Sample records for hepatoma

  1. INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO.

    PubMed

    Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling

    2017-01-01

    Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug.

  2. INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO

    PubMed Central

    Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling

    2017-01-01

    Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells Materials and Methods: MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Results: Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Conclusion: Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug. PMID:28638890

  3. Comparative Study of Light Scattering from Hepatoma Cells and Hepatocytes

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wang, Rongrong; Guo, Yongcai; Gao, Chao; Guo, Xiaoen

    2012-11-01

    Primary liver cancer is one of the highest mortality malignant tumors in the world. China is a high occurrence area of primary liver cancer. Diagnosis of liver cancer, especially early diagnosis, is essential for improving patients' survival. Light scattering and measuring method is an emerging technology developed in recent decades, which has attracted a large number of biomedical researchers due to its advantages, such as fast, simple, high accuracy, good repeatability, and non-destructive. The hypothesis of this project is that there may be some different light scattering information between hepatoma cells and hepatocyte. Combined with the advantages of the dynamic light scattering method and the biological cytology, an experimental scheme to measure the light scattering information of cells was formulated. Hepatoma cells and hepatic cells were irradiated by a semiconductor laser (532 nm). And the Brookhaven BI-200SM wide-angle light scattering device and temperature control apparatus were adopted. The light scattering information of hepatoma cells and hepatic cells in vitro within the 15°C to 30°C temperature range was processed by a BI-9000AT digital autocorrelator. The following points were found: (a) the scattering intensities of human hepatic cells and hepatoma cells are nearly not affected by the temperature factor, and the former is always greater than the latter and (b) the relaxation time of hepatoma cells is longer than that of hepatic cells, and both the relaxation time are shortened with increasing temperature from 15°C to 25°C. It can be concluded that hepatoma cells could absorb more incident light than hepatic cells. The reason may be that there exists more protein and nucleic acid in cancerous cells than normal cells. Furthermore, based on the length relaxation time, a conclusion can be inferred that the Brownian movement of cancer cells is greater.

  4. Hypoxia/hepatoma dual specific suicide gene expression plasmid delivery using bio-reducible polymer for hepatocellular carcinoma therapy.

    PubMed

    Kim, Hyun Ah; Nam, Kihoon; Lee, Minhyung; Kim, Sung Wan

    2013-10-10

    Gene therapy is suggested as a promising alternative strategy of hepatocellular carcinoma (HCC, also called hepatoma) therapy. To achieve a successful and safe gene therapy, tight regulation of gene expression is required to minimize side-effects in normal tissues. In this study, we developed a novel hypoxia and hepatoma dual specific gene expression vector. The constructed vectors were transfected into various cell lines using bio-reducible polymer, PAM-ABP. First, pAFPS-Luc or pAFPL-Luc vector was constructed with the alpha-fectoprotein (AFP) promoter and enhancer for hepatoma tissue specific gene expression. Then, pEpo-AFPL-Luc was constructed by insertion of the erythropoietin (Epo) enhancer for hypoxic cancer specific gene expression. In vitro transfection assay showed that pEpo-AFPL-Luc transfected hepatoma cell increased gene expression under hypoxic condition. To confirm the therapeutic effect of dual specific vector, herpes simplex virus thymidine kinase (HSV-TK) gene was introduced for cancer cell killing. The pEpo-AFPL-TK was transfected into hepatoma cell lines in the presence of ganciclovir (GCV) pro-drug. Caspase-3/7, MTT and TUNEL assays elucidated that pEpo-AFPL-TK transfected cells showed significant increasing of death rate in hypoxic hepatoma cells compared to controls. Therefore, the hypoxia/hepatoma dual specific gene expression vector with the Epo enhancer and AFP promoter may be useful for hepatoma specific gene therapy. © 2013.

  5. Effects of hypoxia-inducible factor-1α silencing on the proliferation of CBRH-7919 hepatoma cells

    PubMed Central

    Xu, Lin-Feng; Ni, Jia-Yan; Sun, Hong-Liang; Chen, Yao-Ting; Wu, Yu-Dan

    2013-01-01

    AIM: To study the effects of hypoxia-inducible factor-1α (HIF-1α) silencing on the proliferation of hypoxic CBRH-7919 rat hepatoma cells. METHODS: The CBRH-7919 rat hepatoma cell line was used in this study and the hypoxic model was constructed using CoCl2. The HIF-1α-specific RNAi sequences were designed according to the gene coding sequence of rat HIF-1α obtained from GeneBank. The secondary structure of the HIF-1α gene sequence was analyzed using RNA draw software. The small interfering RNA (siRNA) transfection mixture was produced by mixing the siRNA and Lipofectamine2000TM, and transfected into the hypoxic hepatoma cells. Real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting assay were used to detect the expression levels of mRNA and protein. HIF-1α and vascular endothelial growth factor (VEGF) mRNA was determined using real time RT-PCR; the protein expression levels of AKT, p-AKT, p21 and cyclinD1 were determined using Western blotting. The proliferation of hepatoma cells was observed using the methyl thiazolyl tetrazolium (MTT) assay and the bromodeoxyuridine (BrdU) incorporation cell proliferation assay. RESULTS: Under induced hypoxia, the viability of the hepatoma cells reached a minimum at 800 μmol/L CoCl2; the viability of the cells was relatively high at CoCl2 concentrations between 100 μmol/L and 200 μmol/L. Under hypoxia, the mRNA and protein expression levels of HIF-1α and VEGF were significantly higher than that of hepatoma cells that were cultured in normaxia. HIF-1α-specific RNAi sequences were successfully transfected into hepatoma cells. The transfection of specific siRNAs significantly inhibited the mRNA and protein expression levels of HIF-1α and VEGF, along with the protein expression levels of p-AKT and cyclinD1; the protein expression of p21 was significantly increased, and there was no significant difference in the expression of AKT. The MTT assay showed that the amount of hepatoma cells in S

  6. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Yung-Wei; Institute of Medicine, Chung Shan Medical University, Taiwan; Lin, Tseng-Hsi

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38more » mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.« less

  7. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells.

    PubMed

    Byun, Jun-Kyu; Choi, Yeon-Kyung; Kang, Yu Na; Jang, Byoung Kuk; Kang, Koo Jeong; Jeon, Yong Hyun; Lee, Ho-Won; Jeon, Jae-Han; Koo, Seung-Hoi; Jeong, Won-Il; Harris, Robert A; Lee, In-Kyu; Park, Keun-Gyu

    2015-03-01

    The metabolism of glutamine and glucose is recognized as a promising therapeutic target for the treatment of cancer; however, targeted molecules that mediate glutamine and glucose metabolism in cancer cells have not been addressed. Here, we show that restricting the supply of glutamine in hepatoma cells, including HepG2 and Hep3B cells, markedly increased the expression of retinoic acid-related orphan receptor alpha (RORα). Up-regulation of RORα in glutamine-deficient hepatoma cells resulted from an increase in the level of cellular reactive oxygen species and in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate reduced (NADP+ /NADPH) ratio, which was consistent with a reduction in the glutathione/glutathione disulfide (GSH/GSSG) ratio. Adenovirus (Ad)-mediated overexpression of RORα (Ad-RORα) or treatment with the RORα activator, SR1078, reduced aerobic glycolysis and down-regulated biosynthetic pathways in hepatoma cells. Ad-RORα and SR1078 reduced the expression of pyruvate dehydrogenase kinase 2 (PDK2) and inhibited the phosphorylation of pyruvate dehydrogenase and subsequently shifted pyruvate to complete oxidation. The RORα-mediated decrease in PDK2 levels was caused by up-regulation of p21, rather than p53. Furthermore, RORα inhibited hepatoma growth both in vitro and in a xenograft model in vivo. We also found that suppression of PDK2 inhibited hepatoma growth in a xenograft model. These findings mimic the altered glucose utilization and hepatoma growth caused by glutamine deprivation. Finally, tumor tissue from 187 hepatocellular carcinoma patients expressed lower levels of RORα than adjacent nontumor tissue, supporting a potential beneficial effect of RORα activation in the treatment of liver cancer. RORα mediates reprogramming of glucose metabolism in hepatoma cells in response to glutamine deficiency. The relationships established here between glutamine metabolism, RORα expression and signaling, and

  8. Overexpression of protein kinase FA/GSK-3 alpha (a proline-directed protein kinase) correlates with human hepatoma dedifferentiation/progression.

    PubMed

    Yang, S D; Yu, J S; Yang, C C; Lee, S C; Lee, T T; Ni, M H; Kuan, C Y; Chen, H C

    1996-05-01

    Computer analysis of protein phosphorylation sites sequence revealed that transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of the proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3 alpha (kinase F(A)/GSK-3 alpha) (a member of PDPK family) has been optimized for human hepatoma and used to demonstrate for the first time significantly increased (P < 0.01) activity in poorly differentiated SK-Hep-1 hepatoma (24.2 +/- 2.8 units/mg) and moderately differentiated Mahlavu hepatoma (14.5 +/- 2.2 units/mg) when compared to well differentiated Hep 3B hepatoma (8.0 +/- 2.4 units/mg). Immunoblotting analysis revealed that increased activity of kinase FA/GSK-3 alpha is due to overexpression of the protein. Elevated kinase FA/GSK-3 alpha expression in human hepatoma biopsies relative to normal liver tissue was found to be even more profound. This kinase appeared to be fivefold overexpressed in well differentiated hepatoma and 13-fold overexpressed in poorly differentiated hepatoma when compared to normal liver tissue. Taken together, the results provide initial evidence that overexpression of kinase FA/GSK-3 alpha is involved in human hepatoma dedifferentiation/progression. Since kinase FA/GSK-3 alpha is a PDPK, the results further support a potential role of this kinase in human liver tumorigenesis, especially in its dedifferentiation/progression.

  9. Inhibitory effect of emodin on human hepatoma cell line SMMC-7721 and its mechanism.

    PubMed

    Zhang, Xia; Chen, Yingping; Zhang, Ting; Zhang, Yaming

    2015-03-01

    Da Huang (Radix et Rhizoma Rhei) is the dried root or rhizome of Rheum palmatum L., Rheum tanguticum Maxim ex Balf. or Rheum officinale Braill of family Polygonaceae. It has heat clearing, damp drying, fire purging and toxin removing effects. Because of its definite curative efficacy, it has been widely applied in clinical settings. To study the inhibitory effect of emodin on human hepatoma cell line SMMC-7721 and its mechanism. MTT assay, flow cytometry and electron microscopy were used to investigate the inhibitory effect of different concentrations of emodin on human hepatoma cell line SMMC-7721. 12 h, 24 h and 48 h after the action of 20, 40 and 80 umol/L emodin on SMMC-7721 cells, the proliferation of human hepatoma SMMC-7721 cells was inhibited; the inhibitory effects showed time-and concentration-dependence. 48 h after the action of different concentrations of emodin on SMMC-7721 cells, cells in G2/M phase increased significantly, while the proportion of S phase cells gradually declined. Emodin can inhibit human hepatoma cell line SMMC-7721.

  10. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy

    PubMed Central

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-01-01

    Despite adenovirus (Ad) vector’s numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. PMID:26437261

  11. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  12. BetaIg-h3 is involved in the HAb18G/CD147-mediated metastasis process in human hepatoma cells.

    PubMed

    Tang, Juan; Zhou, Hong-wei; Jiang, Jian-li; Yang, Xiang-min; Li, Yu; Zhang, Hong-xin; Chen, Zhi-nan; Guo, Wei-ping

    2007-03-01

    HAb18G/CD147, a new hepatoma-associated antigen cloned and screened from human hepatocellular carcinoma cDNA library, is closely correlated with metastasis process in human hepatoma cells. In the present study we aimed to identify the pivotal molecules of the HAb18G/CD147 signal transduction pathway. The investigation showed that betaig-h3, a secretory extracellular matrix (ECM) protein, was upregulated in HAb18G/CD147-expressing human hepatoma T7721 cells and was downregulated by depressing HAb18G/CD147 expression. The expression of betaig-h3, upregulated in human hepatoma cells, was positively relative to the expression of HAb18G/CD147 in different human hepatoma cell lines. By overexpressing betaig-h3 in human SMMC-7721 hepatoma cells, we discovered that betaig-h3 promoted cell adhesion, invasion, and matrix metalloproteinase (MMP) secretion potential. HAb18G/CD147-induced invasion and metastasis potential of human hepatoma cells can be attenuated by antibodies specific for betaig-h3, and no significant differences on inhibitory effects were observed among T7721 cells incubated with antibodies for betaig-h3 or HAb18G/CD147 or both types together. Taken together, our study suggests that betaig-h3, regulated by the expression of HAb18G/CD147, is involved in the HAb18G/CD147 signal transduction pathway and mediates the HAb18G/CD147-induced invasion and metastasis process of human hepatoma cells.

  13. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture.

    PubMed

    Hagi, Akifumi; Nakayama, Mitsuo; Miura, Yutaka; Yagasaki, Kazumi

    2007-01-01

    Total parenteral nutrition containing a lipid emulsion is often employed after surgical tumor resection. This study investigated the effects of a fish oil-based infusion on rat hepatoma cell invasion. Rat ascites hepatoma cell line AH109A was precultured with a fish oil-based or safflower oil-based emulsion for 48 h. Changes in membranous fatty acid composition were evaluated by gas chromatography. The invasiveness of hepatoma cells was assessed by coculturing with mesentery-derived mesothelial cells. To examine ex vivo effects of the fish oil-based infusion on hepatoma invasion, sera were prepared from rats infused with fish oil- or safflower oil-based emulsion and the effects of these sera were assessed. To clarify the mechanism of inhibition of invasion by the fish oil-based emulsion, the effects of prostaglandin (PG) E(2) and PGE(3) on invasion were examined. Pretreatment with the fish oil-based emulsion reduced invasiveness without affecting growth compared with the safflower oil-based emulsion. Pretreatment with the sera from rats infused with the fish oil-based emulsion also reduced invasiveness compared with the sera from rats infused with the safflower oil-based emulsion. The addition of PGE(2) eliminated the inhibitory effect of the fish oil-based emulsion, and the addition of PGE(3) reduced the invasiveness of hepatoma cells pretreated with the safflower oil-based emulsion. These results suggest that the fish oil-based emulsion may have anti-invasive effects. Changes in the membranous fatty acid composition and consequent changes in the prostaglandins produced may be involved in this inhibitory effect.

  14. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    PubMed

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Peroxisome proliferators induce apoptosis in hepatoma cells.

    PubMed

    Canuto, R A; Muzio, G; Bonelli, G; Maggiora, M; Autelli, R; Barbiero, G; Costelli, P; Brossa, O; Baccino, F M

    1998-01-01

    In the AH-130 hepatoma, a poorly differentiated tumor, maintained by weekly transplantations in rats, a low percentage of cells spontaneously underwent apoptosis, mainly during the transition from logarithmic- to stationary-growth phase. It was possible to induce massive apoptosis of cells by treating them with clofibrate, a peroxisome proliferator and hypolipidemic drug. Similar results were obtained with HepG2 cells. With 1 mM clofibrate, apoptosis began to manifest itself after 1 h of treatment in vitro, and was assessed by morphological analysis, by DNA fragmentation carried out with agarose gel electrophoresis, and with flow cytometric determination of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling. The mechanisms whereby clofibrate induces apoptosis are still unclear. Since the peroxisome proliferator-activated receptor was expressed at a very low level and was not stimulated by clofibrate in the AH-130 hepatoma cells, its involvement seems unlikely. Moreover, lipid peroxidation was not increased after clofibrate treatment. Phospholipids and cholesterol were significantly decreased. The decreased cholesterol content might suggest an inhibition of the mevalonate pathway and, therefore, of isoprenylation of proteins involved in cell proliferation.

  16. Inhibition of Proliferation and Expression of N-ras in Hepatoma Cells by Antioxidation Treatment.

    PubMed

    Liu, Shan-Lin; Shi, Dong-Yun; Pan, Xi-Hua; Shen, Zong-Hou

    2001-01-01

    Kunming mice inoculated with hepatoma cell (H22) suspension subcutaneously at their right axilla were administered orally with antioxidants such as vitamine E, beta-carotene, glutamine, kappa-selenocarrageenan and polysaccharide-peptide of coriolus (PSP) solution. It was found that the inoculated hepatoma growth was suppressed to various extents. The two kinds of polysaccharide antioxidants improved non-specific immunity, enhanced the nitrogen monoxide (NO) content in plasma and strengthened the inhibition of hepatoma. Above antioxidants added in the culture of 7721 human hepatoma cells inhibited the cell proliferation and inducedits apoptosis. Meanwhile, the activity of glutathione peroxidase (GSH-Px) in the plasma of mice increased and the content of malondialdehyde (MDA) decreased. H(2)O(2) in low concentration improved the cancer cell proliferation and inhanced the expression of Mn-SOD c-fos and c-jun, but led to cells apoptosis or necrosis in high concentration. The mechanism of antioxidants inhibiting tumor growth and improving cancer cells apoptosis might be that, on the one hand, the antioxidants blocked the free radicals signal transduction on cancer cells proliferation, and on the other hand, they improved the release of NO through enhancing the non-specific immunity, so inhibiting the cancer cells proliferation directly.

  17. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed Central

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-01-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver. PMID:9343392

  18. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-11-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver.

  19. NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Tao; Xi'an Medical University, Xi'an, Shaanxi Province; Zhang, Mei

    Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activationmore » of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation. - Highlights: • NDRG2 overexpression reduces the tolerance of hepatoma cells to glucose limitation. • NDRG2 overexpression aggravates energy imbalance and oxidative stress under glucose deprivation. • NDRG2 overexpression disturbs the activation of FAO in hepatoma cells under glucose limitation. • NDRG2 overexpression inhibits the activation of AMPK/ACC pathway in hepatoma cells during glucose starvation.« less

  20. Cell death induced by Morarah and Khaltita in hepatoma cancer cells (Huh-7).

    PubMed

    Baig, Saeeda; Alamgir, Mohiuddin

    2009-10-01

    To compare the combined and isolated growth inhibitory effects of Morarah and Khaltita (herbs) on hepatoma cell lines (Huh-7), through induction of apoptosis or necrosis. Comparative controlled in-vitro study. The Molecular Biology Laboratory, The Aga Khan University, Karachi, from June to December 2006. The growth of hepatoma cell lines (Huh-7) was checked by adding Khaltita and Morarah to the cells before culture in a 24 well plate. Six wells were selected and labeled for each of the four variables (controls, Khaltita, Morarah and mixture). After 2 days, cells were studied under an inverted phase contrast microscope and fields were recorded. Approximately four fields per slide of higher intensity were selected randomly to determine the dead cell density, and the procedure was repeated 10 or more times. Frequency and percentages were calculated for dead or alive cells in controls, Morarah, Khaltita and their mixture. Chi-square was used to compare the qualitative variables. P-values < 0.05 were considered significant. Morarah and Khaltita were found to induce statistically significant (p < 0.001) cell death in hepatoma cell lines (Huh-7). At a magnification of 40x, the controls showed 1% dead cells compared to 91% in Morarah, 83% in Khaltita and 73% in combined mixture of Khaltita and Morarah. At magnification of 20x, the controls showed 4% dead cells compared to 44% in Morarah, 47% in Khaltita and 49% in the combined mixture of Khaltita and Morarah. Morarah and Khaltita induced cell death in cultured hepatoma cells (Huh-7).

  1. Enhanced proliferation of human hepatoma cells by PAR-2 agonists via the ERK/AP-1 pathway.

    PubMed

    Xie, Liqun; Zheng, Yanmin; Li, Xuan; Zhao, Junyan; Chen, Xiaoyi; Chen, Li; Zhou, Jing; Hai, Ou; Li, Fei

    2012-11-01

    To investigate the expression and role of PAR-2 in the proliferation of the human hepatoma cell line HepG2, PAR-2 protein and mRNA expression were evaluated by immuno-histochemistry, immunofluorescence and RT-PCR analysis. The signaling pathways downstream of PAR-2 activation that lead to hepatoma cell proliferation were analyzed. The results showed that PAR-2 is expressed in human hepatoma cells and PAR-2 mRNA expression was found to be upregulated in cells treated with trypsin or SLIGKV-NH2 (P<0.001). The proliferation rate of HepG2 cells treated with trypsin or SLIGKV-NH2 was significantly increased (P<0.001). The percentage of S phase, G2/M phase and the proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH2 were significantly elevated (P<0.001). The proliferative responses of HepG2 to trypsin and SLIGKV-NH2 were associated with the upregulation of c-fos and PCNA, which were significantly blocked by PD98059 pretreatment. In conclusion, our results indicate that PAR-2 enhances proliferation of human hepatoma cells possibly via the ERK/AP-1 pathway.

  2. Trichloroethylene toxicity in a human hepatoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thevenin, E.; McMillian, J.

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  3. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang

    2015-02-01

    We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using

  4. [IL-12 induces autophagy via AKT/mTOR/STAT3 signaling pathway in human hepatoma cells].

    PubMed

    Liu, Cuiying; Xie, Changli; Lin, Yan; Wu, Bitao; Wang, Qin; Li, Ziwei; Tu, Zhiguang

    2016-07-01

    Objective To investigate the effect of IL-12 on autophagy and the relative possible mechanism in HepG2 and SMMC-7721 human hepatoma cells. Methods The hepatoma cells were treated with IL-12 (10 ng/mL) for 6 hours. Western blotting was applied to detect the expressions of microtubule-associated protein 1 light chain 3 (LC-3), Beclin 1 and the phosphorylated levels of protein kinase B (AKT), mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3); immunofluorescence assay (IFA) and transmission electron microscopy (TEM) were used to observe the formation of autophagosome. After STAT3 was inhibited by STATTIC or siSTAT3 and AKT was activated by insulin-like growth factor (IGF-1), Western blotting and IFA were performed again to analyze the change of IL-12-induced autophagy. After the cells were treated with IL-12 (10 ng/mL) for 1, 2, 3, 4, 5 days, CCK-8 assay was used to determine the growth ability. After the hepatoma cells were treated with IL-12 (10 ng/mL) for 48 hours, trypan blue staining was used to detect the death rate of the cells. After cell autophagy was inhibit by siBeclin 1, CCK-8 assay and trypan blue staining were performed again to study the effect of IL-12 on the proliferation and death of human hepatoma cells. Results IL-12 induced autophagy and inhibited cell growth in the hepatoma cells. Silencing Beclin 1 gene enhanced IL-12-mediated growth inhibition and cell death. Furthermore, IL-12 treatment also decreased the expressions of p-AKT, p-mTOR and p-STAT3. The pretreatment of siSTAT3 or STATTIC inhibited STAT3-enhanced IL-12-induced autophagy. Accordingly, activation of AKT with IGF-1 decreased IL-12-induced autophagy. Conclusion IL-12 could induce autophagy through AKT/mTOR/STAT3 signaling pathways and the induction of autophagy attenuates the growth-inhibitory effect of IL-12 on hepatoma cells.

  5. Anti-hepatoma activity of a novel compound glaucocalyxin H in vivo and in vitro.

    PubMed

    Hai, Guangfan; Zhang, Chong; Jia, Yanlong; Bai, Suping; Han, Jinfen; Guo, Lanqing; Cui, Taizhen; Niu, Bingxuan; Huang, Feng; Song, Yu

    2015-06-01

    Glaucocalyxin H (GLH) is a new compound isolated from a traditional Chinese medical herb Isodon japonica var. glaucocalyx which has been used for folk medicine. This study was carried out for the first time to investigate the potential role of GLH in anti-hepatoma activity and underlying mechanisms in it. GLH could inhibit the growth of tumor in mice and induce HepG2 cells to death as assessed by the tumor reduction assay, toxic assay, morphological change, and survival rate assay. Many antitumor drugs originated from plants could inhibit the growth of tumor by inducing cells to apoptosis. The morphological changes of HepG2 cells treated with different concentrations of GLH under fluorescence and electron microscope and apoptotic rates were detected to verify its effect on apoptosis. As shown in the study, GLH could induce HepG2 cells to apoptosis in a dose-dependent manner. Bcl2 and Bax proteins played important roles in apoptosis and the disequilibrium between Bcl2 and Bax might result in apoptosis. The expression of Bax protein was upregulated and Bcl2 protein was downregulated in HepG2 cells treated with GLH assessed by Western blotting, and they were in a dose-dependent manner. Taken together, GLH can inhibit the growth of hepatoma cells in vivo and in vitro by inducing cell apoptosis due to the decreased Bcl2 and increased Bax proteins suggesting that GLH could be a potential candidate as an anti-hepatoma agent for the therapeutic treatment of hepatoma.

  6. Trout hepatoma--a preliminary report

    USGS Publications Warehouse

    Rucker, R.R.; Yasutake, W.T.; Wolf, H.

    1961-01-01

    Fish pathology and its role in fish culture were brought into prominence in the spring of 1960 by the disclosure of a high incidence of hepatomas in hatchery-reared rainbow trout. The current problem came to light as the result of a routine inspection of live trout shipments at a California border fish-disease checking station. This service is performed by personnel of the California Department of Fish and Game to preclude the introduction or further spread of communicable fish diseases into California watersheds. Collaborative studies which followed revealed the nationwide distribution of the disease. This unusual disease soon attracted the attention of the Bureau of Sport Fisheries and Wildlife, the Food and Drug Administration, Public Health Service, and several western State health and conservation agencies.

  7. Inhibition of Hepatitis B Virus and Induction of Hepatoma Cell Apoptosis by ASGPR-Directed Delivery of shRNAs

    PubMed Central

    Yao, Xinxin; Shi, Chuan; Sun, Lifang; Yuan, Lu; Lei, Ping; Zhu, Huifen; Liu, Hongbo; Wu, Xiongwen; Ning, Qin; Zhou, Chun; Shen, Guanxin

    2012-01-01

    Hepatitis B virus (HBV) infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC). Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapies for these two stages of the HBV-caused detrimental disease. Recently, short hairpin RNA (shRNA) has emerged as a potential therapy for virus-infected disease and cancer. Here, we have generated a shRNA, pGenesil-siHBV4, which effectively inhibits HBV replication in the human hepatoma cell line HepG2.2.15. The inhibitory effects of pGenesil-siHBV4 are manifested by the decrease of both the HBV mRNA level and the protein levels of the secreted HBV surface antigen (HBsAg) and HBV e antigen (HBeAg), and by the reduction of secreted HBV DNA. Using mouse hydrodynamic tail vein injection, we demonstrate that pGenesil-siHBV4 is effective in inhibiting HBV replication in vivo. Because survivin plays a key role in cancer cell escape from apoptosis, we further generated pGenesil-siSurvivin, a survivin-silencing shRNA, and showed its effect of triggering apoptosis of HBV-containing hepatoma cells. To develop targeted shRNA therapy, we have identified that as a specific binder of the asialoglycoprotein receptor (ASGPR), jetPEI-Hepatocyte delivers pGenesil-siHBV4 and pGenesil-siSurvivin specifically to hepatocytes, not other types of cells. Finally, co-transfection of pGenesil-siHBV4 and pGenesil-siSurvivin exerts synergistic effects in inducing hepatoma cell apoptosis, a novel approach to eliminate hepatoma by downregulating survivin via multiple mechanisms. The application of these novel shRNAs with the jetPEI-Hepatocyte targeting strategy demonstrates the proof-of-principle for a promising approach to inhibit HBV replication and eliminate hepatoma cells with high specificity. PMID:23094023

  8. [Ursodeoxycholic acid induced apoptosis of human hepatoma cells HepG2 and SMMC-7721 bymitochondrial-mediated pathway].

    PubMed

    Wu, Duan; Zhou, Jianyin; Yin, Zhenyu; Liu, Pingguo; Zhao, Yilin; Liu, Jianming; Wang, Xiaomin

    2014-12-02

    To explore the effects and underlying mechanisms of ursodeoxycholic acid on human hepatoma cells. HepG2 and SMMC-7721 HCC cell lines were respectively treated with ursodeoxycholic acid. And cell proliferation, apoptosis and the expression of Bax/Bcl-2 gene were detected by methyl thiazolyl tetrazolium (MTT), inverted microscopy, fluorescent microscopy, flow cytometry and Western blot. Ursodeoxycholic acid significantly inhibited the proliferation of human hepatoma cells in a concentration- and time-dependent manner. The half maximal inhibitory concentrations (IC50) of HepG2 and SMMC-7721 were 397.3 and 387.7 µg/ml respectively after a 48-hour treatment of 400 µg /ml ursodeoxycholic acid. And it also induced the apoptosis of HepG2 and SMMC-7721 cells, up-regulated Bax gene and down-regulated Bcl-2 gene. Ursodeoxycholic acid inhibits the proliferation of hepatoma cells and induce apoptosis by mitochondrial-mediated pathway.

  9. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: detachedy@yahoo.com.cn; Sun, Ting; Cao, Jianping

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase inmore » all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.« less

  10. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singaravelu, Ragunath; National Research Council of Canada, Ottawa, Ontario K1A 0R6; Lyn, Rodney K.

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limitedmore » cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.« less

  11. Production of thrombopoietin (TPO) by rat hepatocytes and hepatoma cell lines.

    PubMed

    Shimada, Y; Kato, T; Ogami, K; Horie, K; Kokubo, A; Kudo, Y; Maeda, E; Sohma, Y; Akahori, H; Kawamura, K

    1995-12-01

    Recently, we purified rat thrombopoietin (TPO) from plasma of irradiated rats (XRP) by measuring its activity that stimulated the production of megakaryocytes from megakaryocyte progenitor cells (CFU-MK) in vitro. We then cloned the cDNAs for rat and human TPO. In this study, we found the production of TPO by hepatocytes isolated with the collagenase perfusion method from both normal and thrombocytopenic rats, by a two-step fractionation of hepatocyte culture medium (CM). Subsequently, CM of rat hepatoma cell lines was screened for the presence of TPO; three cell lines, H4-II-E, McA-RH8994, and HTC, were found to produce TPO. According to the purification procedure for TPO from XRP, TPO was partially purified from 2 L CM of each of three cell lines with a six-step procedure. In the final reverse-phase column, TPO from each cell line was eluted with the same retention time as that from XRP, and the TPO fraction exhibited megakaryocyte colony-stimulating activity (Meg-CSA). TPO-active fraction eluted from the final reverse-phase column was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), extracted from the gel, and assayed. TPO activity from each cell line was found in the respective molecular weight region, indicating the heterogeneity of the TPO molecule. Using reverse transcriptase-polymerase chain reaction (RT-PCR), we detected the expression of TPO mRNA in hepatocytes, three hepatoma cell lines, normal rat liver, and X-irradiated rat liver. Northern blot analysis showed that TPO mRNA was expressed mainly in liver among the various organs tested. These data demonstrate that TPO is produced by rat hepatocytes and hepatoma cell lines and suggest that liver may be the primary organ that produces TPO.

  12. DMFC (3,5-dimethyl-7H-furo[3,2-g]chromen-7-one) regulates Bim to trigger Bax and Bak activation to suppress drug-resistant human hepatoma.

    PubMed

    Xiang, Jun; Wang, Zhe; Liu, Qianqian; Li, Xia; Sun, Jianguo; Fung, Kwok-Pui; Liu, Feiyan

    2017-03-01

    3,5-Dimethyl- 7 H-furo[3,2-g]chromen-7-one (DMFC) is a coumarin derivative with anti-cancer activity against human hepatoma cells, but the mechanisms underlying DMFC function in cancer suppression is unknown. In this study, we aimed at elucidating the molecular mechanisms underlying DMFC anti-cancer activity and determining whether DMFC is effective in suppression of drug-resistant human hepatocellular carcinoma. We show here that DMFC effectively suppresses both the parent and the multidrug-resistant hepatoma cell growth in vitro and DMFC suppresses hepatoma cell growth at least in part through inducing tumor cell apoptosis. In the molecular level, we observed that DMFC treatment decreases Bcl-2 level by a post-transcriptional mechanism and activates Bim transcription to increase Bim mRNA and protein level in hepatoma cells. Furthermore, co-immunoprecipitation studies revealed that DMFC-induced Bim interrupts interactions between Bcl-2 and Bax and between Mcl-1 and Bak, resulting in dissociation of Bax from Bcl-2 and Bak from Mcl-1 and subsequent activation of both Bax and Bak. Activation of Bax and Bak leads to mitochondrial outer membrane permeabilization and cytochrome c release. Consistent with its potent apoptosis-inducing activity, DMFC exhibited potent activity against the multidrug-resistant hepatoma xenograft growth in vivo. Therefore, we determine that DMFC suppresses hepatoma growth through decreasing Bcl-2 and increasing Bim to induce tumor cell apoptosis and hold great promise for further development as a therapeutic agent to treat chemoresistant hepatoma.

  13. Evaluating the potential of (188)Re-ECD/lipiodol as a therapeutic radiopharmaceutical by intratumoral injection for hepatoma treatment.

    PubMed

    Luo, Tsai-Yueh; Shih, Ying-Hsia; Chen, Chiung-Yu; Tang, I-Chung; Wu, Yu-Long; Kung, Hong-Chang; Lin, Wuu-Jyh; Lin, Xi-Zhang

    2009-10-01

    Intratumoral injection of a radiopharmaceutical is a potential modality to treat liver tumors. Rhenium-188 ((188)Re) was used to chelate with ethyl cysteinate dimer (ECD) in lipiodol solution to form (188)Re-ECD/lipiodol, which was then evaluated for its therapeutic potential in a rodent hepatoma model. Male Sprague-Dawley rats were implanted with N1-S1 hepatoma cells orthotopically and randomly divided into two groups. Group 1 (n = 29) and group 2 (n = 10) received (188)Re-ECD/lipiodol (30.4 +/- 21.8 MBq/0.1 mL) and 0.1 mL of normal saline by intratumoral injection, respectively. Three rats in group 1 were imaged by micro-single-photon emission computed tomography/computed tomography scan to evaluate the biodistribution pattern. All rats were monitored for change of tumor size and survival rate after 2 months. The in vitro stability test showed that (188)Re-ECD was well-retained in the lipiodol phase for 48 hours. The biodistribution image revealed that radioactivity was retained well in hepatomas 24 hours postinjection. Long-term studies demonstrated that rats treated with (188)Re-ECD/Lipiodol had smaller tumor volumes and a better survival rate, compared to the control group. At the end of observation, the survival rates in groups 1 and 2 were 62% and 20%, respectively (p < 0.05). (188)Re-ECD/lipiodol via direct intratumoral injection shows potential for treating hepatoma and warrants further clinical trials.

  14. Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway.

    PubMed

    Tang, Wenqing; Feng, Xuemei; Zhang, Si; Ren, Zhenggang; Liu, Yinkun; Yang, Biwei; lv, Bei; Cai, Yu; Xia, Jinglin; Ge, Ningling

    2015-01-01

    Anoikis resistance is a prerequisite for hepatocellular carcinoma (HCC) metastasis. The role of Caveolin-1 (CAV1) in anoikis resistance of HCC remains unclear. The oncogenic effect of CAV1 on anchor-independent growth and anoikis resistance was investigated by overexpression and knockdown of CAV1 in hepatoma cells. IGF-1 pathway and its downstream signals were detected by immunoblot analysis. Caveolae invagination and IGF-1R internalization was studied by electron microscopy and (125)I-IGF1 internalization assay, respectively. The role of IGF-1R and tyrosine-14 residue (Y-14) of CAV1 was explored by deletion experiment and mutation experiment, respectively. The correlation of CAV1 and IGF-1R was further examined by immunochemical analysis in 120 HCC specimens. CAV1 could promote anchor-independent growth and anoikis resistance in hepatoma cells. CAV1-overexpression increased the expression of IGF-1R and subsequently activated PI3K/Akt and RAF/MEK/ERK pathway, while CAV1 knockdown showed the opposite effect. The mechanism study revealed that CAV1 facilitated caveolae invagination and (125)I-IGF1 internalization. IGF-1R deletion or Y-14 mutation reversed CAV1 mediated anchor-independent growth and anoikis resistance. In addition, CAV1 expression was positively related to IGF-1R expression in human HCC tissues. CAV1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway, providing a potential therapeutic target for HCC metastasis. © 2015 S. Karger AG, Basel.

  15. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    PubMed

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells.

    PubMed

    Wang, Ning; Wang, Xuanbin; Tan, Hor-Yue; Li, Sha; Tsang, Chi Man; Tsao, Sai-Wah; Feng, Yibin

    2016-11-15

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCF β-TrCP ) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine's potential as an anti-tumor agent for clinical cancer therapy.

  17. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells

    PubMed Central

    Wang, Ning; Wang, Xuanbin; Tan, Hor-Yue; Li, Sha; Tsang, Chi Man; Tsao, Sai-Wah; Feng, Yibin

    2016-01-01

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCFβ-TrCP) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine′s potential as an anti-tumor agent for clinical cancer therapy. PMID:27854312

  18. 188Re-SSS lipiodol: radiolabelling and biodistribution following injection into the hepatic artery of rats bearing hepatoma.

    PubMed

    Garin, Etienne; Denizot, Benoit; Noiret, Nicolas; Lepareur, Nicolas; Roux, Jerome; Moreau, Myriam; Herry, Jean-Yves; Bourguet, Patrick; Benoit, Jean-Pierre; Lejeune, Jean-Jacques

    2004-10-01

    Although intra-arterial radiation therapy with 131I-lipiodol is a useful therapeutic approach to the treatment of hepatocellular carcinoma, various disadvantages limit its use. To describe the development of a method for the labelling of lipiodol with 188Re-SSS (188Re (S2CPh)(S3CPh)2 complex) and to investigate its biodistribution after injection into the hepatic artery of rats with hepatoma. 188Re-SSS lipiodol was obtained after dissolving a chelating agent, previously labelled with 188Re, in cold lipiodol. The radiochemical purity (RCP) of labelling was checked immediately. The 188Re-SSS lipiodol was injected into the hepatic artery of nine rats with a Novikoff hepatoma. They were sacrificed 1, 24 and 48 h after injection, and used for ex vivo counting. Labelling of 188Re-SSS lipiodol was achieved with a yield of 97.3+/-2.1%. The immediate RCP was 94.1+/-1.7%. Ex vivo counting confirmed a predominantly hepatic uptake, with a good tumoral retention of 188Re-SSS lipiodol, a weak pulmonary uptake and a very faint digestive uptake. The 'tumour/non-tumoral liver' ratio was high at 1, 24 and 48 h after injection (2.9+/-1.5, 4.1+/-/4.1 and 4.1+/-0.7, respectively). Using the method described here, 188Re-SSS lipiodol can be obtained with a very high yield and a satisfactory RCP. The biodistribution in rats with hepatoma indicates a good tumoral retention of 188Re-SSS lipiodol associated with a predominant hepatic uptake, a weak pulmonary uptake and a very faint digestive uptake. This product should be considered for intra-arterial radiation therapy in human hepatoma.

  19. Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice.

    PubMed

    Kan, Xuefeng; Zhang, Wanli; You, Ruxu; Niu, Yanfeng; Guo, Jianrong; Xue, Jun

    2017-01-13

    Previous studies showed Scutellaria barbata D. Don extract (SBE) is a potent inhibitor in hepatoma and could improve immune function of hepatoma H22-bearing mice. However, the immunomodulatory function of SBE on the tumor growth of hepatoma remains unclear. This study aimed to investigate the anti-tumor effects of SBE on hepatoma H22-bearing mice and explore the underlying immunomodulatory function. The hepatoma H22-bearing mice were treated by SBE for 30 days. The effect of SBE on the proliferation of HepG2 cells in vitro, the growth of transplanted tumor, the cytotoxicity of natural killer (NK) cells in spleen, the amount of CD4 + CD25 + Foxp3 + Treg cells and Th17 cells in tumor tissue, and the levels of IL-10, TGF-β, IL-17A, IL-2, and IFN-γ in serum of the hepatoma H22-bearing mice was observered. IL-17A was injected to the SBE treated mice from day 9 post H22 inoculation to examine its effect on tumor growth. SBE treatment inhibited the proliferation of HepG2 cells in vitro with a dose-dependent manner and significantly suppressed the tumor growth of hepatoma H22-bearing mice. Meanwhile, it increased NK cells' cytotoxicity in spleen, down-regulated the amount of CD4 + CD25 + Foxp3 + Treg cells and Th17 cells in tumor tissue, and decreased IL-10, TGF-β, and IL-17A levels (P < 0.01) whereas increased IL-2 and IFN-γ levels (P < 0.01) in the serum of hepatoma H22-bearing mice. Moreover, administration of recombinant mouse IL-17A reversed the anti-tumor effects of SBE. SBE could inhibit the proliferation of HepG2 cells in vitro. Meanwhile, SBE also could inhibit the growth of H22 implanted tumor in hepatoma H22-bearing mice, and this function might be associated with immunomodulatory activity through down-regulating of Treg cells and manipulating Th1/Th17 immune response.

  20. Combined inhibitors of angiogenesis and histone deacetylase: efficacy in rat hepatoma.

    PubMed

    Ganslmayer, Marion; Zimmermann, Annette; Zopf, Steffen; Herold, Christoph

    2011-08-21

    To evaluate the antitumoral effect of combined inhibitors of angiogenesis and histone deacetylases in an experimental rat hepatoma model. MH7777A hepatoma cells were injected into the liver of male Buffalo rats. After 7 d treatment with the vascular endothelial growth factor receptor antagonist PTK787/ZK222584 (PTK/ZK), the histone deacetylase inhibitor MS-275, tamoxifen (TAM) and/or retinoic acid was initiated (n ≥ 8 animals/group). Natural tumor development was shown in untreated control groups (control 1 with n = 12, control 2 with n = 8). The control groups were initiated at different time points to demonstrate the stability of the hepatoma model. For documentation of possible side effects, we documented any change in body weight, loss of fur and diarrhea. After 21 d treatment, the rats were euthanized. Main target parameters were tumor size and metastasis rate. Additionally, immunohistochemistry for the proliferating cell nuclear antigen (PCNA) and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay were performed. The control groups developed large tumor nodules with extrahepatic tumor burden in the lung and abdominal organs (control 1: 6.18 cm(3) ± 4.14 cm(3) and control 2: 8.0 cm(3) ± 4.44 cm(3) 28 d after tumor cell injection). The tumor volume did not differ significantly in the control groups (P = 0.13). As single agents MS-275 and PTK/ZK reduced tumor volume by 58.6% ± 2.6% and 48.7% ± 3.2% vs control group 1, which was significant only for MS-275 (P = 0.025). The combination of MS-275 and PTK/ZK induced a nearly complete and highly significant tumor shrinkage by 90.3% ± 1% (P = 0.005). Addition of TAM showed no further efficacy, while quadruple therapy with retinoic acid increased antitumoral efficacy (tumor reduction by 93 ± 1%) and side effects. PCNA positive cells were not significantly reduced by the single agents, while dual therapy (MS-275 and PTK/ZK) and quadruple therapy reduced the PCNA-positive cell fraction significantly by 9

  1. Recombinant Newcastle disease virus expressing human TRAIL as a potential candidate for hepatoma therapy

    USDA-ARS?s Scientific Manuscript database

    Newcastle disease virus (NDV) have shown oncolytic therapeutic efficacy in preclinical studies and are currently proved for clinical trials. We have previously reported, for the first time, NDV Anhinga strain has an efficient cancer therapeutic efficacy in hepatoma. Tumor necrosis factor-related apo...

  2. Direct stimulation of immediate-early genes by intranuclear insulin in trypsin-treated H35 hepatoma cells.

    PubMed Central

    Lin, Y J; Harada, S; Loten, E G; Smith, R M; Jarett, L

    1992-01-01

    H35 hepatoma cells were treated with trypsin to abolish insulin binding and insulin-stimulated receptor kinase activity. Insulin was, however, internalized by fluid-phase endocytosis in trypsin-treated cells. Furthermore, nuclear accumulation of insulin was similar in control and trypsin-treated hepatoma cells. Northern blot analysis revealed insulin increased g33 and c-fos mRNA concentrations identically in control and trypsin-treated cells but had no effect on beta 2-microglobulin mRNA. Actinomycin D treatment prior to or after insulin addition demonstrated that insulin increased gene transcription and had no effect on mRNA degradation. These studies suggest that the accumulation of intact insulin in cell nuclei may be directly involved in the increased transcription of immediate-early genes. Images PMID:1409684

  3. [Effect of tagalsin on p53 and Bcl-2 expression in hepatoma H(22) tumor-bearing mice].

    PubMed

    Song, Xiu-qi; Guo, Yun-liang; Wang, Bing-gao; Sun, Shao-jie; Yao, Ru-yong

    2011-07-01

    To explore the effect and mechanism of tagalsin on hepatoma cells. The animal models were established by transplanting H(22) mouse hepatoma cells to mouse liver, and ten days later the mice were randomly divided into five groups: blank group, carmofur positive group and tagalsin groups, including low-dose, middle-dose and high-dose groups. Then medicine or oil was given to the mice by gastric gavage in consecutive 5 days with a 2-days interval as a course of treatment, two courses in all. All mice were killed at 24 hours after medication, and the survival period, ascites conditions, aggressive conditions intra- or extra-liver, weight changes, tumor volume and spleen index of the tumor-bearing mice were observed. Pathological changes of the tumors were examined. Apoptotic factors p53 and Bcl-2 protien and mRNA were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). tagalsin inhibited the hepatoma growth effectively without influencing spleen index to some extent. The tumor inhibition rate of tagalsin low, middle and high dose groups were 17.9%, 63.1% and 71.8%, respectively. Immunohistochemical results showed that the p53 and Bcl-2 protein positive cell counts of the positive control and experimental groups were significantly lower than those of the blank group (P < 0.01). RT-PCR results showed that the p53 mRNA expression was significantly enhanced and Bcl-2 mRNA expression was decreased in the positive control groups and tagalsin treatment groups, especially in the high dose group, compared with those of the blank group (P < 0.05). tagalsin can inhibit the growth of mouse hepatoma cells significantly. The mechanism of its anti-tumor effect may work via up-regulating the wild type p53 gene expression and down-regulating Bcl-2 gene expression and thus regulating tumor cell apoptosis.

  4. Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver.

    PubMed Central

    Warskulat, U; Wettstein, M; Häussinger, D

    1997-01-01

    The effects of aniso-osmotic exposure on taurine transport were studied in H4IIE rat hepatoma cells. Hyperosmotic (405 mosmol/l) exposure of H4IIE cells stimulated Na+-dependent taurine uptake and led to an increase in taurine transporter (TAUT) mRNA levels, whereas hypo-osmotic (205 mosmol/l) exposure diminished both taurine uptake and TAUT mRNA levels when compared with normo-osmotic (305 mosmol/l) control incubations. Taurine uptake increased 30-40-fold upon raising the ambient osmolarity from 205 to 405 mosmol/l. When H4IIE cells and perfused livers were preloaded with taurine, hypo-osmotic cell swelling led to a rapid release of taurine from the cells. The taurine efflux, but not taurine uptake, was sensitive to 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS), suggestive of an involvement of DIDS-sensitive channels in mediating volume-regulatory taurine efflux. Whereas in both H4IIE rat hepatoma cells and primary hepatocytes TAUT mRNA levels were strongly dependent upon ambient osmolarity, mRNAs for other osmolyte transporters, i.e. the betaine transporter BGT-1 and the Na+/myo-inositol transporter SMIT, were not detectable. In line with this, myo-inositol uptake by H4IIE hepatoma cells was low and was not stimulated by hyperosmolarity. However, despite the absence of BGT-1 mRNA, a slight osmosensitive uptake of betaine was observed, but the rate was less than 10% of that of taurine transport. This study identifies a constitutively expressed and osmosensitive TAUT in H4IIE cells and the use of taurine as a main osmolyte, whereas betaine and myo-inositol play little or no role in the osmolyte strategy in these cells. This is in contrast with rat liver macrophages, in which betaine has been shown to be a major osmolyte. PMID:9032454

  5. Body distribution of nanoparticle-containing adriamycin injected into the hepatic artery of hepatoma-bearing rats.

    PubMed

    Chen, Jiang-Hao; Wang, Ling; Ling, Rui; Li, Yu; Wang, Zhe; Yao, Qing; Ma, Zhong

    2004-08-01

    The aim of the study was to investigate the body distribution of nanoparticle-containing adriamycin (NADR) injected into the hepatic artery of hepatoma-bearing rats. Thirty Walker-256 hepatoma-bearing rats were divided into two groups at random, with 15 rats in each. NADR and free adriamycin (FADR) were injected into the hepatic artery of animals on the seventh day after tumor implantation. At 1, 5, and 15 hr, after administration, five animals in each group were sacrificed and the ADR concentrations in the plasma, liver, heart, spleen, lungs, kidneys, and tumor were determined. The results showed that NADR substantially increased the ADR concentrations in liver, spleen, and tumor of rats compared to FADR, whereas the concentrations in plasma, heart, and lungs were significantly decreased. In conclusion, the body distribution of ADR can be modified by its encapsulation into nanoparticles and administration via the hepatic artery.

  6. Epigenetic Targeting of Granulin in Hepatoma Cells by Synthetic CRISPR dCas9 Epi-suppressors.

    PubMed

    Wang, Hong; Guo, Rui; Du, Zhonghua; Bai, Ling; Li, Lingyu; Cui, Jiuwei; Li, Wei; Hoffman, Andrew R; Hu, Ji-Fan

    2018-06-01

    The CRISPR-associated Cas9 system can modulate disease-causing alleles both in vivo and ex vivo, raising the possibility of therapeutic genome editing. In addition to gene targeting, epigenetic modulation by the catalytically inactive dCas9 may also be a potential form of cancer therapy. Granulin (GRN), a potent pluripotent mitogen and growth factor that promotes cancer progression by maintaining self-renewal of hepatic stem cancer cells, is upregulated in hepatoma tissues and is associated with decreased tumor survival in patients with hepatoma. We synthesized a group of dCas9 epi-suppressors to target GRN by tethering the C terminus of dCas9 with three epigenetic suppressor genes: DNMT3a (DNA methyltransferase), EZH2 (histone 3 lysine 27 methyltransferase), and KRAB (the Krüppel-associated box transcriptional repression domain). In conjunction with guide RNAs (gRNAs), the dCas9 epi-suppressors caused significant decreases in GRN mRNA abundance in Hep3B hepatoma cells. These dCas9 epi-suppressors initiated de novo CpG DNA methylation in the GRN promoter, and they produced histone codes that favor gene suppression, including decreased H3K4 methylation, increased H3K9 methylation, and enhanced HP1a binding. Epigenetic knockdown of GRN led to the inhibition of cell proliferation, decreased tumor sphere formation, and reduced cell invasion. These changes were achieved at least partially through the MMP/TIMP pathway. This study thus demonstrates the potential utility of using dCas9 epi-suppressors in the development of epigenetic targeting against tumors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Antitumor activity of Type I and Type III interferons in BNL hepatoma model

    PubMed Central

    Abushahba, Walid; Balan, Murugabaskar; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Raveche, Elizabeth; de la Torre, Andrew

    2015-01-01

    Hepatocellular carcinoma (HCC) occurs most commonly secondary to cirrhosis due to chronic hepatitis C or B virus (HCV/HBV) infections. Type I interferon (IFN-α) treatment of chronic HCV/HBV infections reduces the incidence of HCC in cirrhotic patients. However, IFN-α toxicity limits its tolerability and efficacy highlighting a need for better therapeutic treatments. A recently discovered type III IFN (IFN-λ) has been shown to possess antiviral properties against HCV and HBV in vitro. In phase I clinical trials, IFN-λ treatment did not cause significant adverse reactions. Using a gene therapy approach, we compared the antitumor properties of IFN-α and IFN-λ in a transplantable hepatoma model of HCC. BALB/c mice were inoculated with syngeneic BNL hepatoma cells, or BNL cells expressing IFN-λ (BNL.IFN-λ cells) or IFN-α (BNL.IFN-α cells). Despite the lack of antiproliferative activity of IFNs on BNL cells, both BNL.IFN-λ and BNL.IFN-α cells displayed retarded growth kinetics in vivo. Depletion of NK cells from splenocytes inhibited splenocyte-mediated cytotoxicity, demonstrating that NK cells play a role in IFN-induced antitumor responses. However, isolated NK cells did not respond directly to IFN-λ. There was also a marked NK cell infiltration in IFN-λ producing tumors. In addition, IFN-λ and, to a lesser extent, IFN-α enhanced immunocytotoxicity of splenocytes primed with irradiated BNL cells. Splenocyte cytotoxicity against BNL cells was dependent on IL-12 and IFN-λ, and mediated by dendritic cells. In contrast to NK cells, isolated from spleen CD1 1c+ and mPDCA+ dendritic cells responded directly to IFN-λ. The antitumor activities of IFN-λ against hepatoma, in combination with HCV and HBV antiviral activities warrant further investigation into the clinical use of IFN-λ to prevent HCC in HCV/HBV-infected cirrhotic patients, as well as to treat liver cancer. PMID:20217081

  8. Antitumor activity of type I and type III interferons in BNL hepatoma model.

    PubMed

    Abushahba, Walid; Balan, Murugabaskar; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Raveche, Elizabeth; de la Torre, Andrew; Lasfar, Ahmed; Kotenko, Sergei V

    2010-07-01

    Hepatocellular carcinoma (HCC) occurs most commonly secondary to cirrhosis due to chronic hepatitis C or B virus (HCV/HBV) infections. Type I interferon (IFN-alpha) treatment of chronic HCV/HBV infections reduces the incidence of HCC in cirrhotic patients. However, IFN-alpha toxicity limits its tolerability and efficacy highlighting a need for better therapeutic treatments. A recently discovered type III IFN (IFN-lambda) has been shown to possess antiviral properties against HCV and HBV in vitro. In phase I clinical trials, IFN-lambda treatment did not cause significant adverse reactions. Using a gene therapy approach, we compared the antitumor properties of IFN-alpha and IFN-lambda in a transplantable hepatoma model of HCC. BALB/c mice were inoculated with syngeneic BNL hepatoma cells, or BNL cells expressing IFN-lambda (BNL.IFN-lambda cells) or IFN-alpha (BNL.IFN-alpha cells). Despite the lack of antiproliferative activity of IFNs on BNL cells, both BNL.IFN-lambda and BNL.IFN-alpha cells displayed retarded growth kinetics in vivo. Depletion of NK cells from splenocytes inhibited splenocyte-mediated cytotoxicity, demonstrating that NK cells play a role in IFN-induced antitumor responses. However, isolated NK cells did not respond directly to IFN-lambda. There was also a marked NK cell infiltration in IFN-lambda producing tumors. In addition, IFN-lambda and, to a lesser extent, IFN-alpha enhanced immunocytotoxicity of splenocytes primed with irradiated BNL cells. Splenocyte cytotoxicity against BNL cells was dependent on IL-12 and IFN-gamma, and mediated by dendritic cells. In contrast to NK cells, isolated from spleen CD11c+ and mPDCA+ dendritic cells responded directly to IFN-lambda. The antitumor activities of IFN-lambda against hepatoma, in combination with HCV and HBV antiviral activities warrant further investigation into the clinical use of IFN-lambda to prevent HCC in HCV/HBV-infected cirrhotic patients, as well as to treat liver cancer.

  9. Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress.

    PubMed

    Kim, Kiyoon; Kim, Hunsung; Jeong, Kwon; Jung, Min Hyung; Hahn, Bum-Soo; Yoon, Kyung-Sik; Jin, Byung Kwan; Jahng, Geon-Ho; Kang, Insug; Ha, Joohun; Choe, Wonchae

    2012-08-01

    Cyclophilin, a cytosolic receptor for the immunosuppressive drug cyclosporin A, plays a role in diverse pathophysiologies along with its receptor, CD147. Although the interaction between cyclophilin A and CD147 is well established in inflammatory disease, that of cyclophilin B (CypB) with CD147 has not been fully explored, especially in cancer cell biology, and the exact molecular mechanism underlying such an association is poorly understood. In this study, we first identified high expression levels of CypB in 54 % of hepatocellular carcinoma patient tissues but in only 12.5 % of normal liver tissues. Then, we demonstrated that CypB overexpression protects human hepatoma cells against oxidative stress through its binding to CD147; this protective effect depends on the peptidyl prolyl isomerase activity of CypB. siRNA-mediated knockdown of CypB expression rendered hepatoma cells more vulnerable to ROS-mediated apoptosis. Furthermore, we also determined that a direct interaction between secreted CypB and CD147 regulates the extracellular signal-regulated kinase intracellular signaling pathway and is indispensible for the protective functions of CypB. For the first time, we demonstrated that CypB has an essential function in protecting hepatoma cells against oxidative stress through binding to CD147 and regulating the ERK pathway.

  10. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors.

    PubMed

    Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2018-01-01

    New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Regulatory aspects of the glutamylation of methotrexate in cultured hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimec, Z.; Galivan, J.

    1983-10-15

    The glutamylation of methotrexate has been evaluated in H35 hepatoma cells in vitro as a function of the conditions of culture. Glutamylation yields methotrexate polyglutamate with two to five additional glutamate residues and is a saturable process. The rate of glutamylation increases little above 10 microM extracellular methotrexate which corresponds to an intracellular concentration of approximately 4 microM. The rate of glutamylation measured over a 6-h period was stimulated by a reduction in cellular folates and prior incubation of the cells with insulin. Glutamylation was also more rapid in dividing cultures than in confluent cells. The combination of insulin inclusionmore » and folate reduction, which was additive, caused approximately a fourfold increase in the rate of glutamylation over control cells under the conditions tested. The maximal rate of methotrexate glutamylation, which was 100 nmol/g/h, occurred in folate-depleted, insulin-supplemented cells. Supplementing folate-depleted cells with reduced folate coenzymes caused the glutamylation to be reduced by more than 90%. In addition to showing that folates can modify the rates of methotrexate polyglutamate formation, data are presented suggesting that methotrexate polyglutamates can regulate their own synthesis. The consequences of the formation of these retained forms of methotrexate in H35 hepatoma cells and the effects of potential regulators of this process are discussed in terms of the glutamylation of folates in the cells and the chemotherapeutic effects of antifolates.« less

  12. Synergistic effects of acyclic retinoid and OSI-461 on growth inhibition and gene expression in human hepatoma cells.

    PubMed

    Shimizu, Masahito; Suzui, Masumi; Deguchi, Atsuko; Lim, Jin T E; Xiao, Danhua; Hayes, Julia H; Papadopoulos, Kyriakos P; Weinstein, I Bernard

    2004-10-01

    Hepatoma is one of the most frequently occurring cancers worldwide. However, effective chemotherapeutic agents for this disease have not been developed. Acyclic retinoid, a novel synthetic retinoid, can reduce the incidence of postsurgical recurrence of hepatoma and improve the survival rate. OSI-461, a potent derivative of exisulind, can increase intracellular levels of cyclic GMP, which leads to activation of protein kinase G and induction of apoptosis in cancer cells. In the present study, we examined the combined effects of acyclic retinoid plus OSI-461 in the HepG2 human hepatoma cell line. We found that the combination of as little as 1.0 micromol/L acyclic retinoid and 0.01 micromol/L OSI-461 exerted synergistic inhibition of the growth of HepG2 cells. Combined treatment with low concentrations of these two agents also acted synergistically to induce apoptosis in HepG2 cells through induction of Bax and Apaf-1, reduction of Bcl-2 and Bcl-xL, and activation of caspase-3, -8, and -9. OSI-461 enhanced the G0-G1 arrest caused by acyclic retinoid, and the combination of these agents caused a synergistic decrease in the levels of expression of cyclin D1 protein and mRNA, inhibited cyclin D1 promoter activity, decreased the level of hyperphosphorylated forms of the Rb protein, induced increased cellular levels of the p21(CIP1) protein and mRNA, and stimulated p21(CIP1) promoter activity. Moreover, OSI-461 enhanced the ability of acyclic retinoid to induce increased cellular levels of retinoic acid receptor beta and to stimulate retinoic acid response element-chloramphenicol acetyltransferase activity. A hypothetical model involving concerted effects on p21(CIP1) and retinoic acid receptor beta expression is proposed to explain these synergistic effects. Our results suggest that the combination of acyclic retinoid plus OSI-461 might be an effective regimen for the chemoprevention and chemotherapy of human hepatoma and possibly other malignancies.

  13. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.

  14. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    PubMed

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  15. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-01

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  16. Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma

    NASA Astrophysics Data System (ADS)

    Hsieh, Ya-Ju; Chen, Fu-Du; Wang, Fu Hui; Ke, Chien Chih; Wang, Hsin-Ell; Liu, Ren-Shyan

    2007-02-01

    For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC.

  17. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2).

    PubMed

    Abdel-Lateef, Ezzat; Mahmoud, Faten; Hammam, Olfat; El-Ahwany, Eman; El-Wakil, Eman; Kandil, Sherihan; Abu Taleb, Hoda; El-Sayed, Mortada; Hassenein, Hanaa

    2016-09-01

    The present study was designed to identify the chemical constituents of the methanolic extract of Curcuma longa L. rhizomes and their inhibitory effect on a hepatoma cell line. The methanolic extract was subjected to GC-MS analysis to identify the volatile constituents and the other part of the same extract was subjected to liquid column chromatographic separation to isolate curcumin. The inhibition of cell growth in the hepatoma cell line and the cytopathological changes were studied. GC-MS analysis showed the presence of fifty compounds in the methanolic extract of C. longa. The major compounds were ar-turmerone (20.50 %), β-sesquiphellandrene (5.20 %) and curcumenol (5.11 %). Curcumin was identified using IR, 1H and 13C NMR. The inhibition of cell growth by curcumin (IC50 = 41.69 ± 2.87 μg mL-1) was much more effective than that of methanolic extract (IC50 = 196.12 ± 5.25 μg mL-1). Degenerative and apoptotic changes were more evident in curcumin- treated hepatoma cells than in those treated with the methanol extract. Antitumor potential of the methanolic extract may be attributed to the presence of sesquiterpenes and phenolic constituents including curcumin (0.051 %, 511.39 μg g-1 dried methanol extract) in C. longa rhizomes.

  18. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines

    PubMed Central

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  19. Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation.

    PubMed

    Chen, Wei-Qiang; Xu, Bin; Mao, Jian-Wen; Wei, Feng-Xiang; Li, Ming; Liu, Tao; Jin, Xiao-Bao; Zhang, Li-Rong

    2014-01-01

    Pine needle oil from crude extract of pine needles has anti-tumor effects, but the effective component is not known. In the present study, compounds from a steam distillation extract of pine needles were isolated and characterized. Alpha-pinene was identified as an active anti-proliferative compound on hepatoma carcinoma BEL-7402 cells using the MTT assay. Further experiments showed that α-pinene inhibited BEL-7402 cells by arresting cell growth in the G2/M phase of the cell cycle, downregulating Cdc25C mRNA and protein expression, and reducing cycle dependence on kinase 1(CDK1) activity. Taken together, these findings indicate that α-pinene may be useful as a potential anti-tumor drug.

  20. Metabolism of the tropine indole-3-carboxylate ICS 205-930 by differentiated rat and human hepatoma cells.

    PubMed

    Fischer, V; Baldeck, J P; Wiebel, F J

    The metabolism of the tropine indole-3-carboxylate ICS 205-930 (ICS), a highly potent and selective antagonist of 5-HT3 receptors, was investigated in continuous cell lines derived from rat or human liver and compared to the in vivo metabolism in rat and human. The well-differentiated rat hepatoma line 2sFou extensively metabolized ICS by hydroxylation of the indole moiety and subsequent conjugation to form the corresponding glucuronides and sulfates. The 2sFou cells also oxidized ICS at the tropinyl moiety to form both N-demethyl and N-oxide derivatives. The relative amount of the various metabolites was dependent on the substrate concentration. Pretreatment of the cells with dexamethasone increased the rate of metabolism for all pathways, while benz[a]anthracene caused an increase in hydroxylation at the indole moiety at the expense of N-oxidation. Phenobarbital pretreatment had no effect on ICS metabolism. The pattern of metabolites formed in 2sFou cells was qualitatively similar to that formed in rat urine. The human hepatoma line HepG2 metabolized ICS only to a small extent. The HepG2 cells failed to form detectable amounts of ICS conjugates found in human urine. The N-oxide-ICS was not found in HepG2 cells or in human urine. Virtually no ICS metabolites were found in human lung adenocarcinoma lines NCI-H358 or NCI-H322. The results suggest that continuous cell lines such as the differentiated rat hepatoma cells 2sFou might be used to mimic the metabolism of xenobiotics in rat and to clarify their complex metabolic pathways.

  1. [Effect of polychromatic visible light combined with infrared radiation on tumorigenicity of murine hepatoma cells and their sensitivity to lytic activity of natural killers].

    PubMed

    Filatova, N A; Kniazev, N A; Kosheverova, V V; Shatrova, A N; Samoĭlova, K A

    2013-01-01

    Tumorigenicity of murine hepatoma cells (MH22a) and their sensitivity to lysis by natural killers (NKs) have been studied after exposure to polychromatic visible and infrared light (VIS-IR, 480-3400 nm, 40 mW/cm2), similar to the terrestrial solar spectrum without its minor UV component, in order to elucidate the involvement of this important environmental and physiotherapeutic factor in regulation of the anti-tumor defense system. The MH22 cells were in vitro exposed to VIS-IR light and their sensitivity to lytic activity of NKs was evaluated. We found that sensitivity of MH22a cells to lysis by NKs after exposure to VIS-IR light at a dose of 4.8 J/cm2 increased 1.5-2 times, while it did not change after exposure to a dose of 9.6 J/cm2 at all ratios (1 : 5-1 : 50) of the number of NKs (effectors) to that of hepatoma cells (targets). The increase in the sensitivity of hepatoma cells to NKs was accompanied by structural changes of cell surface: the capability of supramembraneous glycoproteins (glycocalix) to sorb the vital dye alcian blue (AB) was significantly lower as compared with the unexposed cells of control group. However, no changes in AB sorption was revealed in hepatoma cells exposed to the light at a dose 9.6 J/cm2. Tumorigenicity of photo-irradiated MH22a cells has been studied in the in vivo experiments. Light-exposed (4.8 and 9.6 J/cm2) and intact hepatoma cells were transplanted into syngenic mice C3HA. Tumor volumes 25 days after transplantation proved to be smaller after exposure to the light at both doses than in the control group (4-4.5 times and 2.5-4 times, respectively), which correlated with the increase in the sensitivity to lisys by NKs and decrease in the AB sorption only after light exposure at dose 4.8 J/cm2. Using the flow cytometry method we could show that VIS-IR light at the applied doses did not interfere with the distribution of hepatoma cells over the cycle phases and thus deceleration of the tumor growth was not associated with

  2. [Cytotoxicity of the secondary metabolites of Marine Mangrove Fungus Paecilomyces sp. tree 1-7 on human hepatoma cell line HepG2].

    PubMed

    Cai, Xiao-Ling; Gao, Jun-Ping; Li, Qing; Wen, Lu; She, Zhi-Gang; Lin, Yong-Cheng

    2008-06-01

    To study the cytotoxicity of the secondary metabolites of Marine Mangrove Fungus Paecilomyces sp. Tree 1-7 on human hepatoma cell line HepG2 cultured in vitro. Three groups were divided: compounds group, 5-Fu group and control group. The cytotoxicity was measured by MTT method when HepG2 cells were treated by different concentration of the secondary metabolites of Paecilomyces sp. Tree 1-7. Secalonic acid A, tenellic acid A and alternin inhibited the growth of human hepatoma cell line HepG2, the IC50 separately were 2.0, 62.1 and 7.0 microg/ml. Secalonic acid A and alternin have strong cytotoxicity on HepG2 cultured in vitro.

  3. Inhibition of growth of Morris hepatomas 7777 and 7800 by corn oil.

    PubMed

    Gilbertson, J R; Gelman, R A; Ove, P; Coetzee, M L

    1977-01-01

    Intraperitoneal injection of trace amounts of corn oil prior to and following the injection of 40-50 mg of tissue from hepatoma 7777 or 7800 into the thigh of adult male Buffalo rats resulted in a marked decrease in the growth rate of both tumors. Exhaustive extraction of the corn oil with water indicated that the active component was not water soluble. Similar injections of safflower oil or isotonic saline had no effect on tumor growth rate. Analysis of the tissue phospholipid fatty acids revealed that the injected corn oil caused no change in the esterified fatty acids in this lipid fraction.

  4. Ethanolic Extract of Agaricus blazei Fermentation Product Inhibits the Growth and Invasion of Human Hepatoma HA22T/VGH and SK-Hep-1 Cells

    PubMed Central

    Tung, Yen-Chen; Su, Zheng-Yuan; Kuo, Min-Liang; Sheen, Lee-Yan

    2012-01-01

    Hepatoma is a leading cause of death in the world. SK-Hep-1 and HA22T/VGH cells are poorly differentiated human hepatocellular carcinoma cell lines with invasive and migratory abilities. Agaricus blazei (AB) is a mushroom with many biological effects and active ingredients, and the ethanolic extract of AB fermentation product (AB-pE) was demonstrated to inhibit the growth of hepatoma Hep3B and HepG2 cells in our previous study. In this study, we further investigated the anticancer and anti-invasive abctivities of the AB-pE. Results showed that the AB-pE inhibited the growth of SK-Hep1 and HA22T/VGH cells (with IC50 values of 26.8 and 28.7 μg/mL, respectively) and led cells toward apoptosis after 48 h of treatment. Activation of caspase-3 by AB-pE (12.5~200 μg/mL) in a dose-dependent manner was observed in both cell lines using fluorescence microscopy and flow cytometry. The apoptosis triggered by the AB-pE was regulated by the increased expression of Bax, the activation of caspase-3, caspase-9, and PARP, and the decreased expression of Bcl-2. Additionally, the AB-pE showed the potential ability to inhibit invasion of SK-Hep1 and HA22T/VGH cells according to the results of a Matrigel invasion assay. Our results suggested that the AB-pE may be a further developed for its potential against hepatoma due to its antiproliferative (via apoptosis) and anti-invasive activities in hepatoma cells. PMID:24716127

  5. AMF/PGI transactivates the MMP-3 gene through the activation of Src-RhoA-phosphatidylinositol 3-kinase signaling to induce hepatoma cell migration.

    PubMed

    Shih, Wen-Ling; Liao, Ming-Huei; Yu, Feng-Ling; Lin, Ping-Yuan; Hsu, Hsue-Yin; Chiu, Shu-Jun

    2008-11-08

    We have previously shown that AMF/PGI induces hepatoma cell migration through the induction of MMP-3. This work investigates how AMF/PGI activates the MMP-3 gene. We demonstrated that AMF/PGI transactivates the MMP-3 gene promoter through AP-1. The transactivation and induction of cell migration effect of AMF/PGI directly correlates with its enzymatic activity. Various analyses showed that AMF/PGI stimulated the Src-RhoA-PI3-kinase signaling pathway, and these three signaling molecules could form a complex. Our results demonstrate a new mechanism of AMF/PGI-induced cell migration and a link between Src-RhoA-PI3-kinase, AP-1, MMP-3 and hepatoma cell migration.

  6. A study on the thermochemotherapy effect of nanosized As2O3/MZF thermosensitive magnetoliposomes on experimental hepatoma in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Jia; An, Yanli; Wang, Ziyu; Liu, Jing; Li, Yutao; Zhang, Dongsheng

    2011-08-01

    In this paper, we describe the synthesis and characterization of a nanosized, thermosensitive magnetoliposome encapsulating magnetic nanoparticles (MZFs) and antitumor drugs (As2O3). The nanoliposomes were spherical and mostly single volume, with an average diameter of 128.2 nm. Differential scanning calorimetry (DSC) showed a liposome phase transition temperature of 42.71 °C. After that, we studied the liposomes' anti-hepatoma effect in vitro and in vivo. The antitumor effect of the nanoliposomes on human hepatoma cells, SMMC-7721, and changes in expression of apoptosis-related proteins were examined in vitro. The results show that As2O3/MZF thermosensitive magnetoliposomes combined with hyperthermia had a great impact on the Bax/Bcl-2 ratio, which increased to 1.914 and exhibited a rapid response to induce apoptosis of tumor cells. An in situ rabbit liver tumor model was established and used to evaluate the antitumor effect of combined hyperthermia and chemotherapy following transcatheter arterial embolization with As2O3/MZF thermosensitive magnetoliposomes. The results demonstrated a strong anti-hepatoma effect, with a tumor volume inhibition rate of up to 85.22%. Thus, As2O3/MZF thermosensitive magnetoliposomes may play a great role in the treatment of hepatocarcinoma.

  7. INDUCTION OF AN ESTROGEN-RESPONSIVE REPORTER GENE IN RAINBOW TROUT HEPATOMA CELLS (RTH 149) AT 11 OR 18 DEGREES C

    EPA Science Inventory

    A reporter gene assay in a cultured rainbow trout cell line was used to determine the influence of temperature on the expression of an estrogen-responsive gene. Rainbow trout hepatoma cells (RTH 149) incubated at 11 or 18 degrees C were co-transfected with an estrogen-responsive ...

  8. Recent advances in live cell imaging of hepatoma cells

    PubMed Central

    2014-01-01

    Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127

  9. Hepatitis C virus Core overcomes all-trans retinoic acid-induced apoptosis in human hepatoma cells by inhibiting p14 expression via DNA methylation

    PubMed Central

    Kwak, Juri; Choi, Jung-Hye; Jang, Kyung Lib

    2017-01-01

    All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to induce p14 expression via promoter hypomethylation to activate the p14-MDM2-p53 pathway, which leads to activation of the p53-dependent apoptotic pathway and subsequent induction of apoptosis in human hepatoma cells. In the present study, we found that hepatitis C virus (HCV) Core derived from ectopic expression or HCV infection overcomes ATRA-induced apoptosis in p53-positive hepatoma cells. For this effect, HCV Core upregulated both protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b and thereby repressed p14 expression via promoter hypermethylation, resulting in inactivation of the pathway leading to p53 accumulation in the presence of ATRA. As a result, HCV Core prevented ATRA from activating several apoptosis-related molecules, including Bax, p53 upregulated modulator of apoptosis, caspase-9, caspase-3, and poly (ADP-ribose) polymerase. In addition, complementation of p14 in the Core-expressing cells by either ectopic expression or treatment with 5-Aza-2′dC almost completely abolished the potential of HCV Core to suppress ATRA-induced apoptosis. Based on these observations, we conclude that HCV Core executes its oncogenic potential by suppressing the p53-dependent apoptosis induced by ATRA in human hepatoma cells. PMID:29156743

  10. Effect of Daytime Blue-enriched LED Light on the Nighttime Circadian Melatonin Inhibition of Hepatoma 7288CTC Warburg Effect and Progression.

    PubMed

    Dauchy, Robert T; Wren-Dail, Melissa A; Dupepe, Lynell M; Hill, Steven M; Xiang, Shulin; Anbalagan, Muralidharan; Belancio, Victoria P; Dauchy, Erin M; Blask, David E

    2018-06-06

    Liver cancer is the second leading cause of cancer death worldwide. Metabolic pathways within the liver and liver cancersare highly regulated by the central circadian clock in the suprachiasmatic nuclei (SCN). Daily light and dark cycles regulate the SCN-driven pineal production of the circadian anticancer hormone melatonin and temporally coordinate circadianrhythms of metabolism and physiology in mammals. In previous studies, we demonstrated that melatonin suppresses linoleicacid metabolism and the Warburg effect (aerobic glycolysis)in human breast cancer xenografts and that blue-enriched light(465-485 nm) from light-emitting diode lighting at daytime (bLAD) amplifies nighttime circadian melatonin levels in ratsby 7-fold over cool white fluorescent (CWF) lighting. Here we tested the hypothesis that daytime exposure of tissue-isolatedMorris hepatoma 7288CTC-bearing male rats to bLAD amplifies the nighttime melatonin signal to enhance the inhibition oftumor growth. Compared with rats housed under a 12:12-h light:dark cycle in CWF light, rats in bLAD light evinced a 7-fold higher peak plasma melatonin level at the mid-dark phase; in addition, high melatonin levels were prolonged until 4 h intothe light phase. After implantation of tissue-isolated hepatoma 7288CTC xenografts, tumor growth rates were markedly delayed,and tumor cAMP levels, LA metabolism, the Warburg effect, and growth signaling activities were decreased in rats inbLAD compared with CWF daytime lighting. These data show that the increased nighttime circadian melatonin levels dueto bLAD exposure decreases hepatoma metabolic, signaling, and proliferative activities beyond what occurs after normalmelatonin signaling under CWF light.

  11. Cell damage of hepatoma-22 cells exposed to continuous wave ultrasound.

    PubMed

    Wang, Pan; Wang, Xiaobing; Liu, Quanhong

    2012-01-01

    The cellular response of hepatoma-22 cells to ultrasonic irradiation and the potential cause for the action were evaluated. Hepatoma-22 cells were subjected to ultrasound irradiation at a frequency of 2.17 MHz and a spatial average intensity of 1.6 W/cm2 for variable periods of time, and several biological parameters were analyzed. The terephthalic acid (TA) dosimetry method was used to evaluate the efficacies of irradiation parameters on the acoustic cavitation activity by monitoring hydroxyl radical (OH) production. Lactate dehydrogenase (LDH) leakage was assayed to investigate cell membrane integrity. The polarization value of fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured to monitor plasma membrane fluidity. The malonaldehyde content in cells was determined to reflect lipid peroxidation. Trypan blue exclusion was used to detect cell viability. Additionally, electron microscopy was used to observe morphological changes. The generation of intracellular reactive oxygen species, mitochondria swelling and the loss of mitochondria membrane potential were also investigated. The results showed that 1) the concentration of ·OH production by ultrasonic irradiation in air-saturated cell suspensions increased as ultrasound exposure time increased; 2) compared with control, lactate dehydrogenase leakage, the polarization value of 1,6-diphenyl-1,3,5-hexatriene, malonaldehyde content and cell lysis were significantly elevated when cells were treated by ultrasound for 60 s; 3) cytotoxicity by ultrasound irradiation was also accompanied by an increase in production of intracellular reactive oxygen species and dissipation of mitochondria membrane potential as well as by mitochondria swelling. Presently available information indicates that the plasma membrane and mitochondria are the main targets for ultrasound treatment, and free radicals formation such as ·OH due to ultrasound cavitation may play an important role in mediating these cellular response

  12. Dietary Factors and Hepatoma in Rainbow Trout (Salmo gairdneri). I. Aflatoxins in Vegetable Protein Feedstuffs

    USGS Publications Warehouse

    Sinnhuber, R.O.; Wales, J.H.; Ayers, J.L.; Engebrecht, R.H.; Amend, D.F.

    1968-01-01

    Aflatoxins (toxic metabolites of the mold Aspergillus flavus) were present in a commercial trout ration causing hepatoma in rainbow trout. Cottonseed meal and solvent extracts of cottonseed meal and of rations containing cottonseed meal and peanut meal were found by chemical assay and confirmed by duckling assay to contain aflatoxins. Diets containing these materials and a purified test diet to which aflatoxins had been added produced microscopic tumors in 6 months and gross lesions of hepatocarcinoma in 9 months. Similar diets without aflatoxin were negative.

  13. The oncoprotein HBXIP suppresses gluconeogenesis through modulating PCK1 to enhance the growth of hepatoma cells.

    PubMed

    Shi, Hui; Fang, Runping; Li, Yinghui; Li, Leilei; Zhang, Weiying; Wang, Huawei; Chen, Fuquan; Zhang, Shuqin; Zhang, Xiaodong; Ye, Lihong

    2016-11-28

    Hepatitis B X-interacting protein (HBXIP) as an oncoprotein plays crucial roles in the development of cancer, involving glucose metabolism reprogramming. In this study, we are interested in whether the oncoprotein HBXIP is involved in the modulation of gluconeogenesis in liver cancer. Here, we showed that the expression level of phosphoenolpyruvate carboxykinase (PCK1), a key enzyme of gluconeogenesis, was lower in clinical hepatocellular carcinoma (HCC) tissues than that in normal tissues. Mechanistically, HBXIP inhibited the expression of PCK1 through down-regulating transcription factor FOXO1 in hepatoma cells, and up-regulated miR-135a targeting the 3'UTR of FOXO1 mRNA in the cells. In addition, HBXIP increased the phosphorylation levels of FOXO1 protein by activating PI3K/Akt pathway, leading to the export of FOXO1 from nucleus to cytoplasm. Strikingly, over-expression of PCK1 could abolish the HBXIP-promoted growth of hepatoma cells in vitro and in vivo. Thus, we conclude that the oncoprotein HBXIP is able to depress the gluconeogenesis through suppressing PCK1 to promote hepatocarcinogenesis, involving miR-135a/FOXO1 axis and PI3K/Akt/p-FOXO1 pathway. Our finding provides new insights into the mechanism by which oncoprotein HBXIP modulates glucose metabolism reprogramming in HCC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Phosphorus NMR of isolated perfused morris hepatomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.

    1986-03-05

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. /sup 31/P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia,more » ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin.« less

  15. [Effect of ERK/AP-1 signaling pathway on proliferation of hepatoma cells induced by PAR-2 agonists].

    PubMed

    Zheng, Yan-min; Xie, Li-qun; Li, Xuan; Zhao, Jun-yan; Chen, Xiao-yi; Chen, Li; Zhou, Jing; Li, Fei

    2009-12-01

    To investigate the expression of protease activated receptor-2 (PAR-2) in human HepG2 hepatoma cells and elucidate the effects of trypsin and PAR-2 agonist peptide SLIGKV-NH(2) upon the proliferation of hepatoma cells and its intracellular signaling mechanism. PAR-2 protein and mRNA expression were detected by immunofluorescence and RT-PCR. The cells were treated with SLIGKV-NH(2), trypsin, reverse PAR-2 agonist peptide VKGILS-NH(2) or PD98059. The changes of cell cycle distribution were evaluated by flow cytometry. The proliferative potential of HepG2 cells was estimated by MTT. The changes of PAR-2, c-fos and PCNA mRNA expression were detected by RT-PCR. The changes of c-fos and PCNA protein expression were detected by Western blotting. PAR-2 protein and mRNA were expressed in HepG2 cells. PAR-2 mRNA expression (PAR-2/beta-actin) were 0.70 +/- 0.04 and 0.99 +/- 0.05 respectively in cells treated with trypsin and SLIGKV-NH(2). They were both significantly higher than that in the control group (0.35 +/- 0.05, F = 135.534, P < 0.01). Percent G(0)/G(1) phase of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly lower than those in the control group [(56.11 +/- 0.85)%, (57.85 +/- 0.46)% vs (79.12 +/- 0.67)%, both P < 0.01] Percent S phase, G(2)/M phase and proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly elevated (P < 0.01). The proliferation-enhancing effects and the up-regulation of mRNA and protein of c-fos and PCNA induced by trypsin or SLIGKV-NH(2) were significantly blocked by pretreatment with PD98059 (P < 0.01). There was no statistical significance in proliferation of HepG2 cells between the reverse PAR-2 agonist peptide VKGILS-NH(2) and control group (P > 0.05). PAR-2 is expressed in HepG2 hepatoma cells. PAR-2 activation induced by trypsin or SLIGKV-NH(2) promotes the proliferation of HepG2 cells partially via the ERK/AP-1 pathway.

  16. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    PubMed

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC 50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessedmore » by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS.

  18. Tumor radioimmunoimaging of chimeric antibody in nude mice with hepatoma xenograft

    PubMed Central

    Gong, Yi; Liu, Kang-Da; Zhou, Ge; Xue, Qiong; Chen, Shao-Liang; Tang, Zhao-You

    1998-01-01

    AIM: To study the radioimmunoimaging (RAII) using the human/mouse chimeric Ab to evaluate its targeting activity in animal models. METHODS: To chimeric Ab was labeled with 131I. RAII was performed at different intervals after injection of radio-labeled Abs in nude mice with human hepatoma xenograft, and tissue distribution of radioactivity was measured. Comparison was made in the chimeric Ab between the single segment Ab and previous murine mAb against HBxAg. RESULTS: The experimental objects developed tumor-positive image after 2 days of radio-labeled Abs injection, and the peak accumulation of radioactivity fell on the 7th day. The tumor/liver ratioactivity of the chimeric Ab, single segment Ab, anti-HBx mAb, and the control group was 281 ± 0.21, 2.44 ± 0.16, 4.60 ± 0.19, and 0.96 ± 0.14, respectively. CONCLUSION: The genetic engineering Abs have a considerable targeting activity which can be used as a novel humanized vector in the targeting treatment of liver cancer. PMID:11819217

  19. [Effect of depsides salts from Salvia miltiorrhiza on human hepatoma cell line SMMC-7721 subcutaneous xenografts in nude mice].

    PubMed

    Li, Xiangping; Song, Zhouye; Zhong, Haiying; Gong, Zhicheng; Yin, Tao; Zhang, Zanling; Zhou, Boting

    2015-02-01

    To exlpore the eff ect of depsides salts from Salvia miltiorrhiza on human hepatoma cell line SMMC-7721 xenograft tumors and the possible mechanisms. A total of 36 nude mice were divided into 6 groups: A model group, a negative control group, a positive control group, and 3 treatment groups at low, middle or high dose (n=6). The tumor model of nude mice was given depsides salts at a dose of 10, 20 or 50 mg/kg every 3 day for 16 days. Then samples of subcutaneous tumors in nude mice were collected. The morphological changes of tumor samples were observed by HE staining and the expression of vascular endothelial growth factor (VEGF) and the tumor antigen Ki67 was detected by immunohistochemical method. The tumor growth was inhibited by all doses of depsides salts. The morphology of tumors was shrinkage, broken and irregularly arranged compared with the tumors in the model group and the negative control group. Morphological changes were more obvious in tumors with treatment at high dose. Expression of VEGF and Ki67 in treatment groups and the positive control group were lower than that in the model group and the negative control group, with a significant difference (P<0.05). Depsides salts from Salvia miltiorrhiza can inhibit the growth of human hepatoma cell line SMMC-7721 tumor in nude mice, which is related to the inhibition of Ki67 and VEGF.

  20. Icaritin inhibits the expression of alpha-fetoprotein in hepatitis B virus-infected hepatoma cell lines through post-transcriptional regulation.

    PubMed

    Zhang, Chao; Li, Hui; Jiang, Wei; Zhang, Xiaowei; Li, Gang

    2016-12-13

    Although it has showed that icaritin can apparently suppress growth of HCC by reducing the level of AFP, the intrinsic mechanism remains unclear. In this study, we explored the possible mechanism of miRNAs on post-transcriptional regulation of AFP gene, as well as the effects of HBV infection and icaritin in hepatoma cells. The results showed that miR-620, miR-1236 and miR-1270 could bind target sites in the range of 9-18 nt and 131-151 nt downstream of the stop codon in the AFP mRNA 3'-UTR to suppress the expression of AFP. Mutation of these target sites could reverse the effects of these miRNAs. Icaritin (10 μM) might reduce the stability and translational activity of AFP mRNA by increasing the expression levels of these mentioned miRNAs. HBV infection resulted in apparent decreases of these miRNAs and, consequently, increased AFP expression. The results indicated that miR-620, miR-1236 and miR-1270 are critical factors in the post-transcriptional regulation of AFP. Icaritin can counteract the effect of HBV. These findings will contribute to full understanding of the regulatory mechanism of AFP expression in hepatoma cells. And also it revealed a synergistic mechanism of HBV infection and elevation of AFP in the pathogenesis of HCC, as well as the potential clinical significance of icaritin on the therapy of HCC induced by HBV.

  1. The spleen can influence the metastasis of AH130 hepatoma cells in rats.

    PubMed

    Toyonaga, M; Hiraoka, T; Tanaka, H; Miyauchi, Y

    1993-06-01

    The effect of pathophysiological conditions due to disturbance of the spleen is still unclear. We studied the effects of splenectomy in normal and methylcellulose-induced hypersplenic rats on the development of pulmonary metastases created by intravenous injection of ascites containing AH130 hepatoma cells from male Hos-Donryu rats. Growth of metastatic lesions in the lung was not affected by splenectomy in normal rats, but was increased by splenectomy in hypersplenic rats. Overall, there were fewer pulmonary metastases in rats with hypersplenism, but after splenectomy rats with hypersplenism had a significantly greater number of metastases than did normal rats. The metastases rate correlated somewhat with changes in the blood coagulation and T lymphocyte profile. There is a relationship between the spleen and formation of metastases in cancer. Formation of metastases in the lung was affected most by splenectomy in hypersplenism. To elucidate the mechanism by which metastases are formed in the lung under these pathologic conditions, further studies on the exact role of the spleen are required.

  2. Spontaneous apoptosis in a rat hepatoma cell line and its inhibition by dexamethasone.

    PubMed

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1996-01-01

    Cultures of dedifferentiated rat hepatoma Rab1-5-1 cells exhibit spontaneously a high level of mortality during the exponential growth phase. We demonstrate that these cells die by apoptosis, showing chromatin condensation and internucleosomal DNA fragmentation. Cells of the original H4II cell line and of its differentiated and dedifferentiated derivatives also die by apoptosis, but only in heavily confluent cultures. We evaluated mortality with time in Rab1-5-1 cultures by establishing growth curves, including quantification of floating cells, and conclude that up to half of the cells in a culture are lost to apoptosis. The production of apoptotic cells is abolished by the presence of 10(-6) M dexamethasone and this inhibition is reversible in 48 hours. Rab1-5-1 cells that spontaneously die by apoptosis with high frequency represent a novel model to investigate factors that regulate the spontaneous frequency of death, and to study the nature and the kinetics of commitment to the apoptotic pathway.

  3. Coordinated pH/redox dual-sensitive and hepatoma-targeted multifunctional polymeric micelle system for stimuli-triggered doxorubicin release: Synthesis, characterization and in vitro evaluation.

    PubMed

    Wang, Lele; Tian, Baocheng; Zhang, Jing; Li, Keke; Liang, Yan; Sun, Yujie; Ding, Yuanyuan; Han, Jingtian

    2016-03-30

    Multifunctional polymeric micelles self-assembled from a DOX-conjugated methoxypolyethylene glycols-b-poly (6-O-methacryloyl-D-galactopyranose)-disulfide bond-DOX (mPEG-b-PMAGP-SS-DOX) copolymer were prepared as an antitumor carrier for doxorubicin delivery, of which the chemical modification with disulfide bonds and hydrazone bonds allowed micelles to release doxorubicin (DOX) selectively at acidic pH and high redox conditions. The resulting micelles exhibited coordinated pH/redox dual-sensitive and hepatoma-targeted multifunction with sustaining stability in aqueous media. The multifunctional micelles showed spherical shapes with a mean diameter of 93 ± 2.08 nm, a low polydispersity index (PDI) of 0.21, a low CMC value of 0.095 mg/mL, a high drug grafting degree of 56.9% and a drug content of 39.0%. Remarkably, in vitro drug release studies clearly exhibited a pH and redox dual-sensitive drug release profile with significantly accelerated drug release treated with pH 5.0 and 10mM GSH (88.4% in 72 h) without drug burst release. The tumor proliferation assays indicated that DOX-grafted micelles, along with low cytotoxicity and well biocompatibility to normal cells up to a concentration of 10 μg/mL, inhibited the proliferation of HepG2 cells in a formulation-, time- and concentration-dependent manner in comparison with MCF-7 cells which was similar to free DOX. Anticancer activity releaved that the disulfide-modified micelles possessed much higher anti-hepatoma activity with a low IC50 value of 1.1 μg/mL following a 72 h incubation. Furthermore, the intracellular uptake tested by CLSM and FCM demonstrated that multifunctional polymeric micelles could be more efficiently taken up by HepG2 cells compared with MCF-7 cells, agreed well with MTT assays, suggesting these well-defined micelles provide a potential drug delivery system for dual-responsive controlled drug release and enhanced anti-hepatoma therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fucoxanthin Enhances Cisplatin-Induced Cytotoxicity via NFκB-Mediated Pathway and Downregulates DNA Repair Gene Expression in Human Hepatoma HepG2 Cells

    PubMed Central

    Liu, Cheng-Ling; Lim, Yun-Ping; Hu, Miao-Lin

    2013-01-01

    Cisplain, a platinum-containing anticancer drug, has been shown to enhance DNA repair and to inhibit cell apoptosis, leading to drug resistance. Thus, the combination of anticancer drugs with nutritional factors is a potential strategy for improving the efficacy of cisplatin chemotherapy. In this study, we investigated the anti-proliferative effects of a combination of fucoxanthin, the major non-provitamin A carotenoid found in Undaria Pinnatifida, and cisplatin in human hepatoma HepG2 cells. We found that fucoxanthin (1–10 μΜ) pretreatment for 24 h followed by cisplatin (10 μΜ) for 24 h significantly decreased cell proliferation, as compared with cisplatin treatment alone. Mechanistically, we showed that fucoxanthin attenuated cisplatin-induced NFκB expression and enhanced the NFκB-regulated Bax/Bcl-2 mRNA ratio. Cisplatin alone induced mRNA expression of excision repair cross complementation 1 (ERCC1) and thymidine phosphorylase (TP) through phosphorylation of ERK, p38 and PI3K/AKT pathways. However, fucoxanthin pretreatment significantly attenuated cisplatin-induced ERCC1 and TP mRNA expression, leading to improvement of chemotherapeutic efficacy of cisplatin. The results suggest that a combined treatment with fucoxanthin and cisplatin could lead to a potentially important new therapeutic strategy against human hepatoma cells. PMID:23299493

  5. BWTG3 hepatoma cells can acquire phenylalanine hydroxylase, cystathionine synthase and CPS-I without genetic manipulation, but activation of the silent OTC gene requires cell fusion with hepatocytes.

    PubMed

    Farmer, A A; Goss, S J

    1991-04-01

    The mouse hepatoma BWTG3 has been tested for its ability to grow in three different media that select for traits normally expressed in adult liver: homocysteine medium to select for cystathionine synthase (CS), tyrosine-free medium for phenylalanine hydroxylase (PH), and ornithine medium for carbamylphosphate synthetase-I (CPS-I) and ornithine transcarbamylase (OTC). In no case were the cells immediately capable of bulk growth, showing that all these traits were in some degree deficient. However, the cultures in homocysteine medium and in tyrosine-free medium both gave rise, spontaneously, to growing clones with frequencies of approximately 10(-3) and 10(-5), respectively. The deficiencies of CS and PH were accordingly excluded from further study, in view of their inherent instability. In contrast, no colonies ever formed in ornithine medium. Though neither CPS-I nor OTC were detectable in stock BWTG3 cells, it was found that CPS-I was readily inducible by hormones. The deficiency of OTC, however, appeared to be totally stable showing no reversion in response either to hormones or to azacytidine treatment. This deficiency was investigated by fusing the hepatoma to OTC+ liver cells prepared from normal or sparse-fur (spf) mice. Sparse-fur mice were used because their OTC is mutant and has a distinctive pH-dependence. OTC+ hybrids were readily produced, without the need for any specific selection for OTC, and, in one case at least, with only minimal chromosome segregation. In all the OTC+ hybrids made with spf cells, there was clear reactivation of the wild-type, hepatoma-derived OTC gene.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Comparison of the effects of Mylabris and Acanthopanax senticosus on promising cancer marker polyamines in plasma of a Hepatoma-22 mouse model using HPLC-ESI-MS.

    PubMed

    Wang, Qian; Wang, Yixiang; Liu, Ran; Yan, Xu; Li, Yujiao; Fu, Hui; Bi, Kaishun; Li, Qing

    2013-02-01

    A simple and sensitive method for the simultaneous determination of plasma concentrations of five polyamines in normal and Hepatoma-22 mice, and mice treated with Mylabris and Acanthopanax senticosus was developed by HPLC-ESI-MS. Male Kunming mice were divided into nine groups, a control group (inoculation without treatment), a positive group (Cyclophosphamide), treatment groups [Mylabris (4, 8, 16 mg/kg), Acanthopanax senticosus (6, 12, 24 g/kg)] and a normal group (without inoculation). Twenty-four hours after the last administration, plasma samples were collected. The derived polyamines were separated on a C(18) column by a gradient elution using methanol-water with excellent linearity within the range from 2.5 to 1000 ng/mL. Polyamines were confirmed as useful biochemical markers of hepatoma. The differences in anti-cancer therapeutic efficacy between Mylabris and Acanthopanax senticosus might contribute to the variability of polyamine levels in vivo. This HPLC-ESI-MS method was successfully applied to investigate the relationship between polyamines and cancer in mice and might be a useful method to test the activity of potential anti-tumor drugs. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Hepatic Arterial Infusion of Low-Density Lipoprotein Docosahexaenoic Acid Nanoparticles Selectively Disrupts Redox Balance in Hepatoma cells and Reduces Growth of Orthotopic Liver Tumors in Rats

    PubMed Central

    Wen, Xiaodong; Reynolds, Lacy; Mulik, Rohit S.; Kim, Soo Young; Van Treuren, Tim; Nguyen, Liem H.; Zhu, Hao; Corbin, Ian R.

    2015-01-01

    Background & Aims Dietary intake of the natural omega-3 fatty acid docosahexaenoic acid (DHA) has been implicated in protecting patients with viral hepatitis B or C from developing hepatocellular carcinoma (HCC). Little is known about the effects of DHA on established solid tumors. Herein, we describe a low-density lipoprotein (LDL)-based nanoparticle that acts as a transporter for unesterified DHA (LDL–DHA) and demonstrates selective cytotoxicity towards HCC cells. We investigated the ability of LDL–DHA to reduce growth of orthotopic hepatomas in rats. Methods ACI rats were given intrahepatic injections of rat hepatoma cells (H4IIE); 24 tumor-bearing rats (mean tumor diameter, ~1 cm) were subject to a single hepatic artery injection of LDL nanoparticles (2 mg/kg) loaded with DHA (LDL–DHA), triolein (LDL–TO) or sham surgery controls. Tumor growth was measured by magnetic resonance imaging and other methods; tumor, liver and serum samples were collected and assessed by histochemical, immunofluorescence, biochemical and immunoblot analyses. Results Three days after administration of LDL–TO or sham surgery, the control rats had large, highly vascularized tumors that contained proliferating cells. However, rats given LDL–DHA had smaller, pale tumors that were devoid of vascular supply and greater than 80% of the tumor tissue was necrotic. Four to 6 days after injection of LDL–DHA, the tumors were 3-fold smaller than those of control rats. The liver tissue that surrounded the tumors showed no histologic or biochemical evidence of injury. Injection of LDL–DHA into the hepatic artery of rats selectively deregulated redox reactions in tumor tissues by: increasing levels of reactive oxygen species and lipid peroxidation, depleting and oxidizing glutathione and nicotinamide adenine dinucleotide phosphate, and significantly downregulating the antioxidant enzyme glutathione peroxidase-4. Remarkably, the redox balance in the surrounding liver was not disrupted

  8. Hepatic Arterial Infusion of Low-Density Lipoprotein Docosahexaenoic Acid Nanoparticles Selectively Disrupts Redox Balance in Hepatoma Cells and Reduces Growth of Orthotopic Liver Tumors in Rats.

    PubMed

    Wen, Xiaodong; Reynolds, Lacy; Mulik, Rohit S; Kim, Soo Young; Van Treuren, Tim; Nguyen, Liem H; Zhu, Hao; Corbin, Ian R

    2016-02-01

    Dietary intake of the natural omega-3 fatty acid docosahexaenoic acid (DHA) has been implicated in protecting patients with viral hepatitis B or C from developing hepatocellular carcinoma (HCC). Little is known about the effects of DHA on established solid tumors. Here we describe a low-density lipoprotein-based nanoparticle that acts as a transporter for unesterified DHA (LDL-DHA) and demonstrates selective cytotoxicity toward HCC cells. We investigated the ability of LDL-DHA to reduce growth of orthotopic hepatomas in rats. AxC-Irish (ACI) rats were given intrahepatic injections of rat hepatoma cells (H4IIE); 24 tumor-bearing rats (mean tumor diameter, ∼1 cm) were subject to a single hepatic artery injection of LDL nanoparticles (2 mg/kg) loaded with DHA (LDL-DHA), triolein (LDL-TO), or sham surgery controls. Tumor growth was measured by magnetic resonance imaging and other methods; tumor, liver, and serum samples were collected and assessed by histochemical, immunofluorescence, biochemical, and immunoblot analyses. Three days after administration of LDL-TO or sham surgery, the control rats had large, highly vascularized tumors that contained proliferating cells. However, rats given LDL-DHA had smaller, pale tumors that were devoid of vascular supply and >80% of the tumor tissue was necrotic. Four to 6 days after injection of LDL-DHA, the tumors were 3-fold smaller than those of control rats. The liver tissue that surrounded the tumors showed no histologic or biochemical evidence of injury. Injection of LDL-DHA into the hepatic artery of rats selectively deregulated redox reactions in tumor tissues by increasing levels of reactive oxygen species and lipid peroxidation, depleting and oxidizing glutathione and nicotinamide adenine dinucleotide phosphate, and significantly down-regulating the antioxidant enzyme glutathione peroxidase-4. Remarkably, the redox balance in the surrounding liver was not disrupted. LDL-DHA nanoparticle selectively kills hepatoma cells

  9. Novel role of TRPV2 in promoting the cytotoxicity of H2O2-mediated oxidative stress in human hepatoma cells.

    PubMed

    Ma, Wenbo; Li, Caiyue; Yin, Shikui; Liu, Jingxin; Gao, Chao; Lin, Zuoxian; Huang, Rongqi; Huang, Jufang; Li, Zhiyuan

    2015-12-01

    Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effects of the peroxisome proliferator clofibric acid on superoxide dismutase expression in the human HepG2 hepatoma cell line.

    PubMed

    Bécuwe, P; Bianchi, A; Keller, J M; Dauça, M

    1999-09-15

    We examined the effects of clofibric acid, a peroxisome proliferator, on the production of superoxide radicals, on the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and on the expression of superoxide dismutases (SODs) in the human HepG2 hepatoma cell line. To this end, HepG2 cells were treated for 1 or 5 days with 0.25, 0.50, or 0.75 mM clofibric acid. The production of superoxide radicals was only enhanced in HepG2 cells exposed for 5 days to the different clofibric acid concentrations. However, this overproduction of superoxide radicals was not accompanied by increased rates of lipid peroxidation, as the MDA and 4-HNE levels did not change significantly. Manganese (Mn) SOD activity was increased when HepG2 cells were treated for 1 day with 0.50 or 0.75 mM clofibric acid. For this duration of treatment, no change was observed in total SOD and copper/zinc (Cu/Zn) SOD activities. For a 5-day treatment, total SOD and MnSOD activities as well as the enzyme apoprotein and MnSOD mRNA levels increased whatever the clofibric acid concentration used. This transcriptional induction of the MnSOD gene was correlated with an activation of the activator protein-1 transcription factor for 1 and 5 days of treatment, but was independent of nuclear factor-kappa B and of peroxisome proliferator-activated receptor. On the other hand, the PP exerted very little effect if any on Cu,ZnSOD expression. In contrast to rodent data, PP treatment of human hepatoma cells induces MnSOD expression.

  11. Genotoxic effect of 6-gingerol on human hepatoma G2 cells.

    PubMed

    Yang, Guang; Zhong, Laifu; Jiang, Liping; Geng, Chengyan; Cao, Jun; Sun, Xiance; Ma, Yufang

    2010-04-15

    6-gingerol, a major component of ginger, has antioxidant, anti-apoptotic, and anti-inflammatory activities. However, some dietary phytochemicals possess pro-oxidant effects as well, and the risk of adverse effects is increased by raising the use of doses. The aim of this study was to assess the genotoxic effects of 6-gingerol and to clarify the mechanisms, using human hepatoma G2 (HepG2) cells. Exposure of the cells to 6-gingerol caused significant increase of DNA migration in comet assay, increase of micronuclei frequencies at high concentrations at 20-80 and 20-40 microM, respectively. These results indicate that 6-gingerol caused DNA strand breaks and chromosome damage. To further elucidate the underlying mechanisms, we tested lysosomal membrane stability, mitochondrial membrane potential, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH). In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis on 8-hydroxydeoxyguanosine (8-OHdG). Results showed that lysosomal membrane stability was reduced after treatment by 6-gingerol (20-80 microM) for 40 min, mitochondrial membrane potential decreased after treatment for 50 min, GSH and ROS levels were significantly increased after treatment for 60 min. These suggest 6-gingerol induces genotoxicity probably by oxidative stress; lysosomal and mitochondrial damage were observed in 6-gingerol-induced toxicity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Clinical and biological significance of hepatoma-derived growth factor in Ewing's sarcoma.

    PubMed

    Yang, Yang; Li, Hui; Zhang, Fenfen; Shi, Huijuan; Zhen, Tiantian; Dai, Sujuan; Kang, Lili; Liang, Yingjie; Wang, Jin; Han, Anjia

    2013-11-01

    We sought to investigate the clinicopathological significance and biological function of hepatoma-derived growth factor (HDGF) in Ewing's sarcoma. Our results showed that HDGF expression is up-regulated in Ewing's sarcoma. Nuclear HDGF expression is significantly associated with tumour volume (p < 0.001), metastases at diagnosis (p < 0.001), low overall survival rate (p < 0.001) and low disease-free survival rate (p < 0.001). HDGF knock-down results in significant reduction of Ewing's sarcoma cell growth, proliferation and enhances tumourigenesis, both in vitro and in vivo. Meanwhile, HDGF knock-down causes cell cycle arrest and enhanced sensitization to serum starvation-induced apoptosis. Furthermore, recombinant HDGF promotes proliferation and colony formation of Ewing's sarcoma cells. Ninety-eight candidate HDGF downstream genes were identified in Ewing's sarcoma cells using cDNA microarray analysis. In addition, we found that HDGF knock-down inhibited FLI1 expression in Ewing's sarcoma cells at the mRNA and protein levels. Our findings suggest that HDGF exhibits oncogenic properties and may be a novel prognostic factor in Ewing's sarcoma. Targeting HDGF might be a potential therapeutic strategy for Ewing's sarcoma. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Immunological response induced by cryoablation against murine H22 hepatoma cell line in vivo.

    PubMed

    Yang, Xueling; Li, Xiaoli; Guo, Zhi; Si, Tongguo; Yu, Haipeng; Xing, Wenge

    2018-02-01

    To describe immunological consequences induced by cryoablation against H22 cells in vivo. Adult BALB/c mice underwent subcutaneous implantation of H22 cells. All of them were assigned into three groups randomly: group A (false surgery), group B (cryoablation) and group C (cryoablation plus Freund's adjuvant). Animals were sacrificed 1, 2 and 3 weeks after treatment. Serum IFN-γ and IL-4, Th1/Th2 in spleens and cytotoxicity were detected. Compared with that of group A, (1) INF-γ of group B was higher, but IL-4 was lower; cryoablation plus Freund's adjuvant enhanced these effects. (2) Th1/Th2 rose significantly in both group B and group C. (3) Strong cytolytic activity against H22 cells of group B and group C was found on day 7, 14 and 21. Our study showed a marked shift toward Th1 and IFN-γ expression after cryoablation, with an immuno-stimulatory effect against murine H22 hepatoma Cell. Copyright © 2017. Published by Elsevier Inc.

  14. Pokemon silencing leads to Bim-mediated anoikis of human hepatoma cell QGY7703.

    PubMed

    Liu, Kun; Liu, Feng; Zhang, Nannan; Liu, Shiying; Jiang, Yuyang

    2012-01-01

    Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer.

  15. Pokemon Silencing Leads to Bim-Mediated Anoikis of Human Hepatoma Cell QGY7703

    PubMed Central

    Liu, Kun; Liu, Feng; Zhang, Nannan; Liu, Shiying; Jiang, Yuyang

    2012-01-01

    Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer. PMID:22754333

  16. Dioxin-like activity of brominated dioxins as individual compounds or mixtures in in vitro reporter gene assays with rat and mouse hepatoma cell lines.

    PubMed

    Suzuki, G; Nakamura, M; Michinaka, C; Tue, N M; Handa, H; Takigami, H

    2017-10-01

    In vitro reporter gene assays detecting dioxin-like compounds have been developed and validated since the middle 1990's, and applied to the determination of dioxin-like activities in various samples for their risk management. Data on characterizing the potency of individual brominated dioxins and their activity in mixture with chlorinated dioxins are still limited on the cell-based assay. This study characterized the dioxin-like activities of the 32 brominated dioxins, such as polybrominated dibenzo-p-dioxins, polybrominated dibenzofurans (PBDFs), coplanar polybrominated biphenyls, mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDFs), as a sole component or in a mixture by DR-CALUX (dioxin-responsive chemically activated luciferase expression) using the rat hepatoma H4IIE cell line and XDS-CALUX (xenobiotic detection systems-chemically activated luciferase expression) assays using the mouse hepatoma H1L6.1 cell line. The 2,3,7,8-TCDD-relative potencies (REPs) of most of the brominated dioxins were within a factor of 10 of the WHO toxicity equivalency factor (WHO-TEF) for the chlorinated analogues. The REPs of a few PXDFs were an order of magnitude higher than the corresponding WHO-TEFs, indicating their toxicological importance. Results with reconstituted mixtures suggest that the activity of brominated and chlorinated dioxins in both CALUX assays was dose-additive. Thus, obtained results indicated the applicability of the CALUX assays as screening tools of brominated dioxins together with their chlorinated analogues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Altered expression of CD1d molecules and lipid accumulation in the human hepatoma cell line HepG2 after iron loading.

    PubMed

    Cabrita, Marisa; Pereira, Carlos F; Rodrigues, Pedro; Cardoso, Elsa M; Arosa, Fernando A

    2005-01-01

    Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.

  18. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene.

    PubMed

    Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2017-03-01

    2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC 50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017. © 2016 Wiley Periodicals, Inc.

  19. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo

    PubMed Central

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843

  20. Insulin-like growth factor-I stimulates H{sub 4}II rat hepatoma cell proliferation: Dominant role of PI-3'K/Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexia, Catherine; Fourmatgeat, Pascal; Delautier, Daniele

    2006-04-15

    Although hepatocytes are the primary source of endocrine IGF-I and -II in mammals, their autocrine/paracrine role in the dysregulation of proliferation and apoptosis during hepatocarcinogenesis and in hepatocarcinomas (HCC) remains to be elucidated. Indeed, IGF-II and type-I IGF receptors are overexpressed in HCC cells, and IGF-I is synthesized in adjacent non-tumoral liver tissue. In the present study, we have investigated the effects of type-I IGF receptor signaling on H{sub 4}II rat hepatoma cell proliferation, as estimated by {sup 3}H-thymidine incorporation into DNA. IGF-I stimulated the rate of DNA synthesis of serum-deprived H{sub 4}II cells, stimulation being maximal 3 h aftermore » the onset of IGF-I treatment and remaining elevated until at least 6 h. The IGF-I-induced increase in DNA replication was abolished by LY294002 and only partially inhibited by PD98059, suggesting that phosphoinositol-3' kinase (PI-3'K) and to a lesser extent MEK/Erk signaling were involved. Furthermore, the 3- to 19-fold activation of the Erks in the presence of LY294002 suggested a down-regulation of the MEK/Erk cascade by PI-3'K signaling. Finally, the effect of IGF-I on DNA replication was almost completely abolished in clones of H{sub 4}II cells expressing a dominant-negative form of Akt but was unaltered by rapamycin treatment of wild-type H{sub 4}II cells. Altogether, these data support the notion that the stimulation of H{sub 4}II rat hepatoma cell proliferation by IGF-I is especially dependent on Akt activation but independent on the Akt/mTOR signal0009i.« less

  1. Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions.

    PubMed

    Vasquez, M I; Garcia-Käufer, M; Hapeshi, E; Menz, J; Kostarelos, K; Fatta-Kassinos, D; Kümmerer, K

    2013-04-15

    Ofloxacin (OFL), a broad-spectrum and widespread-used photolabile fluoroquinolone, is frequently found in treated wastewaters, aquatic and terrestrial ecosystems leading to increasing concern during the past decades regarding its effects to the environment and human health. The elimination of OFL and other xenobiotics by the application of advanced oxidation processes using photolytic (PL) and photocatalytic (PC) treatments seems promising. However, an integrated assessment scheme is needed, in which, not only the removal of the parent compound, but also the effects of the photo-transformation products (PTPs) are investigated. For this purpose, in the present study, a chronic ecotoxic assessment using representative bacteria of marine and terrestrial ecosystems and a cytostatic and genotoxic evaluation using hepatoma cell line were performed. PL and PC treatments of OFL were applied using UV radiation. The photo-transformation of OFL during the treatments was monitored by DOC measurements and UPLC-MS/MS analysis. The chronic ecotoxicity of OFL and treated samples was evaluated using Pseudomonas putida and Vibrio fischeri; whereas the cytostasis and genotoxicity were estimated by the cytokinesis-block micronucleus assay (CBMN). The main results suggest that photo-transformation of OFL took place during these treatments since the concentration of OFL decreased when the irradiation time increased, as quantified by UPLC-MS/MS analysis, and this was not coupled with an analogous DOC removal. Furthermore, nine compounds were identified as probable PTPs formed through piperazinyl dealkylation and decarboxylation. The ecotoxicity of treated solutions to the bacteria studied decreased while the cytostasis to the hepatoma cell line remained at low levels during both treatments. However, the genotoxicity to the hepatoma cell line demonstrated a different pattern in which treated samples induced a greater number of MNi for the 4-16 min of irradiation (p<0.05) during both

  2. Cytotoxicity of the dicarboximide fungicides, vinclozolin and iprodione, in rat hepatoma-derived Fa32 cells.

    PubMed

    Dierickx, Paul J

    2004-10-01

    Dicarboximide fungicides are widely used to control various fungal species. Their primary action is not known, due to a lack of knowledge concerning the mechanism of action of the dicarboximide group. The cytotoxicities of vinclozolin and iprodione in rat hepatoma-derived Fa32 cells were investigated. Cytotoxicity was measured by neutral red uptake inhibition after treatment for 24 hours. Iprodione was more toxic than vinclozolin. Vinclozolin was less toxic in glutathione-depleted cells than in control cells. This was also true for iprodione at lower concentrations, but iprodione became more toxic at higher concentrations. Both the fungicides increased the endogenous glutathione content by 20% after 1 hour. After 24 hours, the glutathione content was doubled by vinclozolin, but was not affected by iprodione. No effect on glutathione S-transferase activity or reactive oxygen species formation could be observed. Cytochrome P450-dependent ethoxyresorufin-O-deethylase and pentoxyresorufin-O-depentylase activities were moderately activated by iprodione and strongly activated by vinclozolin. A glutathione-related cytochrome P450-dependent metabolic attack of vinclozolin and iprodione could be responsible for their cytotoxicity in Fa32 cells. Further research is needed to fully elucidate these (or other) mechanisms.

  3. Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells.

    PubMed

    Liu, Peng; Wang, Wei; Zhou, Zhigang; Smith, Andrew J O; Bowater, Richard P; Wormstone, Ian Michael; Chen, Yuqiong; Bao, Yongping

    2018-05-09

    Sulforaphane (SFN) exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane- N -acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs) and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H₂O₂ challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and the induction of intracellular glutathione (GSH) played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention.

  4. Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells.

    PubMed

    Escalera-Cueto, Manuel; Medina-Martínez, Ingrid; del Angel, Rosa M; Berumen-Campos, Jaime; Gutiérrez-Escolano, Ana Lorena; Yocupicio-Monroy, Martha

    2015-01-22

    MicroRNAs (miRNAs) constitute an important class of non-coding RNA implicated in gene expression regulation. More than 1900 miRNA molecules have been identified in humans and their modulation during viral infection and it is recognized to play a role in latency regulation or in establishing an antiviral state. The liver cells are targets during DENV infection, and alteration of liver functions contributes to severe disease. In this work the miRNAs expression profile of the human hepatoma cell line, Huh-7, infected with DENV-2 was determined using microarray and real-time PCR. Let-7c is one of the miRNAs up-regulated during DENV infection in the hepatic Huh-7 as well as in the macrophage-monocytic cell line U937-DC-SIGN. Let-7c overexpression down-regulates both DENV-2 and DENV-4 infection. Additionally, we found that the transcription factor BACH1, a let-7c target, is also down-regulated during DENV infection. In accordance with this finding, HO-1, the main responsive factor of BACH1 was found up-regulated. The up-regulation of HO-1 may contribute to the stress oxidative response in infected cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Caspase-8 acts as a key upstream executor of mitochondria during justicidin A-induced apoptosis in human hepatoma cells.

    PubMed

    Su, Chun-Li; Huang, Lynn L H; Huang, Li-Min; Lee, Jenq-Chang; Lin, Chun-Nan; Won, Shen-Jeu

    2006-05-29

    Justicia procumbens is a traditional Taiwanese herbal remedy used to treat fever, pain, and cancer. Justicidin A, isolated from Justicia procumbens, has been reported to suppress in vitro growth of several tumor cell lines as well as hepatoma cells. In this study, justicidin A activated caspase-8 to increase tBid, disrupted mitochondrial membrane potential (Delta psi(m)), and caused the release of cytochrome c and Smac/DIABLO in Hep 3B and Hep G2 cells. Justicidin A also reduced Bcl-x(L) and increased Bax and Bak in mitochondria. Caspase-8 inhibitor (Z-IETD) attenuated the justicidin A-induced disruption of Delta psi(m). Growth of Hep 3B implanted in NOD-SCID mice was suppressed significantly by oral justicidin A (20 mg/kg/day). These results indicate that justicidin A-induced apoptosis in these cells proceeds via caspase-8 and is followed by mitochondrial disruption.

  6. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line.

    PubMed

    Yang, Darong; Zuo, Chaohui; Wang, Xiaohong; Meng, Xianghe; Xue, Binbin; Liu, Nianli; Yu, Rong; Qin, Yuwen; Gao, Yimin; Wang, Qiuping; Hu, Jun; Wang, Ling; Zhou, Zebin; Liu, Bing; Tan, Deming; Guan, Yang; Zhu, Haizhen

    2014-04-01

    The absence of a robust cell culture system for hepatitis B virus (HBV) and hepatitis C virus (HCV) infection has limited the analysis of the virus lifecycle and drug discovery. We have established a hepatoma cell line, HLCZ01, the first cell line, to the authors' knowledge, supporting the entire lifecycle of both HBV and HCV. HBV surface antigen (HBsAg)-positive particles can be observed in the supernatant and the lumen of the endoplasmic reticulum of the cells via electron microscopy. Interestingly, HBV and HCV clinical isolates propagate in HLCZ01 cells. Both viruses replicate in the cells without evidence of overt interference. HBV and HCV entry are blocked by antibodies against HBsAg and human CD81, respectively, and the replication of HBV and HCV is inhibited by antivirals. HLCZ01 cells mount an innate immune response to virus infection. The cell line provides a powerful tool for exploring the mechanisms of virus entry and replication and the interaction between host and virus, facilitating the development of novel antiviral agents and vaccines.

  7. Cytotoxic effect induced by retinoic acid loaded into galactosyl-sphingosine containing liposomes on human hepatoma cell lines.

    PubMed

    Díaz, Cecilia; Vargas, Ernesto; Gätjens-Boniche, Omar

    2006-11-15

    Two retinoids, ATRA and 13cisRA, were incorporated into liposomes of different composition and charge and added to two hepatoma cell lines with different degree of transformation to measure cytotoxicity by MTT assay. Retinoid-free cationic liposomes were more toxic than the other kinds (anionic and made only of PC) but were also the best delivery system for retinoic acid to induce specific cytotoxic effects on these tumor hepatoma cell lines. Galactosyl-sphingosine containing cationic liposomes increased the cytotoxic effect induced by ATRA on Hep3B cells when compared to glucosyl-sphingosine cationic liposomes, but did not improve the effect induced by free retinoid or ATRA loaded into liposomes without glycolipids. This suggests that in this cell line, ATRA is being incorporated by a mechanism mediated by the asialoglycoprotein receptor, but at the same time, non-specific sugar-independent capture is also taking place as well as free diffusion of ATRA directly through the membrane. Galactose-specific effect was not observed in HepG2 cells treated with ATRA or both cell lines treated with 13cisRA. In fact, treatment of HepG2 cells with retinoids entrapped into liposomes likely induces proliferation instead of cytotoxicity, a result that interferes with the measurement of cell death by MTT. Compared to the specific effect of ATRA entrapped into cationic liposomes, vesicles made only by PC, did not mediate a specific mechanism, since differences between ATRA in galactosyl- and glucosyl-shpingosine PC-liposomes were not statistically significant. The specific mechanism was not present in the myoblastic cell line C2C12, where ATRA incorporated into galactosyl- and glucosyl-sphingosine containing cationic and PC-liposomes, was able to induce cytotoxicity at the same extent. Micelles containing ATRA and galactosyl-sphingosine had a significantly more toxic effect than the retinoid administered together with glucosyl-sphingosine, in Hep3B cells. Also, micelles containing

  8. Specific gene transfer mediated by galactosylated poly-L-lysine into hepatoma cells.

    PubMed

    Han, J; Il Yeom, Y

    2000-07-20

    Plasmid DNA/galactosylated poly-L-lysine(GalPLL) complex was used to transfer luciferase reporter gene in vitro into human hepatoma cells by a receptor-mediated endocytosis process. DNA was combined with galPLL via charge interaction (DNA:GalPLL:fusogenic peptide, 1:0.4:5, w/w/w) and the resulting complex was characterized by dynamic light scattering, gel retardation assay and zeta potential analyzer to determine the particle size, electrostatic charge interaction, and apparent surface charge. The complex was tested for the efficiency of gene transfer in cultured human hepatoblastoma cell line Hep G2 and fibroblast cells NIH/3T3 in vitro. The mean diameter of the complex (DNA:GalPLL=1:0.4, w/w) was 256+/-34.8 nm, and at this ratio, it was positively charged (zeta potential of this complex was 10.1 mV). Hep G2 cells, which express a galactose specific membrane lectin, were efficiently and selectively transfected with the RSV Luc/GalPLL complex in a sugar-dependent manner. NIH/3T3 cells, which do not express the galactose-specific membrane lectin, showed only a marginal level of gene expression. The transfection efficiency of GalPLL-conjugated DNA complex into Hep G2 cells was greatly enhanced in the presence of fusogenic peptide that can disrupt endosomes, where the GalPLL-DNA complex is entrapped with the fusogenic peptide. With the fusogenic peptide KALA, the luciferase activity in Hep G2 cells was ten-fold higher than that of cells transfected in the absence of the fusogenic peptide. Our gene transfer formulation may find potential application for the gene therapy of liver diseases.

  9. Hydroquinone stimulates cell invasion through activator protein-1-dependent induction of MMP-9 in HepG2 human hepatoma cells.

    PubMed

    Yu, Mi-Hee; Lee, Syng-Ook

    2016-03-01

    Hydroquinone (HQ) is a well-known environmental carcinogen and exposure of humans to HQ can also occur through plant foods, cosmetics, and tobacco products. Although liver is a major organ metabolizing HQ and susceptible to its toxicity, role of HQ in metastatic progression of human hepatocellular carcinoma (HCC) remains unclear. In this study, we examined the effect of HQ on the invasion of HCC cells and its underlying molecular mechanisms. HQ strongly induced matrix metalloproteinase-9 (MMP-9) expression and secretion in HepG2 human hepatoma cells, which were well correlated with increased cell invasion. Mechanistic studies further demonstrated that HQ induced transcriptional activity of MMP-9 gene by activating activator protein-1 (AP-1), the well-known key element mediating MMP-9 gene expression, via MAP kinase (MAPK) signaling pathways. These results suggest that HQ may promote metastatic progression of HCC, although data on in vivo hydroquinone exposure and risk for HCC are contradictory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies.

    PubMed

    Selestino Neta, Maria Cipriano; Vittorazzi, Catia; Guimarães, Aline Cristina; Martins, João Damasceno Lopes; Fronza, Marcio; Endringer, Denise Coutinho; Scherer, Rodrigo

    2017-12-01

    Orange Jessamine [Murraya paniculata L. (Rutaceae)] has been used worldwide in folk medicine as an anti-inflammatory, antibiotic and analgesic. The objective of this study is to investigate the in vitro antioxidant, cytotoxic, antibacterial and antifungal activity and the time-kill curve studies of orange jessamine essential oil and β-caryophyllene, as well as the chemical composition of the essential oil. The cytotoxic activity of M. paniculata and β-caryophyllene (7.8-500 μg/mL) was evaluated using the MTT assay on normal fibroblasts and hepatoma cells. The minimal inhibitory concentration and time-kill curves (24 h) were evaluated against those of Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Enterococcus faecallis, Aspergillus (niger, fumigates and parasiticum) and F. solani by the broth microdilution method. The antioxidant activity was measured by the DPPH and ABTS assays. Chemical composition was evaluated by GC/MS analyses. GC/MS analyses identified 13 compounds, with β-caryophyllene as the major compound. The oil exhibited moderate antibacterial activity (MIC <1.0 mg/mL) and strong antifungal activity. Time-kill curve studies showed that either the essential oil or β-caryophyllene presented rapid bacterial killing (4 h for S. aureus) and fungicidal effect (2-4 h for F. solani); however, both displayed weak free radical scavenger capacity. The cytotoxic activity exhibited a prominent selective effect against hepatoma cancer cells (IC 50 value =63.7 μg/mL) compared with normal fibroblasts (IC 50 value =195.0 μg/mL), whereas the β-caryophyllene showed low cytotoxicity. The experimental data suggest that the activities of M. paniculata essential oil are due to the synergistic action among its components.

  11. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed Central

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-01-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells. PMID:12133007

  12. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.

  13. Evaluation of the anticancer potential of six herbs against a hepatoma cell line

    PubMed Central

    2012-01-01

    Background Six herbs in the Plant Genetics Conservation Project that have been used as complementary medicines were chosen on the basis of their medicinal value, namely Terminalia mucronata, Diospyros winitii, Bridelia insulana, Artabotrys harmandii, Terminallia triptera, and Croton oblongifolius. This study aims to evaluate the potential anticancer activity of 50% ethanol-water extracts of these six herbs. Methods Fifty percent ethanol-water crude extracts of the six herbs were prepared. The cytotoxicity of the herbal extracts relative to that of melphalan was evaluated using a hepatoma cell line (HepG2), and examined by neutral red assays and apoptosis induction by gel electrophoresis and flow cytometry after 24 h. Results A significant difference was found between the cytotoxicity of the 50% ethanol-water crude extracts and melphalan (P = 0.000). The 50% ethanol-water crude extracts of all six herbs exhibited cytotoxicity against HepG2 cells, with IC50 values ranging from 100 to 500 μg/mL. The extract of T. triptera showed the highest cytotoxicity with an IC50 of 148.7 ± 12.3 μg/mL, while melphalan had an IC50 of 39.79 ± 7.62 μg/mL. The 50% ethanol-water crude extracts of D. winitii and T. triptera, but not A. harmandii, produced a DNA ladder. The 50% ethanol-water crude extracts of D. winitii, T. triptera, and A. harmandii induced apoptosis detected by flow cytometry. Conclusion The 50% ethanol-water crude extracts of D. winitii, T. triptera, and A. harmandii showed anticancer activity in vitro. PMID:22682026

  14. Role of intracellular Ca2+ signal in the ascorbate-induced apoptosis in a human hepatoma cell line.

    PubMed

    Lee, Yong Soo

    2004-12-01

    Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular Ca2+ concentration. EGTA, an extracellular Ca2+ chelator did not significantly alter the ascorbate-induced intracellular Ca2+ increase and apoptosis, whereas dantrolene, an intracellular Ca2+ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular Ca2+ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular Ca2+ release mechanism may mediate ascorbate-induced apoptosis.

  15. CD147 stimulates hepatoma cells escaping from immune surveillance of T cells by interaction with Cyclophilin A.

    PubMed

    Ren, Yi-Xin; Wang, Shu-Jing; Fan, Jian-Hui; Sun, Shi-Jie; Li, Xia; Padhiar, Arshad Ahmed; Zhang, Jia-Ning

    2016-05-01

    T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines.

    PubMed

    Sa, Fei; Gao, Jian-Li; Fung, Kwok-Pui; Zheng, Ying; Lee, Simon Ming-Yuen; Wang, Yi-Tao

    2008-01-10

    Smilax glabra Roxb. (SGR) is the root of a traditional Chinese herb, referred to as tu fu ling in Chinese medicine. It is an inexpensive traditional Chinese medicine commonly used for the treatment of liver diseases, and a few studies have indicated that SGR has anti-hepatocarcinogenic and anti-cancer growth activities. In the current study, raw SGR plant was extracted with Accelerate Solvent Extractor, and the molecular mechanism by which S. glabra Roxb. extract (SGRE) has an anti-proliferative effect on the human hepatoma cell lines, HepG2 and Hep3B, was determined. We showed that SGRE inhibited HepG2 and Hep3B cell growth by causing cell-cycle arrest at either S phase or S/G2 transition and induced apoptosis, as evidenced by a DNA fragmentation assay. SGRE-induced apoptosis by alternation of mitochondrial transmembrane depolarization, release of mitochondrial cytochrome c, activation of caspase-3, and cleavage of poly(ADP-ribose) polymerase. The SGRE-mediated mitochondria-caspase dependent apoptotic pathway also involved activation of p38, JNK, and ERK mitogen-activated protein kinase signaling. Isometric compounds of astilbin (flavonoids) and smilagenin (saponin) have been identified as the main chemical constituents in SGRE by HPLC-MS/MS. These results have identified, for the first time, the biological activity of SGRE in HepG2 and Hep3B cells and should lead to further development of SGR for liver disease therapy.

  17. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein thatmore » antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.« less

  18. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, Sudhakar R.; Ellis, Elizabeth M., E-mail: elizabeth.ellis@strath.ac.uk

    Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell deathmore » and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.« less

  19. Coordinated modulation of albumin synthesis and mRNA levels in cultured hepatoma cells by hydrocortisone and cyclic AMP analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.C.; Papaconstantinou, J.

    The treatment of Hepa-2 cells, a permanent mouse hepatoma cell line, for 72 h with hydrocortisone (10/sup -6/ M), N/sup 6/,O/sup 2/-dibutyryl cyclic AMP (10/sup -3/ M), or 8-bromo cyclic AMP(10/sup -3/ M) results in a 2-, 3-, or 4-fold increase, respectively, in rates of synthesis and secretion of mouse serum albumin. Simultaneous treatment with hydrocortisone and N/sup 6/,O/sup 2/-dibutyryl cyclic AMP results in a 10-fold stimulation in these parameters, an effect that is significantly more than additive for the two compounds tested. The number of albumin mRNA sequences, determined by hybridization of total cell RNA to albumin complementary DNA,more » was increased in direct proportion to the increases in albumin synthesis in all experiments. The relative rate of albumin synthesis approaches in vivo levels in cells treated simultaneously with hydrocortisone and N/sup 6/,O/sup 2/-dibutyryl cyclic AMP. We propose that these factors may be necessary to maintain the maximal level of differentiated function in the continuous culture of Hepa-2 cells.« less

  20. Transcriptional regulation of human paraoxonase 1 by PXR and GR in human hepatoma cells.

    PubMed

    Ponce-Ruiz, N; Rojas-García, A E; Barrón-Vivanco, B S; Elizondo, G; Bernal-Hernández, Y Y; Mejía-García, A; Medina-Díaz, I M

    2015-12-25

    Human paraoxonase 1 (PON1) is A-esterase synthesized in the liver and secreted into the plasma, where it associates with HDL. PON1 acts as an antioxidant preventing lipid oxidation and detoxifies a wide range of substrates, including organophosphate compounds. The variability of PON1 (enzyme activity/serum levels) has been attributed to internal and external factors. However, the molecular mechanisms involved in the transcriptional regulation of PON1 have not been well-studied. The aim of this study was to evaluate and characterize the transcriptional activation of PON1 by nuclear receptors (NR) in human hepatoma cells. In silico analysis was performed on the promoter region of PON1 to determine the response elements of NR. Real-time PCR was used to evaluate the effect of specific NR ligands on the mRNA levels of genes regulated by NR and PON1. The results indicated that NR response elements had 95% homology to pregnenolone (PXR), glucocorticoids (GR), retinoic acid (RXR) and peroxisomes proliferator-activated receptor alpha (PPARα). Treatments with Dexamethasone (GR ligand), Rifampicin (PXR ligand) and TCDD (AhR ligand) increased the mRNA levels of PON1 at 24 and 48 h. We showed that the activation of GR by Dexamethasone results in PON1 gene induction accompanied by an increase in activity levels. In conclusion, these results demonstrate that GR regulates PON1 gene transcription through directly binding to NR response elements at -95 to -628 bp of the PON1 promoter. This study suggests new molecular mechanisms for the transcriptional regulation of PON1 through a process involving the activation of PXR. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carryingmore » humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.« less

  2. Enhanced antitumor efficacy on hepatoma-bearing rats with adriamycin-loaded nanoparticles administered into hepatic artery.

    PubMed

    Chen, Jiang-Hao; Ling, Rui; Yao, Qing; Wang, Ling; Ma, Zhong; Li, Yu; Wang, Zhe; Xu, Hu

    2004-07-01

    To investigate the antitumor activity of adriamycin (ADR) encapsulated in nanoparticles (NADR) and injected into the hepatic artery of hepatoma-bearing rats. NADR was prepared by the interfacial polymerization method. Walker-256 carcinosarcomas were surgically implanted into the left liver lobes of 60 male Wistar rats, which were divided into 4 groups at random (15 rats per group). On the 7th day after implantation, normal saline (NS), free ADR (FADR), NADR, or ADR mixed with unloaded nanoparticles (ADR+NP) was respectively injected via the hepatic artery (i.a.) of rats in different groups. The dose of ADR in each formulation was 2.0 mg/kg body weight and the concentration was 1.0 mg/mL. Survival time, tumor enlargement ratio, and tumor necrosis degree were compared between each group. Compared with the rats that received NS i.a., the rats that received FADR or ADR+NP acquired apparent inhibition on tumor growth, as well as prolonged their life span. Further significant anticancer efficacy was observed in rats that received i.a. administration of NADR. Statistics indicated that NADR brought on a more significant tumor inhibition and more extensive tumor necrosis, as compared to FADR or ADR+NP. The mean tumor enlargement ratio on the 7th day after NADR i.a. was 1.106. The mean tumor-bearing survival time was 39.50 days. Prolonged life span ratio was 109.22% as compared with rats that accepted NS. Therapeutic effect of ADR on liver malignancy can be significantly enhanced by its nanopaticle formulation and administration via hepatic artery.

  3. CYP1A1 and CYP1A2 expression: Comparing ‘humanized’ mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    PubMed Central

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how “human-like” can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  4. [Inhibitory effect of migration-inducing gene-7-shRNA recombinant retrovirus combined with endostatin on growth and metastasis of hepatoma xenograft].

    PubMed

    Qu, B; Chen, G N; Sheng, G N; Yu, F; Lyu, Q; Gu, Y J; Guo, L; Lyu, Y

    2016-09-20

    Objective: To investigate the inhibitory effect of migration-inducing gene-7(Mig-7)interfered with retrovirus-mediated RNA(shRNA)combined with recombinant human endostatin(ES)on the growth and metastasis of subcutaneous xenograft of human hepatoma cells in nude mice. Methods: Two Mig-7-mRNA oligonucleotide sequences(Mig-7-shRNA-1 and Mig-7-shRNA-2)and one sequence as a negative control(Mig-7-shRNA-N)were designed. The specific Mig-7-shRNA recombinant retrovirus expression vector plasmid was constructed and used for the transfection of human hepatoma MHCC-97H cells with high expression of Mig-7. The subcutaneous xenograft tumor model of human hepatocellular carcinoma(HCC)in nude mice was established, and according to the condition of transfection and administration, the nude mice were divided into pSIREN-M1 group, pSIREN-MN group, ES group, and pSIREN-M1+ES group. The xenograft tumor volume, mass, and metastasis were compared between groups. Immunohistochemistry was used to observe the formation of vasculogenic mimicry(VM)in xenograft tumor and the difference in tumor microvascular density(MVD), and Western blot was used to measure the expression of Mig-7 and vascular endothelial growth factor(VEGF)in each group. A one-way analysis of variance was used for comparison between groups, and the Fisher's exact test was used for comparison of continuous data between groups. Results: Compared with the pSIREN-MN group, the pSIREN-M1 group had significantly lower xenograft tumor volume, mass, and metastasis rate, Mig-7 expression, and formation of VM( P < 0.05), as well as significantly higher VEGF expression and MVD( P < 0.05). Compared with the pSIREN-MN group, the ES group had significantly lower xenograft tumor volume, mass, and metastasis rate, VEGF expression, and MVD( P < 0.05), as well as significantly higher Mig-7 expression and formation of VM( P < 0.05). Compared with the pSIREN-M1 group and the ES group, the pSIREN-M1+ES group had significantly lower xenograft

  5. MiR-30e suppresses proliferation of hepatoma cells via targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Guoxing; Shi, Hui; Li, Jiong

    Aberrant microRNA expression has been shown to be characteristic of many cancers. It has been reported that the expression levels of miR-30e are decreased in liver cancer tissues. However, the role of miR-30e in hepatocellular carcinoma remains poorly understood. In the present study, we investigated the significance of miR-30e in hepatocarcinogenesis. Bioinformatics analysis reveals a putative target site of miR-30e in the 3′-untranslated region (3′UTR) of prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA. Moreover, luciferase reporter gene assays verified that miR-30e directly targeted 3′UTR of P4HA1 mRNA. Then, we demonstrated that miR-30e was able to reduce the expression of P4HA1 atmore » the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis. Enforced expression of miR-30e suppressed proliferation of HepG2 cells by 5-ethynyl-2-deoxyuridine (EdU) assay and reduced colony formation of these cells by colony formation analysis. Conversely, anti-miR-30e enhanced the proliferation of hepatoma cells in vitro. Interestingly, the ectopic expression of P4HA1 could efficiently rescue the inhibition of cell proliferation mediated by miR-30e in HepG2 cells. Meanwhile, silencing of P4HA1 abolished the anti-miR-30e-induced proliferation of cells. Clinically, quantitative real-time PCR showed that miR-30e was down-regulated in liver tumor tissues relative to their peritumor tissues. The expression levels of miR-30e were negatively correlated to those of P4HA1 mRNA in clinical liver tumor tissues. Thus, we conclude that miR-30e suppresses proliferation of hepatoma cells through targeting P4HA1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • P4HA1 is a novel target gene of miR-30e. • P4HA1 is increased in clinical HCC tissues. • MiR-30e is negatively correlated with P4HA1 in clinical HCC tissues. • MiR-30e suppresses the proliferation of HCC cells

  6. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases: Relevance to intracellular signaling pathways

    PubMed Central

    Roeb, Elke; Bosserhoff, Anja-Katrin; Hamacher, Sabine; Jansen, Bettina; Dahmen, Judith; Wagner, Sandra; Matern, Siegfried

    2005-01-01

    AIM: To study the effect of gelatinases (especially MMP-9) on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells. METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases. RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05) and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly. Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1 deactivates cell signaling pathways of MMP-2 and MMP-9 involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1. CONCLUSION: Overexpressing functional TIMP-1- enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9. PMID:15754388

  7. Cytotoxic and genotoxic potential of geraniol in peripheral blood mononuclear cells and human hepatoma cell line (HepG2).

    PubMed

    Queiroz, T B; Santos, G F; Ventura, S C; Hiruma-Lima, C A; Gaivão, I O M; Maistro, E L

    2017-09-27

    Geraniol is an acyclic monoterpene alcohol present in the essential oil of many aromatic plants and is one of the most frequently used molecules by the flavor and fragrance industries. The literature also reports its therapeutic potential, highlighting itself especially as a likely molecule for the development of drugs against cancer. In view of these considerations, this study was designed to evaluate the cytotoxic and genotoxic potential of geraniol, in an in vitro protocol, using two types of human cells: one without the ability to metabolize (peripheral blood mononuclear cells - PBMC), and the other with this capability (human hepatoma cell line - HepG2) through the comet assay and the micronucleus test. Four concentrations (10, 25, 50, and 100 µg/mL) were selected for the genotoxic assessment for PBMC and three (1.25, 2.5, and 5 µg/mL) for HepG2 cells based on cytotoxicity tests (MTT assay). Results showed that geraniol did not present genotoxic or clastogenic/aneugenic effects on both cell types under the conditions studied. However, caution is advised in the use of this substance by humans, since a significant reduction in viability of HepG2 and a marked decrease in cell viability on normal PBMC were verified.

  8. Synergistic cytotoxicity and mechanism of caffeine and lysozyme on hepatoma cell line HepG2

    NASA Astrophysics Data System (ADS)

    Yang, Hongchao; Li, Jingjuan; Cui, Lin; Ren, Yanqing; Niu, Liying; Wang, Xinguo; Huang, Yun; Cui, Lijian

    2018-03-01

    The influences of caffeine, lysozyme and the joint application of them on the hepatoma cell line HepG2 proliferation inhibition and cell apoptosis were observed by 3-(4, 5-dimethyl-2-thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and Hoechst 33342, which showed the proliferation inhibition rate of the joint application on HepG2 cells was 47.21%, significantly higher than caffeine or lysozyme, and the joint application promoted the apoptosis of HepG2 cells obviously. Van't Hoff classical thermodynamics formula, the Föster theory of non-radiation energy transfer and fluorescence phase diagram were used to manifest that the process of lysozyme binding to caffeine followed a two-state model, which was spontaneous at low temperature driven by enthalpy change, and the predominant intermolecular force was hydrogen bonding or Van der Waals force to stabilize caffeine-lysozyme complex with the distance 5.86 nm. The attenuated total reflection-Fourier transform infrared spectra indicated that caffeine decreased the relative contents of α-helix and β-turn, which inferred the structure of lysozyme tended to be "loose". Synchronous fluorescence spectra and ultraviolet spectra supported the above conclusion. The amino acid residues in the cleft of lysozyme were exposed and electropositivity was increased attributing to the loose structure, which were conducive to increasing caffeine concentration on the HepG2 cell surface by electrostatic interaction to show synergistic effect. The great quantities of microvilli on the liver cancer cell membrane surface, is beneficial for the lysozyme-caffeine compound to aggregate on cell surface to increase the concentration of caffeine to play stronger physiological role by electrostatic effect.

  9. Effects of drugs in subtoxic concentrations on the metabolic fluxes in human hepatoma cell line Hep G2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niklas, Jens; Noor, Fozia, E-mail: fozia.noor@mx.uni-saarland.d; Heinzle, Elmar

    2009-11-01

    Commonly used cytotoxicity assays assess the toxicity of a compound by measuring certain parameters which directly or indirectly correlate to the viability of the cells. However, the effects of a given compound at concentrations considerably below EC{sub 50} values are usually not evaluated. These subtoxic effects are difficult to identify but may eventually cause severe and costly long term problems such as idiosyncratic hepatotoxicity. We determined the toxicity of three hepatotoxic compounds, namely amiodarone, diclofenac and tacrine on the human hepatoma cell line Hep G2 using an online kinetic respiration assay and analysed the effects of subtoxic concentrations of thesemore » drugs on the cellular metabolism by using metabolic flux analysis. Several changes in the metabolism could be detected upon exposure to subtoxic concentrations of the test compounds. Upon exposure to diclofenac and tacrine an increase in the TCA-cycle activity was observed which could be a signature of an uncoupling of the oxidative phosphorylation. The results indicate that metabolic flux analysis could serve as an invaluable novel tool for the investigation of the effects of drugs. The described methodology enables tracking the toxicity of compounds dynamically using the respiration assay in a range of concentrations and the metabolic flux analysis permits interesting insights into the changes in the central metabolism of the cell upon exposure to drugs.« less

  10. Ilexgenin A exerts anti-inflammation and anti-angiogenesis effects through inhibition of STAT3 and PI3K pathways and exhibits synergistic effects with Sorafenib on hepatoma growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hao

    Recently, we reported that Ilexgenin A exhibits anti-cancer activities and induces cell arrest. Here, we investigated the effect of Ilexgenin A on the inflammation, angiogenesis and tumor growth of hepatocellular carcinoma (HCC). Our current study revealed that Ilexgenin A significantly inhibited the inflammatory cytokines TNF-α and IL-6 levels and downregulated pro-angiogenic factor VEGF production and transcription in HepG2 cells. The underlying mechanism for Ilexgenin A effects appears to be through inhibiting STAT3 and PI3K pathways. Furthermore, we found that not only Ilexgenin A inhibited STAT3 and PI3K pathways in HepG2 cells but also blocked these signaling pathways in HUVECs. Mostmore » importantly, by employing two HCC xenografts models - HepG2 and H22, we showed that Ilexgenin A reduced tumor growth and exhibited synergy effect with Sorafenib. ELISA assay, histological analysis and immunohistochemistry examination revealed that the expression of VEGF and MVD was significantly decreased after the treatment with Ilexgenin A and the combination. Moreover, Ilexgenin A could enhance caspase-3/7 activity in vitro and transmission electron microscope indicated that the combination induced evident apoptosis of tumor cells and caused the structural changes of mitochondria in vivo. Although no apparent adverse effects occurred during the treatment period, Sorafenib monotherapy elicited hepatotoxicity for specific expression in the increased level of AST and the ratio of AST/ALT. However, the combination could remedy this adverse effect. In conclusion, the results described in the present study identifies Ilexgenin A as a promising therapeutic candidate that modulates inflammation, angiogenesis, and HCC growth. - Highlights: • Ilexgenin A exerts anti-inflammatory and anti-angiogenesis effects in hepatoma. • Ilexgenin A may exert these effects through inhibition of STAT3 and PI3K pathways. • Ilexgenin A exhibits synergistic effects with Sorafenib on

  11. Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells.

    PubMed

    Onaga, Masaaki; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Moriuchi, Akihiro; Nagata, Kenji; Hori, Takeshi; Hayash, Katsuhiro; Tsubouchi, Hirohito

    2003-11-01

    Hepatocellular carcinoma (HCC) is closely associated with chronic liver diseases, particularly cirrhosis. However, the genes involved in hepatocarcinogenesis in the context of developing cirrhosis remain unknown. This study aims to identify genes associated with early cirrhosis-associated hepatocarcinogenesis. We examined genes differentially expressed between the livers of normal rats and rats fed a choline-deficient, L-amino acid-defined (CDAA) diet using suppression subtractive hybridization. We examined both the expression in the liver and HCC tissues of osteoactivin (OA), isolated in this screen, and its effect on invasiveness and metastasis. OA mRNA was strongly expressed in the livers of rats fed the CDAA diet for 1-3 months. Moderate expression was sustained for 18 months. OA overexpression increased the invasiveness and metastasis of rat hepatoma cells in vitro and in vivo. In humans, OA expression was not detectable in normal liver tissues. While OA transcripts were detectable in cirrhotic nontumorous liver tissues surrounding HCCs, the majority of HCC tissue samples exhibited higher levels of OA expression than the surrounding normal tissue. These results indicate that OA is a novel factor involved in the progression of HCC via stimulation of tumor invasiveness and metastatic potential.

  12. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    PubMed Central

    Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-01-01

    Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772

  13. Interaction of tributyltin with 3,3',4,4',5-pentachlorobiphenyl-induced ethoxyresorufin O-deethylase activity in rat hepatoma cells.

    PubMed

    Kannan, K; Villeneuve, D L; Blankenship, A L; Giesy, J P

    1998-11-13

    Interaction of tributyltin (TBT) with 3,3',4,4',5-pentachlorobiphenyl (PCB-126)-induced ethoxyresorufin O-deethylase (EROD) activity was examined in vitro using H4IIE rat hepatoma cells. H4IIE cells were exposed to TBT and PCB-126, individually or in combination, at different concentrations. TBT was cytotoxic at concentrations greater than 98 nM. PCB-126 was not cytotoxic in the concentration range of 49 to 3140 pM. At concentrations greater than 49 nM, PCB-126 enhanced the cytotoxicity of TBT in the 24-98 nM range. In the absence of inducers of EROD activity, TBT significantly inhibited constitutive EROD activity in H4IIE cells in a concentration-dependent manner. EROD activity in H4IIE cells was significantly increased by exposure to PCB-126 alone. This effect was potentiated by coexposure to low, noncytotoxic concentrations of TBT. The induction of cytochrome P-4501A (CYP1A) activity in the presence of both an inducer (PCB-126) and low concentrations of an inhibitor (TBT) indicates that TBT does not interfere with the Ah receptor binding, but acts at the transcriptional level. Potentiation of EROD activity and cytotoxicity as a consequence of coexposure to PCB-126 and TBT is of considerable toxicological significance, given their coaccumulation in a variety of marine organisms.

  14. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  15. Recombinant interleukin-12 and interleukin-18 antitumor therapy in a guinea-pig hepatoma cell implant model.

    PubMed

    Shiratori, Ikuo; Suzuki, Yasuhiko; Oshiumi, Hiroyuki; Begum, Nasim A; Ebihara, Takashi; Matsumoto, Misako; Hazeki, Kaoru; Kodama, Ken; Kashiwazaki, Yasuo; Seya, Tsukasa

    2007-12-01

    Interleukin (IL)-12 and IL-18 are secreted by myeloid cells activated with adjuvants such as Bacillus Calmette-Guérin (BCG) cell wall. They induce T-helper 1 polarization in the host immune system and upregulate production of lymphocyte interferon-gamma, which leads to the induction of an antitumor gene program. It has been reported that humans have an immune system that more closely resembles that of the guinea pig in adjuvant-response features rather than the mouse system, which prevents the mouse results being extrapolated to human immunotherapy. Here we have constructed a tumor-implant system in guinea pigs to evaluate the antitumor potential of guinea pig IL-12 (gpIL-12) and guinea pig IL-18 (gpIL-18). Purified recombinant gpIL-12 and gpIL-18 were prepared and applied intraperitoneally to tumor-bearing (line 10 hepatoma) guinea pigs as the basis of the adjuvant immunotherapy. Intraperitoneal administration of gpIL-12 and gpIL-18 led to retardation of primary tumor growth and suppression of lymph-node metastasis in tumor-bearing guinea pigs. The permissible range of IL-12 appeared wider in guinea pigs than in mice. Even at an IL-12 dose higher than that in mice, there was no evidence of side-effects until day 26, when the guinea pigs were killed. gpIL-18 augmented the antitumor effect of gpIL-12 but exerted less ability to suppress lymph-node metastasis. The effects of gpIL-12 and gpIL-18 on the tumors implanted in guinea pigs will encourage us to use IL-12- and IL-18-inducible adjuvants for immunotherapy in human patients with solid cancer.

  16. Cytotoxicity of nitric oxide in Fu5 rat hepatoma cells: evidence for co-operative action with hydrogen peroxide.

    PubMed Central

    Ioannidis, I; de Groot, H

    1993-01-01

    The NO-releasing compounds 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1), sodium nitroprusside (SNP) and S-nitroso-N-acetyl-DL-penicillamine (SNAP) mediated a rapid loss of viability of Fu5 rat hepatoma cells. SIN-1 in addition to NO also released the superoxide anion radical (O2-.). Its cytotoxicity, however, was not affected by superoxide dismutase. In contrast, the H2O2-converting enzyme catalase significantly, but not completely, diminished cell damage, indicating participation of H2O2 in the tumoricidal activity of SIN-1. Glucose oxidase (5 m-units/ml), producing similar amounts of H2O2 to 5 mM SIN-1, had no effect on cell viability. When 5 m-units/ml glucose oxidase was added to incubations with 5 mM SNP, which alone initiated cell injury of about 40%, cell damage was significantly increased up to 95%. Similar results were observed with 1 mM SNAP and 20 m-units/ml xanthine oxidase, which mediated cytotoxicity of about 90% when both compounds were added together, compared with 35% and 55% cell injury, respectively, induced by the single compounds. The results indicate that a co-operative action with H2O2 enhances the tumoricidal activity of NO in Fu5 cells. No evidence for an interplay of NO with O2-. in cytotoxicity, e.g. via the peroxynitrite anion (ONOO-), was found. PMID:8257422

  17. Intrinsic anticarcinogenic effects of Piper sarmentosum ethanolic extract on a human hepatoma cell line

    PubMed Central

    Zainal Ariffin, Shahrul Hisham; Wan Omar, Wan Haifa Haryani; Zainal Ariffin, Zaidah; Safian, Muhd Fauzi; Senafi, Sahidan; Megat Abdul Wahab, Rohaya

    2009-01-01

    Background Piper sarmentosum, locally known as kaduk is belonging to the family of Piperaceae. It is our interest to evaluate their effect on human hepatoma cell line (HepG2) for the potential of anticarcinogenic activity. Results The anticarcinogenic activity of an ethanolic extract from Piper sarmentosum in HepG2 and non-malignant Chang's liver cell lines has been previously determined using (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) (MTT) assays, where the IC50 value was used as a parameter for cytotoxicity. The ethanolic extract that showed anticarcinogenic properties in HepG2 cells had an IC50 of 12.5 μg mL-1, while IC50 values in the non-malignant Chang's liver cell line were greater than 30 μg mL-1. Apoptotic morphological changes in HepG2 cells were observed using an inverted microscope and showed chromatin condensation, cell shrinkage and apoptotic bodies following May-Grunwald-Giemsa's staining. The percentage of apoptotic cells in the overall population (apoptotic index) showed a continuously significant increase (p < 0.05) in 12.5 μg mL-1 ethanolic extract-treated cells at 24, 48 and 72 hours compared to controls (untreated cells). Following acridine orange and ethidium bromide staining, treatment with 10, 12 and 14 μg mL-1 of ethanolic extracts caused typical apoptotic morphological changes in HepG2 cells. Molecular analysis of DNA fragmentation was used to examine intrinsic apoptosis induced by the ethanolic extracts. These results showed a typical intrinsic apoptotic characterisation, which included fragmentation of nuclear DNA in ethanolic extract-treated HepG2 cells. However, the non-malignant Chang's liver cell line produced no DNA fragmentation. In addition, the DNA genome was similarly intact for both the untreated non-malignant Chang's liver and HepG2 cell lines. Conclusion Therefore, our results suggest that the ethanolic extract from P. sarmentosum induced anticarcinogenic activity through an intrinsic apoptosis

  18. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells

    PubMed Central

    Espinoza, Ingrid; Sakiyama, Marcelo J.; Ma, Tangeng; Fair, Logan; Zhou, Xinchun; Hassan, Mohamed; Zabaleta, Jovanny; Gomez, Christian R.

    2016-01-01

    Hepatoma upregulated protein (HURP) is a multifunctional protein with clinical promise. This protein has been demonstrated to be a predictive marker for the outcome in high-risk prostate cancer (PCa) patients, besides being a resistance factor in PCa. Although changes in oxygen tension (pO2) are associated with PCa aggressiveness, the role of hypoxia in the regulation of tumor progression genes such as HURP has not yet been described. We hypothesized that pO2 alteration is involved in the regulation of HURP expression in PCa cells. In the present study, PCa cells were incubated at 2% O2 (hypoxia) and 20% O2 (normoxia) conditions. Hypoxia reduced cell growth rate of PCa cells, when compared to the growth rate of cells cultured under normoxia (p < 0.05). The decrease in cell viability was accompanied by fivefold (p < 0.05) elevated rate of vascular endothelial growth factor (VEGF) release. The expression of VEGF and the hypoxia-inducible metabolic enzyme carbonic anhydrase 9 were elevated maximally nearly 61-fold and 200-fold, respectively (p < 0.05). Noted in two cell lines (LNCaP and C4-2B) and independent of the oxygen levels, HURP expression assessed at both mRNA and protein levels was reduced. However, the decrease was more pronounced in cells cultured under hypoxia (p < 0.05). Interestingly, the analysis of patients’ specimens by Western blot revealed a marked increase of HURP protein (fivefold), when compared to control (cystoprostatectomy) tissue (p < 0.05). Immunohistochemistry analysis showed an increase in the immunostaining intensity of HURP and the hypoxia-sensitive molecules, hypoxia-inducible factor 1-alpha (HIF-1α), VEGF, and heat-shock protein 60 (HSP60) in association with tumor grade. The data also suggested a redistribution of subcellular localization for HURP and HIF-1α from the nucleus to the cytoplasmic compartment in relation to increasing tumor grade. Analysis of HURP Promoter for HIF-1-binding sites revealed presence

  19. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line.

    PubMed

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy

    2016-04-15

    Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2.

    PubMed

    Shetty, Aditya; Dasari, Subramanyam; Banerjee, Souresh; Gheewala, Taher; Zheng, Guoxing; Chen, Aoshuang; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar

    2016-11-01

    Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated. Here, we show that HDGF is overexpressed in both androgen-sensitive LNCaP cells and androgen-insensitive DU145, 22RV1, and PC-3 cells. Forced overexpression enhanced cell viability of RWPE-1 cells, whereas HDGF knockdown reduced cell proliferation in human prostate cancer cells. We also show that HDGF may serve as a survival-related protein as ectopic overexpression of HDGF in RWPE cells up-regulated the expression of antiapoptosis proteins cyclin E and BCL-2, whereas simultaneously down-regulating proapoptotic protein BAX. Western blot analysis also showed that HDGF overexpression modulated the activity of phospho-AKT as well as NF-kB, and these results correlated with in vitro migration and invasion assays. We next assessed the therapeutic potential of HDGF inhibition with a HDGF monoclonal antibody and vitamin k 2 , showing reduced cell proliferation as well as inhibition of NF-kB expression in HDGF overexpressed RWPE cells treated with a HDGF monoclonal antibody and vitamin K 2 . Collectively, our results suggest that HDGF is a relevant protein in prostate oncogenesis and may serve as a potential therapeutic target in prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Modifications in plasma membrane lipid composition and morphological features of AH-130 hepatoma cells by polyenylphosphatidylcholine in vivo treatment.

    PubMed

    Cinosi, Vincenzo; Antonini, Roberto; Crateri, Pasqualina; Arancia, Giuseppe

    2011-07-01

    The plasma membrane lipid composition in AH-130 hepatoma cells was found to change remarkably after polyenylphosphatidylcholine (PPC) treatment. Plasma membranes from cells grown in rats treated for 7 days i.v. with 20 mg/kg/day PPC, when compared to those of control cells, did not show significantly different amounts of cholesterol or phospholipids relative to protein content, but, surprisingly, the individual phospholipid distribution inside the two membrane leaflets changed dramatically. Phosphatidylcholine (PC), the major phospholipid in the external membrane leaflet, increased ~47% (p<0.001). By contrast, phosphatidylethanolamine (PE), the most important component of the inner leaflet, decreased nearly 37% (p<0.001), while sphingomyelin (SM) also decreased ~17%, (p=0.1). Tumor cells collected from control rats at the same time interval and observed by scanning electron microscopy, exhibited a spherical shape with numerous and randomly distributed long microvilli, the same morphological and ultrastructural features displayed by the implanted cells. Conversely, tumor cells from PPC-treated rats no longer showed the roundish cell profile, and microvilli appeared shortened and enlarged, with the formation of surface blebs. Transmission electron microscopy observations confirmed the morphological and ultrastructural cell changes, mainly seen as loss of microvilli and intense cytoplasmic vacuolization. Taken together, these results indicate that the new phospholipid class distribution in the plasma membrane leaflets, modifying tumor cell viable structures, produced heavy cell damage and in many cases brought about complete cellular disintegration.

  2. Increased PRPP synthetase activity in cultured rat hepatoma cells containing mutations in the hypoxanthine-guanine phosphoribosyltransferase gene.

    PubMed

    Graf, L H; McRoberts, J A; Harrison, T M; Martin, D W

    1976-07-01

    Nine independently derived clones of mutagenized rat hepatoma cells selected for resistance to 6-mercaptopurine (6-MP) or 6-thioguanine (6-ThioG) have been isolated. Each has severely reduced catalytic activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and seven of them possess significantly increased activities of phosphoribosylpyrophosphate (PRPP) synthetase. The degrees of elevations of PRPP synthetase activities do not correlate with the degrees of deficiencies of HPRT activities. The cells from one of these clones, 1020/12, posses 40% of the normal HPRT catalytic activity and overproduce purines. We have extensively examined the cells from this clone. Immunotration studies of 1020/12 cells indicate that there is a mutation in the structural gene for HPRT. Although they possess increased specific catalytic activities of the enzyme. PRPP synthetase, the catalytic parameters, heat stability, and isoelectric pH of PRPP synthetase from 1020/12 cells are indistinguishable from those of the enzyme from wild-type cells. The cause of purine overproduction by 1020/12 cells appears to be the elevated PRPP synthetase activity, rather than a PRPP "sparing" effect stemming from reduced HPRT activity. Support for this idea is provided by the observation that the complete loss of HPRT activity in a clone derived from 1020/12 cells does not further enhance the levels of PRPP synthetase or purine overproduction. We propose that the elevated levels of PRPP synthetase activity in these HPRT deficient cells result from a mutational event in the structural gene for HPRT, and that this causes the disruption of a previously undescribed regulatory function of this gene on the expression of the PRPP synthetase gene.

  3. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells.

    PubMed

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I

    2018-02-21

    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  4. Acetyl-CoA carboxylase in Reuber hepatoma cells: variation in enzyme activity, insulin regulation, and cellular lipid content.

    PubMed

    Bianchi, A; Evans, J L; Nordlund, A C; Watts, T D; Witters, L A

    1992-01-01

    Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.

  5. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H.-J.; Wang, C.-J.; Kuo, H.-C.

    2005-03-01

    Since hepatocellular carcinoma remains a major challenging clinical problem in many parts of the world including Eastern Asia and Southern Africa, it is imperative to develop more effective chemopreventive and chemotherapy agents. Herein, we present an investigation regarding the anticancer potential of luteolin, a natural flavonoid, and the mechanism of its action in human hepatoma HepG2 cells. Using DNA fragmentation assay and nuclear staining assay, it showed that luteolin induced apoptosis of HepG2 cells. Luteolin induced the cytosolic release of cytochrome c and activated CPP32. We found that Bax and Bak translocated to mitochondria apparently, whereas Fas ligand (FasL) wasmore » unchanged after a treatment with luteolin for 3 h. In addition, it showed that c-Jun NH{sub 2}-terminal kinase (JNK) was activated after the treatment of luteolin for 3-12 h. Further investigation showed that a specific JNK inhibitor, SP600125, reduced the activation of CPP 32, the mitochondrial translocation of Bax, as well as the cytosolic release of cytochrome c that induced by luteolin. Finally, the apoptosis induced by luteolin was suppressed by a pretreatment with SP600125 via evaluating annexin V-FITC binding assay. These data suggest that luteolin induced apoptosis via mechanisms involving mitochondria translocation of Bax/Bak and activation of JNK.« less

  6. Thyroid hormone enhanced human hepatoma cell motility involves brain-specific serine protease 4 activation via ERK signaling

    PubMed Central

    2014-01-01

    Background The thyroid hormone, 3, 3′, 5-triiodo-L-thyronine (T3), has been shown to modulate cellular processes via interactions with thyroid hormone receptors (TRs), but the secretory proteins that are regulated to exert these effects remain to be characterized. Brain-specific serine protease 4 (BSSP4), a member of the human serine protease family, participates in extracellular matrix remodeling. However, the physiological role and underlying mechanism of T3-mediated regulation of BSSP4 in hepatocellular carcinogenesis are yet to be established. Methods The thyroid hormone response element was identified by reporter and chromatin immunoprecipitation assays. The cell motility was analyzed via transwell and SCID mice. The BSSP4 expression in clinical specimens was examined by Western blot and quantitative reverse transcription polymerase chain reaction. Results Upregulation of BSSP4 at mRNA and protein levels after T3 stimulation is a time- and dose-dependent manner in hepatoma cell lines. Additionally, the regulatory region of the BSSP4 promoter stimulated by T3 was identified at positions -609/-594. BSSP4 overexpression enhanced tumor cell migration and invasion, both in vitro and in vivo. Subsequently, BSSP4-induced migration occurs through the ERK 1/2-C/EBPβ-VEGF cascade, similar to that observed in HepG2-TRα1 and J7-TRα1 cells. BSSP4 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively associated with TRα1 and VEGF to a significant extent. Importantly, a mild association between BSSP4 expression and distant metastasis was observed. Conclusions Our findings collectively support a potential role of T3 in cancer cell progression through regulation of the BSSP4 protease via the ERK 1/2-C/EBPβ-VEGF cascade. BSSP4 may thus be effectively utilized as a novel marker and anti-cancer therapeutic target in HCC. PMID:24980078

  7. Thyroid hormone enhanced human hepatoma cell motility involves brain-specific serine protease 4 activation via ERK signaling.

    PubMed

    Chen, Cheng-Yi; Chung, I-Hsiao; Tsai, Ming-Ming; Tseng, Yi-Hsin; Chi, Hsiang-Cheng; Tsai, Chung-Ying; Lin, Yang-Hsiang; Wang, You-Ching; Chen, Chie-Pein; Wu, Tzu-I; Yeh, Chau-Ting; Tai, Dar-In; Lin, Kwang-Huei

    2014-07-01

    The thyroid hormone, 3, 3', 5-triiodo-L-thyronine (T3), has been shown to modulate cellular processes via interactions with thyroid hormone receptors (TRs), but the secretory proteins that are regulated to exert these effects remain to be characterized. Brain-specific serine protease 4 (BSSP4), a member of the human serine protease family, participates in extracellular matrix remodeling. However, the physiological role and underlying mechanism of T3-mediated regulation of BSSP4 in hepatocellular carcinogenesis are yet to be established. The thyroid hormone response element was identified by reporter and chromatin immunoprecipitation assays. The cell motility was analyzed via transwell and SCID mice. The BSSP4 expression in clinical specimens was examined by Western blot and quantitative reverse transcription polymerase chain reaction. Upregulation of BSSP4 at mRNA and protein levels after T3 stimulation is a time- and dose-dependent manner in hepatoma cell lines. Additionally, the regulatory region of the BSSP4 promoter stimulated by T3 was identified at positions -609/-594. BSSP4 overexpression enhanced tumor cell migration and invasion, both in vitro and in vivo. Subsequently, BSSP4-induced migration occurs through the ERK 1/2-C/EBPβ-VEGF cascade, similar to that observed in HepG2-TRα1 and J7-TRα1 cells. BSSP4 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively associated with TRα1 and VEGF to a significant extent. Importantly, a mild association between BSSP4 expression and distant metastasis was observed. Our findings collectively support a potential role of T3 in cancer cell progression through regulation of the BSSP4 protease via the ERK 1/2-C/EBPβ-VEGF cascade. BSSP4 may thus be effectively utilized as a novel marker and anti-cancer therapeutic target in HCC.

  8. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers includingmore » HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.« less

  9. [Transformation of attached cells derived from fetal umbilical cord blood induced by conditional medium of hepatoma cells].

    PubMed

    Zhang, Xiao-Dong; Cai, Na; Wang, Hong-Hui; Guo, Shi-Yi; Ye, Li-Hong

    2006-01-01

    Stem cells derived from fetal umbilical cord blood are of undifferentiated at early stage. They are sensitive to stimulations from the environment, and may be transformed under the effects of carcinogenic factors. This study was to explore the sensitivity of stem cells derived from fetal umbilical cord blood to carcinogenic factors. Mononuclear cells were isolated from fetal umbilical cord blood, and the attached cells were cultured in the medium containing 10% conditional medium of HepG2 hepatoma cells. A new cell line was gained, termed H-UCB. The biological features of H-UCB cells were detected by electron microscopy, karyotype analysis, cell cytometry, Western blot, and colony formation assay. H-UCB cells proliferated faster after passage 3. The cells were fibroblast-like and hepatocyte-like, with the ratio of nucleus to cytoplasm increased. Under electron microscope, many microvilli on the surface and numbers of vacuoles in the cytoplasm of the cells were observed, the nuclei were large and irregular, endocytosis phenomena were noticed. Karyotype analysis indicated that the cells were heteroploid, and the number of chromosomes was between 50 and 70. Flow cytometry data indicated that the proliferation period was 22.9 h, and the karyotype was between diploid and tetraploid. Western blot showed that c-Myc protein and proliferating cell nuclear antigen (PCNA) were overexpressed in H-UCB cells. According to flow cytometry, the positive rates of surface markers of H-UCB cells were 79.0% for CD105, 1.2% for CD34, and 12.2% for CD106; those of control HepG2 cells were 15.0% for CO105, 9.8% for CD34, and 1.4% for CD106. The colony formation rate of H-UCB cells in soft agar was (13.2+/-2.6)%. H-UCB cells are derived from endothelial cells, and are transformed as malignant cells with tumor cell characteristics.

  10. Zinc Mesoporphyrin Induces Rapid Proteasomal Degradation of Hepatitis C Nonstructural 5A Protein in Human Hepatoma Cells

    PubMed Central

    Hou, Weihong; Tian, Qing; Zheng, Jianyu; Bonkovsky, Herbert L.

    2009-01-01

    Background & Aims The nonstructural 5A (NS5A) protein of hepatitis C virus (HCV), plays a critical role in HCV replication and is an attractive target for the therapy of HCV infection. So far, little is known about the post-translational regulation of NS5A protein and its precise role in HCV RNA replication. Our objectives were to elucidate the down-regulation of NS5A protein and HCV RNA replication by zinc mesoporphyrin (ZnMP), and the mechanism by which this process occurs. Methods Human hepatoma cells expressing HCV proteins were used to investigate the post-translational regulation of ZnMP on NS5A protein by Western blots (WB) and immunoprecipitation (IP). Quantitative RT-PCR (qRT-PCR) was used to determine the effects of ZnMP on HCV RNA replication. Results ZnMP selectively and markedly down-regulated NS5A protein levels by increasing degradation of NS5A protein [half life fell from 18.7 h to 2.7 h]. The proteasome inhibitors, epoxomicin and MG132, significantly abrogated degradation of NS5A protein by ZnMP without affecting levels of NS5A in the absence of ZnMP. Analysis of immunoprecipitates with an anti-ubiquitin antibody revealed polyubiquitination of NS5A, suggesting that ZnMP induces ubiquitination of NS5A protein. In addition, 10 μM of ZnMP reduced HCV replication by ~63% in the Con1 replicon cells, ~70% in J6/JFH1 HCV transfected cells, and ~90% in J6/JFH1 HCV infected cells without affecting cell viability. Conclusions ZnMP produces a rapid and profound down-regulation of the NS5A protein by enhancing its polyubiquitination and proteasome-dependent catabolism. Zinc mesoporphyrin may hold promise as a novel agent to treat HCV infection. PMID:19909748

  11. Lipopolysaccharide stimulates HepG2 human hepatoma cells in the presence of lipopolysaccharide-binding protein via CD14.

    PubMed

    Nanbo, A; Nishimura, H; Muta, T; Nagasawa, S

    1999-02-01

    Lipopolysaccharide (LPS)-binding protein (LBP), an opsonin for activation of macrophages by bacterial LPS, is synthesized in hepatocytes and is known to be an acute phase protein. Recently, cytokine-induced production of LBP was reported to increase 10-fold in hepatocytes isolated from LPS-treated rats, compared with those from normal rats. However, the mechanism by which the LPS treatment enhances the effect of cytokines remains to be clarified. In the present study, we examined whether LPS alone or an LPS/LBP complex directly stimulates the hepatocytes, leading to acceleration of the cytokine-induced LBP production. HepG2 cells (a human hepatoma cell line) were shown to express CD14, a glycosylphosphatidylinositol-anchored LPS receptor, by both RT/PCR and flow cytometric analyses. An LPS/LBP complex was an effective stimulator for LBP and CD14 production in HepG2 cells, but stimulation of the cells with either LPS or LBP alone did not significantly accelerate the production of these proteins. The findings were confirmed by semiquantitative RT/PCR analysis of mRNA levels of LBP and CD14 in HepG2 cells after stimulation with LPS alone and an LPS/LBP complex. In addition, two monoclonal antibodies (mAbs) to CD14 (3C10 and MEM-18) inhibited LPS/LBP-induced cellular responses of HepG2 cells. Furthermore, prestimulation of HepG2 cells with LPS/LBP augmented cytokine-induced production and gene expression of LBP and CD14. All these findings suggest that an LPS/LBP complex, but not free LPS, stimulates HepG2 cells via CD14 leading to increased basal and cytokine-induced LBP and CD14 production.

  12. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response.

    PubMed

    Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen

    2018-03-01

    Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.

  13. Modulation of the DNA repair system and ATR-p53 mediated apoptosis is relevant for tributyltin-induced genotoxic effects in human hepatoma G2 cells.

    PubMed

    Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong

    2015-01-01

    The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.

  14. An Effect of Dexamethasone on Adenosine 3′,5′ -Monophosphate Content and Adenosine 3′,5′ -Monophosphate Phosphodiesterase Activity of Cultured Hepatoma Cells

    PubMed Central

    Manganiello, Vincent; Vaughan, Martha

    1972-01-01

    The effect of dexamethasone on adenosine 3′,5′-monophosphate (cAMP) phosphodiesterase activity in cultured HTC hepatoma cells was investigated. Homogenates of these cells contain phosphodiesterase activity with two apparent Michaelis constants for cAMP (2-5 μm and 50 μm). At all substrate concentrations tested, phosphodiesterase activity was decreased 25-40% in cells incubated for 36 hr or more with 1 μm dexamethasone. Acid phosphatase activity in the same cells was not decreased. α-Methyl testosterone, 1 μm, was without effect on phosphodiesterase activity. Incubation for 10 min with epinephrine plus theophylline increased the cAMP content of the HTC cells 3- to 6-fold. In cells incubated for 72 hr with dexamethasone, the basal concentration of cAMP was slightly increased and the increment produced by epinephrine plus theophylline was markedly increased. We believe that in many cells the so-called permissive effects of steroid hormones on cAMP mediated processes may be due to an effect of these hormones on cAMP phosphodiesterase activity similar to that observed in HTC cells incubated with dexamethasone. PMID:4341439

  15. Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism.

    PubMed

    Korashy, Hesham M; Maayah, Zaid H; Abd-Allah, Adel R; El-Kadi, Ayman O S; Alhaider, Abdulqader A

    2012-01-01

    Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  16. Isatis indigotica induces hepatocellular cancer cell death via caspase-independent apoptosis-inducing factor translocation apoptotic pathway in vitro and in vivo.

    PubMed

    Chung, Ying-Cheng; Tang, Feng-Yao; Liao, Jiunn-Wang; Chung, Chia-Hua; Jong, Ting-Ting; Chen, Shih-Shiung; Tsai, Ching-Hsiu; Chiang, En-Pei

    2011-06-01

    Isatis indigotica is a biennial herbaceous cruciferous medical herb with antipyretic, antiviral, anti-inflammatory, and anti-endotoxin activity. This study explored the chemotherapeutic potential of I indigotica on human hepatoma cells and investigated the mechanism by which metabolites from I indigotica inhibit hepatoma cell growth. Antitumor activity was discovered in dried I indigotica leaf chloroform extracts (CEDLI). In nude mice xenotransplanted with human hepatoma cells, CEDLI supplementation inhibited tumor growth by ~40% compared with nonsupplemented animals without affecting body weight/food intake. CEDLI induced sub-G1 cell cycle arrest and apoptosis in hepatoma cells. Furthermore, CEDLI activates p53 and Bax, reduces Bcl-2 expression, and causes mitochondrial stress and the release of apoptosis-inducing factor into the cytosol followed by its translocation into the nucleus, resulting in hepatoma cell apoptosis. This study provides novel in vivo evidence of I indigotica's antitumor activity. The chemotherapeutic activity against human hepatoma tumorigenesis was because of a distinguished caspase-independent apoptotic pathway.

  17. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5.

    PubMed

    Hossain, Zakir; Sugawara, Tatsuya; Hirata, Takashi

    2013-03-01

    Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.

  18. Apolipoproteins A-I, A-II and E are independently distributed among intracellular and newly secreted HDL of human hepatoma cells

    PubMed Central

    Gillard, Baiba K.; Lin, Hu-Yu Alice; Massey, John B.; Pownall, Henry J.

    2009-01-01

    Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport. PMID:19635584

  19. [Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells].

    PubMed

    Li, Shuai; Guo, Lianyi

    2018-01-01

    Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.

  20. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells

    PubMed Central

    Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J.; Cheng, Jianfeng; Mirshahi, Faridoddin

    2014-01-01

    PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. PMID:24763554

  1. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells.

    PubMed

    Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J; Cheng, Jianfeng; Mirshahi, Faridoddin; Sanyal, Arun J

    2014-07-01

    PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. Copyright © 2014 the American Physiological Society.

  2. Vinclozolin, a widely used fungizide, enhanced BaP-induced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression.

    PubMed

    Wu, Xin-Jiang; Lu, Wen-qing; Roos, Peter H; Mersch-Sundermann, Volker

    2005-10-15

    Vinclozolin, a widely used fungicide, can be identified as a residue in numerous vegetable and fruit samples. To get insight in its genetic toxicity, we investigated the genotoxic effect of vinclozolin in the human derived hepatoma cell line HepG2 using the micronucleus (MN) assay. Additionally, to evaluate the co- or anti-mutagenic potency of vinclozolin, we treated HepG2 cells with different concentrations of vinclozolin for 24 h. Subsequently, the cells were exposed to benzo[a]pyrene (BaP) for 1h. Exposure of HepG2 cells to 50-400 microM vinclozolin alone did not cause any induction of micronuclei. However, a pronounced co-mutagenic effect was observed. MN frequencies caused by BaP increased by 30.6%, 52.8% and 65.3% after pretreatment of the cell cultures with 50, 100 and 200 microM vinclozolin, respectively. The highest concentration (400 microM) of vinclozolin tested caused cytotoxicity. Therefore, micronuclei were not considered for that concentration. To clarify the mechanism of cogenotoxicity, we assayed cytochrome P450 1A1 (CYP1A1), which plays a pivotal role in activation of BaP. Cells exposed to vinclozolin led to significant increase of CYP1A1 expression in Western blot. The result suggested that induction of CYP1A1 by vinclozolin account for its enhancing effect on genotoxicity caused by BaP.

  3. Anti-tumor effect of in vivo IL-2 and GM-CSF electrogene therapy in murine hepatoma model.

    PubMed

    Chi, Chau-Hwa; Wang, Yu-Shan; Lai, Yen-Shuae; Chi, Kwan-Hwa

    2003-01-01

    We evaluated the effect of in vivo electrogene therapy (EGT), a newly-developed gene transfer method using electroporation on the induction of anti-cancer immunity. The in vivo EGT was carried out by direct injection of plasmid DNAs encoding mouse interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in a subcutaneous murine hepatoma model of 1MEA.7R.1 cells. Six electric pulses were generated in situ from a square-wave electroporator fitted with a circular, six-needle electrode array. 1MEA.7R1 cells in vitro were modified to secret IL-2 (1MEA.7R.1/IL-2 cells). The 1MEA.7R.1/IL-2 cells had a similar cell doubling-time as their parent cells but showed a much slower growth rate on Balb/C mice. One, or 3 rounds of single gene EGT with IL-2 gene showed a dose-responsive effect of growth retardation. Co-administration of 3 rounds of IL-2/GM-CSF double genes EGT had a stronger growth inhibition effect than 3 rounds of IL-2 single gene EGT. Three rounds of IL-2/GM-CSF EGT rendered the tumor to a growth rate of stably transfected 1MEA.7R.1/IL-2 cells. Seven rounds of IL-2/GM-CSF EGT markedly inhibited the tumor growth. Reverse transciptase-polymerase chain reaction confirmed the expression of IL-2, GM-CSF and interferon-gamma within treated tumors. Systemic inhibitory effects can be demonstrated from tumor-re-challenged experiments on mice which received 3 rounds of double-gene EGT. The T cell proliferation assay revealed an increased T cell proliferation in double-gene EGT-treated mice. This experiment showed that partial systemic immunity can be provoked by IL-2/GM-CSF double-gene EGT. These findings suggest that our immuno-gene therapy protocol has the potential for future clinical applications.

  4. Establishment of a rat hepatoma-derived cell line proliferating in D-phenylalanine medium and expressing D-amino-acid oxidase.

    PubMed

    Yoda, N; Konno, R; Nagashima, S

    2001-01-01

    A cell line (R-Y121B.DF) has been established from a cell line (R-Y121B) derived from a rat hepatoma line (H4-II-E). The R-Y121B.DF cells have been continuously cultured in a serum-free modified Eagle's minimum essential medium in which L-phenylalanine was replaced by D-phenylalanine. They had D-amino-acid oxidase (DAO) activity which is essential for the growth in the medium containing D-amino acids. The enzyme activity of the R-Y121B.DF cells was approximately one-fourth of that of the rat liver. Northern hybridization using a DAO cDNA probe detected a hybridizing signal in the R-Y121B.DF cells and the rat liver but not in the parental R-Y121B and H4-II-E cells. Reverse transcription-polymerase chain reaction using DAO-specific primers amplified a DNA fragment of the expected size in the R-Y121B.DF cells but not in the R-Y121B and H4-II-E cells. This fragment was confirmed to be DAO cDNA by nucleotide sequencing. Western blotting showed that DAO protein was present in the R-Y121B.DF cells and the rat liver but not in the R-Y121B and H4-II-E cells. Southern hybridization showed that the DAO gene structure was not different among the R-Y121B.DF cells, R-Y121B cells, H4-II-E cells, and the rat liver. These results indicate that the R-Y121B.DF is a unique cell line which proliferates in the medium containing D-phenylalanine and explicitly expresses DAO. This line is useful for the study of DAO in vitro.

  5. Chemopreventive effect of 18β-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2).

    PubMed

    Hasan, Syed Kazim; Siddiqi, Aisha; Nafees, Sana; Ali, Nemat; Rashid, Summya; Ali, Rashid; Shahid, Ayaz; Sultana, Sarwat

    2016-05-01

    Hepatocellular carcinoma is one of the most common lethal diseases worldwide and there is no effective treatment till date. Natural products derived from the plants play an important role in chemoprevention and act as therapeutic antitumor agents. Licorice is a plant that has been used in food and medicine for the treatment of various diseases. 18β-Glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid obtained from the roots of licorice plant, is reported to possess various pharmacological properties such as antitumor and antiinflammatory activities. The present study was designed to elucidate the chemopreventive effect of 18β-GA through antiinflammation, antiproliferation, and induction of apoptosis in human hepatoma cell line HepG2. 18β-GA significantly inhibits the proliferation of HepG2 cell without affecting the normal liver cell line (Chang's). In the present study, 18β-GA increased the formation of reactive oxygen species, nitric oxide production, and loss of mitochondrial membrane potential, suggesting the involvement of 18β-GA in apoptosis which was also confirmed by assessing the markers involved in apoptosis like caspase-3, caspase-9, Bax:Bcl-2 ratio, and cleaved PARP. 18β-GA also downregulated the expression of inflammatory proteins such as NF-κB, iNOS, and COX-2. Keeping these data into consideration, our results suggest that 18β-GA may be used as a chemopreventive agent in liver cancer.

  6. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells.

    PubMed

    Miccadei, Stefania; Di Venere, Donato; Cardinali, Angela; Romano, Ferdinando; Durazzo, Alessandra; Foddai, Maria Stella; Fraioli, Rocco; Mobarhan, Sohrab; Maiani, Giuseppe

    2008-01-01

    Cultured rat hepatocytes and human hepatoma HepG2 cells were used to evaluate the hepatoprotective properties of polyphenolic extracts from the edible part of artichoke (AE). The hepatocytes were exposed to H2O2generated in situ by glucose oxidase and were treated with either AE, or pure chlorogenic acid (ChA) or with the well known antioxidant, N, N'-diphenyl-p-phenilenediamine (DPPD). Addition of glucose oxidase to the culture medium caused depletion of intracellular glutathione (GSH) content, accumulation of malondialdehyde (MDA) in the cultures, as a lipid peroxidation indicator, and cell death. These results demonstrated that AE protected cells from the oxidative stress caused by glucose oxidase, comparable to DPPD. Furthermore, AE, as well as ChA, prevented the loss of total GSH and the accumulation of MDA. Treatment of HepG2 cells for 24 h with AE reduced cell viability in a dose-dependent manner, however, ChA had no prominent effects on the cell death rate. Similarly, AE rather than ChA induced apoptosis, measured by flow cytometric analysis of annexin and by activation of caspase-3, in HepG2 cells. Our findings indicate that AE had a marked antioxidative potential that protects hepatocytes from an oxidative stress. Furthermore, AE reduced cell viability and had an apoptotic activity on a human liver cancer cell line.

  7. [Knockdown of STAT3 inhibits proliferation and migration of HepG2 hepatoma cells induced by IFN1].

    PubMed

    Li, Xiaofang; Wang, Yuqi; Yan, Ben; Fang, Peipei; Ma, Chao; Xu, Ning; Fu, Xiaoyan; Liang, Shujuan

    2018-02-01

    Objective To prepare lentiviruses expressing shRNA sequences targeting human signal transducer and activator of transcription 3 (STAT3) and detect the effect of STAT3 knockdown on type I interferon (IFN1)-induced proliferation and migration in HepG2 cells. Methods Four STAT3-targeting shRNA sequences (shRNA1-shRNA4) and one control sequence (Ctrl shRNA) were selected and cloned respectively into pLKO.1-sp6-pgk-GFP to construct shRNA-expressing vectors. Along with backbone psPAX2 and pMD2.G vectors, they were separately transfected into HEK293T cells to prepare lentiviruses. HepG2 cells were infected with the lentiviruses. Cytoplastic STAT3 level was detected by Western blotting to screen effective shRNA sequence(s) targeting STAT3. Proliferation and migration of HepG2 cells were analyzed by CCK-8 assay and Transwell TM migration and scratching assay, respectively. To detect the effect of IFN1 on cell proliferation and migration of HepG2 cells, the cells were treated with 2000 U/mL IFNα2b for indicated time and the activation of IFN-triggered STAT1 signal transduction was assayed by Western blotting. Results Two most effective STAT3-targeting shRNA sequences shRNA1 and shRNA2 were selected, and the expression of both STAT3 shRNA significantly decreased proliferation and migration of HepG2 cells. When treated with IFNα2b, 2000 U/mL of IFN1 showed more competent in attenuating growth and migration of HepG2 cells. Our data further proved that knockdown of STAT3 increased the phosphorylation of STAT1, and IFNα2b further enhanced the activation of STAT1 signaling in HepG2 cells. Conclusion Knockdown of STAT3 inhibits cell migration and growth, and rescues IFN response through up-regulating STAT1 signal transduction in HepG2 hepatoma cells.

  8. Suppression of Cytochrome P450 Reductase (POR) Expression in Hepatoma Cells Replicates the Hepatic Lipidosis Observed in Hepatic POR-Null Mice

    PubMed Central

    Banerjee, Subhashis; Stolarczyk, Elzbieta I.; Zou, Ling

    2011-01-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis. PMID:21368239

  9. Suppression of cytochrome P450 reductase (POR) expression in hepatoma cells replicates the hepatic lipidosis observed in hepatic POR-null mice.

    PubMed

    Porter, Todd D; Banerjee, Subhashis; Stolarczyk, Elzbieta I; Zou, Ling

    2011-06-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis.

  10. A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Huang, Junxing; Jiang, Xingmao; Zhang, Jia; Yu, Hong; Ye, Jun; Zhang, Dongsheng

    2016-09-01

    Combination targeted therapy is a promising cancer therapeutic strategy. Here, using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as magnetic media for MFH (magnetic fluid hyperthermia) and gene transfer vector for gene-therapy, a combined therapy, pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH, for hepatoma is developed. AntiAFPMcAb (Monoclonal antibody AFP) is exploited for targeting. The plasmids pHRE-Egr1-HSV-TK are achieved by incorporation of pEgr1-HSV-TK and pHRE-Egr1-EGFP. Restriction enzyme digestion and PCR confirm the recombinant plasmids pHRE-Egr1-HSV-TK are successfully constructed. After exposure to the magnetic field, PEI-MZF-NPs/pHRE-Egr1-EGFP fluid is warmed rapidly and then the temperature is maintained at 43 °C or so, which is quite appropriate for cancer treatment. The gene expression reaches the peak when treated with 200 μCi 131I for 24 hours, indicating that the dose of 200 μCi might be the optimal dose for irradiation and 24 h irradiation later is the best time to initiate MFH. The in vitro and in vivo experiments demonstrate that pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH can greatly suppress hepatic tumor cell proliferation and induce cell apoptosis and necrosis and effectively inhibit the tumor growth, much better than any monotherapy does alone. Furthermore, the combination therapy has few or no adverse effects. It might be applicable as a strategy to treat hepatic cancer.

  11. Tumor Response and Apoptosis of N1-S1 Rodent Hepatomas in Response to Intra-arterial and Intravenous Benzamide Riboside

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLennan, Gordon, E-mail: gmclenna@me.com; Bennett, Stacy L.; Ju, Shenghong

    2012-06-15

    Purpose: Benzamide riboside (BR) induces tumor apoptosis in multiple cell lines and animals. This pilot study compares apoptosis and tumor response in rat hepatomas treated with hepatic arterial BR (IA) or intravenous (IV) BR. Methods: A total of 10{sup 6} N1-S1 cells were placed in the left hepatic lobes of 15 Sprague-Dawley rats. After 2 weeks, BR (20 mg/kg) was infused IA (n = 5) or IV (n = 5). One animal in each group was excluded for technical factors, which prevented a full dose administration (1 IA and 1 IV). Five rats received saline (3 IA and 2 IV).more » Animals were killed after 3 weeks. Tumor volumes after IA and IV treatments were analyzed by Wilcoxon rank sum test. The percentage of tumor and normal liver apoptosis was counted by using 10 fields of TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling)-stained slides at 40 Multiplication-Sign magnification. The percentage of apoptosis was compared between IV and IA administrations and with saline sham-treated rats by the Wilcoxon rank sum test. Results: Tumors were smaller after IA treatment, but this did not reach statistical significance (0.14 IA vs. 0.57 IV; P = 0.138). There was much variability in percentage of apoptosis and no significant difference between IA and IV BR (44.49 vs. 1.52%; P = 0.18); IA BR and saline (44.49 vs. 33.83%; P = 0.66); or IV BR and saline (1.52 vs. 193%; P = 0.18). Conclusions: Although differences in tumor volumes did not reach statistical significance, there was a trend toward smaller tumors after IA BR than IV BR in this small pilot study. Comparisons of these treatment methods will require a larger sample size and repeat experimentation.« less

  12. Human Papillomavirus Type 18 E6 and E7 Genes Integrate into Human Hepatoma Derived Cell Line Hep G2

    PubMed Central

    Ma, Tianzhong; Su, Zhongjing; Chen, Ling; Liu, Shuyan; Zhu, Ningxia; Wen, Lifeng; Yuan, Yan; Lv, Leili; Chen, Xiancai; Huang, Jianmin; Chen, Haibin

    2012-01-01

    Background and Objectives Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. Methods We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Results Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Conclusion Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study. PMID:22655088

  13. A dimeric urea of the bisabolene sesquiterpene from the Okinawan marine sponge Axinyssa sp. inhibits protein tyrosine phosphatase 1B activity in Huh-7 human hepatoma cells.

    PubMed

    Abdjul, Delfly B; Kanno, Syu-Ichi; Yamazaki, Hiroyuki; Ukai, Kazuyo; Namikoshi, Michio

    2016-01-15

    Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator of the insulin and leptin signaling pathways. Therefore, this enzyme is regarded as an attractive therapeutic target for the treatment of type 2 diabetes and obesity. Our screening program for PTP1B inhibitors led to the isolation of four sesquiterpenes and sterol: N,N'-bis[(6R,7S)-7-amino-7,8-dihydro-α-bisabolen-7-yl]urea (1), (6R,7S)-7-amino-7,8-dihydro-α-bisabolene (2), (1R,6S,7S,10S)-10-isothiocyanato-4-amorphene (3), axinisothiocyanate J (4), and axinysterol (5) from the marine sponge Axinyssa sp. collected at Iriomote Island. Of these, compound 1 was the most potent inhibitor of PTP1B activity (IC50=1.9μM) without cytotoxicity at 50μM in two human cancer cell lines, hepatoma Huh-7 and bladder carcinoma EJ-1 cells. Compound 1 also moderately enhanced the insulin-stimulated phosphorylation levels of Akt in Huh-7 cells. Therefore, compound 1 has potential as a new type of anti-diabetic drug candidate possessing PTP1B inhibitory activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Hong Shik; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791; Baek, Jeong-Hwa

    2014-07-11

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates themore » radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.« less

  15. Aryl hydrocarbon receptor-mediated toxic potency of dissolved lipophilic organic contaminants collected from Lincoln Creek, Milwaukee, Wisconsin, USA, to PLHC-1 (Poeciliopsis lucida) fish hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villeneuve, D.L.; Crunkilton, R.L.; DeVita, W.M.

    1997-05-01

    Lincoln Creek is a severely degraded urban stream located in Milwaukee County, Wisconsin, USA. As part of a comprehensive study on effects of urban storm water runoff on the stream biota, an in vitro bioassay with PLHC-1 (Poeciliopsis lucida) fish hepatoma cells was used to assess potential toxic potency of aryl hydrocarbon receptor (AhR)-active compounds, collected by semipermeable membrane devices (SPMDs) exposed to Lincoln Creek water. Dialysates from SPMDs exposed to Lincoln Creek water caused marked cytochrome P4501A induction in PLHC-1. Toxic potency of dialysates, expressed as bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) ranged from 1,300 to 6,600 pg TCDD-EQ/g SPMD formore » 14-d exposures. Dialysates from SPMDs exposed to stream water at base flow had potencies consistently lower than those exposed to storm-flow (high-flow) events that occurred during the same 14-d period. Polychlorinated biphenyls were not detectable in the dialysates. Gas chromatography-mass spectrometry analysis identified polycyclic aromatic hydrocarbons (PAHs) as major contaminants in the dialysates. A log-log correlation of total PAHs and TCDD-EQ yielded an r{sup 2} of 0.802. Empirical evidence suggests that AhR-active PAHs can account for about 20 to 50% of the potency observed.« less

  16. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2.

    PubMed

    Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana

    2016-03-05

    Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yijun; Lu, Hongjuan; Wang, Dongxu

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. Amore » high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does

  18. Saponins isolated from Asparagus induce apoptosis in human hepatoma cell line HepG2 through a mitochondrial-mediated pathway

    PubMed Central

    Ji, Y.; Ji, C.; Yue, L.; Xu, H.

    2012-01-01

    Objective Many scientific studies have shown that Asparagus officinalis has an antitumour effect and enhances human immunity, but the active components and the antitumour mechanisms are unclear. We investigated the effects of saponins isolated from Asparagus on proliferation and apoptosis in the human hepatoma cell line HepG2. Methods HepG2 cells were treated with varying concentrations of Asparagus saponins at various times. Using mtt and flow cytometry assays, we evaluated the effects of Asparagus saponins on the growth and apoptosis of HepG2 cells. Transmission electron microscopy was used to observe the morphology of cell apoptosis. Confocal laser scanning microscopy was used to analyze intracellular calcium ion concentration, mitochondrial permeability transition pore (mptp), and mitochondrial membrane potential (mmp). Spectrophotometry was applied to quantify the activity of caspase-9 and caspase-3. Flow cytometry was used to investigate the levels of reactive oxygen species (ros) and pH, and the expressions of Bcl2, Bax, CytC, and caspase-3, in HepG2 cells. Results Asparagus saponins inhibited the growth of HepG2 cells in a dose-dependent manner. The median inhibitory concentration (IC50) was 101.15 mg/L at 72 hours. The apoptosis morphology at 72 hours of treatment was obvious, showing cell protuberance, concentrated cytoplasm, and apoptotic bodies. The apoptotic rates at 72 hours were 30.9%, 51.7%, and 62.1% (for saponin concentrations of 50 mg/L, 100 mg/L, 200 mg/L). Treatment with Asparagus saponins for 24 hours increased the intracellular level of ros and Ca2+, lowered the pH, activated intracellular mptp, and decreased mmp in a dose-dependent manner. Treatment also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl2, upregulated the expression of Bax, and induced release of CytC and activation of caspase-3. Conclusions Asparagus saponins induce apoptosis in HepG2 cells through a mitochondrial-mediated and caspase

  19. Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells.

    PubMed

    Pezdirc, Marko; Žegura, Bojana; Filipič, Metka

    2013-09-01

    Heterocyclic aromatic amines (HAAs) are potential human carcinogens formed in well-done meats and fish. The most abundant are 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-Amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-Amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ). HAAs exert genotoxic activity after metabolic transformation by CYP1A enzymes, that is well characterized, however the genomic and intervening responses are not well explored. We have examined cellular and genomic responses of human hepatoma HepG2 cells after 24h exposure to HAAs. Comet assay revealed increase in formation of DNA strand breaks by PhIP, MeIQx and IQ but not 4,8-DiMeIQx, whereas increased formation of micronuclei was not observed. The four HAAs up-regulated expression of genes encoding metabolic enzymes CYP1A1, CYP1A2 and UGT1A1 and expression of TP53 and its downstream regulated genes CDKN1A, GADD45α and BAX. Consistent with the up-regulation of CDKN1A and GADD45α the cell-cycle analysis showed arrest in S-phase by PhIP and IQ, and in G1-phase by 4,8-DiMeIQx and MeIQx. The results indicate that upon exposure to HAAs the cells respond with the cell-cycle arrest, which enables cells to repair the damage or eliminate them by apoptosis. However, elevated expression of BCL2 and down-regulation of BAX may indicate that HAAs could suppress apoptosis meaning higher probability of damaged cells to survive and mutate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia.

    PubMed

    Mavri-Damelin, Demetra; Damelin, Leonard H; Eaton, Simon; Rees, Myrddin; Selden, Clare; Hodgson, Humphrey J F

    2008-02-15

    Extrahepatic bioartificial liver devices should provide an intact urea cycle to detoxify ammonia. The C3A cell line, a subclone of the hepatoma-derived HepG2 cell line, is currently used in this context as it produces urea, and this has been assumed to be reflective of ammonia detoxification via a functional urea cycle. However, based on our previous findings of perturbed urea-cycle function in the non-urea producing HepG2 cell line, we hypothesized that the urea produced by C3A cells was via a urea cycle-independent mechanism, namely, due to arginase II activity, and therefore would not detoxify ammonia. Urea was quantified using (15)N-ammonium chloride metabolic labelling with gas chromatography-mass spectrometry. Gene expression was determined by real-time reverse transcriptase-PCR, protein expression by western blotting, and functional activities with radiolabelling enzyme assays. Arginase inhibition studies used N(omega)-hydroxy-nor-L-arginine. Urea was detected in C3A conditioned medium; however, (15)N-ammonium chloride-labelling indicated that (15)N-ammonia was not incorporated into (15)N-labelled urea. Further, gene expression of two urea cycle genes, ornithine transcarbamylase and arginase I, were completely absent. In contrast, arginase II mRNA and protein was expressed at high levels in C3A cells and was inhibited by N(omega)-hydroxy-nor-L-arginine, which prevented urea production, thereby indicating a urea cycle-independent pathway. The urea cycle is non-functional in C3A cells, and their urea production is solely due to the presence of arginase II, which therefore cannot provide ammonia detoxification in a bioartificial liver system. This emphasizes the continued requirement for developing a component capable of a full repertoire of liver function. (c) 2007 Wiley Periodicals, Inc.

  1. [Localization of hepatocellular carcinoma with monoclonal antibodies].

    PubMed

    Liu, Y

    1991-07-01

    We prepared monoclonal antibodies (MAbs) against hepatocellular carcinoma using cell suspensions isolated from surgical fresh hepatoma specimens as antigen. Totally we got 6 strains of hybridoma cell lines stably secreting MAbs for more than 2 years. Immunocytochemically they stained positively most of the paraffin embedded hepatoma tissues (63.1 to 91.1%) without reaction to the normal liver tissues. Localization of human hepatoma with 125I or 131I labelled MAbs in nude mice was done by IV injection, which showed clear tumor image by ECT radioimmunodetection and autoradiography of tissues. The T/N ratios of different MAbs were 3.1, 3.6, 5.15 and that of HAb 18-F (ab')2 was 14.4. Among 15 patients suspected to have hepatoma and given the labelled MAb, 13 proved pathologically to be hepatocellular carcinoma.

  2. Detection of aneugenic and clastogenic potential of X-rays, directly and indirectly acting chemicals in human hepatoma (Hep G2) and peripheral blood lymphocytes, using the micronucleus assay and fluorescent in situ hybridization with a DNA centromeric probe.

    PubMed

    Darroudi, F; Meijers, C M; Hadjidekova, V; Natarajan, A T

    1996-09-01

    In human hepatoma (Hep G2) cells and peripheral blood lymphocytes (HPBL) the cytokinesis-blocked micronuclei (MN) and fluorescent in situ hybridization (FISH) assays were applied to study aneugenic and clastogenic potentials of X-rays, directly and indirectly acting chemicals. Induction of MN was studied in vitro following treatment with X-rays, directly acting chemicals, such as methylmeth-anesulphonate (MMS), colchicine (COL), vincristine sulphate (VCS) and vinblastine sulphate (VBS), and indirectly acting agents, such as cyclophosphamide (CP), hexamethylphosphoramide (HMPA), 2-acetylaminofluorene (2-AAF) and 4-acetylaminofluorene (4-AAF). Depending on the presence of the fluorescent signal in the MN following FISH with a human DNA centromeric probe, MN in the binucleated Hep G2 cells and lymphocytes were scored as centromere-positive or centromere-negative, representing an aneugenic and clastogenic event respectively. In the controls approximately 50% of spontaneously occurring MN were centromere-positive. Treatment of human hepatoma cells and HPBL (in vitro) with potent aneugens such as COL, VCS and VBS increased the number of MN in a dose-dependent manner; of these 75-93% were centromere-positive. X-irradiation induced MN in a dose-related manner in binucleated Hep G2 cells and HPBL, of which 33-40% were centromere-positive, which demonstrates the significant aneugenic potentials of X-rays. Strong clastogenic activity was observed with MMS and frequency of centromere-positive MN was low: approximately 20 and 30% for HPBL and Hep G2 cells respectively. In Hep G2 cells significant aneugenic activity was found with indirectly acting promutagens/procarcinogens such as HMPA and 2-AAF, in contrast to CP, which came out as a potent clastogen. The non-carcinogen 4-AAF was not able to induce an increase in the frequency of MN in Hep G2 cells. All indirectly acting chemicals tested came out negative when HPBL were used as targets for DNA damage. The results presented

  3. Purification and characterization of a novel type i ribosome inactivating protein, pachyerosin, from Pachyrhizus erosus seeds, and preparation of its immunotoxin against human hepatoma cells.

    PubMed

    Guo, Jin-Lin; Cheng, Yuan-Liu; Qiu, Yi; Shen, Cai-Hong; Yi, Bin; Peng, Cheng

    2014-07-01

    Pachyrhizus erosus seeds have a high protein content and are used in China due to their cytotoxic effect. Here we report the biological and pharmacological activity of the protein extracts from P. erosus seeds. A novel ribosome-inactivating protein, pachyerosin, from P. erosus seeds was successively purified to homogeneity using ammonium sulfate precipitation, DEAE-sepharose FF, and Sephacryl S-200. Pachyerosin showed to be a type I ribosome-inactivating protein with a molecular mass of 29 kDa and an isoelectric point of 9.19. It strongly inhibited protein synthesis of rabbit reticulocyte lysate with an IC50 of 0.37 ng/mL and showed N-glycosidase activity on rat liver ribosomes with an EC50 of 85.9 pM. The N-terminal 27 amino acids of pachyerosin revealed a 60.71% sequence identity with abrin A from the seeds of Abrus precatorius. With the aim of targeting the delivery of pachyerosin, immunotoxin was prepared by conjugating pachyerosin with anti-human AFP monoclonal antibodies SM0736. The immunotoxin pachyerosin-SM0736 efficiently inhibited the growth of the human hepatoma cell line HuH-7 with an IC50 of 0.050 ± 0.004 nM, 2360 times lower than that of pachyerosin and 430 times lower than that of the immunotoxin against human gastric cancer cell line SGC7901. These results imply that pachyerosin may be used as a new promising anticancer agent. Georg Thieme Verlag KG Stuttgart · New York.

  4. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Hong Shik; Hong, Eun-Hee; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotypemore » of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.« less

  5. Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay.

    PubMed

    Zhang, Li; Xu, Liang; Zeng, Qiang; Zhang, Shao-Hui; Xie, Hong; Liu, Ai-Lin; Lu, Wen-Qing

    2012-01-24

    Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs. © 2011 Elsevier B.V. All rights reserved.

  6. GROWTH INHIBITORY ACTIONS OF PROTHROMBIN ON NORMAL HEPATOCYTES

    PubMed Central

    Carr, Brian I.; Kar, Siddhartha; Wang, Meifang; Wang, Ziqiu

    2007-01-01

    Most hepatomas have a defect in prothrombin carboxylation, and can secrete under-carboxylated prothrombin or des-γ-carboxy-prothrombin (DCP), the function of which is unknown. We considered that prothrombin-DCP axis might also be involved in growth control. Hepatocytes and hepatoma cells were treated with prothrombin, and DNA synthesis and cytoskeleton were studied. Prothrombin inhibited DNA synthesis in hepatocytes on fibronectin, but not collagen matrix. Hepatoma cell lines were not inhibited. We found that hepatoma cell matrix conferred resistance to hepatocytes. Prothrombin decreased fibronectin but not collagen amounts, but only in the presence of hepatocytes and not hepatoma cells, indicating that it has a differential action on matrix proteins. It also caused changes in cell shape and actin depolymerization. In vivo, there was a decrease in plasma prothrombin activity after a partial hepatectomy (PH) concomitant with a peak of DNA synthesis by the hepatocyte at 24 h after PH. Injection of warfarin at the time of PH, further inhibited PT activity and enhanced this 24 h peak of DNA synthesis. Furthermore, repeated injection of prothrombin lowered the peak DNA synthesis after PH. The data support the hypothesis that prothrombin can act as a hepatocyte growth inhibitor, likely at the level of fibronectin loss and result in cytoskeletal changes. Hepatomas resist this action, possibly due to their different matrix proteins. This represents a novel mechanism for growth regulation and provides a possible biological significance for the tumor marker DCP. PMID:17490900

  7. The coordinated effects of Apatinib and Tripterine on the proliferation, invasiveness and apoptosis of human hepatoma Hep3B cells.

    PubMed

    Li, Huihui; Fan, Yichang; Yang, Fan; Zhao, Lei; Cao, Bangwei

    2018-07-01

    As a novel vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitor, Apatinib has exhibited antitumor effects in a variety of solid tumors. Extracts of Chinese herbal medicines have emerged as a promising alternative option to increase the sensitivity of patients to chemotherapeutics while alleviating side effects. The present study aimed to investigate the effects of Apatinib and the traditional Chinese herb Tripterine on the proliferation, invasion and apoptosis of human hepatoma Hep3B cells. The expression of VEGFR-2 in Hep3B cells was detected by western blotting and immunofluorescence assays. Hep3B cells were then divided into four different groups: Control group, Apatinib group, Tripterine group and Apatinib plus Tripterine group. The proliferation, invasion and apoptosis of these four groups of Hep3B cells were assessed by MTS, wound healing and Transwell assays, and flow cytometry, respectively. Finally, the levels of the proliferation-associated proteins phosphorylated protein kinase B (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) and the apoptosis-associated proteins cleaved Caspase-3 and B-cell lymphoma-associated X protein (Bax) were detected by western blotting. The proliferation, migration and invasion of Hep3B cells were significantly inhibited by Apatinib and Tripterine, compared with the control group (P<0.01). The inhibitory effect of the combination group was markedly stronger than that of the Apatinib and Tripterine groups. The downregulation of p-Akt and p-ERK induced by Apatinib and Tripterine was further inhibited in the combination group (P<0.05), and the expression levels of Caspase-3 and Bax were also significantly increased in the combination group (P<0.05). The combination of Apatinib and Tripterine significantly inhibited the proliferation, migration and invasion ability and promoted the apoptosis of Hep3B cells by downregulating the expression of p-Akt and p-ERK, and upregulating the

  8. Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells.

    PubMed

    Novotnik, Breda; Ščančar, Janez; Milačič, Radmila; Filipič, Metka; Žegura, Bojana

    2016-07-01

    Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Guava Leaf Extract Inhibits Quorum-Sensing and Chromobacterium violaceum Induced Lysis of Human Hepatoma Cells: Whole Transcriptome Analysis Reveals Differential Gene Expression

    PubMed Central

    Tiwary, Bipransh Kumar; Kumar, Anoop

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value≤0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum. PMID:25229331

  10. Guava leaf extract inhibits quorum-sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: whole transcriptome analysis reveals differential gene expression.

    PubMed

    Ghosh, Runu; Tiwary, Bipransh Kumar; Kumar, Anoop; Chakraborty, Ranadhir

    2014-01-01

    Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value ≤ 0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum.

  11. Possible reduction of hepatoma formation by Smmu 7721 cells in SCID mice and metastasis formation by B16F10 melanoma cells in C57BL/6 mice by Agaricus blazei murill extract.

    PubMed

    Wu, Ming-Fang; Lu, Hsu-Feng; Hsu, Yu-Ming; Tang, Ming-Chu; Chen, Hsueh-Chin; Lee, Ching-Sung; Yang, Yi-Yuan; Yeh, Ming-Yang; Chung, Hsiung-Kwang; Huang, Yi-Ping; Wu, Chih-Chung; Chung, Jing-Gung

    2011-01-01

    Agaricus blazei Murill extract (ABM) has been reported to possess antitumor effects. In this study, the role of ABM in tumor growth and metastasis in vivo was evaluated in experimental Smmu 7721 hepatoma cells in severe combined immunodeficiency (SCID) mice and B16F10 melanoma cells lung metastasis in C57BL/6 mice. For the tumor growth model, the size of the liver tumor mass was about 10 mm to 20 mm in the control group. In comparison with the control group, the tumor mass seem to grow slowly with ABM treatment, especially at the high dose. For the tumor metastasis model, after a six-week treatment, the survival rates of B6 mice were 0%, 30%, 10% and 50% for control group, low, median and high concentration ABM treatment groups, respectively. The survival rate showed that pretreatment of C57BL/6 (B6) mice with ABM lengthened their lifespan after tumor cell inoculation, which supports the notion that ABM successfully reduced lung metastasis formation by B16F10 melanoma cells. The treatment effect was dependent on the concentration of ABM for tumor growth and metastasis in these models.

  12. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    PubMed

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  13. Heterogeneous expression and regulation of CD40 in human hepatocellular carcinoma.

    PubMed

    Holub, Margareta; Zakeri, Schaker M; Lichtenberger, Cornelia; Pammer, Johannes; Paolini, Pierre; Leifeld, Ludger; Rockenschaub, Susanne; Wolschek, Markus F; Steger, Günther; Willheim, Martin; Gangl, Alfred; Reinisch, Walter

    2003-02-01

    CD40, a member of the tumour necrosis factor receptor family, plays a major role in adaptive immune responses and contributes to cancer surveillance. Conflicting results have been reported recently on the expression and function of CD40 in carcinomas. The aim of the present study was to investigate the role of CD40 in human hepatoma. CD40 expression was examined in hepatomas and derived cell lines by immunohistochemistry, flow cytometry and reverse transcriptase polymerase chain reaction. We investigated in hepatoma cell lines the regulation of CD40 by pro-inflammatory cytokines and the effects of its ligation with soluble CD40L on the expression of co-stimulatory and pro-apoptotic cell-surface molecules and survival. CD40 was detected with a similar frequency of about 40% in hepatoma specimens and derived cell lines but not in normal hepatocytes. Tumour necrosis factor alpha and its combination with interferon gamma upregulated CD40 only in intrinsically positive cell lines. CD40 ligation had no effect on cell viability or surface expression of CD54, CD80, CD86 or CD95. CD40 is expressed variably in human hepatoma and enhanced by distinct pro-inflammatory cytokines. The lack of detectable effects of CD40 ligation does not support a major role of this molecule in hepatocellular carcinoma biology.

  14. Chronic Japanese schistosomiasis and hepatocellular carcinoma: ten years of follow-up in Yamanashi Prefecture, Japan.

    PubMed Central

    Iida, F.; Iida, R.; Kamijo, H.; Takaso, K.; Miyazaki, Y.; Funabashi, W.; Tsuchiya, K.; Matsumoto, Y.

    1999-01-01

    In a preliminary study carried out in the study area we found that 19.1% (173/907) of patients with chronic liver disease and 51% (35/68) of hepatocellular carcinoma cases were infected with Japanese schistosomiasis. Analysis of data from 571 autopsies revealed a similarly high incidence of schistosomiasis among cases of hepatoma and other liver diseases. A prospective case-control study conducted over 10 years showed that hepatoma developed in 5.4% (26/484) of chronic schistosomiasis cases and in 7.5% (23/307) of patients with chronic liver disease (hepatitis, cirrhosis, etc). The difference was not statistically significant (P = 0.228). A high incidence of hepatitis C virus (HCV) antibody (HCVAb) was found in the schistosomiasis group (36.5%; 95% CI = 44.9-28.1%) and in the chronic liver disease group (56.0%), 39% of whom had chronic hepatitis (P = 0.028). Various factors that might have contributed to the development of hepatoma and schistosomiasis were investigated, but no evidence of a significant correlation between schistosomiasis and hepatoma was found. The high incidence of HCVAb was considered to have been responsible for the development of hepatocellular carcinoma in chronic schistosomiasis patients. The role of HBV infection in the development of hepatoma in schistosomiasis patients was not confirmed after an assay for HCVAb was included in the study. PMID:10444881

  15. Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line.

    PubMed

    Zaja, Roko; Klobucar, Roberta Sauerborn; Smital, Tvrtko

    2007-03-30

    The PLHC-1 hepatoma cell line derived from topminnow (Poeciliopsis lucida) is one of the most frequently used fish cell lines in aquatic ecotoxicology. These cells have been well characterized regarding the presence of phase I and phase II enzymes involved in the metabolism of xenobiotics. However, the presence of the ABC transport proteins possibly involved in the MultiXenobiotic Resistance (MXR) mechanism as phase III of cellular detoxification has never been described in the PLHC-1 cells. The main goal of this study was the detection and functional characterization of toxicologically relevant xenobiotic efflux transporters from ABCB and ABCC subfamily in the PLHC-1 cells. Using specific primer pairs two PCR products 1769 and 1023bp in length were successfully cloned and sequenced. Subsequent multiple alignment and phylogenetic analysis showed that these sequences share a high degree of homology with the P-glycoprotein (Pgp1; ABCB1) and the MRP3 (ABCC3). Functional experiments with fluorescent model substrates and specific inhibitors were used to verify that transport activities of Pgp- and MRP-related proteins are indeed present in PLHC-1 cells. Accumulation or efflux/retention rates of rhodamine 123, calcein-AM or monochlorbimane were time- and concentration-dependent. Cyclosporine A, MK571, verapamil, reversine 205, indomethacine and probenecid were used as specific inhibitors of Pgp1 and/or MRPs transport activities, resulting in a dose dependent inhibition of related transport activities in PLHC-1 cells. Similar to mammalian systems, the obtained IC(50) values were in the lower micromolar range. Taken together these data demonstrate that: (1) the PLHC-1 cells do express a functional MXR mechanism mediated by toxicologically relevant ABC efflux transporters; and (2) the presence of all three critical phases of cellular detoxification additionally affirms the PLHC-1 cells as a reliable in vitro model in aquatic toxicology.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fabao; Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071; You, Xiaona

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migrationmore » in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.« less

  17. The antitumor effect and hepatotoxicity of a hexokinase II inhibitor 3-bromopyruvate: in vivo investigation of intraarterial administration in a rabbit VX2 hepatoma model.

    PubMed

    Jae, Hwan Jun; Chung, Jin Wook; Park, Hee Sun; Lee, Min Jong; Lee, Ki Chang; Kim, Hyo-Cheol; Yoon, Jung Hwan; Chung, Hesson; Park, Jae Hyung

    2009-01-01

    The purpose of this study was to compare the antitumor effect and hepatotoxicity of an intraarterial delivery of low-dose and high-dose 3-bromopyruvate (3-BrPA) and those of a conventional Lipiodol-doxorubicin emulsion in a rabbit VX2 hepatoma model. This experiment was approved by the animal care committee at our institution. VX2 carcinoma was implanted in the livers of 36 rabbits. Transcatheter intraarterial administration was performed using low dose 3-BrPA (25 mL in a 1 mM concentration, n = 10), high dose 3-BrPA (25 mL in a 5 mM concentration, n = 10) and Lipiodol-doxorubicin emulsion (1.6 mg doxorubicin/ 0.4 mL Lipiodol, n = 10), and six rabbits were treated with normal saline alone as a control group. One week later, the proportion of tumor necrosis was calculated based on histopathologic examination. The hepatotoxicity was evaluated by biochemical analysis. The differences between these groups were statistically assessed with using Mann-Whitney U tests and Kruskal-Wallis tests. The tumor necrosis rate was significantly higher in the high dose group (93% +/- 7.6 [mean +/- SD]) than that in the control group (48% +/- 21.7) (p = 0.0002), but the tumor necrosis rate was not significantly higher in the low dose group (62% +/- 20.0) (p = 0.2780). However, the tumor necrosis rate of the high dose group was significantly lower than that of the Lipiodol-doxorubicin treatment group (99% +/- 2.7) (p = 0.0015). The hepatotoxicity observed in the 3-BrPA groups was comparable to that of the Lipiodol-doxorubicin group. Even though intraarterial delivery of 3-BrPA shows a dose-related antitumor effect, single session treatment seems to have limited efficacy when compared with the conventional method.

  18. The Antitumor Effect and Hepatotoxicity of a Hexokinase II Inhibitor 3-Bromopyruvate: In Vivo Investigation of Intraarterial Administration in a Rabbit VX2 Hepatoma Model

    PubMed Central

    Jae, Hwan Jun; Park, Hee Sun; Lee, Min Jong; Lee, Ki Chang; Kim, Hyo-Cheol; Yoon, Jung Hwan; Chung, Hesson; Park, Jae Hyung

    2009-01-01

    Objective The purpose of this study was to compare the antitumor effect and hepatotoxicity of an intraarterial delivery of low-dose and high-dose 3-bromopyruvate (3-BrPA) and those of a conventional Lipiodol-doxorubicin emulsion in a rabbit VX2 hepatoma model. Materials and Methods This experiment was approved by the animal care committee at our institution. VX2 carcinoma was implanted in the livers of 36 rabbits. Transcatheter intraarterial administration was performed using low dose 3-BrPA (25 mL in a 1 mM concentration, n = 10), high dose 3-BrPA (25 mL in a 5 mM concentration, n = 10) and Lipiodol-doxorubicin emulsion (1.6 mg doxorubicin/ 0.4 mL Lipiodol, n = 10), and six rabbits were treated with normal saline alone as a control group. One week later, the proportion of tumor necrosis was calculated based on histopathologic examination. The hepatotoxicity was evaluated by biochemical analysis. The differences between these groups were statistically assessed with using Mann-Whitney U tests and Kruskal-Wallis tests. Results The tumor necrosis rate was significantly higher in the high dose group (93% ± 7.6 [mean ± SD]) than that in the control group (48% ± 21.7) (p = 0.0002), but the tumor necrosis rate was not significantly higher in the low dose group (62% ± 20.0) (p = 0.2780). However, the tumor necrosis rate of the high dose group was significantly lower than that of the Lipiodol-doxorubicin treatment group (99% ± 2.7) (p = 0.0015). The hepatotoxicity observed in the 3-BrPA groups was comparable to that of the Lipiodol-doxorubicin group. Conclusion Even though intraarterial delivery of 3-BrPA shows a dose-related antitumor effect, single session treatment seems to have limited efficacy when compared with the conventional method. PMID:19885316

  19. Measuring and modeling of binary mixture effects of pharmaceuticals and nickel on cell viability/cytotoxicity in the human hepatoma derived cell line HepG2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudzok, S., E-mail: susanne.rudzok@ufz.d; Schlink, U., E-mail: uwe.schlink@ufz.d; Herbarth, O., E-mail: olf.herbarth@medizin.uni-leipzig.d

    2010-05-01

    The interaction of drugs and non-therapeutic xenobiotics constitutes a central role in human health risk assessment. Still, available data are rare. Two different models have been established to predict mixture toxicity from single dose data, namely, the concentration addition (CA) and independent action (IA) model. However, chemicals can also act synergistic or antagonistic or in dose level deviation, or in a dose ratio dependent deviation. In the present study we used the MIXTOX model (EU project ENV4-CT97-0507), which incorporates these algorithms, to assess effects of the binary mixtures in the human hepatoma cell line HepG2. These cells possess a liver-likemore » enzyme pattern and a variety of xenobiotic-metabolizing enzymes (phases I and II). We tested binary mixtures of the metal nickel, the anti-inflammatory drug diclofenac, and the antibiotic agent irgasan and compared the experimental data to the mathematical models. Cell viability was determined by three different methods the MTT-, AlamarBlue (registered) and NRU assay. The compounds were tested separately and in combinations. We could show that the metal nickel is the dominant component in the mixture, affecting an antagonism at low-dose levels and a synergism at high-dose levels in combination with diclofenac or irgasan, when using the NRU and the AlamarBlue assay. The dose-response surface of irgasan and diclofenac indicated a concentration addition. The experimental data could be described by the algorithms with a regression of up to 90%, revealing the HepG2 cell line and the MIXTOX model as valuable tool for risk assessment of binary mixtures for cytotoxic endpoints. However the model failed to predict a specific mode of action, the CYP1A1 enzyme activity.« less

  20. Anorexia‐cachexia syndrome in hepatoma tumour‐bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC‐1/GDF15

    PubMed Central

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N.; Langhans, Wolfgang; Lutz, Thomas A.; Blomqvist, Anders

    2016-01-01

    Abstract Background The cancer‐anorexia‐cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour‐derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour‐derived macrophage inhibitory cytokine‐1 (MIC‐1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC‐1 in mice. Methods Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC‐1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. Results In tumour‐bearing sham‐operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer‐induced anorexia or body weight loss. Tumour‐bearing rats had substantially increased MIC‐1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. Conclusions These findings demonstrate the importance of the AP in the mediation of cancer‐dependent anorexia and body weight loss and support a pathological role of MIC‐1 as a tumour‐derived factor mediating CACS, possibly via an AP

  1. Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1.

    PubMed

    Lammel, Tobias; Boisseaux, Paul; Navas, José M

    2015-09-01

    Graphene and its derivatives are an emerging class of carbon nanomaterial with great potential for a broad range of industrial and consumer applications. However, their increasing production and use is expected to result in release of nano-sized graphene platelets into the environment, where they may interact with chemical pollutants modifying their fate and toxic potential. The objective of this study was to assess whether graphene nanoplatelets can act as vector for aromatic environmental pollutants increasing their cellular uptake and associated hazardous effects in vitro. For this purpose, cell cultures of the topminnow fish (Poeciliopsis lucida) hepatoma cell line PLHC-1 were simultaneously (and successively) exposed to graphene nanoplatelets (graphene oxide (GO) or carboxyl graphene (CXYG)) and an aryl hydrocarbon receptor (AhR) agonist (β-naphthoflavone (β-NF), benzo(k)fluoranthene (BkF) or 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169)). Following exposure cytochrome P450 1A (Cyp1A) induction was assessed by measuring cyp1A mRNA expression levels using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Cyp1A-dependent ethoxyresorufin-O-deethylase (EROD) activity. It was observed that pre- and co-exposure of cells to GO and CXYG nanoplatelets had a potentiating effect on β-NF, BkF, and PCB169-dependent Cyp1A induction suggesting that graphene nanoplatelets increase the effective concentration of AhR agonists by facilitating their passive diffusion into the cells by damaging the cells' plasma membrane and/or by transporting them over the plasma membrane via a Trojan horse-like mechanism. The results demonstrate the existence of combination effects between nanomaterials and environmental pollutants and stress the importance of considering these effects when evaluating their respective hazard. © 2014 Wiley Periodicals, Inc.

  2. Knock down of GCN5 histone acetyltransferase by siRNA decreases ethanol-induced histone acetylation and affects differential expression of genes in human hepatoma cells.

    PubMed

    Choudhury, Mahua; Pandey, Ravi S; Clemens, Dahn L; Davis, Justin Wade; Lim, Robert W; Shukla, Shivendra D

    2011-06-01

    We have investigated whether Gcn5, a histone acetyltransferase (HAT), is involved in ethanol-induced acetylation of histone H3 at lysine 9 (H3AcK9) and has any effect on the gene expression. Human hepatoma HepG2 cells transfected with ethanol-metabolizing enzyme alcohol dehydrogenase 1 (VA 13 cells) were used. Knock down of Gcn5 by siRNA silencing decreased mRNA and protein levels of general control nondepressible 5 (GCN5), HAT activity, and also attenuated ethanol-induced H3AcK9 in VA13 cells. Illumina gene microarray analysis using total RNA showed 940 transcripts affected by GCN5 silencing or ethanol. Silencing caused differential expression of 891 transcripts (≥1.5-fold upregulated or downregulated). Among these, 492 transcripts were upregulated and 399 were downregulated compared with their respective controls. Using a more stringent threshold (≥2.5-fold), the array data from GCN5-silenced samples showed 57 genes differentially expressed (39 upregulated and 18 downregulated). Likewise, ethanol caused differential regulation of 57 transcripts with ≥1.5-fold change (35 gene upregulated and 22 downregulated). Further analysis showed that eight genes were differentially regulated that were common for both ethanol treatment and GCN5 silencing. Among these, SLC44A2 (a putative choline transporter) was strikingly upregulated by ethanol (three fold), and GCN5 silencing downregulated it (1.5-fold). The quantitative real-time polymerase chain reaction profile corroborated the array findings. This report demonstrates for the first time that (1) GCN5 differentially affects expression of multiple genes, (2) ethanol-induced histone H3-lysine 9 acetylation is mediated via GCN5, and (3) GCN5 is involved in ethanol-induced expression of the putative choline transporter SLC44A2. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi

    2011-08-19

    Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV repliconmore » as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.« less

  4. A novel anti-GPC3 monoclonal antibody (YP7) | Center for Cancer Research

    Cancer.gov

    Glypican-3 (GPC3) is an emerging therapeutic target in hepatoma. A novel anti-GPC3 monoclonal antibody (YP7) has been generated through a combination of peptide immunization and high-throughput flow cytometry screening. YP7 binds cell-surface-associated GPC3 with high affinity and exhibits significant hepatoma xenograft growth inhibition in nude mice. The new antibody may have

  5. Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl

    USGS Publications Warehouse

    Smeets, J.M.W.; Voormolen, A.; Tillitt, D.E.; Everaarts, J.M.; Seinen, W.; Vanden Berg, M.D.

    1999-01-01

    In PLHC-1 hepatoma cells, benzo[a]pyrene (B[a]P) caused a maximum induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylation (EROD), after 4 to 8 h of exposure, depending on the B[a]P concentration. The decline of EROD activity at longer exposure times was probably caused by the rapid metabolism of B[a]P in this system (57% metabolism within 4 h incubation). In subsequent experiments, PLHC-1 cells were preinduced with PCB 126 for 24 h and then received a dose of 10, 100, or 1,000 nM 3H-B[a]P. A 1-nM concentration of PCB 126 caused an 80-fold induction of CYP1A activity, resulting in an increase in B[a]P metabolism of less than 10%, except at the highest concentration of B[a]P (1,000 nM), where a 50% increase was observed. In another experiment, an 80-fold induction of CYP1A activity caused a 20% increase in the metabolism of B[a]P (100 nM), and RNA adduct formation was increased approximately twofold. These results indicate that, at exposure concentrations up to 100 nM B[a]P, CYP1A activity is not rate limiting for B[a]P metabolism. Furthermore, CYP1A seems to also he specifically involved in B[a]P activation in PLHC-1 cells. However, CYP1A induction causes only a relatively small increase in activation, probably because of the action of other enzymes involved in B[a]P activation and deactivation.

  6. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca²⁺ homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells.

    PubMed

    Cheng, Jin-Shiung; Chou, Chiang-Ting; Liu, Yuan-Yuarn; Sun, Wei-Chih; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-01

    Oleuropein, a phenolic compound found in the olive leaf (Olea europaea), has been shown to have biological activities in different models. However, the effects of oleuropein on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in liver cells have not been analyzed. Oleuropein induced [Ca(2+)]i rises only in HepG2 cells but not in AML12, HA22T or HA59T cells due to the different status of 3-hydroxy-3-methylglutaryl-CoA reductase expression. In HepG2 cells, this Ca(2+) signaling response was reduced by removing extracellular Ca(2+), and was inhibited by the store-operated Ca(2+) channel blockers 2-APB and SKF96365. In Ca(2+)-free medium, pretreatment with the ER Ca(2+) pump inhibitor thapsigargin abolished oleuropein-induced [Ca(2+)]i rises. Oleuropein induced cell cycle arrest which was associated with the regulation of p53, p21, CDK1 and cyclin B1 levels. Furthermore, oleuropein elevated intracellular ROS levels but reduced GSH levels. Treatment with the intracellular Ca(2+) chelator BAPTA-AM or the antioxidant NAC partially reversed oleuropein-induced cytotoxicity. Together, in HepG2 cells, oleuropein induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through store-operated Ca(2+) channels. Moreover, oleuropein induced Ca(2+)-associated cytotoxicity that involved ROS signaling and cell cycle arrest. This compound may offer a potential therapy for treatment of human hepatoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Anorexia-cachexia syndrome in hepatoma tumour-bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC-1/GDF15.

    PubMed

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N; Langhans, Wolfgang; Lutz, Thomas A; Blomqvist, Anders; Riediger, Thomas

    2017-06-01

    The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  8. Preparation and therapeutic evaluation of (188)Re-thermogelling emulsion in rat model of hepatocellular carcinoma.

    PubMed

    Shih, Ying-Hsia; Lin, Xi-Zhang; Yeh, Chung-Hsin; Peng, Cheng-Liang; Shieh, Ming-Jium; Lin, Wuu-Jyh; Luo, Tsai-Yueh

    2014-01-01

    Radiolabeled Lipiodol(®) (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188-N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride-Lipiodol/hydrogel ((188)Re-ELH). The therapeutic potential of (188)Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188-N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride-Lipiodol ((188)Re-EL), which was blended with the hydrogel in equal volumes to develop (188)Re-ELH. The (188)Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq (188)Re-ELH. The therapeutic potential of (188)Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of (188)Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of (188)Re-EL. The responses were assessed by changes in tumor size and survival rates. The (188)Re-ELH emulsion was stable in the gel form at 25°C-35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the (188)Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term (188)Re-ELH studies have demonstrated protracted reductions in tumor

  9. Preparation and therapeutic evaluation of 188Re-thermogelling emulsion in rat model of hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Lin, Xi-Zhang; Yeh, Chung-Hsin; Peng, Cheng-Liang; Shieh, Ming-Jium; Lin, Wuu-Jyh; Luo, Tsai-Yueh

    2014-01-01

    Radiolabeled Lipiodol® (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol/hydrogel (188Re-ELH). The therapeutic potential of 188Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol (188Re-EL), which was blended with the hydrogel in equal volumes to develop 188Re-ELH. The 188Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq 188Re-ELH. The therapeutic potential of 188Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of 188Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of 188Re-EL. The responses were assessed by changes in tumor size and survival rates. The 188Re-ELH emulsion was stable in the gel form at 25°C–35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the 188Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term 188Re-ELH studies have demonstrated protracted reductions in tumor volumes

  10. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells

    PubMed Central

    Asakura, Mitsutoshi; Karaki, Fumika; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-01-01

    Vildagliptin is a potent, orally active inhibitor of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes mellitus. It has been reported that vildagliptin can cause hepatic dysfunction in patients. However, the molecular-mechanism of vildagliptin-induced liver dysfunction has not been elucidated. In this study, we employed an expression microarray to determine hepatic genes that were highly regulated by vildagliptin in mice. We found that pro-inflammatory S100 calcium-binding protein (S100) a8 and S100a9 were induced more than 5-fold by vildagliptin in the mouse liver. We further examined the effects of vildagliptin and its major metabolite M20.7 on the mRNA expression levels of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. In HepG2 cells, vildagliptin, M20.7, and sitagliptin – another DPP-4 inhibitor – induced S100A9 mRNA. In HL-60 cells, in contrast, S100A8 and S100A9 mRNAs were significantly induced by vildagliptin and M20.7, but not by sitagliptin. The release of S100A8/A9 complex in the cell culturing medium was observed in the HL-60 cells treated with vildagliptin and M20.7. Therefore, the parental vildagliptin- and M20.7-induced release of S100A8/A9 complex from immune cells, such as neutrophils, might be a contributing factor of vildagliptin-associated liver dysfunction in humans. PMID:27759084

  11. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells.

    PubMed

    Asakura, Mitsutoshi; Karaki, Fumika; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-10-19

    Vildagliptin is a potent, orally active inhibitor of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes mellitus. It has been reported that vildagliptin can cause hepatic dysfunction in patients. However, the molecular-mechanism of vildagliptin-induced liver dysfunction has not been elucidated. In this study, we employed an expression microarray to determine hepatic genes that were highly regulated by vildagliptin in mice. We found that pro-inflammatory S100 calcium-binding protein (S100) a8 and S100a9 were induced more than 5-fold by vildagliptin in the mouse liver. We further examined the effects of vildagliptin and its major metabolite M20.7 on the mRNA expression levels of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. In HepG2 cells, vildagliptin, M20.7, and sitagliptin - another DPP-4 inhibitor - induced S100A9 mRNA. In HL-60 cells, in contrast, S100A8 and S100A9 mRNAs were significantly induced by vildagliptin and M20.7, but not by sitagliptin. The release of S100A8/A9 complex in the cell culturing medium was observed in the HL-60 cells treated with vildagliptin and M20.7. Therefore, the parental vildagliptin- and M20.7-induced release of S100A8/A9 complex from immune cells, such as neutrophils, might be a contributing factor of vildagliptin-associated liver dysfunction in humans.

  12. Antitumoral Activity of (20R)- and (20S)-Ginsenoside Rh2 on Transplanted Hepatocellular Carcinoma in Mice.

    PubMed

    Lv, Qun; Rong, Na; Liu, Li-Jia; Xu, Xiao-Lin; Liu, Jian-Ting; Jin, Feng-Xie; Wang, Chun-Mei

    2016-05-01

    Hepatocellular carcinoma is one of the leading causes of malignancy-related death in China. Its therapy in clinics is a big challenge. Ginsenoside Rh2 is one of the most notable cancer-preventing components from red ginseng and it has been reported that ginsenoside Rh2 exhibited potent cytotoxicity against human hepatoma cells. Rh2 exists as two different stereoisomeric forms, (20S)-ginsenoside Rh2 and (20R)-ginsenoside Rh2. Previous reports showed that the Rh2 epimers demonstrated different pharmacological activities and only (20S)-ginsenoside Rh2 showed potent proliferation inhibition on cancer cells in vitro. However, the in vivo anti-hepatoma activity of (20R)-ginsenoside Rh2 and (20S)-ginsenoside Rh2 has not been reported yet. This work assessed and compared the anti-hepatoma activities of (20S)-ginsenoside Rh2 and (20R)-ginsenoside Rh2 using H22 a hepatoma-bearing mouse model in vivo. In addition, hematoxylin and eosin staining, the deoxynucleotidyl transferase dUTP nick-end labeling assay, and the semiquantitative reverse transcriptase polymerase chain reaction method were used to further study the apoptosis of the tumors. The results showed that both (20S)-ginsenoside Rh2 and (20R)-ginsenoside Rh2 suppressed the growth of H22 transplanted tumors in vivo, and the highest inhibition rate could be up to 42.2 and 46.8 %, respectively (p < 0.05). Further, hematoxylin/eosin staining and the deoxynucleotidyl transferase dUTP nick-end labeling assay indicated that both (20R)-ginsenoside Rh2 and (20S)-ginsenoside Rh2 could induce H22 hepatoma tumor cell apoptosis, with apoptosis indexes of 3.87 %, and 3.80 %, respectively (p < 0.05). Moreover, this effect was accompanied by downregulating the level of Bcl-2 mRNA. In conclusion, both (20S)-ginsenoside Rh2 and (20R)-ginsenoside Rh2 can suppress the growth of H22 hepatomas without causing severe side effects, and this effect is associated with the induction of apoptosis. Georg Thieme Verlag KG Stuttgart

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yu; Wang, Wenhui; Wang, Qi

    Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886more » (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.« less

  14. Measuring functioning hepatocytes using Tc-99m galactosylneoglycoalbumin (Tc-NGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadalnik, R.C.; Vera, D.R.; Quadro, R.E.

    1984-01-01

    Tc-NGA is a synthetic ligand which binds only to hepatic binding protein (HBP), a receptor found only in the liver. It exhibits the properties of high tissue specificity, affinity-dependent uptake, and dose-dependent uptake. Tc-NGA provides an opportunity to study the functioning hepatocyte. The authors evaluated the usefulness of this technique in patients with hepatitis and hepatoma. After intravenous administration of 5 mCi Tc-NGA, dynamic images were acquired for 30 minutes followed by static views. Estimates of HBP concentrations were obtained by kinetic analysis of blood and liver time-activity curves. Kinetic estimates (reduced chi-squares < 3.0) of HBP correlated well withmore » the clinical course and histology. For example, a patient with hepatoma whose calculated receptor population (functioning hepatocytes) was 3.0 +- 0.9 x 10/sup -7/ mole, which is the normal range, is doing well undergoing chemotherapy. Liver biopsy demonstrated normal liver tissue except for the hepatoma. Another patient with hepatoma who had a severely depressed receptor population, 1.2 +- 0.2 x 10/sup -8/ mole, expired one week after the study. Liver biopsy demonstrated practically no normal tissue. Thus, by means of a complementary, receptor radiopharmaceutical and mathematical model, one should be able to quantitatively follow hepatocyte function and predict response to a therapeutic regimen.« less

  15. Continuous pyruvate carbon flux to newly synthesized cholesterol and the suppressed evolution of pyruvate-generated CO2 in tumors: further evidence for a persistent truncated Krebs cycle in hepatomas.

    PubMed

    Parlo, R A; Coleman, P S

    1986-04-29

    Viable tissue slices from rat liver and Morris hepatoma 3924A were compared as to their ability to incorporate carbons from [U-14 C]pyruvate into newly synthesized cholesterol versus CO2. By 4 h, the tumor slice incubation had incorporated over 6-fold more pyruvate carbons into the sterol than into CO2, relative to the normal liver slice incubation, per g tissue protein. However, the presence of the mitochondrial citrate exchange carrier inhibitor 1,2,3-benzenetricarboxylate in the incubation inhibited the formation of [14C]cholesterol, while simultaneously leading to an increase in the rate of 14CO2 production in the tumor. In the normal liver system by contrast, benzenetricarboxylate also inhibited [14C]cholesterol formation, but had hardly any effect on the already high rate of 14CO2 production. The ability of benzenetricarboxylate to inhibit the rapid carbon flux from pyruvate to cholesterol, and to steer the metabolic flow of carbons toward oxidative decarboxylation via the Krebs cycle in whole, viable tumor tissue, indirectly emphasizes the importance of the mitochondrial citrate exchange carrier in supporting the decontrol of cholesterogenesis de novo in tumors by accelerating the supply of lipogenic precursor carbons to the tumor cytosol. These studies may be therefore interpreted as extensions, to the level of whole-cell metabolism, of the concept of a persistent 'truncated' Krebs cycle in the mitochondria of metastatic cancer tissue. This concept states, in part, that a rapid efflux of mitochondrially generated citrate would operate preferentially in tumors, and thus provide carbons continuously to the cytoplasmic compartment where the well-established deregulated pathway of cholesterogenesis occurs (Parlo, R.A. and Coleman, P.S. (1984) J. Biol. Chem. 259, 9997-10003; Coleman, P.S. and Lavietes, B.B. (1981) CRC Crit. Rev. Biochem. 11, 341-393).

  16. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    PubMed

    Vadrot, Nathalie; Ghanem, Sarita; Braut, Françoise; Gavrilescu, Laura; Pilard, Nathalie; Mansouri, Abdellah; Moreau, Richard; Reyl-Desmars, Florence

    2012-01-01

    During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  17. Progression of conventional hepatic cell culture models to bioengineered HepG2 cells for evaluation of herbal bioactivities.

    PubMed

    Kaur, Pardeep; Robin; Mehta, Rajendra G; Arora, Saroj; Singh, Balbir

    2018-06-01

    Cancer cell lines of human tissue origin have been extensively used to investigate antiproliferative activity and toxicity of herbal extracts, isolated compounds, and anticancer drugs. These cell lines are genetically and/or epigenetically well characterized to determine the altered expression of proteins within given cellular pathways and critical genes in cancer. Human derived hepatoma (HepG2) cell line has been extensively exploited to examine cytoprotective, antioxidative, hepatoprotective, anti-hepatoma, hypocholesterolemic, anti-steatosis, bioenergetic homeostatic and anti-insulin resistant properties. Moreover, mechanism of action of various botanicals and bioactive constituents has been reported using these cells. HepG2 cells have significant differences as compared to primary hepatocytes with respect to expression of cytochrome P450 enzymes and xenobiotic receptors in conventional in vitro culture conditions. Therefore, strategies have been employed to overcome limitations of two dimensional (2D) in vitro HepG2 cell culture in order to recognize functional biomarkers more accurately and to boost its predictive value in clinical research. In consequence, three dimensional (3D) human hepatoma cell culture models are being developed as a resource to achieve these goals of simulating the in vivo tumor microenvironment. It is assumed that bioengineered 3D hepatoma cell culture models can provide significant assistance in scrutinizing the molecular response of herbal natural products to recognize novel prognostic targets and crucial biomarkers in treatment strategies for cancer patients in near future.

  18. Hepatitis B virus PreS1 facilitates hepatocellular carcinoma development by promoting appearance and self-renewal of liver cancer stem cells.

    PubMed

    Liu, Zhixin; Dai, Xuechen; Wang, Tianci; Zhang, Chengcheng; Zhang, Wenjun; Zhang, Wei; Zhang, Qi; Wu, Kailang; Liu, Fang; Liu, Yingle; Wu, Jianguo

    2017-08-01

    Hepatitis B virus (HBV) is a major etiologic agent of hepatocellular carcinoma (HCC). However, the molecular mechanism by which HBV infection contributes to HCC development is not fully understood. Here, we initially showed that HBV stimulates the production of cancer stem cells (CSCs)-related markers (CD133, CD117 and CD90) and CSCs-related genes (Klf4, Sox2, Nanog, c-Myc and Oct4) and facilitates the self-renewal of CSCs in human hepatoma cells. Cellular and clinical studies revealed that HBV facilitates hepatoma cell growth and migration, enhances white blood cell (WBC) production in the sera of patients, stimulates CD133 and CD117 expression in HCC tissues, and promotes the CSCs generation of human hepatoma cells and clinical cancer tissues. Detailed studies revealed that PreS1 protein of HBV is required for HBV-mediated CSCs generation. PreS1 activates CD133, CD117 and CD90 expression in normal hepatocyte derived cell line (L02) and human hepatoma cell line (HepG2 and Huh-7); facilitates L02 cells migration, growth and sphere formation; and finally enhances the abilities of L02 cells and HepG2 cells to induce tumorigeneses in nude mice. Thus, PreS1 acts as a new oncoprotein to play a key role in the appearance and self-renewal of CSCs during HCC development. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Growth-inhibiting effects of taxol on human liver cancer in vitro and in nude mice

    PubMed Central

    Yuan, Jin Hui; Zhang, Ru Ping; Zhang, Ru Gang; Guo, Li Xia; Wang, Xing Wang; Luo, Dan; Xie, Yong; Xie, Hong

    2000-01-01

    AIM: To investigate the effects of taxol on SMMC-7721 human hepatoma and its mechanisms. METHODS: In vitro cell growth was assessed by trypan blue exclusion method. Experimental hepatoma model was established by seeding SMMC-7721 cells subcutaneously into Balb/c (nu/nu) nude mice. In vivo tumor growth was determined by measurement of tumor diameter with Vernier calipers. The syntheses of DNA, RNA and protein were analyzed by incorporation of 3H-thymidine, 3H-uridine and 3H-leucine respectively. Using light and electron microscopes to observe the morphological changes of cells including mitosis and apoptosis. RESULTS: Taxol was effective against SMMC-7721 human hepatoma cell growth in the ranges of 2.5 nmol/L-10 nmol/L- with mitotic arrest and apoptosis in vitro. DNA, RNA and protein syntheses in cells were also obviously suppressed by in vitro treatment of taxol for 72 h. Taxol at 2.5 nmol/L reduced 3H-thymidine uptake to about 34% of the control value (P < 0.05). Increasing the dose of taxol to 20 nmol/L resulted in a greater decrease in 3H-thymidine incorporation to 60% of the control value (P < 0.01). At a concentration of 20 nmol/L, the 3H-uridine and 3H-leucine uptakes were reduced to 52% (P < 0.05) and 63% (P < 0.01), respectively. In vivo, taxol significantly inhibited SMMC-7721 tumor growth at 10 mg/kg, i.p. once daily for 10 d. A more than 90% decrease in tumor volume was observed by day 11 (P < 0.01) similarly with mitotic arrest and cell apoptosis. CONCLUSION: Taxol has a marked anticancer activity in SMMC-7721 human hepatoma both in vitro and in nude mice. Its mechanisms might be associated with mitotic arrest, subsequently, apoptosis of the hepatoma cells. No obvious toxicity was observed with in vivo administration of taxol. PMID:11819558

  20. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment.

    PubMed

    Cheng, Chiung-Chi; Chao, Wei-Ting; Liao, Chen-Chun; Tseng, Yu-Hui; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Hsu, Yung-Hsiang; Liu, Yi-Hsiang

    2018-01-02

    Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.

  1. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honma, Yuichi; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects onmore » protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.« less

  2. Genotoxic and antigenotoxic effects of catechin and tannins from the bark of Hamamelis virginiana L. in metabolically competent, human hepatoma cells (Hep G2) using single cell gel electrophoresis.

    PubMed

    Dauer, Andreas; Hensel, Andreas; Lhoste, Evelyne; Knasmüller, Siegfried; Mersch-Sundermann, Volker

    2003-05-01

    The genotoxic and antigenotoxic activities of catechin, hamamelitannin and two proanthocyanidin fractions prepared from the bark of Hamamelis virginiana L. were investigated in a human derived, metabolically competent hepatoma cell line (Hep G2) using single cell gel electrophoresis (SCGE) for the detection of DNA-damage. DNA-migration was calculated as Olive tail moment (OTM). Catechin and a low-molecular weight proanthocyandin fraction (W(M)) caused only slight increases of OTM up to concentrations of 166 microg/ml whereas hamamelitannin and the proanthocyandin fraction with higher molecular weight (W(A)) led to a two-fold enhancement of OTM at the same concentrations. These effects were dose-independent. Treatment of the cells with the test compounds in a dose-range of 2-166 microg/ml prior to the exposure to benzo(a)pyrene (B(a)P, 10 microM, 2.5 microg/ml) led to a significant reduction of induced DNA damage which was dose-dependent for all test compounds, except for hamamelitannin. The inhibitory effects of proanthocyanidins were stronger than those of catechin and hamamelitannin; the lowest effective concentrations were about 2 microg/ml. In order to clarify the mechanisms of protection, possible effects of the test compounds on enzymes involved in toxification and detoxification of B(a)P were investigated. While B(a)P toxification by cytochrome P450 was not inhibited by the test compounds, detoxification by glutathion-S-transferase (GST) was induced by catechin and W(M). Combination experiments with the ultimate metabolite of B(a)P, (+/-)-anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE; 5 microM, 1.5 microg/ml), revealed strong inhibitory effects, indicating that the observed protective effects were caused by scavenging of the ultimate mutagen by the test compounds. Exposure of Hep G2 cells to the test compounds after B(a)P treatment did not influence B(a)P induced DNA damage, demonstrating that repair mechanisms were not affected.

  3. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    PubMed

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toki, Yasumichi; Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp; Tanaka, Hiroki

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncatedmore » peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.« less

  5. Epithelioid Haemangioendothelioma (EHE) of the Liver.

    PubMed

    Khan, Abidullah; Humayun, Mohammad; Haider, Iqbal; Khan, Wazir Muhammad; Ajmal, Fahad; Ayub, Maimoona

    2016-06-01

    A45-year previously known hypertensive lady presented with 2-year history of upper abdominal pain, heaviness, and weight loss. Her radiological assessment suggested the possibility of hepatoma or liver metastases. Considering her age, overall good health and absence of cirrhosis, a liver biopsy was taken which showed hepatic epithelioidhaemangioendothelioma (HEHE), a rare and unusual intermediate grade vascular tumor which can easily be confused with hepatoma or metastatic liver disease. To the best of their knowledge, the authors are most probably reporting the first ever case of HEHE from Pakistan with special emphasis on its clinical presentations, clinico-radiological diagnostic clues, and the management options in the light of the limited retrospective studies.

  6. Antitumor activities of D-glucosamine and its derivatives*

    PubMed Central

    Zhang, Li; Liu, Wan-shun; Han, Bao-qin; Peng, Yan-fei; Wang, Dong-feng

    2006-01-01

    The growth inhibitory effects of D-glucosamine hydrochloride (GlcNH2·HCl), D-glucosamine (GlcNH2) and N-acetyl glucosamine (NAG) on human hepatoma SMMC-7721 cells in vitro were investigated. The results showed that GlcNH2·HCl and GlcNH2 resulted in a concentration-dependent reduction in hepatoma cell growth as measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. This effect was accompanied by a marked increase in the proportion of S cells as analyzed by flow cytometry. In addition, human hepatoma SMMC-7721 cells treated with GlcNH2·HCl resulted in the induction of apoptosis as assayed qualitatively by agarose gel electrophoresis. NAG could not inhibit the proliferation of SMMC-7721 cells. GlcNH2·HCl exhibited antitumor activity against Sarcoma 180 in Kunming mice at dosage of 125~500 mg/kg, dose of 250 mg/kg being the best. GlcNH2·HCl at dose of 250 mg/kg could enhance significantly the thymus index, and spleen index and could promote T lymphocyte proliferation induced by ConA. The antitumor effect of GlcNH2·HCl is probably host-mediated and cytocidal. PMID:16845712

  7. Activation of AMP-kinase by Policosanol Requires Peroxisomal Metabolism

    PubMed Central

    Banerjee, Subhashis; Ghoshal, Sarbani

    2011-01-01

    Policosanol, a well-defined mixture of very long chain primary alcohols that is available as a nutraceutical product, has been reported to lower blood cholesterol levels. The present studies demonstrate that policosanol promotes the phosphorylation of AMP-kinase and HMG-CoA reductase in hepatoma cells and in mouse liver after intragastric administration, providing a possible means by which policosanol might lower blood cholesterol levels. Treatment of hepatoma cells with policosanol produced a 2.5-fold or greater increase in the phosphorylation of AMP-kinase and HMG-CoA reductase, and increased the phosphorylation of Ca++/calmodulin-dependent kinase kinase (CaMKK), an upstream AMP-kinase kinase. Intra-gastric administration of policosanol to mice similarly increased the phosphorylation of hepatic HMG-CoA reductase and AMP-kinase by greater than 2-fold. siRNA-mediated suppression of fatty aldehyde dehydrogenase, fatty acyl-CoA synthetase 4, and acyl-CoA acetyltransferase expression in hepatoma cells prevented the phosphorylation of AMP-kinase and HMG-CoA reductase by policosanol, indicating that metabolism of these very long chain alcohols to activated fatty acids is necessary for the suppression of cholesterol synthesis, presumably by increasing cellular AMP levels. Subsequent peroxisomal β-oxidation probably augments this effect. PMID:21359855

  8. DEVELOPMENT OF AN ENVIRONMENTAL ESTROGEN SCREEN USING TRANSIENTLY TRANSFECTED RAINBOW TROUT CELL LINES

    EPA Science Inventory

    Rainbow troutp hepatoma (RTH-149) and gonad cells (RTG-2) were used to develop a screening protocol for estrogen disrupting chemicals. Transfection of an estrogen-responsive luciferase reporter plasmid into...

  9. The therapeutic effect of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles/pEgr1-HSV-TK/GCV associated with radiation and magnet-induced heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Huang, Junxing; Zhang, Jia; Wang, Li; Xiao, Wei; Yu, Hong; Li, Yuntao; Li, Hongbo; Yuan, Chenyan; Hou, Xinxin; Zhang, Hao; Zhang, Dongsheng

    2013-01-01

    Comprehensive therapy based on the integration of hyperthermia, radiation, gene therapy and chemotherapy is a promising area of study in cancer treatment. Using PEI-Mn0.5Zn0.5Fe2O4 nanoparticles (PEI-MZF-NPs) as a gene transfer vector, the authors transfected self-prepared pEgr1-HSV-TK into HepG2 cells and measured the expression of the exogenous gene HSV-TK by RT-PCR. The results showed that HSV-TK was successfully transfected into HepG2 cells and the expression levels of HSV-TK remained stable. Besides, PEI-MZF-NPs were used as magnetic media for thermotherapy to treat hepatoma by magnet-induced heating, combined with radiation-gene therapy. Both in vitro and in vivo results suggest that this combined treatment with gene, radiation and heating has a better therapeutic effect than any of them alone. The apoptotic rate and necrotic rate of the combined treatment group was 51.84% and 15.45%, respectively. In contrast, it was only 20.55% and 6.80% in the radiation-gene group, 7.49% and 3.62% in the radiation-alone group, 15.23% and 7.90% in the heating-alone group, and only 3.52% and 2.16% in the blank control group. The inhibition rate of cell proliferation (88.5%) of the combined treatment group was significantly higher than that of the radiation-gene group (59.5%), radiation-alone group (37.6%) and heating-alone group (60.6%). The tumor volume and mass inhibition rate of the combined treatment group was 94.45% and 93.38%, respectively, significantly higher than 41.28% and 33.58% of the radiation-alone group, 60.76% and 52.18% of the radiation-gene group, 79.91% and 77.40% of the heating-alone group. It is therefore concluded that this combined application of heating, radiation and gene therapy has a good synergistic and complementary effect and PEI-MZF-NPs can act as a novel non-viral gene vector and magnetic induction medium, which offers a viable approach for the treatment of cancer.

  10. Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro.

    PubMed

    Yamaguchi, Masayoshi; Murata, Tomiyasu

    2018-04-05

    Regucalcin, which its gene is localized on the X chromosome, plays a pivotal role as a suppressor protein in signal transduction in various types of cells and tissues. Regucalcin gene expression has been demonstrated to be suppressed in various tumor tissues of animal and human subjects, suggesting a potential role of regucalcin in carcinogenesis. Regucalcin, which is produced from the tissues including liver, is found to be present in the serum of human subjects and animals. This study was undertaken to determine the effects of exogenous regucalcin on the proliferation in cloned human hepatoma HepG2 cells in vitro. Proliferation of HepG2 cells was suppressed after culture with addition of regucalcin (0.01 – 10 nM) into culture medium. Exogenous regucalcin did not reveal apoptotic cell death in HepG2 cells in vitro. Suppressive effects of regucalcin on cell proliferation were not enhanced in the presence of various signaling inhibitors including tumor necrosis factor-α (TNF-α), Bay K 8644, PD98059, staurosporine, worthomannin, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) or gemcitabine, which were found to suppress the proliferation. In addition, exogenous regucalcin suppressed the formation of colonies of cultured hepatoma cells in vitro. These findings demonstrated that exogenous regucalcin exhibits a suppressive effect on the growth of human hepatoma HepG2 cells, proposing a strategy with the gene therapy for cancer treatment.

  11. Gain of GRHL2 is associated with early recurrence of hepatocellular carcinoma.

    PubMed

    Tanaka, Yasuo; Kanai, Fumihiko; Tada, Motohisa; Tateishi, Ryosuke; Sanada, Masashi; Nannya, Yasuhito; Ohta, Miki; Asaoka, Yoshinari; Seto, Motoko; Shiina, Shuichiro; Yoshida, Haruhiko; Kawabe, Takao; Yokosuka, Osamu; Ogawa, Seishi; Omata, Masao

    2008-11-01

    The aim of this study is to identify genomic changes that might be implicated in hepatocellular carcinoma (HCC) progression, and evaluate the associations with clinico-pathological features. The genomic DNA of 17 hepatoma cell lines was analyzed using Affymetrix GeneChip Human Mapping 50K high-density oligonucleotide arrays. We selected representative genes from recurrent amplified regions and measured the copy number of these genes in 70 HCC clinical samples. We found 10 recurrent high-grade gain regions spanning less than 3 Mb in at least two hepatoma cell lines, and selected 10 representative genes. The copy number was almost normal in non-cancerous tissue and frequently amplified in Edmondson grade II or III HCC compared to Edmondson grade I HCC. Gain of TAX1BP1 in 7p15.2-1 was associated with larger tumor size and positivity of HCV antibody, and gain of CCND1 in 11q13.2-3 was associated with larger tumor size by multivariate analysis. Furthermore, a gain of GRHL2 in 8q22.3 was associated with early recurrence of HCC, controlling for clinical parameters. Decreased GRHL2 expression by RNA interference inhibits the growth of hepatoma cells, suggesting its association with cell proliferation. A gain of GRHL2 might be a predictive marker for HCC recurrence.

  12. Immunization With AFP + GM CSF Plasmid Prime and AFP Adenoviral Vector Boost in Patients With Hepatocellular Carcinoma

    ClinicalTrials.gov

    2015-12-01

    Hepatocellular Carcinoma; Hepatoma; Liver Cancer, Adult; Liver Cell Carcinoma; Liver Cell Carcinoma, Adult; Cancer of Liver; Cancer of the Liver; Cancer, Hepatocellular; Hepatic Cancer; Hepatic Neoplasms; Hepatocellular Cancer; Liver Cancer; Neoplasms, Hepatic; Neoplasms, Liver

  13. Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels.

    PubMed

    Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I

    2015-12-01

    Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hepatocellular differentiation status is characterized by distinct subnuclear localization and form of the chanzyme TRPM7.

    PubMed

    Ogunrinde, Adenike; Pereira, Robyn D; Beaton, Natalie; Lam, D Hung; Whetstone, Christiane; Hill, Ceredwyn E

    The channel-kinase TRPM7 is important for the survival, proliferation, and differentiation, of many cell types. Both plasma membrane channel activity and kinase function are implicated in these roles. Channel activity is greater in less differentiated hepatoma cells compared with non-dividing, terminally differentiated adult hepatocytes, suggesting differences in protein expression and/or localization. We used electrophysiological and immunofluorescence approaches to establish whether hepatocellular differentiation is associated with altered TRPM7 expression. Mean outward current decreased by 44% in WIF-B hepatoma cells incubated with the established hepatic differentiating factors oncostatin M/dexamethasone for 1-8 days. Pre-incubation with pyridone 6, a pan-JAK inhibitor, blocked the current reduction. An antibody targeted to the C-terminus of TRPM7 labelled the cytoplasm in WIF-B cells and intact rat liver. Significant label also localized to the nuclear envelope (NE), with relatively more detected in adult hepatocytes compared with WIF-B cells. Hepatoma cells also exhibited nucleoplasmic labelling with intense signal in the nucleolus. The endogenous labelling pattern closely resembles that of HEK293T cells heterologously expressing a TRPM7 kinase construct containing a putative nucleolar localization sequence. These results suggest that TRPM7 form and distribution between the plasma membrane and nucleus, rather than expression, is altered in parallel with differentiation status in rat hepatic cells. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  15. Isolation and characterization of nonhistone chromosomal protein C-14 which stimulates RNA synthesis.

    PubMed

    James, G T; Yeoman, L C; Matsui, S i; Goldberg, A H; Busch, H

    1977-05-31

    The nonhistone chromatin protein, C-14, was extracted from chromatin of Novikoff hepatoma ascites cells and isolated in high purity as shown by its migration as a single dense spot on two-dimensional polyacrylamide gels. Its mobility on sodium dodecyl sulfate gels is consistent with a molecular weight of approximately 70 000. The amino acid composition shows that protein C-14 has an acidic:basic amino acid ratio of 1.8. Its amino terminal amino acid is lysine. Protein C-14 stimulated the incorporation of [3H]UMP into RNA by approximately 30% when added to naked DNA and homologous RNA polymerase I. A 30% stimulation of [3H]UMP incorporation into RNA was also found when protein C-14 was added to an E. coli RNA polymerase system containing either E. coli or Novikoff hepatoma DNA.

  16. Increased efficacy of photodynamic therapy via sequential targeting

    NASA Astrophysics Data System (ADS)

    Kessel, David; Aggarwal, Neha; Sloane, Bonnie F.

    2014-03-01

    Photokilling depends on the generation of death signals after photosensitized cells are irradiated. A variety of intracellular organelles can be targeted for photodamage, often with a high degree of specificity. We have discovered that a low level of photodamage directed against lysosomes can sensitize both a murine hepatoma cell line (in 2D culture) and an inflammatory breast cancer line of human origin (in a 3D model) to subsequent photodamage directed at mitochondria. Additional studies were carried out with hepatoma cells to explore possible mechanisms. The phototoxic effect of the `sequential targeting' approach was associated with an increased apoptotic response. The low level of lysosomal photodamage did not lead to any detectable migration of Fe++ from lysosomes to mitochondria or increased reactive oxygen species (ROS) formation after subsequent mitochondrial photodamage. Instead, there appears to be a signal generated that can amplify the pro-apoptotic effect of subsequent mitochondrial photodamage.

  17. Differential Lectin Agglutination of Fetal, Dividing-Postnatal, and Malignant Hepatocytes

    PubMed Central

    Becker, F. F.

    1974-01-01

    Numerous studies have reported the capacity of the lectin, concanavalin A, to agglutinate selected cell-types. The finding that cells transformed in culture, embryonic cells, and malignant cells are all agglutinated by this substance, may contribute to our understanding of the oncogenic process. The present study compared the response to concanavalin A of rat hepatocytes derived from livers of differing developmental and mitotic-status as well as those derived from malignant liver tumors (hepatomas). Fetal hepatocytes and hepatoma cells were highly susceptible to agglutination while hepatocytes from post-natal livers, whether dividing or quiescent, were not. Treatment with protease(s) did not make the interphase hepatocyte agglutinable. These data emphasize the importance of examining a wide variety of cells in attempting to understand the interaction of lectins on cell surfaces, and further, demonstrate the value of obtaining cells directly from tissue(s) during differing physiologic and pathologic states. Images PMID:4373708

  18. Antitumor agent, physalin F from Physalis angulata L.

    PubMed

    Chiang, H C; Jaw, S M; Chen, C F; Kan, W S

    1992-01-01

    Physalin F and physalin D were isolated and characterized from the ethanolic extract of the whole plant of Physalis angulata L. (Solanaceae). Systematic fractionation of the ethanolic extract of the plant led to characterization of physalin F from the fraction PAIV-2 as an active ingredient which showed cytotoxicity in vitro by DEA and MTT assays on 8 cancer cell lines, five human cancer cell lines: HA22T(hepatoma), HeLa(cervix uteri), KB(nasopharynx), Colo-205(colon) and Calu-1(lung); and three animal cancer cell lines: H1477(melanoma), Hep-2(laryngeal) and 8401(glioma). It was found that the anti-hepatoma action is the strongest, and the anti-HeLa is the next. Physalin F also had an antitumor effect in vivo against P388 lymphocytic leukemia in mice whereas physalin D was inactive both in vitro and in vivo.

  19. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).

    PubMed

    Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao

    2015-01-02

    Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Pokemon reduces Bcl-2 expression through NF-κ Bp65: A possible mechanism of hepatocellular carcinoma.

    PubMed

    Zhao, Xinkai; Ning, Qiaoming; Sun, Xiaoning; Tian, De'an

    2011-06-01

    To investigate the relationship among Pokemon, NF-κ B p65 and Bcl-2 in hepatoma cells. HCC cell HepG2, SMMC7721 and human fetal liver cell line LO2 cells were used, and expression of Pokemon, NF-κ B p65 and Bcl-2 in three cells were detected by real-time PCR and western blot. Then siRNA of Pokemon was applied to inhibit the expression of Pokemon and NF-κ B p65 and apoptotic rate was determined by flow cytometric analysis. Expressions of Pokemon, NF-κ B p65 and Bcl-2 in human hepatoma cell HepG2, SMMC7721 expression were significantly higher than those in human embryonic stem cells LO2. siRNA of Pokemon inhibited the expression of Pokemon, NF-κ B p65 and Bcl-2 in liver cancer cells, and significantly increased apoptosis of liver cells. While siRNA of NF-κ B p65 inhibited the expression of NF-κ B p65 and Bcl-2, but Pokemon expression in hepatoma cells had no significant change. The proto-oncogene Pokemon can inhibit P14ARF by specific transcription regulation of cell cycle and can induce tumors. In addition, Pokemon can regulate NF-κ B p65 through the expression of apoptosis repressor, and promote the development of liver cancer. It suggests signal network in the liver include the regulation of new non-classical NF-κ B regulatory pathway. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Chengcheng; Chen, Juan; Chen, Ke

    The hepatitis B virus (HBV) is responsible for most of hepatocellular carcinoma (HCC). However, whether HBV plays an important role during hepatocarcinogenesis through effecting miRNAs remains unknown. Here, we reported that HBV up-regulated microRNA-181a (miR-181a) by enhancing its promoter activity. Simultaneously, we found that miR-181a inhibited apoptosis in vitro and promoted tumor cell growth in vivo. TNF receptor superfamily member 6 (Fas) was further identified as a target of miR-181a. We also found that Fas could reverse the apoptosis-inhibition effect induced by miR-181a. Moreover, HBV could inhibit cell apoptosis by down-regulating Fas expression, which could be reversed by miR-181a inhibitor.more » Our data demonstrated that HBV suppressed apoptosis of hepatoma cells by up-regulating miR-181a expression and down-regulating Fas expression, which may provide a new understanding of the mechanism in HBV-related HCC pathogenesis. - Highlights: • HBV could up-regulate miR-181a expression by interacting with nt−800 to +240 in its promoter region in HCC cell lines. • HBV could down-regulate Fas expression and suppress apoptosis of hepatoma cells, which could be reversed by miR-181a inhibitor. • Up-regulation of miR-181a promoted proliferation of hepatoma cells and repressed apoptosis, which could be reversed by Fas. • Our study provides a new understanding of the mechanism in HBV-related HCC pathogenesis.« less

  2. Biochemical Characterization of α‐Fetoprotein and Other Serum Proteins Produced by a Uterine Endometrial Adenocarcinoma

    PubMed Central

    Taketa, Kazuhisa; Azuma, Masaki; Yamamoto, Ritsu; Fujimoto, Seiichiro; Nishi, Shinzo

    1996-01-01

    A high serum α‐fetoprotein (AFP) level was found in a patient with endometrial adenocarcinoma of the uterus, which appeared to be hepatoid on histological examination. The AFP of this unusual patient was purified hy immunoaffinity chromatography and characterized. The electrophoretic profiles on sodium dodecyl sulfate‐polyacrylamide gel electrophoresis both before and after glycopeptidase F treatment were indistinguishable from those of a hepatoma AFP. This indicates that the patient's AFP was also composed of a single polypeptide chain of Mr 67,000 and an N‐linked sugar chain of Mr 3,000. Amino acid sequence analyses of this AFP, and of AFP from hepatoma and umbilical cord serum indicated that the N‐terminal sequences were essentially the same. The sequence, Arg‐Thr‐Leu‐His‐Arg‐Asn‐Glu‐Tyr‐Gly‐Ile, was slightly different from previous reports, but matched that deduced from the cDNA sequence. AFP isoforms due to microheterogeneity of the sugar chain were analyzed by lectin affinity electrophoresis using a series of lectins. The AFP isoform profiles were distinct from those of proteins derived from cord serum, hepatoma, yolk sac tumor and gastric cancer. The reverse‐transcription of RNA from the tumor tissue followed by a polymerase chain reaction using primers with AFP‐specific sequences gave a product of the size and nucleotide sequence expected for AFP. mRNAs possessing the requisite sequences for albumin and transferrin syntheses were also detected in the tumor. The expression of these hepatocyte‐specific proteins supported the hepatoid nature of this tumor. PMID:8766525

  3. Glycolipids as indicators of tumorigenesis.

    PubMed

    Morré, D J; Kloppel, T M; Merritt, W D; Keenan, T W

    1978-01-01

    Hyperplastic liver nodules and hepatocellular carcinomas were induced in rats by oral administration of the carcinogen N-2-fluorenylacetamide. Neoplastic tissue was compared with control, fetal, neonatal, and precancerous liver tissues. The development of the tumors was slow, such that temporal changes in the biochemical and morphologic development of carcinogenesis could be identified. Ganglioside sialic acid levels were elevated in all but the most poorly differentiated tumors. Experiments to monitor individual enzymes suggested that the alterations in glycolipid composition were a direct effect of alterations in biosynthetic activities. The pattern during tumorigenesis was the inverse of that during normal development. Also, ganglioside patterns showed a progressive simplification from hyperplastic nodules to well-differentiated hepatomas and through two grades of poorly differentiated hepatomas. An increase in the activity of the branchpoint enzyme of ganglioside biosynthesis preceded both a decrease in the branchpoint enzyme of the disialoganglioside pathway and a marked increase in the galactosyltranferase of GM1 formation. The results indicate that ganglioside deletions are the end result of a cascade of events in the tumorigenic transformation. The onset of ganglioside deletions but not of the cascade per se may correlate with the onset of malignancy. Glycolipid levels are elevated early in certain surrounding tissues especially in the blood. In rats bearing transplantable hepatomas, serum levels of lipid-bound sialic acid were elevated 2.5-fold. Similar results were obtained with sera of mice bearing transplantable mammary carcinomas and of cancer patients. These findings provide new emphasis for gangliosides in both cancer detection and as regulatory signals for growth and multiplication of cells.

  4. The microRNA-99 family modulates hepatitis B virus replication by promoting IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy.

    PubMed

    Lin, Yong; Deng, Wanyu; Pang, Jinke; Kemper, Thekla; Hu, Jing; Yin, Jian; Zhang, Jiming; Lu, Mengji

    2017-05-01

    MicroRNAs are small highly conserved noncoding RNAs that are widely expressed in multicellular organisms and participate in the regulation of various cellular processes including autophagy and viral replication. Evidently, microRNAs are able to modulate host gene expression and thereby inhibit or enhance hepatitis B virus (HBV) replication. The miR-99 family members are highly expressed in the liver. Interestingly, the plasma levels of miR-99 family in the peripheral blood correspond with HBV DNA loads. Thus, we asked whether the miR-99 family regulated HBV replication and analyzed the underlying molecular mechanism. Compared with primary hepatocytes, miR-99 family expression was downregulated in hepatoma cells. Transfection of miR-99a, miR-99b, and miR-100 markedly increased HBV replication, progeny secretion, and antigen expression in hepatoma cells. However, miR-99 family had no effect on HBV transcription and HBV promoter activities, suggesting that they regulate HBV replication at posttranscriptional steps. Consistent with bioinformatic analysis and recent reports, ectopic expression of miR-99 family attenuated IGF-1R/Akt/mTOR pathway signaling and repressed insulin-stimulated activation in hepatoma cells. Moreover, the experimental data demonstrated that the miR-99 family promoted autophagy through mTOR/ULK1 signaling and thereby enhanced HBV replication. In conclusion, the miR-99 family promotes HBV replication posttranscriptionally through IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy. © 2016 John Wiley & Sons Ltd.

  5. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging.

    PubMed

    Kim, Dongkyu; Park, Sangjin; Lee, Jae Hyuk; Jeong, Yong Yeon; Jon, Sangyong

    2007-06-20

    Current computed tomography (CT) contrast agents such as iodine-based compounds have several limitations, including short imaging times due to rapid renal clearance, renal toxicity, and vascular permeation. Here, we describe a new CT contrast agent based on gold nanoparticles (GNPs) that overcomes these limitations. Because gold has a higher atomic number and X-ray absorption coefficient than iodine, we expected that GNPs can be used as CT contrast agents. We prepared uniform GNPs ( approximately 30 nm in diameter) by general reduction of HAuCl4 by boiling with sodium citrate. The resulting GNPs were coated with polyethylene glycol (PEG) to impart antibiofouling properties, which extends their lifetime in the bloodstream. Measurement of the X-ray absorption coefficient in vitro revealed that the attenuation of PEG-coated GNPs is 5.7 times higher than that of the current iodine-based CT contrast agent, Ultravist. Furthermore, when injected intravenously into rats, the PEG-coated GNPs had a much longer blood circulation time (>4 h) than Ultravist (<10 min). Consequently, CT images of rats using PEG-coated GNPs showed a clear delineation of cardiac ventricles and great vessels. On the other hand, relatively high levels of GNPs accumulated in the spleen and liver, which contain phagocytic cells. Intravenous injection of PEG-coated GNPs into hepatoma-bearing rats resulted in a high contrast ( approximately 2-fold) between hepatoma and normal liver tissue on CT images. These results suggest that PEG-coated GNPs can be useful as a CT contrast agent for a blood pool and hepatoma imaging.

  6. [Abnormal expression of insulin-like growth factor-I receptor and inhibitory effect of its transcription intervention on nude mice xenograft tumor].

    PubMed

    Yao, M; Yan, X D; Cai, Y; Gu, J J; Yang, X L; Pan, L H; Wang, L; Yao, D F

    2016-11-20

    Objective: To investigate the expression of insulin-like growth factor-I receptor (IGF-IR) in liver cancer and the inhibitory effect of its transcription intervention on nude mice xenograft tumor. Methods: A total of 40 patients with primary liver cancer were enrolled, and 40 samples of cancer lesions, peri-cancerous tissues (with a distance of 2 cm to the margin of cancer lesion), or distal liver tissues (with a distance of 5 cm to the margin of cancer lesion), with a weight of 200 mg, were collected after surgery. Some of these samples were used for pathological examination, and the rest were stored at -85°C. A total of 18 BALB/c nude mice aged 4-6 weeks with a body weight of 18-20 g (9 male and 9 female mice) were randomly divided into control group, negative control group, and co-intervention group, with 6 mice in each group, and fed under specific pathogen-free conditions. The cell line was cultured in the dimethyl sulfoxide complete medium containing 10% fetal bovine serum in a CO 2 incubator at 37°C. When the cell confluence reached 90% after cell inoculation, shRNA was divided into co-intervention group, negative control group, and untreated control group and were transfected to hepatoma cells using PolyJetTM transfection reagent. Stable cell clones obtained by G418 screening and used for the in vivo study. Immunohistochemistry, Western blotting, and quantitative real-time PCR were used to analyze the expression of IGF-IR in the human hepatoma tissue and cell line. The IGF-IR shRNA eukaryotic expression plasmids were established and screened for the most effective sequence; they were transfected to PLC/PRF/5 hepatoma cells, and the CCK-8 assay was used to analyze the changes in cell proliferation. The stable cell line screened out by G418 was inoculated to establish the subcutaneous xenograft tumor in nude mice. The tumor growth curve was plotted and histological examination was performed. Graphpad Prism 5.0 and SPSS 18.0 were used for plotting and data

  7. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cellsmore » versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.« less

  8. Binding diversity of antibodies against external and internal epitopes of the multidrug resistance gene product P-glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehne, G.; De Angelis, P.; Clausen, O.P.F.

    1995-07-01

    P-glycoprotein (Pgp) is a trans-membraneous protein that is associated with multidrug resistance (MDR) in human cancer, including hepatocellular carcinomas and leukemia. There is no consensus regarding methods of choice for analysis of Pgp expression, and development of reliable analytical methods is now essential. We have studied the Pgp expression in human hepatoma and leukemia cell lines using flow cytometry. The aim of the study was to compare binding properties of anti-Pgp antibodies reacting with surface (MRK16, UIC2) and cytoplasmic (C219, JSB-1) epitopes to assess which antibody performed best with respect to fluorescence discrimination. By histogram subtraction the fractions of resistantmore » human hepatoma cells positive for Pgp were 99% (MRK16), 97% (UIC2), 77% (USB-1), and 51% (C219), demonstrating variations in antibody reactivity. The resolution in detecting decreasing levels of Pgp in hepatoma cells was superior for the externally binding antibodies, showing that there is a correlation between antibody reactivity and fluorescence discrimination. Similar results were obtained for parental and resistant KG1a human leukemia cell lines. The Pgp epitopes remained reactive to the anti-Pgp MAbs after methanol fixation and cryopreservation. By dual parameter flow cytometry it was shown that Pgp expression in viable cells may be assessed together with uptake of epirubicin, which was low in cells expressing high levels of Pgp and vice versa. In conclusion, all tested antibodies proved useful for flow cytometric detection of high levels of Pgp, but the externally binding ones were superior in detection of low and variable levels of Pgp. 36 refs., 8 figs., 1 tab.« less

  9. Endoplasmic reticulum factor ERLIN2 regulates cytosolic lipid content in cancer cells

    PubMed Central

    Wang, Guohui; Zhang, Xuebao; Lee, Jin-Sook; Wang, Xiaogang; Yang, Zeng-Quan; Zhang, Kezhong

    2013-01-01

    Increased de novo lipogenesis is a hallmark of aggressive cancers. Lipid droplets, the major form of cytosolic lipid storage, have been implicated in cancer cell proliferation and tumorigenesis. Recently, we identified the ERLIN2 [ER (endoplasmic reticulum) lipid raft-associated 2) gene that is amplified and overexpressed in aggressive human breast cancer. Previous studies demonstrated that ERLIN2 plays a supporting oncogenic role by facilitating the transformation of human breast cancer cells. In the present study, we found that ERLIN2 supports cancer cell growth by regulating cytosolic lipid droplet production. ERLIN2 is preferably expressed in human breast cancer cells or hepatoma cells and is inducible by insulin signalling or when cells are cultured in lipoprotein-deficient medium. Increased expression of ERLIN2 promotes the accumulation of cytosolic lipid droplets in breast cancer cells or hepatoma cells in response to insulin or overload of unsaturated fatty acids. ERLIN2 regulates activation of SREBP (sterol regulatory element-binding protein) 1c, the key regulator of de novo lipogenesis, in cancer cells. ERLIN2 was found to bind to INSIG1 (insulin-induced gene 1), a key ER membrane protein that blocks SREBP activation. Consistent with the role of ERLIN2 in regulating cytosolic lipid content, down-regulation of ERLIN2 in breast cancer or hepatoma cells led to lower cell proliferation rates. The present study revealed a novel role for ERLIN2 in supporting cancer cell growth by promoting the activation of the key lipogenic regulator SREBP1c and the production of cytosolic lipid droplets. The identification of ERLIN2 as a regulator of cytosolic lipid content in cancer cells has important implications for understanding the molecular basis of tumorigenesis and the treatment of cancer. PMID:22690709

  10. pH- and redox-responsive nanoparticles composed of charge-reversible pullulan-based shells and disulfide-containing poly(ß-amino ester) cores for co-delivery of a gene and chemotherapeutic agent.

    PubMed

    Zhang, Sipei; Wang, Dan; Li, Yating; Li, Ling; Chen, Hongli; Xiong, Qingqing; Liu, Yuanyuan; Wang, Yinsong

    2018-08-10

    A novel pH- and redox-responsive nanoparticle system was designed based on a charge-reversible pullulan derivative (CAPL) and disulfide-containing poly(β-amino ester) (ssPBAE) for the co-delivery of a gene and chemotherapeutic agent targeting hepatoma. The end-alkene groups of ssPBAE were reacted with diethylenetriamine to form amino-modified ssPBAE (NH-ssPBAE). Methotrexate (MTX), a chemotherapy agent, was then conjugated to NH-ssPBAE via an amide bond to obtain the polymeric prodrug ssPBAE-MTX. ssPBAE-MTX exhibited a good capability for condensing genes, including plasmid DNA (pDNA) and tetramethyl rhodamine-labeled DNA (TAMRA-DNA), and almost completely condensed pDNA at the weight ratio of 5/1 to form spherical nanocomplexes with a uniform size. In a D,L-dithiothreitol solution, the ssPBAE-MTX/pDNA nanocomplexes showed rapid release of pDNA and MTX, indicating their redox-responsive capability. CAPL, a pullulan derivative containing β-carboxylic amide bond, was efficiently coated on the surfaces of ssPBAE-MTX/pDNA nanocomplexes to form polysaccharide shells, thus realizing co-loading of the gene and chemotherapeutic agent. CAPL/ssPBAE-MTX/pDNA nanoparticles displayed an obvious pH-responsive charge reversal ability due to the rupture of the β-carboxylic amide bond under the weakly acidic condition. In human hepatoma HepG2 cells, CAPL/ssPBAE-MTX/TAMRA-DNA nanoparticles were efficiently internalized via endocytosis and successfully escaped from the endo/lysosomes into the cytoplasm, and CAPL/ssPBAE-MTX/pDNA nanoparticles remarkably inhibited the cell growth. In summary, this nanoparticle system based on CAPL and ssPBAE showed great potential for combined gene/chemotherapy on hepatomas.

  11. MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA.

    PubMed

    Lu, Zhanping; Zhang, Weiying; Gao, Shan; Jiang, Qiulei; Xiao, Zelin; Ye, Lihong; Zhang, Xiaodong

    MicroRNAs acting as oncogenes or tumor suppressor genes play crucial roles in human cancers. Sphingosine kinase 1 (SPHK1) and its metabolite sphingosine 1-phosphate (S1P) contribute to tumor angiogenesis. We have reported that the down-regulation of miR-506 targeting YAP mRNA results in the hepatocarcinogenesis. In the present study, we report a novel function of miR-506, which suppresses tumor angiogenesis through targeting SPHK1 mRNA in liver cancer. Bioinformatics analysis showed that miR-506 might target 3'-untranslated region (3'UTR) of SPHK1 mRNA. Then, we validated that by luciferase reporter gene assays. MiR-506 was able to reduce the expression of SPHK1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis in hepatoma HepG2 cells. Functionally, human umbilical vein endothelial cell (HUVEC) tube formation assays demonstrated that the forced miR-506 expression remarkably inhibited the production of S1P in the supernatant of hepatoma cells. The supernatant resulted in the inhibition of tumor angiogenesis. Interestingly, the supernatant with overexpression of SPHK1 could rescue the inhibition of angiogenesis of liver cancer mediated by miR-506. Anti-miR-506 increased the production of S1P in the supernatant of hepatoma cells, but the supernatant with silencing of SPHK1 abolished anti-miR-506-induced acceleration of tumor angiogenesis. Clinically, we observed that the levels of miR-506 were negatively related to those of SPHK1 mRNA in liver cancer tissues. Thus, we conclude that miR-506 depresses the angiogenesis of liver cancer through targeting 3'UTR of SPHK1 mRNA. Our finding provides new insights into the mechanism of tumor angiogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effects of the augmenter of liver regeneration on the biological behavior of hepatocellular carcinoma.

    PubMed

    Tang, Lin; Sun, Hang; Zhang, Lin; Deng, Jian C; Guo, Hui; Zhang, Ling; Liu, Qi

    2009-08-01

    To take advantage of the small interfering ribonucleic acid (siRNA) targeting the human augmenter of liver regeneration (hALR) and anti-hALR monoclonal antibody (McAb) to inhibit the function of hALR, and to demonstrate whether the growth of hepatoma is influenced by siRNA targeting hALR and anti-hALR McAb through inhibiting expression of hALR. This study was conducted in the Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Chongqing Medical University, China, between January 2005 and May 2007. We transfected siRNA plasmid pSIALR-A, which targeted the complementary deoxyribonucleic acid (cDNA) of hALR and the unrelated control plasmid pSIALR-B into human hepatocellular liver carcinoma cell line (HepG2) cells. Then, the proliferation of HepG2 cells, after being treated with pSIALR-A and anti-hALR McAb was detected. The growth of the xenograft tumor was observed after being treated with pSIALR-A and anti-hALR McAb in nude mice. We successfully constructed expressing plasmid pSIALR-A and pSIALR-B. The pSIALR-A inhibited the expression of hALR in HepG2 cells significantly. The siRNA targeting hALR and anti-hALR McAb inhibited obviously the growth of HepG2 cells in vitro. siRNA targeting hALR and anti-hALR McAb significantly inhibited the growth of xenograft tumor in 5 nude mice. Anti-hALR McAb inhibited apparently the autonomous growth of HepG2 cells. Our results demonstrated that anti-hALR McAb inhibited the autonomous growth of hepatoma cells obviously, moreover, hALR maintained the autonomous growth of hepatoma cells in vitro through an autocrine mechanism.

  13. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation.

    PubMed

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A; Jayaram, Hiremagalur N; Crabb, David W

    2008-12-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H(2)O(2), 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H(2)O(2) markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-zeta, LKB1, and AMPK caused by exposure to H(2)O(2). This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H(2)O(2)-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-zeta and LKB1 phosphorylation and the activation of PP2A.

  14. Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase.

    PubMed Central

    Dailey, H A; Smith, A

    1984-01-01

    The mechanism of porphyrin accumulation by tumours is not yet established. If metabolism aids porphyrin elimination, tumours, unlike normal tissues, may not metabolize porphyrins used clinically, such as proto-, haemato-, OO'-diacetyl-haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin. Proto-, haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin are substrates for the mitochondrial enzyme ferrochelatase (EC 4.99.1.1), which can form haem analogues from exogenous porphyrins. The Km values for proto-, haemato- and monohydroxyethyl-monovinyl-deutero-porphyrin are 11, 22 and 23 microM respectively. However, OO'-diacetyl-haematoporphyrin is an effective competitive inhibitor with Ki of 11 microM. Hepatic ferrochelatase specific activity is 5.9 and 5.5 nmol of haem/h per mg of protein respectively in normal Buffalo rat and in those bearing the extrahepatic Morris 7288C hepatoma, and is only 0.13 nmol/h per mg in the hepatomas. Therefore low ferrochelatase activity in cancerous cells may provide one means whereby some porphyrins accumulate in tumours, and the ability of certain porphyrins to act as ferrochelatase inhibitors may provide another. PMID:6497856

  15. Synthesis, antimalarial activity in vitro, and docking studies of novel neolignan derivatives.

    PubMed

    Pereira, Glaécia A N; Souza, Gisele C; Santos, Lourivaldo S; Barata, Lauro E S; Meneses, Carla C F; Krettli, Antoniana U; Daniel-Ribeiro, Cláudio Tadeu; Alves, Cláudio Nahum

    2017-09-01

    The absence of effective vaccines against malaria and the difficulties associated with controlling mosquito vectors have left chemotherapy as the primary control measure against malaria. However, the emergence and spread of parasite resistance to conventional antimalarial drugs result in a worrisome scenario making the search for new drugs a priority. In the present study, the activities of nine neolignan derivatives were evaluated as follows: (i) against blood forms of chloroquine-resistant Plasmodium falciparum (clone W2), using the tritiated hypoxanthine incorporation and anti-HRPII assays; (ii) for cytotoxic activity against cultured human hepatoma cells (HepG2); and (iii) for intermolecular interaction with the P. falciparum cysteine protease of falcipain-2 (F2) by molecular docking. The neolignan derivatives 9 and 10 showed activity against the blood form of the chloroquine-resistant P. falciparum clone W2 and were not cytotoxic against cultured human hepatoma cells. A molecular docking study of these two neolignans with FP2 revealed several intermolecular interactions that should guide the design of future analogs. © 2017 John Wiley & Sons A/S.

  16. STUDIES ON THE DISTRIBUTION AND PHOSPHATE TURNOVER OF THE ACID-SOLUBLE PHOSPHORUS COMPOUNDS IN VARIOUS NORMAL AND NEOPLASTIC TISSUES OF RATS. II. COMPARISON OF THE CHROMATOGRAMS OBTAINED WITH VARIOUS TISSUES INCLUDING TUMOURS (ENGLISH TEXT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, S.

    Using a modified semi-micro gradient elution method of chromatography, the distribution of the acid-soluble nucleotides in various normal and neoplastic tissues of rats was compared and the variations of the distribution are described. The distribution and phosphate turnover of the acid-soluble phosphorus compounds were also studied by intraperitoneal injection of P/sup 32/ followed by the chromatographic analysis. The distribution patterns of nucleotides and radioactivity in liver, muscle, heart, lung, thymus, spleen, testicles, brain, fetal liver, and experimental hepatomas are illustrated and the differences between these tissues were pointed out. The characteristics of the experimental hepatoma tissue as compared with themore » normal liver tissue are as follows: The concentration of oxidized DPN was low; the incorporation of P/sup 32/ inorganic phosphate into glucose 6-phosphate and L- alpha -glycerophosphate was absent or, if any, very low; radioactivity of inorganic phosphate in the total acid-soluble radioactivity was extraordinarily high as compared with other tissues besides the liver tissue. (Abstr. Japan Med., 1: No. 9, 1961)« less

  17. Autoinducer-2 Production in Campylobacter jejuni Contributes to Chicken Colonization ▿

    PubMed Central

    Quiñones, Beatriz; Miller, William G.; Bates, Anna H.; Mandrell, Robert E.

    2009-01-01

    Inactivation of luxS, encoding an AI-2 biosynthesis enzyme, in Campylobacter jejuni strain 81-176 significantly reduced colonization of the chick lower gastrointestinal tract, chemotaxis toward organic acids, and in vitro adherence to LMH chicken hepatoma cells. Thus, AI-2 production in C. jejuni contributes to host colonization and interactions with epithelial cells. PMID:19011073

  18. New Poly(3-hydroxybutyrate) Microparticles with Paclitaxel Sustained Release for Intraperitoneal Administration.

    PubMed

    Bonartsev, Anton P; Zernov, Anton L; Yakovlev, Sergey G; Zharkova, Irina I; Myshkina, Vera L; Mahina, Tatiana K; Bonartseva, Garina A; Andronova, Natalia V; Smirnova, Galina B; Borisova, Juliya A; Kalishjan, Mikhail S; Shaitan, Konstantin V; Treshalina, Helena M

    2017-01-01

    Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. This study was conducted to develop new prolong paclitaxel (PTX) formulation based on poly(3- hydroxybutyrate) (PHB) microparticles. PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The PTX release kinetics in vitro from PHB microparticles and their cytotoxity on murine hepatoma cell line MH-22a were studied. Microparticles antitumor activity in vivo was studied using intraperitoneally (i.p.) transplanted tumor models: murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. Uniform PTX release from PHB-microparticles during 2 months was observed. PTX-loaded PHB microparticles have demonstrated a significant antitumor activity versus pure drug both in vitro in murine hepatoma cells and in vivo when administered i.p. to mice with murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. The developed technique of PTX sustained delivery from PHB-microparticles has therapeutic potential as prolong anticancer drug formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. In Vitro Alterations Do Not Reflect a Requirement for Host Cell Cycle Progression during Plasmodium Liver Stage Infection

    PubMed Central

    Hanson, Kirsten K.; March, Sandra; Ng, Shengyong; Bhatia, Sangeeta N.

    2014-01-01

    Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection. PMID:25416236

  20. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations.

    PubMed

    Elizalde, María Mercedes; Pérez, Paula Soledad; Sevic, Ina; Grasso, Daniel; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy.

  1. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations

    PubMed Central

    Pérez, Paula Soledad; Sevic, Ina; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy. PMID:29738548

  2. Increased vascular endothelial growth factor transcription in residual hepatocellular carcinoma after open versus laparoscopic hepatectomy in a small animal model.

    PubMed

    Perry, Kyle A; Enestvedt, C Kristian; Hosack, Luke W; Pham, Thai H; Diggs, Brian S; Teh, Swee; Orloff, Susan; Winn, Shelly; Hunter, John G; Sheppard, Brett C

    2010-05-01

    Vascular endothelial growth factor (VEGF) is overexpressed in hepatocellular carcinoma (HCC), and findings have shown that its upregulation in these tumors has an impact on tumor growth. The authors hypothesized that compared with open liver resection, laparoscopic hepatectomy would result in a decreased local angiogenic response in residual tumor cells. Right- and left-lobe hepatomas were induced in Buffalo rats via laparoscopically guided subcapsular injection of Morris hepatoma cells. After 1 week, the animals were randomized to laparoscopic or open left lateral hepatectomy. In 14 days after resection, the rats were killed, the residual right lobe tumors were measured, and tissue was procured for RNA extraction. Transcript levels of VEGF messenger RNA (mRNA) were quantified with reverse transcriptase-polymerase chain reaction (RT-PCR), and VEGF serum levels were measured by enzyme-linked immunoassay (ELISA) both before resection and at the time of tissue harvest. None of the animals had development satellite liver lesions or distant metastases in the abdomen or thorax. The median residual tumor volume was 320 mm(3) in the open group compared with 180 mm(3) in the laparoscopic group (p = 0.164). The animals that underwent open resection had a 1.3-fold increase in VEGF mRNA transcript levels compared with the laparoscopic resection group (p = 0.008). The serum VEGF levels were not significantly different between the laparoscopic and open groups at baseline (open tumor resection [OR], 23.7 +/- 12.0 pg/ml; laparoscopic tumor resection [LR], 30.7 +/- 15.5 pg/ml; p = 0.334) nor at the time of tissue harvest (OR, 19.9 +/- 19.6 pg/ml; LR, 26.9 +/- 34.5 pg/ml; p = 0.549). Laparoscopic hepatic resection produces decreased VEGF mRNA expression in residual hepatoma cells compared with open resection. Decreased stimulation of angiogenesis promoters in the tumor microenvironment after minimally invasive liver resection may contribute to a lower residual disease burden and

  3. In vivo/in vitro comparison of pharmacokinetics and pharmacodynamics of 3,3',4,4'-tetrachlorobiphenyl (PCB77)

    USGS Publications Warehouse

    Yu, Kyung O.; Tillitt, Donald E.; Byczkowski, Janusz Z.; Burton, G. Allen; Channel, Stephen R.; Drerup, Joanne M.; Flemming, Carlyle D.; Fisher, Jeffrey W.

    1996-01-01

    The rat hepatoma cell line, H4IIE, serves as a useful tool to assess potential biological effects such as induction of cytochrome P4501A1 expression. The objectives of this study were twofold: to investigate the kinetic time course and dosimetry of PCB77 in rat hepatoma cells dosed with PCB77 and in liver of rats given ip doses of PCB77, and to comparein vitroandin vivoP4501A1 enzyme induction responses. For the 4-day time–course study, H4IIE cells were exposed with two doses of [14C]PCB77 (0.9 and 3 μg/plate) and harvested at 15 and 30 min, 1, 2, 4, 8, and 12 hr, and 1, 2, 3, and 4 days. PCB77-derived radioactivity was detected in the cells as early as 15 min postdosing. For the dose–response study, the cells were dosed with various concentrations of PCB77 (0.00316–5.37 μg/plate) and harvested on Day 3 since ethoxyresorufinO-deethylase (EROD) activityin vitroreached its maximum on the third day postdosing. Time–course and dose–response studies revealed that only 1–3% of the total delivered dose was found in the cells, with the remainder in the media and adhering to the culture plates. For the dose–response studyin vivo,male Fischer rats were dosed with a single ip injection of various concentrations of PCB77 (0.1–50 mg/kg body wt) and euthanized on Day 3. PCB77-derived radioactivity and EROD inductionin vivowere measured. When EROD activity and PCB77-derived radioactivity in the rat hepatoma cells and in the rat liver were compared on an equivalent weight basis, there was a significant correlation (r2= 0.985) between them. Prior to this study, no information on quantitative dosimetry and EROD activities of PCB77 has been reported to validate thein vitroassay within vivodata.

  4. Synthesis and biological evaluation of 2-heteroarylthioalkanoic acid analogues of clofibric acid as peroxisome proliferator-activated receptor alpha agonists.

    PubMed

    Giampietro, Letizia; Ammazzalorso, Alessandra; Giancristofaro, Antonella; Lannutti, Fabio; Bettoni, Giancarlo; De Filippis, Barbara; Fantacuzzi, Marialuigia; Maccallini, Cristina; Petruzzelli, Michele; Morgano, Annalisa; Moschetta, Antonio; Amoroso, Rosa

    2009-10-22

    A series of 2-heteroarylthioalkanoic acids were synthesized through systematic structural modifications of clofibric acid and evaluated for human peroxisome proliferator-activated receptor alpha (PPARalpha) transactivation activity, with the aim of obtaining new hypolipidemic compounds. Some thiophene and benzothiazole derivatives showing a good activation of the receptor alpha were screened for activity against the PPARgamma isoform. The gene induction of selected compounds was also investigated in the human hepatoma cell line.

  5. Psiguadials A and B, two novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava.

    PubMed

    Shao, Meng; Wang, Ying; Liu, Zhong; Zhang, Dong-Mei; Cao, Hui-Hui; Jiang, Ren-Wang; Fan, Chun-Lin; Zhang, Xiao-Qi; Chen, He-Ru; Yao, Xin-Sheng; Ye, Wen-Cai

    2010-11-05

    Psiguadials A (1) and B (2), two novel sesquiterpenoid-diphenylmethane meroterpenoids with unusual skeletons, along with a pair of known epimers, psidial A (3) and guajadial (4), were isolated from the leaves of Psidium guajava. Their structures with absolute configurations were elucidated by means of NMR, X-ray diffraction, and quantum chemical CD calculation. Compounds 1, 2, and 4 exhibited potent inhibitory effects on the growth of human hepatoma cells.

  6. Biochemical Testing of Potentially Hazardous Chemicals for Toxicity Using Mammalian Liver Cell Cultures.

    DTIC Science & Technology

    1992-04-09

    the culture medium. The HEPA-2 mouse cells are known to synthesize and to secrete albumin, alpha - fetoprotein , transferrin, ceruloplasmin and...Parker, C.L. and Kute, T.E. (1981). Immunoprecipitation assay of alpha - fetoprotein synthesis by cultured mouse hepatoma cells treated with estrogens and...Infection and Immunity 34:908-914. Rosebrock, J.A., C.L. Parker and T.E. Kute (1981). Immunoprecipitation assay of alpha - fetoprotein synthesis by cultured

  7. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome.

    PubMed

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam

    2014-05-01

    Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.

  8. Effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression in primary cultures of normal rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraud, B.; Balavoine, S.; Feldmann, G.

    1996-04-01

    While the effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression have been investigated in various hepatoma cell lines, the individual and combined effects of these components on the expression of this gene have been rarely studied in cultured normal rat hepatocytes. In this cell model, we have shown that mRNA levels of {alpha}{sub 1}-acid glycoprotein were not decreased at least during the first 24 h of culture under basal conditions. During these short-term cultures, the expression of {alpha}{sub 1}-acid glycoprotein in normal hepatocytes showed a high degree of responsiveness to dexamethasone alone (20-fold increase) and tomore » dexamethasone associated with various cytokines (interleukin-1{beta}, interleukin-6 and tumor necrosis factor {alpha}) with a 40 to 100-fold increase depending on the cytokine. Insulin alone did not modify {alpha}{sub 1}-acid glycoprotein mRNA; however, this hormone exerted a positive effect (about 50% increase) in the presence of dexamethasone or dexamethasone with cytokines. These results indicate that the regulation of {alpha}{sub 1}-acid glycoprotein in cultured normal rat hepatocytes presents major differences when compared to reported observations in rat hepatoma cell lines. 49 refs., 2 figs., 2 tabs.« less

  9. Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Pengtao; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049; Huang, Zhen

    2013-04-19

    Highlights: •Free fatty acids exposure induces elevated autophagy. •H{sub 2}O{sub 2} inhibits autophagic flux through impairing the fusion between autophagosomes and lysosomes. •Inhibition of autophagy potentiates H{sub 2}O{sub 2}-induced cell death. -- Abstract: Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, but the pathogenesis of NAFLD is not fully clear. The aim of this study was to determine whether autophagy plays a role in the pathogenesis of NAFLD. We found that the levels of autophagy were elevated in hepatoma cells upon exposure to free fatty acids, as confirmed by the increase in the numbermore » of autophagosomes. However, exposure of hepatoma cells to H{sub 2}O{sub 2} and TNF-α, two typical “second hit” factors, increased the initiation of autophagy but inhibited the autophagic flux. The inhibition of autophagy sensitized cells to pro-apoptotic stimuli. Taken together, our results suggest that autophagy acts as a protective mechanism in the pathogenesis of NAFLD and that impairment of autophagy might induce more severe lesions of the liver. These findings will be a benefit to the understanding of the pathogenesis of NAFLD and might suggest a strategy for the prevention and cure of NAFLD.« less

  10. In vitro cytotoxicity of allelopathic plants Adonis vernalis L. Origanum vulgare ssp. vulgare L. and Nepeta nuda subsp. nuda

    NASA Astrophysics Data System (ADS)

    Koleva, Vanya; Dragoeva, Asya; Stoyanova, Zheni; Yordanova, Zhenia; Ali, Selime; Uzunov, Nikolay M.; Melendez-Alafort, Laura; Rosato, Antonio; Enchev, Dobromir D.

    2018-03-01

    Medicinal plants produce various secondary metabolites as a part of their chemical defence and survival in nature. These compounds have a wide range of biological activities. Nowadays, medicinal plants are used as source of allelochemicals and new effective anticancer agents. Our previous studies revealed allelopathic potential of water extracts of Adonis vernalis L. (Ranunculaceae), Origanum vulgare ssp. vulgare L. and Nepeta nuda subsp. nuda (Lamiaceae). Present study aimed to evaluate the effect of the same extracts in vitro on human hepatoma cell line SK-HEP-1. Cell proliferation/viability was assessed using Premixed WST-1 Cell Proliferation Reagent. Adonis water extract (1.83mg/ml) had notable negative influence on cancer cell line tested. Oregano (3.5 mg/ml) also exerted negative effect, but to a lesser degree. On the contrary, nepeta water extract (6.59 mg/ml) had an opposite effect, stimulating cell proliferation. One possible explanation could be the type of extraction: after treatment with nepeta methanol extract (6.59 mg/ml) cell viability was significantly reduced. In conclusion, Adonis vernalis and Nepeta nuda subsp. nuda possess metabolites with growth inhibitory effect on human hepatoma cell line SK-HEP-1. Further research is needed to clarify biological activity of lower concentrations which are appropriate to enable the design of new anticancer drugs.

  11. Genotoxic activity and induction of biotransformation enzymes in two human cell lines after treatment by Erika fuel extract.

    PubMed

    Amat-Bronnert, Agnès; Castegnaro, Marcel; Pfohl-Leszkowicz, Annie

    2007-01-01

    On 12 December 1999, the tanker Erika broke in two parts at about 60km from the Brittany French coasts (Point of Penmarc'h, Sud Finistère, France). About 10,000tonnes of heavy oil fuel were released in the sea. DNA adduct have been detected in fish liver and mussels digestive gland exposed to the Erika oil spill. In order to investigate the mechanism by which Erika fuel extract exhibits genotoxic effects the induction of DNA adducts by an Erika fuel extract have been analysed on two cell lines, human epithelial bronchial cells (WI) and human hepatoma cells. DNA adducts, reflected by a diagonal radioactive zone and individual adducts are detected only in hepatoma cells indicating biotransformation via CYP 1A2 and CYP 1B1. In addition, Erika fuel extract induces some metabolizing enzymes such CYP 1A2, COX2 and 5-LOX, the two later are involved in cancer processes. Formation of leucotrienes B4 (LTB(4)), a mediator playing a role in inflammation, is induced in epithelial bronchial cells. Since inhalation is one of the ways of contamination for human, the above results are important for human health and prevention. Copyright © 2006 Elsevier B.V. All rights reserved.

  12. GSK3 Protein Positively Regulates Type I Insulin-like Growth Factor Receptor through Forkhead Transcription Factors FOXO1/3/4

    PubMed Central

    Huo, Xiaodong; Liu, Shu; Shao, Ting; Hua, Hui; Kong, Qingbin; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation. PMID:25053419

  13. An effective method for cirrhosis recognition based on multi-feature fusion

    NASA Astrophysics Data System (ADS)

    Chen, Yameng; Sun, Gengxin; Lei, Yiming; Zhang, Jinpeng

    2018-04-01

    Liver disease is one of the main causes of human healthy problem. Cirrhosis, of course, is the critical phase during the development of liver lesion, especially the hepatoma. Many clinical cases are still influenced by the subjectivity of physicians in some degree, and some objective factors such as illumination, scale, edge blurring will affect the judgment of clinicians. Then the subjectivity will affect the accuracy of diagnosis and the treatment of patients. In order to solve the difficulty above and improve the recognition rate of liver cirrhosis, we propose a method of multi-feature fusion to obtain more robust representations of texture in ultrasound liver images, the texture features we extract include local binary pattern(LBP), gray level co-occurrence matrix(GLCM) and histogram of oriented gradient(HOG). In this paper, we firstly make a fusion of multi-feature to recognize cirrhosis and normal liver based on parallel combination concept, and the experimental results shows that the classifier is effective for cirrhosis recognition which is evaluated by the satisfying classification rate, sensitivity and specificity of receiver operating characteristic(ROC), and cost time. Through the method we proposed, it will be helpful to improve the accuracy of diagnosis of cirrhosis and prevent the development of liver lesion towards hepatoma.

  14. SINGLE STRAND-CONTAINING REPLICATING MOLECULES OF CIRCULAR MITOCHONDRIAL DNA

    PubMed Central

    Wolstenholme, David R.; Koike, Katsuro; Cochran-Fouts, Patricia

    1973-01-01

    Mitochondrial DNAs (mtDNAs) from Chang rat solid hepatomas and Novikoff rat ascites hepatomas were examined in the electron microscope after preparation by the aqueous and by the formamide protein monolayer techniques. MtDNAs from both tumors were found to include double-forked circular molecules with a form and size suggesting they were replicative intermediates. These molecules were of two classes. In molecules of one class, all three segments were apparently totally double stranded. Molecules of the second class were distinguished by the fact that one of the segments spanning the region between the forks in which replication had occurred (the daughter segments) was either totally single stranded, or contained a single-stranded region associated with one of the forks. Daughter segments of both totally double-stranded and single strand-containing replicating molecules varied in length from about 3 to about 80% of the circular contour length of the molecule. Similar classes of replicating molecules were found in mtDNA from regenerating rat liver and chick embryos, indicating them to be normal intermediates in the replication of mtDNA All of the mtDNAs examined included partially single-stranded simple (nonforked) circular molecules. A possible scheme for the replication of mtDNA is presented, based on the different molecular forms observed PMID:4345165

  15. Molokhia (Corchorus olitorius L.) extract suppresses transformation of the aryl hydrocarbon receptor induced by dioxins.

    PubMed

    Nishiumi, Shin; Yabushita, Yoshiyuki; Fukuda, Itsuko; Mukai, Rie; Yoshida, Ken-Ichi; Ashida, Hitoshi

    2006-02-01

    Dioxins enter the body mainly through diet and cause the various toxicological effects by binding to the cytosolic aryl hydrocarbon receptor (AhR) followed by its transformation. In recent reports, it has been shown that certain natural compounds suppress AhR transformation in vitro. In this study, we demonstrated that ethanolic extract from molokhia, known as Egyptian spinach, showed the strongest suppressive effect on AhR transformation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in cell-free system using rat hepatic cytosol among 41 kinds of extracts from vegetables and fruits. The molokhia extract also suppressed TCDD-induced AhR transformation in mouse hepatoma Hepa-1c1c7 cells and in intestinal permeability system constructed with human colon adenocarcinoma Caco-2 cells and human hepatoma HepG2 cells. Moreover, oral administration of the molokhia extract (100mg/kg body weight) decreased 3-methylcholanthrene-induced AhR transformation to the control level by inhibiting translocation of the AhR from cytosol into the nucleus in the liver of rats. The molokhia extract-administered rat liver showed a tolerance to TCDD-induced AhR transformation by ex vivo experiment. These results indicate that molokhia is an attractive food for isolation and identification of a natural antagonist for the AhR.

  16. Role of 6-shogaol in tert -butyl hydroperoxide-induced apoptosis of HepG2 cells.

    PubMed

    Kim, Sang Chan; Lee, Jong Rok; Park, Sook Jahr

    2014-01-01

    The aim of this study was to investigate the protective effects of 6-shogaol on tert-butyl hydroperoxide (tBHP)-induced oxidative stress leading to apoptosis in human hepatoma cell line HepG2. The cells were exposed to tBHP (100 μmol/l) after pretreatment with 6-shogaol (2.5 and 5 μmol/l), and then cell viability was measured. 6-Shogaol fully prevented HepG2 cell death caused by tBHP. Treatment of tBHP resulted in apoptotic cell death as assessed by TUNEL assay and the expression of apoptosis regulator proteins, Bcl-2 family, caspases and cytochrome c. Cells treated with 6-shogaol showed rapid reduction of apoptosis by restoring these markers of apoptotic cells. In addition, 6-shogaol significantly recovered disruption of mitochondrial membrane potential as a start sign of hepatic apoptosis induced by oxidative stress. In line with this observation, antioxidative 6-shogaol inhibited generation of reactive oxygen species and depletion of reduced glutathione in tBHP-stimulated HepG2 cells. Taken together, these results for the first time showed antioxidative and antiapoptotic activities of 6-shogaol in tBHP-treated hepatoma HepG2 cells, suggesting that 6-shogaol could be beneficial in hepatic disorders caused by oxidative stress. © 2014 S. Karger AG, Basel.

  17. Study for identification of beneficial uses of Space (BUS). Volume 2: Technical report. Book 1: Development and business analysis of space processed isoenzymes

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A separation method to provide reasonable yields of high specificity isoenzymes for the purpose of large scale, early clinical diagnosis of diseases and organic damage such as, myocardial infarction, hepatoma, muscular dystrophy, and infectous disorders is presented. Preliminary development plans are summarized. An analysis of required research and development and production resources is included. The costs of such resources and the potential profitability of a commercial space processing opportunity for electrophoretic separation of high specificity isoenzymes are reviewed.

  18. Hematoma induced by thorium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, N.S.; Chaudhry, A.; Thaler, S.

    1976-04-01

    A 74-year-old man complained of anorexia and weight loss. Twenty-six years earlier he had received an injection of Thorotrast. A needle biopsy of the liver showed thorium dioxide granules and periportal fibrosis. On laparotomy, a hepatoma of the left lobe of the liver was discovered. Hepatic malignancy should be suspected in any patient with abnormal results of liver function tests, particularly an elevated level of alkaline phosphatase, who previously has had an injection of Thorotrast.

  19. Antineoplastic Activity Comparison of Bovine Serum Albumin--Conjugated Sulfides Semiconductor Nanomaterials.

    PubMed

    Wang, Hua-Jie; Huang, Jing-Chun; Wu, Sha-Sha; Wang, Cai-Feng; Yu, Xue-Hong; Cao, Ying

    2015-04-01

    Although tumor is one of the most frequently occurring diseases and a leading cause of death, nanotechnology, one of the frontier sciences, is exhibiting its great potential to tumor treatments. The aim of this study was to design a facile and environmentally-friendly method to prepare bovine serum albumin-conjugated heavy metal sulfides nano-materials, including Ag2S, PbS and CdS. Here, bovine serum albumin was introduced in order to direct the synthesis of nano-materials by using its template effect and supply more sites for further modification in future. The crystal structure and morphology were analyzed by XRD and TEM, respectively. Additionally, the antineoplastic activity of nano-materials was compared by cell viability analysis, optical and electron microscopy observation after exposure of the human hepatoma cell line. The results showed that the inhibition effect of heavy metal sulfides on tumor cells was in the order of nano-PbS > bulk CdS > nano-Ag2S > nano-CdS > bulk PbS > bulk Ag2S. It could be concluded that heavy metal sulfides had significantly negative impact on human hepatoma cells growth but it could not be obviously generalized that nano-particles were always more effective to kill tumor cells than bulk materials. The size and surface reactivity might be the important factors causing the difference.

  20. Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy.

    PubMed

    Zheng, Hao; Tang, Cui; Yin, Chunhua

    2015-11-01

    In this investigation, chitosan-histidine-cysteine (CHC) was engineered for oral delivery of Survivin short hairpin RNA (shRNA)-expressing plasmid DNA (shSur-pDNA) to promote hepatoma regression through integrating the advantages of histidine and cysteine to conquer serial cellular and systemic barriers. CHC could effectively encapsulate shSur-pDNA to form compact nanocomplexes (NC) at adequate weight ratios. Sequential modification with histidine and cysteine conferred CHC NC with the beneficial attributes for shRNA delivery including improved stability, facilitated internalization, promoted endosomal escape, increased nuclear localization, and GSH-responsive release, which contributed to their superior performance in terms of apoptosis promotion, proliferation inhibition, and Survivin down-regulation of tumor cells. More importantly, in hepatoma-bearing mice, orally delivered CHC NC overweighed chitosan counterparts with respect to suppressed Survivin expression, retarded tumor growth, and prolonged surviving time, owing to their above-mentioned merits in combination with enhanced intestinal permeation. Especially, rapid intracellular release of CHC NC with lower molecular weight of 30 kDa (CHC30 NC) might be responsible for the most satisfactory antitumor efficacy with tumor inhibition ratio (TIR) of 92.5%, which rendered CHC30 NC a promising vehicle for oral delivery of shRNA. This investigation would shed light on the deliberate design of oral shRNA delivery vehicles to mediate effective antitumor efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma.

    PubMed

    Gao, Qiang; Zhao, Ying-Jun; Wang, Xiao-Ying; Qiu, Shuang-Jian; Shi, Ying-Hong; Sun, Jian; Yi, Yong; Shi, Jie-Yi; Shi, Guo-Ming; Ding, Zhen-Bin; Xiao, Yong-Sheng; Zhao, Zhong-Hua; Zhou, Jian; He, Xiang-Huo; Fan, Jia

    2012-07-15

    CXC chemokines and their cognate receptors have been implicated widely in cancer pathogenesis. In this study, we report a critical causal relationship between CXCR6 expression and tumorigenesis in the setting of human hepatocellular carcinoma (HCC). Among the CXC chemokine receptors, only CXCR6 was detected in all the hepatoma cell lines studied. Moreover, in HCC tissue, CXCR6 expression was significantly higher than in noncancerous liver tissues. Reduction of CXCR6 or its ligand CXCL16 in cancer cells reduced cell invasion in vitro and tumor growth, angiogenesis, and metastases in vivo. Importantly, loss of CXCR6 led to reduced Gr-1+ neutrophil infiltration and decreased neoangiogenesis in hepatoma xenografts via inhibition of proinflammatory cytokine production. Clinically, high expression of CXCR6 was an independent predictor of increased recurrence and poor survival in HCCs. Human HCC samples expressing high levels of CXCR6 also contained an increased number of CD66b+ neutrophils and microvessels, and the combination of CXCR6 and neutrophils was a superior predictor of recurrence and survival than either marker used alone. Together, our findings suggest that elevated expression of CXCR6 promotes HCC invasiveness and a protumor inflammatory environment and is associated with poor patient outcome. These results support the concept that inhibition of the CXCR6-CXCL16 pathway may improve prognosis after HCC treatment.

  2. MicroRNA-Regulated Non-Viral Vectors with Improved Tumor Specificity in an Orthotopic Rat Model of Hepatocellular Carcinoma

    PubMed Central

    Ronald, John A.; Katzenberg, Regina; Nielsen, Carsten H.; Jae, Hwan Jun; Hofmann, Lawrence V.; Gambhir, Sanjiv S.

    2013-01-01

    In hepatocellular carcinoma, tumor specificity of gene therapy is of utmost importance to preserve liver function. MicroRNAs are powerful negative regulators of gene expression and many are down-regulated in human HCC. We identified seven miRNAs that are also down-regulated in tumors in a rat hepatoma model (p<0.05) and attempted to improve tumor specificity by constructing a panel of luciferase-expressing vectors containing binding sites for these microRNAs. Attenuation of luciferase expression by the corresponding microRNAs was confirmed across various cell lines and in mouse liver. We then tested our vectors in tumor-bearing rats and identified two microRNAs, miR-26a and miR-122, that significantly decreased expression in liver compared to control vector (6.40% and 0.26%, respectively; p<0.05). In tumor, miR-122 had a non-significant trend towards decreased (~50%) expression , while miR-26 had no significant effect on tumor expression. To our knowledge this is the first work using differentially expressed microRNAs to de-target transgene expression in an orthotopic hepatoma model and identification of miR-26a in addition to miR-122 for de-targeting liver. Considering the heterogeneity of microRNA expression in human HCC, this information will be important in guiding development of more personalized vectors for the treatment of this devastating disease. PMID:23719066

  3. A comparison of transcatheter arterial embolization with one shot therapy for the patients with hepatic cell carcinoma.

    PubMed

    Monna, T; Kanno, T; Marumo, T; Harihara, S; Kuroki, T; Yamamoto, S; Kobayashi, N; Sato, M; Nakamura, K; Nakatsuka, H; Onoyama, Y; Yamada, R

    1982-12-01

    It has been confirmed gradually that transcatheter arterial embolization is the most effective, conservative therapy for the treatment of unresectable hepatic cell carcinoma (hepatoma). Embolization or one shot therapy was carried out in a clinical trial involving 41 patients with unresectable hepatoma visiting our department. Embolization group (emboli G): 19 cases. 1 to 6 embolizations in each case. One shot group (one shot G): 22 cases. Medications: Mitomycin C 10-40 mg and others. Disappearance rate of icterus after treatment was 50% (emboli G) and 25% (one shot G). Decrease in size of hepatomegaly or tumor was seen in 84% (emboli G) and 32% (one shot G) which was statistically significant (less than 1%). Serum AFP titer after embolization decreased in all cases but in only 5 of 12 cases (ca 41%) after one shot (less than 1%). Effective cases measured by Karnofsky's method were 18 out of 19 cases (95%) in emboli G, but in one shot G only 10 out of 22 cases (ca 45%)(less than 0.1%). Survival rate after each therapy was 67% (emboli G) and 38% (one shot G) after 6 months, and 59% (emboli G) and 19% (one shot G) at 1 year respectively. One study showed that transcatheter arterial embolization therapy was much more effective than one shot therapy.

  4. Sequestration of Mutated α1-Antitrypsin into Inclusion Bodies Is a Cell-protective Mechanism to Maintain Endoplasmic Reticulum Function

    PubMed Central

    Granell, Susana; Baldini, Giovanna; Mohammad, Sameer; Nicolin, Vanessa; Narducci, Paola; Storrie, Brian

    2008-01-01

    A variant α1-antitrypsin with E342K mutation has a high tendency to form intracellular polymers, and it is associated with liver disease. In the hepatocytes of individuals carrying the mutation, α1-antitrypsin localizes both to the endoplasmic reticulum (ER) and to membrane-surrounded inclusion bodies (IBs). It is unclear whether the IBs contribute to cell toxicity or whether they are protective to the cell. We found that in hepatoma cells, mutated α1-antitrypsin exited the ER and accumulated in IBs that were negative for autophagosomal and lysosomal markers, and contained several ER components, but not calnexin. Mutated α1-antitrypsin induced IBs also in neuroendocrine cells, showing that formation of these organelles is not cell type specific. In the presence of IBs, ER function was largely maintained. Increased levels of calnexin, but not of protein disulfide isomerase, inhibited formation of IBs and lead to retention of mutated α1-antitrypsin in the ER. In hepatoma cells, shift of mutated α1-antitrypsin localization to the ER by calnexin overexpression lead to cell shrinkage, ER stress, and impairment of the secretory pathway at the ER level. We conclude that segregation of mutated α1-antitrypsin from the ER to the IBs is a protective cell response to maintain a functional secretory pathway. PMID:18045994

  5. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy.

    PubMed Central

    Huber, B E; Richards, C A; Krenitsky, T A

    1991-01-01

    An approach involving retroviral-mediated gene therapy for the treatment of neoplastic disease is described. This therapeutic approach is called "virus-directed enzyme/prodrug therapy" (VDEPT). The VDEPT approach exploits the transcriptional differences between normal and neoplastic cells to achieve selective killing of neoplastic cells. We now describe development of the VDEPT approach for the treatment of hepatocellular carcinoma. Replication-defective, amphotrophic retroviruses were constructed containing a chimeric varicella-zoster virus thymidine kinase (VZV TK) gene that is transcriptionally regulated by either the hepatoma-associated alpha-fetoprotein or liver-associated albumin transcriptional regulatory sequences. Subsequent to retroviral infection, expression of VZV TK was limited to either alpha-fetoprotein- or albumin-positive cells, respectively. VZV TK metabolically activated the nontoxic prodrug 6-methoxypurine arabinonucleoside (araM), ultimately leading to the formation of the cytotoxic anabolite adenine arabinonucleoside triphosphate (araATP). Cells that selectively expressed VZV TK became selectively sensitive to araM due to the VZV TK-dependent anabolism of araM to araATP. Hence, these retroviral-delivered chimeric genes generated tissue-specific expression of VZV TK, tissue-specific anabolism of araM to araATP, and tissue-specific cytotoxicity due to araM exposure. By utilizing such retroviral vectors, araM was anabolized to araATP in hepatoma cells, producing a selective cytotoxic effect. Images PMID:1654555

  6. Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas.

    PubMed

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D'Angelica, Michael; Fong, Yuman

    2007-04-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multimutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these 2 anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. Expression GM-CSF in vitro did not alter the infectivity, cytotoxicity, or replication of NV1034 compared to the noncytokine-secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l-6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice, respectively. In these immune-competent models, NV1034 and NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, there was no difference in the antitumor efficacy of these viruses in mice depleted of CD4+ and CD8+ T lymphocytes. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.

  7. Carbohydrate linked organotin(IV) complexes as human topoisomerase Iα inhibitor and their antiproliferative effects against the human carcinoma cell line.

    PubMed

    Khan, Rais Ahmad; Yadav, Shipra; Hussain, Zahid; Arjmand, Farukh; Tabassum, Sartaj

    2014-02-14

    Dimethyltin(IV) complexes with ethanolamine (1) and biologically significant N-glycosides (2 and 3) were designed and synthesized. The structural elucidation of complexes 1-3 was done using elemental and spectroscopic methods; in addition, complex 1 was studied by single crystal X-ray diffraction studies. The in vitro DNA binding profile of complexes 2 and 3 was carried out by employing different biophysical methods to ascertain the feasibility of glycosylated complexes. Further, the cleaving ability of 2 and 3 was investigated by the agarose gel electrophoretic mobility assay with supercoiled pBR322 DNA, and demonstrated significantly good nuclease activity. Furthermore, both the complexes exhibited significant inhibitory effects on the catalytic activity of human Topo I at lower concentration than standard drugs. Computer-aided molecular docking techniques were used to ascertain the mode and mechanism of action towards the molecular target DNA and Topo I. The cytotoxicity of 2 and 3 against human hepatoma cancer cells (Huh7) was evaluated, which revealed significant regression in cancerous cells as compared with the standard drug. The antiproliferative activities of 2 and 3 were tested against human hepatoma cancer cells (Huh7), and results showed significantly good activity. Additionally, to validate the remarkable antiproliferative activity of complexes 2 and 3, specific regulatory gene expression (MMP-2 and TGF-β) was obtained by real time PCR.

  8. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells.

    PubMed

    de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura

    2015-10-02

    Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects

  9. Control of Breast Tumor Cell Growth by Dietary Indoles

    DTIC Science & Technology

    1999-09-01

    trout, B3C reduced AFB 1-induced hepatocarcinogenesis when administered prior to and during carcinogen treatment (10). In a recent screen of 90...administered in the diet or by oral intubation prior to treatment with carcinogen reduced tumor incidence by 70-80% (6). In a recent study by Lubet, 13C...degradation of glucobrassicin in plants . The major focus of this study was to examine the effects of ASG on CYP induction in a murine hepatoma-derived cell line

  10. Brain’s DNA Repair Response to Neurotoxicants

    DTIC Science & Technology

    2007-01-01

    Creppy et al., 1983b; Haubeck et al., 1981; Lea et al., 1989; Stormer and Lea, 1995), teratogenic (Arora et al., 1983; Fukui et al., 1992; Szczech and Hood...aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells. Toxicol Lett 1983a;19:217–24. Creppy EE, Stormer FC, Roschenthaler R...1989;2:179–248. Lea T, Steien K, Stormer FC. Mechanism of ochratoxin A-induced immuno- suppression. Mycopathologia 1989;107:153–9. Lebrun S, Follmann W

  11. Serological aspects of rat tumour xenograft growth in athymic nude mice.

    PubMed Central

    Pimm, M. V.; Baldwin, R. W.

    1979-01-01

    The serum of athymic nude mice bearing rat tumour xenografts has been examined for tumour-specific antigen. With a sarcoma and a hepatoma, tumour-specific antigen expression continued in xenograft growths, and sera of tumour-bearing mice contained free antigen, assayed by its ability to neutralise reactivity of tumour-immune rat sera against tumour target cells in an indirect membrane-immunofluorescence test. In contrast, no anti-rat antibody was detectable in sera of mice bearing the xenografts, or rejecting cells injected in admixture with BCG. PMID:373782

  12. Preclinical characterization of 18F-MAA, a novel PET surrogate of 99mTc-MAA.

    PubMed

    Wu, Shih-Yen; Kuo, Jia-Wei; Chang, Tien-Kuei; Liu, Ren-Shen; Lee, Rheun-Chuan; Wang, Shyh-Jen; Lin, Wuu-Jyh; Wang, Hsin-Ell

    2012-10-01

    (99m)Tc-labeled macroaggregated albumin ((99m)Tc-MAA) scintigraphy scan is routinely performed for lung perfusion imaging and for the assessment of in vivo distribution of (90)Y-labeled SIR-Spheres prior to selective internal radiation treatment for hepatocellular carcinoma. Positron emission tomography (PET) imaging is superior to gamma scintigraphy in terms of sensitivity, spatial resolution and accuracy of quantification. This study reported that (18)F-labeled macroaggregated albumin ((18)F-MAA) is an ideal PET imaging surrogate for (99m)Tc-MAA. (18)F-MAA was prepared from the commercial MAA kit via a one-step conjugation with N-succinimidyl 4-(18)F-fluorobenzoate ((18)F-SFB). The biodistribution study and microPET/microSPECT imaging were conducted in normal SD rats after intravenous injection of (18)F-MAA/(99m)Tc-MAA. A comparison study of these two radiotracers was performed after co-injection via the intrahepatic arterial in a N1S1 hepatoma-bearing SD rat model. The optimal condition for (18)F-MAA preparation is coupling MAA (0.5mg) with (18)F-SFB at 45°C for 5 min in a phosphate buffer of pH 8.5. (18)F-MAA was prepared in 60 min with high radiochemical yield (30%-35%) and high radiochemical purity (>95%). The in vivo distribution of (18)F-MAA after intravenous injection meets the specifications of MAA depicted in European Pharmacopeia. Our study demonstrated excellent correlation between (18)F-MAA and (99m)Tc-MAA in the regional distribution of tumor, liver and lungs (R(2)=0.965, 0.886 and 0.991, respectively), and also in the tumor-to-liver and tumor-to-lungs ratio (R(2)=0.965 and 0.987, respectively) in a N1S1 hepatoma-bearing SD rat model. The organ uptakes derived from animal PET/CT and SPECT/CT imaging after administration of these two tracers were in accordance with those obtained in the distribution studies. Starting from commercial MAA kit, an efficient preparation of (18)F-MAA was successfully established. Highly correlated, almost parallel

  13. [A mini-review of targeting gene-virotherapy of cancer].

    PubMed

    Liu, Xin-Yuan; Gu, Jin-Fa

    2006-10-01

    New progress has been made on the project "targeting gene-virotherapy of cancer" proposed by us, which is "targeting dual gene-virotherapy of cancer". By the use of two genes, all the xenograft tumors in nude mice could be completely eliminated. The researches have been published in international journals, such as Hepatology and Cancer Research (a highlight paper). In this study, a further superior strategy--"double targeting virus-dual gene therapy" was introduced. This strategy was specialized by the use of tumor specific promoter to control the tumor specific suppressor gene, such as alpha-fetoprotein (AFP), which controls hepatoma specific suppressor gene LFIRE or HCCS1. In addition, a second tumor specific promoter, such as hTERT or survivin was used to control E1A or E1B in the construct, as hTERT-E1A-AFP-E1B-HCCS1 or LFIRE, a double tumor specific promoter controlling hepatoma specific LFIRE or HCCS1 gene. By the combined use of this construct with a very strong antitumor construct, such as hTERT-E1A-AFP-E1B-IL-24, a strategy with both excellent tumor killing effect and excellent safety with very little damage to normal cells was obtained. Therefore, double targeting virus-dual gene therapy might be one of the most potential strategies for cancer treatment. Furthermore, a new type of interferon was also introduced, which might be an ideal antitumor drug.

  14. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine

    PubMed Central

    Jiang, Shuai; Chen, Yijie; Wang, Man; Yin, Yalin; Pan, Yongfu; Gu, Bianli; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    A novel lectin was isolated from the mushroom Agrocybe aegerita (designated AAL-2) by affinity chromatography with GlcNAc (N-acetylglucosamine)-coupled Sepharose 6B after ammonium sulfate precipitation. The AAL-2 coding sequence (1224 bp) was identified by performing a homologous search of the five tryptic peptides identified by MS against the translated transcriptome of A. aegerita. The molecular mass of AAL-2 was calculated to be 43.175 kDa from MS, which was consistent with the data calculated from the amino acid sequence. To analyse the carbohydrate-binding properties of AAL-2, a glycan array composed of 465 glycan candidates was employed, and the result showed that AAL-2 bound with high selectivity to terminal non-reducing GlcNAc residues, and further analysis revealed that AAL-2 bound to terminal non-reducing GlcNAc residues with higher affinity than previously well-known GlcNAc-binding lectins such as WGA (wheatgerm agglutinin) and GSL-II (Griffonia simplicifolia lectin-II). ITC (isothermal titration calorimetry) showed further that GlcNAc bound to AAL-2 in a sequential manner with moderate affinity. In the present study, we also evaluated the anti-tumour activity of AAL-2. The results showed that AAL-2 could bind to the surface of hepatoma cells, leading to induced cell apoptosis in vitro. Furthermore, AAL-2 exerted an anti-hepatoma effect via inhibition of tumour growth and prolongation of survival time of tumour-bearing mice in vivo. PMID:22268569

  15. Establishment of MicroRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide.

    PubMed

    Sun, Yanli; Sun, Yanhua; Zhao, Ronglan

    2017-08-01

    MicroRNAs have great therapeutic potential in cancer and other diseases. However, their instability and low in vivo delivery efficiency limits their application. Recombinant PP7 bacteriophage-based virus-like particles (VLPs) could protect microRNAs against rapid degradation by RNase by packaging specific exogenous pre-microRNAs using the pac site. Insertion of a cell-penetrating peptide (CPP) into the AB-loop of VLPs could significantly improve the delivery efficiency of microRNAs into mammalian cells. Unlike other microRNA delivery methods (viral or non-viral vectors), recombinant PP7 VLPs carrying a CPP and microRNA could be efficiently expressed in Escherichia coli using the one-plasmid double expression system. Here we showed that PP7 VLPs carrying a CPP penetrated hepatoma SK-HEP-1 cells and delivered the pre-microRNA-23b, which was processed into a mature product within 24 h; a concentration of 10 nM was sufficient for the inhibition of hepatoma cell migration via the downregulation of liver-intestine cadherin expression. Furthermore, PP7 VLPs carrying a CPP and a pre-microRNA were not infectious, replicative, or cytotoxic. Therefore, recombinant PP7 VLPs can be used for simultaneous and targeted delivery of both microRNAs and peptides because of their ability to package specific exogenous RNA using the pac site and to display peptides. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Mechanism of Intermolecular Electron Transfer in Bionanostructures

    NASA Astrophysics Data System (ADS)

    Gruodis, A.; Galikova, N.; Šarka, K.; Saulė, R.; Batiuškaitė, D.; Saulis, G.

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Most patients are inoperable and hepatoma cells are resistant to conventional chemotherapies. Thus, the development of novel therapies for HCC treatment is of paramount importance. Amongst different alimentary factors, vitamin C and vitamin K3 In the present work, it has been shown that the treatment of mouse hepatoma MH-22A cells by vitamin C and vitamin K3 at the ratio of 100:1 greatly enhanced their cytotoxicity. When cells were subjected to vitamin C at 200 μM or to vitamin K3 at 2 μM separately, their viability reduced by only about 10%. However, when vitamins C and K3 were combined at the same concentrations, they killed more than 90% of cells. To elucidate the mechanism of the synergistic cytotoxicity of the C&K3 mixture, theoretical quantum-chemical analysis of the dynamics of intermolecular electron transfer (IET) processes within the complexes containing C (five forms) and K3 (one form) has been carried out. Optimization of the ground state complex geometry has been provided by means of GAUSSIAN03 package. Simulation of the IET has been carried out using NUVOLA package, in the framework of molecular orbitals (MO). The rate of IET has been calculated using Fermi Golden rule. The results of simulations allow us to create the preliminary model of the reaction pathway.

  17. Populational analysis of suspended microtissues for high-throughput, multiplexed 3D tissue engineering

    PubMed Central

    Chen, Alice A.; Underhill, Gregory H.; Bhatia, Sangeeta N.

    2014-01-01

    Three-dimensional (3D) tissue models have significantly improved our understanding of structure/function relationships and promise to lead to new advances in regenerative medicine. However, despite the expanding diversity of 3D tissue fabrication methods, approaches for functional assessment have been relatively limited. Here, we describe the fabrication of microtissue (μ-tissue) suspensions and their quantitative evaluation with techniques capable of analyzing large sample numbers and performing multiplexed parallel analysis. We applied this platform to 3D μ-tissues representing multiple stages of liver development and disease including: embryonic stem cells, bipotential hepatic progenitors, mature hepatocytes, and hepatoma cells photoencapsulated in polyethylene glycol hydrogels. Multiparametric μ-tissue cytometry enabled quantitation of fluorescent reporter expression within populations of intact μ-tissues (n≥102-103) and sorting-based enrichment of subsets for subsequent studies. Further, 3D μ-tissues could be implanted in vivo, respond to systemic stimuli, retrieved and quantitatively assessed. In order to facilitate multiplexed ‘pooled’ experimentation, fluorescent labeling strategies were developed and utilized to investigate the impact of μ-tissue composition and exposure to soluble factors. In particular, examination of drug/gene interactions on collections of 3D hepatoma μ-tissues indicated synergistic influence of doxorubicin and knockdown of the anti-apoptotic gene BCL-XL. Collectively, these studies highlight the broad utility of μ-tissue suspensions as an enabling approach for high n, populational analysis of 3D tissue biology in vitro and in vivo. PMID:20820630

  18. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  19. New high-performance liquid chromatography method for the determination of (R)-warfarin and (S)-warfarin using chiral separation on a glycopeptide-based stationary phase.

    PubMed

    Malakova, Jana; Pavek, Petr; Svecova, Lucie; Jokesova, Iveta; Zivny, Pavel; Palicka, Vladimir

    2009-10-01

    Warfarin is a well-known anticoagulant agent that occurs in two enantiomers, (R)-(+)-warfarin and (S)-(-)-warfarin. A new liquid chromatography method for the determination of both enantiomers was developed, validated and applied in in vitro studies with the aim of evaluating the accumulation of (R)-warfarin and (S)-warfarin in the hepatoma HepG2 cell line. OptiMEM cell cultivation medium samples and cellular lysates were purified using Waters Oasis MAX extraction cartridges. The chiral separation of warfarin and the internal standard p-chlorowarfarin enantiomers was performed on an Astec Chirobiotic V2 column at a flow rate of 1.2mL/min. The mobile phase was composed of 31% acetonitrile, 5% of methanol and 64% of ammonium acetate buffer (10mmol/L, pH 4.1). The enantiomers were quantified using a fluorescence detector (lambda(excit)=320nm, lambda(emiss)=415nm). The limit of detection was found to be 0.121micromol/L of (S)-warfarin and 0.109micromol/L of (R)-warfarin. The range of applicability and linearity was estimated from 0.25 to 100micromol/L. The precision ranged from 1.3% to 12.2% of the relative standard deviation, and the accuracy reached acceptable values from 95.5% to 108.4%. The new bioanalytical method confirmed the same accumulation of (R)-warfarin and (S)-warfarin in the hepatoma HepG2 cell line.

  20. Localization of nuclear subunits of cyclic AMP-dependent protein kinase by the immunocolloidal gold method

    PubMed Central

    1985-01-01

    An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP- dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density. PMID:2993318

  1. Synthesis of Glycyrrhetinic Acid-Modified Chitosan 5-Fluorouracil Nanoparticles and Its Inhibition of Liver Cancer Characteristics in Vitro and in Vivo

    PubMed Central

    Cheng, Mingrong; Gao, Xiaoyan; Wang, Yong; Chen, Houxiang; He, Bing; Xu, Hongzhi; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-01-01

    Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed infrared spectroscopy (FT-IR) and 1H-nuclear magnetic resonance (1H-NMR). By combining GA-CTS and 5-FU (5-fluorouracil), we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 217.2 nm, a drug loading of 1.56% and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained release system comprising three distinct phases of quick, steady and slow release. We demonstrated that the nanoparticle accumulated in the liver. In vitro data indicated that it had a dose- and time-dependent anti-cancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. Additionally, GA-CTS/5-FU significantly inhibited the growth of drug-resistant hepatoma, which may compensate for the drug-resistance of 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited tumor growth, resulting in increased survival time. PMID:24048270

  2. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells

    PubMed Central

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A.; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4′-trimethoxy-2′-hydroxy-chalcone (CH1) and 3′-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas. PMID:26907262

  3. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells.

    PubMed

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-02-22

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4'-trimethoxy-2'-hydroxy-chalcone (CH1) and 3'-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.

  4. New candidate tumor-suppressor gene KLF6 and its splice variant KLF6 SV2 counterbalancing expression in primary hepatocarcinoma.

    PubMed

    Zhenzhen, Zhou; De'an, Tian; Limin, Xia; Wei, Yan; Min, Luo

    2012-01-01

    This study aimed to detect the expression of newly discovered zinc finger transcriptional factor KLF6 and its splice variant KLF6 SV2 in primary hepatocarcinoma (PHC) tissues and hepatoma cell strains, and to evaluate their clinicopathologic relationship with PHC. Wild-type KLF6 and KLF6 SV2 mRNA expression was determined by RTPCR in 27 cases of PHC tissues and cell strains of HepG2, SMMC7721 and LO2. Western blotting and immunohistochemical staining were adopted to detect KLF6 protein expression. Positive area ratio of wild-type KLF6 protein expression and its relationship with clinicopathological parameters of PHC was analyzed. Wild-type KLF6 expression in PHC tissues was lower than that in paracancerous tissues. In contrast, KLF6 SV2 mRNA expression was higher in PHC tissues and hepatoma cell strains (p<0.05). Positive area ratio of wild-type KLF6 protein expression was positively correlated with cellular differentiation degree of PHC (p<0.01), but negatively correlated not only with liver cirrhosis, tumor size and extrahepatic metastases (p<0.01), but also with portal vein thrombus and the number of lymph nodes with metastasis (p<0.05). Wild-type KLF6 deletion and inactivation was involved in the growth, cell differentiation and other physiological processes of PHC. The upregulation of KLF6 splice variant might counterbalance the wildtype KLF6 and contribute to the occurrence and development of PHC.

  5. Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities.

    PubMed

    Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie

    2017-07-28

    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

  6. Cytotoxic withanolides from Physalis angulata.

    PubMed

    Gao, Caiyun; Li, Ruijun; Zhou, Miaomiao; Yang, Yanwei; Kong, Lingyi; Luo, Jun

    2018-03-01

    A new withanolide (1), physagulide P, together with five known withanolides (2-6), was isolated from the aerial parts of Physalis angulata L. The structure of new compound was elucidated on the basis of extensive spectroscopic techniques, including 1D, 2D NMR and HRESIMS. The activity screening indicated that compound 1 showed significant cytotoxicities against the human osteosarcoma cell line MG-63, HepG-2 hepatoma cells and breast cancer cells MDA-MB-231 with the IC 50 value of 3.50, 4.22 and 15.74 μM.

  7. Cytotoxic and aryl hydrocarbon hydroxylase-inducing effects of laboratory rodent diets. A cell culture study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toerroenen, R.; Pelkonen, K.; Kaerenlampi, S.

    1991-01-01

    Extracts of several rodent diets were studied for their cytotoxic and aryl hydrocarbon hydroxylase-inducing properties by an in vitro method. The cell culture system based on a mouse hepatoma cell line (Hepa-1) was shown to be convenient and sensitive method for screening of diets for these parameters implying the presence of compounds potentially harmful in vivo. Considerable differences among diets and batches were detected. Smallest effects were observed with a semipurified diet and with the unrefined diet which - contrary to other four unrefined diets - contained no fish.

  8. Gene transfer mediated by alpha2-macroglobulin.

    PubMed Central

    Schneider, H; Huse, K; Birkenmeier, G; Otto, A; Scholz, G H

    1996-01-01

    alpha2-Macroglobulin covalently linked to poly(L)-lysine can be used as a vehicle for receptor-mediated gene transfer. This modified alpha2-macroglobulin maintains its ability to bind to the alpha2-macroglobulin receptor, and was shown to introduce a luciferase reporter gene plasmid into HepG2 human hepatoma cells in vitro. The alpha2-macroglobulin receptor is a very large and multifunctional cell surface receptor, whose rapid and efficient internalization rate makes it attractive for gene therapy, e.g. for hepatic gene targeting via injection into the portal vein. PMID:8871570

  9. Recombinant Newcastle disease virus Anhinga Strain (NDV/Anh-EGFP) for Hepatoma Therapy

    USDA-ARS?s Scientific Manuscript database

    Hepatocellular carcinoma remains one of the most common malignant tumors in the world. Newcastle disease virus (NDV) has been proved to be an efficient oncolytic agent. NDV tumor killing efficacy is not only depending on the NDV strain but the type of tumor targeted. It is significant to discover mo...

  10. Chemotherapy resistance and metastasis-promoting effects of thyroid hormone in hepatocarcinoma cells are mediated by suppression of FoxO1 and Bim pathway

    PubMed Central

    Chi, Hsiang-Cheng; Chen, Shen-Liang; Cheng, Yi-Hung; Lin, Tzu-Kang; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Huang, Ya-Hui; Lin, Kwang-Huei

    2016-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and systemic chemotherapy is the major treatment strategy for late-stage HCC patients. Poor prognosis following chemotherapy is the general outcome owing to recurrent resistance. Recent studies have suggested that in addition to cytotoxic effects on tumor cells, chemotherapy can induce an alternative cascade that supports tumor growth and metastasis. In the present investigation, we showed that thyroid hormone (TH), a potent hormone-mediating cellular differentiation and metabolism, acts as an antiapoptosis factor upon challenge of thyroid hormone receptor (TR)-expressing HCC cells with cancer therapy drugs, including cisplatin, doxorubicin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TH/TR signaling promoted chemotherapy resistance through negatively regulating the pro-apoptotic protein, Bim, resulting in doxorubicin-induced metastasis of chemotherapy-resistant HCC cells. Ectopic expression of Bim in hepatoma cells challenged with chemotherapeutic drugs abolished TH/TR-triggered apoptosis resistance and metastasis. Furthermore, Bim expression was directly transactivated by Forkhead box protein O1 (FoxO1), which was negatively regulated by TH/TR. TH/TR suppressed FoxO1 activity through both transcriptional downregulation and nuclear exclusion of FoxO1 triggered by Akt-mediated phosphorylation. Ectopic expression of the constitutively active FoxO1 mutant, FoxO1-AAA, but not FoxO1-wt, diminished the suppressive effect of TH/TR on Bim. Our findings collectively suggest that expression of Bim is mediated by FoxO1 and indirectly downregulated by TH/TR, leading to chemotherapy resistance and doxorubicin-promoted metastasis of hepatoma cells. PMID:27490929

  11. Mass Isotopomer Analysis of Metabolically Labeled Nucleotide Sugars and N- and O-Glycans for Tracing Nucleotide Sugar Metabolisms*

    PubMed Central

    Nakajima, Kazuki; Ito, Emi; Ohtsubo, Kazuaki; Shirato, Ken; Takamiya, Rina; Kitazume, Shinobu; Angata, Takashi; Taniguchi, Naoyuki

    2013-01-01

    Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism. PMID:23720760

  12. Increased morbidity odds ratio of primary liver cancer and cirrhosis of the liver among vinyl chloride monomer workers

    PubMed Central

    Du C., L.; Wang, J. D.

    1998-01-01

    OBJECTIVES: To determine if there is an increased risk of admission to hospital for various diseases among vinyl chloride monomer (VCM) workers. METHODS: 2224 workers with occupational exposure to VCM were identified for occurrence of disease based on a search of hospital computer files on labour insurance. These data were compared with those of workers manufacturing optical equipment and motorcycles from 1 January 1985 to 31 March 1994. Cardiovascular and cerebrovascular diseases were used as reference diseases, and the age adjusted morbidity odds ratio (MOR) was calculated. RESULTS: A significantly increased risk of admission to hospital among VCM workers due to primary liver cancer (MOR 4.5-6.5), cirrhosis of the liver (MOR 1.7- 2.1), and other chronic diseases (MOR 1.5-2.0) was found. There were eight cases of primary liver cancer, all with heavy previous exposure to VCM. Another four cases of hepatoma in polyvinyl chloride (PVC) workers were found in the death registry. Ten out of 11 cases of hepatoma, with detailed medical information, were carriers of hepatitis B virus. The average latent period (20 years) was not different from other studies. Alternative agents of primary liver cancer were largely ruled out, suggesting that the combination of hepatitis B and VCM may lead to primary liver cancer. CONCLUSION: There is an increased risk of primary liver cancer in workers exposed to VCM, although the incomplete coverage of the Labor Insurance Bureau data warrants cautious interpretation of the results. Further study exploring the synergistic effects of VCM and hepatitis B is also indicated.   PMID:9849539

  13. Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of prostate and ovarian tumor cells in culture.

    PubMed

    Xuan, Jian-Ai; Schneider, Doug; Toy, Pam; Lin, Rick; Newton, Alicia; Zhu, Ying; Finster, Silke; Vogel, David; Mintzer, Bob; Dinter, Harald; Light, David; Parry, Renate; Polokoff, Mark; Whitlow, Marc; Wu, Qingyu; Parry, Gordon

    2006-04-01

    Hepsin is a type II transmembrane serine protease that is expressed in normal liver, and at lower levels in kidney, pancreas, and testis. Several studies have shown that hepsin mRNA is significantly elevated in most prostate tumors, as well as a significant fraction of ovarian and renal cell carcinomas and hepatomas. Although the overexpression of mRNA in these tumors has been extensively documented, there has been conflicting literature on whether hepsin plays a role in tumor cell growth and progression. Early literature implied a role for hepsin in human tumor cell proliferation, whereas recent studies with a transgenic mouse model for prostate cancer support a role for hepsin in tumor progression and metastases. To evaluate this issue further, we have expressed an activatable form of hepsin, and have generated a set of monoclonal antibodies that neutralize enzyme activity. The neutralizing antibodies inhibit hepsin enzymatic activity in biochemical and cell-based assays. Selected neutralizing and nonneutralizing antibodies were used in cell-based assays with tumor cells to evaluate the effect of antibodies on tumor cell growth and invasion. Neutralizing antibodies failed to inhibit the growth of prostate, ovarian, and hepatoma cell lines in culture. However, potent inhibitory effects of the antibodies were seen on invasion of ovarian and prostate cells in transwell-based invasion assays. These results support a role for hepsin in tumor cell progression but not in primary tumor growth. Consistent with this, immunohistochemical experiments with a mouse monoclonal antibody reveal progressively increased staining of prostate tumors with advanced disease, and in particular, extensive staining of bone metastatic lesions.

  14. Nonsecreted cytoplasmic alpha-fetoprotein: a newly discovered role in intracellular signaling and regulation. An update and commentary.

    PubMed

    Mizejewski, G J

    2015-12-01

    The concept of a non-secreted cytoplasmic-bound form of alpha-fetoprotein is not a new notion in AFP biological activities. Cytoplasmic AFP (CyAFP) is a long known but forgotten protein in search of a function other than a histochemical biomarker. In this report, CyAFP is presented as an "old" protein with a newly described intracellular function. In 1976, CyAFP was shown to be a product of hepatoma cells utilizing 14Cleucine incorporation and demonstrated by autoradiographic procedures. The synthesis of CyAFP without secretion was demonstrated to occur in both malignant and non-malignant cells encompassing hepatomas, ascite fluid cells, immature rodent uterus, MCF-7 breast cancers, and cytosols from human breast cancer patients. Using computer protein matching and alignments in AFP versus members of the nuclear receptor superfamily, a consecutive series of leucine zipper (heptad) repeats in AFP was previously reported, suggesting the possibility for protein-to-protein interactions. The potential for heptad heterodimerization between protein-binding partners provided the rationale for proposing that CyAFP might have the capability to form molecular hetero-complexes with cytoplasmic based transcription factors. More recent investigations have now provided experimental evidence that CyAFP is capable of colocalizing and interacting with transcription-associated factors. Such proteins can modulate intracellular signaling leading to regulation of transcription factors and initiation of growth in human cancer cells. Although circulating serum AFP is known as a growth-enhancing factor during development, cytoplasmic AFP has a lethal role in the oncogenesis, growth, and metastasis of adult liver cancer.

  15. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Lijie; Dong, Pingping; Liu, Longzi

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstratedmore » that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.« less

  16. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells.

    PubMed

    Weng, Chia-Jui; Wu, Cheng-Feng; Huang, Hsiao-Wen; Ho, Chi-Tang; Yen, Gow-Chin

    2010-11-01

    Hepatocellular carcinoma is the most common type of liver cancer and is highly metastatic. Metastasis is considered to be the major cause of death in cancer patients. Ginger is a natural dietary rhizome with anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. The aims of this study were to evaluate the anti-invasion activity of 6-shogaol and 6-gingerol, two compounds found in ginger, on hepatoma cells. The migratory and invasive abilities of phorbol 12-myristate 13-acetate (PMA)-treated HepG2 and PMA-untreated Hep3B cells were both reduced in a dose-dependent manner by treatment with 6-shogaol and 6-gingerol. Upon incubation of PMA-treated HepG2 cells and PMA-untreated Hep3B cells with 6-shogaol and 6-gingerol, matrix metalloproteinase (MMP)-9 activity decreased, whereas the expression of tissue inhibitor metalloproteinase protein (TIMP)-1 increased in both cell types. Additionally, urokinase-type plasminogen activator activity was dose-dependently decreased in Hep3B cells after incubation with 6-shogaol for 24 h. Analysis with semi-quantitative reverse transcription-PCR showed that the regulation of MMP-9 by 6-shogaol and 6-gingerol and the regulation of TIMP-1 by 6-shogaol in Hep3B cells may on the transcriptional level. These results suggest that 6-shogaol and 6-gingerol might both exert anti-invasive activity against hepatoma cells through regulation of MMP-9 and TIMP-1 and that 6-shogaol could further regulate urokinase-type plasminogen activity.

  17. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental contaminants and their effects on fish in the Columbia River Basin

    USGS Publications Warehouse

    Hinck, Jo Ellen; Schmitt, Christopher J.; Bartish, Timothy M.; Denslow, Nancy D.; Blazer, Vicki; Anderson, Patrick J.; Coyle, James J.; Dethloff, Gail M.; Tillitt, Donald E.

    2004-01-01

    Common carp (Cyprinus carpio), black basses (Micropterus sp.), and largescale sucker (Catostomus macrocheilus) together accounted for 80% of the fish sampled during the study. Fish were weighed and measured then field-examined for external and internal lesions, and liver, spleen, and gonads were weighed to compute somatic indices. Selected tissues and fluids were obtained and preserved for analysis of fish health and reproductive biomarkers. Composite samples of whole fish from each station were grouped by species and gender and analyzed for persistent organic and inorganic contaminants and for dioxin-like activity using H4IIE rat hepatoma cell bioassay.

  18. Expression of Plasmodium falciparum Circumsporozoite Proteins in Escherichia coli for Potential Use in a Human Malaria Vaccine

    NASA Astrophysics Data System (ADS)

    Young, James F.; Hockmeyer, Wayne T.; Gross, Mitchell; Ripley Ballou, W.; Wirtz, Robert A.; Trosper, James H.; Beaudoin, Richard L.; Hollingdale, Michael R.; Miller, Louis H.; Diggs, Carter L.; Rosenberg, Martin

    1985-05-01

    The circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum may be the most promising target for the development of a malaria vaccine. In this study, proteins composed of 16, 32, or 48 tandem copies of a tetrapeptide repeating sequence found in the CS protein were efficiently expressed in the bacterium Escherichia coli. When injected into mice, these recombinant products resulted in the production of high titers of antibodies that reacted with the authentic CS protein on live sporozoites and blocked sporozoite invasion of human hepatoma cells in vitro. These CS protein derivatives are therefore candidates for a human malaria vaccine.

  19. Identification of evodiamine as the bioactive compound in evodia (Evodia rutaecarpa Benth.) fruit extract that activates human peroxisome proliferator-activated receptor gamma (PPARγ).

    PubMed

    Rebhun, John F; Roloff, Samantha J; Velliquette, Rodney A; Missler, Stephen R

    2015-03-01

    The dried unripe fruit from Evodia rutaecarpa Benth., known as Wu zhu yu in China, has long been used in traditional Chinese medicine. In this research, we provide evidence that evodia fruit extract activates peroxisome proliferator-activated receptor gamma (PPARγ) and, as identified through HPLC fractionation and mass spectroscopy, the activating phytochemical is evodiamine. Evodiamine was shown to bind to and activate PPARγ. It was also shown to activate PPARγ-regulated gene expression in human hepatoma cells similar to known PPARγ ligands and that the expression was blocked by a PPARγ specific antagonist. Copyright © 2015. Published by Elsevier B.V.

  20. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  1. Expression of connective tissue growth factor in the livers of non-viral hepatocellular carcinoma patients with metabolic risk factors.

    PubMed

    Akahoshi, Keiichi; Tanaka, Shinji; Mogushi, Kaoru; Shimada, Shu; Matsumura, Satoshi; Akiyama, Yoshimitsu; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru

    2016-09-01

    The incidence of hepatocellular carcinoma (HCC) associated with metabolic risk factors, such as diabetes and obesity, has been increasing. However, the underlying mechanism that links these diseases remains unclear. We performed genome-wide expression analysis of human liver tissues of non-viral HCC patients with or without metabolic risk factors. The upregulated genes that associated with diabetes and obesity were investigated by in vitro and in vivo experiments, and immunohistochemistry of human liver tissues was performed. Among the upregulated genes, connective tissue growth factor (CTGF) expression was induced to a greater extent by combined glucose and insulin administration to human hepatoma cells. Genome-wide expression analysis revealed upregulation of a chemokine network in CTGF-overexpressing hepatoma cells, which displayed an increased ability to induce in vitro activation of macrophages, and in vivo infiltration of liver macrophages. Immunohistochemistry of human liver tissues validated the correlations between CTGF expression and diabetes or obesity as well as activation of liver macrophages in patients with non-viral HCC. Recurrence-free survival was significantly poorer in the CTGF-positive patients compared with the CTGF-negative patients (p = 0.002). Multivariate analysis determined that CTGF expression (HR 2.361; 95 % CI 1.195-4.665; p = 0.013) and vascular invasion (HR 2.367; 95 % CI 1.270-4.410; p = 0.007) were independent prognostic factors for recurrence of non-viral HCC. Our data suggest that CTGF could be involved in oncogenic pathways promoting non-viral HCC associated with metabolic risk factors via induction of liver inflammation and is expected to be a novel HCC risk biomarker and potential therapeutic target.

  2. Development and application of test methods for the detection of dietary constituents which protect against heterocyclic aromatic amines.

    PubMed

    Kassie, Fekadu; Sundermann, Volker Mersch; Edenharder, R; Platt, Karl L; Darroudi, F; Lhoste, Evelyne; Humbolt, C; Muckel, Eva; Uhl, Maria; Kundi, Michael; Knasmüller, Siegfried

    2003-01-01

    This article describes the development and use of assay models in vitro (genotoxicity assay with genetically engineered cells and human hepatoma (HepG2) cells) and in vivo (genotoxicity and short-term carcinogenicity assays with rodents) for the identification of dietary constituents which protect against the genotoxic and carcinogenic effects of heterocyclic aromatic amines (HAs). The use of genetically engineered cells expressing enzymes responsible for the bioactivation of HAs enables the detection of dietary factors that inhibit the metabolic activation of HAs. Human derived hepatoma (HepG2) cells are sensitive towards HAs and express several enzymes [glutathione S-transferase (GST), N-acetyltransferase (NAT), sulfotransferase (SULT), UDP-glucuronosyltransferase (UDPGT), and cytochrome P450 isozymes] involved in the biotransformation of HAs. Hence these cells may reflect protective effects, which are due to inhibition of activating enzymes and/or induction of detoxifying enzymes. The SCGE assay with rodent cells has the advantage that HA-induced DNA damage can be monitored in a variety of organs which are targets for tumor induction by HAs. ACF and GST-P(+) foci constitute preneoplastic lesions that may develop into tumors. Therefore, agents that prevent the formation of these lesions may be anticarcinogens. The foci yield and the sensitivity of the system could be substantially increased by using a modified diet. The predictive value of the different in vitro and in vivo assays described here for the identification of HA-protective dietary substances relevant for humans is probably better than that of conventional in vitro test methods with enzyme homogenates. Nevertheless, the new test methods are not without shortcomings and these issues are critically discussed in the present article. Copyright 2002 Elsevier Science B.V.

  3. Hepatocyte-derived exosomes promote T follicular regulatory cell expansion during hepatitis C virus infection.

    PubMed

    Cobb, Dustin A; Kim, Ok-Kyung; Golden-Mason, Lucy; Rosen, Hugo R; Hahn, Young S

    2018-01-01

    Hepatitis C virus (HCV) is a global health concern that can cause severe liver disease, such as cirrhosis and hepatocellular carcinoma. Control of HCV requires vigorous T-cell responses, yet CD4 + T cells in chronic HCV patients are dysfunctional. T follicular regulatory (Tfr) cells are a subset of regulatory T cells that suppress T follicular helper (Tfh) cells and the generation of high affinity antibody-producing B cells. In this study, we examined the accumulation of Tfr cells in the liver compartment during chronic HCV infection and defined the cellular and molecular mechanisms underlying their expansion. Our analysis revealed a substantial population of Tfr cells in livers of chronic HCV patients that is absent in liver tissues from nonviral hepatitis or healthy subjects. Coculture of PBMCs from healthy subjects with HCV-infected hepatoma cells resulted in preferential expansion of circulating Tfr cells, leading to suppression of Tfh cells. Additionally, coculture of tonsillar cells with infected hepatoma cells lead to an expansion of germinal center Tfr. Notably, expansion was mediated by transforming growth factor beta (TGF-β)-containing exosomes released from HCV-infected hepatocytes given that blockade of exosome-associated TGF-β or inhibition of exosome release abrogated Tfr expansion. These results show that liver-derived exosomes play a pivotal role in the accumulation of Tfr cells, likely leading to suppression of Tfh responses in HCV-infected patients. Our study identifies a novel pathway in which HCV infection in hepatocytes exacerbates Tfr cell responses to subvert antiviral immunity. (Hepatology 2018;67:71-85). © 2017 by the American Association for the Study of Liver Diseases.

  4. Polychromatic Light (480-3400 nm) Upregulates Sensitivity of Tumor Cells to Lysis by Natural Killers.

    PubMed

    Knyazev, Nickolay A; Samoilova, Kira A; Abrahamse, Heidi; Filatova, Natalia A

    2016-09-01

    This study evaluates the participation of immunological mechanisms of downregulation of murine hepatoma cells MH22a after direct exposure to polychromatic polarized light. Previous studies have shown that exposure to a combination of visible (VIS) and infrared (IR) light leads to decreased tumorigenicity of the murine hepatoma cells MH22a, which correlated with an increase in the amount of cells with reorganized cytoskeleton in the submembrane region. The mechanism of tumor inhibition and elimination has not been determined. Polychromatic light (480-3400 nm) has been used at doses of 4.8 and 9.6 J/cm(2) to determine the sensitivity of murine MH22a cells and human erythroleukemia cells K562 exposed to this light, to lysis by effector cells of innate immunity (NK cells), and enhancement of the glycocalyx of the studied tumor cells. This was determined using flow cytometry, the H(3)-uridine cytotoxic test followed by spectrophotometry. VIS-IR light increases the sensitivity of MH-22a cells at a dose 4.8 J/cm(2) and K562 cells at 9.6 J/cm(2). The enhancement of sensitivity of tumor cells to NK lysis changed their ability to absorb alcian blue, reflecting a change in the expression of the glycocalyx. Increasing the sensitivity of the murine tumor cells MH22a and human K562 irradiated VIS-IR light correlated with a change in the expression of their glycocalyx. The results of the present study demonstrate that the reduction of tumorigenicity of irradiated tumor cells is due to their sensitivity to lysis by NK cells of the immune system.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yilin; Yang, Yang; Cai, Yanyan

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. Inmore » this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.« less

  6. CD147 is increased in HCC cells under starvation and reduces cell death through upregulating p-mTOR in vitro.

    PubMed

    Gou, Xingchun; Tang, Xu; Kong, Derek Kai; He, Xinying; Gao, Xingchun; Guo, Na; Hu, Zhifang; Zhao, Zhaohua; Chen, Yanke

    2016-01-01

    Transarterial chemoembolization (TACE) is the standard of care for treatment of intermediate hepatocellular carcinoma (HCC), however, key molecules involved in HCC cell survival and tumor metastasis post-TACE remain unclear. CD147 is a member of the immunoglobulin superfamily that is overexpressed on the surface of HCC cells and is associated with malignant potential and poor prognosis in HCC patients. In this study, using an Earle's Balanced Salt Solution medium culture model that mimics nutrient deprivation induced by TACE, we investigated the regulation of CD147 expression on HCC cells under starvation conditions and its functional effects on HCC cell death. During early stages of starvation, the expression of CD147 was considerably upregulated in SMMC7721, HepG2 and HCC9204 hepatoma cell lines at the protein levels. Downregulation of CD147 by specific small interfering RNA (siRNA) significantly promoted starvation-induced cell death. In addition, CD147 siRNA-transfected SMMC7721 cells demonstrated significantly increased levels of both apoptosis and autophagy as compared to cells transfected with control siRNA under starvation conditions, whereas no difference was observed between the two treatment groups under normal culture conditions. Furthermore, silencing of CD147 resulted in a remarkable downregulation of phosphorylated mammalian target of rapamycin (p-mTOR) in starved SMMC7721 cells. Finally, the combined treatment of starvation and anti-CD147 monoclonal antibody exhibited a synergistic HCC cell killing effect. Our study suggests that upregulation of CD147 under starvation may reduce hepatoma cell death by modulating both apoptosis and autophagy through mTOR signaling, and that CD147 may be a novel potential molecular target to improve the efficacy of TACE.

  7. Autophagy and Apoptosis in Hepatocellular Carcinoma Induced by EF25-(GSH)2: A Novel Curcumin Analog

    PubMed Central

    Zhou, Tao; Ye, Lili; Bai, Yu; Sun, Aiming; Cox, Bryan; Liu, Dahai; Li, Yong; Liotta, Dennis; Snyder, James P.; Fu, Haian; Huang, Bei

    2014-01-01

    Curcumin, a spice component as well as a traditional Asian medicine, has been reported to inhibit proliferation of a variety of cancer cells but is limited in application due to its low potency and bioavailability. Here, we have assessed the therapeutic effects of a novel and water soluble curcumin analog, 3,5-bis(2-hydroxybenzylidene)tetrahydro-4H-pyran-4-one glutathione conjugate [EF25-(GSH)2], on hepatoma cells. Using the MTT and colony formation assays, we determined that EF25-(GSH)2 drastically inhibits the proliferation of hepatoma cell line HepG2 with minimal cytotoxicity for the immortalized human hepatic cell line HL-7702. Significantly, EF25-(GSH)2 suppressed growth of HepG2 xenografts in mice with no observed toxicity to the animals. Mechanistic investigation revealed that EF25-(GSH)2 induces autophagy by means of a biphasic mechanism. Low concentrations (<5 µmol/L) induced autophagy with reversible and moderate cytoplasmic vacuolization, while high concentrations (>10 µmol/L) triggered an arrested autophagy process with irreversible and extensive cytoplasmic vacuolization. Prolonged treatment with EF25-(GSH)2 induced cell death through both an apoptosis-dependent and a non-apoptotic mechanism. Chloroquine, a late stage inhibitor of autophagy which promoted cytoplasmic vacuolization, led to significantly enhanced apoptosis and cytotoxicity when combined with EF25-(GSH)2. Taken together, these data imply a fail-safe mechanism regulated by autophagy in the action of EF25-(GSH)2, suggesting the therapeutic potential of the novel curcumin analog against hepatocellular carcinoma (HCC), while offering a novel and effective combination strategy with chloroquine for the treatment of patients with HCC. PMID:25268357

  8. Methylation of an alpha-foetoprotein gene intragenic site modulates gene activity.

    PubMed Central

    Opdecamp, K; Rivière, M; Molné, M; Szpirer, J; Szpirer, C

    1992-01-01

    By comparing the methylation pattern of Mspl/Hpall sites in the 5' region of the mouse alpha-foetoprotein (AFP) gene of different cells (hepatoma cells, foetal and adult liver, fibroblasts), we found a correlation between gene expression and unmethylation of a site located in the first intron of the gene. Other sites did not show this correlation. In transfection experiments of unmethylated and methylated AFP-CAT chimeric constructions, we then showed that methylation of the intronic site negatively modulates expression of CAT activity. We also found that a DNA segment centered on this site binds nuclear proteins; however methylation did not affect protein binding. Images PMID:1371343

  9. The application of antitumor drug-targeting models on liver cancer.

    PubMed

    Yan, Yan; Chen, Ningbo; Wang, Yunbing; Wang, Ke

    2016-06-01

    Hepatocarcinoma animal models, such as the induced tumor model, transplanted tumor model, gene animal model, are significant experimental tools for the evaluation of targeting drug delivery system as well as the pre-clinical studies of liver cancer. The application of antitumor drug-targeting models not only furnishes similar biological characteristics to human liver cancer but also offers guarantee of pharmacokinetic indicators of the liver-targeting preparations. In this article, we have reviewed some kinds of antitumor drug-targeting models of hepatoma and speculated that the research on this field would be capable of attaining a deeper level and expecting a superior achievement in the future.

  10. Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes

    PubMed Central

    Gomes-Santos, Carina S. S.; Itoe, Maurice A.; Afonso, Cristina; Henriques, Ricardo; Gardner, Rui; Sepúlveda, Nuno; Simões, Pedro D.; Raquel, Helena; Almeida, António Paulo; Moita, Luis F.; Frischknecht, Friedrich; Mota, Maria M.

    2012-01-01

    Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver. PMID:22238609

  11. Illegitimate transcription: transcription of any gene in any cell type.

    PubMed Central

    Chelly, J; Concordet, J P; Kaplan, J C; Kahn, A

    1989-01-01

    Using in vitro amplification of cDNA by the polymerase chain reaction, we have detected spliced transcripts of various tissue-specific genes (genes for anti-Müllerian hormone, beta-globin, aldolase A, and factor VIIIc) in human nonspecific cells, such as fibroblasts, hepatoma cells, and lymphoblasts. In rats, erythroid- and liver-type pyruvate kinase transcripts were also detected in brain, lung, and muscle. The abundance of these "illegitimate" transcripts is very low; yet, their existence and the possibility of amplifying them by the cDNA polymerase chain reaction provide a powerful tool to analyze pathological transcripts of any tissue-specific gene by using any accessible cell. Images PMID:2495532

  12. Chromosomal localization and sequence analysis of a human episomal sequence with in vitro differentiating activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccaccio, C.; Deshatrette, J.; Meunier-Rotival, M.

    1994-05-01

    The genomic fragment carrying the human activator of liver function, previously described as an episome capable of inducing differentiation upon transfection into a dedifferentiated rat hepatoma cell line, was mapped on human chromosome 12q24.2-12q24.3. This chromosomal location was indistinguishable by in situ hybridization from that of the gene coding for the hepatic transcription factor HNF1. The sequence of the integrated form of the episome as well as its flanking sequences show that it is rich in retroposons. It contains a human ribosomal protein L21 processed pseudogene, one truncated L1Hs sequence, and 10 Alu repeats, which belong to different subfamilies.

  13. Identification of glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human peroxisome proliferator-activated receptor gamma (PPARγ).

    PubMed

    Rebhun, John F; Glynn, Kelly M; Missler, Stephen R

    2015-10-01

    Licorice, the root and stolons of the Glycyrrhiza plant (Fabaceae), has been used for centuries as a food additive (sweetener), in cosmetics, and in traditional medicine. In this research, we provide evidence that licorice extract activates peroxisome proliferator-activated receptor gamma (PPARγ) and, as identified through HPLC fractionation and mass spectroscopy, one of the activating phytochemicals is glabridin. Glabridin was shown to bind to and activate PPARγ. It was also shown to activate PPARγ-regulated gene expression in human hepatoma cells similar to known PPARγ ligands and that the expression was blocked by a PPARγ specific antagonist. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Solvent-Free Addition of Indole to Aldehydes: Unexpected Synthesis of Novel 1-[1-(1H-Indol-3-yl) Alkyl]-1H-Indoles and Preliminary Evaluation of Their Cytotoxicity in Hepatocarcinoma Cells.

    PubMed

    Tocco, Graziella; Zedda, Gloria; Casu, Mariano; Simbula, Gabriella; Begala, Michela

    2017-10-17

    New 1-[1-(1 H -indol-3-yl) alkyl]-1 H -indoles, surprisingly, have been obtained from the addition of indole to a variety of aldehydes under neat conditions. CaO, present in excess, was fundamental for carrying out the reaction with paraformaldehyde. Under the same reaction conditions, aromatic and heteroaromatic aldehydes afforded only classical bis (indolyl) aryl indoles. In this paper, the role of CaO, together with the regiochemistry and the mechanism of the reaction, are discussed in detail. The effect of some selected 3,3'- and 1,3'-diindolyl methane derivatives on cell proliferation of the hepatoma cell line FaO was also evaluated.

  15. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    PubMed

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to rely on the activated conformation of AMPK. AMPK inhibition of PPAR-α and -γ may allow for short-term processes to increase energy generation before the cells devote resources to increasing their capacity for fatty acid oxidation.

  16. Ta1722, an anti-angiogenesis inhibitor targeted on VEGFR-2 against human hepatoma.

    PubMed

    Zheng, Lei; He, Xu; Ma, Weina; Dai, Bingling; Zhan, Yingzhuan; Zhang, Yanmin

    2012-10-01

    In order to investigate the anti-angiogenesis potential and related mechanisms of Ta1722 (a novel taspine derivative compound), a series of experiments in vivo and in vitro were carried out. The proliferation on human cell lines of SMMC-7721, A549, MCF-7, Lovo, and ECV304 was examined by MTT. Angiogenesis inhibition was examined by chick embryo chorioallantoic membrane (CAM) angiogenesis and tube formation assays. Related angiogenesis proteins and their mRNA expression were determined by western blotting and RT-PCR. In addition, the SMMC-7721 nude mouse xenotransplant model was used to evaluate the inhibition of tumor growth. The results showed that Ta1722 inhibited cell proliferation, angiogenesis of CAM and tube formation, and downregulated related positive angiogenesis proteins. The above indicated Ta1722 could serve as a promising candidate of angiogenesis inhibitors by interrupting the VEGF/VEGFR-2 pathway. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Infection of Hepatocytes With HCV Increases Cell Surface Levels of Heparan Sulfate Proteoglycans, Uptake of Cholesterol and Lipoprotein, and Virus Entry by Up-regulating SMAD6 and SMAD7.

    PubMed

    Zhang, Fang; Sodroski, Catherine; Cha, Helen; Li, Qisheng; Liang, T Jake

    2017-01-01

    The signaling molecule and transcriptional regulator SMAD6, which inhibits the transforming growth factor β signaling pathway, is required for infection of hepatocytes by hepatitis C virus (HCV). We investigated the mechanisms by which SMAD6 and another inhibitory SMAD (SMAD7) promote HCV infection in human hepatoma cells and hepatocytes. We infected Huh7 and Huh7.5.1 cells and primary human hepatocytes with Japanese fulminant hepatitis-1 (JFH1) HCV cell culture system (HCVcc). We then measured HCV binding, intracellular levels of HCV RNA, and expression of target genes. We examined HCV entry in HepG2/microRNA (miR) 122/CD81 cells, which support entry and replication of HCV, were transfected these cells with small interfering RNAs targeting inhibitory SMADs to analyze gene expression profiles. Uptake of labeled low-density lipoprotein (LDL) and cholesterol was measured. Cell surface proteins were quantified by flow cytometry. We obtained liver biopsy samples from 69 patients with chronic HCV infection and 19 uninfected individuals (controls) and measured levels of syndecan 1 (SDC1), SMAD7, and SMAD6 messenger RNAs (mRNAs). Small interfering RNA knockdown of SMAD6 blocked the binding and infection of hepatoma cell lines and primary human hepatocytes by HCV, whereas SMAD6 overexpression increased HCV infection. We found levels of mRNAs encoding heparan sulfate proteoglycans (HSPGs), particularly SDC1 mRNA, and cell surface levels of heparan sulfate to be reduced in cells after SMAD6 knockdown. SMAD6 knockdown also reduced transcription of genes encoding lipoprotein and cholesterol uptake receptors, including the LDL receptor (LDLR), the very LDLR, and the scavenger receptor class B member 1 in hepatocytes; knockdown of SMAD6 also inhibited cell uptake of cholesterol and lipoprotein. Overexpression of SMAD6 increased the expression of these genes. Similar effects were observed with knockdown and overexpression of SMAD7. In addition, HCV infection of cells increased

  18. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein.

    PubMed

    Wu, Yun-Li; Peng, Xian-E; Zhu, Yi-Bing; Yan, Xiao-Li; Chen, Wan-Nan; Lin, Xu

    2016-02-15

    Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV

  19. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    PubMed

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.

  20. Compound Astragalus and Salvia miltiorrhiza extracts suppress hepatocarcinogenesis by modulating transforming growth factor-β/Smad signaling.

    PubMed

    Hu, Xiangpeng; Rui, Wenjuan; Wu, Chao; He, Shufang; Jiang, Jiemei; Zhang, Xiaoxiang; Yang, Yan

    2014-06-01

    Previous studies showed Compound Astragalus and Salvia miltiorrhiza extract (CASE), extract from Astragalus membranaceus and Salvia miltiorhiza, significantly suppresses hepatocellular carcinoma (HCC) in rats induced by diethylinitrosamine (DEN), and in vitro experiments further demonstrated that CASE's anti-HepG2 cell invasion is associated with transforming growth factor-β (TGF-β). We hypothesized that CASE's suppression of HCC is modulated by TGF-β/Smad signaling, and we conducted this in vivo study to test this hypothesis. Rats were divided into the normal control, the DEN group, and three CASE (60, 120, and 240 mg/kg) treatment groups. The expression of phosphorylation(p) Smad both at C-terminal and linker region, plasminogen activator inhibitor 1, and Smad4 and Smad7 of liver tissues were measured and compared across the five groups. The positive staining of pSmad2L and pSmad3L increased both in hepatoma nodule areas and adjacent relatively normal liver tissues in rats treated with DEN, while the positive staining of pSmad2C and pSmad3C increased only in relatively normal liver tissues adjacent to hepatoma tissues. The elevated expression of pSmad2C, pSmad2L, pSmad3L, Smad4, and plasminogen activator inhibitor 1 proteins were suppressed by CASE in a dose-dependent manner. CASE treatment also significantly reduced the intranuclear amounts of pSmad2L and pSmad3L, and upregulated the elevation of pSmad3C positive cells and protein expression in a dose-dependent manner. The results suggest that CASE significantly suppresses HCC progression by mediating TGF-β/Smad signaling, especially by modulating Smad3 phosphorylation both at the C-terminal and linker region. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  1. A combination of dietary N-3 fatty acids and a cyclooxygenase-1 inhibitor attenuates nonalcoholic fatty liver disease in mice.

    PubMed

    Saraswathi, Viswanathan; Perriotte-Olson, Curtis; Ganesan, Murali; Desouza, Cyrus V; Alnouti, Yazen; Duryee, Michael J; Thiele, Geoffrey M; Nordgren, Tara M; Clemens, Dahn L

    2017-04-01

    We sought to determine whether a combination of purified n-3 fatty acids (n-3) and SC-560 (SC), a cyclooxygenase-1-specific inhibitor, is effective in ameliorating nonalcoholic fatty liver disease in obesity. Female wild-type mice were fed a high-fat and high-cholesterol diet (HF) supplemented with n-3 in the presence or absence of SC. Mice treated with SC alone exhibited no change in liver lipids, whereas n-3-fed mice tended to have lower hepatic lipids. Mice given n-3+SC had significantly lower liver lipids compared with HF controls indicating enhanced lipid clearance. Total and sulfated bile acids were significantly higher only in n-3+SC-treated mice compared with chow diet (CD) controls. Regarding mechanisms, the level of pregnane X receptor (PXR), a nuclear receptor regulating drug/bile detoxification, was significantly higher in mice given n-3 or n-3+SC. Studies in precision-cut liver slices and in cultured hepatoma cells showed that n-3+SC enhanced not only the expression/activation of PXR and its target genes but also the expression of farnesoid X receptor (FXR), another regulator of bile synthesis/clearance, indicating that n-3+SC can induce both PXR and FXR. The mRNA level of FGFR4 which inhibits bile formation showed a significant reduction in Huh 7 cells upon n-3 and n-3+SC treatment. PXR overexpression in hepatoma cells confirmed that n-3 or SC each induced the expression of PXR target genes and in combination had an enhanced effect. Our findings suggest that combining SC with n-3 potentiates its lipid-lowering effect, in part, by enhanced PXR and/or altered FXR/FGFR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A.

    PubMed

    Hiet, Marie-Sophie; Bauhofer, Oliver; Zayas, Margarita; Roth, Hanna; Tanaka, Yasuhito; Schirmacher, Peter; Willemsen, Joschka; Grünvogel, Oliver; Bender, Silke; Binder, Marco; Lohmann, Volker; Lotteau, Vincent; Ruggieri, Alessia; Bartenschlager, Ralf

    2015-10-01

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a multifunctional protein playing a crucial role in diverse steps of the viral replication cycle and perturbing multiple host cell pathways. We showed previously that removal of a region in domain 2 (D2) of NS5A (mutant NS5A(D2Δ)) is dispensable for viral replication in hepatoma cell lines. By using a mouse model and immune-competent cell systems, we studied the role of D2 in controlling the innate immune response. In vivo replication competence of NS5A(D2Δ) was studied in transgenic mice with human liver xenografts. Results were validated using primary human hepatocytes (PHHs) and mechanistic analyses were conducted in engineered Huh7 hepatoma cells with reconstituted innate signaling pathways. Although the deletion in NS5A removed most of the interferon (IFN) sensitivity determining-region, mutant NS5A(D2Δ) was as sensitive as the wild type to IFN-α and IFN-λ in vitro, but severely attenuated in vivo. This attenuation could be recapitulated in PHHs and was linked to higher activation of the IFN response, concomitant with reduced viral replication and virus production. Importantly, immune-reconstituted Huh7-derived cell lines revealed a sequential activation of the IFN-response via RIG-I (retinoic acid-inducible gene I) and MDA5 (Myeloma differentiation associated factor 5), respectively, that was significantly higher in the case of the mutant lacking most of NS5A D2. Our study reveals an important role of NS5A D2 for suppression of the IFN response that is activated by HCV via RIG-I and MDA5 in a sequential manner. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Effect of the herbal formulation Jianpijiedu on the TCRVβCDR3 repertoire in rats with hepatocellular carcinoma and subjected to food restriction combined with laxative.

    PubMed

    Sun, Baoguo; Meng, Jun; Xiang, Ting; Zhang, Lei; Deng, Liuxiang; Chen, Yan; Luo, Haoxuan; Yang, Zhangbin; Chen, Zexiong; Zhang, Shijun

    2016-03-01

    The aim of this study was to investigate the effects of the Chinese herbal formulation Jianpijiedu (JPJD) in a rat model of orthotopic hepatocellular carcinoma (OHC). The tumor-bearing rats underwent food restriction combined with laxative (FRL) treatment in order to model the nutritional and digestive symptoms of patients with hepatocellular carcinoma. In addition, the study aimed to elucidate the effect of JPJD on the T cell receptor Vβ-chain complementarity-determining region 3 (TCRVβCDR3) repertoire and the underlying mechanism. The FRL rat model was established by alternate-day food restriction and the oral administration of Glauber's salt (sodium sulfate), based on which the OHC model was then established. Subsequently, the FRL-OHC induced animals received JPJD or thymopentin-5 (TP5) for 17 days. Differences in the TCRVβCDR3 repertoire in the rat thymus, liver and hepatocellular carcinoma tissues were analyzed by polymerase chain reaction. Compared with the FRL-OHC model animals without any treatment, those treated with JPJD exhibited significantly inhibited hepatocellular carcinoma growth (P<0.05), reduced weight loss (P<0.01) and stable visceral indices (P<0.05). Furthermore, the JPJD treatment appeared to improve Simpsons diversity index (Ds) values and the quasi-Gaussian distribution rate of the TCRVβCDR3 repertoire in the thymus, liver and hepatocellular carcinoma tissues. However, no anti-hepatoma effects were evident in the rats treated with TP5. In addition, TP5 increased the Ds values and the quasi-Gaussian distribution rate of the TCRVβCDR3 repertoire in hepatocellular carcinoma tissues compared with those in the JPJD-treated group. The anti-hepatoma effects of JPJD in FRL-OHC-induced animals may be due to the promotion of the Ds values of the TCRVβCDR3 repertoire.

  4. Effect of the herbal formulation Jianpijiedu on the TCRVβCDR3 repertoire in rats with hepatocellular carcinoma and subjected to food restriction combined with laxative

    PubMed Central

    SUN, BAOGUO; MENG, JUN; XIANG, TING; ZHANG, LEI; DENG, LIUXIANG; CHEN, YAN; LUO, HAOXUAN; YANG, ZHANGBIN; CHEN, ZEXIONG; ZHANG, SHIJUN

    2016-01-01

    The aim of this study was to investigate the effects of the Chinese herbal formulation Jianpijiedu (JPJD) in a rat model of orthotopic hepatocellular carcinoma (OHC). The tumor-bearing rats underwent food restriction combined with laxative (FRL) treatment in order to model the nutritional and digestive symptoms of patients with hepatocellular carcinoma. In addition, the study aimed to elucidate the effect of JPJD on the T cell receptor Vβ-chain complementarity-determining region 3 (TCRVβCDR3) repertoire and the underlying mechanism. The FRL rat model was established by alternate-day food restriction and the oral administration of Glauber's salt (sodium sulfate), based on which the OHC model was then established. Subsequently, the FRL-OHC induced animals received JPJD or thymopentin-5 (TP5) for 17 days. Differences in the TCRVβCDR3 repertoire in the rat thymus, liver and hepatocellular carcinoma tissues were analyzed by polymerase chain reaction. Compared with the FRL-OHC model animals without any treatment, those treated with JPJD exhibited significantly inhibited hepatocellular carcinoma growth (P<0.05), reduced weight loss (P<0.01) and stable visceral indices (P<0.05). Furthermore, the JPJD treatment appeared to improve Simpsons diversity index (Ds) values and the quasi-Gaussian distribution rate of the TCRVβCDR3 repertoire in the thymus, liver and hepatocellular carcinoma tissues. However, no anti-hepatoma effects were evident in the rats treated with TP5. In addition, TP5 increased the Ds values and the quasi-Gaussian distribution rate of the TCRVβCDR3 repertoire in hepatocellular carcinoma tissues compared with those in the JPJD-treated group. The anti-hepatoma effects of JPJD in FRL-OHC-induced animals may be due to the promotion of the Ds values of the TCRVβCDR3 repertoire. PMID:26997998

  5. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment

    PubMed Central

    Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M.; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M.; Gómez, Jordi; Gastaminza, Pablo

    2017-01-01

    ABSTRACT Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses

  6. Overexpression of insulin-like growth factor-I receptor as a pertinent biomarker for hepatocytes malignant transformation

    PubMed Central

    Yan, Xiao-Di; Yao, Min; Wang, Li; Zhang, Hai-Jian; Yan, Mei-Juan; Gu, Xing; Shi, Yun; Chen, Jie; Dong, Zhi-Zhen; Yao, Deng-Fu

    2013-01-01

    AIM: To investigate the dynamic features of insulin-like growth factor-I receptor (IGF-IR) expression in rat hepatocarcinogenesis, and the relationship between IGF-IR and hepatocytes malignant transformation at mRNA or protein level. METHODS: Hepatoma models were made by inducing with 2-fluorenylacetamide (2-FAA) on male Sprague-Dawley rats. Morphological changes of hepatocytes were observed by pathological Hematoxylin and eosin staining, the dynamic expressions of liver and serum IGF-IR were quantitatively analyzed by an enzyme-linked immunosorbent assay. The distribution of hepatic IGF-IR was located by immunohistochemistry. The fragments of IGF-IR gene were amplified by reverse transcription-polymerase chain reaction, and confirmed by sequencing. RESULTS: Rat hepatocytes after induced by 2-FAA were changed dynamically from granule-like degeneration, precancerous to hepatoma formation with the progressing increasing of hepatic mRNA or IGF-IR expression. The incidences of liver IGF-IR, IGF-IR mRNA, specific IGF-IR concentration (ng/mg wet liver), and serum IGF-IR level (ng/mL) were 0.0%, 0.0%, 0.63 ± 0.17, and 1.33 ± 0.47 in the control; 50.0%, 61.1%, 0.65 ± 0.2, and 1.51 ± 0.46 in the degeneration; 88.9%, 100%, 0.66 ± 0.14, and 1.92 ± 0.29 in the precancerosis; and 100%, 100%, 0.96 ± 0.09, and 2.43 ± 0.57 in the cancerous group, respectively. IGF-IR expression in the cancerous group was significantly higher (P < 0.01) than that in any of other groups at mRNA or protein level. The closely positive IGF-IR relationship was found between livers and sera (r = 0.91, t = 14.222, P < 0.01), respectively. CONCLUSION: IGF-IR expression may participate in rat hepatocarcinogenesis and its abnormality should be an early marker for hepatocytes malignant transformation. PMID:24106410

  7. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.

    PubMed

    Schott, Micah B; Rasineni, Karuna; Weller, Shaun G; Schulze, Ryan J; Sletten, Arthur C; Casey, Carol A; McNiven, Mark A

    2017-07-14

    In liver steatosis ( i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.

  8. Effects of an oral iron chelator, deferasirox, on advanced hepatocellular carcinoma.

    PubMed

    Saeki, Issei; Yamamoto, Naoki; Yamasaki, Takahiro; Takami, Taro; Maeda, Masaki; Fujisawa, Koichi; Iwamoto, Takuya; Matsumoto, Toshihiko; Hidaka, Isao; Ishikawa, Tsuyoshi; Uchida, Koichi; Tani, Kenji; Sakaida, Isao

    2016-10-28

    To evaluate the inhibitory effects of deferasirox (DFX) against hepatocellular carcinoma (HCC) through basic and clinical studies. In the basic study, the effect of DFX was investigated in three hepatoma cell lines (HepG2, Hep3B, and Huh7), as well as in an N-nitrosodiethylamine-induced murine HCC model. In the clinical study, six advanced HCC patients refractory to chemotherapy were enrolled. The initial dose of DFX was 10 mg/kg per day and was increased by 10 mg/kg per day every week, until the maximum dose of 30 mg/kg per day. The duration of a single course of DFX therapy was 28 consecutive days. In the event of dose-limiting toxicity (according to the Common Terminology Criteria for Adverse Events v.4.0), DFX dose was reduced. Administration of DFX inhibited the proliferation of hepatoma cell lines and induced the activation of caspase-3 in a dose-dependent manner in vitro . In the murine model, DFX treatment significantly suppressed the development of liver tumors ( P < 0.01), and significantly upregulated the mRNA expression levels of hepcidin ( P < 0.05), transferrin receptor 1 ( P < 0.05), and hypoxia inducible factor-1α ( P < 0.05) in both tumor and non-tumor tissues, compared with control mice. In the clinical study, anorexia and elevated serum creatinine were observed in four and all six patients, respectively. However, reduction in DFX dose led to decrease in serum creatinine levels in all patients. After the first course of DFX, one patient discontinued the therapy. We assessed the tumor response in the remaining five patients; one patient exhibited stable disease, while four patients exhibited progressive disease. The one-year survival rate of the six patients was 17%. We demonstrated that DFX inhibited HCC in the basic study, but not in the clinical study due to dose-limiting toxicities.

  9. Recombinant adenovirus of SEA and CD80 genes driven by MMRE and mouse TERT promoter induce effective antitumor immune responses against different types of tumor cells in vitro and in vivo.

    PubMed

    Si, Shao-Yan; Liu, Jun-Li; Liu, Jun-Lian; Xu, Bing-Xin; Li, Jian-Zhong; Qin, Ya-Ya; Song, Shu-Jun

    2017-05-01

    Staphylococcus enterotoxin A (SEA) is a powerful immunostimulant and can stimulate T cells bearing certain T-cell receptor β-chain variable regions when bound to major histocompatibility complex II molecules. SEA is widely used in research of antitumor therapy. The low affinity T-cell receptor (TCR) interaction with SEA in the absence of MHC class II antigens is sufficient for the induction of cytotoxicity but requires additional CD28/B7 signaling to result in proliferation of resting T cells. In this study, we constructed recombinant adenovirus (named as Ad-MMRE-mTERT-BIS) carrying membrane-expressing SEA (named as SEAtm) and CD80 driven by Myc-Max response elements (MMRE) and mouse telomerase reverse transcriptase (mTERT) promoter to reduce toxicity and to improve safety and efficiency. We demonstrated that Ad-MMRE-mTERT-BIS could make SEAtm and CD80 to co-express highly on the surface of Hepa1-6 and B16 cells, at low level on the surface of CT26 cells, but not in NIH3T3. Hepa1-6 and B16 cells infected by the recombinant adenovirus induced proliferation of CD4+ and CD8+ T cells and increased cytokine [interleukin (IL)-2, tumor necrosis factor (TNF)-α, interferon (IFN)-γ] production in vitro. Intratumoral injection of Ad-MMRE-mTERT-BIS in hepatoma and melanoma mouse models induced tumor-specific cytotoxic T cells in the spleen. Moreover, hepatoma and melanoma xenografts were suppressed by treatment with Ad-MMRE-mTERT-BIS and the survival time of treated mice was prolonged. These findings suggest that recombinant adenovirus of SEA and CD80 genes driven by mTERT promoter could induce effective antitumor immune responses against different kinds of tumor cells in vitro and in vivo.

  10. Nuclear Factor Kappa B Activation and Peroxisome Proliferator-activated Receptor Transactivational Effects of Chemical Components of the Roots of Polygonum multiflorum.

    PubMed

    Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2016-01-01

    Polygonum multiflorum is well-known as "Heshouwu" in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. To research the anti-inflammatory activities of components from P. multiflorum. The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1-15 were evaluated by luciferase reporter gene assays. Fifteen compounds (1-15) were isolated from the roots of P. multiflorum. Compounds 1-5 and 14-15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1-5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26-31.45 μM. The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells.

  11. Enhancement of Programmed Death Ligand 2 on Hepatitis C Virus Infected Hepatocytes by Calcineurin Inhibitors

    PubMed Central

    Koike, Kazuko; Takaki, Akinobu; Yagi, Takahito; Iwasaki, Yoshiaki; Yasunaka, Tetsuya; Sadamori, Hiroshi; Shinoura, Susumu; Umeda, Yuzo; Yoshida, Ryuichi; Sato, Daisuke; Nobuoka, Daisuke; Utsumi, Masashi; Miyake, Yasuhiro; Ikeda, Fusao; Shiraha, Hidenori; Fujiwara, Toshiyoshi; Yamamoto, Kazuhide

    2015-01-01

    Background Post orthotopic liver transplantation (OLT) viral hepatitis is an immunological condition where immune cells induce hepatitis during conditions of immune-suppression. The immune-regulatory programmed death-1 (PD-1)/PD-ligand 1 system is acknowledged to play important roles in immune-mediated diseases. However, the PD-1/PD-L2 interaction is not well characterized, with PD-L2 also exhibiting an immunostimulatory function. We hypothesized that this atypical molecule could affect the recurrence of post-OLT hepatitis. To test this hypothesis, we conducted immunohistochemical staining analysis and in vitro analysis of PD-L2. Methods The expression of PD-L2 was evaluated in liver biopsy specimens from patients with chronic hepatitis B (n = 15), post-OLT hepatitis B (n = 8), chronic hepatitis C (n = 48), and post-OLT hepatitis C (CH-C-OLT) (n = 14). The effect of calcineurin inhibitors (CNIs) and hepatitis C virus (HCV) on PD-L2 expression was investigated in hepatoma cell lines. Results The PD-L2 was highly expressed on CH-C-OLT hepatocytes. Treatment of hepatoma cell lines with CNIs resulted in increased PD-L2 expression, especially in combination with HCV core or NS3 protein. Transfection of cell lines with PD-L2 containing plasmid resulted in high intercellular adhesion molecule-1 (ICAM-1) expression, which might enhance hepatitis activity. Conclusions The PD-L2 is highly expressed on CH-C-OLT hepatocytes, whereas HCV proteins, in combination with CNIs, induce high expression of PD-L2 resulting in elevated expression of ICAM-1. These findings demonstrate the effect of CNIs on inducing PD-L2 and subsequent ICAM-1 expression, effects that may produce inflammatory cell infiltration in post-OLT hepatitis C. PMID:25675203

  12. Tandospirone reduces wasting and improves cardiac function in experimental cancer cachexia.

    PubMed

    Elkina, Yulia; Palus, Sandra; Tschirner, Anika; Hartmann, Kai; von Haehling, Stephan; Doehner, Wolfram; Mayer, Ulrike; Coats, Andrew J S; Beadle, John; Anker, Stefan D; Springer, Jochen

    2013-12-10

    Cancer cachexia is thought to be the cause of >20% of cancer related deaths. Symptoms of cancer cachexia patients include depression and anorexia significantly worsening their quality of life. Moreover, in rodent models of cancer cachexia atrophy of the heart has been shown to impair cardiac function. Here, we characterize the effects of the antidepressant and anxiolytic drug tandospirone on wasting, cardiac function and survival in experimental cancer cachexia. The well-established Yoshida hepatoma rat model was used and tumor-bearing rats were treated with 1mg/kg/d (LD), 10mg/kg/d (HD) tandospirone or placebo. Weight, body composition (NMR), cardiac function (echocardiography), activity and food intake were assessed. Noradrenalin and cortisol were measured in plasma and caspase activity in skeletal muscle. Ten mg/kg/d tandospirone decreased the loss of body weight (p=0.0003) compared to placebo animals, mainly due to preservation of muscle mass (p<0.001), while 1mg/kg/d tandospirone was not effective. Locomotor activity (p=0.0007) and food intake (p=0.0001) were increased by HD tandospirone. The weight (p=0.0277) and function of heart (left ventricular mass, fractional shortening, stroke volume, ejection fraction, all p<0.05) were significantly improved. In the HD tandospirone group, plasma levels of noradrenalin and cortisol were significantly reduced by 49% and 52%, respectively, which may have contributed to the lower caspase activity in the gastrocnemius muscle. Most importantly, HD tandospirone significantly improved survival compared to placebo rats (HR: 0.34; 95% CI: 0.13-0.86; p=0.0495). Tandospirone showed significant beneficial effects in the Yoshida hepatoma cancer cachexia model and should be further examined as a prospective drug for this syndrome. © 2013.

  13. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate.

    PubMed

    Weitkunat, Karolin; Schumann, Sara; Nickel, Daniela; Hornemann, Silke; Petzke, Klaus J; Schulze, Matthias B; Pfeiffer, Andreas Fh; Klaus, Susanne

    2017-06-01

    Background: The risk of type 2 diabetes is inversely correlated with plasma concentrations of odd-chain fatty acids [OCFAs; pentadecanoic acid (15:0) and heptadecanoic acid (17:0)], which are considered as biomarkers for dairy fat intake in humans. However, rodent studies suggest that OCFAs are synthesized endogenously from gut-derived propionate. Propionate increases with dietary fiber consumption and has been shown to improve insulin sensitivity. Objective: We hypothesized that OCFAs are produced in humans from dietary fibers by a novel endogenous pathway. Design: In a randomized, double-blind crossover study, 16 healthy individuals were supplemented with cellulose (30 g/d), inulin (30 g/d), or propionate (6 g/d) for 7 d. In addition, human hepatoma cells were incubated with different propionate concentrations. OCFAs were determined in plasma phospholipids and hepatoma cells by gas chromatography. Results: Cellulose did not affect plasma OCFA levels, whereas inulin and propionate increased pentadecanoic acid by ∼17% ( P < 0.05) and 13% ( P = 0.05), respectively. The effect on heptadecanoic acid was even more pronounced, because it was elevated in almost all participants by inulin (11%; P < 0.01) and propionate (13%; P < 0.001). Furthermore, cell culture experiments showed a positive association between propionate and OCFA levels ( R 2 = 0.99, P < 0.0001), whereas palmitate (16:0) was negatively correlated ( R 2 = 0.83, P = 0.004). Conclusions: Our data show that gut-derived propionate is used for the hepatic synthesis of OCFAs in humans. The association of OCFAs with a decreased risk of type 2 diabetes may therefore also relate to dietary fiber intake and not only dairy fat. This trial was registered at www.germanctr.de as DRKS00010121. © 2017 American Society for Nutrition.

  14. The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases

    PubMed Central

    Garrido, Francisco; Reytor, Edel; Portillo, Francisco; Pajares, María A.

    2016-01-01

    Methionine adenosyltransferases MAT I and MAT III (encoded by Mat1a) catalyze S-adenosylmethionine synthesis in normal liver. Major hepatic diseases concur with reduced levels of this essential methyl donor, which are primarily due to an expression switch from Mat1a towards Mat2a. Additional changes in the association state and even in subcellular localization of these isoenzymes are also detected. All these alterations result in a reduced content of the moderate (MAT I) and high Vmax (MAT III) isoenzymes, whereas the low Vmax (MAT II) isoenzyme increases and nuclear accumulation of MAT I is observed. These changes derive in a reduced availability of cytoplasmic S-adenosylmethionine, together with an effort to meet its needs in the nucleus of damaged cells, rendering enhanced levels of certain epigenetic modifications. In this context, the putative role of protein-protein interactions in the control of S-adenosylmethionine synthesis has been scarcely studied. Using yeast two hybrid and a rat liver library we identified PDRG1 as an interaction target for MATα1 (catalytic subunit of MAT I and MAT III), further confirmation being obtained by immunoprecipitation and pull-down assays. Nuclear MATα interacts physically and functionally with the PDRG1 oncogene, resulting in reduced DNA methylation levels. Increased Pdrg1 expression is detected in acute liver injury and hepatoma cells, together with decreased Mat1a expression and nuclear accumulation of MATα1. Silencing of Pdrg1 expression in hepatoma cells alters their steady-state expression profile on microarrays, downregulating genes associated with tumor progression according to GO pathway analysis. Altogether, the results unveil the role of PDRG1 in the control of the nuclear methylation status through methionine adenosyltransferase binding and its putative collaboration in the progression of hepatic diseases. PMID:27548429

  15. Studies on the in vivo and in vitro mutagenicity and the lipid peroxidation of chlorinated surface (drinking) water in rats and metabolically competent human cells.

    PubMed

    Lu, W Q; Chen, X N; Yue, F; Jenter, C; Gminski, R; Li, X Y; Xie, H; Mersch-Sundermann, V

    2002-01-15

    In the present study, DNA damaging and mutagenic effects of chlorinated drinking water (CDW) extracts obtained from polluted raw water resources were examined in metabolically competent human Hep G2 hepatoma cells using the in vitro micronucleus assay and the single cell gel electrophoresis (SCGE, comet assay). Additionally, the in vivo induction of micronuclei (MN) was studied in polychromatic erythrocytes (PCEs) derived from bone marrow of CDW-treated Wistar rats. Furthermore, we examined the influence of CDW on the lipid peroxidation (LpO) in blood, liver, kidney and testicle of rats. The results demonstrated significant increases of micronucleated PCEs in the bone marrow of rats fed with relatively low CDW doses (33.3ml/kg body weight per day). Similar effects, i.e. increases of MN frequencies, were found in Hep G2 hepatoma cells after CDW treatment (41 MN/1000 binucleated cells (BNCs) for 167ml CDW) in comparison to the vehicle control (24 MN/1000 BNC). Additionally, DNA damages caused by CDW were observed in the comet assay. As a product of LpO, the levels of malondialdehyde (MDA) were significantly enhanced almost in all animals and organs tested after CDW treatment. In livers and serum of rats dose-dependent increases of MDA were observed. The data indicated that extracts from CDW obtained from polluted raw water were able to cause oxidative damages and to induce various biological effects in mammalian cells in vivo and in vitro, i.e. clastogenicity and/or aneugenicity, DNA strand breaks and/or alkali-labile damages. The consistency of the results among the various biological systems and endpoints led to the conclusion that the consumption of chlorinated drinking water obtained from polluted raw water may enhance the body burden with mutagenic and/or carcinogenic substances and therefore, means a potential genetic hazard for human health.

  16. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment.

    PubMed

    Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M; Gómez, Jordi; Gastaminza, Pablo; Domingo, Esteban; Perales, Celia

    2017-05-15

    Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can

  17. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers.

    PubMed

    Govindan, Serengulam V; Cardillo, Thomas M; Sharkey, Robert M; Tat, Fatma; Gold, David V; Goldenberg, David M

    2013-06-01

    CD74 is an attractive target for antibody-drug conjugates (ADC), because it internalizes and recycles after antibody binding. CD74 mostly is associated with hematologic tumors but is expressed also in solid cancers. Therefore, ADCs of the humanized anti-CD74 antibody, milatuzumab, were examined for the therapy of CD74-expressing solid tumors. Milatuzumab-doxorubicin and two milatuzumab-SN-38 conjugates with cleavable linkers, differing in their stability in serum and how they release SN-38 in the lysosome, were prepared. CD74 expression was determined by flow cytometry and immunohistology. In vitro cytotoxicity and in vivo therapeutic studies were conducted in the human cancer cell lines A-375 (melanoma), HuH-7 and Hep-G2 (hepatoma), Capan-1 (pancreatic), NCI-N87 (gastric), and Raji Burkitt lymphoma. The milatuzumab-SN-38 ADC was compared with SN-38 ADCs prepared with anti-Trop-2 and anti-CEACAM6 antibodies in xenografts expressing their target antigens. Milatuzumab-doxorubicin was most effective in the lymphoma model, whereas in A-375 and Capan-1 solid tumors, only milatuzumab-SN-38 showed a therapeutic benefit. Despite much lower surface expression of CD74 than Trop-2 or CEACAM6, milatuzumab-SN-38 had similar efficacy in Capan-1 as anti-Trop-2-SN-38, but in NCI-N87, anti-CEACAM6 and anti-Trop-2 conjugates were superior. Studies in two hepatoma lines at a single dose level showed significant benefit over saline controls but not against an irrelevant immunoglobulin G conjugate. CD74 is a suitable target for ADCs in some solid tumor xenografts, with efficacy largely influenced by uniformity of CD74 expression and with SN-38 conjugates providing the best therapeutic responses; SN-38 conjugates were preferable in solid cancers, whereas doxorubicin ADC was better in lymphoma tested. ©2013 AACR

  18. Suppressive effects of caraway (Carum carvi) extracts on 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin-dependent gene expression of cytochrome P450 1A1 in the rat H4IIE cells.

    PubMed

    Naderi-Kalali, B; Allameh, A; Rasaee, M J; Bach, H-J; Behechti, A; Doods, K; Kettrup, A; Schramm, K-W

    2005-04-01

    Cytochrome P450 1A1 (CYP1A1) is among the cytochrome P450 classes known to convert xenobiotics and endogenous compounds to toxic and/or carcinogenic metabolites. Suppression of CYP1A1 over expression by certain compounds is implicated in prevention of cancer caused by chemical carcinogens. Chemopreventive agents containing high levels of flavonoids and steroids-like compounds are known to suppress CYP1A1. This study was carried out for assessment of the genomic and proteomic effects of caraway (Carum carvi) extracts containing high levels of both flavonoids and steroid-like substances on ethoxy resorufin dealkylation (EROD) activity and CYP1A1 at mRNA levels. Rat hepatoma cells co-treated with a CYP1A1 inducer i.e. TCDD (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin) and different preparations of caraway extracts at concentrations of 0, 0.13, 1.3, and 13 microM in culture medium. After incubation (37 degrees C and 7% CO2 for 20 h), changes in EROD specific activity recorded and compared in cells under different treatments. The results show that caraway seed extract prepared in three different organic solvents suppressed the enzyme activity in hepatoma cells in a dose-dependent manner. The extracts added above 0.13 microM could significantly inhibit EROD activity and higher levels of each extract (1.3 and 13 microM) caused approximately 10-fold suppression in the enzyme activity. Accordingly, data obtained from the RT-PCR (TaqMan) clearly showed the suppressive effects of plant extract on CYP1A1-related mRNA expression. These data clearly show that substances in caraway seeds extractable in organic solvents can potentially reverse the TCDD-dependent induction in cytochrome P450 1A1.

  19. DNA damage response (DDR) induced by topoisomerase II poisons requires nuclear function of the small GTPase Rac.

    PubMed

    Wartlick, Friedrich; Bopp, Anita; Henninger, Christian; Fritz, Gerhard

    2013-12-01

    Here, we investigated the influence of Rac family small GTPases on mechanisms of the DNA damage response (DDR) stimulated by topoisomerase II poisons. To this end, we examined the influence of the Rac-specific small molecule inhibitor EHT1864 on Ser139 phosphorylation of histone H2AX, a widely used marker of the DDR triggered by DNA double-strand breaks. EHT1864 attenuated the doxorubicin-stimulated DDR in a subset of cell lines tested, including HepG2 hepatoma cells. EHT1864 reduced the level of DNA strand breaks and increased viability following treatment of HepG2 cells with topo II poisons. Protection by EHT1864 was observed in both p53 wildtype (HepG2) and p53 deficient (Hep3B) human hepatoma cells and, furthermore, remained unaffected upon pharmacological inhibition of p53 in HepG2. Apparently, the impact of Rac on the DDR is independent of p53. Protection from doxorubicin-induced DNA damage by EHT1864 comprises both S and G2 phase cells. The inhibitory effect of EHT1864 on doxorubicin-stimulated DDR was mimicked by pharmacological inhibition of various protein kinases, including JNK, ERK, PI3K, PAK and CK1. EHT1864 and protein kinase inhibitors also attenuated the formation of the topo II-DNA cleavable complex. Moreover, EHT1864 mitigated the constitutive phosphorylation of topoisomerase IIα at positions S1106, S1213 and S1247. Doxorubicin transport, nuclear import/export of topoisomerase II and Hsp90-related mechanisms are likely not of relevance for doxorubicin-stimulated DDR impaired by EHT1864. We suggest that multiple kinase-dependent but p53- and heat shock protein-independent Rac-regulated nuclear mechanisms are required for activation of the DDR following treatment with topo II poisons. © 2013.

  20. Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1 and occludin highly downregulated in hepatocellular carcinoma

    PubMed Central

    Alayli, Farah; Melis, Marta; Kabat, Juraj; Pomerenke, Anna; Altan-Bonnet, Nihal; Zamboni, Fausto; Emerson, Suzanne U.

    2018-01-01

    Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro. PMID:29538454

  1. Apolipoprotein B100 is required for hepatitis C infectivity and Mipomersen inhibits hepatitis C.

    PubMed

    Schaefer, Esperance A K; Meixiong, James; Mark, Christina; Deik, Amy; Motola, Daniel L; Fusco, Dahlene; Yang, Andrew; Brisac, Cynthia; Salloum, Shadi; Lin, Wenyu; Clish, Clary B; Peng, Lee F; Chung, Raymond T

    2016-12-07

    To characterize the role of apolipoprotein B100 (apoB100) in hepatitis C viral (HCV) infection. In this study, we utilize a gene editing tool, transcription activator-like effector nucleases (TALENs), to generate human hepatoma cells with a stable genetic deletion of APOB to assess of apoB in HCV. Using infectious cell culture-competent HCV, viral pseudoparticles, replicon models, and lipidomic analysis we determined the contribution of apoB to each step of the viral lifecycle. We further studied the effect of mipomersen, an FDA-approved antisense inhibitor of apoB100, on HCV using in vitro cell-culture competent HCV and determined its impact on viral infectivity with the TCID50 method. We found that apoB100 is indispensable for HCV infection. Using the JFH-1 fully infectious cell-culture competent virus in Huh 7 hepatoma cells with TALEN-mediated gene deletion of apoB ( APOB KO ), we found a significant reduction in HCV RNA and protein levels following infection. Pseudoparticle and replicon models demonstrated that apoB did not play a role in HCV entry or replication. However, the virus produced by APOB KO cells had significantly diminished infectivity as measured by the TCID-50 method compared to wild-type virus. Lipidomic analysis demonstrated that these virions have a fundamentally altered lipidome, with complete depletion of cholesterol esters. We further demonstrate that inhibition of apoB using mipomersen, an FDA-approved anti-sense oligonucleotide, results in a potent anti-HCV effect and significantly reduces the infectivity of the virus. ApoB is required for the generation of fully infectious HCV virions, and inhibition of apoB with mipomersen blocks HCV. Targeting lipid metabolic pathways to impair viral infectivity represents a novel host targeted strategy to inhibit HCV.

  2. Apolipoprotein B100 is required for hepatitis C infectivity and Mipomersen inhibits hepatitis C

    PubMed Central

    Schaefer, Esperance A K; Meixiong, James; Mark, Christina; Deik, Amy; Motola, Daniel L; Fusco, Dahlene; Yang, Andrew; Brisac, Cynthia; Salloum, Shadi; Lin, Wenyu; Clish, Clary B; Peng, Lee F; Chung, Raymond T

    2016-01-01

    AIM To characterize the role of apolipoprotein B100 (apoB100) in hepatitis C viral (HCV) infection. METHODS In this study, we utilize a gene editing tool, transcription activator-like effector nucleases (TALENs), to generate human hepatoma cells with a stable genetic deletion of APOB to assess of apoB in HCV. Using infectious cell culture-competent HCV, viral pseudoparticles, replicon models, and lipidomic analysis we determined the contribution of apoB to each step of the viral lifecycle. We further studied the effect of mipomersen, an FDA-approved antisense inhibitor of apoB100, on HCV using in vitro cell-culture competent HCV and determined its impact on viral infectivity with the TCID50 method. RESULTS We found that apoB100 is indispensable for HCV infection. Using the JFH-1 fully infectious cell-culture competent virus in Huh 7 hepatoma cells with TALEN-mediated gene deletion of apoB (APOB KO), we found a significant reduction in HCV RNA and protein levels following infection. Pseudoparticle and replicon models demonstrated that apoB did not play a role in HCV entry or replication. However, the virus produced by APOB KO cells had significantly diminished infectivity as measured by the TCID-50 method compared to wild-type virus. Lipidomic analysis demonstrated that these virions have a fundamentally altered lipidome, with complete depletion of cholesterol esters. We further demonstrate that inhibition of apoB using mipomersen, an FDA-approved anti-sense oligonucleotide, results in a potent anti-HCV effect and significantly reduces the infectivity of the virus. CONCLUSION ApoB is required for the generation of fully infectious HCV virions, and inhibition of apoB with mipomersen blocks HCV. Targeting lipid metabolic pathways to impair viral infectivity represents a novel host targeted strategy to inhibit HCV. PMID:28018102

  3. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi

    Highlights: • COH-203 exhibits anti-hepatoma effects in vitro and in vivo with low toxicity. • COH-203 inhibits tubulin polymerization. • COH-203 induces mitotic arrest followed by mitotic slippage in BEL-7402 cells. • COH-203 induces p53-dependent senescence in BEL-7402 cells. - Abstract: 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1, 2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal livermore » cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14{sup Arf}–p53–p21 and p16{sup INK4α}–Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.« less

  4. HPLC analysis and cytotoxic activity of Vernonia cinerea.

    PubMed

    Khay, Mom; Toeng, Phirom; Mahiou-Leddet, Valérie; Mabrouki, Fathi; Sothea, Kim; Ollivier, Evelyne; Elias, Riad; Bun, Sok-Siya

    2012-10-01

    The extracts of five Cambodian medicinal plants (Aganosma marginata, Dracaena cambodiana, Harrisonia perforata, Hymenodictyon excelsum and Vernonia cinerea) were evaluated in vitro for their cytotoxic activity against HT29 colon adenocarcinoma cells and HepG2 hepatoma cells, using the MTT assay. Among these five plants, Vernonia cinerea displayed potent cytotoxicity. One main sesquiterpene lactone, 8alpha-tigloyloxy-hirsutinolide-13-O-acetate was isolated from the whole plant of V. cinerea. This compound was active against both cancer cell lines (IC50 = 3.50 microM for HT29 and IC50 = 4.27 microM for HepG2). To quantify this compound in the plant, an analytical high-performance liquid chromatography (HPLC) method was developed and validated.

  5. Anti-tumour and immunomodulatory activities of oligosaccharides isolated from Panax ginseng C.A. Meyer.

    PubMed

    Jiao, Lili; Zhang, Xiaoyu; Li, Bo; Liu, Zhen; Wang, Mingzhu; Liu, Shuying

    2014-04-01

    Water-soluble ginseng oligosaccharides (WGOS) composed of D-glucose with a degree of polymerisation ranging from 2 to 14 were obtained from Panax ginseng C.A. Meyer. In this study, the anti-tumour and immunoregulatory effects of WGOS were evaluated in Hepatoma-22 (H22)-bearing mice. Treatment with WGOS inhibited tumour growth in vivo and significantly increased relative spleen and thymus weight, serum tumour necrosis factor-α level, spleen lymphocyte proliferation, natural killer cell activity, phagocytic function and nitric oxide production secreted by macrophage in H22-bearing mice. However, no direct cytotoxicity was detected. Therefore, the anti-tumour activity of WGOS may be related to their immunomodulatory effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Anti-hepatoma activity in mice of a polysaccharide from the rhizome of Anemone raddeana.

    PubMed

    Liu, Yang; Li, Yiming; Yang, Wenbin; Zhang, Li; Cao, Gang

    2012-04-01

    A neutral polysaccharide fraction (ARP) prepared from the rhizome of Anemone raddeana was tested for its anticancer activity in H22 tumor-bearing mice by oral administration. ARP could not only significantly inhibit the growth of H22 transplantable tumor, but also remarkably promote splenocytes proliferation, NK cell and CTL activity, as well as serum IL-2 and TNF-α production in tumor-bearing mice. In addition, ARP treatment to tumor bearing mice had no toxicity to body weight, the liver and kidney. Moreover it could reverse the hematological parameters induced by 5-fluorouracil (5-FU) to near normal. The above results suggested that the antitumor activity of ARP might be achieved by improving immune response, and they could act as antitumor agent with immunomodulatory activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. 6-Gingerol induces apoptosis through lysosomal-mitochondrial axis in human hepatoma G2 cells.

    PubMed

    Yang, Guang; Wang, Shaopeng; Zhong, Laifu; Dong, Xu; Zhang, Wenli; Jiang, Liping; Geng, Chengyan; Sun, Xiance; Liu, Xiaofang; Chen, Min; Ma, Yufang

    2012-11-01

    6-Gingerol, a major phenolic compound derived from ginger, has been known to possess anticarcinogenic activities. However, the mechanisms are not well understood. In our previous study, it was demonstrated that lysosome and mitochondria may be the primary targets for 6-gingerol in HepG2 cells. Therefore, the aim was to evaluate lysosome-mitochondria cross-signaling in 6-gingerol-induced apoptosis. Apoptosis was detected by Hoechst 33342 and TUNEL assay after 24 h treatment, and the destabilization of lysosome and mitochondria were early upstream initiating events. This study showed that cathepsin D played a crucial role in the process of apoptosis. The release of cathepsin D to the cytosol appeared to be an early event that preceded the release of cytochrome c from mitochondria. Moreover, inhibition of cathepsin D activity resulted in suppressed release of cytochrome c. To further determine the involvement of oxidative stress in 6-gingerol-induced apoptosis, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH) were examined. Taken together, these results suggest that cathepsin D may be a positive mediator of 6-gingerol induced apoptosis in HepG2 cells, acting upstream of cytochrome c release, and the apoptosis may be associated with oxidative stress. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Synthesis and cytotoxic activity evaluation of some novel 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2-ones in human cancer cells.

    PubMed

    Lobo, Marcio M; Viau, Cassiana M; Dos Santos, Josiane M; Bonacorso, Helio G; Martins, Marcos A P; Amaral, Simone S; Saffi, Jenifer; Zanatta, Nilo

    2015-08-28

    The synthesis of a series of 14 new 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2-ones from the 1,3-dipolar cycloaddition reaction of 1-allyl-4-(trihalomethyl)pyrimidin-2(1H)-ones with aryl nitrile oxides is described. Also, the antiproliferative activity of the title compounds was tested against five human tumoral cell lines: MCF-7 breast cancer cell line, ER+ (estrogen receptor positive); HepG-2 (hepatoma); T-24 (bladder cancer); HCT-116 cell (colorectal carcinoma); and CACO-2. The preliminary results are promising, since three compounds presented IC50 values below 2 μM, as well as moderate to high selectivity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Formation of functional asialoglycoprotein receptor after transfection with cDNAs encoding the receptor proteins.

    PubMed Central

    McPhaul, M; Berg, P

    1986-01-01

    The rat asialoglycoprotein receptor (ASGP-R) has been expressed in cultured rat hepatoma cells (HTC cells) after transfection with cloned cDNAs. Fluorescence-activated cell sorting of transfected cells was used to identify the functional cDNA clones and to isolate cells expressing the ASGP-R. Simultaneous or sequential transfections with two cloned cDNAs that encode related but distinctive polypeptide chains were needed to obtain ASGP-R activity; transfection with either cDNA alone failed to produce detectable ASGP-R. The affinity of transduced ASGP-R for asialo orosomucoid is less than that of the native rat ASGP-R, and the number of surface receptors in clones expressing ASGP-R is about one-fifth that found on rat hepatocytes. Images PMID:3466162

  10. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  11. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice.

    PubMed

    Yang, Jingyue; Li, Xiao; Xue, Yan; Wang, Nan; Liu, Wenchao

    2014-03-01

    Corn silk is a well known traditional Chinese herbal medicine and corn silk polysaccharides (CSP) possess multiple pharmacological activities. However, the antitumor effect of CSP on hepatocarcinoma has not been studied. This study aimed to investigate the effects of CSP on tumor growth and immune functions in H22 hepatocarcinoma tumor-bearing mice. The results demonstrated that CSP could not only inhibit the tumor growth, but also extended the survival time of H22 tumor-bearing mice. Besides, CSP administration could increase the body weight, peripheral white blood cells (WBC) count, thymus index and spleen index of H22 tumor-bearing mice. Furthermore, the production of serum cytokines in H22 tumor-bearing mice, such as IL-2, IL-6 and TNF-α, was enhanced by CSP treatment. In addition, no toxicological effects were observed on hepatic function and renal function in CSP-treated mice transplanted H22 tumor cells. In summary, this experimental finding indicated that CSP could elevate the immune functions in H22 tumor-bearing mice to enhance its antitumor activity and CSP seems to be a safe and effective agent for the treatment of hepatocellular carcinoma. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells.

    PubMed

    Sanchez, Anamaria C; Li, Chengwen; Andrews, Barbara; Asenjo, Juan A; Samulski, R Jude

    2017-09-01

    Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 10 4 and 1 × 10 5 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.

  13. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons.

    PubMed

    Filipak Neto, Francisco; Cardoso da Silva, Ludiana; Liebel, Samuel; Voigt, Carmen Lúcia; Oliveira Ribeiro, Ciro Alberto de

    2018-01-01

    The nanotechnology has revolutionized the global market with silver nanoparticles (AgNP) occupying a prominent position due to their remarkable anti-bacterial properties. However, there is no data about the adverse and toxic effects of associations of AgNP and ubiquitous compounds, such as polycyclic aromatic hydrocarbons (PAH). In the current study, we investigated the responses of HepG2 cells to realistic concentrations of AgNP (0.09, 0.9, and 9 ng ml -1 ) and mixture of PAH (30 and 300 ng ml -1 ), separately and in association. Cell viability and cytotoxicity (neutral red retention and MTT production assays) and proliferation (crystal violet [CV] assay), xenobiotic efflux transporter activity (rhodamine B accumulation assay), ROS levels (dichlorodihydrofluorescein diacetate assay), and lipid peroxidation (pyrenylphosphine-1-diphenyl assay) were analyzed. There was no decreases of cell viability after exposure to AgNP, PAH and most of AgNP + PAH associations, but increases of cell viability/number (CV assay) occurred. Efflux transporter activity was not affected, with exception of one AgNP + PAH associations, ROS levels increased, but lipid peroxidation decreased. Some toxicological interactions occurred, particularly for the highest concentrations of AgNP and PAH, but there is no evidence that these interactions increased the toxicity of AgNP and PAH.

  14. 6-Shogaol induces cell cycle arrest and apoptosis in human hepatoma cells through pleiotropic mechanisms.

    PubMed

    Wu, Jung-Ju; Omar, Hany A; Lee, Ying-Ray; Teng, Yen-Ni; Chen, Pin-Shern; Chen, Yu-Chung; Huang, Hsiao-Shan; Lee, Kuan-Han; Hung, Jui-Hsiang

    2015-09-05

    Shogaols are a group of the active constituents of ginger that have been identified to have various biological activities. The aim of the current study was to investigate the antitumor activity of 6-shogaol in hepatocellular carcinoma (HCC) and the possible involvement of reactive oxygen species as a putative mechanism of action. HCC cell lines, HepG2 and Huh-7, were used to study the in vitro anti-cancer activity of 6-shogaol via the application of various molecular biology techniques. Results showed that 6-shogaol effectively inhibited the cell viability, caused cell cycle arrest at G2/M phase and induced apoptosis in HCC cells as indicated by MTT assay, DAPI nuclear staining, annexin V assay, cell cycle analysis, and activation of caspase-3. Western blot analysis revealed the ability of 6-shogaol to target cancer survival signaling pathways mediated by mitogen-activated protein kinase (MAPK), 5' AMP-activated protein kinase (AMPK) and Akt. In addition, 6-Shogaol induced alteration of cyclin proteins expression and caused cleavage of protein kinase C delta. Furthermore, 6-Shogaol was able to induce the production of reactive oxygen species and endoplasmic reticulum (ER) stress-associated proteins and the consequent activation of autophagy in HepG2 cells. Taken together, the current study highlights evidences that 6-shogaol induces apoptosis, modulates cyclins expression and targets cancer survival signaling pathways in HCC cell lines, at least in part, via the production of reactive oxygen species. These findings support 6-shogaol's clinical promise as a potential candidate for HCC therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Meng; He, Hong-wei; Sun, Huan-xing

    2009-09-18

    Hepatocellular carcinoma (HCC) is a major challenge because of its resistance to conventional cytotoxic chemotherapy and radiotherapy. Multi-targeted therapy might be a new option for HCC treatment. Our previous study showed that N-ras gene was activated in HCC and was inhibited by RNA interference. In the present study, we investigated the alternation of gene expression by microarray in N-Ras-siRNA-treated HepG2 cells. The results revealed that the EREG gene, encoding epiregulin, was dramatically up-regulated in response to silence of N-ras. We speculated that the up-regulation of epiregulin was involved in the compensatory mechanism of N-ras knockdown for cell growth. Therefore, wemore » evaluated whether dual silence of N-ras and epiregulin display a greater suppression of cell growth. The results confirmed that dual knockdown of N-ras and epiregulin synergistically inhibited cell growth. Our results also showed that dual knockdown of N-ras and epiregulin significantly induced cell arrest at G0/G1 phase. Furthermore, Western blot assay showed that dual knockdown of N-ras and epiregulin markedly reduced the phosphorylations of ERK1/2, Akt and Rb, and inhibited the expression of cyclin D1. Our findings imply that multi-targeted silence of oncogenes might be an effective treatment for HCC.« less

  16. [Influence of nanoparticle-encapsulated SEA on T-cell subgroups and its antitumor effect on hepatoma].

    PubMed

    Ye, Jing; Sui, Yan-Fang; Wu, Dao-Cheng; Li, Zeng-Shan; Chen, Guang-Sheng; Zhang, Xiu-Min

    2003-06-01

    Staphylococcal enterotoxin A (SEA) is one of the widely researched superantigens, which is prospective in antitumor therapy. However, its application is limited due to the toxicity. This study was conducted to prepare the nanoparticle-encapsulated SEA (NSEA) and to observe its influences on the T-cell subgroups and the antitumor effects in vivo. NSEA was prepared by the interfacial polymerization method.BALB/c mice were divided into 3 groups (each group had 12 mice). After injection of 0.1 ml normal saline (NS I group), 0.1 ml 2 mg/L free SEA (SEA I group) and 0.1 ml 2 mg/L NSEA(NSEA I group), the changes of T-cell subgroups (CD4(+) and CD8(+)) were observed. The mice model bearing hepatocellular carcinoma H22 were injected with 0.1 ml NS(NS II group), 0.1 ml 2 mg/L free SEA(SEA II group), 0.1 ml 2 mg/L NSEA (NESA II group), then the tumor volume and the survival time were recorded. SEA and NSEA significantly improved the absolute number of CD4(+) and CD8(+) T cells (P< 0.01); while the proportion of CD4(+) to CD8(+) did not change (P >0.05). The numbers of CD4(+) and CD8(+) T cells in NSEA I group reached the peaks [(8.26+/-1.46) x 10(9)/L and (5.53+/-0.91) x 10(9)/L] at 72 hours. The absolute number of CD4(+) T cells in SEA I group reached the peak of (8.61+/-1.59) x 10(9)/L at 48 hours,and the absolute number of CD8(+) T cells reached the peak of (6.05+/-1.31) x 10(9)/L at 72 hours; both of them descended to normal level at 96 hours. The inhibition rates of SEA II group and NSEA II group were 58.9% and 50% and the percentages of life span increase were 167% and 169%, respectively. NSEA and SEA could induce the activation and proliferation of T cells in vivo but could not influence the proportion of CD4(+) and CD8(+) cells in the mice. The effects of NSEA were weaker but longer than that of SEA. This study demonstrated that NSEA has the sustained release effects and prolongs the effective time.

  17. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique

    PubMed Central

    Karthivashan, Govindarajan; Masarudin, Mas Jaffri; Kura, Aminu Umar; Abas, Faridah; Fakurazi, Sharida

    2016-01-01

    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as “flavonosome”. Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA–phosphatidylcholine) through four different methods of synthesis – bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug–carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA–phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of −39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a

  18. A hypoxia- and {alpha}-fetoprotein-dependent oncolytic adenovirus exhibits specific killing of hepatocellular carcinomas.

    PubMed

    Kwon, Oh-Joon; Kim, Pyung-Hwan; Huyn, Steven; Wu, Lily; Kim, Minjung; Yun, Chae-Ok

    2010-12-15

    Oncolytic adenoviruses (Ad) constitute a new promising modality of cancer gene therapy that displays improved efficacy over nonreplicating Ads. We have previously shown that an E1B 19-kDa-deleted oncolytic Ad exhibits a strong cell-killing effect but lacks tumor selectivity. To achieve hepatoma-restricted cytotoxicity and enhance replication of Ad within the context of tumor microenvironment, we used a modified human α-fetoprotein (hAFP) promoter to control the replication of Ad with a hypoxia response element (HRE). We constructed Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 that incorporated either 6 or 12 copies of HRE upstream of promoter. The promoter activity and specificity to hepatoma were examined by luciferase assay and fluorescence-activated cell sorting analysis. In addition, the AFP expression- and hypoxia-dependent in vitro cytotoxicity of Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cytopathic effect assay. In vivo tumoricidal activity on subcutaneous and liver orthotopic model was monitored by noninvasive molecular imaging. Ad-HRE(12)/hAFPΔ19 exhibited enhanced tumor selectivity and cell-killing activity when compared with Ad-hAFPΔ19. The tumoricidal activity of Ad-HRE(12)/hAFPΔ19 resulted in significant inhibition of tumor growth in both subcutaneous and orthotopic models. Histologic examination of the primary tumor after treatment confirmed accumulation of viral particles near hypoxic areas. Furthermore, Ad-HRE(12)/hAFPΔ19 did not cause severe inflammatory immune response and toxicity after systemic injection. The results presented here show the advantages of incorporating HREs into a hAFP promoter-driven oncolytic virus. This system is unique in that it acts in both a tissue-specific and tumor environment-selective manner. The greatly enhanced selectivity and tumoricidal activity of Ad-HRE(12)/hAFPΔ19 make it a promising therapeutic agent in the treatment

  19. Induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) by Glycyrrhiza species used for women's health: differential effects of the Michael acceptors isoliquiritigenin and licochalcone A

    PubMed Central

    Hajirahimkhan, Atieh; Simmler, Charlotte; Dong, Huali; Lantvit, Daniel D.; Li, Guannan; Chen, Shao-Nong; Nikolić, Dejan; Pauli, Guido F.; van Breemen, Richard B.; Dietz, Birgit M.; Bolton, Judy L.

    2016-01-01

    For the alleviation of menopausal symptoms, women frequently turn to botanical dietary supplements, such as licorice and hops. In addition to estrogenic properties, these botanicals could also have chemopreventive effects. We have previously shown that hops and its Michael acceptor xanthohumol (XH) induced the chemoprevention enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), in vitro and in vivo. Licorice species could also induce NQO1, as they contain the Michael acceptors isoliquiritigenin (LigC) found in Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI) and licochalcone A (LicA) which is only found in GI. These licorice species and hops induced NQO1 activity in murine hepatoma (Hepa1c1c7) cells; hops >> GI > GG ≅ GU. Similar to the known chemopreventive compounds curcumin (turmeric), sulforaphane (broccoli), and XH, LigC and LicA were active dose-dependently; sulforaphane >> XH > LigC > LicA ≅ curcumin >> LigF. Induction of the antioxidant response element-luciferase in human hepatoma (Hep-G2-ARE-C8) cells suggested involvement of the Keap1-Nrf2 pathway. GG, GU, and LigC also induced NQO1 in non-tumorigenic breast epithelial MCF-10A cells. In female Sprague-Dawley rats treated with GG and GU, LigC and LigF were detected in the liver and mammary gland. GG weakly enhanced NQO1 activity in the mammary tissue but not in the liver. Treatment with LigC alone did not induce NQO1 in vivo most likely due to its conversion to LigF, extensive metabolism, and its low bioavailability in vivo. These data show the chemopreventive potential of licorice species in vitro could be due to LigC and LicA and emphasize the importance of chemical and biological standardization of botanicals used as dietary supplements. Although the in vivo effects in the rat model after four day treatment are minimal, it must be emphasized that menopausal women take these supplements for extended periods of time and long-term beneficial effects are quite possible. PMID:26473469

  20. [Effects of hypoxia inducible factor-2α on promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation].

    PubMed

    Wu, Lun; Zhou, Wenbo; Zhou, Shiji; Liu, Chang'an; Li, Shengwei

    2015-02-01

    To investigate the dynamic features of angiogenesis in residual tumors after high intensity focused ultrasound (HIFU),and to determine the temporal effect and mechanism of hypoxia inducible factor-2 alpha (HIF-2a) in the angiogenic process of residual tumors. Xenograft tumors of HepG2 cells were generated by subcutaneously inoculating athymic BALB/c nu/nu mice with the hepatoma cells.About 30 days after inoculation,all mice (except in the control group) were treated by HIFU and assigned randomly to the following 7 groups according to various time intervals post-treatment:1st,3rd,5th day and 1st,2nd,3rd,4th week when the residual tumor tissues were obtained from the experimental groups.Protein levels of HIF-2a and vascular growth factor A (VEGF-A) were quantified by immunohistochemistry and western blotting,and mRNA levels were measured by (real-time quantitative) qPCR. Microvascular density (MVD) was calculated by counting the CD31-positive vascular endothelial cells identified by means of an immunohistochemical staining method. Compared with results from the control group,the protein and mRNA levels of HIF-2a expression reached the highest level in the experimental mice at the 2nd week (P=0.000 and P < 0.01 respectively),and were decreased thereafter(3rd week and 4th week, P=0.000 and P < 0.05).VEGF-A expression in the residual tumor tissues group that received HIFU was significantly decreased,compared with the control group,at all time points uPto 1 week (all P=0.000 and P < 0.01),but the levels increased compared to controls in the 2nd through 4th week (all P=0.000, P < 0.05). Similar results were obtained for MVD. HIFU treatment can inhibit angiogenesis in residual hepatoma tissues in the short-term (1 to 2 weeks post-treatment) in mice with hepatocellular carcinoma,but can promote angiogenesis overtime (2 to 4 weeks post-treatment); the angiogenic process may involve the HIF-2α/VEGFA pathway.

  1. The Electroporation as a Tool for Studying the Role of Plasma Membrane in the Mechanism of Cytotoxicity of Bisphosphonates and Menadione.

    PubMed

    Šilkūnas, Mantas; Saulė, Rita; Batiuškaitė, Danutė; Saulis, Gintautas

    2016-10-01

    In this study, the role of the cell plasma membrane as a barrier in the mechanism of the cytotoxicity of nitrogen-containing bisphosphonates and menadione was studied, and the possibility of increasing the efficiency of bisphosphonates and menadione (vitamin K 3 ) as chemotherapeutic agents by permeabilizing the cell plasma membrane has been investigated in vitro. The plasma membrane barrier was reduced by electropermeabilization with the pulse of strong electric field. Two membrane-impermeant bisphosphonates with different hydrophilicities were chosen as study objects: ibandronate and pamidronate. For the comparison, an amphiphilic vitamin K 3 , which is able to cross the cell membrane, was studied as well. The impact of nitrogen-containing bisphosphonates and vitamin K 3 on MH-22A cells viability was evaluated for the case of long (9 days) and short (20 min) exposure. When cells were cultured in the medium with vitamin K 3 for 9-10 days, it exhibited toxicity of 50 % over the control at 6.2 µM for mouse hepatoma MH-22A cells. Ibandronate and pamidronate were capable of reducing drastically the cell viability only in the case of long 9-days incubation and at high concentrations (~20 µM for pamidronate and over 100 µM for ibandronate). Single, square-wave electric pulse with the duration of 100 µs and the field strength of 2 kV/cm was used to electroporate mouse hepatoma MH-22A cells in vitro. The results obtained here showed that the combination of the exposure of cells to membrane-impermeable bisphosphonates pamidronate and ibandronate with electropermeabilization of the cell plasma membrane did not increase their cytotoxicity. In the case of membrane-permeable vitamin K 3 , cell electropermeabilization did increase vitamin K 3 killing efficiency. However, this increase was not substantial, within the range of 20-30 % depending on the duration of the exposure. Electropermeabilization improved cytotoxic effect of vitamin K 3 but not of pamidronate

  2. Persian shallot, Allium hirtifolium Boiss, induced apoptosis in human hepatocellular carcinoma cells.

    PubMed

    Hosseini, Farzaneh Sadat; Falahati-Pour, Soudeh Khanamani; Hajizadeh, Mohammad Reza; Khoshdel, Alireza; Mirzaei, Mohammad Reza; Ahmadirad, Hadis; Behroozi, Reza; Jafari, Nesa; Mahmoodi, Mehdi

    2017-08-01

    This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC 50 value (inhibiting cell growth by 50%) was 149 μg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.

  3. PPAR{gamma} activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogilenko, Denis A., E-mail: denis@iem.sp.ru; Department of Embryology, St. Petersburg State University, 199034 St. Petersburg; Shavva, Vladimir S.

    Research highlights: {yields} PPAR{gamma} activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. {yields} Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1-LXR{beta} complex. {yields} Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex. {yields} Activation of PPAR{gamma} leads to increasing of the level of LXR{beta} associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPAR{gamma} is known as activator of ABCA1 expression, but details of PPAR{gamma}-mediatedmore » regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPAR{gamma} activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXR{beta} binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1/LXR{beta} complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex, but does not block PPAR{gamma}-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPAR{gamma} may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPAR{gamma}, LXR{beta} and MEK1/2 in regulation of ABCA1 mRNA and protein expression.« less

  4. An Optimized Method for the Measurement of Acetaldehyde by High-Performance Liquid Chromatography

    PubMed Central

    Guan, Xiangying; Rubin, Emanuel; Anni, Helen

    2011-01-01

    Background Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase, and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). Methods We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent,, time and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DPN) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison to AcH-DPN standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. Results Derivatization of acetaldehyde was performed at pH 4.0 with a 80-fold molar excess of DNPH. The reaction was completed in 40 min at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-min chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media, and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. Conclusions An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has

  5. An optimized method for the measurement of acetaldehyde by high-performance liquid chromatography.

    PubMed

    Guan, Xiangying; Rubin, Emanuel; Anni, Helen

    2012-03-01

    Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood, and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent, time, and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DNP) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison with AcH-DNP standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. Derivatization of acetaldehyde was performed at pH 4.0 with an 80-fold molar excess of DNPH. The reaction was completed in 40 minutes at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-minute chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has an extended linear range, is

  6. Alisol B 23-acetate from the rhizomes of Alisma orientale is a natural agonist of the human pregnane X receptor.

    PubMed

    Kanno, Yuichiro; Yatsu, Tomofumi; Yamashita, Naoya; Zhao, Shuai; Li, Wei; Imai, Miyuki; Kashima, Manami; Inouye, Yoshio; Nemoto, Kiyomitsu; Koike, Kazuo

    2017-03-15

    Pregnane X receptor (PXR) is a key regulator of the induction of drug metabolizing enzymes. PXR has been studied for its importance in drug-drug or herb-drug interactions, and it is also a molecular target for the treatment of inflammatory and metabolic diseases. This study aims to determine new natural PXR-ligands from traditional plant medicines. The PXR activation activity was measured by a mammalian one hybrid assay of PXR. Identification of the active compound from Alisma rhizome (the rhizomes of Alisma orientale) was carried out by bioassay-guided fractionation method. The transcriptional activity of the liver-enriched nuclear receptors was measured by the luciferase reporter assay. The interaction between the SRC-1 and PXR was measured by a mammalian 2-hybrid assay. The expression of endogenous CYP3A4 mRNA in both cultured hPXR-overexpressing hepatoma cells and human primary hepatocytes were measured by quantitative RT-PCR method. The extract of Alisma rhizome showed the most potent activation activity by screening of a library of medicinal plant extracts. Alisol B 23-acetate (ABA) was identified to be the active compound of Alisma rhizome. ABA caused a concentration-dependent increase on the PXR-dependent transactivation of a luciferase reporter gene, but did not affect the ligand binding activity of the liver-enriched nuclear receptors, such as CAR, LXR, FXR, PPARα, PPARδ and PPARγ, emphasizing that ABA is a potent and specific agonist of PXR. With ABA treatment, the direct interaction between the ligand-binding domain of PXR and the receptor interaction domain of SRC1 was observed. ABA also induced the expression of endogenous CYP3A4 mRNA in both cultured hPXR-overexpressing hepatoma cells and human primary hepatocytes. Since the rhizomes of Alisma orientale are used for a wide range of ailments in traditional Chinese medicine and Japanese Kampo medicine, this study could possibly extend into the clinical usage of these medicines via the mechanism of

  7. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique.

    PubMed

    Karthivashan, Govindarajan; Masarudin, Mas Jaffri; Kura, Aminu Umar; Abas, Faridah; Fakurazi, Sharida

    2016-01-01

    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising

  8. Downregulation of Interleukin-18-Mediated Cell Signaling and Interferon Gamma Expression by the Hepatitis B Virus e Antigen

    PubMed Central

    Jegaskanda, S.; Ahn, S. H.; Skinner, N.; Thompson, A. J.; Ngyuen, T.; Holmes, J.; De Rose, R.; Navis, M.; Winnall, W. R.; Kramski, M.; Bernardi, G.; Bayliss, J.; Colledge, D.; Sozzi, V.; Visvanathan, K.; Locarnini, S. A.; Kent, S. J.

    2014-01-01

    ABSTRACT The mechanisms by which hepatitis B virus (HBV) establishes and maintains chronic hepatitis B infection (CHB) are poorly defined. Innate immune responses play an important role in reducing HBV replication and pathogenesis. HBV has developed numerous mechanisms to escape these responses, including the production of the secreted hepatitis B e antigen (HBeAg), which has been shown to regulate antiviral toll-like receptor (TLR) and interleukin-1 (IL-1) signaling. IL-18 is a related cytokine that inhibits HBV replication in hepatoma cell lines and in the liver through the induction of gamma interferon (IFN-γ) by NK cells and T cells. We hypothesized that HBV or HBV proteins inhibit IFN-γ expression by NK cells as an accessory immunomodulatory function. We show that HBeAg protein inhibits the NF-κB pathway and thereby downregulates NK cell IFN-γ expression. Additionally, IFN-γ expression was significantly inhibited by exposure to serum from individuals with HBeAg-positive but not HBeAg-negative chronic HBV infection. Further, we show that the HBeAg protein suppresses IL-18-mediated NF-κB signaling in NK and hepatoma cells via modulation of the NF-κB pathway. Together, these findings show that the HBeAg inhibits IL-18 signaling and IFN-γ expression, which may play an important role in the establishment and/or maintenance of persistent HBV infection. IMPORTANCE It is becoming increasingly apparent that NK cells play a role in the establishment and/or maintenance of chronic hepatitis B infection. The secreted HBeAg is an important regulator of innate and adaptive immune responses. We now show that the HBeAg downregulates NK cell-mediated IFN-γ production and IL-18 signaling, which may contribute to the establishment of infection and/or viral persistence. Our findings build on previous studies showing that the HBeAg also suppresses the TLR and IL-1 signaling pathways, suggesting that this viral protein is a key regulator of antiviral innate immune responses

  9. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study.

    PubMed

    Rehman, Sidra; Ijaz, Bushra; Fatima, Nighat; Muhammad, Syed Aun; Riazuddin, Sheikh

    2016-10-01

    Discovery of alternative and complementary regimens for HCV infection treatment is a need of time from clinical as well as economical point of views. Low cost of bioactive natural compounds production, high biochemical diversity and inexistent/milder side effects contribute to new therapies. Aim of this study is to clarify anti-HCV role of Taraxacum officinale, a natural habitat plant rich of flavonoids. In this study, methanol extract of T. officinale leaves was initially analyzed for its cytotoxic activity in human hepatoma (Huh-7) and CHO cell lines. Hepatoma cells were transfected with pCR3.1/Flagtag/HCV NS5B gene cloned vector (genotype 1a) along with T. officinale extract. Considering NS5B polymerase as potential therapeutic drug target, twelve phytochemicals of T. officinale were selected as ligands for molecular interaction with NS5B protein using Molecular Operating Environment (MOE) software. Sofosbuvir (Sovaldi: brand name) currently approved as new anti-HCV drug, was used as standard in current study for comparative analysis in computational docking screening. HCV NS5B polymerase as name indicates plays key role in viral genome replication. On the basis of which NS5B gene is targeted for determining antiviral role of T. officinale extract and 65% inhibition of NS5B expression was documented at nontoxic dose concentration (200μg/ml) using Real-time PCR. In addition, 57% inhibition of HCV replication was recorded when incubating Huh-7 cells with high titer serum of HCV infected patients along with leaves extract. Phytochemicals for instance d-glucopyranoside (-31.212 Kcal/mol), Quercetin (-29.222 Kcal/mol), Luteolin (-26.941 Kcal/mol) and some others displayed least binding energies as compared to standard drug Sofosbuvir (-21.0746 Kcal/mol). Results of our study strongly revealed that T. officinale leaves extract potentially blocked the viral replication and NS5B gene expression without posing any toxic effect on normal fibroblast cells of body

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Insook; Park, Sujin; Cho, Jin Won

    12/15-lipoxygenase (12/15-LOX) is involved in organelle homeostasis by degrading mitochondria in maturing red blood cells and by eliminating excess peroxisomes in liver. Furthermore, 12/15-LOX contributes to diseases by exacerbating oxidative stress-related injury, notably in stroke. Nonetheless, it is unclear what the consequences are of abolishing 12/15-LOX activity. Mice in which the alox15 gene has been ablated do not show an obvious phenotype, and LOX enzyme inhibition is not overtly detrimental. We show here that liver histology is also unremarkable. However, electron microscopy demonstrated that 12/15-LOX knockout surprisingly leads to increased macroautophagy in the liver. Not only macroautophagy but also mitophagymore » and pexophagy were increased in hepatocytes, which otherwise showed unaltered fine structure and organelle morphology. These findings were substantiated by immunofluorescence showing significantly increased number of LC3 puncta and by Western blotting demonstrating a significant increase for LC3-II protein in both liver and brain homogenates of 12/15-LOX knockout mice. Inhibition of 12/15-LOX activity by treatment with four structurally different inhibitors had similar effects in cultured HepG2 hepatoma cells and SH-SY5Y neuroblastoma cells with significantly increased autophagy discernable already after 2 hours. Hence, our study reveals a link between ablation or inhibition of 12/15-LOX and stimulation of macroautophagy. The enhanced macroautophagy may be related to the known tissue-protective effects of LOX ablation or inhibition under various diseased conditions caused by oxidative stress and ischemia. This could provide an important cleaning mechanism of cells and tissues to prevent accumulation of damaged mitochondria and other cellular components. - Highlights: • A relationship between lipoxygenases and autophagy is disclosed. • 12/15-lipoxygenase knockout increases autophagy in mice liver and brain. • Lipoxygenase inhibition

  11. Influence of oxygen partial pressure on the characteristics of human hepatocarcinoma cells.

    PubMed

    Trepiana, Jenifer; Meijide, Susana; Navarro, Rosaura; Hernández, M Luisa; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2017-08-01

    Most of the in vitro studies using liver cell lines have been performed under atmospheric oxygen partial pressure (21% O 2 ). However, the oxygen concentrations in the liver and cancer cells are far from this value. In the present study, we have evaluated the influence of oxygen on 1) the tumor cell lines features (growth, steady-state ROS levels, GSH content, activities of antioxidant enzymes, p66 Shc and SOD expressions, metalloproteinases secretion, migration, invasion, and adhesion) of human hepatocellular carcinoma cell lines, and b) the response of the cells to an oxidant stimulus (aqueous leaf extract of the V. baccifera plant species). For this purpose, three hepatocarcinoma cell lines with different p53 status, HepG2 (wild-type), Huh7 (mutated), and Hep3B (deleted), were cultured (6-30 days) under atmospheric (21%) and more physiological (8%) pO 2 . Results showed that after long-term culturing at 8% versus 21% O 2 , the cellular proliferation rate and the steady-state levels of mitochondrial O 2 - were unaffected. However, the intracellular basal ROS levels were higher independently of the characteristics of the cell line. Moreover, the lower pO 2 was associated with lower glutathione content, the induction of p66 Shc and Mn-SOD proteins, and increased SOD activity only in HepG2. This cell line also showed a higher migration rate, secretion of active metalloproteinases, and a faster invasion. HepG2 cells were more resistant to the oxidative stress induced by V. baccifera. Results suggest that the long-term culturing of human hepatoma cells at a low, more physiological pO 2 induces antioxidant adaptations that could be mediated by p53, and may alter the cellular response to a subsequent oxidant challenge. Data support the necessity of validating outcomes from studies performed with hepatoma cell cultures under ambient O 2 . Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Synthesis of functionalized fluorescent silver nanoparticles and their toxicological effect in aquatic environments (Goldfish) and HEPG2 cells

    PubMed Central

    Oliveira, Elisabete; Santos, Hugo M.; Garcia-Pardo, Javier; Diniz, Mário; Lorenzo, Julia; Rodríguez-González, Benito; Capelo, José L.; Lodeiro, Carlos

    2013-01-01

    Silver nanoparticles, AgNPs, are widely used in our daily life, mostly due to their antibacterial, antiviral, and antifungal properties. However, their potential toxicity remains unclear. In order to unravel this issue, emissive AgNPs were first synthetized using an inexpensive photochemical method, and then their permeation was assessed in vivo in goldfish and in vitro in human hepatoma cells (HepG2). In addition, the oxidative stress caused by AgNPs was assessed in enzymes such as glutathione-S-transferase (GST), catalase (CAT), and in lipid peroxidation (LPO). This study demonstrates that the smallest sized AgNPs@3 promote the largest changes in gold fish livers, whereas AgNPs@1 were found to be toxic in HEPG2 cells depending on both the size and functionalized/stabilizer ligand. PMID:24790957

  13. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays.

    PubMed

    Rodrigues, Fernando Postalli; Angeli, José Pedro Friedmann; Mantovani, Mário Sérgio; Guedes, Carmen Luisa Barbosa; Jordão, Berenice Quinzani

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.

  14. Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells.

    PubMed

    Stulov, Sergey V; Mankevich, Olga V; Dugin, Nikita O; Novikov, Roman A; Timofeev, Vladimir P; Misharin, Alexander Yu

    2013-04-01

    Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Synthesis, Biological Evaluation, and Autophagy Mechanism of 12N-Substituted Sophoridinamines as Novel Anticancer Agents.

    PubMed

    Bi, Chongwen; Zhang, Na; Yang, Peng; Ye, Cheng; Wang, Yanxiang; Fan, Tianyun; Shao, Rongguang; Deng, Hongbin; Song, Danqing

    2017-02-09

    A series of 12 N -substituted sophoridinamine derivatives were synthesized and evaluated for their cytotoxic activities in human HepG2 hepatoma cells. Structure-activity relationship revealed that introduction of a suitable arylidene or arylethyl at the N '-end could greatly enhance antiproliferation potency. Among them, compound 6b possessing a N '-trimethoxyphenyl methylene exhibited potent antiproliferation effect against three human tumor cell lines including HepG2, leukemia (K562), and breast cancer (HMLE), with IC 50 between 0.55 and 1.7 μM. The underlying mechanism of 6b against tumor cells is to block autophagic flux, mainly through neutralizing lysosomal acidity. Our results indicated that compound 6b is a potent lysosomal deacidification agent and is accordingly able to block autophagic flux and inhibit tumor cell growth.

  16. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    DOE PAGES

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; ...

    2015-05-15

    Fabrication of stimuli-triggered drug delivery vehicle is is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). In conclusion, the enzyme-activated intracellular deliverymore » of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.« less

  17. Synthesis of Functionalized Fluorescent Silver Nanoparticles and their toxicological effect in aquatic environments (Goldfish) and HEPG2 cells.

    NASA Astrophysics Data System (ADS)

    Santos, Hugo; Oliveira, Elisabete; Garcia-Pardo, Javier; Diniz, Mário; Lorenzo, Julia; Rodriguez-González, Benito; Capelo, José Luis; Lodeiro, Carlos

    2013-12-01

    Silver nanoparticles, AgNPs, are widely used in our daily life, mostly due to their antibacterial, antiviral and antifungal properties. However, their potential toxicity remains unclear. In order to unravel this issue, emissive AgNPs were first synthetized using an inexpensive photochemical method, and then their permeation was assessed in vivo in goldfish and in vitro in human hepatoma cells (HepG2). In addition, the oxidative stress caused by AgNPs was assessed in enzymes such as glutathione-S-transferase (GST), catalase (CAT) and in lipid peroxidation (LPO). This study demonstrates that the smallest sized AgNPs@3 promote the largest changes in gold fish livers, whereas AgNPs@1 were found to be toxic in HEPG2 cells depending on both the size and functionalized/stabilizer ligand.

  18. Identification of a silver binding protein associated with the cytological silver staining of actively transcribing nucleolar regions.

    PubMed

    Hubbell, H R; Rothblum, L I; Hsu, T C

    1979-10-01

    Nucleoli isolated from Novikoff hepatoma cells were stained with AgNO3 to demonstrate the typical staining of active ribosomal cistrons. Pre-treatment of the nucleoli with 80 mM Tris-HCl (pH 7.5) -- 2.0 M NaCl did not interfere with silver staining. Treatment of the nucleoli with 80 mM Tris-HCl (pH 7.5) -- 0.15 M NaCl did, however, eliminate silver binding. Serial extraction of nucleoli with 2.0 M NaCl buffer followed by 0.15 M NaCl buffer also abolished silver staining. Analysis of the supernatant fraction of these extracts by polyacrylamide gel electrophoresis indicates that, although more than one nucleolar protein can bind silver, only one protein is associated with the staining of active ribosomal cistrons.

  19. [Different responses of DD/He and CC57BR/Mv mice to fasting].

    PubMed

    Baginskaia, N V; Vasil'eva, E D; Il'nitskaia, S I; Kaledin, V I

    2004-03-01

    Reaction to fasting of 2 mice strains differing in their sensitivity to spontaneous and induced hepatocarcinogenesis, has been investigated. It was shown that mice of both strains displayed similar stress reaction after 3-day fasting manifested in increase in blood corticosterone level; and decrease in testosterone level. At the same time, both strains demonstrated opposite changes at tissue- and enzyme levels in the liver. It was shown that DD/He mice, highly sensitive to induction of liver tumors, were characterized by significant increase in tyrosine aminotransferase (TAT) activity and reduction of lipid droplets in hepatocytes. CC57BR/Mv mice, demonstrating high frequency of spontaneous hepatomas and insensitive to induction of such tumors, were characterized by a decrease in the TAT activity and fatty infiltration of the liver.

  20. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay.

    PubMed

    Su, Bao-Ning; Jung Park, Eun; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Fong, Harry H S; Pezzuto, John M; Kinghorn, A Douglas

    2003-06-01

    Activity-guided fractionation of an EtOAc-soluble extract of the leaves of Muntingia calabura collected in Peru, using an in vitro quinone reductase induction assay with cultured Hepa 1c1c7 (mouse hepatoma) cells, resulted in the isolation of a flavanone with an unsubstituted B-ring, (2R,3R)-7-methoxy-3,5,8-trihydroxyflavanone (5), as well as 24 known compounds, which were mainly flavanones and flavones. The structure including absolute stereochemistry of compound 5 was determined by spectroscopic (HRMS, 1D and 2D NMR, and CD spectra) methods. Of the isolates obtained, in addition to 5, (2S)-5-hydroxy-7-methoxyflavanone, 2',4'-dihydroxychalcone, 4,2',4'-trihydroxychalcone, 7-hydroxyisoflavone and 7,3',4'-trimethoxyisoflavone were found to induce quinone reductase activity.

  1. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan.

    PubMed

    Zhang, Nenling; Shen, Xiangchun; Jiang, Xiaofei; Cai, Jiazhong; Shen, Xiaoling; Hu, Yingjie; Qiu, Samuel X

    2018-01-01

    Two new stilbenoid dimers, cajanstilbenoids A (1) and B (2), were isolated from the leaves of Cajanus cajan. Planar structures of these compounds were verified by NMR (1D and 2D) and high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS). Absolute configurations were assigned by comparing experimental and calculated electronic CD values. The cytotoxicity of 1 and 2 against human hepatoma (HepG2), human breast adenocarcinoma (MCF-7), and human lung cancer (A549) cells were evaluated in vitro. Compound 1 showed strong cytotoxicity against all the tested cell lines (IC 50 values: 2.14-2.56 µM), whereas compound 2 showed strong toxicity only against HepG2 (IC 50 value: 5.99 µM) and A549 cells (IC 50 value: 6.18 µM).

  2. Revision of the Structures of 1,5-Dihydroxy-3,8-epoxyvalechlorine, Volvaltrate B, and Valeriotetrate C from Valeriana jatamansi and V. officinalis.

    PubMed

    Lin, Sheng; Shen, Yun-Heng; Zhang, Zhong-Xiao; Li, Hui-Liang; Shan, Lei; Liu, Run-Hui; Xu, Xi-Ke; Zhang, Wei-Dong

    2010-10-22

    The structures of 1,5-dihydroxy-3,8-epoxyvalechlorine (1a) and volvaltrate B (6a), two new chlorinated iridoids isolated from Valeriana jatamansi and V. officinalis, respectively, were originally assigned on the basis of spectroscopic methods. Reinvestigation using X-ray analysis and chemical transformation revealed that the original assignment of H-7 in 1a and OH-8 in 6a should be inverted and that the structures should be revised to 1 and 6, respectively. Correspondingly, the structure of valeriotetrate C (7a) should be revised to 7. Volvaltrate B (6) showed cytotoxic activity against the lung adenocarcinoma (A549), metastatic prostate cancer (PC-3M), colon cancer (HCT-8), and hepatoma (Bel7402) cell lines, with IC50 values of 8.5, 2.0, 3.2, and 6.1 μM, respectively.

  3. Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings.

    PubMed

    Baldoví, Herme G; Herance, José Raul; Manuel Víctor, Víctor; Alvaro, Mercedes; Garcia, Hermenegildo

    2015-08-07

    Thermal annealing at 400 °C of perylenetetracarboxylic anhydride in low molecular mass PEG gives rise to the formation of well defined nanoobjects of 2.5 nm height and size distribution from 10 to 65 nm (average 40 nm) after purification of the raw mixture with silicagel chromatography. TEM reveals that the flat nanoobjects are constituted of concentric graphenic rings (0.34 nm interlayer distance). The morphology of the nanoparticles resembles onion rings of nanometric dimensions (nanoonion rings C-NOR). C-NOR particles have an excitation dependent emission with λem from 430 to 570 nm and a maximum emission quantum yield of 0.49. C-NOR particles can be internalized into Hep3B human hepatoma cells as determined by confocal fluorescence microscopy and are remarkably biocompatible affecting slightly cell viability according to the MTT test.

  4. NTCP opens the door for hepatitis B virus infection.

    PubMed

    Yan, Huan; Liu, Yang; Sui, Jianhua; Li, Wenhui

    2015-09-01

    A liver bile acids transporter, sodium taurocholate cotransporting polypeptide (NTCP, encoded by SLC10A1) was recently identified as a functional receptor for hepatitis B virus (HBV) and its satellite hepatitis D virus (HDV). NTCP-complemented human hepatoma HepG2 cells (HepG2-NTCP) were shown to support infection of HBV and HDV in vitro, providing a much-needed and convenient cell culture system for the viruses. Identification of NTCP as a functional receptor for HBV has significantly advanced our understanding of the viral life cycle and opened new opportunities for developing anti-HBV interventions. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B". Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Group I but not group II NPV induces antiviral effects in mammalian cells.

    PubMed

    Liang, Changyong; Song, Jianhua; Hu, Zhihong; Chen, Xinwen

    2006-10-01

    Nucleopolyhedrovirus (NPV) is divided into Group I and Group II based on the phylogenetic analysis. It has been reported that Group I NPVs such as Autographa californica multiple NPV (AcMNPV) can transduce mammalian cells, while Group II NPVs such as Helicoverpa armigera single NPV (HaSNPV) cannot. Here we report that AcMNPV was capable of stimulating antiviral activity in human hepatoma cells (SMMC-7721) manifested by inhibition of Vesicular Stomatitis virus (VSV) replication. In contrast, the HaSNPV and the Spodoptera exigua multiple NPV (SeMNPV) of group II had no inhibitory effect on VSV. Recombinant AcMNPV was shown to induce interferons alpha/beta even in the absence of transgene expression in human SMMC-7721 cells, while it mediated transgene expression in BHK and L929 mammalian cells without an ensuing antiviral activity.

  6. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    PubMed Central

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636

  7. Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress.

    PubMed

    Martín, Roberto; Menchón, Cristina; Apostolova, Nadezda; Victor, Victor M; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo

    2010-11-23

    Diamond nanoparticles (DNPs) obtained by explosive detonation have become commercially available. These commercial DNPs can be treated under Fenton conditions (FeSO(4) and H(2)O(2) at acidic pH) to obtain purer DNP samples with a small average particle size (4 nm) and a large population of surface OH groups (HO-DNPs). These Fenton-treated HO-DNPs have been used as a support of gold and platinum nanoparticles (≤2 nm average size). The resulting materials (Au/HO-DNP and Pt/HO-DNP) exhibit a high antioxidant activity against reactive oxygen species induced in a hepatoma cell line. In addition to presenting good biocompatibility, Au/HO- and Pt/HO-DNP exhibit about a two-fold higher antioxidant activity than glutathione, one of the reference antioxidant systems. The most active material against cellular oxidative stress was Au/HO-DNP.

  8. A thermostable trypsin inhibitor with antiproliferative activity from small pinto beans.

    PubMed

    Chan, Yau Sang; Zhang, Yanbo; Sze, Stephen Cho Wing; Ng, Tzi Bun

    2014-08-01

    Small pinto bean is a cultivar of Phaseolus vulgaris. It produces a 16-kDa trypsin inhibitor that could be purified using anion exchange and size chromatography. Q-Sepharose, Mono Q and Superdex 75 columns were employed for the isolation process. Small pinto bean trypsin inhibitor demonstrated moderate pH stability (pH 2-10) and marked heat stability, with its trypsin inhibitory activity largely retained after exposure to 100 °C for half an hour. The activity was abolished in the presence of dithiothreitol, in a dose-dependent manner, implying that disulfide bonds in small pinto bean trypsin inhibitor are crucial for the activity. The trypsin inhibitor showed a blocked N-terminus. The trypsin inhibitor only slightly inhibited the viability of breast cancer MCF7 and hepatoma HepG2 cells at 125 μM.

  9. Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyu; Liu, Jie; Liu, Bin; Xia, Juan; Chen, Nianping; Chen, Xiaofeng; Cao, Yi; Zhang, Chen; Lu, Caijie; Li, Mingyi; Zhu, Runzhi

    2014-04-01

    The development of antitumor chemotherapy drugs remains a key goal for oncologists, and natural products provide a vast resource for anti-cancer drug discovery. In the current study, we found that the flavonoid dihydromyricetin (DHM) exhibited antitumor activity against liver cancer cells, including primary cells obtained from hepatocellular carcinoma (HCC) patients. In contrast, DHM was not cytotoxic to immortalized normal liver cells. Furthermore, DHM treatment resulted in the growth inhibition and remission of xenotransplanted tumors in nude mice. Our results further demonstrated that this antitumor activity was caused by the activation of the p53-dependent apoptosis pathway via p53 phosphorylation at serine (15Ser). Moreover, our results showed that DHM plays a dual role in the induction of cell death when administered in combination with cisplatin, a common clinical drug that kills primary hepatoma cells but not normal liver cells.

  10. Effect of UV irradiation on aflatoxin reduction: a cytotoxicity evaluation study using human hepatoma cell line.

    PubMed

    Patras, Ankit; Julakanti, Sharath; Yannam, Sudheer; Bansode, Rishipal R; Burns, Mallory; Vergne, Matthew J

    2017-11-01

    In this proof-of-concept study, the efficacy of a medium-pressure UV (MPUV) lamp source to reduce the concentrations of aflatoxin B 1 , aflatoxin B 2 , and aflatoxin G 1 (AFB 1, AFB 2 , and AFG 1 ) in pure water is investigated. Irradiation experiments were conducted using a collimated beam system operating between 200 to 360 nm. The optical absorbance of the solution and the irradiance of the lamp are considered in calculating the average fluence rate. Based on these factors, the UV dose was quantified as a product of average fluence rate and treatment time. Known concentrations of aflatoxins were spiked in water and irradiated at UV doses ranging from 0, 1.22, 2.44, 3.66, and 4.88 J cm -2 . The concentration of aflatoxins was determined by HPLC with fluorescence detection. LC-MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB 1 , AFB 2 , and AFG 1 . It was observed that UV irradiation significantly reduced aflatoxins in pure water (p < 0.05). Irradiation doses of 4.88 J cm -2 reduced concentrations 67.22% for AFG 1 , 29.77% for AFB 2 , and 98.25% for AFB 1 (p < 0.05). Using this technique, an overall reduction of total aflatoxin content of ≈95% (p < 0.05) was achieved. We hypothesize that the formation of ˙OH radicals initiated by UV light may have caused photolysis of AFB 1 , AFB 2 , and AFG 1 molecules. In cell culture studies, our results demonstrated that the increase of UV dosage decreased the aflatoxin-induced cytotoxicity in HepG 2 cells. Therefore, our research finding suggests that UV irradiation can be used as an effective technique for the reduction of aflatoxins.

  11. Carbon Ion-Irradiated Hepatoma Cells Exhibit Coupling Interplay between Apoptotic Signaling and Morphological and Mechanical Remodeling

    PubMed Central

    Zhang, Baoping; Li, Long; Li, Zhiqiang; Liu, Yang; Zhang, Hong; Wang, Jizeng

    2016-01-01

    A apoptotic model was established based on the results of five hepatocellular carcinoma cell (HCC) lines irradiated with carbon ions to investigate the coupling interplay between apoptotic signaling and morphological and mechanical cellular remodeling. The expression levels of key apoptotic proteins and the changes in morphological characteristics and mechanical properties were systematically examined in the irradiated HCC lines. We observed that caspase-3 was activated and that the Bax/Bcl-2 ratio was significantly increased over time. Cellular morphology and mechanics analyses indicated monotonic decreases in spatial sizes, an increase in surface roughness, a considerable reduction in stiffness, and disassembly of the cytoskeletal architecture. A theoretical model of apoptosis revealed that mechanical changes in cells induce the characteristic cellular budding of apoptotic bodies. Statistical analysis indicated that the projected area, stiffness, and cytoskeletal density of the irradiated cells were positively correlated, whereas stiffness and caspase-3 expression were negatively correlated, suggesting a tight coupling interplay between the cellular structures, mechanical properties, and apoptotic protein levels. These results help to clarify a novel arbitration mechanism of cellular demise induced by carbon ions. This biomechanics strategy for evaluating apoptosis contributes to our understanding of cancer-killing mechanisms in the context of carbon ion radiotherapy. PMID:27731354

  12. Selective protection of normal hepatocytes by indocyanine green in photodynamic therapy for the hepatoma of rat

    NASA Astrophysics Data System (ADS)

    Gu, Ying; Li, Junheng; Guo, Zhong-He

    1993-03-01

    Using hepatocarcinoma transplanted rats, the present study made consecutive observation for the color change and indocyanine green (ICG) absorption peak of the normal liver and tumor tissues after intravenous injection of ICG. The normal liver tissue of the rat was found to turn violet-green soon after ICG injection and the optic density (OD) of ICG-characteristic spectral peak of the tissue homogenate reached its maximum value at 35 minutes post-injection, while neither color change nor OD value increase was noticed in the tissue of transplanted hepatocarcinoma, suggesting that there is a specific absorption of ICG by the normal liver tissue. Chemiluminescentoassay revealed inhibited luminal chemiluminescence by ICG, indicating the depression of singlet oxygen and reactive oxygen species (ROS) oxidation during HPD photosensitization by ICG. In PDT of the hepatocarcinoma, the irradiated area was examined under microscope and auto-microimage analysis system after ICG administration. For tumor-free tissue, the photosensitization induced necrotic area was found smaller in those with than those without ICG administration, whereas the tumor killing effect was almost the same of the two. It is suggested that ICG may offer selective protection for healthy hepatocytes without diminishing the destruction of tumor cells. The protection of healthy hepatocytes by ICG is thought to be in accordance with the amount of ICG in the cell and the distribution of light energy.

  13. [18β-glycyrrhetinic acid piperazine derivative A30 inhibits the proliferation of SMMC-7721 hepatoma cells].

    PubMed

    Zhong, Like

    2017-09-01

    Objective To investigate the mechanism of 18β-glycyrrhetinic acid (GA) piperazine derivative A30 on the antiproliferation of hepatocellular carcinoma SMMC-7721 cells in vitro. Methods The experiment included three groups: control group, 18β-GA group and A30 group. The proliferation activity was detected by MTT assay. Cell apoptosis and the change in the cycle of SMMC-7721 cells were evaluated by flow cytometry. Western blotting was used to observe the expressions of Bcl2 and caspase-8. Results The proliferation of SMMC-7721 cells was inhibited by A30 at the concentration of 2-128 μg/mL in a dose-dependent manner. 18β-GA and A30 could induce the apoptosis of SMMC-7721 cells, and the apoptosis rate of A30 group was significantly higher than that of the 18β-GA group. In the cell cycle analysis, the G2/M phase cells of 18β-GA and A30 groups increased remarkably as compared with the control group. A30 and 18β-GA could significantly enhance the expression of caspase-8, and decreased the expression of Bcl2. Conclusion The 18β-GA piperazine derivative A30 can inhibit the proliferation of SMMC-7721 cells in vitro, and the inhibitory effect is stronger than that of 18β-GA. The mechanism may be related to the inhibition of intracellular Bcl2 protein expression and the enhancement of caspase-8 expression.

  14. Redifferentiation of human hepatoma cells (SMMC-7721) induced by two new highly oxygenated bisabolane-type sesquiterpenes.

    PubMed

    Miao, Ruidong; Wei, Juan; Zhang, Qi; Sajja, Venkateswara; Yang, Jinbo; Wang, Qin

    2008-12-01

    Bisabolane-type sesquiterpenes are a class of biologically active compounds that has antitumour,antifungal, antibacterial,antioxidant and antivenom properties.We investigated the effect of two new highly oxygenated bisabolane-type sesquiterpenes (HOBS)isolated from Cremanthodium discoideum (C.discoideum) on tumour cells. Our results showed that HOBS induced morphological differentiation and reduced microvilli formation on the cell surface in SMMC-7721 cells.Flow cytometry analysis demonstrated that HOBS could induce cell-cycle arrest in the G1 phase. Moreover,HOBS was able to increase tyrosine-alpha ketoglutarate transaminase activity,decrease alpha- foetoprotein level and gamma-glutamyl transferase activity. In addition,we found that HOBS inhibited the anchorage- independent growth of SMMC-7721 cells in a dose-dependent manner.Taken together,all the above observations indicate that HOBS might be able to normalize malignant SMMC-7721 cells by inhibiting cell proliferation and inducing redifferentiation.

  15. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    PubMed Central

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  16. Promotion of hepatic metastases by liver resection in the rat.

    PubMed Central

    Mizutani, J.; Hiraoka, T.; Yamashita, R.; Miyauchi, Y.

    1992-01-01

    In the early period following radical hepatectomy for hepatoma, recurrences in the remaining liver are frequently found. In regenerating liver, implantation and growth of tumour cells released into the portal system during surgical treatment might be promoted. We examined the relationship between liver regeneration and the formation of metastases following hepatic resection. Intraportal injections of rat ascites containing hepatoma AH130 cells at a concentration of 1 x 10(5) cells 0.2 ml-1 were made at various periods following two thirds liver resection in rats. Tumour cell injections immediately at 24 h after surgery resulted in an increased number of hepatic metastases compared with control animals. Tumour cell injections 2 weeks after hepatectomy, however, had no significant difference in effect compared with control rats. In contrast, tumour cells injected immediately after removal of half of the caudate lobe resulted in the same number of metastases as control animals. These results demonstrate that the number of artificially induced hepatic metastases was increased during an initial period of active liver regeneration and was proportional to the volume of hepatectomy. The effect of 5-fluorouracil (5FU) or mitomycin C (MMC) as inhibitors of hepatic regeneration on liver metastasis after hepatectomy was studied. The administration of 5FU (20 mg kg-1) or MMC (0.2 mg kg-1) immediately, 24 and 48 h after hepatectomy resulted in a marked reduction in metastatic lesions. The administration of 5FU caused delays in weight gain and decreases in the wet weight of remaining liver, while MMC had no effect on either. Accordingly, results of 5FU administration may be due to inhibitory effects on liver regeneration whilst that of MMC administration may be due to cytocidal antitumour effect. The effect of OK-432 as an immunoactivator on the implantation and growth of tumour cells in regenerating liver was also studied. Pretreatment with OK-432, 0.5 mg intraperitoneally on 7

  17. A simple and rapid Hepatitis A Virus (HAV) titration assay based on antibiotic resistance of infected cells: evaluation of the HAV neutralization potency of human immune globulin preparations

    PubMed Central

    Konduru, Krishnamurthy; Virata-Theimer, Maria Luisa; Yu, Mei-ying W; Kaplan, Gerardo G

    2008-01-01

    Background Hepatitis A virus (HAV), the causative agent of acute hepatitis in humans, is an atypical Picornaviridae that grows poorly in cell culture. HAV titrations are laborious and time-consuming because the virus in general does not cause cytopathic effect and is detected by immunochemical or molecular probes. Simple HAV titration assays could be developed using currently available viral construct containing selectable markers. Results We developed an antibiotic resistance titration assay (ARTA) based on the infection of human hepatoma cells with a wild type HAV construct containing a blasticidin (Bsd) resistance gene. Human hepatoma cells infected with the HAV-Bsd construct survived selection with 2 μg/ml of blasticidin whereas uninfected cells died within a few days. At 8 days postinfection, the color of the pH indicator phenol red in cell culture media correlated with the presence of HAV-Bsd-infected blasticidin-resistant cells: an orange-to-yellow color indicated the presence of growing cells whereas a pink-to-purple color indicated that the cells were dead. HAV-Bsd titers were determined by an endpoint dilution assay based on the color of the cell culture medium scoring orange-to-yellow wells as positive and pink-to-purple wells as negative for HAV. As a proof-of-concept, we used the ARTA to evaluate the HAV neutralization potency of two commercially available human immune globulin (IG) preparations and a WHO International Standard for anti-HAV. The three IG preparations contained comparable levels of anti-HAV antibodies that neutralized approximately 1.5 log of HAV-Bsd. Similar neutralization results were obtained in the absence of blasticidin by an endpoint dilution ELISA at 2 weeks postinfection. Conclusion The ARTA is a simple and rapid method to determine HAV titers without using HAV-specific probes. We determined the HAV neutralization potency of human IG preparations in 8 days by ARTA compared to the 14 days required by the endpoint dilution ELISA

  18. Identification of acetylshikonin as the novel CYP2J2 inhibitor with anti-cancer activity in HepG2 cells.

    PubMed

    Park, See-Hyoung; Phuc, Nguyen Minh; Lee, Jongsung; Wu, Zhexue; Kim, Jieun; Kim, Hyunkyoung; Kim, Nam Doo; Lee, Taeho; Song, Kyung-Sik; Liu, Kwang-Hyeon

    2017-01-15

    Acetylshikonin is one of the biologically active compounds derived from the root of Lithospermum erythrorhizon, a medicinal plant with anti-cancer and anti-inflammation activity. Although there have been a few previous reports demonstrating that acetylshikonin exerts anti-cancer activity in vitro and in vivo, it is still not clear what is the exact molecular target protein of acetylshikonin in cancer cells. The purpose of this study is to evaluate the inhibitory effect of acetylshikonin against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. The inhibitory effect of acetylshikonin on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its cytotoxicity against human hepatoma HepG2 cells was also evaluated. Astemizole, a representative CYP2J2 probe substrate, was incubated in HLMs in the presence or absence of acetylshikonin. After incubation, the samples were analyzed by liquid chromatography and triple quadrupole mass spectrometry. The anti-cancer activity of acetylshikonin was evaluated on human hepatocellular carcinoma HepG2 cells. WST-1, cell counting, and colony formation assays were further adopted for the estimation of the growth rate of HepG2 cells treated with acetylshikonin. Acetylshikonin inhibited CYP2J2-mediated astemizole O-demethylation activity (K i = 2.1µM) in a noncompetitive manner. The noncompetitive inhibitory effect of acetylshikonin on CYP2J2 enzyme was also demonstrated using this 3D structure, which showed different binding location of astemizole and acetylshikonin in CYP2J2 model. It showed cytotoxic effects against human hepatoma HepG2 cells (IC 50 = 2μM). In addition, acetylshikonin treatment inhibited growth of human hepatocellular carcinoma HepG2 cells leading to apoptosis accompanied with p53, bax, and caspase3 activation as well as bcl2 down-regulation. Taken together, our present study elucidates acetylshikonin displays the

  19. A novel anticancer agent ARC antagonizes HIV-1 and HCV.

    PubMed

    Nekhai, S; Bhat, U G; Ammosova, T; Radhakrishnan, S K; Jerebtsova, M; Niu, X; Foster, A; Layden, T J; Gartel, A L

    2007-05-31

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) pose major public health concerns worldwide. HCV is clearly associated with the occurrence of hepatocellular carcinoma, and recently HIV infection has also been linked to the development of a multitude of cancers. Previously, we identified a novel nucleoside analog transcriptional inhibitor ARC (4-amino-6-hydrazino-7-beta-D-ribofuranosyl-7H-pyrrolo[2,3-d]-pyrimidine-5-carboxamide) that exhibited proapoptotic and antiangiogenic properties in vitro. Here, we evaluated the effect of ARC on HIV-1 transcription and HCV replication. Using reporter assays, we found that ARC inhibited HIV-1 Tat-based transactivation in different cell systems. Also, using hepatoma cells that harbor subgenomic and full-length replicons of HCV, we found that ARC inhibited HCV replication. Together, our data indicate that ARC could be a promising candidate for the development of antiviral therapeutics against HIV and HCV.

  20. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental contaminants and their effects on fish in the Yukon River Basin

    USGS Publications Warehouse

    Hinck, Jo Ellen; Bartish, Timothy M.; Blazer, Vicki; Denslow, Nancy D.; Gross, Tim S.; Myers, Mark S.; Anderson, Patrick J.; Orazio, Carl E.; Tillitt, Donald E.

    2004-01-01

    This project collected, examined, and analyzed 217 fish representing three species at 10 stations in the U.S. portion of the Yukon River Basin (YRB) from May to October 2002. Four sampling sites were located on the Yukon River; two were located on the Porcupine River, and one site was on each of the Ray, Tanana, Tolavana, and Innoko Rivers. Norther pike (Esox lucius), longnose sucker (Catostomus catostomus), and burbot (Lota lota) were weighed and measured, and examined in the field for external and internal lesions, and liver, spleen, and gonads were weighed to compute somatic indices. Selected tissues and fluids were collected and preserved for analysis of fish health and reproductive biomarkers. Composite samples of whole fish from each station were grouped by species and gender and analyzed for organochlorines and elemental contaminants and for dioxin-like activity using H4IIE rat hepatoma cell bioassay.

  1. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  2. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma

    PubMed Central

    Li, Min; Zhang, Weiyue; Wang, Birong; Gao, Yang; Song, Zifang; Zheng, Qi Chang

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC. PMID:27920520

  3. Cytotoxic triterpene diglycosides from the sea cucumber Stichopus horrens.

    PubMed

    Cuong, Nguyen Xuan; Vien, Le Thi; Hoang, Le; Hanh, Tran Thi Hong; Thao, Do Thi; Thanh, Nguyen Van; Nam, Nguyen Hoai; Thung, Do Cong; Kiem, Phan Van; Minh, Chau Van

    2017-07-01

    Using various chromatographic separation techniques, eight triterpene diglycosides (1-8), including four new compounds namely stichorrenosides A-D (1-4), were isolated from a methanol extract of the Vietnamese sea cucumber S. horrens. Their structures were elucidated based on spectroscopic analyses, including HR ESI MS, 1D and 2D NMR. Their in vitro cytotoxic activity against five human cancer cell lines, Hep-G2 (hepatoma cancer), KB (epidermoid carcinoma), LNCaP (prostate cancer), MCF7 (breast cancer), and SK-Mel2 (melanoma), was evaluated using SRB methods. Stichorrenoside D (4), stichoposide A (5), and 3β-O-[β-d-xylopyranosyl-(1→2)-β-d-xylopyranosyl]-23S-acetoxyholost-7-ene (7) showed strong cytotoxicity on all five tested cancer cell lines, whereas significant effect was observed for stichorrenoside C (3) and stichoposide B (6). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Independent Activation of Hepatitis B Virus Biosynthesis by Retinoids, Peroxisome Proliferators, and Bile Acids

    PubMed Central

    Reese, Vanessa C.; Oropeza, Claudia E.

    2013-01-01

    In the human hepatoma cell line HepG2, retinoic acid, clofibric acid, and bile acid treatment can only modestly increase hepatitis B virus (HBV) biosynthesis. Utilizing the human embryonic kidney cell line 293T, it was possible to demonstrate that the retinoid X receptor α (RXRα) plus its ligand can support viral biosynthesis independently of additional nuclear receptors. In addition, RXRα/peroxisome proliferator-activated receptor α (PPARα) and RXRα/farnesoid X receptor α (FXRα) heterodimeric nuclear receptors can also mediate ligand-dependent HBV transcription and replication when activated by clofibric acid and bile acid, respectively, independently of a requirement for the ligand-dependent activation of RXRα. These observations indicate that there are at least three possible modes of ligand-mediated activation of HBV transcription and replication existing within hepatocytes, suggesting that multiple independent mechanisms control viral production in the livers of infected individuals. PMID:23135717

  5. Searching phase II enzymes inducers, from Michael acceptor-[1,2]dithiolethione hybrids, as cancer chemopreventive agents.

    PubMed

    Couto, Marcos; de Ovalle, Stefani; Cabrera, Mauricio; Cerecetto, Hugo; González, Mercedes

    2015-01-01

    Cancer chemoprevention involves the carcinogenic process prevention, delay or reverse by the administration of chemopreventive agents, which are able to suppress or block the carcinogen metabolic activation/formation. The increased activity of phase II detoxification enzymes such as quinone-reductase (QR) and glutation-S-transferase (GST) correlates with the protection against chemically-induced carcinogenesis. It has been shown that synthetic chalcones and 3H-[1,2]-dithiole-3-thiones promote expression of genes involved in chemoprevention. Herein, the induction of phase II enzymes by designed Michael acceptor-dithiolethione hybrids was studied. Hybrids 5 and 7 displayed the induction of quinone-reductase and glutation-S-transferase in vitro in the same order on the wild-type mouse-hepatoma Hepa 1c1c7 and on the aryl-hydrocarbon-nuclear-translocator (Arnt)-defective mutant BPrc1 cells indicating that 7 displays the best chemopreventive potential.

  6. By inhibiting PFKFB3, aspirin overcomes sorafenib resistance in hepatocellular carcinoma.

    PubMed

    Li, Sainan; Dai, Weiqi; Mo, Wenhui; Li, Jingjing; Feng, Jiao; Wu, Liwei; Liu, Tong; Yu, Qiang; Xu, Shizan; Wang, Wenwen; Lu, Xiya; Zhang, Qinghui; Chen, Kan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Fan, Xiaoming; Xu, Ling; Guo, Chuanyong

    2017-12-15

    Hepatocellular carcinoma (HCC) is one of the few cancers with a continuous increase in incidence and mortality. Drug resistance is a major problem in the treatment of HCC. In this study, two sorafenib-resistant HCC cell lines and a nude mouse subcutaneously tumor model were used to explore the possible mechanisms leading to sorafenib resistance, and to investigate whether aspirin could increase the sensitivity of hepatoma cells to sorafenib. The combination of aspirin and sorafenib resulted in a synergistic antitumor effect against liver tumors both in vitro and in vivo. High glycolysis and PFKFB3 overexpression occupied a dominant position in sorafenib resistance, and can be targeted and overcome by aspirin. Aspirin plus sorafenib induced apoptosis in tumors without inducing weight loss, hepatotoxicity or inflammation. Our results suggest that aspirin overcomes sorafenib resistance and their combination may be an effective treatment approach for HCC. © 2017 UICC.

  7. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation–contraction coupling together with additional muscle alterations.

    PubMed

    Fontes-Oliveira, Cibely Cristine; Busquets, Sílvia; Fuster, Gemma; Ametller, Elisabet; Figueras, Maite; Olivan, Mireia; Toledo, Míriam; López-Soriano, Francisco J; Qu, Xiaoyan; Demuth, Jeffrey; Stevens, Paula; Varbanov, Alex; Wang, Feng; Isfort, Robert J; Argilés, Josep M

    2014-02-01

    Cachexia is a wasting condition that manifests in several types of cancer. The main characteristic of this condition is a profound loss of muscle mass. By using a microarray system, expression of several hundred genes was screened in skeletal muscle of rats bearing a cachexia-inducing tumor, the AH-130 Yoshida ascites hepatoma. This model induced a strong decrease in muscle mass in the tumor-bearing animals, as compared with their healthy counterparts. The results show important differences in gene expression in EDL skeletal muscle between tumor-bearing animals with cachexia and control animals. The differences observed pertain to genes related to intracellular calcium homeostasis and genes involved in the control of mitochondrial oxidative phosphorylation and protein turnover, both at the level of protein synthesis and proteolysis. Assessment of these differences may be a useful tool for the design of novel therapeutic strategies to fight this devastating syndrome.

  8. Analysis of microRNA and gene expression profiling in triazole fungicide-treated HepG2 cell line.

    PubMed

    An, Yu Ri; Kim, Seung Jun; Oh, Moon-Ju; Kim, Hyun-Mi; Shim, Il-Seob; Kim, Pil-Je; Choi, Kyunghee; Hwang, Seung Yong

    2013-01-07

    MicroRNA (miRNA) plays an important role in various diseases and in cellular and molecular responses to toxicants. In the present study, we investigated differential expression of miRNAs in response to three triazole fungicides (myclobutanil, propiconazole, and triadimefon). The human hepatoma cell line (HepG2) was treated with the above triazoles for 3 h or 48 h. miRNA-based microarray experiments were carried out using the Agilent human miRNA v13 array. At early exposure (3h), six miRNAs were differentially expressed and at late exposure (48 h), three miRNAs were significantly expressed. Overall, this study provides an array of potential biomarkers for the above triazole fungicides. Furthermore, these miRNAs induced by triazoles could be the foundation for the development of a miRNA-based toxic biomarker library that can predict environmental toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Fabrication of lactobionic-loaded chitosan microcapsules as potential drug carriers targeting the liver.

    PubMed

    Zhang, Jing; Li, Cao; Xue, Zhi-Yuan; Cheng, Hai-Wei; Huang, Fu-Wei; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2011-04-01

    This paper demonstrates a general approach for fabrication of lactobionic chitosan microcapsules using layer-by-layer assembly via click chemistry. Chitosan was selectively modified with either azide (CHI-Az) or alkyne (CHI-Alk) groups. The growth of the CHI-Az/CHI-Alk click multilayer was studied experimentally by multilayer assembly on planar supports. Linear buildup of the film was observed. The chitosan click capsules were also analyzed with confocal laser scanning microscopy and transmission electron microscopy. Capsules were found to have regular spherical shapes. In addition, (CHI-Az/CHI-Alk)-coated particles were modified with fluorescein isothiocyanate to ensure that the particles can be easily post-functionalized. Finally, lactobionic acid was conjugated onto the (CHI-Az/CHI-Alk)-coated particles and the lactobionic particles exhibited hepatoma cell (HepG2) targeting behavior. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    PubMed

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  11. Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas.

    PubMed

    Golinska, Monika; Troy, Helen; Chung, Yuen-Li; McSheehy, Paul M; Mayr, Manuel; Yin, Xiaoke; Ly, Lucy; Williams, Kaye J; Airley, Rachel E; Harris, Adrian L; Latigo, John; Perumal, Meg; Aboagye, Eric O; Perrett, David; Stubbs, Marion; Griffiths, John R

    2011-05-25

    HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes.

  12. Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes

    EPA Science Inventory

    Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

  13. The expression profiling and ontology analysis of non-coding RNAs in dexamethasone induced steatosis in hepatoma cell.

    PubMed

    Liu, Fengqiong; Gong, Ruijie; Lv, Xiaofei; Li, Huangyuan

    2018-04-15

    Increasing amounts of evidence have indicated that non-coding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contribution of ncRNAs, especially long non-coding RNAs (lncRNAs) to drug induced steatosis remain largely unknown. The aim of this study is to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of drug induced steatosis. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in dexamethasone treated HepG2 cell as well as control cell. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in dexamethasone induced steatosis. Compared with control HepG2 cell, 652 lncRNAs (528 up-regulated and 124 down-regulated), 655 mRNAs (527 upregulated and 128 down-regulated) and 114 miRNAs (55 miRNAs up-regulated and 59 down-regulated) were differentially expressed in dexamethasone treated HepG2 cell. Pathway analysis showed that the fatty acid biosynthesis, insulin resistance, PPAR signaling pathway, regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, steroid hormone biosynthesis signaling pathways had a close relationship with dexamethasone induced steatosis. 10 highly dysregulated mRNAs and 20 miRNAs, which are closely related to lipid metabolism, were identified and validated by PCR, which followed by ceRNA analysis. CeRNA network analysis identified 5 lipid metabolism related genes, including CYP7A1, CYP11A1, PDK4, ABHD5, ACSL1. It also identified 12 miRNAs (miR-23a-3p, miR-519d-3p, miR-4328, miR-15b-5p etc.) and 177 lncRNAs (ENST00000508884, ENST00000608794, ENST00000568457 etc.). Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in dexamethasone induced steatosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity.

    PubMed

    Zhao, Qing-Qing; Hu, Yu-Lan; Zhou, Yang; Li, Ni; Han, Min; Tang, Gu-Ping; Qiu, Feng; Tabata, Yasuhiko; Gao, Jian-Qing

    2012-01-01

    The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity. A liver cancer-targeted specific peptide (FQHPSF sequence) was successfully synthesized and linked with chitosan-linked polyethylenimine (CP) to form a new targeted gene delivery vector called CPT (CP/peptide). The structure of CPT was confirmed by (1)H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/ DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model. The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT was confirmed and the vector showed low cytotoxicity and strong targeting specificity to liver tumors in vitro. The in vivo study results showed that interleukin-12 delivered by the new gene vector CPT/DNA significantly enhanced the antitumor effect on ascites tumor-bearing imprinting control region mice as compared with polyethylenimine (25 kDa), CP, and other controls, which further demonstrate the targeting specificity of the new synthesized polymer. The synthesized CPT copolymer was proven to be an effective liver cancer-targeted vector for therapeutic gene delivery, which could be a potential candidate for targeted cancer gene therapy.

  15. Inhibition of autophagy significantly enhances combination therapy with sorafenib and HDAC inhibitors for human hepatoma cells.

    PubMed

    Yuan, Hang; Li, Ai-Jun; Ma, Sen-Lin; Cui, Long-Jiu; Wu, Bin; Yin, Lei; Wu, Meng-Chao

    2014-05-07

    To clarify whether histone deacetylase inhibitors histone deacetylase inhibitors (HDACIs) can sensitize hepatocellular carcinoma (HCC) cells to sorafenib treatment. Bax, Bcl-2, ATG5-ATG12, p21, and p27 protein levels in Hep3B, HepG2, and PLC/PRF/5 cells were examined by Western blot. CCK8 and a fluorometric caspase-3 assay were used to examine cellular viability and apoptosis levels. The effect of Beclin-1 on sensitization of HCC cells to sorafenib was examined by transfecting Beclin-1 siRNA into Hep3B, HepG2, and PLC/PRF/5 cells. Autophagy inhibition enhances the inhibitory effects of vorinostat and sorafenib alone or in combination on HCC cell growth. Vorinostat and sorafenib synergistically induced apoptosis and cell cycle alterations. Western blot data indicated that HDACIs and Beclin-1 knockdown increased the p53 acetylation level. The knockdown of Beclin-1 enhanced the synergistic effect of the combination of vorinostat with sorafenib. HDACIs can sensitize HCC cells to sorafenib treatment by regulating the acetylation level of Beclin-1.

  16. Effect of Tumor Microenvironment on Selective Uptake of Boric Acid in HepG2 Human Hepatoma Cells.

    PubMed

    Bai, Yu-Chi; Hsia, Yu-Chun; Lin, Yu-Ting; Chen, Kuan-Hao; Chou, Fong-In; Yang, Chia-Min; Chuang, Yung-Jen

    2017-11-01

    Feasibility and efficacy of boric acid (BA)-mediated boron neutron capture therapy (BNCT) was first demonstrated by eliminating hepatocellular carcinoma (HCC) in a rat model. Furthermore, selective uptake of BA by liver tumor cells was shown in a rabbit model. To gain further insight, this study aimed to investigate the mechanisms of transportation and selective uptake of BA in HepG2 liver tumor cells. Transportation of BA in HepG2 cells was analyzed by time-course assays and by analyzing the rate of diffusion versus the concentration of BA. The effect of different tumor conditions on BA uptake was studied by treating HepG2 cells with 25 μg 10 B/ml BA under different concentrations of glucose, at different pH and in the presence of water-soluble cholesterol. HepG2 cells mainly uptake BA by simple diffusion. Cell membrane permeability may also contribute to tumor-specific uptake of BA. The selective uptake of BA was achieved primarily by diffusion, while other factors, such as low pH and increased membrane fluidity, which are hallmarks of HCC, might further enhance BA uptake. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Conditioned media from (pre)adipocytes stimulate fibrinogen and PAI-1 production by HepG2 hepatoma cells

    PubMed Central

    Faber, D R; Kalkhoven, E; Westerink, J; Bouwman, J J; Monajemi, H M; Visseren, F L J

    2012-01-01

    Background: Obesity is associated with a prothrombotic state, which may contribute to the increased risk of thrombotic events. Objective: To assess the effects of (pre)adipocyte-derived adipokines on fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF) production by hepatocytes. Methods: HepG2 hepatocytes were incubated with conditioned media (CM) derived from preadipocytes and adipocytes, which had been untreated or prestimulated with tumor necrosis factor (TNF)-α, interleukin (IL)-1β or IL-6. After 24 h, supernatants and cell lysates were harvested for measurement of fibrinogen, PAI-1 and TF. Results: (Pre)adipocyte CM significantly enhanced the production of PAI-1 by HepG2 cells 2.5- to 4.4-fold. CM from cytokine-stimulated (pre)adipocytes significantly induced fibrinogen secretion 1.5- to 4.2-fold. TF production was not affected by the CM. After specific depletion of TNF-α, IL-1β or IL-6 from the CM, IL-6 was shown to be the most prominent stimulus of fibrinogen secretion and IL-1β of PAI-1 secretion. In addition, fibrinogen, PAI-1 and tissue factor production was evaluated by direct stimulation of HepG2 cells with TNF-α, IL-1β or IL-6. IL-6 enhanced fibrinogen synthesis 4.3-fold (P<0.01), whereas IL-1β induced PAI-1 production 5.0-fold (P<0.01). Gene expression analyses showed that TNF-α and IL-1β stimulate the adipocyte expression of TNF-α, IL-1β and IL-6. Cytokine stimulation of adipocytes may thus have induced an inflammatory response, which may have stimulated fibrinogen and PAI-1 production by HepG2 cells more potently. Conclusions: SGBS (pre)adipocytes release cytokines that increase the production of fibrinogen and PAI-1 by HepG2 cells. IL-6 and IL-1β produced by (pre)adipocytes were the strongest inducers of fibrinogen and PAI-1 secretion, respectively. PMID:23208413

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Deok Hee; Hwang, Jae Cheol; Lim, Soo Mee

    Purpose: To describe the findings of pleural and pulmonary staining of the inferior phrenic artery, which can be confused with tumor staining during transarterial chemoembolization (TACE) of hepatoma.Methods: Fifteen patients who showed pleural and pulmonary staining without relationship to hepatic masses at inferior phrenic arteriography were enrolled. The staining was noted at initial TACE (n = 8), at successive TACE (n = 5), and after hepatic surgery (n = 2). The angiographic pattern, the presence of pleural change on computed tomography (CT), and clinical history were evaluated.Results: Draining pulmonary veins were seen in all cases. The lower margin of themore » staining corresponded to the lower margin of the pleura in 10 patients. CT showed pleural and/or pulmonary abnormalities in all cases. After embolization of the inferior phrenic artery, the accumulation of iodized oil in the lung was noted.Conclusion: Understanding the CT and angiographic findings of pleural and pulmonary staining during TACE may help differentiate benign staining from tumor staining.« less

  19. Metabolic regulation of magnolol on the nuclear receptor, liver X receptor.

    PubMed

    Xie, N A; Hu, Chunyang; Guo, Anran; Liang, Hao; DU, Pengcheng; Yin, Guotian

    2015-05-01

    The aim of the present study was to investigate whether magnolol, the essential component of the traditional Chinese medicine, Magnolia officinalis , can pass through liver X receptor α (LXRα), to subsequently play an important role in the lipid metabolic balance. Using a HepG2 human hepatoma cell line, mammalian cellular one-hybridization and mammalian cell transcriptional activation experiments were performed to detect the combination degree of magnolol at different concentrations with LXRα, and assess the transcriptional activity. In addition, using a THP-1 human monocytic cell line, quantitative polymerase chain reaction was performed to assess the effect on the expression levels of downstream genes. Magnolol was shown to dose-dependently combine with LXRα, and subsequently regulate the transcriptional activity of LXRα. In addition, magnolol was found to adjust the expression of associated LXRα downstream genes in the macrophages. In conclusion, magnolol was demonstrated to affect LXRα, which may outline a new molecular mechanism through which magnolol exerts a lipid-lowering function.

  20. Utilization of RNA polymerase I promoter and terminator sequences to develop a DNA transfection system for the study of hepatitis C virus internal ribosomal entry site-dependent translation.

    PubMed

    Oem, Jae-Ku; Xiang, Zhonghua; Zhou, Yan; Babiuk, Lorne A; Liu, Qiang

    2007-09-01

    Hepatitis C virus (HCV) causes severe liver diseases in a large population worldwide. HCV protein translation is controlled by an internal ribosomal entry site (IRES) within the 5'-untranslated region (UTR). HCV IRES-dependent translation is critical for HCV-associated pathogenesis. To develop a plasmid DNA transfection system by using RNA polymerase I promoter and terminator sequences for studying HCV IRES-dependent translation. A gene cassette containing HCV 5'-UTR, Renilla luciferase reporter gene, and HCV 3'-UTR was inserted between RNA polymerase I promoter and terminator sequences. HCV IRES-directed translation was determined by luciferase assay after transfection. Transfection of the RNA polymerase I-HCV IRES plasmid into human hepatoma Huh-7 and HepG2 cells resulted in luciferase gene expression. Deletion of the IIIf domain in HCV IRES dramatically reduced luciferase activity. Our results indicated that the plasmid vector system-based on RNA polymerase I promoter and terminator sequences represents an effective approach for the study of HCV IRES-dependent translation.

  1. Novel linear and step-gradient counter-current chromatography for bio-guided isolation and purification of cytotoxic podophyllotoxins from Dysosma versipellis (Hance).

    PubMed

    Yang, Zhi; Liu, Xiaoman; Wang, Kuiwu; Cao, Xiaoji; Wu, Shihua

    2013-03-01

    Dysosma versipellis (Hance) is a famous traditional Chinese medicine for the treatment of snakebite, weakness, condyloma accuminata, lymphadenopathy, and tumors for thousands of years. In this work, four podophyllotoxin-like lignans including 4'-demethylpodophyllotoxin (1), α-peltatin (2), podophyllotoxin (3), β-peltatin (4) as major cytotoxic principles of D. versipellis were successfully isolated and purified by several novel linear and step gradient counter-current chromatography methods using the systems of hexane/ethyl acetate/methanol/water (4:6:3:7 and 4:6:4:6, v/v/v/v). Compared with isocratic elution, linear and step-gradient elution can provide better resolution and save more time for the separation of photophyllotoxin and its congeners. Their cytotoxicities were further evaluated and their structures were validated by high-resolution electrospray TOF MS and nuclear magnetic resonance spectra. All components showed potent anticancer activity against human hepatoma cells HepG2. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens.

    PubMed

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N

    2015-12-01

    The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.

  3. Antibody-Mediated and Cellular Immune Responses Induced in Naive Volunteers by Vaccination with Long Synthetic Peptides Derived from the Plasmodium vivax Circumsporozoite Protein

    PubMed Central

    Arévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial. PMID:21292876

  4. Single-stranded DNA condensed with poly-L-lysine results in nanometric particles that are significantly smaller, more stable in physiological ionic strength fluids and afford higher efficiency of gene delivery than their double-stranded counterparts.

    PubMed

    Molas, M; Bartrons, R; Perales, J C

    2002-08-15

    Nonviral gene transfer vectors have been actively studied in the past years in order to obtain structural entities with minimum size and defined shape. The final size of a gene transfer vector, which is compacted into unimolecular complexes, is directly proportional to the mass of the nucleic acid to be compacted. Thus, the purpose of this study was to assess the possibility of producing ssDNA vectors and their biophysical and biological characterization. We have obtained ssDNA/poly-L-lysine complexes that are significantly smaller than their double-stranded counterparts. We have also identified a lesser aggregative behavior of compacted single-stranded vs. double-stranded DNA vectors in the presence of physiological NaCl concentrations. Expression of compacted ssDNA is observed in hepatoma cell lines. Moreover, we have successfully delivered galactosylated ssDNA complexes into cells that express the asialoglycoprotein receptor via receptor-mediated endocytosis. The reduced size and biophysical behavior of ssDNA vectors may provide an advantage for transfection of eukaryotic cells.

  5. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil.

    PubMed

    Horvathova, Eva; Navarova, Jana; Galova, Eliska; Sevcovicova, Andrea; Chodakova, Lenka; Snahnicanova, Zuzana; Melusova, Martina; Kozics, Katarina; Slamenova, Darina

    2014-07-16

    Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.

  6. Isolation of a Novel Human Gene, MARKL1, Homologous to MARK3 and Its Involvement in Hepatocellular Carcinogenesis1

    PubMed Central

    Kato, Tatsushi; Satoh, Seiji; Okabe, Hiroshi; Kitahara, Osamu; Ono, Kenji; Kihara, Chikashi; Tanaka, Toshihiro; Tsunoda, Tatsuhiko; Yamaoka, Yoshio; Nakamura, Yusuke; Furukawa, Yoichi

    2001-01-01

    Abstract Activation of the Wnt-signaling pathway is known to play a crucial role in carcinogenesis of various human organs including the colon, liver, prostate, and endometrium. To investigate the mechanisms underlying hepatocellular carcinogenesis, we attempted to identify genes regulated by β-catenin/Tcf complex in a human hepatoma cell line, HepG2, in which an activated form of β-catenin is expressed. By means of cDNA microarray, we isolated a novel human gene, termed MARKL1 (MAP/microtubule affinity-regulating kinase-like 1), whose expression was downregulated in response to decreased Tcf/LEF1 activity. The transcript expressed in liver consisted of 3529 nucleotides that contained an open reading frame of 2256 nucleotides, encoding 752 amino acids homologous to human MARK3 (MAP/microtubule affinity-regulating kinase 3). Expression levels of MARKL1 were markedly elevated in eight of nine HCCs in which nuclear accumulation of β-catenin was observed, which may suggest that MARKL1 plays some role in hepatocellular carcinogenesis. PMID:11326310

  7. Assaying Cellular Viability Using the Neutral Red Uptake Assay.

    PubMed

    Ates, Gamze; Vanhaecke, Tamara; Rogiers, Vera; Rodrigues, Robim M

    2017-01-01

    The neutral red uptake assay is a cell viability assay that allows in vitro quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in in vitro toxicology applications. This method has also been introduced in regulatory recommendations as part of 3T3-NRU-phototoxicity-assay, which was regulatory accepted in all EU member states in 2000 and in the OECD member states in 2004 as a test guideline (TG 432). The present protocol describes the neutral red uptake assay using the human hepatoma cell line HepG2, which is often employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetyl salicylic acid is assessed.

  8. Regulation of the Lactobacillus Strains on HMGCoA Reductase Gene Transcription in Human HepG2 Cells via Nuclear Factor-κB.

    PubMed

    Chen, Kun; Li, Shaocong; Chen, Fang; Li, Jun; Luo, Xuegang

    2016-02-01

    Lactic acid bacteria have been identified to be effective in reducing cholesterol levels. Most of the mechanistic studies were focused on the bile salt deconjugation ability of bile salt hydrolase in lactic acid bacteria. However, the mechanism by which Lactobacillus decreases cholesterol levels has not been thoroughly studied in intact primate cells. 3-Hydroxy-3- methyl-glutaryl-coenzyme A reductase (HMGCR) is the vital enzyme in cholesterol synthesis. To confirm the effect of probiotic Lactobacillus strains on HMGCR level, in the present study, human hepatoma HepG2 cells were treated with Lactobacillus strains, and then the HMGCR level was illustrated by luciferase reporter assay and RT-PCR. The results showed that the level of HMGCR was suppressed after being treated with the live Lactobacillus strains. These works might set a foundation for the following study of the antihyperlipidemic effects of L. acidophilus, and contribute to the development of functional foods or drugs that benefit patients suffering from hyperlipidemia diseases.

  9. Comparison of the effects of curcumin and curcumin glucuronide in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Shoji, Motomu; Nakagawa, Kiyotaka; Watanabe, Akio; Tsuduki, Tsuyoshi; Yamada, Teiko; Kuwahara, Shigefumi; Kimura, Fumiko; Miyazawa, Teruo

    2014-05-15

    Curcumin is a yellow pigment found in turmeric (Curcuma Longa L.), and is reported, in recent studies, to have several pharmacological effects, including anti-oxidant, anti-inflammatory, anti-tumour and lipid-lowering properties. However, as most curcumin is conjugated when absorbed through the intestine, free curcumin is present at extremely low levels inside the body. Therefore, curcumin metabolites have been presumed to be responsible for the curcumin bioactivity. In this study, we first confirmed that curcumin glucuronide is the major metabolite of curcumin found in the plasma after oral administration of curcumin in rats. Next, we synthesised curcumin glucuronide and compared the effects of curcumin and curcumin glucuronide on gene expression in a human hepatoma cell line (HepG2). We found that the effects of curcumin glucuronide are weaker than those of curcumin and that this difference is related to relative absorption rates of curcumin and curcumin glucuronide into HepG2 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes

    PubMed Central

    Zhou, Kaixin; Bellenguez, Celine; Spencer, Chris CA; Bennett, Amanda J; Coleman, Ruth L; Tavendale, Roger; Hawley, Simon A.; Donnelly, Louise A; Schofield, Chris; Groves, Christopher J; Burch, Lindsay; Carr, Fiona; Strange, Amy; Freeman, Colin; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Craddock, Nicholas; Deloukas, Panos; Dronov, Serge; Duncanson, Audrey; Edkins, Sarah; Gray, Emma; Hunt, Sarah; Jankowski, Janusz; Langford, Cordelia; Markus, Hugh S; Mathew, Christopher G; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Samani, Nilesh J; Trembath, Richard; Viswanathan, Ananth C; Wood, Nicholas W; Harries, Lorna W; Hattersley, Andrew T; Doney, Alex SF; Colhoun, Helen; Morris, Andrew D; Sutherland, Calum; Hardie, D. Grahame; Peltonen, Leena; McCarthy, Mark I; Holman, Rury R.; Palmer, Colin N.A.; Donnelly, Peter; Pearson, Ewan R

    2010-01-01

    Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We carried out a GWA study on glycaemic response to metformin in 1024 Scottish patients with type 2 diabetes. Replication was in two cohorts consisting of 1783 Scottish patients and 1113 patients from the UK Prospective Diabetes Study. In a meta-analysis (n=3920) we observed an association (P=2.9 *10−9) for a SNP rs11212617 at a locus containing the ataxia telangiectasia mutated (ATM) gene with an odds ratio of 1.35 (95% CI 1.22 to 1.49) for treatment success. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMPK in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMPK, and variation in this gene alters glycaemic response to metformin. PMID:21186350

  11. Potential of decursin to inhibit the human cytochrome P450 2J2 isoform.

    PubMed

    Lee, Boram; Wu, Zhexue; Sung, Sang Hyun; Lee, Taeho; Song, Kyung-Sik; Lee, Min Young; Liu, Kwang-Hyeon

    2014-08-01

    CYP2J2 enzyme is highly expressed in human tumors and carcinoma cell lines, and epoxyeicosatrienoic acids, CYP2J2-mediated metabolites, have been implicated in the pathologic development of human cancers. To identify a CYP2J2 inhibitor, 50 natural products obtained from plants were screened using astemizole as a CYP2J2 probe substrate in human liver microsomes. Of these, decursin noncompetitively inhibited CYP2J2-mediated astemizole O-demethylation and terfenadine hydroxylation activities with Ki values of 8.34 and 15.8μM, respectively. It also showed cytotoxic effects against human hepatoma HepG2 cells in a dose-dependent manner while it did not show cytotoxicity against mouse hepatocytes. The present data suggest that decursin is a potential candidate for further evaluation for its CYP2J2 targeting anti-cancer activities. Studies are currently underway to test decursin as a potential therapeutic agent for cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Synthesis of platinum(II) and palladium(II) complexes with 9,9-dihexyl-4,5-diazafluorene and their in vivo antitumour activity against Hep3B xenografted mice.

    PubMed

    Wang, Q-W; Lam, P-L; Wong, R S-M; Cheng, G Y-M; Lam, K-H; Bian, Z-X; Ho, C-L; Feng, Y-H; Gambari, R; Lo, Y-H; Wong, W-Y; Chui, C-H

    2016-11-29

    Two complexes dichloro(9,9-dihexyl-4,5-diazafluorene)platinum(II) (Pt-DHF) and dichloro(9,9-dihexyl-4,5-diazafluorene)palladium(II) (Pd-DHF) were synthesized and their in vivo antitumour activity was investigated using an athymic nude mice model xenografted with human Hep3B carcinoma cells. Pt-DHF- and Pd-DHF-treated groups showed significant tumour growth inhibition (with about 9-fold and 3-fold tumour growth retardation) when compared with the vehicle control group. The liver toxicology effects on the animals of the two compounds were investigated. Pt-DHF and Pd-DHF-treated groups had a lower alanine transaminase and aspartate transaminase values than those of the vehicle treated group as the animals from the vehicle control group had very heavy hepatoma burden. We assume that both complexes could be further investigated as effective antitumour agents and it is worthwhile to study their underlying working mechanism. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. A 4-Nitroquinoleneoxide-Induced Pleurotus eryngii Mutant Variety Increases Pin1 Expression in Rat Brain.

    PubMed

    Jeong, Yoonhwa; Jung, Mina; Kim, Myeung Ju; Hwang, Cheol Ho

    2017-01-01

    To develop Pleurotus eryngii varieties with improved medicinal qualities, protoplasts of P. eryngii were mutagenized using 4-nitroquinoleneoxide. The effects of the resulting variant mushrooms on a human cell were evaluated by applying their aqueous extracts to the human hepatoma cell line, HepG2, in vitro and examining any alteration in the proteomes of the treated HepG2. The P. eryngii mutant, NQ2A-12, was selected for its effects on increasing the expression level of Pin1 in HepG2. Pin1 is one of the peptidyl-prolyl cis-trans isomerases known to play an important role in repressing Alzheimer's disease pathogenesis. Validity of NQ2A-12 related to Alzheimer's disease was shown with an enhanced expression of Pin1 in a mouse brain tissue by injecting the NQ2A-12 extract. The mutant mushroom, NQ2A-12, could be developed as a new variety of P. eryngii with potential to protect against Alzheimer's disease.

  14. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  15. FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, Eszter; Nardai, Gabor; Mandl, Jozsef

    2005-12-16

    The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1more » can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding.« less

  16. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate.

    PubMed

    Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon

    2005-02-09

    Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.

  17. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis

    PubMed Central

    Yamamoto, Akihiro; Liu, Ming-Yih; Kurogi, Katsuhisa; Sakakibara, Yoichi; Saeki, Yuichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-01-01

    Sulphation is known to be critically involved in the metabolism of acetaminophen in vivo. This study aimed to systematically identify the major human cytosolic sulfotransferase (SULT) enzyme(s) responsible for the sulphation of acetaminophen. A systematic analysis showed that three of the twelve human SULTs, SULT1A1, SULT1A3 and SULT1C4, displayed the strongest sulphating activity towards acetaminophen. The pH dependence of the sulphation of acetaminophen by each of these three SULTs was examined. Kinetic parameters of these three SULTs in catalysing acetaminophen sulphation were determined. Moreover, sulphation of acetaminophen was shown to occur in HepG2 human hepatoma cells and Caco-2 human intestinal epithelial cells under the metabolic setting. Of the four human organ samples tested, liver and intestine cytosols displayed considerably higher acetaminophen-sulphating activity than those of lung and kidney. Collectively, these results provided useful information concerning the biochemical basis underlying the metabolism of acetaminophen in vivo previously reported. PMID:26067475

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marengo, Barbara; Bottini, Consuelo; La Porta, C.A.M.

    Phosphatidylethanolamine N-methyltransferase (PEMT) is the enzyme that converts phosphatidylethanolamine (PE) into phosphatidylcholine. We have previously shown that PEMT suppressed hepatoma growth by triggering apoptosis. We investigate whether PEMT controlled cell death and cell proliferation triggered by fasting/refeeding and whether it is a marker of early preneoplastic lesions. The induction of programmed cell death and suppression of cell proliferation by fasting were associated with enhanced PEMT expression and activity, and with a decrease in CTP:phosphocholine cytidylyltransferase expression. Refeeding returned the liver growth and expression of CTP:phosphocholine cytidylyltransferase to control levels, while the expression of PEMT decreased to below control values. Aftermore » DENA administration, PEMT protein, evaluated by Western blotting, slightly increased, but it remained below control levels. The treatment with 20 mg/kg DENA to refed rats induced the appearance of initiated hepatocytes that were negative for PEMT expression. Present findings indicate that PEMT is a novel tumour marker for early liver preneoplastic lesions.« less

  19. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis

    PubMed Central

    1993-01-01

    We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis. PMID:8408207

  20. PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.

    PubMed

    Coumoul, Xavier; Diry, Monique; Barouki, Robert

    2002-11-15

    OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.

  1. Fraction from human and rat liver which is inhibitory for proliferation of liver cells.

    PubMed

    Chen, T S; Ottenweller, J; Luke, A; Santos, S; Keeting, P; Cuy, R; Lea, M A

    1989-01-01

    A comparative study was undertaken with human and rat liver of a fraction reported to have growth inhibitory activity when prepared from rat liver. Fractions which were soluble in 70% ethanol and insoluble in 87% ethanol were prepared from liver cytosols. Electrophoretic analysis under denaturing conditions indicated that there were several quantitative or qualitative differences in the fractions from the two species. Fractions from both human and rat liver were found to be inhibitory for the incorporation of 3H-thymidine into DNA of foetal chick hepatocytes. Under conditions in which the rat fraction inhibited precursor incorporation into DNA of rat liver epithelial cells there was not a significant inhibitory effect with the fraction from human liver. DNA synthesis in a rat hepatoma cell line was not significantly inhibited by preparations from either species. The data suggested that corresponding fractions from both rat and human liver could have inhibitory effects on precursor incorporation into DNA but the magnitude of the effects and target cell specificity may differ.

  2. Body weight management effect of burdock (Arctium lappa L.) root is associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Kuo, Daih-Huang; Hung, Ming-Chi; Hung, Chao-Ming; Liu, Li-Min; Chen, Fu-An; Shieh, Po-Chuen; Ho, Chi-Tang; Way, Tzong-Der

    2012-10-01

    Burdock (Arcticum lappa L.) root is used in folk medicine and also as a vegetable in Asian countries. In the present study, burdock root treatment significantly reduced body weight in rats. To evaluate the bioactive compounds, we successively extracted the burdock root with ethanol (AL-1), and fractionated it with n-hexane (AL-2), ethyl acetate (AL-3), n-butanol (AL-4), and water (AL-5). Among these fractions, AL-2 contained components with the most effective hypolipidemic potential in human hepatoma HepG2 cells. AL-2 decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) by stimulating AMP-activated protein kinase (AMPK) through the LKB1 pathway. Three active compounds were identified from the AL-2, namely α-linolenic acid, methyl α-linolenate, and methyl oleate. These results suggest that burdock root is expected to be useful for body weight management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Hemoglobin Regulates the Metabolic, Synthetic, Detoxification, and Biotransformation Functions of Hepatoma Cells Cultured in a Hollow Fiber Bioreactor

    PubMed Central

    Chen, Guo

    2010-01-01

    Hepatic hollow fiber (HF) bioreactors constitute one type of extracorporeal bioartificial liver assist device (BLAD). Ideally, cultured hepatocytes in a BLAD should closely mimic the in vivo oxygenation environment of the liver sinusoid to yield a device with optimal performance. However, most BLADs, including hepatic HF bioreactors, suffer from O2 limited transport toward cultured hepatocytes, which reduces their performance. We hypothesize that supplementation of hemoglobin-based O2 carriers into the circulating cell culture medium of hepatic HF bioreactors is a feasible and effective strategy to improve bioreactor oxygenation and performance. We examined the effect of bovine hemoglobin (BvHb) supplementation (15 g/L) in the circulating cell culture medium of hepatic HF bioreactors on hepatocyte proliferation, metabolism, and varied liver functions, including biosynthesis, detoxification, and biotransformation. It was observed that BvHb supplementation supported the maintenance of a higher cell mass in the extracapillary space, improved hepatocyte metabolic efficiency (i.e., hepatocytes consumed much less glucose), improved hepatocyte capacity for drug metabolism, and conserved both albumin synthesis and ammonia detoxification functions compared to controls (no BvHb supplementation) under the same experimental conditions. PMID:20528678

  4. Chitosan oligosaccharides in combination with Agaricus blazei Murill extract reduces hepatoma formation in mice with severe combined immunodeficiency

    PubMed Central

    YEH, MING YANG; SHANG, HUNG SHENG; LU, HSU FENG; CHOU, JASON; YEH, CHUN; CHANG, JIN BIOU; HUNG, HSIAO FANG; KUO, WAN LIN; WU, LUNG YUAN; CHUNG, JING GUNG

    2015-01-01

    Chitosan and Agaricus blazei Murill (ABM) extracts possess antitumor activities. The aim of the present study was to investigate whether chitosan, ABM extract or the two in combination were effective against tumors in tumor-bearing mice. The mice were subcutaneously injected with SK-Hep 1 cells and were then were divided into the following six groups: Group 1, control group; group 2, chitosan 5 mg/kg/day; group 3, chitosan 20 mg/kg/day; group 4, ABM (246 mg/kg/day) and chitosan (5 mg/kg/day) combined; group 5, ABM (984 mg/kg/day) and chitosan (20 mg/kg/day) combined; and group 6, ABM (984 mg/kg/day). The mice were treated with the different concentrations of chitosan, ABM or combinations of the two for 6 weeks. The levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and vascular endothelial growth factor (VEGF), and tissue histopathological features were examined in the surviving animals. Based on the results of the investigation, the treatments performed in groups 2, 3 and 4 were identified as being capable of reducing the weights of the tumors, however, group 4, which was treated with chitosan (5 mg/kg/day) in combination with ABM (246 mg/kg/day) was able to reduce the levels of GOT and VEGF. As a result, treatment with chitosan in combination with ABM may offer potential in cancer therapy and requires further investigation. PMID:25760985

  5. Chitosan oligosaccharides in combination with Agaricus blazei Murill extract reduces hepatoma formation in mice with severe combined immunodeficiency.

    PubMed

    Yeh, Ming-Yang; Shang, Hung-Sheng; Lu, Hsu-Feng; Chou, Jason; Yeh, Chun; Chang, Jin-Biou; Hung, Hsiao-Fang; Kuo, Wan-Lin; Wu, Lung-Yuan; Chung, Jing-Gung

    2015-07-01

    Chitosan and Agaricus blazei Murill (ABM) extracts possess antitumor activities. The aim of the present study was to investigate whether chitosan, ABM extract or the two in combination were effective against tumors in tumor‑bearing mice. The mice were subcutaneously injected with SK-Hep 1 cells and were then were divided into the following six groups: Group 1, control group; group 2, chitosan 5 mg/kg/day; group 3, chitosan 20 mg/kg/day; group 4, ABM (246 mg/kg/day) and chitosan (5 mg/kg/day) combined; group 5, ABM (984 mg/kg/day) and chitosan (20 mg/kg/day) combined; and group 6, ABM (984 mg/kg/day). The mice were treated with the different concentrations of chitosan, ABM or combinations of the two for 6 weeks. The levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and vascular endothelial growth factor (VEGF), and tissue histopathological features were examined in the surviving animals. Based on the results of the investigation, the treatments performed in groups 2, 3 and 4 were identified as being capable of reducing the weights of the tumors, however, group 4, which was treated with chitosan (5 mg/kg/day) in combination with ABM (246 mg/kg/day) was able to reduce the levels of GOT and VEGF. As a result, treatment with chitosan in combination with ABM may offer potential in cancer therapy and requires further investigation.

  6. Study on relationship between expression level and molecular conformations of gene drugs targeting to hepatoma cells in vitro

    PubMed Central

    Yang, Dong-Ye; Lu, Fang-Gen; Tang, Xi-Xiang; Zhao, Shui-Ping; Ouyang, Chun-Hui; Wu, Xiao-Ping; Liu, Xiao-Wei; Wu, Xiao-Ying

    2003-01-01

    AIM: To increase exogenous gene expression level by modulating molecular conformations of targeting gene drugs. METHODS: The full length cDNAs of both P40 and P35 subunits of human interleukin 12 were amplified through polymerase chain reaction (PCR) and cloned into eukaryotic expressing vectors pcDNA3.1 (±) to construct plasmids of P (+)/IL-12, P (+)/P40 and P (-)/P35. These plasmids were combined with ASOR-PLL to form two targeting gene drugs [ASOR-PLL-P (+)/IL-12 and ASOR-PLL-P (+)/P40 + ASOR-PLL-P (-)/P35] in optimal ratios. The conformations of these two drugs at various concentrations adjuvant were examined under electron microscope (EM) and the drugs were transfected into HepG2 (ASGr+) cells. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed with total RNA extracted from the transfected cells to determine the hIL12 mRNA transcript level. The hIL12 protein in the cultured supernatant was measured with enzyme-linked immunosorbent assay (ELISA) 48 hours after transfection. RESULTS: Targeting gene drugs, whose structures were granular and circle-like and diameters ranged from 25 nm to 150 nm, had the highest hIL-12 expression level. The hIL-12 expression level in the group co-transfected with ASOR-PLL-P (+)/P40 and ASOR-PLL-P (-)/P35 was higher than that of ASOR-PLL-P (+)/IL-12 transfected group. CONCLUSION: The molecular conformations of targeting gene drugs play an important role in exogenous gene expression level, the best structures are granular and circle-like and their diameters range from 25 nm to 150 nm. The sizes and linking styles of exogenous genes also have some effects on their expression level. PMID:12970883

  7. Sirtuin 3 enhanced drug sensitivity of human hepatoma cells through glutathione S-transferase pi 1/JNK signaling pathway

    PubMed Central

    Cai, Xue-Fei; Zhang, Wen-Lu; Ren, Ji-Hua; Zhou, Li; Chen, Xiang; Chen, Ke; Li, Wan-Yu; Liu, Bo; Yang, Qiu-Xia; Cheng, Sheng-Tao; Huang, Li-Xia; Huang, Ai-Long; Chen, Juan

    2016-01-01

    SIRT3, a class III histone deacetylase, has been implicated in various cancers as a novel therapeutic target. In hepatocellular carcinoma (HCC), we previously reported that SIRT3 induced cell apoptosis by regulating GSK-3β/Bax signaling pathway. Downregulation of SIRT3 in HCC cells facilitates tumor cell survival. In this study, we found that chemotherapeutic agents (doxorubicin, cisplatin and epirubicin) and sorafenib treatment downregulated SIRT3 mRNA and protein levels in three HCC cell lines. MTS assay found that SIRT3 overexpression sensitized liver cancer cells to chemotherapeutic agents and sorafenib in SMMC-7721, Huh-7 and PLC/PRF/5 cell lines. Moreover, SIRT3 overexpression promoted chemotherapeutic agents-induced or sorafenib-induced apoptosis as evidenced by flow cytometry, enhanced PARP cleavage and enhanced Caspase-9 cleavage in three HCC cells. In contrast, SIRT3 silencing increased drug resistance of HCC cells to chemotherapeutic agents. Mechanistic study found that SIRT3 downregulated the mRNA and protein levels of glutathione S-transferase pi 1 (GSTP1), which is a member of phase II detoxification enzymes families involved in metabolizing for chemotherapeutic agents. Moreover, SIRT3 decreased the amount of GSTP1 that was associated with JNK, which finally contributed the activation of JNK activity and activation of downstream target c-Jun and Bim. Importantly, GSTP1 overexpression or JNK inhibitor abolished SIRT3-induced apoptosis in HCC cells exposed to chemotherapeutic agents. Finally, there was a negative correlation between SIRT3 expression and GSTP1 expression in human HCC tissues. Together, our findings revealed SIRT3 could enhance the drug sensitivity of HCC cells to an array of chemotherapeutic agents. SIRT3 may serve as a potential target for improving the chemosensitivity of HCC patients. PMID:27367026

  8. Sirtuin 3 enhanced drug sensitivity of human hepatoma cells through glutathione S-transferase pi 1/JNK signaling pathway.

    PubMed

    Tao, Na-Na; Zhou, Hong-Zhong; Tang, Hua; Cai, Xue-Fei; Zhang, Wen-Lu; Ren, Ji-Hua; Zhou, Li; Chen, Xiang; Chen, Ke; Li, Wan-Yu; Liu, Bo; Yang, Qiu-Xia; Cheng, Sheng-Tao; Huang, Li-Xia; Huang, Ai-Long; Chen, Juan

    2016-08-02

    SIRT3, a class III histone deacetylase, has been implicated in various cancers as a novel therapeutic target. In hepatocellular carcinoma (HCC), we previously reported that SIRT3 induced cell apoptosis by regulating GSK-3β/Bax signaling pathway. Downregulation of SIRT3 in HCC cells facilitates tumor cell survival. In this study, we found that chemotherapeutic agents (doxorubicin, cisplatin and epirubicin) and sorafenib treatment downregulated SIRT3 mRNA and protein levels in three HCC cell lines. MTS assay found that SIRT3 overexpression sensitized liver cancer cells to chemotherapeutic agents and sorafenib in SMMC-7721, Huh-7 and PLC/PRF/5 cell lines. Moreover, SIRT3 overexpression promoted chemotherapeutic agents-induced or sorafenib-induced apoptosis as evidenced by flow cytometry, enhanced PARP cleavage and enhanced Caspase-9 cleavage in three HCC cells. In contrast, SIRT3 silencing increased drug resistance of HCC cells to chemotherapeutic agents. Mechanistic study found that SIRT3 downregulated the mRNA and protein levels of glutathione S-transferase pi 1 (GSTP1), which is a member of phase II detoxification enzymes families involved in metabolizing for chemotherapeutic agents. Moreover, SIRT3 decreased the amount of GSTP1 that was associated with JNK, which finally contributed the activation of JNK activity and activation of downstream target c-Jun and Bim. Importantly, GSTP1 overexpression or JNK inhibitor abolished SIRT3-induced apoptosis in HCC cells exposed to chemotherapeutic agents. Finally, there was a negative correlation between SIRT3 expression and GSTP1 expression in human HCC tissues. Together, our findings revealed SIRT3 could enhance the drug sensitivity of HCC cells to an array of chemotherapeutic agents. SIRT3 may serve as a potential target for improving the chemosensitivity of HCC patients.

  9. Synergistic anticancer effect of the extracts from Polyalthia evecta caused apoptosis in human hepatoma (HepG2) cells

    PubMed Central

    Machana, Sasipawan; Weerapreeyakul, Natthida; Barusrux, Sahapat; Thumanu, Kanjana; Tanthanuch, Waraporn

    2012-01-01

    Objective To evaluate the anticancer activity of the extract fraction of Polyalthia evecta (P. evecta) (Pierre) Finet & Gagnep and the synergistic anticancer effect of the extracts from P. evecta by using the ATR/FT-IR spectroscopy. Methods The 50% ethanol-water crude leaf extract of P. evecta (EW-L) was prepared and was further fractionated to isolate various fractions. The anticancer activity was investigated from cytotoxicity against HepG2 using a neutral red assay and apoptosis induction by evaluation of nuclei morphological changes after DAPI staining. Synergistic anticancer effects of the extracts from P. evecta were performed using the ATR/FT-IR spectroscopy. Results The result showed that the EW-L showed higher cytotoxicity and apoptosis induction in HepG2 cells than its fractionated extracts. The hexane extract exhibited higher cytotoxicity and apoptosis induction than the water extracts, but less than the EW-L. The combined water and hexane extracts apparently increased cytotoxicity and apoptosis induction. The %apoptotic cells induced by the extract mixture were increased about 2-fold compared to the single hexane extract. Conclusions The polar extract fraction is necessary for the anticancer activity of the non-polar extract fraction. The ATR/FT-IR spectra illustrates the physical interaction among the constituents in the extract mixture and reveals the presence of polyphenolic constituents in the EW-L, which might play a role for the synergistic anticancer effect. PMID:23569977

  10. Curcumin Upregulates Antioxidant Defense, Lon Protease, and Heat-Shock Protein 70 Under Hyperglycemic Conditions in Human Hepatoma Cells.

    PubMed

    Gounden, Shivona; Chuturgoon, Anil

    2017-05-01

    Sirtuin 3 (SIRT3) regulates mitochondrial antioxidant (AO) defense and improves mitochondrial disorders. Curcumin protects mitochondria; however, the mechanisms need investigation. We postulated that curcumin increases AO defense under hyperglycemic conditions in HepG2 cells through SIRT3-mediated mechanisms. Cell viability was determined in HepG2 cells cultured with 5 mM glucose, 19.9 mM mannitol, vehicle control, 10 mM glucose, and 30 mM glucose in the absence or presence of curcumin for 24 h. SIRT3, nuclear factor-kappa B (NF-κB), heat-shock protein 70 (Hsp70), and Lon protein expressions were determined using western blot. Transcript levels of SIRT3, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), cAMP response element-binding protein (CREB), glutathione peroxidase 1 (GPx1), and superoxide dismutase 2 (SOD2) were measured by quantitative polymerase chain reaction. Cell viability, SIRT3 protein expression, transcript levels of SIRT3, PGC-1α, CREB, GPx1, and SOD2 and protein expressions of NF-κB, Lon, and Hsp70 were significantly increased in the curcumin-treated hyperglycemic groups. Since curcumin and SIRT3 both improve mitochondrial function and AO defense, SIRT3 may be involved in the protective effects of curcumin.

  11. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Raymond; Celius, Trine; Forgacs, Agnes L.

    2011-11-15

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed anmore » over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched

  12. Connective tissue growth factor is overexpressed in human hepatocellular carcinoma and promotes cell invasion and growth.

    PubMed

    Xiu, Ming; Liu, Ya-Hui; Brigstock, David R; He, Fang-Hui; Zhang, Rui-Juan; Gao, Run-Ping

    2012-12-21

    To determine the expression characteristics of connective tissue growth factor (CTGF/CCN2) in human hepatocellular carcinoma (HCC) in histology and to elucidate the roles of CCN2 on hepatoma cell cycle progression and metastasis in vitro. Liver samples from 36 patients (who underwent hepatic resection for the first HCC between 2006 and 2011) and 6 normal individuals were examined for transforming growth factor β1 (TGF-β1) or CCN2 mRNA by in situ hybridization. Computer image analysis was performed to measure integrated optimal density of CCN2 mRNA-positive cells in carcinoma foci and the surrounding stroma. Fibroblast-specific protein-1 (FSP-1) and E-cadherin were examined to evaluate the process of epithelial to mesenchymal transition, α-smooth muscle actin and FSP-1 were detected to identify hepatic stellate cells, and CD34 was measured to evaluate the extent of vascularization in liver tissues by immunohistochemical staining. CCN2 was assessed for its stimulation of HepG2 cell migration and invasion using commercial kits while flow cytometry was used to determine CCN2 effects on HepG2 cell-cycle. In situ hybridization analysis showed that TGF-β1 mRNA was mainly detected in connective tissues and vasculature around carcinoma foci. In comparison to normal controls, CCN2 mRNA was enhanced 1.9-fold in carcinoma foci (12.36 ± 6.08 vs 6.42 ± 2.35) or 9.4-fold in the surrounding stroma (60.27 ± 28.71 vs 6.42 ± 2.35), with concomitant expression of CCN2 and TGF-β1 mRNA in those areas. Epithelial-mesenchymal transition phenotype related with CCN2 was detected in 12/36 (33.3%) of HCC liver samples at the edges between carcinoma foci and vasculature. Incubation of HepG2 cells with CCN2 (100 ng/mL) resulted in more of the cells transitioning into S phase (23.85 ± 2.35 vs 10.94 ± 0.23), and induced a significant migratory (4.0-fold) and invasive (5.7-fold) effect. TGF-β1-induced cell invasion was abrogated by a neutralizing CCN2 antibody showing that CCN2 is a

  13. Insights on augmenter of liver regeneration cloning and function

    PubMed Central

    Gatzidou, Elisavet; Kouraklis, Gregory; Theocharis, Stamatios

    2006-01-01

    Hepatic stimulator substance (HSS) has been referred to as a liver-specific but species non-specific growth factor. Gradient purification and sequence analysis of HSS protein indicated that it contained the augmenter of liver regeneration (ALR), also known as hepatopoietin (HPO). ALR, acting as a hepatotrophic growth factor, specifically stimulated proliferation of cultured hepatocytes as well as hepatoma cells in vitro, promoted liver regeneration and recovery of damaged hepatocytes and rescued acute hepatic failure in vivo. ALR belongs to the new Erv1/Alr protein family, members of which are found in lower and higher eukaryotes from yeast to man and even in some double-stranded DNA viruses. The present review article focuses on the molecular biology of ALR, examining the ALR gene and its expression from yeast to man and the biological function of ALR protein. ALR protein seems to be non-liver-specific as was previously believed, increasing the necessity to extend research on mammalian ALR protein in different tissues, organs and developmental stages in conditions of normal and abnormal cellular growth. PMID:16937489

  14. Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: implications in cytotoxicity and amyloid-β peptide aggregation.

    PubMed

    Ramos-Fernández, Eva; Tajes, Marta; Palomer, Ernest; Ill-Raga, Gerard; Bosch-Morató, Mònica; Guivernau, Biuse; Román-Dégano, Irene; Eraso-Pichot, Abel; Alcolea, Daniel; Fortea, Juan; Nuñez, Laura; Paez, Antonio; Alameda, Francesc; Fernández-Busquets, Xavier; Lleó, Alberto; Elosúa, Roberto; Boada, Mercé; Valverde, Miguel A; Muñoz, Francisco J

    2014-01-01

    Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

  15. In vitro genotoxicity assessment of MTES, GPTES and TEOS, three precursors intended for use in food contact coatings.

    PubMed

    Lionti, Krystelle; Séverin, Isabelle; Dahbi, Laurence; Toury, Bérangère; Chagnon, Marie-Christine

    2014-03-01

    Organoalkoxysilanes are precursors that are used increasingly in the synthesis of food contact coatings. To comply with the EU regulation, their potential toxicity must be assessed, and very little information is known. The genotoxicity of three common precursors was studied, namely, tetraethylorthosilicate (TEOS), methyltriethoxysilane (MTES) and 3-glycidyloxypropyltriethoxysilane (GPTES). By the Ames test, MTES and TEOS were not mutagenic for bacteria. A significant positive response was observed with GPTES in the TA100 and TA1535 strains. The mutagenic effect was more pronounced in the presence of the exogenous metabolic activation system with an increase of the induction factor (ten-fold higher for the TA1535 strain). In the micronucleus assay performed with a human hepatoma cell line (HepG2 cells), GPTES gave negative results even in the presence of an exogenous activation system. To ascertain the possibility of using this precursor in food contact material, its migration must be monitored according to the coating formulation because migration might result in hazardous human exposure. Copyright © 2014. Published by Elsevier Ltd.

  16. Glycosylation of immunoglobulin A influences its receptor binding.

    PubMed

    Basset, C; Devauchelle, V; Durand, V; Jamin, C; Pennec, Y L; Youinou, P; Dueymes, M

    1999-12-01

    Immunoglobulin A (IgA), which is heavily glycosylated, interacts with a variety of receptors, e.g. the asialoglycoprotein receptor (ASGP-R), which binds terminal galactose residues, and the Fcalpha receptor (FcalphaRI). It has thus been proposed that elevated serum levels of IgA in primary Sjögren's syndrome (pSS) are caused by its defective clearance. To test this hypothesis, we developed a method (based on sialyl transferases eluted from a hepatoma cell line) to increase the amount of sialic acid (SA) on IgA, and used a battery of IgA1- and IgA2-specific glycosidases to reduce this amount. Binding of IgA1 and IgA2 to ASGP-R and FcalphaRI was found to be sugar dependent because oversialylated IgA bound less than native or desialylated IgA. However, individual sugars did not play a direct role in this binding. Given that IgA are oversialylated in pSS, defective clearance of IgA may indeed be ascribed to an excess of SA in IgA1 and IgA2.

  17. Hepatitis B virus inhibits intrinsic RIG-I and RIG-G immune signaling via inducing miR146a

    PubMed Central

    Hou, Zhaohua; Zhang, Jian; Han, Qiuju; Su, Chenhe; Qu, Jing; Xu, Dongqing; Zhang, Cai; Tian, Zhigang

    2016-01-01

    Previous studies showed that hepatitis B virus (HBV), as a latency invader, attenuated host anti-viral immune responses. miRNAs were shown to be involved in HBV infection and HBV-related diseases, however, the precise role of miRNAs in HBV-mediated immunosuppression remains unclear. Here, we observed that down-regulated RIG-I like receptors might be one critical mechanism of HBV-induced suppression of type I IFN transcription in both HBV+ hepatoma cell lines and liver cancer tissues. Then, miR146a was demonstrated to negatively regulate the expression of RIG-I-like receptors by directly targeting both RIG-I and RIG-G. Further investigation showed that antagonizing miR146a by anti-sense inhibitors or sponge approach accelerated HBV clearance and reduced HBV load both in vitro and in a HBV-carrying mouse model. Therefore, our findings indicated that HBV-induced miR146a attenuates cell-intrinsic anti-viral innate immunity through targeting RIG-I and RIG-G, and silencing miR146a might be an effective target to reverse HBV-induced immune suppression. PMID:27210312

  18. [Establishment of an iRFP and luciferase dual-color fluorescence-traced hepatocellular carcinoma transplantation model in nude mice].

    PubMed

    Li, Hongjun; Yang, Tianhua; Huang, Yanping; Liu, Mingzhu; Qin, Zhongqiang; Chu, Fei; Li, Zhenghong; Li, Yonghai

    2017-11-01

    Objective To establish a hepatocellular carcinoma xenograft model in nude mice which could stably express gene and be monitored dynamically. Methods We first constructed the lentiviral particles containing luciferase (Luc) and near-infrared fluorescent protein (iRFP) and puromycin resistance gene, and then transduced them into the HepG2 hepatoma cells. The cell line stably expressing Luc and iRFP genes were screened and inoculated into nude mice to establish xenograft tumor model. Tumor growth was monitored using in vivo imaging system. HE staining and immunohistochemistry were used to evaluate the pathological features and tumorigenic ability. Results HepG2 cells stably expressing iRFP and Luc were obtained; with the engineered cell line, xenograft model was successfully established with the features of proper tumor developing time and high rate of tumor formation as well as typical pathological features as showed by HE staining and immunohistochemistry. Conclusion Hepatocellular carcinoma model in nude mice with the features of stable gene expression and dynamical monitoring has been established successfully with the HepG2-iRFP-Luc cell line.

  19. Serum level of IL-6 in liver cirrhosis patients

    NASA Astrophysics Data System (ADS)

    Rey, I.; Effendi-YS, R.; Dairi, L. B.; Siregar, G. A.; Zain, L. H.

    2018-03-01

    Cytokines are polypeptides that have a wide spectrum of inflammatory, metabolic, hematopoietic and immunologic regulatory properties. The liver represents an important site of synthesis and clearance organ for several cytokines. This study aimed to evaluate serum IL-6 in liver cirrhosis with the type of underlying disease, child pugh group and various clinical and laboratory parameter. This cross-sectional study was at Adam Malik General Hospital and Pirngadi General Hospital from July - December 2016. We examine 75 patients with liver cirrhosis. The exclusion criteria were hepatoma, sepsis and renal impairment. There were 28 (37.3%), 8 (10.6%) and 39 (52%) for HBV-positive; HCV-positive and HBV- HCV negative liver cirrhosis patients, respectively were 14 (18.7 %), 15 (20 %) and 46 (61.3%) for Child- Pugh A, B and C respectively. There was no significant difference value of IL-6 between HBV positive, HCV positive, and HBV-HCV negative group (7.7/6.1/10.9). There was no significant difference value of IL-6 between child pugh A, B, and C group (4.2/11.0/7.9).

  20. Haematoporphyrin and OO'-diacetylhaematoporphyrin binding by serum and cellular proteins. Implications for the clearance of these photochemotherapeutic agents by cells.

    PubMed Central

    Smith, A; Neuschatz, T

    1983-01-01

    Haematoporphyrin derivative (HpD), a mixture of porphyrins, is currently used as a photochemotherapeutic agent in the treatment of neoplasias. The interaction of purified components of HpD with serum and cellular proteins was investigated using absorption and fluorescence spectroscopy. The interactions of haematoporphyrin and OO'-diacetylhaematoporphyrin with human albumin and with haemopexin, the two major serum porphyrin-binding proteins, show stoichiometries of 1 mol of porphyrin bound per mol of protein. The apparent dissociation constants, Kd, are in the range of 1-2 microM for albumin and 3-4 microM for haemopexin. These two major components of HpD would, after intravenous injection, bind to albumin and circulate in serum as albumin complexes. Free porphyrin rather than porphyrin bound to albumin interacts with Morris hepatoma tissue culture cells. A rapid high-affinity saturable transport system operates at free porphyrin concentrations of less than 2 microM. In addition, fluorescence spectra show that components in rat liver cytosol can bind haematoporphyrin and OO'-diacetylhaematoporphyrin and distinguish these binders from those present in rat serum. PMID:6225429

  1. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  2. Identification of a protein associated with the activity of cytokine-induced killer cells

    PubMed Central

    Cao, Jingsong; Chen, Cong; Gao, Yongqiang; Hu, Li; Liang, Yu; Xiao, Jianhua

    2017-01-01

    Cytokine-induced killer cells (CIKs) adoptive immunotherapy for efficient antitumor ability is used clinically, but details regarding the proteins associated with CIK activity remain unclear. In the current study, the cytotoxicity of CIKs on hepatoma was identified to be significantly downregulated by 1.61-fold following gentamincin treatment. Further research revealed that a differentially expressed protein (P43) was significantly downregulated by 1.22-fold using one-dimensional gel electrophoresis analysis. Of these, the P43 was identified as human haptoglobin using liquid chromatography-mass spectrometry. Western blotting demonstrated that the haptoglobin specifically reacted with rabbit anti-human-haptoglobin. Furthermore, western blotting results verified that the haptoglobin was significantly downregulated by 1.17-fold compared with the control group. In addition, the expression of haptoglobin mRNA was significantly downregulated by 1.73-fold following gentamincin treatment. Taken together, the results of the present study demonstrated that the expression of haptoglobin protein was associated with the activity of CIKs, and the results will be beneficial to the further investigation of CIK activity-enhancement mechanism. PMID:29163711

  3. Apoenzyme of aspartate aminotransferase isozymes in serum and its diagnostic usefullness for hepatic diseases.

    PubMed

    Kamei, S; Ohkubo, A; Yamanaka, M

    1979-08-15

    Aspartate aminotransferase in the sera of normal subjects and of patients with hepatic diseases has been immunologically separated into two isoenzymes, cytosolic aspartate aminotransferase and mitochondrial aspartate aminotransferase. The activity of the isoenzymes was measured in three different buffer solutions with or without pyridoxal 5'-phosphate. To attain maximal activation, the apoenzyme of mitochondrial fraction must be preincubated with pyridoxal 5'-phosphate longer than that of the cytosolic fraction in either of the three reaction mixtures. In most sera the activity of both isoenzymes increased substantially in the presence of pyridoxal 5'-phosphate regardless of the type of buffer solutions. Both the apoenzymatic activity and the ratio of apo- to holo-enzymatic activity of each of the isoenzymes varied among samples from the patients with hepatic diseases. However, significantly high ratios of apo- to holo-enzymatic activity of both isoenzymes were observed in the patients with hepatoma in contrast with those with other hepatic diseases. These findings suggest that the simultaneous measurement of both apo- and holo-enzyme activities of aspartate aminotransferase isoenzymes may be useful in the clinical assessment of hepatic diseases.

  4. New hits as phase II enzymes inducers from a focused library with heteroatom-heteroatom and Michael-acceptor motives.

    PubMed

    Cabrera, Mauricio; de Ovalle, Stefani; Bollati-Fogolín, Mariela; Nascimento, Fabiana; Corbelini, Patrícia; Janarelli, Fernanda; Kawano, Daniel; Eifler-Lima, Vera Lucia; González, Mercedes; Cerecetto, Hugo

    2015-11-01

    The increased activity of phase-II-detoxification enzymes, such as quinone reductase (QR) and glutation S -transferase (GST), correlates with protection against chemically induced carcinogenesis. Herein we studied 11 different chemotypes, pyrazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiazole, 1,3,4-oxathiazole, thienyl hydrazone, α,β-unsaturated-oxime, α,β-unsaturated- N -oxide, coumarin and α,β-unsaturated-carbonyl, as phase-II enzymes inducers in order to identify new pharmacophores with chemopreventive activity. Fifty-four compounds were analyzed on wild-type mouse-hepatoma Hepa-1c1c7 and on the aryl-hydrocarbon-nuclear-translocator (Arnt)-defective mutant BpRc1 cells. New monofunctional inducers of QR and GST were identified, the 1,2,5-oxadiazol-2-oxide (3) , the 1,2,4-triazine-4-oxides (23) and (32) and the tetrahydropyrimidinones (28) and (49) . It was confirmed that Nrf2 nuclear translocation is the operative molecular mechanism that allows compound (3) to exert protective effects via expression of downstream phase-II enzymes.

  5. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  6. Hepatitis C virus replicons: dinosaurs still in business?

    PubMed Central

    Woerz, I; Lohmann, V; Bartenschlager, R

    2009-01-01

    Since the molecular cloning of the hepatitis C virus (HCV) genome for the first time in 1989, there has been tremendous progress in our understanding of the multiple facets of the replication cycle of this virus. Key to this progress has been the development of systems to propagate the virus in cell culture, which turned out to be a notoriously difficult task. A major breakthrough has been the construction of subgenomic replicons that self-amplify in cultured human hepatoma cells. These RNAs recapitulate the intracellular steps of the HCV replication cycle and have been instrumental to decipher details of the RNA amplification steps including the identification of key host cell factors. However, reproduction of the complete viral replication cycle only became possible with the advent of a particular molecular HCV clone designated JFH-1 that replicates to very high levels and supports the production of infectious virus particles. The availability of this new culture system raises the question, whether the use of replicons is still justified. In this review, we will discuss the pros and cons of both systems.

  7. A novel cell model to study the function of the adrenoleukodystrophy-related protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueugnon, Fabien; Volodina, Natalia; Taouil, Jaoued Et

    2006-03-03

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder due to mutations in the ABCD1 (ALD) gene. ALDRP, the closest homolog of ALDP, has been shown to have partial functional redundancy with ALDP and, when overexpressed, can compensate for the loss-of-function of ALDP. In order to characterize the function of ALDRP and to understand the phenomenon of gene redundancy, we have developed a novel system that allows the controlled expression of the ALDRP-EGFP fusion protein (normal or non-functional mutated ALDRP) using the Tet-On system in H4IIEC3 rat hepatoma cells. The generated stable cell lines express negligible levels of endogenous ALDRP and doxycyclinemore » dosage-dependent levels of normal or mutated ALDRP. Importantly, the ALDRP-EGFP protein is targeted correctly to peroxisome and is functional. The obtained cell lines will be an indispensable tool in our further studies aimed at the resolution of the function of ALDRP to characterize its potential substrates in a natural context.« less

  8. Successful liver allografts in mice by combination with allogeneic bone marrow transplantation.

    PubMed Central

    Nakamura, T; Good, R A; Yasumizu, R; Inoue, S; Oo, M M; Hamashima, Y; Ikehara, S

    1986-01-01

    Successful liver allografts were established by combination with allogeneic bone marrow transplantation. When liver tissue of BALB/c (H-2d) or C57BL/6J (H-2b) mice was minced and grafted under the kidney capsules of C3H/HeN (H-2k) mice, it was rejected. However, when C3H/HeN mice were irradiated and reconstituted with T-cell-depleted BALB/c or BALB/c nu/nu bone marrow cells, or with fetal liver cells of BALB/c mice, they accepted both donor (stem-cell)-type (BALB/c) and host (thymus)-type (C3H/HeN) liver tissue. Assays for both mixed-lymphocyte reaction and induction of cytotoxic T lymphocytes revealed that the newly developed T cells were tolerant of both donor (stem-cell)-type and host (thymus)-type major histocompatibility complex determinants. We propose that liver allografts combined with bone marrow transplantation should be considered as a viable therapy for patients with liver disease such as liver cirrhosis and hepatoma. Images PMID:3520575

  9. Carrier effects of dosing the h4iie cells with 3,3′,4,4tt´etrachlorobiphenyl (PCB77) in dimethyl sulfoxide or isooctane

    USGS Publications Warehouse

    Yu, Kyung O.; Fisher, Jeff W.; Burton, G. Allen; Tillitt, Donald E.

    1997-01-01

    A rat hepatoma cell line, H4IIE serves as a bioassay tool to assess the potential toxicity of dioxin-like chemicals, including polychlorinated biphenyls (PCB) in environmental samples. PCB exposure to these cells induces cytochrome (CYP) P4501A1 activity in a dose-dependent fashion, thus allowing assessment of mixtures. The objective of this study was to determine the effect of different carriers, dimethyl sulfoxide (DMSO) and isooctane on the concentrations of PCBs in the H411E cells and induction of CYPIA1 activity as measured by ethoxyresorufm O-deethylase (EROD) activity. H4IIE cells were dosed with three micrograms of UL-14C-PCB77/ plate dissolved in DMSO or isooctane, and were harvested at sequential time periods for 4 days. PCB77 concentration and EROD activity were measured in the cells. EROD activity was greater when using DMSO as compared to isooctane, while there was no difference in the distribution of PCB77-derived radioactivities within the cell culture system based upon the carrier solvent used to deliver PCB77.

  10. Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology

    PubMed Central

    Dong, Jia; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K.N.; Knobeloch, Daniel; Gerlach, Jörg C.; Zeilinger, Katrin

    2008-01-01

    Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes. PMID:19003182

  11. Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology.

    PubMed

    Dong, Jia; Mandenius, Carl-Fredrik; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K N; Knobeloch, Daniel; Gerlach, Jörg C; Zeilinger, Katrin

    2008-07-01

    Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes.

  12. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix

    PubMed Central

    Cheng, Diana M.; Kuhn, Peter; Poulev, Alexander; Rojo, Leonel E.; Lila, Mary Ann; Raskin, Ilya

    2012-01-01

    Cinnamon has a long history of medicinal use and continues to be valued for its therapeutic potential for improving metabolic disorders such as type 2 diabetes. In this study, a phytochemically-enhanced functional food ingredient that captures water soluble polyphenols from aqueous cinnamon extract (CE) onto a protein rich matrix was developed. CE and cinnamon polyphenol-enriched defatted soy flour (CDSF) were effective in acutely lowering fasting blood glucose levels in diet-induced obese hyperglycemic mice at 300 and 600 mg/kg, respectively. To determine mechanisms of action, rat hepatoma cells were treated with CE and eluates of CDSF at a range of 1–25 µg/ml. CE and eluates of CDSF demonstrated dose-dependent inhibition of hepatic glucose production with significant levels of inhibition at 25 µg/ml. Furthermore, CE decreased the gene expression of two major regulators of hepatic gluconeogenesis, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. The hypoglycemic and insulin-like effects of CE and CDSF may help to ameliorate type 2 diabetes conditions. PMID:22980902

  13. Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size

    NASA Astrophysics Data System (ADS)

    Li, Lingxiangyu; Fernández-Cruz, María Luisa; Connolly, Mona; Schuster, Michael; Navas, José María

    2015-01-01

    Here, the effects of incubation temperature and particle size on the dissolution and aggregation behavior of copper nanoparticles (CuNPs) in culture media were investigated over 96 h, equivalent to the time period for acute cell toxicity tests. Three CuNPs with the nominal sizes of 25, 50, and 100 nm and one type of micro-sized particles (MPs, 500 nm) were examined in culture media used for human and fish hepatoma cell lines acute tests. A large decrease in sizes of CuNPs in the culture media was observed in the first 24 h incubation, and subsequently the sizes of CuNPs changed slightly over the following 72 h. Moreover, the decreasing rate in size was significantly dependent on the incubation temperature; the higher the incubation temperature, the larger the decreasing rate in size. In addition to that, we also found that the release of copper ions depended on the incubation temperature. Moreover, the dissolution rate of Cu particles increased very fast in the first 24 h, with a slight increase over the following 72 h.

  14. Inhibitory Effects of Caffeic Acid, a Coffee-Related Organic Acid, on the Propagation of Hepatitis C Virus.

    PubMed

    Tanida, Isei; Shirasago, Yoshitaka; Suzuki, Ryosuke; Abe, Ryo; Wakita, Takaji; Hanada, Kentaro; Fukasawa, Masayoshi

    2015-01-01

    Multipurpose cohort studies have demonstrated that coffee consumption reduces the risk of hepatocellular carcinoma (HCC). Given that one of the main causes of HCC is hepatitis C virus (HCV) infection, we examined the effect of caffeic acid, a major organic acid derived from coffee, on the propagation of HCV using an in vitro naïve HCV particle-infection and production system within human hepatoma-derived Huh-7.5.1-8 cells. When cells were treated with 1% coffee extract or 0.1% caffeic acid for 1-h post HCV infection, the amount of HCV particles released into the medium at 3 and 4 days post-infection considerably decreased. In addition, HCV-infected cells cultured with 0.001% caffeic acid for 4 days, also released less HCV particles into the medium. Caffeic acid treatment inhibited the initial stage of HCV infection (i.e., between virion entry and the translation of the RNA genome) in both HCV genotypes 1b and 2a. These results suggest that the treatment of cells with caffeic acid may inhibit HCV propagation.

  15. HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity.

    PubMed

    Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Satoh, Motonobu; Kohara, Arihiro

    2018-05-17

    Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.

  16. Implications of Differential Stress Response Activation Following Non-Frozen Hepatocellular Storage

    PubMed Central

    Corwin, William L.; Baust, John G.; Van Buskirk, Robert G.

    2013-01-01

    Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation. PMID:24845253

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiaohong; Zhang Shuhui; Lin Jing

    The role of the hepatitis B virus X protein (HBx) in hepatocarcinogenesis remains controversial. To investigate the biological impact of hepatitis B virus x gene (HBx) mutation on hepatoma cells, plasmids expressing the full-length HBx or HBx deletion mutants were constructed. The biological activities in these transfectants were analyzed by a series of assays. Results showed that HBx3'-20 and HBx3'-40 amino acid deletion mutants exhibited an increase in cellular proliferation, focus formation, tumorigenicity, and invasive growth and metastasis through promotion of the cell cycle from G0/G1 to the S phase, when compared with the full-length HBx. In contrast, HBx3'-30 aminomore » acid deletion mutant repressed cell proliferation by blocking in G1 phase. The expression of P53, p21{sup WAF1}, p14{sup ARF}, and MDM2 proteins was regulated by expression of HBx mutants. In conclusions, HBx variants showed different effects and functions on cell proliferation and invasion by regulation of the cell cycle progression and its associated proteins expression.« less

  18. Role of hypoxia-inducible factor-{alpha} in hepatitis-B-virus X protein-mediated MDR1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa

    2007-06-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and induced the nuclear translocation of C/EBP{beta}. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1{alpha} siRNAmore » but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1{alpha} activation, and suggest HIF-1{alpha} for the therapeutic target of HBV-mediated chemoresistance.« less

  19. Correlation of antimutagenic activity and suppression of CYP1A with the lipophilicity of alkyl gallates and other phenolic compounds.

    PubMed

    Feng, Qing; Kumagai, Takeshi; Nakamura, Yoshimasa; Uchida, Koji; Osawa, Toshihiko

    2003-05-09

    Alkyl gallates are widely used as food antioxidants. Methyl, ethyl, propyl, lauryl, and cetyl gallates showed antimutagenicity to activated 2-aminoanthracene (2AA)-induced SOS responses in Salmonella typhimurium TA1535/pSK1002. They also exhibited a suppressive effect on 3-methylcholanthrene (3-MC)-induced cytochrome P450 1A (CYP1A) in human hepatoma HepG2 cells, as indexed by the 7-ethoxyresorufin-O-deethylase (EROD) activity, and on CYP1A protein level. Both antimutagenicity and suppression of CYP1A appeared to be dependent on alkyl chain lengths, which suggested lipophilicity dependence. Based on those results, we investigated 26 other phenolic compounds for their lipophilicity, antimutagenicity and inhibition of EROD activity. The lipophilicity correlated well with the inhibition of EROD activity (r=0.78), and the inhibition of EROD activity correlated with the antimutagenicity of those compounds (r=0.71). The results suggest that the lipophilicity of the phenolic compounds may be an important factor in their ability to inhibit EROD activity.

  20. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression

    PubMed Central

    Wang, Ji; Kang, Rongyan; Huang, He; Xi, Xueyan; Wang, Bei; Wang, Jianwei; Zhao, Zhendong

    2014-01-01

    HCV infection induces autophagy, but how this occurs is unclear. Here, we report the induction of autophagy by the structural HCV core protein and subsequent endoplasmic reticular (ER) stress in Huh7 hepatoma cells. During ER stress, both the EIF2AK3 and ATF6 pathways of the unfolded protein response (UPR) were activated by HCV core protein. Then, these pathways upregulated transcription factors ATF4 and DDIT3. The ERN1-XBP1 pathway was not activated. Through ATF4 in the EIF2AK3 pathway, the autophagy gene ATG12 was upregulated. DDIT3 upregulated the transcription of autophagy gene MAP1LC3B (LC3B) by directly binding to the –253 to –99 base region of the LC3B promoter, contributing to the development of autophagy. Collectively, these data suggest not only a novel role for the HCV core protein in autophagy but also offer new insight into detailed molecular mechanisms with respect to HCV-induced autophagy, specifically how downstream UPR molecules regulate key autophagic gene expression. PMID:24589849