthy adults underwent two fMRI scans in the same session. Electrical stimulation (continuous 0.25ms pulses, 25Hz) was applied to the earlobe (control, scan #1) and left cymba conchae (scan #2). Statistical analyses were performed with FSL. Two region-of-interest analyses were performed to test the effects of cymba conchae stimulation (compared to baseline and control, earlobe, stimulation) on the central vagal projections (corrected; brainstem p<0.01, forebrain p<0.05), followed by a whole-brain analysis (corrected, p< 0.05). Results Cymba conchae stimulation, compared to earlobe (control) stimulation, produced significant activation of the “classical” central vagal projections, e.g., widespread activity in the ipsilateral nucleus of the solitary tract, bilateral spinal trigeminal nucleus, dorsal raphe, locus coeruleus, and contralateral parabrachial area, amygdala, and nucleus accumbens. Bilateral activation of the paracentral lobule was also observed. Deactivations were observed bilaterally in the hippocampus and hypothalamus. Conclusion These findings provide evidence in humans that the central projections of the ABVN are consistent with the “classical” central vagal projections and can be accessed non-invasively via the external ear. PMID:25573069

  14. Vagus nerve stimulation in drug-resistant epilepsy: the efficacy and adverse effects in a 5-year follow-up study in Iran.

    PubMed

    Pakdaman, Hossein; Amini Harandi, Ali; Abbasi, Mehdi; Karimi, Mohammad; Arami, Mohammad Ali; Mosavi, Seyed Ali; Haddadian, Karim; Rezaei, Omidvar; Sadeghi, Sohrab; Sharifi, Guive; Gharagozli, Koroush; Bahrami, Parviz; Ashrafi, Farzad; Kasmae, Hosein Delavar; Ghassemi, Amirhossein; Arabahmadi, Mehran; Behnam, Behdad

    2016-11-01

    Drug-resistant epilepsy seems like a different disease compared with easy to control epilepsy, and new strategies are needed to help these patients. Vagus nerve stimulation (VNS) therapy is the most frequently used neurostimulation modality for patients with drug-resistant epilepsy who are not eligible for seizure surgery. In this study, we aimed to evaluate the efficacy and adverse effects of VNS in patients with drug-resistant epilepsy in an open-label, prospective, long-term study in Iran. We selected 48 patients with partial-onset drug-resistant epilepsy. Implantations were performed in the neurosurgery department of Loghman Hospital, Tehran, Iran. Follow-up visits were done on monthly bases for 5 years. Forty-four patients completed the study. Mean age of patients was 24.4 years. Mean years of epilepsy history was 14 years. The mean number of anti-epileptic drugs did not significantly change over five years (p = 0.15). There was no exacerbation of epilepsy; however, one patient discontinued his therapy due to unsatisfactory results. Five patient had more than 50 %, and 26 patients (59 %) had 25-49 % reduction in the frequency of monthly seizures persistently. Overall mean frequency of monthly seizures decreased by 57.8, 59.6, 65, 65.9, and 67 %, in 1st, 2nd, 3rd, 4th, and 5th years of follow-up, respectively. Most common side effects were as follows: hoarseness (25 %) and throat discomfort (10 %). We found VNS as a safe and effective therapy for drug-resistant epilepsy, with an approximate long-term decrease in mean seizure frequency of 57.8-67 %. Thus, VNS is recommended for suitable patients in developing countries.

  15. Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year.

    PubMed

    Cristancho, Pilar; Cristancho, Mario A; Baltuch, Gordon H; Thase, Michael E; O'Reardon, John P

    2011-10-01

    To describe the outcomes of a consecutive series of depressed patients treated with vagus nerve stimulation (VNS) following US Food and Drug Administration (FDA) approval of this intervention. We implanted a VNS device in 15 consecutive outpatients with treatment-resistant major depressive episodes, including 10 with major depressive disorder and 5 with bipolar disorder (DSM-IV criteria), between November 2005 and August 2006. Existing antidepressant treatment remained fixed as far as clinically possible. The primary outcome was change from baseline in the Beck Depression Inventory (BDI) score. Outcomes were assessed at 6 and 12 months postimplant and compared to those of the VNS pivotal efficacy trial that led to FDA approval of VNS. The BDI score decreased significantly compared to baseline at 6 months (P < .05) and 12 months (P < .01), from a mean of 37.8 (SD = 7.8) before VNS activation to a mean of 24.6 (SD = 11.4) at 12 months. By 1 year, 28.6% (n = 4) of the sample responded to VNS and 7.1% (n = 1) remitted according to the BDI. Secondary outcomes on the Hamilton Depression Rating Scale 24-Item showed similar improvement at 1 year, with a 43% response rate (n = 6) and 14.3% remission rate (n = 2). No obvious predictors of response were detected. Side effects of VNS included hoarseness (73%), dyspnea (47%), nausea (40%), pain (33%), and anxiety (20%); no patient terminated treatment due to intolerable side effects. We found that a substantial minority of patients with extremely difficult-to-treat depressive disorders benefited from VNS in an ambulatory clinical practice, with outcomes comparable to those observed in previous VNS efficacy studies and with a similar side effect profile. © Copyright 2011 Physicians Postgraduate Press, Inc.

  16. Vagus nerve stimulator implantation for epilepsy in a paediatric hospital: outcomes and effect on quality of life.

    PubMed

    Ulate-Campos, A; Cean-Cabrera, L; Petanas-Argemi, J; García-Fructuoso, G; Aparicio, J; López-Sala, A; Palacio-Navarro, A; Mas, M J; Muchart, J; Rebollo, M; Sanmartí, F X

    2015-10-01

    Epilepsy, which is present in 0.5% to 1% of the paediatric population, is one of the most frequent childhood neurological disorders. Approximately 20% to 30% of these cases will be drug-resistant. The objective of this study is to describe the impact of vagal nerve stimulation (VNS) on seizures and quality of life in a sample of 30 patients. Descriptive, retrospective study of all patients with a VNS device implanted between 2008 and 2013 in a single paediatric hospital, based on patients' medical records. Quality of life was assessed using the Spanish scale for quality of life in children with epilepsy, completed by means of a telephone interview. We describe a population of 19 boys (64%) and 11 girls (36%) with a mean age at seizure onset of 21 months (1-144 months). The mean age of VNS implantation was 11.89 years. Follow-up periods ranged from 6 to 36 months. Mean reduction in seizures at 6 months was 38%, with a reduction of 43% at 12 months, 42% at 24 months, and 54% at 36 months. At least half of all patients were classified as responders. According to the quality of life scale, 54% of the families rated the effect of VNS as either very good or good while 39% rated it as fair. VNS is a safe palliative treatment that is generally well tolerated. It is partially effective for controlling drug-resistant epilepsy and exerts a positive effect on quality of life. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Autoregulation of acetylcholine release from vagus nerve terminals through activation of muscarinic receptors in the dog trachea.

    PubMed Central

    Ito, Y.; Yoshitomi, T.

    1988-01-01

    neuro-effector transmission, presumably due to enhancement of release of ACh from vagal nerve terminals through blockade of a negative auto-regulatory process activated by endogenous ACh. At higher concentrations, these agents inhibit the response of smooth muscle cells to ACh through post-junctional muscarinic receptors and relaxation of the muscle tissue occurs. PMID:3370392

  18. Involvement of MAPK/NF-κB Signaling in the Activation of the Cholinergic Anti-Inflammatory Pathway in Experimental Colitis by Chronic Vagus Nerve Stimulation

    PubMed Central

    Sun, Peng; Zhou, Kewen; Wang, Sheng; Li, Ping; Chen, Sijuan; Lin, Guiping; Zhao, Yan; Wang, Tinghuai

    2013-01-01

    Background Autonomic nervous system dysfunction is implicated in the etiopathogenesis of inflammatory bowel diseases (IBD). Therapies that increase cardiovagal activity, such as Mind-Body interventions, are currently confirmed to be effective in clinical trials in IBD. However, a poor understanding of pathophysiological mechanisms limits the popularization of therapies in clinical practice. The aim of the present study was to explore the mechanisms of these therapies against 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats using a chronic vagus nerve stimulation model in vivo, as well as the lipopolysaccharide (LPS)-induced inflammatory response in human epithelial colorectal adenocarcinoma cells (Caco-2) by acetylcholine in vitro. Methods and Results Colitis was induced in rats with rectal instillation of TNBS, and the effect of chronic VNS (0.25 mA, 20 Hz, 500 ms) on colonic inflammation was evaluated. Inflammatory responses were assessed by disease activity index (DAI), histological scores, myeloperoxidase (MPO) activity, inducible nitric oxide synthase (iNOS), TNF-α and IL-6 production. The expression of Mitogen-activated protein kinases (MAPK) family members, IκB-α, and nuclear NF-κB p65 were studied by immunoblotting. Heart rate variability (HRV) analysis was also applied to assess the sympathetic-vagal balance. DAI, histological scores, MPO activity, iNOS, TNF-α and IL-6 levels were significantly decreased by chronic VNS. Moreover, both VNS and acetylcholine reduced the phosphorylation of MAPKs and prevented the nuclear translocation of NF-κB p65. Methyllycaconitine (MLA) only reversed the inhibitory effect on p-ERK and intranuclear NF-κB p65 expression by ACh in vitro, no significant change was observed in the expression of p-p38 MAPK or p-JNK by MLA. Conclusion Vagal activity modification contributes to the beneficial effects of the cholinergic anti-inflammatory pathway in IBD-related inflamed colonic mucosa based on the activation

  19. Non–Invasive Vagus Nerve Stimulation for the ACute Treatment of Cluster Headache: Findings From the Randomized, Double‐Blind, Sham‐Controlled ACT1 Study

    PubMed Central

    Mechtler, Laszlo L.; Kudrow, David B.; Calhoun, Anne H.; McClure, Candace; Saper, Joel R.; Liebler, Eric J.; Rubenstein Engel, Emily; Tepper, Stewart J.

    2016-01-01

    Objective To evaluate non‐invasive vagus nerve stimulation (nVNS) as an acute cluster headache (CH) treatment. Background Many patients with CH experience excruciating attacks at a frequency that is not sufficiently addressed by current symptomatic treatments. Methods One hundred fifty subjects were enrolled and randomized (1:1) to receive nVNS or sham treatment for ≤1 month during a double‐blind phase; completers could enter a 3‐month nVNS open‐label phase. The primary end point was response rate, defined as the proportion of subjects who achieved pain relief (pain intensity of 0 or 1) at 15 minutes after treatment initiation for the first CH attack without rescue medication use through 60 minutes. Secondary end points included the sustained response rate (15‐60 minutes). Subanalyses of episodic cluster headache (eCH) and chronic cluster headache (cCH) cohorts were prespecified. Results The intent‐to‐treat population comprised 133 subjects: 60 nVNS‐treated (eCH, n = 38; cCH, n = 22) and 73 sham‐treated (eCH, n = 47; cCH, n = 26). A response was achieved in 26.7% of nVNS‐treated subjects and 15.1% of sham‐treated subjects (P = .1). Response rates were significantly higher with nVNS than with sham for the eCH cohort (nVNS, 34.2%; sham, 10.6%; P = .008) but not the cCH cohort (nVNS, 13.6%; sham, 23.1%; P = .48). Sustained response rates were significantly higher with nVNS for the eCH cohort (P = .008) and total population (P = .04). Adverse device effects (ADEs) were reported by 35/150 (nVNS, 11; sham, 24) subjects in the double‐blind phase and 18/128 subjects in the open‐label phase. No serious ADEs occurred. Conclusions In one of the largest randomized sham‐controlled studies for acute CH treatment, the response rate was not significantly different (vs sham) for the total population; nVNS provided significant, clinically meaningful, rapid, and sustained benefits for eCH but not for cCH, which affected

  20. Non-Invasive Vagus Nerve Stimulation for the ACute Treatment of Cluster Headache: Findings From the Randomized, Double-Blind, Sham-Controlled ACT1 Study.

    PubMed

    Silberstein, Stephen D; Mechtler, Laszlo L; Kudrow, David B; Calhoun, Anne H; McClure, Candace; Saper, Joel R; Liebler, Eric J; Rubenstein Engel, Emily; Tepper, Stewart J

    2016-09-01

    To evaluate non-invasive vagus nerve stimulation (nVNS) as an acute cluster headache (CH) treatment. Many patients with CH experience excruciating attacks at a frequency that is not sufficiently addressed by current symptomatic treatments. One hundred fifty subjects were enrolled and randomized (1:1) to receive nVNS or sham treatment for ≤1 month during a double-blind phase; completers could enter a 3-month nVNS open-label phase. The primary end point was response rate, defined as the proportion of subjects who achieved pain relief (pain intensity of 0 or 1) at 15 minutes after treatment initiation for the first CH attack without rescue medication use through 60 minutes. Secondary end points included the sustained response rate (15-60 minutes). Subanalyses of episodic cluster headache (eCH) and chronic cluster headache (cCH) cohorts were prespecified. The intent-to-treat population comprised 133 subjects: 60 nVNS-treated (eCH, n = 38; cCH, n = 22) and 73 sham-treated (eCH, n = 47; cCH, n = 26). A response was achieved in 26.7% of nVNS-treated subjects and 15.1% of sham-treated subjects (P = .1). Response rates were significantly higher with nVNS than with sham for the eCH cohort (nVNS, 34.2%; sham, 10.6%; P = .008) but not the cCH cohort (nVNS, 13.6%; sham, 23.1%; P = .48). Sustained response rates were significantly higher with nVNS for the eCH cohort (P = .008) and total population (P = .04). Adverse device effects (ADEs) were reported by 35/150 (nVNS, 11; sham, 24) subjects in the double-blind phase and 18/128 subjects in the open-label phase. No serious ADEs occurred. In one of the largest randomized sham-controlled studies for acute CH treatment, the response rate was not significantly different (vs sham) for the total population; nVNS provided significant, clinically meaningful, rapid, and sustained benefits for eCH but not for cCH, which affected results in the total population. This safe and well-tolerated treatment

  1. [Functional morphology of the vagus nerve nuclei changes in the medulla oblongata (N. Ambiguus, N. Dorsalis), induced by influenza a (H(3)N(I)) in experiment].

    PubMed

    Gogiashvili, L; Abashidze, T; Tsagareli, Z; Dgebuadze, M; Kvachadze, T

    2012-12-01

    Morphological changes of the brain cortex IV-V layers, the structures of n. ambiguus, n. dorsalis and n. vagus ganglia on the model of influenza virus A strains (H3NI) MLD50 in number 50 microns intranasal inoculation in mice aged 6-8 weeks were studied. For assessment of virus-induced pathology 2 series of experiments were carried out. Electron microscopy, morphometric and histological methods, including by Nissl stain were used. LD dose, daily loss of body weight with access to the so-called "endpoint" determined previously. Experimental period from 48 hours to 12 days. It is shown that in n.vagus stem structures in the medulla oblongata (n. dorsalis, n. ambiguus) have the mosaic and the polymorphic nature of the changes - signs of influenza virus cytotropic effect, such as swelling, vacuolation, chromatolysis, less pyknosis and hyperchromatosis. In the period of the greatest weight loss and expressed «endpoint» irreversible changes in the stem structures associated with n. vagus - apoptotic nuclei and neurons massive edema, lipofuscin accumulation have taken place. Results of the study suggest that the parasympathetic nervous system (n. vagus) may be one of the possible route of influenza A virus (H3NI) genomic structures transnerval invasion in the central nervous system during experimental infection.

  2. Ghrelin and the vagus nerve.

    PubMed

    Date, Yukari

    2012-01-01

    Ghrelin, a gastrointestinal hormone, stimulates feeding and secretion of growth hormone (GH). Ghrelin is thought to directly affect neurons involved in feeding or GH secretion through growth hormone secretagogue receptor (GHS-R; ghrelin receptor); however, it is still unclear whether ghrelin crosses through the blood-brain barrier. Recently, several gastrointestinal hormones have been shown to transmit signals involved in feeding to the brain at least in part via the vagal afferent system. In fact, ghrelin's action on feeding or GH secretion is abolished or attenuated in rats that have undergone vagotomy or treatment with capsaicin, a specific afferent neurotoxin. GHS-R is present in the vagal afferent neurons as well as the brain and is transported to the afferent terminals. In addition, the firing rate of vagal afferent fibers significantly decreases after ghrelin administration. Taken together, these data show that the vagal afferent system is the major pathway conveying ghrelin's signals for feeding and GH secretion to the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Role of the vegus nerve in epilepsy (image)

    MedlinePlus

    The vagus nerves branch off the brain on either side of the head and travel down the neck, along the ... the body, and affect swallowing and speech. The vagus nerves also connect to parts of the brain involved ...

  4. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  5. Large Cervical Vagus Nerve Tumor in a Patient with Neurofibromatosis Type 1 Treated with Gross Total Resection: Case Report and Review of the Literature

    PubMed Central

    Bray, David P.; Chan, Andrew K.; Chin, Cynthia T.; Jacques, Line

    2016-01-01

    Neurofibromas are benign peripheral nerve sheath tumors that occur commonly in individuals with neurocutaneous disorders such as neurofibromatosis type 1. Vagal nerve neurofibromas, however, are a relatively rare occurrence. We present the case of a 22-year-old man with neurofibromatosis type 1 with a neurofibroma of the left cervical vagal nerve. The mass was resected through an anterior approach without major event. In the postoperative course, the patient developed left vocal cord paralysis treated with medialization with injectable gel. We then present a comprehensive review of the literature for surgical resection of vagal nerve neurofibromas. PMID:28077961

  6. Transient facial nerve paralysis (Bell's palsy) following administration of hepatitis B recombinant vaccine: a case report.

    PubMed

    Paul, R; Stassen, L F A

    2014-01-01

    Bell's palsy is the sudden onset of unilateral transient paralysis of facial muscles resulting from dysfunction of the seventh cranial nerve. Presented here is a 26-year-old female patient with right lower motor neurone facial palsy following hepatitis B vaccination. Readers' attention is drawn to an uncommon cause of Bell's palsy, as a possible rare complication of hepatitis B vaccination, and steps taken to manage such a presentation.

  7. [Effects of electrical stimulation at acupoints in the distribution area of auricular vagus nerve combined with sound masking method on auditory brainstem response and neurotransmitters of inferior colliculus in rats of tinnitus].

    PubMed

    Yang, Songbai; Mei, Zhigang; Tan, Lingjing; Ma, Wenhan; Zhang, Dingqi; Wang, Zhaojun; Li, Tiantian; Huang, Kunyan; Cai, Sanjin

    2016-05-01

    To explore the effects of electrical stimulation at acupoints in the distribution area of auricular vagus nerve combined with sound masking on auditory brainstem response (ABR) and contents of neurotransmitters of γ-aminobutyric acid (γ-GABA), 5-hydroxytryptamine (5-HT) and acetyl choline (Ach) in inferior colliculus of tinnitus rats. Twenty-four male adult SD rats were randomized into a control group, a model group, a 7-d treatment group and a 15-d treatment group. Except the control group, rats in the remaining groups were treated with intraperitoneal injection of 10% salicylate sodium at a dose of 350 mg/kg to establish tinnitus model. Rats in the control group were treated with injection of 0.9% NaCl. Rats in the 7-d treatment group and 15-d treatment group were treated with electrical stimulation at "Shenmen (TF₄)" and "Yidan (CO₁₁)" in the distribution area of auricular vagus nerve combined with sound masking, once a day, for 7 days and 15 days. The SigGenRP software of TDT system was applied to provide voice for single ear and collect the signal, and the voice threshold of ABR was tested. The levels of γ-GABA, 5-HT and Ach in inferior colliculus of rats were detected by enzyme linked immunosorbent assay (ELISA) and compared. Compared with the model group, the threshold values of ABR in 12 kHz and 16 kHz voice stimulation in the 7-d treatment group were significantly lower all P < 0.05); the threshold values of ABR from 4 kHz to 28 kHz voice stimulation in the 15-d treatment group were signally reduced (P < 0.05, P < 0.01), which was more significant than those in the 7-d treatment group. The level of γ-GABA in the model group was significantly lower than that in the control group (P < 0.05), and that in the 15-d treatment group was apparently higher than that in the model group (P < 0.05). The level of 5-HT in the model group was markedly higher than that in the control group (P < 0.05), and that in the 7-d treatment group was lower than that in

  8. [Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis].

    PubMed

    Fehér, Erzsébet

    2015-11-22

    Neuropeptide Y and substance P were thought to play a role in the function of immune cells and in amplification or elimination of the inflammatory processes. In hepatitis the number of both neuropeptide Y and substance P immunoreactive nerve fibres are increased, where the increase of neoropeptide Y is significant. A large number of lymphocytes and mast cells are also stained for neuropeptide Y and substance P. Very close associations (less than 1 µm) were observed between neuropeptide Y immunoreactive nerve fibres and immune cells stained also with neuropeptide Y. Some immune cells were also found to be immunoreactive for tumor necrosis factor-α and NF-κB. Some of the SP IR immunocells were also stained for TNF-α and nuclear factor kappaB. Based on these data it is hypothesized that neuropeptid Y and substance P released from nerve fibres and immune cells play a role in inflammation and elimination of inflammation in hepatitis.

  9. Vagus Nerve Stimulation Enhances Extinction of Conditioned Fear in Rats and Modulates Arc Protein, CaMKII, and GluN2B-Containing NMDA Receptors in the Basolateral Amygdala

    PubMed Central

    Griffin, Kimberly; Cavalier, Sheridan; McIntyre, Christa K.

    2016-01-01

    Vagus nerve stimulation (VNS) enhances the consolidation of extinction of conditioned fear. High frequency stimulation of the infralimbic cortex (IL) produces long-term potentiation in the basolateral amygdala (BLA) in rats given VNS-paired extinction training, whereas the same stimulation produces long-term depression in sham-treated rats. The present study investigated the state of synaptic plasticity-associated proteins in the BLA that could be responsible for this shift. Male Sprague-Dawley rats were separated into 4 groups: auditory fear conditioning only (fear-conditioned); fear conditioning + 20 extinction trials (extended-extinction); fear conditioning + 4 extinction trials paired with sham stimulation (sham-extinction); fear conditioning + 4 extinction trials paired with VNS (VNS-extinction). Freezing was significantly reduced in extended-extinction and VNS-extinction rats. Western blots were used to quantify expression and phosphorylation state of synaptic plasticity-associated proteins such as Arc, CaMKII, ERK, PKA, and AMPA and NMDA receptors. Results show significant increases in GluN2B expression and phosphorylated CaMKII in BLA samples from VNS- and extended-extinction rats. Arc expression was significantly reduced in VNS-extinction rats compared to all groups. Administration of the GluN2B antagonist ifenprodil immediately after fear extinction training blocked consolidation of extinction learning. Results indicate a role for BLA CaMKII-induced GluN2B expression and reduced Arc protein in VNS-enhanced extinction. PMID:27957346

  10. Vagus Nerve Stimulation Enhances Extinction of Conditioned Fear in Rats and Modulates Arc Protein, CaMKII, and GluN2B-Containing NMDA Receptors in the Basolateral Amygdala.

    PubMed

    Alvarez-Dieppa, Amanda C; Griffin, Kimberly; Cavalier, Sheridan; McIntyre, Christa K

    2016-01-01

    Vagus nerve stimulation (VNS) enhances the consolidation of extinction of conditioned fear. High frequency stimulation of the infralimbic cortex (IL) produces long-term potentiation in the basolateral amygdala (BLA) in rats given VNS-paired extinction training, whereas the same stimulation produces long-term depression in sham-treated rats. The present study investigated the state of synaptic plasticity-associated proteins in the BLA that could be responsible for this shift. Male Sprague-Dawley rats were separated into 4 groups: auditory fear conditioning only (fear-conditioned); fear conditioning + 20 extinction trials (extended-extinction); fear conditioning + 4 extinction trials paired with sham stimulation (sham-extinction); fear conditioning + 4 extinction trials paired with VNS (VNS-extinction). Freezing was significantly reduced in extended-extinction and VNS-extinction rats. Western blots were used to quantify expression and phosphorylation state of synaptic plasticity-associated proteins such as Arc, CaMKII, ERK, PKA, and AMPA and NMDA receptors. Results show significant increases in GluN2B expression and phosphorylated CaMKII in BLA samples from VNS- and extended-extinction rats. Arc expression was significantly reduced in VNS-extinction rats compared to all groups. Administration of the GluN2B antagonist ifenprodil immediately after fear extinction training blocked consolidation of extinction learning. Results indicate a role for BLA CaMKII-induced GluN2B expression and reduced Arc protein in VNS-enhanced extinction.

  11. Quantitative evaluation of heartbeat interval time series using Poincaré analysis reveals distinct patterns of heart rate dynamics during cycles of vagus nerve stimulation in patients with heart failure.

    PubMed

    Libbus, Imad; Nearing, Bruce D; Amurthur, Badri; KenKnight, Bruce H; Verrier, Richard L

    2017-06-08

    Optimization of stimulation parameters is essential to maximizing therapeutic efficacy and minimizing side effects. The ANTHEM-HF study enrolled patients with heart failure who received chronic autonomic regulation therapy (ART) with an implantable vagus nerve stimulation (VNS) system on either the right (n=30) or left side (n=29). Acute effects of continuously cycling VNS on R-R interval dynamics were evaluated using post hoc Poincaré analysis of ECG recordings collected during multiple titration sessions over an 8-12week period. During each titration session, VNS intensity associated with maximum tolerable dose was determined. Poincaré plots of R-R interval time series were created for epochs when VNS cycled from OFF to ON at varying intensity levels. VNS produced an immediate, relatively small change in beat-to-beat distribution of R-R intervals during the 14-sec ON time, which was correlated with stimulation current amplitude (r=0.85, p=0.05). During titration of right-sided stimulation, there was a strong correlation (r=0.91, p=0.01) between stimulus intensity and the Poincaré parameter of standard deviation, SD1, which is associated with high-frequency heart rate variability. The effect of VNS on instantaneous heart rate was indicated by a shift in the centroid of the beat-to-beat cloud distribution demarcated by the encircling ellipse. As anticipated, left-sided stimulation did not alter any Poincaré parameter except at high stimulation intensities (≥2mA). Quantitative Poincaré analysis reveals a tight coupling in beat-to-beat dynamics during VNS ON cycles that is directly related to stimulation intensity, providing a useful measurement for confirming autonomic engagement. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Central neural regulation by adrenergic nerves of the daily rhythm in hepatic tyrosine transaminase activity

    PubMed Central

    Black, Ira B.; Reis, Donald J.

    1971-01-01

    1. In adrenalectomized fasted rats transection of the spinal cord at C7-C8 or placement of bilateral electrolytic lesions in the lateral hypothalamus when performed in the morning interrupted the daily rhythm of hepatic tyrosine transaminase by elevating low (AM) enzyme activities to high (PM) levels; lesions placed in PM did not affect the late afternoon rise in enzyme activity. 2. Bilateral thalamic lesions had no affect on enzyme activity. 3. The activity of hepatic catechol-O-methyl transferase was unaffected by hypothalamic lesions. 4. The lesion-evoked rise of tyrosine transaminase activity was abolished by exogenously administered norepinephrine. 5. Cycloheximide blocked the rise of tyrosine transaminase activity caused by hypothalamic lesions. 6. The results suggest that rhythmic activity of sympathetic nerves governed by lateral hypothalamus contribute to regulation of the daily rhythm in tyrosine transaminase by regulating the release of norepinephrine peripherally; norepinephrine may block the daily rise of enzyme by interfering with protein synthesis, possibly of new enzyme, by competing with pyridoxal co-factor. 7. It is proposed that alternating activity of sympathetic-adrenergic and vagal-cholinergic nerves to liver, controlled by the C.N.S., contribute to rhythmic activity of hepatic tyrosine transaminase. ImagesFig. 2 PMID:4400586

  13. The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (Open Prospective Randomized Long-term Effectiveness) trial.

    PubMed

    Ryvlin, Philippe; Gilliam, Frank G; Nguyen, Dang K; Colicchio, Gabriella; Iudice, Alfonso; Tinuper, Paolo; Zamponi, Nelia; Aguglia, Umberto; Wagner, Louis; Minotti, Lorella; Stefan, Hermann; Boon, Paul; Sadler, Mark; Benna, Paolo; Raman, Pradheep; Perucca, Emilio

    2014-06-01

    To evaluate whether vagus nerve stimulation (VNS) as adjunct to best medical practice (VNS + BMP) is superior to BMP alone in improving long-term health-related quality of life (HRQoL). PuLsE (Open Prospective Randomized Long-term Effectiveness) was a prospective, randomized, parallel-group, open-label, and long-term effectiveness study (conducted at 28 sites in Europe and Canada). Adults with pharmacoresistant focal seizures (n = 112) received VNS + BMP or BMP (1:1 ratio). Medications and VNS parameters could be adjusted as clinically indicated for optimal seizure control while minimizing adverse effects. Primary endpoint was mean change from baseline HRQoL (using Quality of Life in Epilepsy Inventory-89 total score; QOLIE-89). Secondary endpoints included changes in seizure frequency, responder rate (≥50% decrease in seizure frequency), Centre for Epidemiologic Studies Depression scale (CES-D), Neurological Disorders Depression Inventory-Epilepsy scale (NDDI-E), Clinical Global Impression-Improvement scale (CGI-I), Adverse Event Profile (AEP), and antiepileptic drug (AED) load. The study was prematurely terminated due to recruitment difficulties prior to completing the planned enrollment of n = 362. Results for n = 96 who had baseline and at least one follow-up QOLIE-89 assessment (from months 3-12) were included in this analysis. Mixed model repeated measures (MMRM) analysis of variance was performed on change from baseline for the primary and secondary endpoints. Significant between-group differences in favor of VNS + BMP were observed regarding improvement in HRQoL, seizure frequency, and CGI-I score (respective p-values < 0.05, 0.03, and 0.01). More patients in the VNS + BMP group (43%) reported adverse events (AEs) versus BMP group (21%) (p = 0.01), a difference reflecting primarily mostly transient AEs related to VNS implantation or stimulation. No significant difference between treatment groups was observed for changes in CES-D, NDDI-E, AEP, and AED load

  14. The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: The PuLsE (Open Prospective Randomized Long-term Effectiveness) trial

    PubMed Central

    Ryvlin, Philippe; Gilliam, Frank G; Nguyen, Dang K; Colicchio, Gabriella; Iudice, Alfonso; Tinuper, Paolo; Zamponi, Nelia; Aguglia, Umberto; Wagner, Louis; Minotti, Lorella; Stefan, Hermann; Boon, Paul; Sadler, Mark; Benna, Paolo; Raman, Pradheep; Perucca, Emilio

    2014-01-01

    Objective To evaluate whether vagus nerve stimulation (VNS) as adjunct to best medical practice (VNS + BMP) is superior to BMP alone in improving long-term health-related quality of life (HRQoL). Methods PuLsE (Open Prospective Randomized Long-term Effectiveness) was a prospective, randomized, parallel-group, open-label, and long-term effectiveness study (conducted at 28 sites in Europe and Canada). Adults with pharmacoresistant focal seizures (n = 112) received VNS + BMP or BMP (1:1 ratio). Medications and VNS parameters could be adjusted as clinically indicated for optimal seizure control while minimizing adverse effects. Primary endpoint was mean change from baseline HRQoL (using Quality of Life in Epilepsy Inventory-89 total score; QOLIE-89). Secondary endpoints included changes in seizure frequency, responder rate (≥50% decrease in seizure frequency), Centre for Epidemiologic Studies Depression scale (CES-D), Neurological Disorders Depression Inventory-Epilepsy scale (NDDI-E), Clinical Global Impression-Improvement scale (CGI-I), Adverse Event Profile (AEP), and antiepileptic drug (AED) load. The study was prematurely terminated due to recruitment difficulties prior to completing the planned enrollment of n = 362. Results for n = 96 who had baseline and at least one follow-up QOLIE-89 assessment (from months 3-12) were included in this analysis. Mixed model repeated measures (MMRM) analysis of variance was performed on change from baseline for the primary and secondary endpoints. Results Significant between-group differences in favor of VNS + BMP were observed regarding improvement in HRQoL, seizure frequency, and CGI-I score (respective p-values < 0.05, 0.03, and 0.01). More patients in the VNS + BMP group (43%) reported adverse events (AEs) versus BMP group (21%) (p = 0.01), a difference reflecting primarily mostly transient AEs related to VNS implantation or stimulation. No significant difference between treatment groups was

  15. Implantation of a new Vagus Nerve Stimulation (VNS) Therapy® generator, AspireSR®: considerations and recommendations during implantation and replacement surgery--comparison to a traditional system.

    PubMed

    Schneider, Ulf C; Bohlmann, Katrin; Vajkoczy, Peter; Straub, Hans-Beatus

    2015-04-01

    The most widely used neuro-stimulation treatment for drug-resistant epilepsy is Vagus Nerve Stimulation (VNS) Therapy®. Ictal tachycardia can be an indicator of a seizure and, if monitored, can be used to trigger an additional on-demand stimulation, which may positively influence seizure severity or duration. A new VNS Therapy generator model, AspireSR®, was introduced and approved for CE Mark in February 2014. In enhancement of former models, the AspireSR has incorporated a cardiac-based seizure-detection (CBSD) algorithm that can detect ictal tachycardia and automatically trigger a defined auto-stimulation. To evaluate differences in preoperative, intraoperative and postoperative handling, we compared the AspireSR to a conventional generator model (Demipulse®). Between February and September 2014, seven patients with drug-resistant epilepsy and ictal tachycardia were implanted with an AspireSR. Between November 2013 and September 2014, seven patients were implanted with a Demipulse and served as control group. Operation time, skin incision length and position, and complications were recorded. Handling of the new device was critically evaluated. The intraoperative handling was comparable and did not lead to a significant increase in operation time. In our 14 operations, we had no significant short-term complications. Due to its larger size, patients with the AspireSR had significantly larger skin incisions. For optimal heart rate detection, the AspireSR had to be placed significantly more medial in the décolleté area than the Demipulse. The preoperative testing is a unique addition to the implantation procedure of the AspireSR, which may provide minor difficulties, and for which we provide several recommendations and tips. The price of the device is higher than for all other models. The new AspireSR generator offers a unique technical improvement over the previous Demipulse. Whether the highly interesting CBSD feature will provide an additional benefit for

  16. Effects of non-invasive vagus nerve stimulation on attack frequency over time and expanded response rates in patients with chronic cluster headache: a post hoc analysis of the randomised, controlled PREVA study.

    PubMed

    Gaul, Charly; Magis, Delphine; Liebler, Eric; Straube, Andreas

    2017-12-01

    In the PREVention and Acute treatment of chronic cluster headache (PREVA) study, attack frequency reductions from baseline were significantly more pronounced with non-invasive vagus nerve stimulation plus standard of care (nVNS + SoC) than with SoC alone. Given the intensely painful and frequent nature of chronic cluster headache attacks, additional patient-centric outcomes, including the time to and level of therapeutic response, were evaluated in a post hoc analysis of the PREVA study. After a 2-week baseline phase, 97 patients with chronic cluster headache entered a 4-week randomised phase to receive nVNS + SoC (n = 48) or SoC alone (n = 49). All 92 patients who continued into a 4-week extension phase received nVNS + SoC. Compared with SoC alone, nVNS + SoC led to a significantly lower mean weekly attack frequency by week 2 of the randomised phase; the attack frequency remained significantly lower in the nVNS + SoC group through week 3 of the extension phase (P < 0.02). Attack frequencies in the nVNS + SoC group were significantly lower at all study time points than they were at baseline (P < 0.05). Response rates were significantly greater with nVNS + SoC than with SoC alone when response was defined as attack frequency reductions of ≥25%, ≥50%, and ≥75% from baseline (≥25% and ≥50%, P < 0.001; ≥75%, P = 0.009). The 100% response rate was 8% with nVNS + SoC and 0% with SoC alone. Prophylactic nVNS led to rapid, significant, and sustained reductions in chronic cluster headache attack frequency within 2 weeks after its addition to SoC and was associated with significantly higher ≥25%, ≥50%, and ≥75% response rates than SoC alone. The rapid decrease in weekly attack frequency justifies a 4-week trial period to identify responders to nVNS, with a high degree of confidence, among patients with chronic cluster headache.

  17. A huge malignant peripheral nerve sheath tumor with hepatic metastasis arising from retroperitoneal ganglioneuroma.

    PubMed

    Meng, Z H; Yang, Y S; Cheng, K L; Chen, G Q; Wang, L P; Li, W

    2013-01-01

    Ganglioneuromas (GNs) are the rarest and most benign of the neuroblastic tumors. We experienced a case of huge retroperitoneal GN which differentiated into malignant peripheral nerve sheath tumors (MPNST) with hepatic metastasis. The tumor was located in the upper right quarter of the abdomen and pressed the right lobe of the liver, which was initially misdiagnosed as a liver carcinoma. The tumor shared blood supply with the right liver lob and had rich blood supplies from the abdominal aorta, renal artery and hepatic artery. It was also associated with skin pigment and recurrence shortly following resection. Our finding demonstrated that MPNST is a potent invasive malignant tumor and metastasis earlier with very poor prognosis.

  18. Neurophysiological intraoperative monitoring of the glossopharyngeal nerve: technical case report.

    PubMed

    Husain, Aatif M; Wright, David R; Stolp, Bret W; Friedman, Allan H; Keifer, John C

    2008-10-01

    Neurophysiological intraoperative monitoring of the glossopharyngeal nerve has been performed only with needle electrodes inserted into the pharyngeal muscles or soft palate. We describe a noninvasive method of monitoring this cranial nerve. A 30-year-old man who presented with headache, as well as speech and swallowing difficulty, underwent surgical resection of a right vagus nerve schwannoma. Neurophysiological intraoperative monitoring of multiple lower cranial nerves, including the glossopharyngeal and vagus nerves, was performed. The glossopharyngeal nerve was monitored with an adhesive surface electrode mounted on the cuff of a laryngeal mask airway, and the vagus nerve was monitored with a similar electrode mounted on the endotracheal tube. Successful monitoring allowed separation of the glossopharyngeal nerve from the tumor, and there was no postoperative swallowing deficit. Monitoring of the glossopharyngeal nerve with surface electrodes is possible and reliable, but it must be combined with vagus nerve monitoring.

  19. The vagus nerve, food intake and obesity

    PubMed Central

    Berthoud, Hans-Rudolf

    2008-01-01

    Food interacts with sensors all along the alimentary canal to provide the brain with information regarding its composition, energy content, and beneficial effect. Vagal afferents innervating the gastrointestinal tract, pancreas, and liver provide a rapid and discrete account of digestible food in the alimentary canal, as well as circulating and stored fuels, while vagal efferents together with the sympathetic nervous system and hormonal mechanisms codetermine the rate of nutrient absorption, partitioning, storage, and mobilization. Although vagal sensory mechanisms play a crucial role in the neural mechanism of satiation, there is little evidence suggesting a significant role in long-term energy homeostasis. However, increasing recognition of vagal involvement in the putative mechanisms making bariatric surgeries the most effective treatment for obesity should greatly stimulate future research to uncover the many details regarding the specific transduction mechanisms in the periphery and the inter-and intra-neuronal signaling cascades disseminating vagal information across the neuraxis. PMID:18482776

  20. [Vagus nerve stimulation in patients with migraine].

    PubMed

    Mosqueira, Antonio J; López-Manzanares, Lydia; Canneti, Beatrice; Barroso, Alejandro; García-Navarrete, Eduardo; Valdivia, Antonio; Vivancos, José

    2013-07-16

    Introduccion. La estimulacion del nervio vago (ENV) esta aprobada para el tratamiento de la epilepsia refractaria cuando no es posible cirugia resectiva, con una eficacia bien establecida. Series publicadas sugieren un efecto beneficioso de la ENV en la migraña. Objetivos. Determinar el grado de mejoria de la cefalea en pacientes migrañosos a los que se les habia implantado una ENV para tratamiento de la epilepsia refractaria y evaluar que variables se asocian a mayor posibilidad de exito con esta medida. Pacientes y metodos. Estudio observacional y retrospectivo desde el 1 de enero de 1999 hasta el 31 de diciembre de 2010. Se contacto telefonicamente con los pacientes con ENV para epilepsia refractaria, seleccionando a aquellos que cumplian los criterios de la Sociedad Internacional de Cefaleas para la migraña. Se recogieron edad, genero, año de implantacion, edad de inicio de la epilepsia y la migraña, mejoria de crisis y de migraña, presencia de aura migrañosa y coexistencia de sindrome ansiosodepresivo. Se contacto con 94 pacientes con ENV y se selecciono a 13 pacientes migrañosos. Resultados. Tras la implantacion de la ENV, se observo una disminucion de al menos el 50% de los episodios de migraña en nueve pacientes (69%) (p = 0,004), asi como una disminucion del numero de episodios de migraña en aquellos pacientes que tambien habian reducido sus crisis epilepticas (p = 0,012). No se observaron asociaciones estadisticamente significativas en cuanto al sexo, edad, tiempo de evolucion, existencia de aura migrañosa o coexistencia de sindrome ansiosodepresivo. Conclusiones. La ENV podria resultar beneficiosa en pacientes con migraña, especialmente en casos de dificil control. Debido al tipo estudio, hay que tomar estas conclusiones con precaucion. Seran necesarios estudios clinicos prospectivos antes de llevarse a la practica clinica habitual.

  1. Development of the human dorsal nucleus of the vagus.

    PubMed

    Cheng, Gang; Zhu, Hua; Zhou, Xiangtian; Qu, Jia; Ashwell, K W S; Paxinos, G

    2008-01-01

    The dorsal nucleus of the vagus nerve plays an integral part in the control of visceral function. The aim of the present study was to correlate structural and chemical changes in the developing nucleus with available data concerning functional maturation of human viscera and reflexes. The fetal development (ages 9 to 26 weeks) of the human dorsal nucleus of the vagus nerve has been examined with the aid of Nissl staining and immunocytochemistry for calbindin and tyrosine hydroxylase. By 13 weeks, the dorsal vagal nucleus emerges as a distinct structure with at least two subnuclei visible in Nissl stained preparations. By 15 weeks, three subnuclei (dorsal intermediate, centrointermediate and ventrointermediate) were clearly discernible at the open medulla level with caudal and caudointermediate subnuclei visible at the level of the area postrema. All subnuclei known to exist in the adult were visible by 21 weeks and cytoarchitectonic differentiation of the nucleus was largely completed by 25 weeks. The adult distribution pattern of calbindin and tyrosine hydroxylase immunoreactive neurons was also largely completed by 21 weeks, although morphological differentiation of labeled neurons continued until the last age examined (26 weeks). The structural development of the dorsal nucleus of the vagus nerve appears to occur in parallel with functional maturation of the cardiovascular and gastric movements, which the nucleus controls.

  2. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents.

    PubMed

    Calderón-Garcidueñas, Lilian; Reynoso-Robles, Rafael; Pérez-Guillé, Beatriz; Mukherjee, Partha S; Gónzalez-Maciel, Angélica

    2017-11-01

    Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Primary hepatic malignant peripheral nerve sheath tumor successfully treated with combination therapy: a case report and literature review

    PubMed Central

    Jung, Hae Il; Lee, Hyoung Uk; Ahn, Tae Sung; Lee, Jong Eun; Lee, Hyun Yong; Cho, Hyon Doek; Lee, Sang Cheol

    2016-01-01

    Primary malignant peripheral nerve sheath tumor (MPNST) in a young female patient, not associated with neurofibromatosis type-I is extremely rare in the liver. A 33-year-old female was admitted with a right flank pain for a weak. The CT scan showed 12.5-cm-sized mass located at the right hepatic lobe. At laparotomy, about 20.0-cm-sized mass was on the right hepatic lobe with attachment to right diaphragmatic pleura. Right hepatic lobe and adherent part of diaphragmatic pleura were resected. On histology and immunohistochemistry, it was diagnosed MPNST. Adjuvant radiotherapy for the right diaphragmatic pleura and adjuvant chemotherapy with adriamycin, ifosfamide and cisplatin were sequentially performed. The prognosis of MPNST is generally poor and it is associated with a highly aggressive course of recurrence, metastases, and death. Our case is probably a first report about combination therapy. PMID:27904856

  4. Neuromuscular ultrasound of cranial nerves.

    PubMed

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  5. Hepatitis

    MedlinePlus

    ... CPR: A Real Lifesaver Kids Talk About: Coaches Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... have liver damage because of it. What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  6. Central mechanisms of cranial nerve stimulation for epilepsy

    PubMed Central

    Fanselow, Erika E.

    2012-01-01

    Stimulation of peripheral cranial nerves has been shown to exert anticonvulsant effects in animal models as well as in human patients. Specifically, stimulation of both the trigeminal and vagus nerves has been shown in multiple clinical trials to be anticonvulsant, and stimulation of these nerves at therapeutic levels does not cause pain or negatively affect brain function. However, the neuronal mechanisms by which such stimulation exerts therapeutic effects are not well understood. In this review, the possible locations of action for trigeminal nerve stimulation (TNS) and vagus nerve stimulation (VNS) are explored. Additionally, the multiple time scales on which TNS and VNS function are discussed. PMID:23230529

  7. Neural mechanism of gastric motility regulation by electroacupuncture at RN12 and BL21: A paraventricular hypothalamic nucleus-dorsal vagal complex-vagus nerve-gastric channel pathway

    PubMed Central

    Wang, Hao; Liu, Wen-Jian; Shen, Guo-Ming; Zhang, Meng-Ting; Huang, Shun; He, Ying

    2015-01-01

    in the DVC and the PVN, and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility. CONCLUSION: EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVC-vagus-gastric neural pathway. PMID:26730159

  8. Neural mechanism of gastric motility regulation by electroacupuncture at RN12 and BL21: A paraventricular hypothalamic nucleus-dorsal vagal complex-vagus nerve-gastric channel pathway.

    PubMed

    Wang, Hao; Liu, Wen-Jian; Shen, Guo-Ming; Zhang, Meng-Ting; Huang, Shun; He, Ying

    2015-12-28

    , and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility. EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVC-vagus-gastric neural pathway.

  9. Fracture of skull base with delayed multiple cranial nerve palsies.

    PubMed

    Yildirim, Altan; Gurelik, Mustafa; Gumus, Cesur; Kunt, Tanfer

    2005-07-01

    This report describes a pediatric case of delayed glossopharyngeal nerve, vagus nerve, and facial nerve palsies after a head injury. Computed tomography scan of the skull base revealed the fracture of the petrous part of the temporal bone, and the fracture involved the tip of petrous pyramid, in front of the jugular foramen. The anatomical features, mechanisms, diagnosis, and treatment are discussed.

  10. Hepatitis

    MedlinePlus

    ... clotting problems or chronic liver disease. previous continue Hepatitis B and Hepatitis C Although hep A is a ... does — through direct contact with infected body fluids. Hepatitis B and C are even more easily passed in ...

  11. Hepatitis

    MedlinePlus

    ... A if they've been vaccinated against it. Hepatitis B Hepatitis B is a more serious infection. It may lead ... of which cause severe illness and even death. Hepatitis B virus (HBV) is transmitted from person to person ...

  12. Hepatitis

    MedlinePlus

    ... a problem with the liver itself What Is Hepatitis A? Hepatitis A virus (HAV) is contagious, usually spreading to others ... objects contaminated by feces (poop) containing HAV. The hepatitis A vaccine has helped to make the infection rare ...

  13. The hepatic cannabinoid 1 receptor as a modulator of hepatic energy state and food intake.

    PubMed

    Cooper, Martin E; Regnell, Simon E

    2014-01-01

    The cannabinoid 1 receptor (CB1R) has a well-established role in appetite regulation. Central CB1R antagonists, notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals, but were discontinued due to psychiatric side-effects. The CB1R is also expressed peripherally, where its effects include promotion of liver fat accumulation, which consumes ATP. Type 2 diabetes in obese subjects is linked to excess liver fat, whilst there is a negative correlation between hepatic ATP content and insulin resistance. A decreased hepatic ATP/AMP ratio increases food intake by signals via the vagus nerve to the brain. The hepatic cannabinoid system is highly upregulated in obesity, and the effects of hepatic CB1R activation include increased activity of lipogenic and gluconeogenic transcription factors. Thus, blockade of hepatic CB1Rs could contribute significantly to the weight-reducing and insulin-sensitizing effects of CB1R antagonists. Additionally, upregulation of the hepatic CB1R may contribute to chronic liver inflammation, fibrosis and cirrhosis from causes including obesity, alcoholism and viral hepatitis. Peripheral CB1R antagonists induce weight loss and metabolic improvements in obese rodents; however, as there is evidence that hepatic CB1Rs are predominately intracellular, due to high intrinsic clearance, many drugs may not effectively block these receptors and therefore have limited efficacy. Hepatoselective CB1R antagonists may be effective at reducing hepatic steatosis, insulin resistance and bodyweight in obese, diabetic patients, with far fewer side-effects than first-generation CB1R antagonists. Additionally, such compounds may be effective in treating inflammatory liver disease, such as non-alcoholic steatohepatitis, reducing the likelihood of disease progression to cirrhosis or cancer. © 2013 The British Pharmacological Society.

  14. Disorders of Cranial Nerves IX and X

    PubMed Central

    Erman, Audrey B.; Kejner, Alexandra E.; Hogikyan, Norman D.; Feldman, Eva L.

    2014-01-01

    The glossopharyngeal and vagus nerves mediate the complex interplay between the many functions of the upper aerodigestive tract. Defects may occur anywhere from the brainstem to the peripheral nerve and can result in significant impairment in speech, swallowing, and breathing. Multiple etiologies can produce symptoms. This review will broadly examine the normal functions, clinical examination, and various pathologies of cranial nerves IX and X. PMID:19214937

  15. Disorders of cranial nerves IX and X.

    PubMed

    Erman, Audrey B; Kejner, Alexandra E; Hogikyan, Norman D; Feldman, Eva L

    2009-02-01

    The glossopharyngeal and vagus nerves mediate the complex interplay between the many functions of the upper aerodigestive tract. Defects may occur anywhere from the brainstem to the peripheral nerve and can result in significant impairment in speech, swallowing, and breathing. Multiple etiologies can produce symptoms. In this review, the authors broadly examine the normal functions, clinical examination, and various pathologies of cranial nerves IX and X.

  16. A light and electron microscopic examination of the vagal hepatic branch of the rat.

    PubMed

    Prechtl, J C; Powley, T L

    1987-01-01

    The rat's vagal hepatic branch and associated tissues were studied using light and electron microscopy. Whole mounts, serial sections, and vascular endocasts were used to characterize the tissue from the anterior vagal trunk to the porta hepatis. Fiber number and caliber as well as intraneural organization were analyzed from complete cross-sectional electron micrographic montages of the hepatic branch sampled at its point of separation from the anterior vagal trunk. The hepatic branch ramified from the anterior vagus in one (in 47% of the specimens), two (in 37%) or three (in 16%) bundles. The single bundled hepatic branch contained 2887 +/- 287 unmyelinated fibers, and their size distribution, with a mean diameter of 0.66 +/- 0.02 micron, was Gaussian. Myelinated fibers numbered only 21 +/- 4 per branch and had a complex size distribution ranging from 0.5 to 1.8 micron with a mean of 1.2 +/- 0.03 micron. Forty four +/- 6% of the myelinated fibers were found in a single "subfascicle" in the dorso-medial pole of the nerve. Whole mounts at this level revealed that a distinct bundle, here designated an extrinsic "hepato-gastric bundle", occurred within the hepatic branch and linked the omental hepatic branch and the distal anterior gastric branch, apparently without central vagal connections. In the lesser omentum, between the esophagus and the hepatic artery proper, the hepatic branch formed a plexus which was characterized by numerous nerve divisions, anastomoses and large paraganglia (196-463 glomus cells per paraganglion). This plexiform segment ended with the recombining of the hepatic branch into 5-7 bundles which variously ascended in the porta, descended on the hepatic artery proper, or traversed the portal vein. Through its omental course, the hepatic branch traveled in close apposition to the hepato-esophageal artery and the corresponding vein as well as a prominent lymphatic vessel with associated hemolymph nodes.

  17. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons.

    PubMed

    Bratton, B O; Martelli, D; McKinley, M J; Trevaks, D; Anderson, C R; McAllen, R M

    2012-11-01

    The 'inflammatory reflex' acts through efferent neural connections from the central nervous system to lymphoid organs, particularly the spleen, that suppress the production of inflammatory cytokines. Stimulation of the efferent vagus has been shown to suppress inflammation in a manner dependent on the spleen and splenic nerves. The vagus does not innervate the spleen, so a synaptic connection from vagal preganglionic neurons to splenic sympathetic postganglionic neurons was suggested. We tested this idea in rats. In a preparatory operation, the anterograde tracer DiI was injected bilaterally into the dorsal motor nucleus of vagus and the retrograde tracer Fast Blue was injected into the spleen. On histological analysis 7-9 weeks later, 883 neurons were retrogradely labelled from the spleen with Fast Blue as follows: 89% in the suprarenal ganglia (65% left, 24% right); 11% in the left coeliac ganglion; but none in the right coeliac or either of the superior mesenteric ganglia. Vagal terminals anterogradely labelled with DiI were common in the coeliac but sparse in the suprarenal ganglia, and confocal analysis revealed no putative synaptic connection with any Fast Blue-labelled cell in either ganglion. Electrophysiological experiments in anaesthetized rats revealed no effect of vagal efferent stimulation on splenic nerve activity or on that of 15 single splenic-projecting neurons recorded in the suprarenal ganglion. Together, these findings indicate that vagal efferent neurons in the rat neither synapse with splenic sympathetic neurons nor drive their ongoing activity.

  18. Vagus nerve stimulation magnet activation for seizures: a critical review.

    PubMed

    Fisher, R S; Eggleston, K S; Wright, C W

    2015-01-01

    Some patients receiving VNS Therapy report benefit from manually activating the generator with a handheld magnet at the time of a seizure. A review of 20 studies comprising 859 subjects identified patients who reported on-demand magnet mode stimulation to be beneficial. Benefit was reported in a weighted average of 45% of patients (range 0-89%) using the magnet, with seizure cessation claimed in a weighted average of 28% (range 15-67%). In addition to seizure termination, patients sometimes reported decreased intensity or duration of seizures or the post-ictal period. One study reported an isolated instance of worsening with magnet stimulation (Arch Pediatr Adolesc Med, 157, 2003 and 560). All of the reviewed studies assessed adjunctive magnet use. No studies were designed to provide Level I evidence of efficacy of magnet-induced stimulation. Retrospective analysis of one pivotal randomized trial of VNS therapy showed significantly more seizures terminated or improved in the active stimulation group vs the control group. Prospective, controlled studies would be required to isolate the effect and benefit of magnet mode stimulation and to document that the magnet-induced stimulation is the proximate cause of seizure reduction. Manual application of the magnet to initiate stimulation is not always practical because many patients are immobilized or unaware of their seizures, asleep or not in reach of the magnet. Algorithms based on changes in heart rate at or near the onset of the seizure provide a methodology for automated responsive stimulation. Because literature indicates additional benefits from on-demand magnet mode stimulation, a potential role exists for automatic activation of stimulation.

  19. Neuromuscular Ultrasound of Cranial Nerves

    PubMed Central

    Tawfik, Eman A.; Cartwright, Michael S.

    2015-01-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed. PMID:25851889

  20. Hepatitis

    MedlinePlus

    ... low because of routine testing of donated blood. Sexual transmission and transmission among family members through close contact ... associated with drinking contaminated water. Hepatitis Viruses ... B Blood, needles, sexual 10% of older children develop chronic infection. 90% ...

  1. Effects of perineural capsaicin treatment of the abdominal vagus on endotoxin fever and on a non-febrile thermoregulatory event.

    PubMed

    Pétervári, Erika; Garami, András; Pákai, Eszter; Székely, Miklós

    2005-01-01

    Following perineural capsaicin pretreatment of the main trunks of the abdominal vagus of rats, the first and the second phases of the polyphasic febrile response to intravenous lipopolysaccharide were unaltered, while the third phase of fever course (peak at 5 h) was attenuated. In rats desensitized by intraperitoneal (i.p.) capsaicin (i.e. abdominal non-systemic desensitization), mainly the first but not the later fever phases were reduced. The postprandial hyperthermia to intragastric injection of BaSO4 suspension was attenuated by either i.p. or perineural capsaicin treatment. It is concluded that, in contrast to the accepted model of postprandial hyperthermia, which is mediated by capsaicin-sensitive fibers of the abdominal vagus, in the early phase of polyphasic fever the vagal afferent nerves appear to play no role. The influence of i.p. capsaicin-desensitization on this initiating fever phase is independent of the vagus, and a capsaicin-induced alteration of endotoxin action in the liver, prior to vagal nerve endings, is more likely. The late febrile phase is probably influenced by efferent vagal fibers, which might be damaged more easily by perineural than i.p. capsaicin treatment.

  2. Anatomical basis of the risk of injury to the right laryngeal recurrent nerve during thoracic surgery.

    PubMed

    Benouaich, Vincent; Porterie, Jean; Bouali, Ourdia; Moscovici, Jacques; Lopez, Raphaël

    2012-08-01

    Despite the intrathoracic part being short, the right laryngeal recurrent nerve is often injured during thoracic surgery. The aim of this cadaver study was to understand the mechanisms of right laryngeal recurrent nerve injuries during thoracic surgery and to describe anatomical landmarks for its preservation. Dissections were performed on 10 fresh human cadavers. A right anterolateral thoracic wall segment was removed, preserving the first rib. Dissections were carried out to identify the following structures: first rib, esophagus, trachea, right main bronchus, right brachiocephalic and subclavian vessels, azygos vein, phrenic nerve, vagus nerve, and right laryngeal recurrent nerve. The distance between the origin of the right laryngeal recurrent nerve and its adjacent structures was assessed. Moderate traction of the thoracic part of the vagus nerve resulted in a downward translation of the right laryngeal recurrent nerve's origin. In such conditions, the right laryngeal recurrent nerve's origin was distant of 14.8 mm (±2.89 mm) from the subclavian artery. Intraoperative incidence of right laryngeal recurrent nerve direct injury could be decreased by understanding the detailed course of its intrathoracic part. Moreover, traction on the intrathoracic part of the right vagus nerve may result in indirect lesions of the right laryngeal recurrent nerve: stretch induced lesions and nerve vasculature's lesions.

  3. Central insulin-mediated regulation of hepatic glucose production [Review].

    PubMed

    Inoue, Hiroshi

    2016-01-01

    Insulin controls hepatic glucose production (HGP) and maintains glucose homeostasis through the direct action of hepatic insulin receptors, as well as the indirect action of insulin receptors in the central nervous system. Insulin acts on insulin receptors in the hypothalamic arcuate nucleus, activates ATP-sensitive potassium channels in a phosphoinositide 3-kinase (PI3K)-dependent manner, induces hyperpolarization of the hypothalamic neurons, and regulates HGP via the vagus nerve. In the liver, central insulin action augments IL-6 expression in Kupffer cells and activates STAT3 transcription factors in hepatocytes. Activated STAT3 suppresses the gene expression of gluconeogenic enzymes, thereby reducing HGP. It has become evident that nutrients such as glucose, fatty acids, and amino acids act upon the hypothalamus together with insulin, affecting HGP. On the other hand, HGP control by central insulin action is impeded in obesity and impeded by insulin resistance due to disturbance of PI3K signaling and inflammation in the hypothalamus or inhibition of STAT3 signaling in the liver. Although the mechanism of control of hepatic gluconeogenic gene expression by central insulin action is conserved across species, its importance in human glucose metabolism has not been made entirely clear and its elucidation is anticipated in the future.

  4. Arterial supply of the lower cranial nerves: a comprehensive review.

    PubMed

    Hendrix, Philipp; Griessenauer, Christoph J; Foreman, Paul; Loukas, Marios; Fisher, Winfield S; Rizk, Elias; Shoja, Mohammadali M; Tubbs, R Shane

    2014-01-01

    The lower cranial nerves receive their arterial supply from an intricate network of tributaries derived from the external carotid, internal carotid, and vertebrobasilar territories. A contemporary, comprehensive literature review of the vascular supply of the lower cranial nerves was performed. The vascular supply to the trigeminal, facial, vestibulocochlear, glossopharyngeal, vagus, spinal accessory, and hypoglossal nerves are illustrated with a special emphasis on clinical issues. Frequently the external carotid, internal carotid, and vertebrobasilar territories all contribute to the vascular supply of an individual cranial nerve along its course. Understanding of the vasculature of the lower cranial nerves is of great relevance for skull base surgery. Copyright © 2013 Wiley Periodicals, Inc.

  5. Injury to the Superior Laryngeal Branch of the Vagus During Thyroidectomy: Lesson or Myth?

    PubMed Central

    Crookes, Peter F.; Recabaren, James A.

    2001-01-01

    Objective To examine the historical evidence that the thyroidectomy performed on operatic soprano Amelita Galli-Curci was responsible for the abrupt termination of her career. Summary Background Data The superior laryngeal branch of the vagus nerve may be injured during thyroidectomy, producing vocal defects more subtle than those found after recurrent nerve injury. It is widely believed that Galli-Curci suffered superior laryngeal nerve injury during her thyroidectomy by Arnold Kegel, MD, in 1935, resulting in the termination of her career. Methods The authors examined contemporary press reviews after surgery, conducted interviews with colleagues and relatives of the surgeon, and compared the career of Galli-Curci with that of other singers. Results Evidence against the prevailing view is to be found in the fact that she continued to perform acceptably after surgery, her continued friendly relationship with the surgeon for years afterward, the absence of the typical effects of superior laryngeal nerve injury, and the presence of other explanations for the gradual decline in her vocal abilities (documentation of deterioration before surgery, physiologic changes in the larynx comparable to those found in most other famous sopranos who retire at about the same age or earlier, and the possible development of myxedema). Conclusions The story should no longer be perpetuated in surgical textbooks and papers. PMID:11303143

  6. Topographic anatomy of the external branch of the superior laryngeal nerve. Its importance in head and neck surgery.

    PubMed

    Kambic, V; Zargi, M; Radsel, Z

    1984-11-01

    The authors have studied the anatomy of the external branch of the superior laryngeal nerve in its entirety on 40 fresh cadavers, and they have drawn the following conclusions: the nerve ramifies from the vagus immediately below the nodose ganglion or in the ganglion itself. The nerve splits into two branches approximately 1.5 cm below the ganglion nodosum. In four cases, both branches originated from the vagus itself. In one case, anastomosis of the external branch of the superior laryngeal nerve with the recurrent nerve was found. The external branch of the superior laryngeal nerve is not usually severed at supraglottic laryngectomy but the nerve is at risk during neck dissections, resection of Zenker's diverticula and thyroidectomy. An accurate knowledge of its course should reduce the incidence of injury to the branches of the superior laryngeal nerve during surgery.

  7. Visceral nerves: vagal and sympathetic innervation.

    PubMed

    Teff, Karen L

    2008-01-01

    The autonomic nervous system is the primary neural mediator of physiological responses to internal and external stimuli. It is composed of 2 branches: the sympathetic nervous system, which mediates catabolic responses, and the parasympathetic nervous system, composed of the vagus nerve, which regulates anabolic responses. As the vagus nerve innervates most tissues involved in nutrient metabolism, including the stomach, pancreas, and liver, activation of vagal efferent activity has the potential to influence how nutrients are absorbed and metabolized. Vagal efferent activity is initially activated at the onset of food intake by receptors in the oropharyngeal cavity and then during food intake postprandially. Vagal efferent innervation of the pancreas contributes to early-phase insulin release as well as to optimizing postprandial insulin release. In the absence of vagal activation, which occurs when glucose is administered intragastrically, postprandial glucose levels are higher and insulin levels blunted compared with when there is activation of oropharyngeal receptors by food. An induction of vagal efferent activity also occurs during chronic pancreatic B-cell challenge with 48-hour glucose infusions. Under these conditions, the compensatory increase in insulin secretion is partially mediated by an increase in vagal efferent activity. In conclusion, the vagus nerve, part of the parasympathetic nervous system, plays a critical role in the regulation of blood glucose levels and is an often overlooked factor contributing to glucose homeostasis.

  8. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface.

    PubMed

    Higashiyama, Hiroki; Hirasawa, Tatsuya; Oisi, Yasuhiro; Sugahara, Fumiaki; Hyodo, Susumu; Kanai, Yoshiakira; Kuratani, Shigeru

    2016-09-01

    The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc.

  9. Sex differences in morphometric aspects of the peripheral nerves and related diseases.

    PubMed

    Moriyama, Hiroshi; Hayashi, Shogo; Inoue, Yuriko; Itoh, Masahiro; Otsuka, Naruhito

    2016-07-15

    The elucidation of the relationship between the morphology of the peripheral nerves and the diseases would be valuable in developing new medical treatments on the assumption that characteristics of the peripheral nerves in females are different from those in males. We used 13 kinds of the peripheral nerve. The materials were obtained from 10 Japanese female and male cadavers. We performed a morphometric analysis of nerve fibers. We estimated the total number of myelinated axons, and calculated the average transverse area and average circularity ratio of myelinated axons in the peripheral nerves. There was no statistically significant difference in the total number, average transverse area, or average circularity ratio of myelinated axons between the female and male specimens except for the total number of myelinated axons in the vestibular nerve and the average circularity ratio of myelinated axons in the vagus nerve. The lower number of myelinated axons in the female vestibular nerve may be one of the reasons why vestibular disorders have a female preponderance. Moreover, the higher average circularity ratio of myelinated axons in the male vagus nerve may be one reason why vagus nerve activity to modulate pain has a male preponderance.

  10. Sex differences in morphometric aspects of the peripheral nerves and related diseases

    PubMed Central

    Moriyama, Hiroshi; Hayashi, Shogo; Inoue, Yuriko; Itoh, Masahiro; Otsuka, Naruhito

    2016-01-01

    BACKGROUND: The elucidation of the relationship between the morphology of the peripheral nerves and the diseases would be valuable in developing new medical treatments on the assumption that characteristics of the peripheral nerves in females are different from those in males. METHODS: We used 13 kinds of the peripheral nerve. The materials were obtained from 10 Japanese female and male cadavers. We performed a morphometric analysis of nerve fibers. We estimated the total number of myelinated axons, and calculated the average transverse area and average circularity ratio of myelinated axons in the peripheral nerves. RESULTS: There was no statistically significant difference in the total number, average transverse area, or average circularity ratio of myelinated axons between the female and male specimens except for the total number of myelinated axons in the vestibular nerve and the average circularity ratio of myelinated axons in the vagus nerve. CONCLUSIONS: The lower number of myelinated axons in the female vestibular nerve may be one of the reasons why vestibular disorders have a female preponderance. Moreover, the higher average circularity ratio of myelinated axons in the male vagus nerve may be one reason why vagus nerve activity to modulate pain has a male preponderance. PMID:27589511

  11. Schwannoma originating from lower cranial nerves: report of 4 cases.

    PubMed

    Oyama, Hirofumi; Kito, Akira; Maki, Hideki; Hattori, Kenichi; Noda, Tomoyuki; Wada, Kentaro

    2012-02-01

    Four cases of schwannoma originating from the lower cranial nerves are presented. Case 1 is a schwannoma of the vagus nerve in the parapharyngeal space. The operation was performed by the transcervical approach. Although the tumor capsule was not dissected from the vagus nerve, hoarseness and dysphagia happened transiently after the operation. Case 2 is a schwannoma in the jugular foramen. The operation was performed by the infralabyrinthine approach. Although only the intracapsular tumor was enucleated, facial palsy, hoarseness, dysphagia and paresis of the deltoid muscle occurred transiently after the operation. The patient's hearing had also slightly deteriorated. Case 3 is a dumbbell-typed schwannoma originating from the hypoglossal nerve. The hypoglossal canal was markedly enlarged by the tumor. As the hypoglossal nerves were embedded in the tumor, the tumor around the hypoglossal nerves was not resected. The tumor was significantly enlarged for a while after stereotactic irradiation. Case 4 is an intracranial cystic schwannoma originating from the IXth or Xth cranial nerves. The tumor was resected through the cerebello-medullary fissure. The tumor capsule attached to the brain stem was not removed. Hoarseness and dysphagia happened transiently after the operation. Cranial nerve palsy readily occurs after the removal of the schwannoma originating from the lower cranial nerves. Mechanical injury caused by retraction, extension and compression of the nerve and heat injury during the drilling of the petrous bone should be cautiously avoided.

  12. Cardiac autonomic nerve distribution and arrhythmia☆

    PubMed Central

    Liu, Quan; Chen, Dongmei; Wang, Yonggang; Zhao, Xin; Zheng, Yang

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia. DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation as the key words. SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included. MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated. RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system. CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in

  13. Motonuclear changes after cranial nerve injury and regeneration.

    PubMed

    Fernandez, E; Pallini, R; Lauretti, L; La Marca, F; Scogna, A; Rossi, G F

    1997-09-01

    Little is known about the mechanisms at play in nerve regeneration after nerve injury. Personal studies are reported regarding motonuclear changes after regeneration of injured cranial nerves, in particular of the facial and oculomotor nerves, as well as the influence that the natural molecule acetyl-L-carnitine (ALC) has on post-axotomy cranial nerve motoneuron degeneration after facial and vagus nerve lesions. Adult and newborn animal models were used. Massive motoneuron response after nerve section and reconstruction was observed in the motonuclei of all nerves studied. ALC showed to have significant neuroprotective effects on the degeneration of axotomized motoneurons. Complex quantitative, morphological and somatotopic nuclear changes occurred that sustain new hypotheses regarding the capacities of motoneurons to regenerate and the possibilities of new neuron proliferation. The particularities of such observations are described and discussed.

  14. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation.

    PubMed

    Patel, Yogi A; Butera, Robert J

    2015-06-01

    Kilohertz electrical stimulation (KES) has been shown to induce repeatable and reversible nerve conduction block in animal models. In this study, we characterized the ability of KES stimuli to selectively block specific components of stimulated nerve activity using in vivo preparations of the rat sciatic and vagus nerves. KES stimuli in the frequency range of 5-70 kHz and amplitudes of 0.1-3.0 mA were applied. Compound action potentials were evoked using either electrical or sensory stimulation, and block of components was assessed through direct nerve recordings and muscle force measurements. Distinct observable components of the compound action potential had unique conduction block thresholds as a function of frequency of KES. The fast component, which includes motor activity, had a monotonically increasing block threshold as a function of the KES frequency. The slow component, which includes sensory activity, showed a nonmonotonic block threshold relationship with increasing KES frequency. The distinct trends with frequency of the two components enabled selective block of one component with an appropriate choice of frequency and amplitude. These trends in threshold of the two components were similar when studying electrical stimulation and responses of the sciatic nerve, electrical stimulation and responses of the vagus nerve, and sensorimotor stimulation and responses of the sciatic nerve. This differential blocking effect of KES on specific fibers can extend the applications of KES conduction block to selective block and stimulation of neural signals for neuromodulation as well as selective control of neural circuits underlying sensorimotor function.

  15. Anatomical evidence for the absence of a morphologically distinct cranial root of the accessory nerve in man.

    PubMed

    Lachman, Nirusha; Acland, Robert D; Rosse, Cornelius

    2002-01-01

    The accessory nerve is conventionally described as having a cranial and spinal root. According to standard descriptions the cranial root (or part) is formed by rootlets that emerge from the medulla between the olive and the inferior cerebellar peduncle. These rootlets are considered to join the spinal root, travel with it briefly, then separate within the jugular foramen to become part of the vagus nerve. In 15 fresh specimens we exposed the posterior cranial fossa with a coronal cut through the foramen magnum and explored the course of each posterior medullary rootlet (PMR) arising from within the retro-olivary groove. We chose the caudal end of the olive as the landmark for the caudal end of the medulla. In all specimens every PMR that did not contribute to the glossopharyngeal nerve joined the vagus nerve at the jugular foramen. The distance between the caudal limit of the olive and the origin of the most caudal PMR that contributed to the vagus nerve ranged from 1-21 mm (mean = 8.8 mm). All rootlets that joined the accessory nerve arose caudal to the olive. The distance from the caudal limit of the olive and the most rostral accessory rootlet ranged from 1-15 mm (mean = 5.4 mm). We were unable to demonstrate any connection between the accessory and vagus nerves within the jugular foramen. Our findings indicate that the accessory nerve has no cranial root; it consists only of the structure hitherto referred to as its spinal root.

  16. Caffeine-induced natriuresis and diuresis via blockade of hepatic adenosine-mediated sensory nerves and a hepatorenal reflex.

    PubMed

    Ming, Zhi; Lautt, W Wayne

    2010-11-01

    The hepatorenal reflex, activated by intrahepatic adenosine, is involved in the regulation of urine production in healthy rats and renal pathogenesis secondary to liver injury. Hepatic adenosine A1 receptors regulate the hepatorenal reflex. The aim of the present study was to evaluate whether caffeine mediates renal natriuresis and diuresis in healthy and diseased liver through this mechanism. Rats were anesthetized and instrumented to monitor systemic, hepatic, and renal circulation and urine production. Intrahepatic (intraportal but not intravenous) caffeine (5 mg·kg-1) increased urine flow (~82%) in healthy rats. This effect was abolished by liver denervation. Intraportal infusion of adenosine decreased urine production, and this response was abolished by intraportal but not intravenous caffeine. Liver injury was induced by intraperitoneal injection of thioacetamide (500 mg·kg-1), and functional assessment was performed 24 h later. Liver injury was associated with lower (~30%) glomerular filtration rate, lower (~18%) renal arterial blood flow, and lower urine production. Intraportal but not intravenous caffeine improved basal urine production and renal ability to increase urine production in response to saline overload. The liver-dependent diuretic effect of caffeine is consistent with the hypothesis for the adenosine-mediated mechanism of hepatorenal syndrome.

  17. Vagal Nerve Monitoring during Parapharyngeal Space Tumor Removal

    PubMed Central

    Leonetti, John P.; Mokarry, Victor P.; Fan, Zhaomin; Warf, Patricia; Hudson, Elizabeth

    1994-01-01

    The vagus nerve innervates the intrinsic and extrinsic laryngeal musculature as well as the complex pharyngeal plexus. Acute paralysis of this nerve results in dysfunctional speech, deglutition, and airway protection. These untoward effects, which lead to additional infectious and aerodigestive complications, may arise following manipulation of the vagus nerve during the surgical removal of a variety of neoplasms found in the parapharyngeal space. The vagal nerve has been intraoperatively monitored in an effort to maintain its anatomic and functional integrity. Bipolar hook-wire electrodes are introduced transcutaneously through the cricothyroid membrane and are guided into the vocalis muscle by an assistant performing direct laryngoscopy. Continuous, real-time monitoring of the vagal nerve is provided by audio and visual feedback to the operating surgeon. Potentially injurious stretching, heating, and compression of the nerve are easily detected, and monopolar stimulation of the nerve is used to map the nerve's course through the tumor bed. This presentation outlines our technique for vagal nerve monitoring in patients with tumors of the parapharyngeal space and intact preoperative vocal cord mobility. Selected cases are presented and illustrated through intraoperative and postoperative videotapes. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:17171174

  18. [Palliative radiation treatment for superior mediastinal lymph nodes of a patient with recurrent laryngeal nerve palsy-a case report of advanced lung cancer].

    PubMed

    Takahashi, Eisuke; Koshiishi, Haruya; Takahashi, Masayoshi; Saitoh, Tsutomu; Takei, Hidefumi; Hayashi, Naganobu

    2012-11-01

    The recurrent laryngeal nerve is a branch of the vagus nerve. On the right side, it branches anteriorly to the subclavian artery in the neck. In cases of malignant diseases, lymph node metastasis can lead to recurrent laryngeal nerve palsy. Patients with this condition often suffer from aspiration pneumonia, which requires tube feeding. In this case of an advanced lung cancer, we treated the involved lymph node in the neck with palliative radiotherapy, which restored normal nerve function.

  19. An unusual course of the left recurrent laryngeal nerve.

    PubMed

    Khaki, Amir A; Tubbs, R Shane; Shoja, Mohammadali M; Zarrintan, Sina

    2007-04-01

    Variation in the course of the left recurrent laryngeal nerve is seemingly very rare. During the routine dissection of an adult male cadaver, the entire left recurrent laryngeal nerve after branching from the left vagus nerve was noted to travel medial to the ligamentum arteriosum. We hypothesize that this rare variation may occur, if the left recurrent laryngeal nerve passes inferior to the fifth rather than the sixth aortic arch during embryological development. As our case report demonstrates, the relationship between the ligamentum arteriosum and the left recurrent laryngeal nerve is not absolute. Although seemingly rare, cardiothoracic surgeons must consider variations of the left recurrent laryngeal nerve during surgical procedures in the region of the ligamentum arteriosum in order to minimize potential postoperative complications.

  20. Cranial nerve vascular compression syndromes of the trigeminal, facial and vago-glossopharyngeal nerves: comparative anatomical study of the central myelin portion and transitional zone; correlations with incidences of corresponding hyperactive dysfunctional syndromes.

    PubMed

    Guclu, Bulent; Sindou, Marc; Meyronet, David; Streichenberger, Nathalie; Simon, Emile; Mertens, Patrick

    2011-12-01

    The aim of this study was to evaluate the anatomy of the central myelin portion and the central myelin-peripheral myelin transitional zone of the trigeminal, facial, glossopharyngeal and vagus nerves from fresh cadavers. The aim was also to investigate the relationship between the length and volume of the central myelin portion of these nerves with the incidences of the corresponding cranial dysfunctional syndromes caused by their compression to provide some more insights for a better understanding of mechanisms. The trigeminal, facial, glossopharyngeal and vagus nerves from six fresh cadavers were examined. The length of these nerves from the brainstem to the foramen that they exit were measured. Longitudinal sections were stained and photographed to make measurements. The diameters of the nerves where they exit/enter from/to brainstem, the diameters where the transitional zone begins, the distances to the most distal part of transitional zone from brainstem and depths of the transitional zones were measured. Most importantly, the volume of the central myelin portion of the nerves was calculated. Correlation between length and volume of the central myelin portion of these nerves and the incidences of the corresponding hyperactive dysfunctional syndromes as reported in the literature were studied. The distance of the most distal part of the transitional zone from the brainstem was 4.19  ±  0.81 mm for the trigeminal nerve, 2.86  ±  1.19 mm for the facial nerve, 1.51  ±  0.39 mm for the glossopharyngeal nerve, and 1.63  ±  1.15 mm for the vagus nerve. The volume of central myelin portion was 24.54  ±  9.82 mm(3) in trigeminal nerve; 4.43  ±  2.55 mm(3) in facial nerve; 1.55  ±  1.08 mm(3) in glossopharyngeal nerve; 2.56  ±  1.32 mm(3) in vagus nerve. Correlations (p  < 0.001) have been found between the length or volume of central myelin portions of the trigeminal, facial, glossopharyngeal and vagus nerves and incidences

  1. Myths and realities of the cardiac vagus

    PubMed Central

    Coote, J H

    2013-01-01

    There is continuing belief that cardiac parasympathetic postganglionic fibres are sparse or absent from the ventricles. This review of the literature shows that the supposition is a myth. Early studies considered that fine silver-stained fibres coursing amongst ventricle myocardial cells were most likely cardiac parasympathetic postganglionic fibres. The conclusions were later supported by acetyl cholinesterase staining using a method that appeared not to be associated with noradrenaline nerve fibres. The conclusion is critically examined in the light of several recent histological studies using the acetyl cholinesterase method and also a more definitive technique (CHAT), that suggest a widespread location of parasympathetic ganglia and a relatively dense parasympathetic innervation of ventricular muscle in a range of mammals including man. The many studies demonstrating acetylcholine release in the ventricle on vagal nerve stimulation and a high density of acetylcholine M2 receptors is in accord with this as are tests of ventricular performance from many physiological studies. Selective control of cardiac functions by anatomically segregated parasympathetic ganglia is discussed. It is argued that the influence of vagal stimulation on ventricular myocardial action potential refractory period, duration, force and rhythm is evidence that vagal fibres have close apposition to myocardial fibres. This is supported by clear evidence of accentuated antagonism between sympathetic activity and vagal activity in the ventricle and also by direct effects of vagal activity independent of sympathetic activity. The idea of differential control of atrial and ventricular physiology by vagal C and vagal B preganglionic fibres is examined as well as differences in chemical phenotypes and their function. The latter is reflected in medullary and supramedullary control. Reference is made to the importance of this knowledge to understanding the normal physiology of cardiac autonomic

  2. Modulation of amoebic hepatic abscess by the parasympathetic system.

    PubMed

    Muñoz-Ortega, M; Quintanar-Stephano, A; García Lorenzana, M; Campos-Esparza, M R; Silva-Briano, M; Adabache-Ortíz, A; Campos-Rodríguez, R; Rodríguez, M G; Ventura-Juárez, J

    2011-01-01

    The neuro-immune network, in which the vagus nerve is involved, provides feedback between its afferent branches for signalling central nervous system from sites of injury through cytokines and its efferent branches, which release acetylcholine, an anti-inflammatory neurotransmitter. For gain insight into the parasympathetic mechanisms participating in the inflammatory response in the liver, we studied the effects of a vagotomy on the innate immune response in hamsters with amoebic liver abscess. At 7 days post-infection, compared to the control, liver parasympathectomy resulted in a larger abscess size, a greater production of collagen fibres, fewer trophozoites, increased serum levels of IL-10 and IFN-γ and increased numbers of IL-10 and IFN-γ-positive cells in situ, with no change in the number of macrophages and NK cells. Data indicate that the vagotomy disrupted the inflammatory response, causing an increase in the response against infection, then could favour the innervation of the liver by the sympathetic nervous system and would then take the control of the immune response by stimulating the conversion of macrophages to epithelioid cells; and through increased IL-10 production would induce the hepatic stellar cells to become myofibroblast collagen producer cells, thus forming a barrier of collagen and blocking trophozoite migration. © 2010 Blackwell Publishing Ltd.

  3. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    PubMed

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA. © 2015 Japanese Society of Neuropathology.

  4. The VAGUS insight into psychosis scale – Self-report & clinician-rated versions

    PubMed Central

    Gerretsen, Philip; Remington, Gary; Borlido, Carol; Quilty, Lena; Hassan, Sabrina; Polsinelli, Gina; Teo, Celine; Mar, Wanna; Simon, Regina; Menon, Mahesh; Pothier, David D.; Nakajima, Shinichiro; Caravaggio, Fernando; Mamo, David C.; Rajji, Tarek K.; Mulsant, Benoit H.; Deluca, Vincenzo; Ganguli, Rohan; Pollock, Bruce G.; Graff-Guerrero, Ariel

    2015-01-01

    The aim of this study was to develop self-report and clinician-rated versions of an insight scale that would be easy to administer, sensitive to small changes, and inclusive of the core dimensions of clinical insight into psychosis. Ten-item self-report (VAGUS-SR) and five-item clinician-rated (VAGUS-CR) scales were designed to measure the dimensions of insight into psychosis and evaluated in 215 and 140 participants, respectively (www.vagusonline.com). Tests of reliability and validity were performed. Both the VAGUS-SR and VAGUS-CR showed good internal consistency and reliability. They demonstrated good convergent and discriminant validity. Both versions were strongly correlated with one another and with the Schedule for the Assessment of Insight and Birchwood Insight Scale. Exploratory factor analyses identified three possible latent components of insight. The VAGUS-CR and VAGUS-SR are valid, reliable and easy to administer. They are build on previous insight scales with separate clinician-rated and self-report versions. The VAGUS-SR exhibited a multidimensional factor structure. Using a 10-point Likert scale for each item, the VAGUS has the capacity to detect small, temporally sensitive changes in insight, which is essential for intervention studies with neurostimulation or rapidly acting medications. PMID:25246410

  5. Cranial nerve modulation of human cortical swallowing motor pathways.

    PubMed

    Hamdy, S; Aziz, Q; Rothwell, J C; Hobson, A; Barlow, J; Thompson, D G

    1997-04-01

    Animal data indicate that cortical swallowing pathways can be modulated by cranial nerve afferent stimulation. We therefore studied the effects of human trigeminal and vagal nerve excitation on the corticofugal pathways to the oropharynx and esophagus, using electromagnetic stimulation. Unilateral stimulation of either the trigeminal or vagus nerve evoked two distinct reflex electromyographic responses in the pharynx and esophagus, an early response (latency range 19-30 ms) and a late response (latency range 42-72 ms). In the mylohyoid muscles, however, only a single response was seen (latency range 36-64 ms). Cortical stimulation also evoked electromyographic responses in the mylohyoid muscles, pharynx, and esophagus, with latencies of 8.5 +/- 0.3, 9.3 +/- 0.3, and 10.1 +/- 0.4 ms, respectively. When either trigeminal or vagus nerve stimulation preceded cortical stimulation, the cortically evoked responses were facilitated, with maximal effects at interstimulation intervals of 30-200 ms for pharynx and esophagus (P < 0.02) and at interstimulation intervals of 50-100 ms for mylohyoid muscles (P < 0.05). Our results demonstrate that stimulation of human cranial nerve afferent fibers facilitates cortical swallowing motor pathways.

  6. Gastroduodenal ulcer treated by pylorus and pyloric vagus-preservinggastrectomy

    PubMed Central

    Lu, Yun-Fu; Zhang, Xin-Xin; Zhao, Ge; Zhu, Qing-Hua

    1999-01-01

    AIM To evaluate the curative effect of pylorus and pyloric vagus-preserving gastrectomy (PPVPG) on peptic ulcer. METHODS Treating 132 cases of GU and DU with PPVPG, and com parative studies made with 24 cases treated with Billroth I (B I) and 20 cases with Billroth II (B II); advantages and shortcomings evaluated. RESULTS Not a single death after PPVPG. No recurrence of the disorder in the subsequent follow-up for an average of 6.5 years. Curative effect (visik I-&-II) 97.7%. Acidity reduction similar to that found in B I and B II, but 97.7% of the B I and all B II cases having more than second degree intestinal fluid reflux, in contrast to 7.1% in PPVPG cases. Dumping syndrome occurred in the B I and B II cases, none in PPVPG cases. With regard to gastric emptying, food digestion, absorption, body weight and life quality, PPVPG proved to be superior to Billroth procedure. CONCLUSION PPVPG has the advantages of conventional Billroth gastrectomy in reducing acid, removing ulcer focus, and at the same time preserves the pylorus and pyloric vagus for maintaining the normal gastric physiological function. Dumping syndrome, intestinal fluid reflux and other complications of conventional gastrectomy may be avoided. PMID:11819417

  7. Parkinson disease affects peripheral sensory nerves in the pharynx.

    PubMed

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2013-07-01

    Dysphagia is very common in patients with Parkinson disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Current therapies are largely ineffective for dysphagia. Because pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD patients for Lewy pathology.Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined the glossopharyngeal nerve (cranial nerve IX), the pharyngeal sensory branch of the vagus nerve (PSB-X), and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was greater in PD patients with dysphagia versus those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in cranial nerve IX and PSB-X. These findings suggest that pharyngeal sensory nerves are directly affected by pathologic processes in PD. These abnormalities may decrease pharyngeal sensation, thereby impairing swallowing and airway protective reflexes and contributing to dysphagia and aspiration.

  8. Surgical anatomy of the retroperitoneal spaces, Part IV: retroperitoneal nerves.

    PubMed

    Mirilas, Petros; Skandalakis, John E

    2010-03-01

    We present surgicoanatomical topographic relations of nerves and plexuses in the retroperitoneal space: 1) six named parietal nerves, branches of the lumbar plexus: iliohypogastric, ilioinguinal, genitofemoral, lateral femoral cutaneous, obturator, femoral. 2) The sacral plexus is formed by the lumbosacral trunk, ventral rami of S1-S3, and part of S4; the remainder of S4 joining the coccygeal plexus. From this plexus originate the superior gluteal nerve, which passes backward through the greater sciatic foramen above the piriformis muscle; the inferior gluteal nerve also courses through the greater sciatic foramen, but below the piriformis; 3) sympathetic trunks: right and left lumbar sympathetic trunks, which comprise four interconnected ganglia, and the pelvic chains; 4) greater, lesser, and least thoracic splanchnic nerves (sympathetic), which pass the diaphragm and join celiac ganglia; 5) four lumbar splanchnic nerves (sympathetic), which arise from lumbar sympathetic ganglia; 6) pelvic splanchnic nerves (nervi erigentes), providing parasympathetic innervation to the descending colon and pelvic splanchna; and 7) autonomic (prevertebral) plexuses, formed by the vagus nerves, splanchnic nerves, and ganglia (celiac, superior mesenteric, aorticorenal). They include sympathetic, parasympathetic, and sensory (mainly pain) fibers. The autonomic plexuses comprise named parts: aortic, superior mesenteric, inferior mesenteric, superior hypogastric, and inferior hypogastric (hypogastric nerves).

  9. Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation.

    PubMed

    Fanselow, E E; Reid, A P; Nicolelis, M A

    2000-11-01

    Stimulation of the vagus nerve has become an effective method for desynchronizing the highly coherent neural activity typically associated with epileptic seizures. This technique has been used in several animal models of seizures as well as in humans suffering from epilepsy. However, application of this technique has been limited to unilateral stimulation of the vagus nerve, typically delivered according to a fixed duty cycle, independently of whether ongoing seizure activity is present. Here, we report that stimulation of another cranial nerve, the trigeminal nerve, can also cause cortical and thalamic desynchronization, resulting in a reduction of seizure activity in awake rats. Furthermore, we demonstrate that providing this stimulation only when seizure activity begins results in more effective and safer seizure reduction per second of stimulation than with previous methods. Seizure activity induced by intraperitoneal injection of pentylenetetrazole was recorded from microwire electrodes in the thalamus and cortex of awake rats while the infraorbital branch of the trigeminal nerve was stimulated via a chronically implanted nerve cuff electrode. Continuous unilateral stimulation of the trigeminal nerve reduced electrographic seizure activity by up to 78%, and bilateral trigeminal stimulation was even more effective. Using a device that automatically detects seizure activity in real time on the basis of multichannel field potential signals, we demonstrated that seizure-triggered stimulation was more effective than the stimulation protocol involving a fixed duty cycle, in terms of the percent seizure reduction per second of stimulation. In contrast to vagus nerve stimulation studies, no substantial cardiovascular side effects were observed by unilateral or bilateral stimulation of the trigeminal nerve. These findings suggest that trigeminal nerve stimulation is safe in awake rats and should be evaluated as a therapy for human seizures. Furthermore, the results

  10. Nerve ultrasound in Miller Fisher variant of Guillain-Barré syndrome.

    PubMed

    Décard, Bernhard F; Fladt, Joachim; Axer, Hubertus; Fischer, Dirk; Grimm, Alexander

    2015-12-01

    Focal enlargement of the peripheral and spinal nerves, visualized using high-resolution ultrasound (HRUS), has been reported in early Guillain-Barré syndrome, but not in the Miller Fisher variant. We report the use of HRUS in 2 patients who presented with acute ataxic neuropathy, areflexia, and ophthalmoparesis. Ultrasound and/or nerve conduction studies (NCS) of peripheral nerves, the vagus, and spinal nerves C5/6 were performed at onset and 2 weeks after immunoglobulin therapy. Both patients fulfilled criteria for diagnosis of Miller Fisher syndrome (MFS). Laboratory findings revealed elevated ganglioside Q1b antibodies in both and an albuminolocytologic dissociation in 1 patient. In addition, 1 patient had NCS evidence for demyelinating neuropathy. However, ultrasound showed focal enlargement in the vagus, the spinal nerves, and/or in the peripheral nerves in both patients. After therapy, nerve enlargement decreased in parallel with clinical improvement. Spinal and/or peripheral nerve enlargement supports the diagnosis of MFS in early phases of the disease. © 2015 Wiley Periodicals, Inc.

  11. Vagal nerve stimulation modulates gut injury and lung permeability in trauma-hemorrhagic shock

    PubMed Central

    Levy, Gal; Fishman, Jordan E.; Xu, Da-zhong; Dong, Wei; Palange, Dave; Vida, Gergely; Mohr, Alicia; Ulloa, Luis; Deitch, Edwin A.

    2013-01-01

    BACKGROUND Hemorrhagic shock is known to disrupt the gut barrier leading to end-organ dysfunction. The vagus nerve can inhibit detrimental immune responses that contribute to organ damage in hemorrhagic shock. Therefore, we explored whether stimulation of the vagus nerve can protect the gut and recover lung permeability in trauma-hemorrhagic shock (THS). METHODS Male Sprague-Dawley rats were subjected to left cervical vagus nerve stimulation at 5 V for 10 minutes. The right internal jugular and femoral artery were cannulated for blood withdrawal and blood pressure monitoring, respectively. Animals were then subjected to hemorrhagic shock to a mean arterial pressure between 30 mm Hg and 35 mm Hg for 90 minutes then reperfused with their own whole blood. After observation for 3 hours, gut permeability was assessed with fluorescein dextran 4 in vivo injections in a ligated portion of distal ileum followed by Evans blue dye injection to assess lung permeability. Pulmonary myeloperoxidase levels were measured and compared. RESULTS Vagal nerve stimulation abrogated THS-induced lung injury (mean [SD], 8.46 [0.36] vs. 4.87 [0.78]; p < 0.05) and neutrophil sequestration (19.39 [1.01] vs. 12.83 [1.16]; p < 0.05). Likewise, THS gut permeability was reduced to sham levels. CONCLUSION Neuromodulation decreases injury in the THS model as evidenced by decreased gut permeability as well as decreased lung permeability and pulmonary neutrophil sequestration in a rat model. PMID:22846937

  12. Respiratory motor responses to cranial nerve afferent stimulation in rats.

    PubMed

    Hayashi, F; McCrimmon, D R

    1996-10-01

    It was hypothesized that, because rats appear to lack a prominent disynaptic projection from the dorsal respiratory group to phrenic motoneurons (Phr), they would lack the short-latency excitation of Phr output seen in cats in response to stimulation of some cranial nerve afferents. Single-pulse superior laryngeal nerve (SLN) stimulation elicited a short-latency bilateral excitation of glossopharyngeal (IX) and hypoglossal (XII) nerves and an ipsilateral excitation of pharyngeal branch of vagus (PhX) in 67% of rats, but no excitation of Phr. Vagus (X) stimulation elicited a bilateral excitation of Phr and a predominantly ipsilateral excitation of IX and PhX. Single-pulse stimulation of SLN or X also elicited longer-latency, bilateral decreases in activity of all recorded nerves. Repetitive stimulation (50 Hz) of SLN or X suppressed inspiratory activity and prolonged expiration. Lung inflation (7.5 cmH2O) inhibited Phr and PhX activity; X stimulation inhibited Phr but prolonged PhX activity. In conclusion, rats predictably lack the SLN-induced short latency Phr excitation but exhibit other short latency reflexes for which the underlying circuitry is not clear.

  13. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation

    PubMed Central

    Stavrakis, Stavros; Humphrey, Mary Beth; Scherlag, Benjamin J.; Hu, Yanqing; Jackman, Warren M.; Nakagawa, Hiroshi; Lockwood, Deborah; Lazzara, Ralph; Po, Sunny S.

    2015-01-01

    BACKGROUND Transcutaneous low-level tragus electrical stimulation (LLTS) suppresses atrial fibrillation (AF) in canines. OBJECTIVES We examined the antiarrhythmic and anti-inflammatory effects of LLTS in humans. METHODS Patients with paroxysmal AF who presented for AF ablation, were randomized to either 1 hour of LLTS (n = 20) or sham control (n = 20). Attaching a flat metal clip onto the tragus produced LLTS (20 Hz) in the right ear (50% lower than the voltage slowing the sinus rate). Under general anesthesia, AF was induced by burst atrial pacing at baseline and after 1 hour of LLTS or sham. Blood samples from the coronary sinus and the femoral vein were collected at those time points and then analyzed for inflammatory cytokines, including tumor necrosis factor (TNF)-α and C-reactive protein (CRP), using a multiplex immunoassay. RESULTS There were no differences in baseline characteristics between the 2 groups. Pacing-induced AF duration decreased significantly by 6.3 ± 1.9 min compared to baseline in the LLTS group, but not in the controls (p = 0.002 for comparison between groups). AF cycle length increased significantly from baseline by 28.8 ± 6.5 ms in the LLTS group, but not in controls (p = 0.0002 for comparison between groups). Systemic (femoral vein) but not coronary sinus TNF-α and CRP levels decreased significantly only in the LLTS group. CONCLUSIONS LLTS suppresses AF and decreases inflammatory cytokines in patients with paroxysmal AF. Our results support the emerging paradigm of neuromodulation to treat AF. PMID:25744003

  14. Vagus Nerve Stimulation as a Treatment Strategy for Gulf War Illness

    DTIC Science & Technology

    2016-10-01

    and concentration problems), headaches, migraines, widespread pain, fatigue, gastrointestinal and respiratory issues, as well as other unexplained...memory and concentration problems), headaches, migraines, widespread pain, fatigue, gastrointestinal and respiratory issues, as well as other

  15. Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve

    PubMed Central

    Machhada, Asif; Ang, Richard; Ackland, Gareth L.; Ninkina, Natalia; Buchman, Vladimir L.; Lythgoe, Mark F.; Trapp, Stefan; Tinker, Andrew; Marina, Nephtali; Gourine, Alexander V.

    2015-01-01

    Background The central nervous origins of functional parasympathetic innervation of cardiac ventricles remain controversial. Objective This study aimed to identify a population of vagal preganglionic neurons that contribute to the control of ventricular excitability. An animal model of synuclein pathology relevant to Parkinson’s disease was used to determine whether age-related loss of the activity of the identified group of neurons is associated with changes in ventricular electrophysiology. Methods In vivo cardiac electrophysiology was performed in anesthetized rats in conditions of selective inhibition of the dorsal vagal motor nucleus (DVMN) neurons by pharmacogenetic approach and in mice with global genetic deletion of all family members of the synuclein protein. Results In rats anesthetized with urethane (in conditions of systemic beta-adrenoceptor blockade), muscarinic and neuronal nitric oxide synthase blockade confirmed the existence of a tonic parasympathetic control of cardiac excitability mediated by the actions of acetylcholine and nitric oxide. Acute DVMN silencing led to shortening of the ventricular effective refractory period (vERP), a lowering of the threshold for triggered ventricular tachycardia, and prolongation of the corrected QT (QTc) interval. Lower resting activity of the DVMN neurons in aging synuclein-deficient mice was found to be associated with vERP shortening and QTc interval prolongation. Conclusion Activity of the DVMN vagal preganglionic neurons is responsible for tonic parasympathetic control of ventricular excitability, likely to be mediated by nitric oxide. These findings provide the first insight into the central nervous substrate that underlies functional parasympathetic innervation of the ventricles and highlight its vulnerability in neurodegenerative diseases. PMID:26051529

  16. Vagus Nerve Stimulation (VNS) and Rehabilitation in the Treatment of TBI

    DTIC Science & Technology

    2009-04-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Prior studies have found that VNS is effective in accelerating and enhancing recovery of function following...Present findings indicate that VNS treatment is effective for recovery of function after TBI even when the initiation of VNS treatment is delayed until...days) was found to be less effective than consecutive practice for functional recovery . These results provide heretofore unknown answers regarding

  17. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation.

    PubMed

    Boon, Paul; Vonck, Kristl; van Rijckevorsel, Kenou; El Tahry, Riem; Elger, Christian E; Mullatti, Nandini; Schulze-Bonhage, Andreas; Wagner, Louis; Diehl, Beate; Hamer, Hajo; Reuber, Markus; Kostov, Hrisimir; Legros, Benjamin; Noachtar, Soheyl; Weber, Yvonne G; Coenen, Volker A; Rooijakkers, Herbert; Schijns, Olaf E M G; Selway, Richard; Van Roost, Dirk; Eggleston, Katherine S; Van Grunderbeek, Wim; Jayewardene, Amara K; McGuire, Ryan M

    2015-11-01

    This study investigates the performance of a cardiac-based seizure detection algorithm (CBSDA) that automatically triggers VNS (NCT01325623). Thirty-one patients with drug resistant epilepsy were evaluated in an epilepsy monitoring unit (EMU) to assess algorithm performance and near-term clinical benefit. Long-term efficacy and safety were evaluated with combined open and closed-loop VNS. Sixty-six seizures (n=16 patients) were available from the EMU for analysis. In 37 seizures (n=14 patients) a ≥ 20% heart rate increase was found and 11 (n=5 patients) were associated with ictal tachycardia (iTC, 55% or 35 bpm heart rate increase, minimum of 100 bpm). Multiple CBSDA settings achieved a sensitivity of ≥ 80%. False positives ranged from 0.5 to 7.2/h. 27/66 seizures were stimulated within ± 2 min of seizure onset. In 10/17 of these seizures, where triggered VNS overlapped with ongoing seizure activity, seizure activity stopped during stimulation. Physician-scored seizure severity (NHS3-scale) showed significant improvement for complex partial seizures (CPS) at EMU discharge and through 12 months (p<0.05). Patient-scored seizure severity (total SSQ score) showed significant improvement at 3 and 6 months. Quality of life (total QOLIE-31-P score) showed significant improvement at 12 months. The responder rate (≥ 50% reduction in seizure frequency) at 12 months was 29.6% (n=8/27). Safety profiles were comparable to prior VNS trials. The investigated CBSDA has a high sensitivity and an acceptable specificity for triggering VNS. Despite the moderate effects on seizure frequency, combined open- and closed-loop VNS may provide valuable improvements in seizure severity and QOL in refractory epilepsy patients. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. [Visualization of the lower cranial nerves by 3D-FIESTA].

    PubMed

    Okumura, Yusuke; Suzuki, Masayuki; Takemura, Akihiro; Tsujii, Hideo; Kawahara, Kazuhiro; Matsuura, Yukihiro; Takada, Tadanori

    2005-02-20

    MR cisternography has been introduced for use in neuroradiology. This method is capable of visualizing tiny structures such as blood vessels and cranial nerves in the cerebrospinal fluid (CSF) space because of its superior contrast resolution. The cranial nerves and small vessels are shown as structures of low intensity surrounded by marked hyperintensity of the CSF. In the present study, we evaluated visualization of the lower cranial nerves (glossopharyngeal, vagus, and accessory) by the three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) sequence and multiplanar reformation (MPR) technique. The subjects were 8 men and 3 women, ranging in age from 21 to 76 years (average, 54 years). We examined the visualization of a total of 66 nerves in 11 subjects by 3D-FIESTA. The results were classified into four categories ranging from good visualization to non-visualization. In all cases, all glossopharyngeal and vagus nerves were identified to some extent, while accessory nerves were visualized either partially or entirely in only 16 cases. The total visualization rate was about 91%. In conclusion, 3D-FIESTA may be a useful method for visualization of the lower cranial nerves.

  19. Revision of vagal nerve stimulation (VNS) electrodes: review and report on use of ultra-sharp monopolar tip.

    PubMed

    Ng, Wai Hoe; Donner, Elizabeth; Go, Cristina; Abou-Hamden, Amal; Rutka, James T

    2010-08-01

    As a result of the increasingly popularity of vagal nerve stimulation (VNS) for intractable seizures, neurosurgeons not uncommonly encounter cases which require electrode revision. We examine our experience of VNS revision and reports the use of the ultra-sharp monopolar tip for safe dissection and removal of the electrode from the vagus nerve. A retrospective review was performed from January 2000 to Dec 2009 reviewed eight cases of VNS revision. The indications for VNS revision were device malfunction manifesting with increased seizures or increased impedance of the device and infection. The time from initial VNS implantation to revision ranged from 6 to 108 months (mean: 38 months). The entire VNS electrode system, was removed in seven cases and the helical coils were left in-situ in one case who did not derive any benefit from VNS and it was deemed unnecessary to subject the patient to the additional risk of vagal nerve injury. One case had dislodgement of the lower two coils and three cases had dense scarring to the vagus nerve causing high impedance and malfunction. The other three cases demonstrated no fibrotic scar tissue between the helical coils and the vagus nerve. Four cases had replacement of new VNS system but the case of infected VNS stimulator was not replaced as there was no benefit from the device. VNS revision is normally performed in cases of device malfunction or infection and can be safely performed using a combination of ultra-sharp monopolar coagulation and sharp dissection.

  20. Histomorphogenesis of cranial nerves in Huso huso larvae

    PubMed Central

    Tavighi, Sherma; Saadatfar, Zohreh; Shojaei, Bahador; Behnam Rassouli, Morteza

    2016-01-01

    In this study the cranial nerves development of H. huso are explained from 1 to 54-days-old (1, 3, 6, 15, 21 and 54 days). Despite all the researches on fish brain, there are no study on nerves evolution on H. huso during their larvae life. For this research 40 samples of larvae H. huso were obtained (from each age, about six samples were selected). The specimens were maintained in fiberglass tank, then histological samples were taken from tissues and stained with hematoxylin and eosin for general histological studies using light microscope. According to the results, on 1 and 3-days-old, no nerve was observed. The terminal nerve and their dendrites were observed around the nasal cavity and the axons projected to different areas in forebrain especially around olfactory bulb diffusely, on 6-day-old fish. Also, olfactory, optic, oculomotor, trochlear, trigeminal, lateral line and vagus nerves were detected on 6-day-old fish, however two parts of lateral line nerve were separated on 54-day-old. Three nerves, profundus, facial and octaval were observed on 54-day-old, however, up to this age, epiphysial nerve was not observed. PMID:27482355

  1. Parkinson Disease Affects Peripheral Sensory Nerves in the Pharynx

    PubMed Central

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H.; Shill, Holly A.; Caviness, John N.; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2013-01-01

    Dysphagia is very common in patients with Parkinson’s disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Unfortunately, current therapies are largely ineffective for dysphagia. As pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD for Lewy pathology. Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined: the glossopharyngeal nerve (IX); the pharyngeal sensory branch of the vagus nerve (PSB-X); and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect potential Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was significantly greater in PD subjects with documented dysphagia compared to those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in the IX and PSBX. These findings suggest that pharyngeal sensory nerves are directly affected by the pathologic process of PD. This anatomic pathology may decrease pharyngeal sensation impairing swallowing and airway protective reflexes, thereby contributing to dysphagia and aspiration. PMID:23771215

  2. Histomorphogenesis of cranial nerves in Huso huso larvae.

    PubMed

    Tavighi, Sherma; Saadatfar, Zohreh; Shojaei, Bahador; Behnam Rassouli, Morteza

    2016-01-01

    In this study the cranial nerves development of H. huso are explained from 1 to 54-days-old (1, 3, 6, 15, 21 and 54 days). Despite all the researches on fish brain, there are no study on nerves evolution on H. huso during their larvae life. For this research 40 samples of larvae H. huso were obtained (from each age, about six samples were selected). The specimens were maintained in fiberglass tank, then histological samples were taken from tissues and stained with hematoxylin and eosin for general histological studies using light microscope. According to the results, on 1 and 3-days-old, no nerve was observed. The terminal nerve and their dendrites were observed around the nasal cavity and the axons projected to different areas in forebrain especially around olfactory bulb diffusely, on 6-day-old fish. Also, olfactory, optic, oculomotor, trochlear, trigeminal, lateral line and vagus nerves were detected on 6-day-old fish, however two parts of lateral line nerve were separated on 54-day-old. Three nerves, profundus, facial and octaval were observed on 54-day-old, however, up to this age, epiphysial nerve was not observed.

  3. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells

    PubMed Central

    Costantini, Todd W.; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G.; Peterson, Carrie Y.; Loomis, William H.; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P.

    2010-01-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  4. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals

    NASA Astrophysics Data System (ADS)

    Pelot, N. A.; Behrend, C. E.; Grill, W. M.

    2017-08-01

    Objective. There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics’ vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. Approach. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. Main results. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed ‘re-excitation’, arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Significance. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our

  5. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.

    PubMed

    Pelot, N A; Behrend, C E; Grill, W M

    2017-03-31

    There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics' vBloc(®) therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed 're-excitation', arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle

  6. Surgical outcomes of lateral approach for jugular foramen schwannoma: postoperative facial nerve and lower cranial nerve functions.

    PubMed

    Cho, Yang-Sun; So, Yoon Kyoung; Park, Kwan; Baek, Chung-Hwan; Jeong, Han-Sin; Hong, Sung Hwa; Chung, Won-Ho

    2009-01-01

    The lateral surgical approach to jugular foramen schwannomas (JFS) may result in complications such as temporary facial nerve palsy (FNP) and hearing loss due to the complicated anatomical location. Ten patients with JFS surgically treated by variable methods of lateral approach were retrospectively reviewed with emphasis on surgical methods, postoperative FNP, and lower cranial nerve status. Gross total removal of the tumors was achieved in eight patients. Facial nerves were rerouted at the first genu (1G) in six patients and at the second genu in four patients. FNP of House-Brackmann (HB) grade III or worse developed immediately postoperatively in six patients regardless of the extent of rerouting. The FNP of HB grade III persisted for more than a year in one patient managed with rerouting at 1G. Among the lower cranial nerves, the vagus nerve was most frequently paralyzed preoperatively and lower cranial nerve palsies were newly developed in two patients. The methods of the surgical approach to JFS can be modified depending on the size and location of tumors to reduce injury of the facial nerve and loss of hearing. Careful manipulation and caution are also required for short facial nerve rerouting as well as for long rerouting to avoid immediately postoperative FNP.

  7. Plexin a4 expression in adult rat cranial nerves.

    PubMed

    Gutekunst, Claire-Anne; Gross, Robert E

    2014-11-01

    PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Hepatitis A

    MedlinePlus

    Hepatitis A Hepatitis A Hepatitis A is a contagious viral infection that can easily affect children and adults. It is one of the most common types of hepatitis virus. Often when you hear about hepatitis A ...

  9. Heart Rate Changes in Response to Mechanical Pressure Stimulation of Skeletal Muscles Are Mediated by Cardiac Sympathetic Nerve Activity.

    PubMed

    Watanabe, Nobuhiro; Hotta, Harumi

    2016-01-01

    Stimulation of mechanoreceptors in skeletal muscles such as contraction and stretch elicits reflexive autonomic nervous system changes which impact cardiovascular control. There are pressure-sensitive mechanoreceptors in skeletal muscles. Mechanical pressure stimulation of skeletal muscles can induce reflex changes in heart rate (HR) and blood pressure, although the neural mechanisms underlying this effect are unclear. We examined the contribution of cardiac autonomic nerves to HR responses induced by mechanical pressure stimulation (30 s, ~10 N/cm(2)) of calf muscles in isoflurane-anesthetized rats. Animals were artificially ventilated and kept warm using a heating pad and lamp, and respiration and core body temperature were maintained within physiological ranges. Mechanical stimulation was applied using a stimulation probe 6 mm in diameter with a flat surface. Cardiac sympathetic and vagus nerves were blocked to test the contribution of the autonomic nerves. For sympathetic nerve block, bilateral stellate ganglia, and cervical sympathetic nerves were surgically sectioned, and for vagus nerve block, the nerve was bilaterally severed. In addition, mass discharges of cardiac sympathetic efferent nerve were electrophysiologically recorded. Mechanical stimulation increased or decreased HR in autonomic nerve-intact rats (range: -56 to +10 bpm), and the responses were negatively correlated with pre-stimulus HR (r = -0.65, p = 0.001). Stimulation-induced HR responses were markedly attenuated by blocking the cardiac sympathetic nerve (range: -9 to +3 bpm, p < 0.0001) but not the vagus nerve (range: -75 to +30 bpm, p = 0.17). In the experiments with cardiac sympathetic efferent nerve activity recordings, mechanical stimulation increased, or decreased the frequency of sympathetic nerve activity in parallel with HR (r = 0.77, p = 0.0004). Furthermore, the changes in sympathetic nerve activity were negatively correlated with its tonic level (r = -0.62, p = 0.0066). These

  10. Heart Rate Changes in Response to Mechanical Pressure Stimulation of Skeletal Muscles Are Mediated by Cardiac Sympathetic Nerve Activity

    PubMed Central

    Watanabe, Nobuhiro; Hotta, Harumi

    2017-01-01

    Stimulation of mechanoreceptors in skeletal muscles such as contraction and stretch elicits reflexive autonomic nervous system changes which impact cardiovascular control. There are pressure-sensitive mechanoreceptors in skeletal muscles. Mechanical pressure stimulation of skeletal muscles can induce reflex changes in heart rate (HR) and blood pressure, although the neural mechanisms underlying this effect are unclear. We examined the contribution of cardiac autonomic nerves to HR responses induced by mechanical pressure stimulation (30 s, ~10 N/cm2) of calf muscles in isoflurane-anesthetized rats. Animals were artificially ventilated and kept warm using a heating pad and lamp, and respiration and core body temperature were maintained within physiological ranges. Mechanical stimulation was applied using a stimulation probe 6 mm in diameter with a flat surface. Cardiac sympathetic and vagus nerves were blocked to test the contribution of the autonomic nerves. For sympathetic nerve block, bilateral stellate ganglia, and cervical sympathetic nerves were surgically sectioned, and for vagus nerve block, the nerve was bilaterally severed. In addition, mass discharges of cardiac sympathetic efferent nerve were electrophysiologically recorded. Mechanical stimulation increased or decreased HR in autonomic nerve-intact rats (range: −56 to +10 bpm), and the responses were negatively correlated with pre-stimulus HR (r = −0.65, p = 0.001). Stimulation-induced HR responses were markedly attenuated by blocking the cardiac sympathetic nerve (range: −9 to +3 bpm, p < 0.0001) but not the vagus nerve (range: −75 to +30 bpm, p = 0.17). In the experiments with cardiac sympathetic efferent nerve activity recordings, mechanical stimulation increased, or decreased the frequency of sympathetic nerve activity in parallel with HR (r = 0.77, p = 0.0004). Furthermore, the changes in sympathetic nerve activity were negatively correlated with its tonic level (r = −0.62, p = 0

  11. In vitro receptor autoradiography reveals angiotensin IL (ANG II) binding associated with sensory and motor components of the vagus

    SciTech Connect

    Diz, D.I.; Barnes, K.L.; Ferrario, C.M.

    1986-03-05

    Specific, high affinity Ang II binding in the dog's dorsal medulla is concentrated in the area postrema, nucleus tractus solitarii (nTS) and dorsal motor nucleus of the vagus (dmnX). More recently Ang II binding sites were observed where bundles of vagal afferent fibers enter the dorsal medulla 6 mm rostral to obex and in the nodose ganglia and peripheral vagal nerves. Since Ang II binding in the nTS and dmnX overlies the distribution of vagal afferent fibers and efferent neurons, the effects of nodose ganglionectomy and cervical vagotomy on Ang II binding in the dorsal medulla were studied in rats and dogs using autoradiography after incubation of 14 ..mu..m coronal sections with 0.4 nM /sup 125/I-Ang II. Nonspecific binding was determined in the presence of 1 ..mu..m unlabeled Ang II. Two weeks after unilateral nodose ganglionectomy Ang II binding sites were absent ipsilaterally in the region where vagal afferent fibers enter the dorsal medulla. In the nTS and dmnX, binding near obex was reduced, while more rostrally these nuclei were almost completely devoid of Ang II binding on the denervated side. After cervical vagotomy, the loss of binding was restricted to the ipsilateral dmnX. These data are the first to reveal that Ang II binding in the dorsal medulla requires an intact vagal system.

  12. In vitro receptor autoradiography reveals angiotensin II (Ang II) binding associated with sensory and motor components of the vagus

    SciTech Connect

    Diz, D.I.; Barnes, K.L.; Ferrario, C.M.

    1986-03-05

    Specific, high affinity Ang II binding in the dog's dorsal medulla is concentrated in the area postrema, nucleus tractus solitarii (nTS) and dorsal motor nucleus of the vagus (dmnX). More recently Ang II binding sites were observed where bundles of vagal afferent fibers enter the dorsal medulla 6 mm rostral to obex and in the nodose ganglia and peripheral vagal nerves. Since Ang II binding in the nTS and dmnX overlies the distribution of vagal afferent fibers and efferent neurons, the effects of nodose ganglionectomy and cervical vagotomy on Ang II binding in the dorsal medulla were studied in rats and dogs using autoradiography after incubation of 14 ..mu..m coronal sections with 0.4 nM /sup 125/I-Ang II. Nonspecific binding was determined in the presence of 1 ..mu..M unlabeled Ang II. Two weeks after unilateral nodose ganglionectomy Ang II binding sites were absent ipsilaterally in the region where vagal afferent fibers enter the dorsal medulla. In the nTS and dmnX, binding near obex was reduced, while more rostrally these nuclei were almost completely devoid of Ang II binding on the denervated side. After cervical vagotomy, the loss of binding was restricted to the ipsilateral dmnX. These data are the first to reveal that Ang II binding in the dorsal medulla requires an intact vagal system.

  13. A clear map of the lower cranial nerves at the superior carotid triangle.

    PubMed

    Cavalcanti, Daniel D; Garcia-Gonzalez, Ulises; Agrawal, Abhishek; Tavares, Paulo L M S; Spetzler, Robert F; Preul, Mark C

    2010-07-01

    The lower cranial nerves must be identified to avoid iatrogenic injury during skull base and high cervical approaches. Prompt recognition of these structures using basic landmarks could reduce surgical time and morbidity. The anterior triangle of the neck was dissected in 30 cadaveric head sides. The most superficial segments of the glossopharyngeal, vagus and its superior laryngeal nerves, accessory, and hypoglossal nerves were exposed and designated into smaller anatomic triangles. The midpoint of each nerve segment inside the triangles was correlated to the angle of the mandible (AM), mastoid tip (MT), and bifurcation of the common carotid artery. A triangle bounded by the styloglossus muscle, external carotid artery, and facial artery housed the glossopharyngeal nerve. This nerve segment was 0.06 ± 0.71 cm posterior to the AM and 2.50 ± 0.59 cm inferior to the MT. The vagus nerve ran inside the carotid sheath posterior to internal carotid artery and common carotid artery bifurcation in 48.3% of specimens. A triangle formed by the posterior belly of digastric muscle, sternocleidomastoid muscle, and internal jugular vein housed the accessory nerve, 1.90 ± 0.60 cm posterior to the AM and 2.30 ± 0.57 cm inferior to the MT. A triangle outlined by the posterior belly of digastric muscle, internal jugular vein, and common facial vein housed the hypoglossal nerve, which was 0.82 ± 0.84 cm posterior to the AM and 3.64 ± 0.70 cm inferior to the MT. Comprehensible landmarks can be defined to help expose the lower cranial nerves to avoid injury to this complex region. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha.

    PubMed

    Brock, C; Brock, B; Aziz, Q; Møller, H J; Pfeiffer Jensen, M; Drewes, A M; Farmer, A D

    2016-12-12

    The vagus nerve is a central component of cholinergic anti-inflammatory pathways. We sought to evaluate the effect of bilateral transcutaneous cervical vagal nerve stimulation (t-VNS) on validated parameters of autonomic tone and cytokines in 20 healthy subjects. 24 hours after t-VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which warrants further evaluation in larger controlled studies.

  15. Opioid Peptides Inhibit Excitatory But Not Inhibitory Synaptic Transmission in the Rat Dorsal Motor Nucleus of the Vagus

    PubMed Central

    Browning, Kirsteen N.; Kalyuzhny, Alexander E.; Travagli, R. Alberto

    2011-01-01

    Opioid peptides produce gastrointestinal inhibition and increase feeding when applied to the brainstem. The present studies were designed to determine the actions of opioid peptides on synaptic transmission within the dorsal motor nucleus of the vagus (DMV) and the localization of μ-opioid receptors. Whole-cell recordings were made from identified gastrointestinal-projecting DMV neurons in thin brainstem slices of the rat. Electrical stimulation of the nucleus of the tractus solitarius evoked EPSCs and IPSCs. In all neurons tested, methionine (Met)-enkephalin (0.003–30 μm) inhibited the peak amplitude of the EPSCs. The effect was prevented by naloxone (1 μm) as well as by naloxonazine (0.2 μm). An increase in the ratio of the evoked paired pulses indicated that the inhibition was attributable to actions at presynaptic receptors. This presynaptic inhibitory action was mimicked by [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (0.1 μm) and the analgesic dipeptide kyotorphin (10 μm) but not by cyclic[d-Pen2, d-Pen5]-enkephalin (1 μm) and trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methanesulfonate (1 μm). In contrast, the amplitude of evoked IPSCs was not altered either by Met-enkephalin or by any of the opioid receptor-selective agonists. Immunohistochemical studies revealed that nerve terminals apposing DMV neurons showed immunoreactivity to μ-opioid receptors colocalized with glutamate immunoreactivity but not glutamic acid decarboxylase immunoreactivity. These results suggest that within the DMV, μ-opioid receptors are present on the nerve terminals of excitatory but not inhibitory inputs to GI motoneurons. Such specificity may imply that the central inhibitory action of opioid peptides on gastrointestinal function targets selected pathways. PMID:11943802

  16. Nerve Blocks

    MedlinePlus

    ... Sometimes the needle has to be inserted fairly deep to reach the nerve causing your problem. This ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  17. Evaluation of the Predictive Value of Intraoperative Changes in Motor-Evoked Potentials of Caudal Cranial Nerves for the Postoperative Functional Outcome.

    PubMed

    Kullmann, Marcel; Tatagiba, Marcos; Liebsch, Marina; Feigl, Guenther C

    2016-11-01

    The predictive value of changes in intraoperatively acquired motor-evoked potentials (MEPs) of the lower cranial nerves (LCN) IX-X (glossopharyngeal-vagus nerve) and CN XII (hypoglossal nerve) on operative outcomes was investigated. MEPs of CN IX-X and CN XII were recorded intraoperatively in 63 patients undergoing surgery of the posterior cranial fossa. We correlated the changes of the MEPs with postoperative nerve function. For CN IX-X, we found a correlation between the amplitude of the MEP ratio and uvula deviation (P = 0.028) and the amplitude duration of the MEP and gag reflex function (P = 0.027). Patients with an MEP ratio of the glossopharyngeal-vagus amplitude ≤1.47 μV had a 3.4 times increased risk of developing a uvula deviation. Patients with a final MEP duration of the CN IX-X ≤11.6 milliseconds had a 3.6 times increased risk for their gag reflex to become extinct. Our study greatly contributes to the current knowledge of intraoperative MEPs as a predictor for postoperative cranial nerve function. We were able to extent previous findings on MEP values of the facial nerve on postoperative nerve function to 3 additional cranial nerves. Finding reliable predictors for postoperative nerve function is of great importance to the overall quality of life for a patient undergoing surgery of the posterior cranial fossa. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Isolation of Japanese encephalitis virus from Anopheles annularis and Anopheles vagus in Lombok, Indonesia.

    PubMed

    Olson, J G; Ksiazek, T G; Lee, V H; Tan, R; Shope, R E

    1985-01-01

    Three strains of Japanese encephalitis (JE) virus were recorded from mosquitoes collected in Lombok, Indonesia, during March 1979, from pools of Anopheles vagus, An. annularis and Culex tritaeniorhynchus respectively. This is believed to be the first report of isolation of JE virus from An. vagus. The frequencies of JE viral infection in zoophilic Anopheles species were higher than in Cx tritaeniorhynchus, the principle vector of JE virus in Asia. The low frequency of infection in Cx tritaeniorhynchus and the relatively infrequent raising of pigs may account for the low prevalence of JE neutralizing antibodies in the human populations of Lombok.

  19. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies

    PubMed Central

    Canning, Brendan J.; Merlo-Pich, Emilio; Woodcock, Ashley A.; Smith, Jaclyn A.

    2015-01-01

    Rationale: Neuroplasticity of bronchopulmonary afferent neurons that respond to mechanical and chemical stimuli may sensitize the cough reflex. Afferent drive in cough is carried by the vagus nerve, and vagal afferent nerve terminals have been well defined in animals. Yet, both unmyelinated C fibers and particularly the morphologically distinct, myelinated, nodose-derived mechanoreceptors described in animals are poorly characterized in humans. To date there are no distinctive molecular markers or detailed morphologies available for human bronchopulmonary afferent nerves. Objectives: Morphologic and neuromolecular characterization of the afferent nerves that are potentially involved in cough in humans. Methods: A whole-mount immunofluorescence approach, rarely used in human lung tissue, was used with antibodies specific to protein gene product 9.5 (PGP9.5) and, for the first time in human lung tissue, 200-kD neurofilament subunit. Measurements and Main Results: We have developed a robust technique to visualize fibers consistent with autonomic and C fibers and pulmonary neuroendocrine cells. A group of morphologically distinct, 200-kD neurofilament-immunopositive myelinated afferent fibers, a subpopulation of which did not express PGP9.5, was also identified. Conclusions: PGP9.5-immunonegative nerves are strikingly similar to myelinated airway afferents, the cough receptor, and smooth muscle–associated airway receptors described in rodents. These have never been described in humans. Full description of human airway nerves is critical to the translation of animal studies to the clinical setting. PMID:25906337

  20. Morphologic Characterization of Nerves in Whole-Mount Airway Biopsies.

    PubMed

    West, Peter W; Canning, Brendan J; Merlo-Pich, Emilio; Woodcock, Ashley A; Smith, Jaclyn A

    2015-07-01

    Neuroplasticity of bronchopulmonary afferent neurons that respond to mechanical and chemical stimuli may sensitize the cough reflex. Afferent drive in cough is carried by the vagus nerve, and vagal afferent nerve terminals have been well defined in animals. Yet, both unmyelinated C fibers and particularly the morphologically distinct, myelinated, nodose-derived mechanoreceptors described in animals are poorly characterized in humans. To date there are no distinctive molecular markers or detailed morphologies available for human bronchopulmonary afferent nerves. Morphologic and neuromolecular characterization of the afferent nerves that are potentially involved in cough in humans. A whole-mount immunofluorescence approach, rarely used in human lung tissue, was used with antibodies specific to protein gene product 9.5 (PGP9.5) and, for the first time in human lung tissue, 200-kD neurofilament subunit. We have developed a robust technique to visualize fibers consistent with autonomic and C fibers and pulmonary neuroendocrine cells. A group of morphologically distinct, 200-kD neurofilament-immunopositive myelinated afferent fibers, a subpopulation of which did not express PGP9.5, was also identified. PGP9.5-immunonegative nerves are strikingly similar to myelinated airway afferents, the cough receptor, and smooth muscle-associated airway receptors described in rodents. These have never been described in humans. Full description of human airway nerves is critical to the translation of animal studies to the clinical setting.

  1. Anastomoses between lower cranial and upper cervical nerves: a comprehensive review with potential significance during skull base and neck operations, part I: trigeminal, facial, and vestibulocochlear nerves.

    PubMed

    Shoja, Mohammadali M; Oyesiku, Nelson M; Griessenauer, Christoph J; Radcliff, Virginia; Loukas, Marios; Chern, Joshua J; Benninger, Brion; Rozzelle, Curtis J; Shokouhi, Ghaffar; Tubbs, R Shane

    2014-01-01

    Descriptions of the anatomy of the neural communications among the cranial nerves and their branches is lacking in the literature. Knowledge of the possible neural interconnections found among these nerves may prove useful to surgeons who operate in these regions to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections among the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized in two parts. Part I concerns the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches with any other nerve trunk or branch in the vicinity. Part II concerns the anastomoses among the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or among these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part I is presented in this article. An extensive anastomotic network exists among the lower cranial nerves. Knowledge of such neural intercommunications is important in diagnosing and treating patients with pathology of the skull base. Copyright © 2013 Wiley Periodicals, Inc.

  2. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...