Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.
Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer
2015-01-14
In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the kosmotropic or chaotropic behaviors of the investigated buffers at 25 °C have been examined.
Coefficient of Friction of Human Corneal Tissue.
Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine
2015-09-01
A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.
Interaction of HEPES buffer with glass-ceramic scaffold: Can HEPES replace TRIS in SBF?
Rohanová, Dana; Horkavcová, Diana; Paidere, Laine; Boccaccini, Aldo Roberto; Bozděchová, Pavlína; Bezdička, Petr
2018-01-01
An international standard (ISO: 23317:2014) exists for the in vitro testing of inorganic biomaterials in simulated body fluid (SBF). This standard uses TRIS buffer to maintain neutral pH in SBF, but in our previous paper, we showed that the interaction of a tested glass-ceramic material with TRIS can produce false-positive results. In this study, we evaluated whether the HEPES buffer, which also belongs to the group of Good´s buffers, would be more suitable for SBF. We compared its suitability in two media: SBF with HEPES and demineralized water with HEPES. The tested scaffold (45S5 bioactive glass-based) was exposed to the media under a static-dynamic arrangement (solutions were replaced on a daily basis) for 15 days. Leachate samples were collected daily for the analysis of Ca 2+ ions and Si (AAS), (PO 4 ) 3- ions (UV-VIS), and to measure pH. The glass-ceramic scaffold was analyzed by SEM/EDS, XRD, and WD-XRF before and after 0.3, 1, 3, 7, 11, and 15 days of exposure. Our results confirmed the rapid selective dissolution of the glass-ceramic crystalline phase (Combeite) containing Ca 2+ ions due to the presence of HEPES, hydroxyapatite supersaturation being reached within 24 h in both solutions. These new results suggest that, like TRIS, HEPES buffer is not suitable for the in vitro testing of highly reactive inorganic biomaterials (glass, glass-ceramics). The ISO standard for such tests requires revision, but HEPES is not a viable alternative to TRIS buffer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 143-152, 2018. © 2016 Wiley Periodicals, Inc.
Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A
2014-03-01
Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. Copyright © 2013 Wiley Periodicals, Inc.
Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria
2013-01-01
Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm3 mol−1, than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about −25 cm3 mol−1. However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471
Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng
2018-06-01
Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.
Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K
2014-06-05
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. Copyright © 2012 Elsevier B.V. All rights reserved.
Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.
Bomsztyk, K; Calalb, M B
1988-01-01
To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902
Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C
2012-01-27
In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling efficiency, whereas Cd2+ concentrations up to 0.1 nM did not affect the labelling efficiency in MES and HEPES buffer. We showed improved labelling of DTPA- and DOTA-conjugated compounds with 111In in HEPES and MES buffer. The enhanced labelling efficiency appears to be due to the reduced competitive chelation of cadmium. The enhanced labelling efficiency will allow more sensitive imaging of the biomarkers with SPECT.
Purification and Characterization of the [NiFe]-Hydrogenase of Shewanella oneidensis MR-1 ▿
Shi, Liang; Belchik, Sara M.; Plymale, Andrew E.; Heald, Steve; Dohnalkova, Alice C.; Sybirna, Kateryna; Bottin, Hervé; Squier, Thomas C.; Zachara, John M.; Fredrickson, James K.
2011-01-01
Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H2ase) that has been implicated in H2 production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H2ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H2ase were cloned and then expressed in an MR-1 mutant without hyaB and hydA genes. Expression of recombinant MR-1 [NiFe]-H2ase in trans restored the mutant's ability to produce H2 at 37% of that for the wild type. Following purification, MR-1 [NiFe]-H2ase coupled H2 oxidation to reduction of Tc(VII)O4− and methyl viologen. Change of the buffers used affected MR-1 [NiFe]-H2ase-mediated reduction of Tc(VII)O4− but not methyl viologen. Under the conditions tested, all Tc(VII)O4− used was reduced in Tris buffer, while in HEPES buffer, only 20% of Tc(VII)O4− was reduced. The reduced products were soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc precipitates reduced in HEPES buffer were aggregates of crystallites with diameters of ∼5 nm. Measurements with X-ray absorption near-edge spectroscopy revealed that the reduction products were a mixture of Tc(IV) and Tc(V) in Tris buffer but only Tc(IV) in HEPES buffer. Measurements with extended X-ray adsorption fine structure showed that while the Tc bonding environment in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O2·nH2O, which was also the product of Tc(VII)O4− reduction by MR-1 cells. These results shows for the first time that MR-1 [NiFe]-H2ase catalyzes Tc(VII)O4− reduction directly by coupling to H2 oxidation. PMID:21724888
Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES✩
Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K
2013-01-01
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5–10 mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2− interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. PMID:22732654
Common buffers, media, and stock solutions.
2001-05-01
This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.
Sakunkaewkasem, Siwakorn; Petdum, Anuwut; Panchan, Waraporn; Sirirak, Jitnapa; Charoenpanich, Adisri; Sooksimuang, Thanasat; Wanichacheva, Nantanit
2018-05-10
A new fluorescent sensor, M201-DPA, based on [5]helicene derivative was utilized as dual-analyte sensor for determination of Cu 2+ or Zn 2+ in different media and different emission wavelengths. The sensor could provide selective and bifunctional determination of Cu 2+ in HEPES buffer containing Triton-X100 and Zn 2+ in Tris buffer/methanol without interference from each other and other ions. In HEPES buffer, M201-DPA demonstrated the selective ON-OFF fluorescence quenching at 524 nm toward Cu 2+ . On the other hand, in Tris buffer/methanol, M201-DPA showed the selective OFF-ON fluorescence enhancement upon the addition of Zn 2+ , which was specified by the hypsochromic shift at 448 nm. Additionally, M201-DPA showed extremely large Stokes shifts up to ∼150 nm. By controlling the concentration of Zn 2+ and Cu 2+ in a living cell, the imaging of a HepG2 cellular system was performed, in which the fluorescence of M201-DPA in the blue channel was decreased upon addition of Cu 2+ and was enhanced in UV channel upon addition of Zn 2+ . The detection limits of M201-DPA for Cu 2+ and Zn 2+ in buffer solutions were 5.6 and 3.8 ppb, respectively. Importantly, the Cu 2+ and Zn 2+ detection limits of the developed sensors were significantly lower than permitted Cu 2+ and Zn 2+ concentrations in drinking water as established by the U.S. EPA and WHO.
Punshon, Tracy; Chen, Si; Finney, Lydia; ...
2015-07-03
The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixationmore » protocol for archived specimens stored at -80° C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40 % with GTA-HEPES), suggesting storage duration be controlled for. Lastly, thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images« less
Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E
2010-01-15
Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.
Purification and Characterization of [NiFe]-Hydrogenase of Shewanella oneidensis MR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Liang; Belchik, Sara M.; Plymale, Andrew E.
2011-08-02
The γ-proteobacterium Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H2ase) that was implicated in both H2 production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H2ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H2ase were cloned into a protein expression vector. The resulting plasmid was transformed into a MR-1 mutant deficient in H2 formation. Expression of MR-1 [NiFe]-H2ase in trans restored the mutant’s ability to produce H2 at 37% of that for wild type. Following expression, MR-1 [NiFe]-H2ase was purified to near homogeneity. The purified MR-1 [NiFe]-H2ase could couplemore » H2 oxidation to reduction of Tc(VII) and methyl viologen directly. Change of the buffers used affected MR-1 [NiFe]-H2ase-mediated Tc(VII) but not methyl viologen reductions. Under the conditions tested, Tc(VII) reduction was complete in Tris buffer but not in HEPES buffer. The reduced Tc(IV) was soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc(IV) precipitates formed in HEPES buffer were packed with crystallites. Although X-ray absorption near-edge spectroscopy measurements confirmed that the reduction products found in both buffers were Tc(IV), extended X-ray adsorption fine-structure measurements revealed that these products were very different. While the product in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O2•nH2O. These results shows for the first time that MR-1 [NiFe]-H2ase is a bidirectional enzyme that catalyzes both H2 formation and oxidation as well as Tc(VII) reduction directly by coupling H2 oxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, Megan; Tepper, Katharina; Haupt, Caroline
Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects onmore » the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.« less
Li, Yuwei; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Yuan, Mei; Pu, Jun; Zhan, Chang-Guo; Yang, Zhaoyong; Liao, Fei
2016-08-01
To obtain the label enzyme for enzyme-linked-immunoabsorbent-assay of two components each time in one well with conventional microplate readers, molecular engineering of Pseudomonas aeruginosa arylsulfatase (PAAS) is needed. To compare thermostability of PAAS/mutants of limited purity, effects of buffers on the half-activity time (t 0.5) at 37 °C were tested. At pH 7.4, PAAS showed non-exponential decreases of activity, with the apparent t 0.5 of ~6.0 days in 50 mM HEPES, but ~42 days in 10 mM sodium borate with >85 % activity after 15 days; protein concentrations in both buffers decreased at slower rates after there were significant decreases of activities. Additionally, the apparent t 0.5 of PAAS was ~14 days in 50 mM Tris-HCl, and ~21 days in 10 mM sodium phosphate. By sodium dodecyl-polyacrylamide gel electrophoresis, the purified PAAS gave single polypeptide; after storage for 14 days at 37 °C, there were many soluble and insoluble fragmented polypeptides in the HEPES buffer, but just one principal insoluble while negligible soluble fragmented polypeptides in the borate buffer. Of tested mutants in the neutral borate buffer, rates for activity decreases and polypeptide degradation were slower than in the HEPES buffer. Hence, dilute neutral borate buffers were favorable for examining thermostability of PAAS/mutants.
Sinha, Sanghamitra; Chowdhury, Bijit; Adarsh, Nayarassery N; Ghosh, Pradyut
2018-05-15
A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).
Nie, Jing; Mahato, Simpla; Zelhof, Andrew C
2015-02-03
Tissue fixation is crucial for preserving the morphology of biological structures and cytological details to prevent postmortem degradation and autolysis. Improper fixation conditions could lead to artifacts and thus incorrect conclusions in immunofluorescence or histology experiments. To resolve reported structural anomalies with respect to Drosophila photoreceptor cell organization we developed and utilized a combination of live imaging and fixed samples to investigate the exact biogenesis and to identify the underlying source for the reported discrepancies in structure. We found that piperazine-N,N'-bis(ethanesulfonic acid) (PIPES) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), two zwitterionic buffers commonly used in tissue fixation, can cause severe lumen and cell morphological defects in Drosophila pupal and adult retina; the inter-rhabdomeral lumen becomes dilated and the photoreceptor cells are significantly reduced in size. Correspondingly, the localization pattern of Eyes shut (EYS), a luminal protein, is severely altered. In contrast, tissues fixed in the phosphate buffered saline (PBS) buffer results in lumen and cell morphologies that are consistent with live imaging. We suggest that PIPES and HEPES buffers should be utilized with caution for fixation when examining the interplay between cells and their extracellular environment, especially in Drosophila pupal and adult retina research.
Gäb, Jürgen; John, Harald; Melzer, Marco; Blum, Marc-Michael
2010-05-15
Buffering compounds like TRIS are frequently used in chemical, biochemical and biomedical applications to control pH in solution. One of the prerequisites of a buffer compound, in addition to sufficient buffering capacity and pH stability over time, is its non-reactivity with other constituents of the solution. This is especially important in the field of analytical chemistry where analytes are to be determined quantitatively. Investigating the enzymatic hydrolysis of G-type nerve agents sarin, soman and cyclosarin in buffered solution we have identified stable buffer adducts of TRIS, TES and other buffer compounds with the nerve agents. We identified the molecular structure of these adducts as phosphonic diesters using 1D (1)H-(31)P HSQC NMR and LC-ESI-MS/MS techniques. Reaction rates with TRIS and TES are fast enough to compete with spontaneous hydrolysis in aqueous solution and to yield substantial amounts (up to 20-40%) of buffer adduct over the course of several hours. A reaction mechanism is proposed in which the amino function of the buffer serves as an intramolecular proton acceptor rendering the buffer hydroxyl groups nucleophilic enough for attack on the phosphorus atom of the agents. Results show that similar buffer adducts are formed with a range of hydroxyl and amino function containing buffers including TES, BES, TRIS, BIS-TRIS, BIS-TRIS propane, Tricine, Bicine, HEPES and triethanol amine. It is recommended to use alternative buffers like MOPS, MES and CHES when working with G-type nerve agents especially at higher concentrations and over prolonged times. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Maxwell, W M; Welch, G R; Johnson, L A
1996-01-01
Boar, bull and ram spermatozoa were examined after staining with the DNA-permeant Hoechst 33342 fluorochrome and flow cytometric sorting in the presence or absence of seminal plasma. Spermatozoa were assessed for viability with flow cytometry using the live cell nucleic acid stain SYBR-14 and propidium iodide (PI), and for membrane integrity using fluorescein isothiocyanate-conjugated Pisum sativum (FITC-PSA) and PI; motility and acrosome integrity were estimated by microscopy. Flow cytometric sorting was compared with pipette dilution of boar and bull spermatozoa into: (1) medium [boar: Test buffer containing 2% yolk (TY) or Beltsville thawing solution (BTS); bull: TY or HEPES buffer containing 0.1% bovine serum albumin (HEPES-BSA)] with or without 10% (v/v) seminal plasma; or (2) an empty tube containing no medium. Sorted spermatozoa were either not centrifuged or centrifuged before assessment during a 4-h holding period. The viability, motility and membrane integrity of boar, bull and ram spermatozoa centrifuged after sorting were also examined when seminal plasma was present or absent from the staining extender and/or the TY collection medium. The results indicate that the viability and membrane integrity of spermatozoa in vitro would be improved if: (1) seminal plasma (10%) was routinely included in the BTS and HEPES-BSA staining extenders for boar spermatozoa and ram spermatozoa, respectively, when used in preparation for flow cytometric sorting; and (2) 10% and 50% seminal plasma were included in the TY collection medium for boar or bull spermatozoa and ram spermatozoa respectively.
The influence of buffer system and biological fluids on the degradation of magnesium.
Törne, Karin; Örnberg, Andreas; Weissenrieder, Jonas
2017-08-01
The influence of frequently used buffer system 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) compared to CO 2 /HCO3- on the corrosion of magnesium is investigated. Samples were immersed in simulated body fluid (m-SBF) while monitored by electrochemical impedance spectroscopy (EIS) for up to 30 days. In CO 2 /HCO3- the initial corrosion rate was 0.11 mm yr -1 . An inner protective layer of magnesium oxide was formed within the first 30 min exposure and subsequently covered by an outer layer of apatite within 24 h . The corrosion mechanism thereafter is best described as passive pitting with a porosity of ∼10%. Using HEPES as buffer agent increased the corrosion rate to 3.37 mm yr -1 . Cross sectional microscopy show a porous outer corrosion layer allowing rapid diffusion of aggressive ions through the film. Here the EIS results are best described by an active pitting model with an inner layer 5 to 10 times less protective compared to the inner layer formed without HEPES. Further the suitability of human whole blood and plasma as in vitro models for Mg degradation was evaluated. Mg corrosion caused coagulation after 24 h in both biological fluids. The corrosion during the first 24 h is similar to the corrosion in m-SBF with HEPES. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1490-1502, 2017. © 2016 Wiley Periodicals, Inc.
Tol, Marc J; van der Lienden, Martijn J C; Gabriel, Tanit L; Hagen, Jacob J; Scheij, Saskia; Veenendaal, Tineke; Klumperman, Judith; Donker-Koopman, Wilma E; Verhoeven, Arthur J; Overkleeft, Hermen; Aerts, Johannes M; Argmann, Carmen A; van Eijk, Marco
2018-01-01
In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of "master lysosomal regulators". Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members-TFEB, TFE3 and MITF-from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results.
Lee, Chung-Yi; Tsai, Yi-Ting; Chang, Chung-Yi; Chang, Yi-Yu; Cheng, Tzu-Hurng; Tsai, Chien-Sung; Loh, Shih-Hurng
2014-10-31
Intracellular pH (pHi) is a critical factor influencing many important cellular functions. Acid extrusion carriers such as an Na⁺/H⁺ exchanger (NHE) Na⁺/HCO₃⁻ cotransporter (NBC) and monocarboxylate transporters (MCT) can be activated when cells are in an acidic condition (pHi < 7.1). Human radial artery smooth muscle cells (HRASMC) is an important conduit in coronary artery bypass graft surgery. However, such far, the pHi regulators have not been characterized in HRASMCs. We therefore investigated the mechanism of pHi recovery from intracellular acidosis and alkalosis, induced by NH₄Cl-prepulse and Na-acetate-prepulse, respectively, using intracellular 2',7'-bis(2-carboxethyl)-5(6)- carboxy-fluorescein (BCECF)-fluorescence in HRASMCs. Cultured HRASMCs were derived from the segments of human radial artery that were obtained from patients undergoing bypass grafting. The resting pHi is 7.22 ± 0.03 and 7.17 ± 0.02 for HEPES- (nominally HCO₃⁻-free) and CO₂/HCO₃⁻- buffered solution, respectively. In HEPES-buffered solution, a pHi recovery from induced intracellular acidosis could be blocked completely by 30 μM HOE 694 (3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride) a specific NHE inhibitor, or by removing [Na⁺]₀. In 3% CO₂/HCO₃⁻-buffered solution, HOE 694 slowed the pHi recovery from the induced intracellular acidosis only, while adding together with DIDS (a specific NBC inhibitor) or removal of [Na⁺]₀ entirely inhibited the acid extrusion. Moreover, α-cyano-4-hydroxycinnamate (CHC; a specific blocker of MCT) blocked the lactate-induced pHi changes. In conclusion, we demonstrate, for the first time, that 3 different pHi regulators responsible for acid extruding, i.e. NHE and NBC, and MCT, are functionally co-existed in cultured HRASMCs.
Three-dimensional structure of Erwinia carotovora L-asparaginase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kislitsyn, Yu. A.; Kravchenko, O. V.; Nikonov, S. V.
2006-10-15
Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement methodmore » using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)« less
Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K
2017-10-19
We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.
Tol, Marc J.; van der Lienden, Martijn J.C.; Gabriel, Tanit L.; Hagen, Jacob J.; Scheij, Saskia; Veenendaal, Tineke; Klumperman, Judith; Donker-Koopman, Wilma E.; Verhoeven, Arthur J.; Overkleeft, Hermen; Aerts, Johannes M.; Argmann, Carmen A.; van Eijk, Marco
2018-01-01
ABSTRACT In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of “master lysosomal regulators”. Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members–TFEB, TFE3 and MITF–from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results. PMID:29455584
Sen, Buddhadeb; Mukherjee, Manjira; Banerjee, Samya; Pal, Siddhartha; Chattopadhyay, Pabitra
2015-05-14
A newly designed fluorescent aluminum(III) complex (L'-Al; 2) of a structurally characterized non-fluorescent rhodamine Schiff base (L) has been isolated in pure form and characterized using spectroscopic and physico-chemical methods with theoretical density functional theory (DFT) support. On addition of Al(III) ions to a solution of L in HEPES buffer (1 mM, pH 7.4; EtOH-water, 1 : 3 v/v) at 25 °C, the systematic increase in chelation-enhanced fluorescence (CHEF) enables the detection of Al(III) ions as low as 60 nM with high selectivity, unaffected by the presence of competitive ions. Interestingly, the Al(III) complex (L'-Al; 2) is specifically able to detect fluoride ions by quenching the fluorescence in the presence of large amounts of other anions in the HEPES buffer (1 mM, pH 7.4) at 25 °C. On the basis of our experimental and theoretical findings, the addition of Al(3+) ions to a solution of L helps to generate a new fluorescence peak at 590 nm, due to the selective binding of Al(3+) ions with L in a 1 : 1 ratio with a binding constant (K) of 8.13 × 10(4) M(-1). The Schiff base L shows no cytotoxic effect, and it can therefore be employed for determining the intracellular concentration of Al(3+) and F(-) ions by 2 in living cells using fluorescence microscopy.
Two-Component Direct Fluorescent-Antibody Assay for Rapid Identification of Bacillus Anthracis
2002-10-01
inhalational anthrax during the 2001 bioterrorism-associated anthrax out- break in the United States (6,17). Materials and Methods Bacterial Isolates B...n=6), pleural fluids (n=4), lung tissues (n=3), and lymph nodes (n=2), were collected from seven patients with laboratory-confirmed inhalational ...FITC) conjugates were lyophilized in HEPES buffer (0.05 M HEPES, pH 7.0, 0.10% glycine, 0.01 M d-sorbitol, 0.15 M KCl, and 5% d- trehalose ) containing
Structure and Dynamics of Highly PEG-ylated Sterically Stabilized Micelles in Aqueous Media
Vuković, Lela; Khatib, Fatima A.; Drake, Stephanie P.; Madriaga, Antonett; Brandenburg, Kenneth S.; Král, Petr; Onyuksel, Hayat
2011-01-01
Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We study sterically stabilized micelles (SSM) of self-assembled DSPE-PEG2000 in pure water and isotonic HEPES buffered saline solution. The observed SSM sizes of 2 – 15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration (CMC) of DSPE-PEG2000 is ≈ 10 times higher in water than in buffer and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we perform atomistic molecular dynamics simulations of the solvated SSM. Our modeling reveal that the observed assemblies have very different aggregation numbers of Nagg ≈ 90 (saline solution) and Nagg < 8 (water), due to very different screening of their charged −PO4− groups. We also demonstrate that the micelle cores can inflate and their corona highly fluctuate, allowing thus storage and delivery of molecules with different chemistry. PMID:21780810
Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media.
Vuković, Lela; Khatib, Fatima A; Drake, Stephanie P; Madriaga, Antonett; Brandenburg, Kenneth S; Král, Petr; Onyuksel, Hayat
2011-08-31
Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We have studied sterically stabilized micelles (SSMs) of self-assembled DSPE–PEG2000 in pure water and isotonic HEPES-buffered saline solution. The observed SSM sizes of 2–15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration of DSPE–PEG2000 is 10 times higher in water than in buffer, and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we performed atomistic molecular dynamics simulations of solvated SSMs. Our modeling revealed that the observed assemblies have very different aggregation numbers (N(agg) ≈ 90 in saline solution and N(agg) < 8 in water) because of very different screening of their charged PO4(–) groups. We also demonstrate that the micelle cores can inflate and their coronas can fluctuate strongly, thus allowing storage and delivery of molecules with different chemistries.
Cisapride stimulates contraction of idiopathic megacolonic smooth muscle in cats.
Hasler, A H; Washabau, R J
1997-01-01
We have previously shown that cisapride, a substituted piperidinyl benzamide, stimulates contraction of healthy feline colonic smooth muscle. The purpose of the present investigation was to determine the effect of cisapride on feline idiopathic megacolonic smooth muscle function. Longitudinal smooth muscle strips from ascending and descending colon were obtained from cats with idiopathic megacolon, suspended in a 1.5 mM Ca(2+)-HEPES buffer solution (37 degrees C, 100% O2, pH 7.4), attached to isometric force transducers, and stretched to optimal muscle length (Lo). Control responses were obtained at each muscle site with acetylcholine (10(-8) to 10(-4) M), substance P (10(-11) to 10(-7) M), or potassium chloride (10 to 80 mM). Muscles were then stimulated with cumulative (10(-9) to 10(-6) M) doses of cisapride in the absence or presence of tetrodotoxin (10(-6) M) and atropine (10(-6) M), or in a 0 calcium HEPES buffer solution. In cats with idiopathic megacolon, cisapride stimulated contractions of longitudinal smooth muscle from both the ascending and the descending colon. Cisapride-induced contractions were similar in magnitude to those induced by substance P and acetylcholine in the ascending colon, but were less than those observed in the descending colon. Cisapride-induced contractions in megacolonic smooth muscle were only partially inhibited by tetrodotoxin and atropine, but were virtually abolished by removal of extracellular calcium. We concluded that cisapride-induced contractions of feline megacolonic smooth muscle are largely smooth muscle mediated and dependent on influx of extracellular calcium. Cisapride-induced contractions in megacolonic smooth muscle are only partially dependent on enteric cholinergic nerves. Thus, cisapride may be useful in the treatment of cats with idiopathic megacolon.
Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands
Wang, Xuemei; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem
2012-01-01
Rhodamine-based fluorescent chemosensors 1 and 2 exhibit selective fluorescence enhancement to Fe3+ and Hg2+ over other metal ions at 580 nm in CH3CN/H2O (3/1, v/v) solution. Bis(rhodamine) chemosensor 1, under optimized conditions (CH3CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, v/v)), shows a high selectivity and sensitivity to Hg2+, with a linear working range of 0–50 μM, a wide pH span of 4–10, and a detection limit of 0.4 μM Hg2+. PMID:23222686
Sarcolemmal mechanisms for pHi recovery from alkalosis in the guinea-pig ventricular myocyte
Leem, Chae-Hun; Vaughan-Jones, Richard D
1998-01-01
The mechanism of pHi recovery from an intracellular alkali load (induced by acetate prepulse or by reduction/removal of ambient PCO2) was investigated using intracellular SNARF fluorescence in the guinea-pig ventricular myocyte. In Hepes buffer (pHo 7.40), pHi recovery was inhibited by removal of extracellular Cl−, but not by removal of Na+o or elevation of K+o. Recovery was unaffected by the stilbene drug DIDS (4,4-diisothiocyanatostilbene-disulphonic acid), but was slowed dose dependently by the stilbene drug DBDS (dibenzamidostilbene-disulphonic acid). In 5 % CO2/HCO3− buffer (pHo 7.40), pHi recovery was faster than in Hepes buffer. It consisted of an initial rapid recovery phase followed by a slow phase. Much of the rapid phase has been attributed to CO2-dependent buffering. The slow phase was inhibited completely by Cl− removal but not by Na+o removal or K+o elevation. At a test pHi of 7.30 in CO2/HCO3− buffer, the slow phase was inhibited 70 % by DIDS. The mean DIDS-inhibitable acid influx was equivalent in magnitude to the HCO3−-stimulated acid influx. Similarly, the DIDS-insensitive influx was equivalent to that estimated in Hepes buffer. We conclude that two independent sarcolemmal acid-loading carriers are stimulated by a rise of pHi and account for the slow phase of recovery from an alkali load. The results are consistent with activation of a DIDS-sensitive Cl−-HCO3− anion exchanger (AE) to produce HCO3− efflux, and a DIDS-insensitive Cl−-OH− exchanger (CHE) to produce OH− efflux. H+-Cl− co-influx as the alternative configuration for CHE is not, however, excluded. The dual acid-loading system (AE plus CHE), previously shown to be activated by a fall of extracellular pH, is thus activated by a rise of intracellular pH. Activity of the dual-loading system is therefore controlled by pH on both sides of the cardiac sarcolemma. PMID:9575297
Szatkowski, M S
1989-01-01
1. Intracellular pH (pHi) was measured in snail neurones using pH-sensitive glass microelectrodes. The influence of externally applied weak acids and bases on the total intracellular buffering power (beta T) was investigated by monitoring the pHi changes caused by the intracellular ionophoretic injection of HCl. 2. In the absence of weak acids or bases a reduction in the extracellular HEPES concentration had no effect on pHi or on beta T. It did, however, reduce slightly the rate of pHi recovery following HCl injection. 3. The presence of CO2 greatly increased beta T. However, as predicted for an open buffer system, the contributions to intracellular buffering by CO2 (beta CO2) decreased as pHi decreased. 4. When added to the superfusate, procaine, 4-aminopyridine, trimethylamine and NH4Cl (1-10 mM) all increased steady-state pHi. Procaine was fastest at increasing pHi and 4-aminopyridine the slowest. All four of these weak bases increased beta T. 5. The intracellular buffering action by these weak bases varied. HCl injection in the presence of procaine usually resulted in steady-state pHi changes with no pHi transients. In the presence of the other three weak bases HCl injections resulted in intracellular acidifications which were followed by pHi recovery-like transients. However, these were not blocked by SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid) or by CaCl2 and I thus conclude that these transients were as a result of slow or incomplete intracellular buffering by the weak bases. 6. In many cells there was a good correlation between the measured contributions to intracellular buffering by the weak bases (beta base) and those predicted assuming a simple two-compartment open system. In all cases, as predicted, beta base increased as pHi decreased. 7. I found a clear relationship between the concentration of external buffer (HEPES) and the rate at which weak bases, applied to the superfusate, were able to increase pHi. The greater the extracellular buffer concentration the greater was the speed of intracellular alkalinization. 8. Lowering the extracellular buffer concentration reduced the efficiency of intracellular buffering by weak bases in response to an intracellular acid load. HCl injection in the presence of weak base caused a larger initial intracellular acidification if the extracellular HEPES concentration was reduced. 9. In conclusion, both weak acids and weak bases can make very large, pHi-dependent contributions to intracellular buffering by way of open buffer systems.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2555474
Crystallization of Δ1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa
Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi; Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota; Shoyama, Yukihiro; Morimoto, Satoshi
2005-01-01
Δ1-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å3 Da−1 assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively. PMID:16511162
Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue.
Shepherd, Lara D; McLay, Todd G B
2011-03-01
The high polysaccharide content of some plant species hinders the successful isolation of their DNA. As an alternative to the macro-extraction methods previously published for polysaccharide-rich plants, we present two techniques (STE/CTAB and HEPES/CTAB), which are performed in microcentrifuge tubes. These protocols are suitable for small amounts of silica gel-preserved plant tissue such as are commonly available from endangered plants. The critical step to remove polysaccharides was performing initial washes in either STE (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA) or HEPES (2% β-mercaptoethanol, 0.2% PVP, 0.1 M HEPES, pH 8.0) buffer. Precipitating the DNA at room temperature with isopropanol also aided in decreasing polysaccharide co-precipitation. Of the two protocols we present the STE/CTAB method has the advantages of being more cost-effective and avoiding the use of the hazardous chemical β-mercaptoethanol.
Characterization of an In Vitro Human Breast Epithelial Organoid System
2001-08-01
of budding/ductal structure formed by the two types of HBEC on Matrigel. Fetal bovine serum which inhibits the growth of Type II cells but not Type I...extract (3 pg) was incubated with the reaction buffer [70( mM KCI, Science, NY; diluted 1:200 in PBS containing 0.1% bovine serum albumin 30 ruM HEPES...from free probe in a 4.8% bovine serum albumin and 1% NGS and mounted with coverslips on Poly- polyacrylamide gel by electrophoresis using TBE buffer
NASA Astrophysics Data System (ADS)
Sen, Bhaskar; Sheet, Sanjoy Kumar; Thounaojam, Romita; Jamatia, Ramen; Pal, Amarta Kumar; Aguan, Kripamoy; Khatua, Snehadrinarayan
2017-02-01
A new coumarin based Schiff base compound, CSB-1 has been synthesized to detect metal ion based on the chelation enhanced fluorescence (CHEF). The cation binding properties of CSB-1 was thoroughly examined in UV-vis and fluorescence spectroscopy. In fluorescence spectroscopy the compound showed high selectivity toward Al3 + ion and the Al3 + can be quantified in mixed aqueous buffer solution (MeOH: 0.01 M HEPES Buffer; 9:1; v/v) at pH 7.4 as well as in BSA media. The fluorescence intensity of CSB-1 was enhanced by 24 fold after addition of only five equivalents of Al3 +. The fluorescence titration of CSB-1 with Al3 + in mixed aqueous buffer afforded a binding constant, Ka = (1.06 ± 0.2) × 104 M- 1. The colour change from light yellow to colourless and the appearance of blue fluorescence, which can be observed by the naked eye, provides a real-time method for Al3 + sensing. Further the live cell imaging study indicated that the detection of intracellular Al3 + ions are also readily possible in living cell.
Bicarbonate alters cellular responses in respiration assays.
Krycer, James R; Fisher-Wellman, Kelsey H; Fazakerley, Daniel J; Muoio, Deborah M; James, David E
2017-08-05
Metabolic assay buffers often omit bicarbonate, which is susceptible to alkalinisation in an open environment. Here, we assessed the effect of including bicarbonate in respirometry experiments. By supplementing HEPES-buffered media with low concentrations of bicarbonate, we found increased respiration in adipocytes and hepatocytes, but not myotubes. This was observed across multiple respirometry platforms and was independent of effects on enhanced insulin sensitivity, pH drift, or mitochondrial function. Permeabilised cell experiments suggest that bicarbonate increases substrate availability, likely by acting as a cofactor for carboxylase enzymes. This emphasises the importance of buffer choice in experimental biology. Copyright © 2017 Elsevier Inc. All rights reserved.
Taylor, M J; Hunt, C J; Madden, P W
1989-01-01
Periods of preservation for donor corneas, even for short times, are necessary to facilitate optimum conditions in penetrating keratoplasty. However, current techniques for corneal storage at low temperatures may not provide optimal conditions for maintaining tissue integrity. In particular, the ionic composition of the storage medium has received little attention since it has been assumed throughout that the normal complement of ions in tissue culture media will also be suitable for preservation at reduced temperatures. This study extends our previous investigations on the merits of using CPTES (corneal-potassium-TES), a potassium-rich balanced salt solution containing an impermeant anionic pH buffer (TES), as a storage solution specifically designed to prevent the loss of intracellular potassium and minimise endothelial cell swelling during the time that the normal regulatory processes are switched off. The effect of adding the natural polymer chondroitin sulphate (CS) as a colloid osmotic agent to the hyperkalaemic storage medium is now examined. Corneas stored in CPTES containing 2.5% chondroitin sulphate retained a very high level of structural and functional integrity after three, five, and seven days storage at 0 degrees C; furthermore, stromal swelling was restricted to only 21%. All corneas stored in CPTES + 2.5% CS showed active endothelial function by thinning efficiently at rates that were greater than those previously reported for rabbit corneas stored for similar lengths of time in either M-K medium or K-sol. The zwitterionic buffers TES and HEPES were interchangeable in the hyperkalaemic solution and were non-toxic to corneal endothelium at a concentration of 100 mM. These compounds offer excellent pH buffering in bicarbonate-free medium. Images PMID:2510816
A functional applied material on recognition of metal ion zinc based on the double azine compound.
Wei, Taibao; Liang, Guoyan; Chen, Xiaopeng; Qi, Jin; Lin, Qi; Zhang, Youming; Yao, Hong
2017-05-18
A colorimetric and fluorescent probe L has been designed and synthesized, which bearing the double azine moiety and showing a detection limit of 2.725 × 10 -7 M towards Zn 2+ . Based on the basic recognition mechanism of ESIPT and CHEF effect, the L has high selectivity and sensitivity to only Zn 2+ (not Fe 3+ , Hg 2+ , Ag + , Ca 2+ , Co 2+ , Ni 2+ , Cd 2+ , Pb 2+ , Cr 3+ , and Mg 2+ ) within the physiological pH range (pH = 7.0-8.4) and showed a fluorescence switch. Moreover, this detection progress occured in the DMSO/H 2 O ∼ HEPES buffer (80/20, v/v; pH 7.23) solution which can conveniently used on test strip.
Bao, Xiaofeng; Cao, Qiansheng; Xu, Yazhou; Gao, Yuanxue; Xu, Yuan; Nie, Xuemei; Zhou, Baojing; Pang, Tao; Zhu, Jing
2015-02-15
A new Rhodamine B derivative (RBDPA), namely, N(1)-(2-(3',6'-bis(diethylamino)-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)ethyl)-N(4),N(4)-bis(pyridin-2-ylmethyl)succinamide, was designed, synthesized and structurally characterized to develop a chemosensor. The studies show that RBDPA exhibits high sensitivity and selectivity toward Al(3+) among many other metal cations in an ethanol/H2O (1:1, v/v, pH=7.2, HEPES buffer, 0.1mM) solution. Fluorescence microscopy experiments further demonstrate that RBDPA can be used as a fluorescent probe to detect Al(3+) in living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Flores-Rodriguez, Neftali; Markx, Gerard H.
2004-02-01
Addition of amphoteres could be used to improve the levitation and trapping of particles by negative dielectrophoresis. Addition of amphoteric molecules to electromanipulation media increases not only the permittivity of the medium and its viscosity but also its density. To investigate the effect of addition of amphoteres on levitation and trapping by negative dielectrophoresis, the electrokinetic behaviour of latex beads and viable yeast cells (Saccharomyces cerevisiae) was investigated in concentrated solutions of the amphoteric molecules N-[2-hydroxyethyl] piperazine-N'-[2-ethanesulfonic acid] (HEPES) and egr -aminocaproic acid (EACA) using different frequencies and voltages of the applied electrical signal and microelectrodes of different sizes. When using interdigitated electrodes without castellations, latex beads levitated an average of 43% higher when 0.67 M EACA solutions were used and a 54% higher after adding 0.67 M HEPES compared with the levitation heights when no amphoteres were added. Under the same conditions, yeast levitated 78% and 86% higher, respectively. At low voltages and low HEPES/EACA concentrations, the latex particles accumulated in bands between or above the electrodes. However, at the highest voltages and HEPES/EACA concentrations used, the particles formed a network of pearl chains above the electrode arrays. When using electrodes of the interdigitated castellated type of characteristic size 30 µm, latex particles levitated 32% and 40% higher when 0.67 M EACA and HEPES solutions were used in comparison with when no amphoteres were added. At these concentrations, the flow rate needed to dislodge the latex particles from the traps formed by the electric field pattern between the castellations of the interdigitated castellated electrodes was increased by 46% compared with the flow rate needed to achieve this when no amphoteres were added.
Shahidullah, Mohammad; C-H, To; Pelis, Ryan M.; Delamere, Nicholas A
2009-01-01
Purpose Bicarbonate transport plays a role in aqueous humor (AH) secretion. Here, we examined bicarbonate transport mechanisms and carbonic anhydrase (CA) in porcine non-pigmented ciliary epithelium (NPE). Methods Cytoplasmic pH (pHi) was measured in cultured porcine NPE loaded with BCECF. Anion exchanger (AE), sodium bicarbonate cotransporter (NBC) and CA were examined by RT-PCR and immunolocalization. AH secretion was measured in the intact porcine eye using a fluorescein dilution technique. Results Anion exchanger AE2, CAII and CAIV were abundant in the NPE layer. In cultured NPE superfused with a CO2/HCO3− free HEPES buffer, exposure to a CO2/HCO3−-containing buffer caused a rapid acidification followed by a gradual pHi increase. Subsequent removal of CO2/HCO3− with HEPES buffer caused rapid alkalinization followed by gradual pHi decrease. The rate of gradual alkalinization after addition of HCO3−/CO2 was inhibited by sodium-free conditions, DIDS, CA inhibitors acetazolamide and methazolamide but not by Na-H exchange inhibitor dimethylamiloride or low chloride buffer. The phase of gradual acidification after removal of HCO3−/CO2 was inhibited by DIDS, acetazolamide, methazolamide and by low chloride buffer. DIDS reduced baseline pHi. In the intact eye, DIDS and acetazolamide reduced AH secretion by 25% and 44% respectively. Conclusion The results suggest the NPE uses a Na+-HCO3− cotransporter to import bicarbonate and a Cl−/HCO3− exchanger to export bicarbonate. CA influences the rate of bicarbonate transport. AE2, CAII and CAIV are enriched in the NPE layer of the ciliary body and their coordinated function may contribute to AH secretion by effecting bicarbonate transport into the eye. PMID:19011010
Swietach, Pawel; Vaughan-Jones, Richard D
2005-08-01
Intracellular H+ ion mobility in eukaryotic cells is low because of intracellular buffering. We have investigated whether Hi+ mobility varies with pHi. A dual microperfusion apparatus was used to expose guinea-pig or rat myocytes to small localized doses (3-5 mm) of ammonium chloride (applied in Hepes-buffered solution). Intracellular pH (pHi) was monitored confocally using the fluorescent dye, carboxy-SNARF-1. Local ammonium exposure produced a stable, longitudinal pHi gradient. Its size was fed into a look-up table (LUT) to give an estimate of the apparent intracellular proton diffusion coefficient (D(app)H). LUTs were generated using a diffusion-reaction model of Hi+ mobility based on intracellular buffer diffusion. To examine the pHi sensitivity of D(app)H, whole-cell pHi was initially displaced using a whole-cell ammonium or acetate prepulse, before locally applying the low dose of ammonium. In both rat and guinea-pig, D(app)H decreased with pHi over the range 7.5-6.5. In separate pipette-loading experiments, the intracellular diffusion coefficient for carboxy-SNARF-1 (a mobile-buffer analogue) exhibited no significant pHi dependence. The pHi sensitivity of D(app)H is thus likely to be governed by the mobile fraction of intrinsic buffering capacity. These results reinforce the buffer hypothesis of Hi+ mobility. The pHi dependence of D(app)H was used to characterize the mobile and fixed buffer components, and to estimate D(mob) (the average diffusion coefficient for intracellular mobile buffer). One consequence of a decline in Hi+ mobility at low pHi is that it will predispose the myocardium to pHi nonuniformity. The physiological relevance of this is discussed.
REDUCTION OF AZO DYES WITH ZERO-VALENT IRON. (R827117)
The reduction of azo dyes by zero-valent iron metal (Fe0) at pH 7.0 in 10 mM HEPES buffer was studied in aqueous, anaerobic batch systems. Orange II was reduced by cleavage of the azo linkage, as evidenced by the production of sulfanilic acid (a substituted ani...
Theparambil, Shefeeq M; Deitmer, Joachim W
2015-09-01
Cytosolic H(+) buffering plays a major role for shaping intracellular H(+) shifts and hence for the availability of H(+) for biochemical reactions and acid/base-coupled transport processes. H(+) buffering is one of the prime means to protect the cell from large acid/base shifts. We have used the H(+) indicator dye BCECF and confocal microscopy to monitor the cytosolic H(+) concentration, [H(+)]i, in cultured cortical astrocytes of wild-type mice and of mice deficient in sodium/bicarbonate cotransporter NBCe1 (NBCe1-KO) or in carbonic anhydrase isoform II (CAII-KO). The steady-state buffer strength was calculated from the amplitude of [H(+)]i transients as evoked by CO2/HCO3(-) and by butyric acid in the presence and absence of CO2/HCO3(-). We tested the hypotheses if, in addition to instantaneous physicochemical H(+) buffering, rapid acid/base transport across the cell membrane contributes to the total, "effective" cytosolic H(+) buffering. In the presence of 5% CO2/26 mM HCO3(-), H(+) buffer strength in astrocytes was increased 4-6 fold, as compared with that in non-bicarbonate, HEPES-buffered solution, which was largely attributable to fast HCO3 (-) transport into the cells via NBCe1, supported by CAII activity. Our results show that within the time frame of determining physiological H(+) buffering in cells, fast transport and equilibration of CO2/H(+)/HCO3(-) can make a major contribution to the total "effective" H(+) buffer strength. Thus, "effective" cellular H(+) buffering is, to a large extent, attributable to membrane transport of base equivalents rather than a purely passive physicochemical process, and can be much larger than reported so far. Not only physicochemical H(+) buffering, but also rapid import of HCO3(-) via the electrogenic sodium-bicarbonate cotransporter NBCe1, supported by carbonic anhydrase II (CA II), was identified to enhance cytosolic H(+) buffer strength substantially. © 2015 Wiley Periodicals, Inc.
Kebede, Noah; Francis, Paul S; Barbante, Gregory J; Hogan, Conor F
2015-11-07
A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.
Stein, A; Shufaro, Y; Hadar, S; Fisch, B; Pinkas, H
2015-03-01
The existing methods for cryopreservation of very low count sperm samples are complex and sub-optimal for individual spermatozoa. Our purpose is to establish an effective simple method for cryoprotecting individual spermatozoa. Samples from patients with OTA were mixed with TYB or HEPES-buffered salt solution with glycerol + glucose and placed on a Cryolock that was plunged directly into liquid nitrogen or exposed to its vapors. Thawing was performed by direct immersion into a drop of warmed medium. The favorable method was tested on diluted samples (10-50 cells) and leftover TESE specimens from patients with azoospermia. Cryopreservation was considered successful if >30 spermatozoa, (>3 motile), or >5 spermatozoa (>1 motile) in diluted and TESE samples, were detected post-thawing. A significantly higher survival rate of seminal spermatozoa was obtained when using the Cryolock with TYB and freezing with liquid nitrogen vapor, compared to HEPES glycerol-glucose (95 vs. 35% respectively). Plunging the Cryolock into liquid nitrogen was detrimental. Cryolock combined with TYB cryoprotection and liquid nitrogen vapor freezing was highly effective for cryopreservation of individual spermatozoa in diluted and TESE samples. The Cryolock may serve for freezing very low-count sperm samples and individual spermatozoa. This method offers simplicity, efficacy, use of available materials, without requiring micromanipulation equipment or skills. © 2015 American Society of Andrology and European Academy of Andrology.
Pinteric, L; Manery, J F; Chaudry, I H; Madapallimattam, G
1975-05-01
Membranes of human erythrocytes were prepared by stepwise osmotic hemolysis in Ca2+-free solutions. Examination with the electron microscope after negative staining showed some short, conelike protuberances on the surface of about 20 percent of the ghosts, while 80 percent were round, intact spheres. After Ca2+ treatment, all membranes were round and intact. After exposure to ethylenediaminetetraacetic acid (EDTA) (1.0 mM, pH 7.4), the entire ghost surface was covered with long, thin extrusions called stromalytic forms (about 460 per cell). Their sizes, shapes, and fine structure are described. Exposure to ionic calcium (1.4 times 10-minus 4M) abolished the EDTA-induced stromalytic forms. A second exposure to EDTA reversed this Ca2+ effect. ATP, like EDTA, produced stromalytic forms. EDTA-induced stromalytic forms were also abolished by Zn2+, La3+, and Nd3+ at concentrations of 1-5 times 10-minus 4 M. Mg2+ at 10-minus 2 M was ineffective. Ghosts were prepared by graded lysis in various buffers. Those prepared in phosphate were the most stable and provided consistent EDTA effects and Ca2+ reversal. Ghosts in Tris-HCl showed breakdown unless salt was added. Moderately satisfactory ghosts were also obtained in Hepes-NaOH buffer and salt.
A relay identification fluorescence probe for Fe3 + and phosphate anion and its applications
NASA Astrophysics Data System (ADS)
Tang, Xu; Wang, Yun; Han, Juan; Ni, Liang; Wang, Lei; Li, Longhua; Zhang, Huiqin; Li, Cheng; Li, Jing; Li, Haoran
2018-02-01
A simple relay identification fluorescence probe for Fe3 + and phosphate anion with ;on-off-on; switching was designed and synthesized based on the phenylthiazole and biphenylcarbonitrile. Probe 1 displayed highly selective and sensitive recognition to Fe3 + in HEPES aqueous buffer (EtOH/H2O = 2:8, v/v, pH = 7.4) solutions. The optimized structures and HOMO and LUMO of probe 1 and [1-Fe3 +] complex were obtained by the density functional theory (DFT) calculations with B3LYP as the exchange and correlation functional using a suite of Gaussian 09 programs. The [1-Fe3 +] complex solution also showed a high selectivity toward PO43 -. The lower limits of detection of probe 1 to Fe3 + and [1-Fe3 +] complex to PO43 - were estimated to 1.09 × 10- 7 M and 1.86 × 10- 7 M. Besides, the probe 1 also was used to detected the target ions in real water sample and living cells successfully.
Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi
Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 Mmore » sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.« less
Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.
2014-01-01
This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325
Plaquing procedure for infectious hematopoietic necrosis virus
Burke, J.A.; Mulcahy, D.
1980-01-01
A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.
Areti, Sivaiah; Bandaru, Sateesh; Teotia, Rohit; Rao, Chebrolu P
2015-12-15
A water-soluble glucopyranosyl conjugate, L, has been synthesized and characterized by different analytical and spectral techniques. The L has been demonstrated to have switch-on fluorescence enhancement of ∼75 fold in the presence of La(3+) among the nine lanthanide ions studied in the HEPES buffer at pH 7.4. A minimum detection limit of 140 nM (16 ± 2 ppb) was shown by L for La(3+) in the buffer at physiological pH. The utility of L has been demonstrated by showing its sensitivity toward La(3+) on Whatman filter paper strips. The reversible and reusable action of L has been demonstrated by monitoring the fluorescence changes as a function of the addition of La(3+) followed by F(-) and HPO4(2-) ions. The complexation of L by La(3+) was shown by absorption spectra wherein isosbestic behavior was observed. The Job's plot suggests a 2:1 complex between L and La(3+), and the same was supported by ESI-MS. The control molecular study revealed the necessity of hydroxy quinoline and the amine group for La(3+) ion binding and the glyco-moiety to bring water solubility and biocompatibility. The structural features of the [2L+La(3+)] complex were established by DFT computational calculations. The chemo-ensemble, [2L+La(3+)], is shown responsible for providing intracellular fluorescence imaging in HepG2 cells.
Giri, Janhavi; Tang, John M.; Wirth, Christophe; Peneff, Caroline M.
2012-01-01
NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM KCl to 3 M KCl), (2) anion over cation selectivity (Vreversal = +16 mV in 250 mM KCl || 1 M KCl), and (3) two forms of voltage-dependent gating (channel closures above ±200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 μM to 100 mM in 250 mM KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM to 5 mM in 250 mM KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar–KCl bridges. A suitable baseline solution for NanC is 250 mM KCl adjusted to pH 7.0 without buffer. PMID:22246445
Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin
NASA Astrophysics Data System (ADS)
Li, Danxue; Lv, Xueping; Tu, Huanxin; Zhou, Xuedong; Yu, Haiyang; Zhang, Linglin
2015-09-01
Dental caries is the most common oral disease with high incidence, widely spread and can seriously affect the health of oral cavity and the whole body. Current caries prevention measures such as fluoride treatment, antimicrobial agents, and traditional Chinese herbal, have limitations to some extent. Here we design and synthesize a novel peptide based on the amelogenin, and assess its ability to promote the remineralization of initial enamel caries lesions. We used enamel blocks to form initial lesions, and then subjected to 12-day pH cycling in the presence of peptide, NaF and HEPES buffer. Enamel treated with peptide or NaF had shallower, narrower lesions, thicker remineralized surfaces and less mineral loss than enamel treated with HEPES. This peptide can promote the remineralization of initial enamel caries and inhibit the progress of caries. It is a promising anti-caries agent with various research prospects and practical application value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Chiho; Quantum Beam Science Directorate, Japan Atomic Energy Agency; Taura, Futoshi
Polyketide synthase-1 from C. sativa has been crystallized. The crystal diffracted to 1.55 Å resolution with sufficient quality for further structure determination. Polyketide synthase-1 (PKS-1) is a novel type III polyketide synthase that catalyzes the biosynthesis of hexanoyl triacetic acid lactone in Cannabis sativa (Mexican strain). PKS-1 was overproduced in Escherichia coli, purified and finally crystallized in two different space groups. The crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M calcium acetate and 20%(w/v) polyethylene glycol 3350 diffracted to 1.65 Å resolution and belonged to space group P1, with unit-cell parameters a = 54.3, b =more » 59.3, c = 62.6 Å, α = 69, β = 81, γ = 80°. Another crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M sodium chloride and 20%(w/v) polyethylene glycol 3350 diffracted to 1.55 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 54.3, b = 110, c = 130 Å. These data will enable us to determine the crystal structure of PKS-1.« less
Mukherjee, Manjira; Pal, Siddhartha; Lohar, Somenath; Sen, Buddhadeb; Sen, Supriti; Banerjee, Samya; Banerjee, Snehasis; Chattopadhyay, Pabitra
2014-10-07
A newly synthesized and crystalographically characterized napthelene–pyrazol conjugate, 1-[(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water–DMSO 5:1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and (1)H NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15–20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.
Coelho, A. V.; Matias, P. M.; Carrondo, M. A.; Tavares, P.; Moura, J. J.; Moura, I.; Fülop, V.; Hajdu, J.; Le Gall, J.
1996-01-01
Crystals of the fully oxidized form of desulfoferrodoxin were obtained by vapor diffusion from a solution containing 20% PEG 4000, 0.1 M HEPES buffer, pH 7.5, and 0.2 M CaCl2. Trigonal and/or rectangular prisms could be obtained, depending on the temperature used for the crystal growth. Trigonal prisms belong to the rhombohedral space group R32, with a = 112.5 A and c = 63.2 A; rectangular prisms belong to the monoclinic space group C2, with a = 77.7 A, b = 80.9 A, c = 53.9 A, and beta = 98.1 degrees. The crystallographic asymmetric unit of the rhombohedral crystal form contains one molecule. There are two molecules in the asymmetric unit of the monoclinic form, in agreement with the self-rotation function. PMID:8762151
Presynaptic elements involved in the maintenance of the neuromuscular junction
NASA Technical Reports Server (NTRS)
Burrows, G. H.
1984-01-01
Alterations in the neuromuscular junction were observed in rats preceding loss of muscle mass. In view of the possibility that these alterations involve changes in the secretion of myotrophic agents by presynaptic motor neurons, an investigation was undertaken to characterize a neuronall factor which is thought to be involved in the initiation and maintenance of cholinergic synapses. This factor, which is secreted into the incubation medium by NG108-15 neuroblastoma x glioma hybrid cells, induces the aggregation of nicotinic acetylcholine receptors on primary cultures of rat hindlimb myotubes. Previous attempts to purify this factor failed. Extensive washing of the NG108-15 cells with hepes-buffered salt solution followed by short (4 hour) collection times resulted in the collection of incubation medium containing maximal aggregation activity with as little as 5 ug secreted protein per ml of fresh medium. A three-fold increase in specific activity was obtained after anion exchange chromatography.
Cho, Soyoun
2014-01-01
Synaptic vesicles release both neurotransmitter and protons during exocytosis, which may result in a transient acidification of the synaptic cleft that can block Ca2+ channels located close to the sites of exocytosis. Evidence for this effect has been reported for retinal ribbon-type synapses, but not for hair cell ribbon synapses. Here, we report evidence for proton release from bullfrog auditory hair cells when they are held at more physiological, in vivo–like holding potentials (Vh = −60 mV) that facilitate multivesicular release. During paired recordings of hair cells and afferent fibers, L-type voltage-gated Ca2+ currents showed a transient block, which was highly correlated with the EPSC amplitude (or the amount of glutamate release). This effect was masked at Vh = −90 mV due to the presence of a T-type Ca2+ current and blocked by strong pH buffering with HEPES or TABS. Increasing vesicular pH with internal methylamine in hair cells also abolished the transient block. High concentrations of intracellular Ca2+ buffer (10 mm BAPTA) greatly reduced exocytosis and abolished the transient block of the Ca2+ current. We estimate that this transient block is due to the rapid multivesicular release of ∼600–1300 H+ ions per synaptic ribbon. Finally, during a train of depolarizing pulses, paired pulse plasticity was significantly changed by using 40 mm HEPES in addition to bicarbonate buffer. We propose that this transient block of Ca2+ current leads to more efficient exocytosis per Ca2+ ion influx and it may contribute to spike adaptation at the auditory nerve. PMID:25429130
Crowther, Gregory J.; Napuli, Alberto J.; Thomas, Andrew P.; Chung, Diana J.; Kovzun, Kuzma V.; Leibly, David J.; Castaneda, Lisa J.; Bhandari, Janhavi; Damman, Christopher J.; Hui, Raymond; Hol, Wim G. J.; Buckner, Frederick S.; Verlinde, Christophe L. M. J.; Zhang, Zhongsheng; Fan, Erkang; Van Voorhis, Wesley C.
2010-01-01
In the last decade, thermal melt/thermal shift assays have become a common tool for identifying ligands and other factors that stabilize specific proteins. Increased stability is indicated by an increase in the protein's melting temperature (Tm). In optimizing the assays for subsequent screening of compound libraries, it is important to minimize the variability of Tm measurements so as to maximize the assay's ability to detect potential ligands. Here we present an investigation of Tm variability in recombinant proteins from Plasmodium parasites. Ligands of Plasmodium proteins are particularly interesting as potential starting points for drugs for malaria, and new drugs are urgently needed. A single standard buffer (100 mM HEPES, pH 7.5, 150 mM NaCl) permitted estimation of Tm for 58 of 61 Plasmodium proteins tested. However, with several proteins, Tm could not be measured with a consistency suitable for high-throughput screening unless alternative protein-specific buffers were employed. We conclude that buffer optimization to minimize variability in Tm measurements increases the success of thermal melt screens involving proteins for which a standard buffer is suboptimal. PMID:19470714
1991-03-01
Nu serum, 10 mM HEPES buffer, 2 mM glutamine, 1 mM sodium pyruvate, and penicillin /streptomycin (at 100 units and 100 pg/ml, respectively) and...inactivated fetal bovine serum, 100 units penicillin per ml, and 100 pg streptomycin per ml (EMEM + 10% or 5% heat-inactivated fbs). From November 16...4 mM glutamine, 15% heat-inactivated fetal bovine serum, antibiotics (SO units of penicillin and SO pg of streptomycin per ml), and SO units of
Goswami, Shyamaprosad; Chakraborty, Shampa; Paul, Sima; Halder, Sandipan; Panja, Sukanya; Mukhopadhyay, Subhra Kanti
2014-05-21
A new pyrene based fluorescence probe has been synthesized for fluorogenic detection of Cu(2+) in acetonitrile-aqueous media (7 : 3 CH3CN-HEPES buffer, v/v, at pH 7.5) with bioimaging in both prokaryotic (Candida albicans cells) and eukaryotic (Tecoma stans pollen cells) living cells. The anion recognition properties of the sensor have also been studied in acetonitrile by fluorescence methods which show remarkable sensitivity toward fluoride over other anions examined.
The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.
Metrick, Michael A; Temple, Joshua E; MacDonald, Gina
2013-12-31
The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.
Rizk, Mary S; Shi, Xiaofeng; Platz, Matthew S
2006-01-17
The reactive 1,2-didehydroazepine (cyclic ketenimine) intermediates produced upon photolysis of phenyl azide, 3-hydroxyphenyl azide, 3-methoxyphenyl azide, and 3-nitrophenyl azide in water and in HEPES buffer were studied by laser flash photolysis techniques with UV-vis detection of the transient intermediates. The lifetimes of the 1,2-didehydroazepines were obtained along with the absolute rate constants of their reactions with typical amino acids, nucleosides, and other simple reagents present in a biochemical milieu. The nitro substituent greatly accelerates the bimolecular reactions of the cyclic ketenimines, and the 3-methoxy group greatly decelerates the absolute reactivity of 1,2-didehydroazepines. The intermediate produced by photolysis of 3-hydroxyphenyl azide is much more reactive than the intermediate produced by photolysis of 3-methoxyphenyl azide. We propose that the hydroxyl-substituted 1,2-didehydoazepines rapidly (<10 micros) tautomerize in water to form azepinones and much more rapidly than the corresponding 3-methoxy-substituted cyclic ketenimines undergo hydrolysis. Azepinones react more rapidly with nucleophiles than do methoxy-substituted 1,2-didehydroazepines and are the active species present upon the photolysis of 3-hydroxyphenyl azide in aqueous solution.
Histological preparation of developing vestibular otoconia for scanning electron microscopy
NASA Technical Reports Server (NTRS)
Huss, D.; Dickman, J. D.
2003-01-01
The unique nature of vestibular otoconia as calcium carbonate biominerals makes them particularly susceptible to chemical deformation during histological processing. We fixed and stored otoconia from all three otolith endorgans of embryonic, hatchling and adult Japanese quail in glutaraldehyde containing either phosphate or non-phosphate buffers for varying lengths of time and processed them for scanning electron microscopy. Otoconia from all age groups and otolith endorgans processed in 0.1 M phosphate buffer (pH 7.4) showed abnormal surface morphology when compared to acetone fixed controls. Otoconia processed in 0.1 M sodium cacodylate or HEPES buffered artificial endolymph (pH 7.4) showed normal morphology that was similar to controls. The degree of otoconial deformation was directly related to the time exposed to phosphate buffer. Short duration exposure produced particulate deformations while longer exposures resulted in fused otoconia that formed solid sheets. Otoconial surface deformation and fusing was independent of the glutaraldehyde component of the histological processing. These findings should help vestibular researchers to develop appropriate histological processing protocols in future studies of otoconia.
An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36
2016-01-01
In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient. PMID:28115888
Functional Analysis of Chk2-Kiaa0170 Interaction
2006-09-01
terminal repeat; NEO, neomycin resistance gene; pA, poly-A; PGK, phosphoglycerate kinase-1; BTK , Bru- ton’s tyrosine kinase; SA and SD, splice acceptor...Briefly, MEFs were lysed in buffer I (50 mM HEPES [pH 7.5], 150 mM NaCl, 1 mM EDTA, 0.05% NP40, and protease and phosphatase inhibitors ) for 5 min on...0.5% DOC, 0.1% SDS, and protease and phosphatase inhibitors ) on ice for 20 min. The extracts were centrifuged at 14,000 rpm for 20 min at 4ºC. The
The Role of Newly Discovered Exotoxin (S Toxin) in Pseudomonas aeruginosa Infections
1979-08-01
sodium or potassium phosphate 6.0-8.0 N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) 6.5-8.5 tris 7.0-9.5 sodium borate 7.5-9.5 sodium...was found to be variable with respect to whether sodium or potassium phosphate buffer was used. With sodium phosphate, virtually all the enzyme...activity bound was eluted between 20-100.2M phosphate at pH 6.8. With the potassium salt, elution occurs at 400-?00mM KP04. Since very little protein was
NASA Astrophysics Data System (ADS)
Tavallali, Hossein; Deilamy-Rad, Gohar; Moaddeli, Ali; Asghari, Khadijeh
2017-08-01
A new selective probe based on copper complex of Indigo Carmine (IC-Cu2) for colorimetric, naked-eye, and fluorimetric recognition of mono hydrogen phosphate (MHP) ion in H2O/DMSO (4:1 v/v, 1.0 mmol L- 1 HEPES buffer solution pH 7.5) was developed. Detection limit of HPO42 - determination, achieved by fluorimetric and 3lorimetric method, are 0.071 and 1.46 μmol L- 1, respectively. Potential, therefore is clearly available in IC-Cu2 complex to detect HPO42 - in micromolar range via dual visible color change and fluorescence response. Present method shows high selectivity toward HPO42 - over other phosphate species and other anions and was successfully utilized for analysis of P2O5 content of a fertilizer sample. The results obtained by proposed chemosensor presented good agreement with those obtained the colorimetric reference method. INHIBIT and IMPLICATION logic gates operating at molecular level have been achieved using Cu2 + and HPO42 - as chemical inputs and UV-Vis absorbance signal as output.
Models of human platelet thrombospondin in solution. A dynamic light-scattering study.
Vuillard, L; Clezardin, P; Miller, A
1991-01-01
The translational diffusion coefficient (D20,w) of human platelet thrombospondin was measured by dynamic light-scattering. D20,w, measured in 20 mM-Hepes buffer, pH 7.4, containing 350 mM-NaCl and 2 mM-CaCl2, was 1.73(+/- 0.02) x 10(-7) cm2.s-1. After removal of bound Ca2+ by addition of EDTA, D20,w decreased to 1.56(+/- 0.04) x 10(-7) cm2.s-1; this was not a consequence of aggregation. D20,w showed little sensitivity to NaCl concentration between 130 and 550 mM. Through hydrodynamic analysis combining D20,w and other parameters taken from the literature, two major types of models for thrombospondin can be proposed: either classic compact models (i.e. low degree of hydration) such as prolate or oblate ellipsoids with a high axial ratio (greater than 20) or models of low axial ratio made of multiple subunits with significant cavities (i.e. high degree of hydration). PMID:1902085
Mahato, Prasenjit; Ghosh, Amrita; Mishra, Sanjiv K; Shrivastav, Anupama; Mishra, Sandhya; Das, Amitava
2011-05-02
Two chromogenic complexes, L.Zn (where L is (E)-4-((4-(1,4,8,11-tetraazacyclotetradecan-1-ylsulfonyl)phenyl)diazenyl)-N,N-dimethylaniline) and its [2]pseudorotaxane form (α-CD.L.Zn), were found to bind preferentially to adenosine triphosphate (ATP), among all other common anions and biologically important phosphate (AMP, ADP, pyrophosphate, and phosphate) ions in aqueous HEPES buffer medium of pH 7.2. Studies with live cell cultures of prokaryotic microbes revealed that binding of these two reagents to intercellular ATP, produced in situ, could be used in delineating the gram-positive and the gram-negative bacteria. More importantly, these dyes were found to be nontoxic to living microbes (eukaryotes and prokaryotes) and could be used for studying the cell growth dynamics. Binding to these two viable staining agents to intercellular ATP was also confirmed by spectroscopic studies on cell growth in the presence of different respiratory inhibitors that influence the intercellular ATP generation. © 2011 American Chemical Society
Varrella, Stefano; Romano, Giovanna; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria
2016-01-01
Oxylipins (including polyunsaturated aldehydes [PUAs], hydoxyacids, and epoxyalcohols) are the end-products of a lipoxygenase/hydroperoxide lyase metabolic pathway in diatoms. To date, very little information is available on oxylipins other than PUAs, even though they represent the most common oxylipins produced by diatoms. Here, we report, for the first time, on the effects of 2 hydroxyacids, 5- and 15-HEPE, which have never been tested before, using the sea urchin Paracentrotus lividus as a model organism. We show that HEPEs do induce developmental malformations but at concentrations higher when compared with PUAs. Interestingly, HEPEs also induced a marked developmental delay in sea urchin embryos, which has not hitherto been reported for PUAs. Recovery experiments revealed that embryos do not recover following treatment with HEPEs. Finally, we report the expression levels of 35 genes (involved in stress, development, differentiation, skeletogenesis, and detoxification processes) to identify the molecular targets affected by HEPEs. We show that the 2 HEPEs have very few common molecular targets, specifically affecting different classes of genes and at different times of development. In particular, 15-HEPE switched on fewer genes than 5-HEPE, upregulating mainly stress-related genes at a later pluteus stage of development. 5-HEPE was stronger than 15-HEPE, targeting 24 genes, mainly at the earliest stages of embryo development (at the blastula and swimming blastula stages). These findings highlight the differences between HEPEs and PUAs and also have important ecological implications because many diatom species do not produce PUAs, but rather these other chemicals are derived from the oxidation of fatty acids. PMID:26984781
Out-of-equilibrium pH transients in the guinea-pig ventricular myocyte
Leem, Chae-Hun; Vaughan-Jones, Richard D
1998-01-01
Following an intracellular alkali load (imposed by acetate prepulsing in CO2/HCO3− buffer), intracellular pH (pHi) of the guinea-pig ventricular myocyte (recorded from intracellular SNARF fluorescence) recovers to control levels. Recovery has two phases. An initial rapid phase (lasting up to 2 min) is followed by a later slow phase (several minutes). Inhibition of sarcolemmal acid-loading carriers (by removal of extracellular Cl−) inhibits the later, slow phase but the initial rapid recovery phase persists. It also persists in the absence of extracellular Na+ and in the presence of the HCO3− transport inhibitor DIDS (4,4-di-isothiocyanatostilbene-2,2-disulphonic acid). The rapid recovery phase is not evident if the alkali load has been induced by reducing PCO2 (from 10 to 5 %), and it is inhibited in the absence of CO2/HCO3− buffer (i.e. Hepes buffer). It is also slowed by the carbonic anhydrase (CA) inhibitor acetazolamide (ATZ). We conclude that it is caused by buffering of the alkali load through the hydration of intracellular CO2 (CO2-dependent buffering). The time course of rapid recovery is consistent with an intracellular CO2 hydration rate constant (k1) of 0.36 s−1 in the presence of CA activity, and 0.14 s−1 in the absence of CA activity. This latter k1 value matches the literature value for uncatalysed CO2 hydration in free solution. Natural CO2 hydration is accelerated 2.6-fold in the ventricular myocyte by endogenous CA. The rapid recovery phase represents a period when the intracellular CO2/HCO3− buffer is out of equilibrium (OOE). Modelling of the recovery phase using our k1 value, indicates that OOE conditions will normally extend for at least 2 min following a step rise in pHi (at constant PCO2). If CA is inactive, this period can be as long as 5 min. During normal pHi regulation, the recovery rate during these periods cannot be used as a measure of sarcolemmal acid loading since it is a mixture of slow CO2-dependent buffering and transmembrane acid loading. The implication of this finding for quantification of pHi regulation during alkalosis is discussed. PMID:9575296
Liu, Dayu; Ou, Ziyou; Xu, Mingfei; Wang, Lihui
2008-12-19
We present a sensitive, simple and robust on-chip transient isotachophoresis/capillary gel electrophoresis (tITP/CGE) method for the analysis of polymerase chain reaction (PCR) samples. Using chloride ions in the PCR buffer and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) in the background electrolyte, respectively, as the leading and terminating electrolytes, the tITP preconcentration was coupled with CGE separation with double-T shaped channel network. The tITP/CGE separation was carried out with a single running buffer. The separation process involved only two steps that were performed continuously with the sequential switching of four voltage outputs. The tITP/CGE method showed an analysis time and a separation efficiency comparable to those of standard CGE, while the signal intensity was enhanced by factors of over 20. The limit of detection of the chip-based tITP/CGE method was estimated to be 1.1 ng/mL of DNA in 1x PCR buffer using confocal fluorescence detection following 473 nm laser excitation.
Lin, Mai; Ranganathan, David; Mori, Tetsuya; Hagooly, Aviv; Rossin, Raffaella; Welch, Michael J; Lapi, Suzanne E
2012-10-01
Interest in using (68)Ga is rapidly increasing for clinical PET applications due to its favorable imaging characteristics and increased accessibility. The focus of this study was to provide our long-term evaluations of the two TiO(2)-based (68)Ge/(68)Ga generators and develop an optimized automation strategy to synthesize [(68)Ga]DOTATOC by using HEPES as a buffer system. This data will be useful in standardizing the evaluation of (68)Ge/(68)Ga generators and automation strategies to comply with regulatory issues for clinical use. Copyright © 2012 Elsevier Ltd. All rights reserved.
Acid-base transport systems in a polarized human intestinal cell monolayer: Caco-2.
Osypiw, J C; Gleeson, D; Lobley, R W; Pemberton, P W; McMahon, R F
1994-09-01
Acid-base transport systems have been incompletely characterized in intact intestinal epithelial cells. We therefore studied the human cell line Caco-2, cultured on Teflon membranes to form confluent monolayers with apical microvilli on transmission electron microscopy and progressive enrichment in microvillar hydrolases. Monolayers (16- to 25-day-old), loaded with the pH-sensitive dye BCECF-AM (2',7'-bis (carboxyethyl)-5-carboxyfluorescein), were mounted in a spectrofluorometer cuvette to allow selective superfusion of apical and basolateral surfaces with Hepes- or HCO(3-)-buffered media. Intracellular pH (pHi) was measured by dual-excitation spectrofluorimetry; calibration was with standards containing nigericin and 110 mM K+ corresponding to measured intracellular [K+] in Caco-2 cell monolayers. In HCO(3-)-free (Hepes-buffered) media, bilateral superfusion with 1 mM amiloride or with Na(+)-free media reversibly inhibited pHi recovery from an intracellular acid load (NH4Cl pulse) by 86 and 98% respectively. Selective readdition of Na+ to the apical or basolateral superfusate also induced a pHi recovery, which was inhibited by ipsilateral but not by contralateral amiloride (1 mM). The pHi recovery induced by apical Na+ readdition had a Michaelis constant (Km) for Na+ of 30 mM and a relatively high inhibitor constant (Ki) for amiloride of 45.5 microM. Initial pHi in HCO(3-)-buffered media was lower than in the absence of HCO3- (7.35 vs. 7.80). pHi recovery from an acid load in HCO3- was Na- dependent but was inhibited only 18% by 1 mM amiloride. The amiloride-independent pHi recovery was inhibited 49% by pre-incubation of cells in 5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid). These data suggest that Caco-2 cells possess: (a) both apical and basolateral membrane Na(+)-H+ exchange mechanisms, the apical exchanger being relatively resistant to amiloride, similar to apical Na(+)-H+ exchangers in several normal epithelia; and (b) a Na(-)-dependent HCO3- transport system, either Na(+)-HCO3- cotransport or Na(-)-dependent Cl(-)-HCO3- exchange.
The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization
Ding, Yi; Liu, Le; Fang, Yaowei; Zhang, Xu; Lyu, Mingsheng; Wang, Shujun
2018-01-01
We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg); histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption. PMID:29562655
Imaging The Genetic Code of a Virus
NASA Astrophysics Data System (ADS)
Graham, Jenna; Link, Justin
2013-03-01
Atomic Force Microscopy (AFM) has allowed scientists to explore physical characteristics of nano-scale materials. However, the challenges that come with such an investigation are rarely expressed. In this research project a method was developed to image the well-studied DNA of the virus lambda phage. Through testing and integrating several sample preparations described in literature, a quality image of lambda phage DNA can be obtained. In our experiment, we developed a technique using the Veeco Autoprobe CP AFM and mica substrate with an appropriate absorption buffer of HEPES and NiCl2. This presentation will focus on the development of a procedure to image lambda phage DNA at Xavier University. The John A. Hauck Foundation and Xavier University
Tris-borate is a poor counterion for RNA: a cautionary tale for RNA folding studies
Buchmueller, Karen L.; Weeks, Kevin M.
2004-01-01
Native polyacrylamide gel electrophoresis is a powerful approach for visualizing RNA folding states and folding intermediates. Tris-borate has a high-buffering capacity and is therefore widely used in electrophoresis-based investigations of RNA structure and folding. However, the effectiveness of Tris-borate as a counterion for RNA has not been systematically investigated. In a recirculated Hepes/KCl buffer, the catalytic core of the bI5 group I intron RNA undergoes a conformational collapse characterized by a bulk transition midpoint, or Mg1/2, of ∼3 mM, consistent with extensive independent biochemical experiments. In contrast, in Tris-borate, RNA collapse has a much smaller apparent Mg1/2, equal to 0.1 mM, because in this buffer the RNA undergoes a different, large amplitude, folding transition at low Mg2+ concentrations. Analysis of structural neighbors using a short-lived, RNA-tethered, photocrosslinker indicates that the global RNA structure eventually converges in the two buffer systems, as the divalent ion concentration approaches ∼1 mM Mg2+. The weak capacity of Tris-borate to stabilize RNA folding may reflect relatively unfavorable interactions between the bulky Tris-borate ion and RNA or partial coordination of RNA functional groups by borate. Under some conditions, Tris-borate is a poor counterion for RNA and its use merits careful evaluation in RNA folding studies. PMID:15601995
pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids.
Kamp, F; Hamilton, J A
1992-01-01
A central, unresolved question in cell physiology is how fatty acids move across cell membranes and whether protein(s) are required to facilitate transbilayer movement. We have developed a method for monitoring movement of fatty acids across protein-free model membranes (phospholipid bilayers). Pyranin, a water-soluble, pH-sensitive fluorescent molecule, was trapped inside well-sealed phosphatidylcholine vesicles (with or without cholesterol) in Hepes buffer (pH 7.4). Upon addition of a long-chain fatty acid (e.g., oleic acid) to the external buffer (also Hepes, pH 7.4), a decrease in fluorescence of pyranin was observed immediately (within 10 sec). This acidification of the internal volume was the result of the "flip" of un-ionized fatty acids to the inner leaflet, followed by a release of protons from approximately 50% of these fatty acid molecules (apparent pKa in the bilayer = 7.6). The proton gradient thus generated dissipated slowly because of slow cyclic proton transfer by fatty acids. Addition of bovine serum albumin to vesicles with fatty acids instantly removed the pH gradient, indicating complete removal of fatty acids, which requires rapid "flop" of fatty acids from the inner to the outer monolayer layer. Using a four-state kinetic diagram of fatty acids in membranes, we conclude that un-ionized fatty acid flip-flops rapidly (t1/2 < or = 2 sec) whereas ionized fatty acid flip-flops slowly (t1/2 of minutes). Since fatty acids move across phosphatidylcholine bilayers spontaneously and rapidly, complex mechanisms (e.g., transport proteins) may not be required for translocation of fatty acids in biological membranes. The proton movement accompanying fatty acid flip-flop is an important consideration for fatty acid metabolism in normal physiology and in disease states such as cardiac ischemia. Images PMID:1454821
Guo, Huangying; Kim, Jin-Chul
2015-10-15
The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome. Copyright © 2015 Elsevier B.V. All rights reserved.
Zdunek, Jolanta; Benito-Peña, Elena; Linares, Ana; Falcimaigne-Cordin, Aude; Orellana, Guillermo; Haupt, Karsten; Moreno-Bondi, María C
2013-07-29
The development and characterization of novel, molecularly imprinted polymer nanofilament-based optical sensors for the analysis of enrofloxacin, an antibiotic widely used for human and veterinary applications, is reported. The polymers were prepared by nanomolding in porous alumina by using enrofloxacin as the template. The antibiotic was covalently immobilized on to the pore walls of the alumina by using different spacers, and the prepolymerization mixture was cast in the pores and the polymer synthesized anchored onto a glass support through UV polymerization. Various parameters affecting polymer selectivity were evaluated to achieve optimal recognition, namely, the spacer arm length and the binding solvent. The results of morphological characterization, binding kinetics, and selectivity of the optimized polymer material for ENR and its derivatives are reported. For sensing purposes, the nanofilaments were incubated in solutions of the target molecule in acetonitrile/HEPES buffer (100 mM, pH 7.5, 50:50, v/v) for 20 min followed by incubation in a 10 mM solution of europium(III) ions to generate a europium(III)-enrofloxacin complex on the polymer surface. The detection event was based on the luminescence of the rare-earth ion (λexc=340 nm; λem=612 nm) that results from energy transfer from the antibiotic excited state to the metal-ion emitting excited state. The limit of detection of the enrofloxacin antibiotic was found to be 0.58 μM. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fangueiro, Joana F; Parra, Alexander; Silva, Amélia M; Egea, Maria A; Souto, Eliana B; Garcia, Maria L; Calpena, Ana C
2014-11-20
Epigallocatechin gallate (EGCG) is a green tea catechin with potential health benefits, such as anti-oxidant, anti-carcinogenic and anti-inflammatory effects. In general, EGCG is highly susceptible to degradation, therefore presenting stability problems. The present paper was focused on the study of EGCG stability in HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) medium regarding the pH dependency, storage temperature and in the presence of ascorbic acid a reducing agent. The evaluation of EGCG in HEPES buffer has demonstrated that this molecule is not able of maintaining its physicochemical properties and potential beneficial effects, since it is partially or completely degraded, depending on the EGCG concentration. The storage temperature of EGCG most suitable to maintain its structure was shown to be the lower values (4 or -20 °C). The pH 3.5 was able to provide greater stability than pH 7.4. However, the presence of a reducing agent (i.e., ascorbic acid) was shown to provide greater protection against degradation of EGCG. A validation method based on RP-HPLC with UV-vis detection was carried out for two media: water and a biocompatible physiological medium composed of Transcutol®P, ethanol and ascorbic acid. The quantification of EGCG for purposes, using pure EGCG, requires a validated HPLC method which could be possible to apply in pharmacokinetic and pharmacodynamics studies. Copyright © 2014. Published by Elsevier B.V.
Yin, Weizhao; Strobel, Bjarne W; B Hansen, Hans Christian
2017-03-21
Layered Fe II -Fe III hydroxides (green rusts, GRs) are promising reactants for reductive dechlorination of chlorinated solvents due to high reaction rates and the opportunity to inject reactive slurries of the compounds into contaminant plumes. However, it is necessary to develop strategies that reduce the formation of toxic byproducts such as chloroform (CF). In this study, carbon tetrachloride (CT) dehalogenation by the chloride form of GR (GR Cl ) was tested in the presence of glycine (GLY) and other selected amino acids. GLY, alanine (ALA), and serine (SER) all resulted in remarkable suppression of CF formation with only ∼10% of CF recovery while sarcosine (SAR) showed insignificant effects. For two nonamino acid buffers, TRIS had little effect while HEPES resulted in a 40 times lower rate constant compared to experiments in which no buffer was added. The Fe II complexing properties of the amino acids and buffers caused variable extents of GR Cl dissolution which was linearly correlated with CF suppression and dehalogenation rate. We hypothesize that the CF suppression seen for amino acids is caused by stabilization of carbene intermediates via the carbonyl group. Different effects on CF suppression and CT dehalogenation rate were expected because of the different structural and chemical properties of the amino acids.
Councell, T.B.; Landa, E.R.; Lovley, D.R.
1997-01-01
The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.
Characteristics of luminal bicarbonate secretion by rat cecum in vitro.
Canfield, P
1991-03-01
Under in vitro conditions the rat cecum transported HCO3- from the serosal to an unbuffered solution in contact with the mucosal side [Js----m = 7.12 +/- 0.18 mumol.cm-2.h-1 (n = 149)]. With reversed tissues, a significantly lower flux was obtained [Jm----s = 2.47 +/- 0.11 mumol.cm-2.h-1 (n = 42)]. Both fluxes were stable for several hours. Increasing the H+ gradient across the tissue for 60 min did not change either flux. Anoxia for 45 min reversibly reduced Js----m by 65 +/- 3% (n = 20) but had no effect on Jm----s. Both fluxes were linearly related to HCO3- concentration on the buffered side, but the slope for Js----m was 3.5 times that for Jm----s. When tissues were initially set up in HEPES buffer rather than HCO3-, Js----m was 0.12 +/- 0.05 mumol.cm-2.h-1 (n = 6), which is not significantly different from zero. Replacement of Na+ by choline reduced Js----m by 40 +/- 3% (n = 11) and ouabain (1 mM) by 24 +/- 3% (n = 5). Replacement of Cl- with isethionate or K+ with Na+ for 60 min did not alter Js----m. Serosal application of DIDS (0.5 mM) reduced Js----m by 24 +/- 6% (n = 6), but SITS (0.5 mM), furosemide (1 mM), acetazolamide (0.1 mM), amiloride (1 mM), and a proton pump inhibitor (Sch 28080, 50 microM) had no effect. Mucosal application of DIDS, furosemide, and amiloride had no effect on Js----m. Serosal tetrodotoxin (1 microM) and indomethacin (28 microM) were also without effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Fu, Zhen-Hai; Yan, Lu-Bin; Zhang, Xiaolong; Zhu, Fan-Fan; Han, Xin-Long; Fang, Jianguo; Wang, Ya-Wen; Peng, Yu
2017-05-16
Relay recognition of copper(ii) ions and biothiols via a fluorescence "on-off-on" cascade was designed and realized as a new sequential combination of cations and small molecules. Probe 1 bearing a fluorescein skeleton was thus synthesized, which performed well in 100% HEPES buffer (pH = 7.0) solution, as a highly sensitive, selective fluorescence sensor for Cu 2+ . The limit of detection (LOD, 0.017 ppm) was obtained, and this value is much lower than 1.3 ppm, allowed by US EPA. The 1 : 1 complex generated from fast sensing of Cu 2+ when excited at 491 nm, showed good relay recognition for biothiols (i.e., Cys, Hcy and GSH with low detection limits of 0.12 μM, 0.036 μM and 0.024 μM, respectively) via remarkable fluorescence enhancement. The origin of this relay process was disclosed through ESI-MS and corresponding density functional theory (DFT) computations. Notably, probe 1 can be utilized for the construction of a molecular logic gate with the IMPLICATION function by using the above fluorescence changes. Moreover, this relay recognition was also applied to HepG2 cell imaging successfully.
Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias
2016-09-05
Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.
Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.
Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C
2006-07-01
Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.
Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick
2015-04-01
Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Spectroscopic study on the binding of Mn(II) to EHPG].
Li, Hai-peng; Zhao, Chun-gui; Li, Xiao-li; Yang, Bin-sheng
2007-02-01
Under the conditions of 0.05 mol x L(-1) Hepes buffer at room temperature and pH 7.4, the interaction of ethylene-N,N'-bis(o-hydroxyphenylglycine) (EHPG) and Mn(II) was investigated by both fluorescence and UV difference spectra. Results showed that the molar ratio of the complex is 1:1. With the addition of manganese ions, the fluorescence peak of EHPG at 310 nm decreased, while the peaks of UV absorptivity at 238 and 291 nm increased. The molar absorptivity of Mn(II) to EHPG at 238 nm is (1.31 +/- 0.02) x 10(4) cm(-1) x mol(-1) L. The disassociation constant for Mn-EHPG was determined to be (1.36 +/- 0.21) x 10(-5). It can be concluded that the binding of Mn(II) to EHPG is not a strongly binding reaction.
Understanding the Effect of Carbonate Ion on Cisplatin Binding to DNA
Todd, Ryan C.; Lovejoy, Katherine S.; Lippard, Stephen J.
2008-01-01
The role of carbonate in the binding of cis-diamminedichloroplatinum(II) to DNA was investigated in order to understand the potential involvement of carbonato-cisplatin species in the mechanism of action of platinum anticancer agents. Cisplatin was allowed to react with both double- and single-stranded DNA in carbonate, phosphate, and HEPES buffers, and the products were analyzed by agarose gel electrophoresis and enzymatic digestion/mass spectrometry, respectively. The data from these experiments demonstrate (1) that carbonate, like other biological nucleophiles, forms relatively inert complexes with platinum that inactivate cisplatin, and (2) that the major cisplatin-DNA adduct formed is a bifunctional cross-link. These results are in accord with previous studies of cisplatin-DNA binding and reveal that the presence of carbonate has no consequence on the nature of the resulting adducts. PMID:17465550
Common stock solutions, buffers, and media.
2001-05-01
This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.
Characterization of morphological response of red cells in a sucrose solution.
Rudenko, Sergey V
2009-01-01
The dynamics of red cell shape changes following transfer into sucrose media having a low chloride content was studied. Based on a large number of measurements, six types of morphological response (MR), differing both in the degree of shape changes and the time course of the process, were identified. The most prominent type of response is a triphasic sequence of shape changes consisting of a fast transformation into a sphere (phase 1), followed by restoration of the discoid shape (phase 2) and final transformation into spherostomatocytes (phase 3), with individual parameters which could vary significantly. It was found that individual morphological response exhibited day to day variations, depending on the initial state of the red blood cells and the donor, but to a larger extent depended on the composition of the sucrose solution, such as concentration and type of buffers, the presence of EDTA, calcium, as well as very small amounts of extracellular hemoglobin. MR shows strong pH and ionic strength dependence. Low pH inhibited phase 1 and high pH changed dramatically the time course of the response. Increasing ionic strength inhibited all phases of MR, and at concentrations above 10-20 mM NaCl it was fully suppressed. Tris and phosphate were also inhibitory whereas HEPES, MOPS and Tricine were less effective. MR occurred also in hypertonic or hypotonic sucrose solutions, with exception of extreme hypotonicity due to volume restrictions. It is concluded that strong membrane depolarization per se is not a causal factor leading to MR, and its different phases could be regulated independently. For some types of morphological response the fast shape transformation from sphere to disc and back to sphere occurs within a 10 s time interval and could be accelerated several fold in the presence of a small amount of hemoglobin. It is suggested that MR represents a type of general cell reaction that occurs upon exposure to low ionic strength.
Suzuki, Yuji
2006-06-01
In a dye-binding method using a pH indicator, color development has reportedly been affected by the kind of buffer solution used in the color reagent. This phenomenon was analyzed by using a calculation based on the assumption that the anion of the buffer solution also reacts with protein. Color development decreases with increases in the anion concentration of the buffer solution and in the equilibrium constant of the reaction between the anion and protein. The differences in color development due to the kind of buffer solution can be attributed to differences in the equilibrium constant of the reaction forming the anion-protein complex and to the concentration of the anion between the buffer solutions.
Anand, Thangaraj; Sivaraman, Gandhi; Mahesh, Ayyavu; Chellappa, Duraisamy
2015-01-01
We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg(2+), Pb(2+), light metal Al(3+) ion, alkali, alkaline earth, and transition metal ions by UV-visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb(2+)/Al(3+) metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb(2+) and Al(3+) ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb(2+) and Al(3+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimization of growth for the hyperthermophilic archaeon Aeropyrum pernix on a small-batch scale.
Milek, Igor; Cigic, Blaz; Skrt, Mihaela; Kaletunç, Gönül; Ulrih, Natasa Poklar
2005-09-01
Growth of Aeropyrum pernix, the first reported aerobic neutrophilic hyperthermophilic archaeon, was investigated under different cultivation parameters. Different sources of seawater, pH, and the cultivation methods were tested with the aim to improve the biomass production. A 1-L glass flask fitted with a condenser and air diffuser was used as a bioreactor. The optimum conditions for maximizing A. pernix biomass were obtained when Na2S2O3.5H2O (1 g/L) with added marine broth 2216 at pH 7.0 (20 mmol HEPES buffer/L) was used as a growing medium in a 1-L flask. The biomass production was 0.45 g dry cell mass/L in 40 h under the optimum conditions, which is more than the 0.42 g dry cell mass/L in 60 h previously obtained.
Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan
2015-01-01
A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y.; Cheng, J. J.; Himmel, M. E.
2007-01-01
Endoglucanase E1 from Acidothermus cellulolyticus was expressed cytosolically under control of the cauliflower mosaic virus 35S promoter in transgenic duckweed, Lemna minor 8627 without any obvious observable phenotypic effects on morphology or rate of growth. The recombinant enzyme co-migrated with the purified catalytic domain fraction of the native E1 protein on western blot analysis, revealing that the cellulose-binding domain was cleaved near or in the linker region. The duckweed-expressed enzyme was biologically active and the expression level was up to 0.24% of total soluble protein. The endoglucanase activity with carboxymethylcellulose averaged 0.2 units mg protein{sup -1} extracted from fresh duckweed.more » The optimal temperature and pH for E1 enzyme activity were about 80 C and pH 5, respectively. While extraction with HEPES (N-[2-hydroxyethyl]piperazine-N{prime}-[2-ethanesulfonic acid]) buffer (pH 8) resulted in the highest recovery of total soluble proteins and E1 enzyme, extraction with citrate buffer (pH 4.8) at 65 C enriched relative amounts of E1 enzyme in the extract. This study demonstrates that duckweed may offer new options for the expression of cellulolytic enzymes in transgenic plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyburn, Tasia M.; Yankovskaya, Victoria; Bensing, Barbara A.
2012-07-11
The carbohydrate-binding region of the bacterial adhesin GspB from Streptococcus gordonii strain M99 (GspB{sub BR}) was expressed in Escherichia coli and purified using affinity and size-exclusion chromatography. Separate sparse-matrix screening of GspB{sub BR} buffered in either 20 mM Tris pH 7.4 or 20 mM HEPES pH 7.5 resulted in different crystallographic behavior such that different precipitants, salts and additives supported crystallization of GspB{sub BR} in each buffer. While both sets of conditions supported crystal growth in space group P2{sub 1}2{sub 1}2{sub 1}, the crystals had distinct unit-cell parameters of a = 33.3, b = 86.7, c = 117.9 {angstrom} formore » crystal form 1 and a = 34.6, b = 98.3, c = 99.0 {angstrom} for crystal form 2. Additive screening improved the crystals grown in both conditions such that diffraction extended to beyond 2 {angstrom} resolution. A complete data set has been collected to 1.3 {angstrom} resolution with an overall R{sub merge} value of 0.04 and an R{sub merge} value of 0.33 in the highest resolution shell.« less
Buarpung, Sirirak; Tharasanit, Theerawat; Thongkittidilok, Chommanart; Comizzoli, Pierre; Techakumphu, Mongkol
2015-10-01
The objective of this study was to compare the efficiency of preservation media for isolated feline testicular spermatozoa as well as the concentrations of bovine serum albumin (BSA) on: (1) the membrane (sperm membrane integrity (SMI)) and DNA integrity of spermatozoa; and (2) the developmental potential of spermatozoa after intracytoplasmic sperm injection (ICSI). Isolated cat spermatozoa were stored in HEPES-M199 medium (HM) or Dulbecco's phosphate-buffered saline (DPBS) at 4°C for up to 7 days. Results indicated that HM maintained a better SMI than DPBS throughout the storage periods (P > 0.05). When spermatozoa were stored in HM supplemented with BSA at different concentrations (4, 8 or 16 mg/ml), SMI obtained from HM containing 8 and 16 mg/ml BSA was higher than with 4 mg/ml BSA (P 0.05). In summary, cat spermatozoa immediately isolated from testicular tissue can be stored as a suspension in basic buffered medium at 4°C for up to 7 days. BSA supplementation into the medium improves membrane integrity of the spermatozoa during cold storage. Testicular spermatozoa stored in HM containing 16 mg/ml BSA retained full in vitro developmental potential after ICSI, similar to that of fresh controls even though DNA integrity had slightly declined.
Steward, M C; Seo, Y; Rawlings, J M; Case, R M
1990-01-01
1. The diffusive water permeability of epithelial cell membranes in the perfused rabbit mandibular salivary gland was measured at 37 degrees C by a 1H nuclear magnetic resonance relaxation method using an extracellular relaxation reagent, gadolinium diethylenetriaminepentaacetic acid (Gd(DTPA)). 2. In glands perfused with a HEPES-buffered solution containing 10 mmol l-1 Gd(DTPA), the spin-lattice (T1) relaxation of the water protons showed two exponential components. The water compartment responsible for the slower component corresponded in magnitude to 71 +/- 5% of the wet weight of the gland, and was attributed to the exchangeable intracellular water of the acinar cells. 3. The rate constant for water efflux from the cells was estimated to be 4.1 +/- 0.1 s-1 which would be consistent with a diffusive membrane permeability (Pd) of approximately 3 x 10(-3) cm s-1. Stimulation with acetylcholine (10(-6) mol l-1) did not cause any detectable change in membrane water permeability. 4. Since the basolateral membrane probably provides the main pathway for water efflux, the osmotic water permeability of this barrier (expressed per gland) was estimated to be less than 6.2 cm3 s-1. This would be insufficient to account for the generation of a near-isosmotic fluid at the flow rates observed during secretion, and suggests that a substantial fraction of the flow of water occurs via a paracellular route. PMID:1966053
Structural alteration of hexagonal birnessite by aqueous Mn(II): Impacts on Ni(II) sorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefkowitz, Joshua P.; Elzinga, Evert J.
We studied the impacts of aqueous Mn(II) (1 mM) on the sorption of Ni(II) (200 μM) by hexagonal birnessite (0.1 g L- 1) at pH 6.5 and 7.5 with batch experiments and XRD, ATR-FTIR and Ni K-edge EXAFS analyses. In the absence of Mn(II)aq, sorbed Ni(II) was coordinated predominantly as triple corner-sharing complexes at layer vacancies at both pH values. Introduction of Mn(II)aq into Ni(II)-birnessite suspensions at pH 6.5 caused Ni(II) desorption and led to the formation of edge-sharing Ni(II) complexes. This was attributed to competitive displacement of Ni(II) from layer vacancies by either Mn(II) or by Mn(III) formed throughmore » interfacial Mn(II)-Mn(IV) comproportionation, and/or incorporation of Ni(II) into the birnessite lattice promoted by Mn(II)-catalyzed recrystallization of the sorbent. Similar to Mn(II)aq, the presence of HEPES or MES caused the formation of edge-sharing Ni(II) sorption complexes in Ni(II)-birnessite suspensions, which was attributed to partial reduction of the sorbent by the buffers. At pH 7.5, interaction with aqueous Mn(II) caused reductive transformation of birnessite into secondary feitknechtite that incorporated Ni(II), enhancing removal of Ni(II) from solution. These results demonstrate that reductive alteration of phyllomanganates may significantly affect the speciation and solubility of Ni(II) in anoxic and suboxic environments.« less
Aluminum elution and precipitation in glass vials: effect of pH and buffer species.
Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide
2015-02-01
Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.
Clinical evaluation of frozen/thawed embryo transfer following transport of oocytes and embryos
2004-01-01
Background and Aims: We evaluated the efficacy of the transport oocyte/embryo frozen/thawed embryo transfer method, in which oocytes or embryos were transported from satellite clinics to the main assisted reproductive technology (ART) center, and surplus embryos were placed in cryopreservation. Methods: We evaluated 41 cycles in 34 patients in the transport oocyte group (TO group). In the TO group the oocytes were collected at the satellite clinics, transported to the main ART center and underwent in vitro fertilization or intracytoplasmic sperm injection. Surplus embryos were used for frozen/thawed embryo transfer. We also evaluated 17 cycles in 10 patients in the transport embryo group (TE group), where surplus embryos were transported to the main ART center and used for frozen/thawed embryo transfer; and 189 cycles in 134 patients in the center group (C group), where surplus embryos collected at the same time at the main ART center were used for frozen/thawed embryo transfer. Oocytes were transported from satellite clinics in HEPES buffered human tubal fluid (HTF) culture medium, and embryos in 30% synthetic serum substitute + HEPES buffered HTF, using a portable incubator we devised. Results: The proportions of undamaged embryos after freeze/thawing were 47% for the C group, 46% for the TO group, and 46% for the TE group. The numbers of embryos transferred were 2.0 ± 0.7 for the C group, 2.0 ± 0.6 for the TO group, and 2.2 ± 0.4 for the TE group. The rate of embryo transfer was 63% for the C group, 68% for the TO group, and 76% for the TE group. Pregnancy rates per patient were 16% for the C group, 24% for the TO group, and 40% for the TE group. The embryo survival rates (number of embryos with ≥50% viable blastomeres/total number of embryos) were 55% for the C group, 60% for the TO group, and 54% for the TE group. No significant differences were seen between the C group and either the TO or TE groups in any of these parameters. Conclusions: Favorable results were achieved with the transport oocyte/embryo frozen/thawed embryo transfer method, and it is suitable for widespread clinical application. (Reprod Med Biol 2004; 3: 1–8) PMID:29662379
Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge
NASA Astrophysics Data System (ADS)
Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.
2006-12-01
Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only 20 percent lower than that of the control culture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Suryanarayanan, Raj
To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less
Exposure to buffer solution alters tendon hydration and mechanics.
Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M
2017-08-16
A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria
2016-07-01
Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.
Short-Term Storage of Rat Sperm in the Presence of Various Extenders
Varisli, Omer; Agca, Cansu; Agca, Yuksel
2013-01-01
Sperm preservation protocols differ among animal species because of different sperm characteristics among species. Rat sperm have extreme sensitivity to suboptimal conditions in centrifugation, pipetting and chilling due to their longer tail, the shape and size of the sperm head, and membrane composition. The aim of this study was to determine optimal conditions for short-term storage of rat sperm by evaluating their motility and membrane and acrosomal integrity in response to various extender solutions, temperatures, and durations. Motility of rat sperm was highest when stored at 22 °C; motility was 28% and 14% at 72 h in TL-HEPES and PBS extenders, respectively. The motility and membrane integrity of rat sperm fell significantly within 24 h at 4 and 37 °C. Although cold storage did not have a detrimental effect on acrosomal integrity of sperm, room temperature storage reduced acrosomal integrity after 24 h. LEY extender caused the highest loss in acrosomal integrity at 48 and 72 h. In conclusion, storage at 4 or 37 °C reduced the motility and membrane integrity of rat sperm even with short incubation periods. Rat sperm stored in TL-HEPES or PBS remained motile for at least 3 d when held at 22 °C. PMID:24351761
Gossip-based solutions for discrete rendezvous in populations of communicating agents.
Hollander, Christopher D; Wu, Annie S
2014-01-01
The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm.
Gossip-Based Solutions for Discrete Rendezvous in Populations of Communicating Agents
Hollander, Christopher D.; Wu, Annie S.
2014-01-01
The objective of the rendezvous problem is to construct a method that enables a population of agents to agree on a spatial (and possibly temporal) meeting location. We introduce the buffered gossip algorithm as a general solution to the rendezvous problem in a discrete domain with direct communication between decentralized agents. We compare the performance of the buffered gossip algorithm against the well known uniform gossip algorithm. We believe that a buffered solution is preferable to an unbuffered solution, such as the uniform gossip algorithm, because the use of a buffer allows an agent to use multiple information sources when determining its desired rendezvous point, and that access to multiple information sources may improve agent decision making by reinforcing or contradicting an initial choice. To show that the buffered gossip algorithm is an actual solution for the rendezvous problem, we construct a theoretical proof of convergence and derive the conditions under which the buffered gossip algorithm is guaranteed to produce a consensus on rendezvous location. We use these results to verify that the uniform gossip algorithm also solves the rendezvous problem. We then use a multi-agent simulation to conduct a series of simulation experiments to compare the performance between the buffered and uniform gossip algorithms. Our results suggest that the buffered gossip algorithm can solve the rendezvous problem faster than the uniform gossip algorithm; however, the relative performance between these two solutions depends on the specific constraints of the problem and the parameters of the buffered gossip algorithm. PMID:25397882
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj
2010-06-22
Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH < pK{sub a2} was cooled from room temperature (RT), the freeze-concentrate pH first increased and then decreased. This was attributed to the sequential crystallization of succinic acid, monosodium succinate, and finally disodium succinate. When buffered to pH > pK{sub a2}, the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followedmore » by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na{sub 2}(CH{sub 2}COO){sub 2} {center_dot} 6H{sub 2}O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.« less
NASA Astrophysics Data System (ADS)
Tang, Xu; Han, Juan; Wang, Yun; Bao, Xu; Ni, Liang; Wang, Lei; Li, Longhua
2017-09-01
A fluorescence probe has been designed and synthesized, and applied with a combined theoretical and experimental study. Research suggests that the probe can be used to sense Zn2 + and Hg2 + through selective turn-on fluorescence responses in the aqueous HEPES buffer (0.05M, pH = 7.4). The limit of detection (LOD) were determined as 1.46 × 10- 7 M (Zn2 +) and 2.50 × 10- 7 M (Hg2 +). Moreover, based on DFT, the geometry optimizations of probe 1, [1-Hg2 +] complex and [1-Zn2 +] complex were carried out using the Gaussian 09 program, in which the B3LYP function was used. The electronic properties of free probe 1 and the metal complexes were studied based on the Natural Bond Orbital (NBO) analyses. The probe 1 has also been successfully applied to detection of Zn2 + and Hg2 + in living cells.
Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee
2018-06-01
Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.
A simple method for decomposition of peracetic acid in a microalgal cultivation system.
Sung, Min-Gyu; Lee, Hansol; Nam, Kibok; Rexroth, Sascha; Rögner, Matthias; Kwon, Jong-Hee; Yang, Ji-Won
2015-03-01
A cost-efficient process devoid of several washing steps was developed, which is related to direct cultivation following the decomposition of the sterilizer. Peracetic acid (PAA) is known to be an efficient antimicrobial agent due to its high oxidizing potential. Sterilization by 2 mM PAA demands at least 1 h incubation time for an effective disinfection. Direct degradation of PAA was demonstrated by utilizing components in conventional algal medium. Consequently, ferric ion and pH buffer (HEPES) showed a synergetic effect for the decomposition of PAA within 6 h. On the contrary, NaNO3, one of the main components in algal media, inhibits the decomposition of PAA. The improved growth of Chlorella vulgaris and Synechocystis PCC6803 was observed in the prepared BG11 by decomposition of PAA. This process involving sterilization and decomposition of PAA should help cost-efficient management of photobioreactors in a large scale for the production of value-added products and biofuels from microalgal biomass.
Kumar, Rahul; Sandhu, Sana; Hundal, Geeta; Singh, Prabhpreet; Walia, Amandeep; Vanita, Vanita; Kumar, Subodh
2015-12-07
Naphthimidazolium based monocationic chemodosimeters CD-1 and CD-2 undergo cyanide mediated catalytic transformation in the presence of cyanide ions (0.01% to 1% of CD-1/CD-2 concentrations) with a turnover number from 70 to 360. These chemodosimeters can detect as low as 0.5 nM and 1 nM cyanide ions under nearly physiological conditions (HEPES buffer-DMSO (5%), pH 7.4). The structures of CD-1 and its cyanide induced hydrolyzed product 4 have been confirmed by single crystal X-ray crystallography. CD-1 can also be used for the determination of 2 nM cyanide in the presence of blood serum. CD-1 and CD-2 also find applications in live cell imaging of 10 nM cyanide ions in rat brain C6 glioma cells. To the best of our knowledge, this is the first report where high sensitivity towards cyanide ions has been achieved through catalytic hydrolysis of the fluorescent chemodosimeter.
Unusual reactivity of a silver mineralizing peptide.
Carter, Carly Jo; Ackerson, Christopher J; Feldheim, Daniel L
2010-07-27
The ability of peptides selected via phage display to mediate the formation of inorganic nanoparticles is now well established. The atomic-level interactions between the selected peptides and the metal ion precursors are in most instances, however, largely obscure. We identified a new peptide sequence that is capable of mediating the formation of Ag nanoparticles. Surprisingly, nanoparticle formation requires the presence of peptide, HEPES buffer, and light; the absence of any one of these compromises nanoparticle formation. Electrochemical experiments revealed that the peptide binds Ag+ in a 3 Ag+:1 peptide ratio and significantly alters the Ag+ reduction potential. Alanine replacement studies yielded insight into the sequence-function relationships of Ag nanoparticle formation, including the Ag+ coordination sites and the residues necessary for Ag synthesis. In addition, the peptide was found to function when immobilized onto surfaces, and the specific immobilizing concentration could be adjusted to yield either spherical Ag nanoparticles or high aspect ratio nanowires. These studies further illustrate the range of interesting new solid-state chemistries possible using biomolecules.
Unusual Reactivity of a Silver Mineralizing Peptide
Carter, Carly Jo; Ackerson, Christopher J.; Feldheim, Daniel L.
2010-01-01
The ability of peptides selected via phage display to mediate the formation of inorganic nanoparticles is now well established. The atomic-level interactions between the selected peptides and the metal ion precursors are in most instances, however, largely obscure. We identified a new peptide sequence that is capable of mediating the formation of Ag nanoparticles. Surprisingly, nanoparticle formation requires the presence of peptide, HEPES buffer, and light; the absence of any one of these compromises nanoparticle formation. Electrochemical experiments revealed that the peptide binds Ag+ in a 3 Ag+:1 peptide ratio and significantly alters the Ag+ reduction potential. Alanine replacement studies yielded insight into the sequence-function relationships of Ag nanoparticle formation, including the Ag+ coordination sites and the residues necessary for Ag synthesis. In addition, the peptide was found to function when immobilized onto surfaces, and the specific immobilizing concentration could be adjusted to yield either spherical Ag nanoparticles or high aspect ratio nanowires. These studies further illustrate the range of interesting new solid-state chemistries possible using biomolecules. PMID:20552994
[The spectroscopic studies on the binding of Al(III) to EHPG].
Li, Ying-qi; Bai, Hai-jing; Yang, Bin-sheng
2002-06-01
Interaction of ethylene-N,N'-bis(o-hydioxyphenylglycine) (EHPG) with Al3+ has been investigated by both UV difference and fluorescent spectra. Both results show that the molar ration of the complex is most likely 1:1. Aluminum binding produces peaks at 235 and 291 nm. The molar absorptivity of aluminum ions to EHPG at 235 nm is 1.27 x 10(4) cm-1.mol-1.L. The conditional stability constant for Al3+ binding to EHPG is determined to be IgK = 14.20 +/- 0.03 in 0.1 mol.L-1 Hepes buffer at room temperature, pH 7.4 by UV difference spectra. At the same condition, the fluorescent intensity of EHPG at 310 nm has been monitored. In result, the fluorescent intensity of EHPG at 310 nm is decreased with the addition of Al3+. Then the quench of the fluorescent intensity is ascribed to deprotonated phenolic groups coordinated to aluminum ions.
Cardiac tissue slices: preparation, handling, and successful optical mapping.
Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian
2015-05-01
Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.
Azab, Hassan A; Duerkop, Axel; Anwar, Z M; Hussein, Belal H M; Rizk, Moustafa A; Amin, Tarek
2013-01-08
Luminescence quenching of a novel long lived Eu(III)-pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol-water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)-(PDCA)(2) probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)-pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0-35.0 μM. The detection limits were 0.24-0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)-(PDCA)(2) were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)-(PDCA)(2)-P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Archana; Sahoo, Suban K.; Trivedi, Darshak R.
2018-01-01
A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F- and AcO- ions in DMSO. Due to presences of the NO2 group at para and ortho position with extended π-conjugation of naphthyl group carrying sbnd OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F- and AcO- ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of sbnd NO2 group at para position induced in increasing the acidity of sbnd OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35 ppm for F- and AcO- ions which is beneath WHO permission level (1.0 ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO- ion. Receptor A1 depicts high selectivity towards AcO- ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO- and F- ions was monitored from 1HNMR titration and DFT study.
Cardiac tissue slices: preparation, handling, and successful optical mapping
Wang, Ken; Lee, Peter; Mirams, Gary R.; Sarathchandra, Padmini; Borg, Thomas K.; Gavaghan, David J.; Kohl, Peter
2015-01-01
Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands (“fibers”) in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. PMID:25595366
Herraiz, Sonia; Novella-Maestre, Edurne; Rodríguez, Beatriz; Díaz, César; Sánchez-Serrano, María; Mirabet, Vicente; Pellicer, Antonio
2014-03-01
To compare slow freezing (SF) with four vitrification techniques (VT) for cryopreservation of ovarian tissue (OT) and to evaluate the best protocol for human OT in a xenograft model. Experimental study. University hospital. Patients undergoing fertility preservation. Ovariectomized nude mice. Cryopreservation of bovine OT after SF and four VTs (VT1, VT2, VT3, and VT4) by combining two cryoprotectant vitrification solutions (VS1 and VS2) and two devices (metallic grid and ethyl vinyl acetate bag), after which the cryopreservation of human OT by SF and VT1 and xenograft into nude mice. Follicular densities, proliferation, vascularization, fibrosis, apoptosis, tissue viability. The in vitro study in bovine OT showed a lower percentage of quiescent follicles in the SF group but not in the vitrification groups (VT1-VT4). Apoptosis increased and cell proliferation decreased in all the experimental groups except VT1 (20% ethylene glycol, 20% dimethyl sulfoxide, 0.5 M sucrose, and 20% synthetic serum substitute in HEPES-buffered M199 culture media with Cryotissue metallic grids). Tissue viability was diminished in VT3, and the SF-xenografted human samples showed reduced primordial and secondary densities and unbalanced follicular populations when compared with fresh and VT1 tissue. VT1 offers similar conditions to fresh tissue for follicular density, proliferation, viability, and cell death and preserves a larger population of quiescent follicles than SF after transplantation, thus ensuring the maintenance of graft potential fertility. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Inhibition of Protein Carbamylation in Urea Solution Using Ammonium Containing Buffers
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui
2013-01-01
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N-termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium containing buffers was developed to facilitate its application in proteomic research. PMID:24161613
Biomimetic hydrogels gate transport of calcium ions across cell culture inserts.
Kotanen, Christian N; Wilson, A Nolan; Wilson, Ann M; Ishihara, Kazuhiko; Guiseppi-Elie, Anthony
2012-06-01
Control of the in vitro spatiotemporal availability of calcium ions is one means by which the microenvironments of hematopoietic stem cells grown in culture may be reproduced. The effects of cross-linking density on the diffusivity of calcium ions through cell culture compatible poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based bioactive hydrogels possessing 1.0 mol% 2-methacryloyloxyethyl phosphorylcholine (MPC), 5 mol% N,N-(dimethylamino)ethylmethacrylate (DMAEMA) and ca. 17 mol% n-butyl acrylate (n-BA) have been investigated to determine if varying cross-link density is a viable approach to controlling transport of calcium across hydrogel membranes. Cross-linking density was varied by changing the composition of cross-linker, tetraethyleneglycol diacrylate (TEGDA). The hydrogel membranes were formed by sandwich casting onto the external surface of track-etched polycarbonate membranes (T = 10 μm, φ = 0.4 μm pores) of cell culture inserts, polymerized in place by UV light irradiation and immersed in buffered (0.025 HEPES, pH 7.4) 0.10 M calcium chloride solution. The transport of calcium ions across the hydrogel membrane was monitored using a calcium ion selective electrode set within the insert. Degree of hydration (21.6 ± 1.0%) and void fraction were found to be constant across all cross-linking densities. Diffusion coefficients, determined using time-lag analysis, were shown to be strongly dependent on and to exponentially decrease with increasing cross-linking density. Compared to that found in buffer (2.0-2.5 × 10⁻⁶ cm²/s), diffusion coefficients ranged from 1.40 × 10⁻⁶ cm²/s to 1.80 × 10⁻⁷ cm²/s and tortuosity values ranged from 1.7 to 10.0 for the 1 and 12 mol% TEGDA cross-linked hydrogels respectively. Changes in tortuosity arising from variations in cross-link density were found to be the primary modality for controlling diffusivity through novel n-BA containing poly(HEMA)-based bioactive hydrogels.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-04-01
Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH
Electrodialysis operation with buffer solution
Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL
2009-12-15
A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.
Gaudreault, Pierre-Richard; Webb, John A.
1983-01-01
A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant. Images Fig. 1 PMID:16662884
Recovery of Elemental Palladium by Shewanella putrefaciens
NASA Astrophysics Data System (ADS)
Akasaka, S.; Xia, X.; Sawada, K.; Enokida, Y.; Yamamoto, I.; Ohnuki, T.
2006-12-01
Microbial reduction of metals plays an important role in environmental behavior and provides a technique for the recovery of metals from industrial wastewater. Recently, demand for platinum group metals (PGMs) increases by their catalytic properties. The extreme rarity of PGMs have led to a growing interest in their recovery. Palladium, one of PGMs, has different oxidation states of Pd(II) and Pd(0). The oxidized form of Pd(II) is soluble, while the reduced form of Pd(0) is insoluble. In this study, microbial reduction of palladium by Fe(III)- reducing bacterium, Shewanella putrefaceins was conducted. This bacterium is known to be capable of reducing metals, such as Mn(IV), U(VI), or Tc(VII) with organic C or H2 as an electron donor. In order to investigate the potential of S. putrefaciens to reduce Pd(II) in solution, resting cells or heat-killed cells were suspended under anaerobic conditions with lactate or H2 as an electron donor. The cells of S. putrefaciens (NBRC3908) were grown in aerobic medium, harvested by centrifugation, and then washed with 25 mmol/dm3 HEPES and 100 mmol/dm3 NaCl (HEPES-NaCl) solution (pH 7.0). The heat-killed cells were autoclaved for 20 min at 121 degrees C. The cell suspension (21.5 mg in dry weight) was resuspended in the HEPES-NaCl solution which contained 1.0 mmol/dm3 Na2PdCl4 (Wako Pure chemical Industries, Ltd). The suspensions were bubbled with N2 for 15 min before 10 mmol/dm3 lactate or 4.8 v/v% H2 was added. The suspensions were then incubated at 30 degrees C. Redox potential (Eh) and pH of the solutions were measured in an inert glove box with Ar gas. Concentration of Pd(II) was measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Deposited Pd and cells were analyzed by X-ray powder diffraction (XRD) and Scanning Electron Microscope (SEM) with Energy-Dispersive Spectroscopy (EDS). Approximately 86% of Pd(II) of the initial concentration was removed from solution by the resting cells within 24 h when lactate was used as an electron donor. A black precipitates were observed in the solution, that was confirmed as Pd(0) by XRD analysis. SEM and EDS analyses identified that Pd bearing precipitates were present on and/or in the cells. The size of the precipitates associated with cells was approximately 100 nm in diameter. Approximately 23% of Pd(II) was removed by the heat-killed cells within 24 h. The precipitates between 200 and 300 nm in diameter were observed to be associated with the heat-killed cells by SEM and EDS analyses. No removal of Pd(II) was obtained without cells. On the contrary, complete removal of Pd(II) was occurred within 4 h after exposure of the resting cells to Pd(II) solution when H2 was used as an electron donor. Approximately 88 and 80% of Pd(II) was removed within 4 h with the heat-killed cells and without cells, respectively. The measured Eh and pH values were plotted in the Eh-pH diagram calculated for Pd-Cl-H2O system indicated that chemical conditions in the solutions were saturated with respect to Pd(0) at 24 or 4 h of incubation regardless the electron donor. These findings indicate that S. putrefaciens is capable to enhance the precipitation of palladium from solution by reducing Pd(II) to Pd(0) with lactate or H2 as an electron donor.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-06-02
Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.
Inhibition of protein carbamylation in urea solution using ammonium-containing buffers.
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming; Zhang, Hui
2014-02-01
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times, and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium-containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium-containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium-containing buffers was developed to facilitate its application in proteomic research. Copyright © 2013 Elsevier Inc. All rights reserved.
Effect of density gradient centrifugation on reactive oxygen species in human semen.
Takeshima, Teppei; Yumura, Yasushi; Kuroda, Shinnosuke; Kawahara, Takashi; Uemura, Hiroji; Iwasaki, Akira
2017-06-01
Density gradient centrifugation can separate motile sperm from immotile sperm and other cells for assisted reproduction, but may also remove antioxidants from seminal plasma, resulting in oxidative stress. Therefore, we investigated reactive oxygen species (ROS) concentrations and distribution in semen before and after density gradient centrifugation. We assessed semen volume, sperm concentration, sperm motility, and ROS levels before and after density gradient centrifugation (300 x g for 20 minutes) in 143 semen samples from 118 patients. The ROS removal rate was evaluated in ROS-positive samples and ROS formation rate in ROS-negative samples. Thirty-eight of 143 untreated samples (26.6%) were ROS-positive; sperm motility was significantly lower in these samples than in ROS-negative samples (p < 0.05). After density gradient centrifugation, only seven of the 38 ROS-positive samples (18.42%) exhibited a ROS-positive lower layer (containing motile sperm) with a ROS removal rate of 81.58%, whereas the upper layer was ROS-positive in 24 samples (63.16%). In the ROS-negative group (n = 105), ROS was detected in 19 samples after centrifugation (18.10%, ROS generation rate), of which 18 were ROS-positive only in the upper layer or interface and the other was ROS-positive in both layers. Density gradient centrifugation can separate motile sperm from immotile sperm as well as remove ROS (including newly generated ROS). This data supports the view that density gradient centrifugation can select motile spermatozoa without enhancing oxidative stress. ROS: reactive oxygen species; SOD: superoxide dismutase; GPx: glutathione peroxidase; DNA: deoxyribonucleic acid; DGC: density gradient centrifugation; IUI: intrauterine insemination; IVF: in vitro fertilization; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EDTA: ethylenediaminetetraacetic acid; HTF: HEPES-buffered human tubal fluid; IMSI: intracytoplasmic morphologically selected sperm injection; SMAS: sperm motility analyzing system; CASA: computer-assisted semen analyzer; WHO: World Health Organization.
Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng
2014-01-01
It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.
Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.
Ragoonanan, Vishard; Suryanarayanan, Raj
2014-06-01
We hypothesize that ultrasonication can accelerate solute crystallization in freeze-concentrates. Our objective is to demonstrate ultrasonication as a potential predictive tool for evaluating physical stability of excipients in frozen solutions. The crystallization tendencies of lyoprotectants (trehalose, sucrose), carboxylic acid buffers (citric, tartaric, malic, and acetic) and an amino acid buffer (histidine HCl) were studied. Aqueous solutions of buffers, lyoprotectants and mixtures of the two were cooled from room temperature to -20°C and sonicated to induce solute crystallization. The crystallized phases were identified by X-ray diffractometry (laboratory or synchrotron source). Sonication accelerated crystallization of trehalose dihydrate in frozen trehalose solutions. Sonication also enhanced solute crystallization in tartaric (200 mM; pH 5), citric (200 mM pH 4) and malic (200 mM; pH 4) acid buffers. At lower buffer concentrations, longer annealing times following sonication were required to facilitate solute crystallization. The time for crystallization of histidine HCl progressively increased as a function of sucrose concentration. The insonation period required to effect crystallization also increased with sucrose concentration. Sonication can substantially accelerate solute crystallization in the freeze-concentrate. Ultrasonication may be useful in assessing the crystallization tendency of formulation constituents used in long term frozen storage and freeze-drying.
Process Research and Development of Antibodies as Countermeasures for C. Botulinum
2006-03-01
acid , lipoic acid , phenol red, putrescine 2HCl, sodium pyruvate, and HEPES is same as HAM’SF12:IMDM (1:1). The concentrations of the glucose...Na2SeO3 0.0085 D-glucose 4000 Linoleic Acid 0.04 Lipoic Acid 0.105 Phenol Red 8.1 Putrescine 2HCl 0.0805 Sodium Pyruvate 110 HEPES 2979 L-Alanine...0.0134 Arachidonic acid 0.014 cholestrol 1.54 DL- alpha -tocopherol- acetate 0.49 Linoleic acid 0.07 linolenic acid 0.07 myristic acid 0.07
Kreitzer, Matthew A; Swygart, David; Osborn, Meredith; Skinner, Blair; Heer, Chad; Kaufman, Ryan; Williams, Bethany; Shepherd, Lexi; Caringal, Hannah; Gongwer, Michael; Tchernookova, Boriana K; Malchow, Robert P
2017-12-01
Self-referencing H + -selective electrodes were used to measure extracellular H + fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H + -selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H + flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H + flux. Barium at 6 mM also increased H + flux. Potassium-induced extracellular acidifications were abolished when bicarbonate was replaced by 1 mM HEPES. The carbonic anhydrase antagonist benzolamide potentiated the potassium-induced extracellular acidification, while 300 μM DIDS, 300 μM SITS, and 30 μM S0859 significantly reduced the response. Potassium-induced extracellular acidifications persisted in solutions lacking extracellular calcium, although potassium-induced changes in intracellular calcium monitored with Oregon Green were abolished. Exchange of external sodium with choline also eliminated the potassium-induced extracellular acidification. Removal of extracellular sodium by itself induced a transient alkalinization, and replacement of sodium induced a transient acidification, both of which were blocked by 300 μM DIDS. Recordings at the apical portion of the cell showed smaller potassium-induced extracellular H + fluxes, and removal of the end foot region further decreased the H + flux, suggesting that the end foot was the major source of acidifications. These studies demonstrate that self-referencing H + -selective electrodes can be used to monitor H + fluxes from retinal Müller cells in bicarbonate-based solutions and confirm the presence of a sodium-coupled bicarbonate transporter, the activity of which is largely restricted to the end foot of the cell. NEW & NOTEWORTHY The present study uses self-referencing H + -selective electrodes for the first time to measure H + fluxes from Müller (glial) cells isolated from tiger salamander retina. These studies demonstrate bicarbonate transport as a potent regulator of extracellular levels of acidity around Müller cells and point toward a need for further studies aimed at addressing how such glial cell pH regulatory mechanisms may shape neuronal signaling. Copyright © 2017 the American Physiological Society.
Plum, J; Schoenicke, G; Grabensee, B
1997-09-01
Peritonitis remains a major problem in peritoneal dialysis. The incidence of peritonitis may be reduced by the use of more "biocompatible" peritoneal dialysis solutions that do not impair local host defense mechanisms, such as occurs with conventional lactate-buffered glucose solutions. In the present study, we investigated the use of bicarbonate and lactate as buffer systems and glucose, amino acids, and glucose polymer as osmotic agents on specific cellular functions of isolated fresh blood monocytes in vitro. The bicarbonate-buffered solutions had a physiologic pH (7.0 to 7.6). Lactate-buffered solutions were tested with a pH between 5.5 and 7.3. RPMI 1640 (Roswell Park Memorial Institute, supplied by Biochrom, Berlin, Germany) and phosphate-buffered saline were used as control mediums. The test solutions were incubated with 200,000 monocytes/mL for 45 minutes followed by a 1:1 mix with RPMI 1640 (with supplements) during a 24- or 4-hour tetrazolium bromide test (MTT test) recovery period. Constitutive and lipopolysaccharide (LPS)-stimulated release of interleukin-1beta (IL-1beta) and IL-6 in the supernatants as parameters of cellular host defense and lactate dehydrogenase concentrations and MTT-formazan production as parameters for cell cytotoxicity were measured. Significantly higher IL-6 and IL-1beta release was found in the bicarbonate-buffered solutions, both under basal conditions and after LPS stimulation, compared with the lactate-buffered solutions (LPS stimulation: 1% amino acids/34 mmol/L bicarbonate, IL-1beta: 1,166 +/- 192 pg/mL; 1.5% glucose/34 mmol/L bicarbonate, IL-1beta: 752 +/- 107 pg/mL; 1.5% glucose/35 mmol/L lactate/pH 5.5, IL-1beta: 174 +/- 51 pg/mL). Some of these differences could even be detected in spent dialysate after a 6-hour dwell in continuous ambulatory peritoneal dialysis patients (n = 10). A lower degree of cellular cytotoxicity (lactate dehydrogenase activity) and better-preserved metabolic activity (MTT test) also were found for the bicarbonate-buffered solutions. Amino acids (1%) proved to be comparable to glucose (1.5%) as an osmotic agent at a neutral pH with regard to LPS-stimulated cytokine release and cytotoxicity. The incubation with a glucose polymer solution (7.5% glucose polymer in phosphate-buffered saline, pH 7.3) resulted in a significantly lowered cytokine release (LPS stimulation: IL-1beta, 69 +/- 19 pg/mL) compared with the other solutions with neutral pH (P < 0.01). These results suggest that bicarbonate as a buffer provided better biocompatibility with regard to mononuclear cytokine release and viability compared with lactate. Amino acids and glucose were equivalent to these parameters at a physiologic pH. The glucose polymer solution, however, was associated with a marked depression of cytokine release.
NASA Astrophysics Data System (ADS)
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-01
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu2 + ions in the presence of other competitive ions through ;naked eye; in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10 mM, pH = 7.4)). The presence of Cu2 + induce color change from light yellow green to yellow with the appearance of a new band at 450 nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10 μM) was quenched completely in the presence of 2.7 equiv. of Cu2 + ions. Sub-micromolar limit of detection (LOD = 3.4 × 10- 7 M), efficient Stern-Volmer quenching constant (KSV = 1.8 × 105 L mol- 1) and strong binding constant (log Kb = 5.92) has been determined with the help of fluorescence titration profile. Further, 1 - Cu2 + complex was employed for the detection of phosphate ions (PO43 -, HPO42 - and H2PO4-) at micromolar concentrations in EtOH-buffer of pH 7.4 based on fluorescence recovery due to the binding of Cu2 + with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406 nm) and emission wavelength (537 nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging.
Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT
2011-12-13
Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
Nau, Barbara; Schmitt, Claus P; Almeida, Margarida; Arbeiter, Klaus; Ardissino, Gianluigi; Bonzel, Klaus E; Edefonti, Alberto; Fischbach, Michel; Haluany, Karin; Misselwitz, Joachim; Kemper, Markus J; Rönnholm, Kai; Wygoda, Simone; Schaefer, Franz
2004-01-01
Background Peritoneal dialysis (PD) is the preferred dialysis modality in children. Its major drawback is the limited technique survival due to infections and progressive ultrafiltration failure. Conventional PD solutions exert marked acute and chronic toxicity to local tissues. Prolonged exposure is associated with severe histopathological alterations including vasculopathy, neoangiogenesis, submesothelial fibrosis and a gradual loss of the mesothelial cell layer. Recently, more biocompatible PD solutions containing reduced amounts of toxic glucose degradation products (GDPs) and buffered at neutral pH have been introduced into clinical practice. These solutions contain lactate, bicarbonate or a combination of both as buffer substance. Increasing evidence from clinical trials in adults and children suggests that the new PD fluids may allow for better long-term preservation of peritoneal morphology and function. However, the relative importance of the buffer in neutral-pH, low-GDP fluids is still unclear. In vitro, lactate is cytotoxic and vasoactive at the concentrations used in PD fluids. The BIOKID trial is designed to clarify the clinical significance of the buffer choice in biocompatible PD fluids. Methods/design The objective of the study is to test the hypothesis that bicarbonate based PD solutions may allow for a better preservation of peritoneal transport characteristics in children than solutions containing lactate buffer. Secondary objectives are to assess any impact of the buffer system on acid-base status, peritoneal tissue integrity and the incidence and severity of peritonitis. After a run-in period of 2 months during which a targeted cohort of 60 patients is treated with a conventional, lactate buffered, acidic, GDP containing PD fluid, patients will be stratified according to residual renal function and type of phosphate binding medication and randomized to receive either the lactate-containing Balance solution or the bicarbonate-buffered Bicavera® solution for a period of 10 months. Patients will be monitored by monthly physical and laboratory examinations. Peritoneal equilibration tests, 24-h dialysate and urine collections will be performed 4 times. Peritoneal biopsies will be obtained on occasion of intraabdominal surgery. Changes in small solute transport rates, markers of peritoneal tissue turnover in the effluent, acid-base status and peritonitis rates and severity will be analyzed. PMID:15485574
Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of L-cysteine.
Yin, Kun; Li, Bowei; Wang, Xiaochun; Zhang, Weiwei; Chen, Lingxin
2015-02-15
As an essential element, copper ion (Cu(2+)) plays important roles in human beings for its participation in diverse metabolic processes as a cofactor and/or a structural component of enzymes. However, excessive uptake of Cu(2+) ion gives rise to the risk of certain diseases. So, it is important to develop simple ways to monitor and detect Cu(2+) ion. In this study, a simple, facile colorimetric sensor for the ultrasensitive determination of Cu(2+) ion was developed based on the following principle: L-cysteine and 1-chloro-2,4-dinitrobenzene (CDNB) could be conjugated to form the yellow product 2,4-dinitrophenylcysteine (DNPC), which was measurable at 355nm; however, upon addition of Cu(2+) ion, the absorbance of DNPC would be decreased owing to the Cu(2+) ion catalytic oxidation of L-cysteine to L-cystine in the presence of O2. Thus, the colorimetric detection of Cu(2+) ion could be achieved. The optimal pH, buffer, temperature and incubation time for the colorimetric sensor were obtained of pH 6.8 in 0.1M HEPES solution, 90 °C and 50 min, respectively. A good linearity within the range of 0.8-10 nM (r = 0.996) was attained, with a high detectability up to 0.5nM. Analyses of Cu(2+) ion in drinking water, lake water, seawater and biological samples were carried out and the method performances were found to agree well with that obtained by ICP-MS. The developed simple colorimetric sensor proved applicable for Cu(2+) ion determination in real samples with high sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of casein and poly-L-arginine multilayer films.
Szyk-Warszyńska, Lilianna; Kilan, Katarzyna; Socha, Robert P
2014-06-01
Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. α- and β-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). (PLArg/casein) films deposited in 0.15M NaCl exhibit fast (exponential-like) growth of the film thickness with the number of layers. The resulting films were c.a. 10 times thicker than obtained for poly-L-arginine and natural polyanions. We investigated the effect of the type of casein used for the film formation, finding that films with α-casein were slightly thicker than ones with β-casein. The effect of polyethylene imine anchoring layer on the thickness and mass of adsorbed films was similar as for linear polyelectrolyte pairs. Thickness of "wet" films was c.a. two times larger than measured after drying that suggests their large hydration. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability. Films remain stable in the neutral and weakly basic conditions that includes HEPES buffer, which is widely used in cell culture and biomedical experiments. At the conditions of high ionic strength films swell but their swelling is reversible. Films containing caseins as polyanion appear to be more elastic and the same time more viscous than one formed with polyelectrolyte pairs. XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers. Copyright © 2014 Elsevier Inc. All rights reserved.
Singh, Archana; Sahoo, Suban K; Trivedi, Darshak R
2018-01-05
A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1 H NMR, 13 C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F - and AcO - ions in DMSO. Due to presences of the NO 2 group at para and ortho position with extended π-conjugation of naphthyl group carrying OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F - and AcO - ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of NO 2 group at para position induced in increasing the acidity of OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35ppm for F - and AcO - ions which is beneath WHO permission level (1.0ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO - ion. Receptor A1 depicts high selectivity towards AcO - ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO - and F - ions was monitored from 1 HNMR titration and DFT study. Copyright © 2017 Elsevier B.V. All rights reserved.
Areti, Sivaiah; Bandaru, Sateesh; Yarramala, Deepthi S; Rao, Chebrolu Pulla
2015-12-15
Dansyl-derivatized, triazole-linked, glucopyranosyl conjugates, (5F)LOH, (2F)LOH, (1F)LOH, and (0F)LOH were synthesized and characterized. While the (5F)LOH acts as a molecular probe for CN(-), (2F)LOH, (1F)LOH, and (0F)LOH acts as control molecules. The reactivity of CN(-) toward (5F)LOH has been elicited through the changes observed in NMR, ESI MS, emission, and absorption spectroscopy. The conjugate (5F)LOH releases a fluorescent product upon reaction by CN(-) in aqueous acetonitrile medium by exhibiting an ∼125-fold fluorescence enhancement even in the presence of other anions. Fluorescence switch-on behavior has been clearly demonstrated on the basis of the nucleophilic substitution reaction of CN(-) on (5F)LOH. A minimum detection limit of (2.3 ± 0.3) × 10(-7) M (6 ± 1 ppb) was shown by (5F)LOH for CN(-) in solution. All the other anions studied showed no change in the fluorescence emission. The utility of (5F)LOH has been demonstrated by showing its reactivity toward CN(-) on a thin layer of silica gel as well as on Whatman No. 1 cellulose filter paper strips. The role of glucose moiety and the penta-fluorobenzenesulfonyl reactive center present in (5F)LOH in the selectivity of CN(-) over other anions has been demonstrated by fluorescence, absorption and thermodynamics study. Similar studies carried out with the control molecules showed no selectivity for CN(-). The mechanistic aspects of the reactivity of CN(-) toward (5F)LOH were supported by DFT computational study.
Li, Hongmin; Li, Qingling; Wang, Xu; Xu, Kehua; Chen, Zhenzhen; Gong, Xiaocong; Liu, Xin; Tong, Lili; Tang, Bo
2009-03-15
A method for the first time to simultaneously determine superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) was developed. 2-Chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and bis(p-methylbenzenesulfonyl) dichlorofluorescein (FS), two probes that can be specifically derivatized by superoxide and hydrogen peroxide, respectively, were synthesized and used. Parameters influencing the derivatization and on-chip separation were optimized. With the use of a HEPES (20 mM, pH 7.4) running buffer, a 50 mm long separation channel, and a separation voltage of 1800 V, baseline separation was achieved within 48 s for the two derivatization products, DBZTC-oxide (DBO) and 2,7-dichlorofluorescein (DCF). The linearity ranges of the method were 0.08-5.0 and 0.02-5.0 microM with detection limits (signal-to-noise ratio = 3) of 10 nM (1.36 amol) and 5.6 nM (0.76 amol) for superoxide and hydrogen peroxide, respectively. The relative standard deviations (RSDs) of migration time and peak area were less than 2.0% and 5.0%, respectively. The recoveries of the cell extract samples spiked with 1.0 microM standard solutions were 96.1% and 93.0% for superoxide and hydrogen peroxide, respectively. With the use of this method, superoxide and hydrogen peroxide in phorbol myristate acetate (PMA)-stimulated macrophage RAW 264.7 cell extracts were found to be 0.78 and 1.14 microM, respectively. The method has paved a way for simultaneously determining two or more reactive oxygen species (ROS) in a biological system with high resolution.
Santymire, Rachel M; Marinari, Paul E; Kreeger, Julie S; Wildt, David E; Howard, JoGayle
2006-08-01
Fundamental knowledge of spermatozoa cryobiology can assist with optimizing cryopreservation protocols needed for genetic management of the endangered black-footed ferret. Objectives were to characterize semen osmolality and assess the influence of two media at various osmolalities on sperm viability. We examined the influence of Ham's F10 +Hepes medium (H) at 270, 400, 500 or 700 mOsm (adjusted with sucrose, a nonpermeating cryoprotectant) and TEST Yolk Buffer (TYB) with 0% (300 mOsm) versus 4% (900 mOsm) glycerol (a permeating cryoprotectant). Electroejaculates (n=16) were assessed for osmolality using a vapor pressure osmometer. For media comparison, semen (n=5) was collected in TYB 0%, split into six aliquots, and diluted in H270, H400, H500, H700, and TYB 0% or TYB 4%. Each sample was centrifuged (300 g, 8 min), resuspended in respective medium, and maintained at 37 degrees C for 3h. Sperm motility and forward progression were monitored every 30 min for 3h post-washing. Acrosomal integrity was monitored at 0 and 60 min post-washing. Results demonstrated that black-footed ferret semen has a comparatively high osmolality (mean+/-SEM, 513.1+/-32.6 mOsm; range, 366-791 mOsm). Ferret spermatozoa were sensitive to hyperosmotic stress. Specifically, sperm motility was more susceptible (P<0.01) to hyperosmotic conditions than acrosomal integrity, and neither were influenced (P>0.05) by hypotonic solutions. Exposure to TYB 4% glycerol retained more (P<0.01) sperm motility than a hyperosmotic Ham's (700 mOsm). These findings will guide the eventual development of assisted breeding with cryopreserved sperm contributing to genetic management of this rare species.
Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng
2014-01-01
Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060
Larson, E L; Strom, M S; Evans, C A
1980-01-01
Tests were performed using the sterile bag technique to determine the effects of type of sampling solution, use of antiseptic neutralizers, and solution temperature on the detection and quantitation of bacteria on hands. Using paired hand cultures, three sampling solutions were compared: quarter-strength Ringer solution, a phosphate buffer containing Triton X-100, and the same buffer containing antiseptic neutralizers. The phosphate buffer containing Triton X-100 was significantly better than quarter-strength Ringer solution in mean bacterial yield; the neutralizer-containing sampling solution was slightly better than Triton X-100-containing solution, although differences were not significant at the P = 0.05 level. Temperature (6 or 23 degrees C) of the sampling solution showed no consistent effect on bacterial yield from hands tested with the fluid containing neutralizers. PMID:7012171
Role of Buffers in Protein Formulations.
Zbacnik, Teddy J; Holcomb, Ryan E; Katayama, Derrick S; Murphy, Brian M; Payne, Robert W; Coccaro, Richard C; Evans, Gabriel J; Matsuura, James E; Henry, Charles S; Manning, Mark Cornell
2017-03-01
Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin
2015-04-01
In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.
Gannasin, Sri Puvanesvari; Adzahan, Noranizan Mohd; Mustafa, Shuhaimi; Muhammad, Kharidah
2016-04-01
Hydrocolloids were extracted from seed mucilage and the pulp fractions from red tamarillo (Solanum betaceum Cav.) mesocarp, and characterisation of their techno-functional properties and in vitro bile acid-binding capacities was performed. The seed mucilage hydrocolloids that were extracted, using either 1% citric acid (THC) or water (THW), had a good foaming capacity (32-36%), whereas the pulp hydrocolloids that were extracted, using 72% ethanol (THE) or 20mM HEPES buffer (THH), had no foaming capacity. The pulp hydrocolloid, however, possessed high oil-holding and water-holding capacities in the range of 3.3-3.6 g oil/g dry sample and 25-27 g water/g dry sample, respectively. This enabled the pulp hydrocolloid to entrap more bile acids (35-38% at a hydrocolloid concentration of 2%) in its gelatinous network in comparison to commercial oat fibre and other hydrocolloids studied. The exceptional emulsifying properties (80-96%) of both hydrocolloids suggest their potential applications as food emulsifiers and bile acid binders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guo, Jinshan; Kim, Gloria B.; Shan, Dingying; Kim, Jimin P.; Hu, Jianqing; Wang, Wei; Hamad, Fawzi G.; Qian, Guoying; Rizk, Elias B.; Yang, Jian
2016-01-01
For the first time, a convenient copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry) was successfully introduced into injectable citrate-based mussel-inspired bioadhesives (iCMBAs, iCs) to improve both cohesive and wet adhesive strengths and elongate the degradation time, providing numerous advantages in surgical applications. The major challenge to developing such an adhesive was the mutual inhibition effect between the oxidant used for crosslinking catechol groups and the Cu(II) reductant used for CuAAC, which was successfully minimized by adding a biocompatible buffering agent typically used in cell culture, 4-(2-hydroxyethyl) -1-piperazineethanesulfonic acid (HEPES), as a copper chelating agent. Among the investigated formulations, the highest adhesion strength achieved (223.11 ± 15.94 kPa) was around 13 times higher than that of a commercially available fibrin glue (15.4 ± 2.8 kPa). In addition, dual-crosslinked (i.e. click crosslinking and mussel-inspired crosslinking) iCMBAs still preserved considerable antibacterial and antifungal capabilities that are beneficial for the bioadhesives used as hemostatic adhesives or sealants for wound management. PMID:27770631
Talei, Daryush; Valdiani, Alireza; Puad, Mohd Abdullah
2013-01-01
Proteomic analysis of plants relies on high yields of pure protein. In plants, protein extraction and purification present a great challenge due to accumulation of a large amount of interfering substances, including polysaccharides, polyphenols, and secondary metabolites. Therefore, it is necessary to modify the extraction protocols. A study was conducted to compare four protein extraction and precipitation methods for proteomic analysis. The results showed significant differences in protein content among the four methods. The chloroform-trichloroacetic acid-acetone method using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer provided the best results in terms of protein content, pellets, spot resolution, and intensity of unique spots detected. An overall of 83 qualitative or quantitative significant differential spots were found among the four methods. Based on the 2-DE gel map, the method is expected to benefit the development of high-level proteomic and biochemical studies of Andrographis paniculata, which may also be applied to other recalcitrant medicinal plant tissues. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Iijima, Hiroko; Nakaya, Yuka; Kuwahara, Ayuko; Hirai, Masami Yokota; Osanai, Takashi
2015-01-01
Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW) medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW) were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria. PMID:25954257
Savary, B J
2001-08-01
A rapid and simple method was developed, using perfusion chromatography media, to separate the fruit-specific pectin methylesterase (PME) isoform from the depolymerizing enzyme polygalacturonase (PG) and other contaminating pectinases present in a commercial tomato enzyme preparation. Pectinase activities were adsorbed onto a Poros HS (a strong cation exchanger) column in 20 M HEPES buffer at pH 7.5. The fruit-specific PME was eluted from the column with 80 mM NaCl, followed by a step to 300 mM NaCl to elute PG activity. Rechromatography of the PME activity peak with a linear gradient further resolved two PME isoenzymes and removed residual traces of PG activity. The PG activity peak was further treated with lectin affinity chromatography to provide purified PG enzyme, which was separated from a salt-dependent PME (tentatively identified as a "ubiquitous-type" isoform), and a pectin acetylesterase. The later enzyme has not been reported previously in tomato. This method provides monocomponent enzymes that will be useful for studying enzyme mechanisms and for modifying pectin structure and functional properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P.D.; Hungund, B.; Suckow, R.
1986-03-05
Bupropione is a chemically unique antidepressant whose mechanism of action is not known. In this study they have evaluated the effect of chronic treatment with bupropione on the receptor-mediated release of inositol phosphates (IP) from brain slices in rats. Animals were implanted with Alzet osmotic pumps that delivered bupropione at a constant rate (40mg/kg/day) for 2 weeks. Cross-chopped slices of cerebral cortex from control and drug-treated rats were prelabelled with myo-/sup 3/H-inositol in HEPES buffer containing 11 mM LiCl. Accumulation of IP was measured in the presence and absence of the following agonists: Carbamylcholine (100..mu..m); norepinephrine (5..mu..M) and serotonin (10..mu..M).more » All agonists stimulated release of IP from slices of control animals but appeared to inhibit IP release in bupropione-treated rats. These results indicate that a phospholipase C inhibitor may appear following the activation of this enzyme by the agonist, and that the agonist-induced formation of the apparent inhibitor may be markedly enhanced after treatment with bupropione.« less
Huang, Guozhen; Li, Chuang; Han, Xintong; Aderinto, Stephen Opeyemi; Shen, Kesheng; Mao, Shanshan; Wu, Huilu
2018-06-01
The present study reports the development of a new 1,8-naphthalimide-based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52-9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO-HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence 'turn off' mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 10 6 M -1 and 4.67 × 10 -8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples. Copyright © 2018 John Wiley & Sons, Ltd.
Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro.
Jaiswal, Sunil Kumar; Gupta, Vivek Kumar; Ansari, Md Dilshad; Siddiqi, Nikhat J; Sharma, Bechan
2017-01-01
Carbamates, most commonly used pesticides in agricultural practices, have been reported to produce free radicals causing deleterious effects in animals. The present study was designed to assess the carbofuran induced oxidative stress in rat liver slices in vitro and also to evaluate protective role of vitamin C by incubating them in Krebs-Ringer HEPES Buffer (KRHB) containing incubation media (Williams medium E (WME) supplemented with glucose and antibiotics) with different concentrations of carbofuran. The results demonstrated that carbofuran caused significant increase in lipid peroxidation and inhibition in the activity of hepatic superoxide dismutase (SOD) in concentration dependent manner. The data with incubation medium reflected that carbofuran at lowest concentration caused an increase in SOD activity followed by its inhibition at higher concentration. Carbofuran treatment caused inhibition in the activity of catalase in liver slices and WME incubation medium. Pre-incubation of liver slices and the WME media with vitamin C restored the values of biochemical indices tested. The results indicated that carbofuran might induce oxidative stress in hepatocytes. The pretreatment with vitamin C may offer hepatoprotection from toxicity of pesticide at low concentration only.
Moody, Richard P; Joncas, Julie; Richardson, Mark; Petrovic, Sanya; Chu, Ih
2009-01-01
Dermal absorption of heavy metal soil contaminants was tested in vitro with chloride salts of radioactive nickel (Ni-63) and mercury (Hg-203). Aqueous soil suspensions, spiked with either Ni-63 or Hg-203, were applied to fresh viable human breast skin tissue in Bronaugh diffusion cells perfused with Hanks HEPES buffered (pH 7.4) receptor containing 4% bovine serum albumin (BSA). Receptor fractions were collected every 6 h for 24 h when skin was soap washed. Tests were conducted concurrently in triplicate with and without soil for each skin specimen. Mean percent dermal absorption including the skin depot for Ni-63 was 1 and 22.8% with and without soil, respectively, while for Hg-203, values of 46.6 and 78.3% were obtained. Excluding the skin depot and considering only absorption in receptor, there was 0.5 and 1.8% absorption of Ni-63 with and without soil, respectively, and 1.5 and 1.4% for Hg-203. The potential bioavailability of the skin depot is discussed in relation to dermal exposure to these metals in contaminated soil.
Calorimetric Study of Helix aspersa Maxima Hemocyanin Isoforms
Raynova, Yuliana; Idakieva, Krassimira
2018-01-01
The thermal unfolding of hemocyanin isoforms, β-HaH and αD+N-HaH, isolated from the hemolymph of garden snails Helix aspersa maxima, was studied by means of differential scanning calorimetry (DSC). One transition, with an apparent transition temperature (Tm) at 79.88°C, was detected in the thermogram of β-HaH in 20 mM HEPES buffer, containing 0.1 M NaCl, 5 mM CaCl2, and 5 mM MgCl2, pH 7.0, at scan rate of 1.0°C min−1. By means of successive annealing procedure, two individual transitions were identified in the thermogram of αD+N-HaH. Denaturation of both hemocyanins was found to be an irreversible process. The scan-rate dependence of the calorimetric profiles indicated that the thermal unfolding of investigated hemocyanins was kinetically controlled. The thermal denaturation of the isoforms β-HaH and αD+N-HaH was described by the two-state irreversible model, and parameters of the Arrhenius equation were calculated. PMID:29686932
Prolonging hypothermic storage (4 C) of bovine embryos with fish antifreeze protein.
Ideta, Atsushi; Aoyagi, Yoshito; Tsuchiya, Kanami; Nakamura, Yuuki; Hayama, Kou; Shirasawa, Atsushi; Sakaguchi, Kenichiro; Tominaga, Naomi; Nishimiya, Yoshiyuki; Tsuda, Sakae
2015-01-01
Embryos obtained via superovulation are necessary for mammalian artificial reproduction, and viability is a key determinant of success. Nonfreezing storage at 4 C is possible, but currently used storage solutions can maintain embryo viability for only 24-48 h. Here we found that 10 mg/ml antifreeze protein (AFP) dissolved in culture medium 199 with 20% (v/v) fetal bovine serum and 25 mM HEPES could keep bovine embryos alive for 10 days at 4 C. We used a recombinant AFP isolated from the notched-fin eelpout (Zoarces elongatus Kner). Photomicroscopy indicated that the AFP-embryo interaction was enhanced at 37 C. Embryos pre-warmed with the AFP solution at 37 C for 60 min maintained high viability, whereas those that were not pre-warmed could live no longer than 7 days. Thus, short-term storage of bovine embryos was achieved by a combination of AFP-containing medium and controlled pre-warming.
Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.
Chen, Z L; Huang, R Q
2014-06-20
Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission, which is mediated by both presynaptic and postsynaptic mechanisms. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Bureau, A; Lahet, J-J; Lenfant, F; Bouyer, F; Petitjean, M; Chaillot, B; Freysz, M
2005-08-01
The aggression of erythrocytes by an oxidative stress induces hemolysis. This paper aims to valid a model of erythrocytes in terms of composition of the phosphate buffer solution and of concentration of a well-known oxidant, AAPH. Three compositions of phosphate buffer solution are mixed with three concentrations of oxidant. The influence of these two parameters on hemolysis is independently studied by a variance analysis and a Kruskal-Wallis test when ANOVA is not available. The hemolysis rate increases with time at fixed oxidant concentration, but is not influenced by the composition of the buffer solution. The highest hemolysis rate, 90%, was only measured within 2 h with the highest oxidant concentration. If we retain this concentration of oxidant, the lower concentration of the buffer can by eliminated by a significant less hemolysis and the highest concentration of the buffer can by chosen in regard of the better precision for a similar hemolysis compared to the mean buffer. We hope to study the effect of anti-oxidant agent with such a model of erythrocytes.
Alvarez-Leefmans, F J; Gamiño, S M; Giraldez, F; Noguerón, I
1988-01-01
1. Intracellular Cl- activity (aiCl) and membrane potential (Em) were measured in frog dorsal root ganglion neurones (DRG neurones) using double-barrelled Cl- -selective microelectrodes. In standard Ringer solution buffered with HEPES (5 mM), equilibrated with air or 100% O2, the resting membrane potential was -57.7 +/- 1.0 mV and aiCl was 23.6 +/- 1.0 mM (n = 53). The value of aiCl was 2.6 times the activity expected for an equilibrium distribution and the difference between Em and ECl was 25 mV. 2. Removal of external Cl- led to a reversible fall in aiCl. Initial rates of decay and recovery of aiCl were 4.1 and 3.3 mM min-1, respectively. During the recovery of aiCl following return to standard Ringer solution, most of the movement of Cl- occurred against the driving force for a passive distribution. Changes in aiCl were not associated with changes in Em. Chloride fluxes estimated from initial rates of change in aiCl when external Cl- was removed were too high to be accounted for by electrodiffusion. 3. The intracellular accumulation of Cl- was dependent on the extracellular Cl- activity (aoCl). The relationship between aiCl and aoCl had a sigmoidal shape with a half-maximal activation of about 50 mM-external Cl-. 4. The steady-state aiCl depended on the simultaneous presence of extracellular Na+ and K+. Similarly, the active reaccumulation of Cl- after intracellular Cl- depletion was abolished in the absence of either Na+ or K+ in the bathing solution. 5. The reaccumulation of Cl- was inhibited by furosemide (0.5-1 x 10(-3) M) or bumetanide (10(-5) M). The decrease in aiCl observed in Cl- -free solutions was also inhibited by bumetanide. 6. Cell volume changes were calculated from the observed changes in aiCl. Cells were estimated to shrink in Cl- -free solutions to about 75% their initial volume, at an initial rate of 6% min-1. 7. The present results provide direct evidence for the active accumulation of Cl- in DRG neurones. The mechanism of Cl- transport is electrically silent, dependent on the simultaneous presence of external Cl-, Na+ and K+ and inhibited by loop diuretics. It is suggested that a Na+:K+:Cl- co-transport system mediates the active transport of Cl- across the cell membrane of DRG neurones. PMID:3254412
Tanti, N.C.; Jones, L.; Sheardown, H.
2010-01-01
Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012
Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H
2010-02-19
Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.
Combined Microfluidic-Eectric Diffused Mixing of Living Cells in Continuous Flow
NASA Astrophysics Data System (ADS)
Ming-Wen Wang,
2010-02-01
The mixing process is a crucially important stage in the operation of biological and chemical microfluidic devices. If the mixing is inadequate, reactants do not fully interact with each other, and the device may not operate properly. This paper describes a simplified microfluidic mixer (different from a chaotic mixer) which can uniformly mix a buffer solution with living cells by applying an AC electric charge. Diffusion of the living cells into the buffer solution occurs rapidly following the interface of the flow stream with the electric charge; no further agitating step is needed. To accomplish this, an asymmetric pair of electrodes was integrated at the inlets of the buffer solution and the cells fluid. When the buffer solution and the cells fluid were introduced into one flow path, they remained limited to that flow stream. When the electrodes were charged, however, the cells in a short distance were efficiently moved into the solution flow, and the original fluids were mixed. The mixing efficiency depends on the polarizability of the cells, and this in turn is governed by the dielectric properties of the cells, the medium, and the solvent. This micro device, capable of efficiently mixing living cells with a buffer solution, may potentially allow biological mixing to be done outside of hospitals, in facilities without biological analyzing instruments.
Hankins, Matthew G [Albuquerque, NM
2009-10-06
Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.
2013-08-01
The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.
Hydrogen ion dynamics in human red blood cells
Swietach, Pawel; Tiffert, Teresa; Mauritz, Jakob M A; Seear, Rachel; Esposito, Alessandro; Kaminski, Clemens F; Lew, Virgilio L; Vaughan-Jones, Richard D
2010-01-01
Our understanding of pH regulation within red blood cells (RBCs) has been inferred mainly from indirect experiments rather than from in situ measurements of intracellular pH (pHi). The present work shows that carboxy-SNARF-1, a pH fluorophore, when used with confocal imaging or flow cytometry, reliably reports pHi in individual, human RBCs, provided intracellular fluorescence is calibrated using a ‘null-point’ procedure. Mean pHi was 7.25 in CO2/HCO3−-buffered medium and 7.15 in Hepes-buffered medium, and varied linearly with extracellular pH (slope of 0.77). Intrinsic (non-CO2/HCO3−-dependent) buffering power, estimated in the intact cell (85 mmol (l cell)−1 (pH unit)−1 at resting pHi), was somewhat higher than previous estimates from cell lysates (50–70 mmol (l cell)−1 (pH unit)−1). Acute displacement of pHi (superfusion of weak acids/bases) triggered rapid pHi recovery. This was mediated via membrane Cl−/HCO3− exchange (the AE1 gene product), irrespective of whether recovery was from an intracellular acid or base load, and with no evident contribution from other transporters such as Na+/H+ exchange. H+-equivalent flux through AE1 was a linear function of [H+]i and reversed at resting pHi, indicating that its activity is not allosterically regulated by pHi, in contrast to other AE isoforms. By simultaneously monitoring pHi and markers of cell volume, a functional link between membrane ion transport, volume and pHi was demonstrated. RBC pHi is therefore tightly regulated via AE1 activity, but modulated during changes of cell volume. A comparable volume–pHi link may also be important in other cell types expressing anion exchangers. Direct measurement of pHi should be useful in future investigations of RBC physiology and pathology. PMID:20962000
NASA Technical Reports Server (NTRS)
Bugbee, B. G.; Salisbury, F. B.
1985-01-01
All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.
The Determination of the pH of Standard Buffer Solution: A Laboratory Experiment.
ERIC Educational Resources Information Center
Harris, K. R.
1985-01-01
Describes an experiment which shows: (1) how measurements of the reaction electromotive force for the cell (Pt/glass/NaCl(aq,m),buffer/AgCl/Ag/Pt) can be utilized in determining the absolute pH of the buffer; and (2) the demonstration of the use of the Debye-Huckel model of an electrolyte solution in solving an important electrochemical problem.…
Apical ammonium inhibition of cAMP-stimulated secretion in T84 cells is bicarbonate dependent.
Worrell, Roger T; Best, Alison; Crawford, Oscar R; Xu, Jie; Soleimani, Manoocher; Matthews, Jeffrey B
2005-10-01
Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells. In HEPES-buffered solutions, 10 mM apical NH(4)(+) had no significant effect on cAMP-stimulated current. In contrast, 10 mM apical NH(4)(+) reduced current within 5 min to 61 +/- 4% in the presence of 25 mM HCO(3)(-). Current inhibition was not simply due to an increase in extracellular K(+)-like cations, in that the current magnitude was 95 +/- 5% with 10 mM apical K(+) and 46 +/- 3% with 10 mM apical NH(4)(+) relative to that with 5 mM apical K(+). We previously demonstrated that inhibition of Cl(-) secretion by basolateral NH(4)(+) occurs in HCO(3)(-)-free conditions and exhibits anomalous mole fraction behavior. In contrast, apical NH(4)(+) inhibition of current in HCO(3)(-) buffer did not show anomalous mole fraction behavior and followed the absolute [NH(4)(+)] in K(+)-NH(4)(+) mixtures, where K(+) concentration + [NH(4)(+)] = 10 mM. The apical NH(4)(+) inhibitory effect was not prevented by 100 microM methazolamide, suggesting no role for apical carbonic anhydrase. However, apical NH(4)(+) inhibition of current was prevented by 10 min of pretreatment of the apical surface with 500 microM DIDS, 100 microM 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or 25 microM niflumic acid, suggesting a role for NH(4)(+) action through an apical anion exchanger. mRNA and protein for the apical anion exchangers SLC26A3 [downregulated in adenoma (DRA)] and SLC26A6 [putative anion transporter (PAT1)] were detected in T84 cells by RT-PCR and Northern and Western blots. DRA and PAT1 appear to associate with CFTR in the apical membrane. We conclude that the HCO(3)(-) dependence of apical NH(4)(+) inhibition of secretion is due to the action of NH(4)(+) on an apical anion exchanger.
Adsorption and Reduction of Hexavalent Chromium on the Surface of Vivianite at Acidic Environment
NASA Astrophysics Data System (ADS)
HA, S.; Hyun, S. P.; Lee, W.
2016-12-01
Due to the rapid increase of chemical use in industrial activities, acid spills have frequently occurred in Korea. The acid spill causes soil and water acidification and additional problems such as heavy metal leaching from the soil. Hexavalent chromium (Cr(VI)) is relatively mobile in the environment and toxic and mutagenic. Monoclinic octa-hydrated ferrous phosphate, vivianite, is one of commonly found iron-bearing soil minerals occurring in phosphorous-enriched reducing environments. We have investigated reductive sorption of Cr(VI) on the vivianite surfaces using batch experimental tests under diverse groundwater conditions. Cr(VI) (5 mg/L) was added in 6.5 g/L vivianite suspension buffered at pH 5, 7, and 9, using 0.05 M HEPES or tris buffer solution, to check the effect of pH on the reductive sorption of Cr(VI) on the vivianite surface. The aqueous Cr(VI) removal was fastest at pH 5, followed by pH 7, and pH 9. The effect of ionic strength on the removal kinetics of Cr(VI) was negligible. It could be subsequently removed via sorption and reduction on the surface of vivianite of which reactive chemical species could be aqueous Fe(II), iron oxides, and metavivianite. Adsorption test was conducted using the same amount of Cr(III) to check the selectivity of chromium species on the vivianite surface for the reductive adsorption. Through Cr extraction test, amount of strong-bound Cr to vivianite is similar for Cr(III) and Cr(VI) injection but amount of weak-bound Cr is bigger for Cr(VI) injection. Reaction mechanism for the sorption and reductive transformation of Cr(VI) to Cr(III) species at reactive sites of vivianite surface are discussed based on surface complexation modeling and K-edge Fe X-ray absorption near edge structure (XANES) results. Since vivianite is reacted with Cr(VI), two smooth peaks of absorption edge changed to one sharp peak. Pre-edge that contains 1s-3d transition information tends to show high peak when reaction time is increased and pH is low. This fact indicated that the Fe(II) is oxidized to Fe(III) at the surface of viviante and this phenomena is optimized at pH 5 and longer elapsed time.
Tiwari, Karishma; Kumar, Sumit; Kumar, Vipan; Kaur, Jeevanjot; Arora, Saroj; Mahajan, Rakesh Kumar
2018-02-15
A simple and cost effective unsymmetrical azine based Schiff base, 5-diethylamino-2-[(2-hydroxy-benzylidene)hydrazonomethyl]-phenol (1) was synthesized which selectively detect Cu 2+ ions in the presence of other competitive ions through "naked eye" in physiological conditions (EtOH-buffer (1:1, v/v, HEPES 10mM, pH=7.4)). The presence of Cu 2+ induce color change from light yellow green to yellow with the appearance of a new band at 450nm in UV-Vis spectra of Schiff base 1. The fluorescence of Schiff base 1 (10μM) was quenched completely in the presence of 2.7 equiv. of Cu 2+ ions. Sub-micromolar limit of detection (LOD=3.4×10 -7 M), efficient Stern-Volmer quenching constant (K SV =1.8×10 5 Lmol -1 ) and strong binding constant (log K b =5.92) has been determined with the help of fluorescence titration profile. Further, 1-Cu 2+ complex was employed for the detection of phosphate ions (PO 4 3- , HPO 4 2- and H 2 PO 4 - ) at micromolar concentrations in EtOH-buffer of pH7.4 based on fluorescence recovery due to the binding of Cu 2+ with phosphate ions. Solubility at low concentration in aqueous medium, longer excitation (406nm) and emission wavelength (537nm), and biocompatibility of Schiff base 1 formulates its use in live cell imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of a method to evaluate glutamate receptor function in rat barrel cortex slices.
Lehohla, M; Russell, V; Kellaway, L; Govender, A
2000-12-01
The rat is a nocturnal animal and uses its vibrissae extensively to navigate its environment. The vibrissae are linked to a highly organized part of the sensory cortex, called the barrel cortex which contains spiny neurons that receive whisker specific thalamic input and distribute their output mainly within the cortical column. The aim of the present study was to develop a method to evaluate glutamate receptor function in the rat barrel cortex. Long Evans rats (90-160 g) were killed by cervical dislocation and decapitated. The brain was rapidly removed, cooled in a continuously oxygenated, ice-cold Hepes buffer (pH 7.4) and sliced using a vibratome to produce 0.35 mm slices. The barrel cortex was dissected from slices corresponding to 8.6 to 4.8 mm anterior to the interaural line and divided into rostral, middle and caudal regions. Depolarization-induced uptake of 45Ca2+ was achieved by incubating test slices in a high K+ (62.5 mM) buffer for 2 minutes at 35 degrees C. Potassium-stimulated uptake of 45Ca2+ into the rostral region was significantly lower than into middle and caudal regions of the barrel cortex. Glutamate had no effect. NMDA significantly increased uptake of 45Ca2+ into all regions of the barrel cortex. The technique is useful in determining NMDA receptor function and will be applied to study differences between spontaneously hypertensive rats (SHR) that are used as a model for attention deficit disorder and their normotensive control rats.
The effects of biological buffers TRIS, TAPS, TES on the stability of lysozyme.
Pannuru, Pavani; Rani, Anjeeta; Venkatesu, Pannuru; Lee, Ming-Jer
2018-06-01
To explore the mechanism of lysozyme stabilization in buffer system, we have investigated the interactions between lysozyme and the biological buffers (TRIS, TAPS, and TES) using spectroscopic techniques, including ultraviolet-visible (UV-Vis), fluorescence, thermal fluorescence, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy. From the series of spectroscopic studies, it is found that the native structure of the protein remains intact in the different concentrations (0.05, 0.1, 0.25, 0.5, and 1.0M) of the biological buffer aqueous solutions at pH7.0. Moreover, all these three investigated buffers are able to protect lysozyme against thermal denaturation, particularly in high concentration (1.0M) of the buffer aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.
A study of different buffers to maximize viability of an oral Shigella vaccine.
Chandrasekaran, Lakshmi; Lal, Manjari; Van De Verg, Lillian L; Venkatesan, Malabi M
2015-11-17
Live, whole cell killed and subunit vaccines are being developed for diarrheal diseases caused by V. cholerae, Shigella species, ETEC, and Campylobacter. Some of these vaccines can be administered orally since this route best mimics natural infection. Live vaccines administered orally have to be protected from the harsh acidic gastric environment. Milk and bicarbonate solutions have been administered to neutralize the stomach acid. For many Shigella vaccine trials, 100-120 ml of a bicarbonate solution is ingested followed by the live vaccine candidate, which is delivered in 30 ml of bicarbonate, water or saline. It is not clear if maximum bacterial viability is achieved under these conditions. Also, volumes of neutralizing buffer that are optimal for adults may be unsuitable for children and infants. To address these questions, we performed studies to determine the viability and stability of a Shigella sonnei vaccine candidate, WRSS1, in a mixture of different volumes of five different buffer solutions added to hydrochloric acid to simulate gastric acidity. Among the buffers tested, bicarbonate solution, rotavirus buffer and CeraVacx were better at neutralizing acid and maintaining the viability of WRSS1. Also, a much smaller volume of the neutralizing buffer was sufficient to counteract stomach acid while maintaining bacterial viability. Published by Elsevier Ltd.
Thermal stability of tagatose in solution.
Luecke, Katherine J; Bell, Leonard N
2010-05-01
Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.
Brdicka, R
1936-07-20
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.
Iggy, Litaor M.; Thurman, E.M.
1988-01-01
Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.
Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.
Chen, Da; Harris, Philip J; Sims, Ian M; Zujovic, Zoran; Melton, Laurence D
2017-06-15
Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na 2 CO 3 , 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na 2 CO 3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.
Photo-degradation behaviour of roseoflavin in some aqueous solutions
NASA Astrophysics Data System (ADS)
Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2010-03-01
An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.
ERIC Educational Resources Information Center
McIntosh, Elizabeth; Moss, Robert
1995-01-01
Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol
2012-01-01
Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction
Brdička, R.
1936-01-01
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968
Aqueous solution dispersement of carbon nanotubes
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)
2011-01-01
Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.
Investigation of passive films formed on the surface of alloy 690 in borate buffer solution
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Wenli, Guo
2015-10-01
The passive film formed on the surface of the alloy 690 in borate buffer solution was studied by potentiodynamic curves and electrochemical impedance spectroscopy. With the increasing of the passivation potential, the corrosion resistance of the alloy 690 reduced. Moreover, the corrosion resistance of the passive film was the lowest in the vicinity of 0.6 VSCE. These results were supported by XPS and Mott-Schottky analyses. The corrosion resistance of the alloy 690 increased with the increasing of passivated potential in borate buffer solution with chloride ion. The chloride ion decreased corrosion resistance of the alloy 690 according to point defect model.
Kumar, Adepu K.; Yennawar, Neela H.; Yennawar, Hemant P.; Ferry, James G.
2011-01-01
The genome of Methanosarcina acetivorans contains a gene (ma1659) that is predicted to encode an uncharacterized chimeric protein containing a plant-type ferredoxin/thioredoxin reductase-like catalytic domain in the N-terminal region and a bacterial-like rubredoxin domain in the C-terminal region. To understand the structural and functional properties of the protein, the ma1659 gene was cloned and overexpressed in Escherichia coli. Crystals of the MA1659 protein were grown by the sitting-drop method using 2 M ammonium sulfate, 0.1 M HEPES buffer pH 7.5 and 0.1 M urea. Diffraction data were collected to 2.8 Å resolution using the remote data-collection feature of the Advanced Light Source, Lawrence Berkeley National Laboratory. The crystal belonged to the primitive cubic space group P23 or P213, with unit-cell parameters a = b = c = 92.72 Å. Assuming the presence of one molecule in the asymmetric unit gave a Matthews coefficient (V M) of 3.55 Å3 Da−1, corresponding to a solvent content of 65%. PMID:21795791
Studies of mineralization in tissue culture: optimal conditions for cartilage calcification
NASA Technical Reports Server (NTRS)
Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.
1992-01-01
The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.
Presented here are the numerical relationships between incident power densities that produce the same average electric field intensity within a chick brain half immersed in buffered saline solution and exposed to a uniform electromagnetic field at carrier frequencies of 50, 147, ...
Patel, Mehulkumar; Munjal, Bhushan; Bansal, Arvind K
2014-08-25
The purpose of this study was to evaluate the differential effect of buffering agents on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Four buffering agents, viz. citric acid (CA), malic acid (MA), succinic acid (SA) and tartaric acid (TA) were selected and their effect on GHCl crystallization was monitored using standard DSC and low temperature XRD. Onset of GHCl crystallization during heating run in DSC was measured to compare the differential effect of buffering agents. Glass transition temperature (Tg'), unfrozen water content in the freeze concentrate and crystallization propensity of the buffering agents was also determined for mechanistic understanding of the underlying effects. CA and MA inhibited while SA facilitated crystallization of GHCl even at 25 mM concentration. Increasing the concentration enhanced their effect. However, TA inhibited GHCl crystallization at concentrations <100mM and facilitated it at concentrations ≥100 mM. Lyophilization of GHCl with either SA or TA yielded elegant cakes, while CA and MA caused collapse. Tg' failed to explain the inhibitory effects of CA, MA and TA as all buffering agents lowered the Tg' of the system. Differential effect of buffering agents on GHCl crystallization could be explained by consideration of two opposing factors: (i) their own crystallization tendency and (ii) unfrozen water content in the freeze concentrate. In conclusion, it was established that API crystallization in frozen solution is affected by the type and concentration of the buffering agents. Copyright © 2014 Elsevier B.V. All rights reserved.
Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution.
Lin, Shu-Chiao; Huang, Chih-Fen; Shen, Li-Jiuan; Wang, Hsueh-Ju; Lin, Chia-Yu; Wu, Fe-Lin Lin
2015-12-01
Acanthamoeba keratitis is difficult to treat because Acanthamoeba cysts are resistant to the majority of antimicrobial agents. Despite the efficacy of 0.02% chlorhexidine in treating Acanthamoeba keratitis, a lack of data in the literature regarding the formulation's stability limits its clinical use. The objective of this study was to develop an optimal extemporaneous 0.02% chlorhexidine digluconate ophthalmic formulation for patients in need. With available active pharmaceutical ingredients, 0.02% chlorhexidine digluconate sample solutions were prepared by diluting with BSS Plus Solution or acetate buffer. Influences of the buffer, type of container, and temperature under daily-open condition were assessed based on the changes of pH values and chlorhexidine concentrations of the test samples weekly. To determine the beyond-use date, the optimal samples were stored at 2-8°C or room temperature, and analyzed at time 0 and at Week 1, Week 2, Week 3, Week 4, Week 5, Week 8, Week 12, and Week 24. Despite chlorhexidine exhibiting better stability in acetate buffer than in BSS solution, its shelf-life was < 14 days when stored in a light-resistant low-density polyethylene container. The acetate-buffered 0.02% chlorhexidine digluconate solution stored in light-resistant high-density polyethylene eyedroppers did not exhibit significant changes in pH or strength at any time interval. The acetate-buffered 0.02% chlorhexidine digluconate ophthalmic solution stored in light-resistant high-density polyethylene eyedroppers demonstrated excellent stability at 2-25°C for 6 months after being sealed and for 1 month after opening. This finding will enable us to prepare 0.02% chlorhexidine digluconate ophthalmic solutions based on a doctor's prescription. Copyright © 2014. Published by Elsevier B.V.
Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon
2012-09-01
In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.
Min, K R; Zimmer, M N; Rickard, A H
2010-11-01
The aim of this study was to explore the physicochemical parameters that influence coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Using visual coaggregation assays, the effect of different buffers, solutions of differing ionic strength, pH, temperature, and viscosity on the degree of coaggregation was assessed. Coaggregation occurred maximally in distilled water but was inhibited when coaggregates were suspended in a commonly-used oral bacterial coaggregation buffer, saline solutions, and Tris-Cl buffers. Coaggregation was weakly expressed in standard laboratory buffers. The ionic strength of inorganic salt solutions required to inhibit coaggregation depended upon the inorganic salt being tested. Coaggregation occurred at a pH of 3-10, between 5 and 80°C and was inhibited in solutions with a viscosity of 22.5 centipoises at 20°C. Inhibition of coaggregation with NaCl impaired biofilm development. When developing buffers to test for coaggregation, the natural liquid environment should be considered. Coaggregation between S. natatoria 2.1 and M. luteus 2.13 is only affected by physicochemical conditions beyond those typically found in natural freshwater ecosystems. Such a robust ability to coaggregate may enhance the ability of S. natatoria 2.1 and M. luteus 2.13 to develop a niche in freshwater biofilms.
Lehmann, David M; Cavet, Megan E; Richardson, Mary E
2010-12-01
Multipurpose solutions (MPS) often contain low concentrations of boric acid as a buffering agent. Limited published literature has suggested that boric acid and borate-buffered MPS may alter the corneal epithelium; an effect attributed to cytotoxicity induced by boric acid. However, this claim has not been substantiated. We investigated the effect of treating cells with relevant concentrations of boric acid using two cytotoxicity assays, and also assessed the impact of boric acid on corneal epithelial barrier function by measuring TEER and immunostaining for tight junction protein ZO-1 in human corneal epithelial cells. Boric acid was also assessed in an in vivo ocular model when administered for 28 days. Additionally, we evaluated Biotrue multi-purpose solution, a novel borate-buffered MPS, alone and with contact lenses for ocular compatibility in vitro and in vivo. Boric acid passed both cytotoxicity assays and did not alter ZO-1 distribution or corneal TEER. Furthermore, boric acid was well-tolerated on-eye following repeated administration in a rabbit model. Finally, Biotrue multi-purpose solution demonstrated good ocular biocompatibility both in vitro and in vivo. This MPS was not cytotoxic and was compatible with the eye when administered alone and when evaluated with contact lenses. We demonstrate that boric acid and a borate-buffered MPS is compatible with the ocular environment. Our findings provide evidence that ocular effects reported for some borate-buffered MPS may be incorrectly attributed to boric acid and are more likely a function of the unique combination of ingredients in the MPS formulation tested. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Buffer capacity of biologics--from buffer salts to buffering by antibodies.
Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick
2013-01-01
Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Cui, Yu; Li, Yexin; Zheng, Luyi; Xie, Lijun; Ning, Rui; Liu, Zheng; Lu, Junling; Zhang, Gege; Liu, Chunxiang; Zhang, Guangyou
2015-02-01
A new probe was synthesized by incorporating an α,β -unsaturated ketone to a diketopyrrolopyrrole fluorophore. The probe had exhibited a selective and sensitive response to the sulfite against other thirteen anions and biothiols (Cys, Hcy and GSH), through the nucleophilic addition of sulfite to the alkene of probe with the detection limit of 0.1 μM in HEPES (10 mM, pH 7.4) THF/H2O (1:1, v/v). Meanwhile, it could be easily observed that the probe for sulfite changed from pink to colorless by the naked eye, and from pink to blue under UV lamp after the sulfite was added for 20 min. The NMR and Mass spectral analysis demonstrated the expected addition of sulfite to the Cdbnd C bonds.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accuracy that is traceable to National Institute of Standards and Technology (NIST) standards. (ii) The... section. (i) Perform a single-point calibration using an NIST-certified buffer solution that is accurate... include a redundant pH sensor, perform a single point calibration using an NIST-certified buffer solution...
Code of Federal Regulations, 2013 CFR
2013-07-01
... accuracy that is traceable to National Institute of Standards and Technology (NIST) standards. (ii) The... section. (i) Perform a single-point calibration using an NIST-certified buffer solution that is accurate... include a redundant pH sensor, perform a single point calibration using an NIST-certified buffer solution...
ERIC Educational Resources Information Center
Dunnivant, Frank M.; Reynolds, Mark-Cody
2007-01-01
The laboratory experiment, which acts as a capstone, integrated lecture-laboratory exercise involving solution preparation, pH buffers, [E[subscript]H] (reduction potential) buffers, organic reaction mechanisms, reaction kinetics, and instrumental analysis is presented. The students completing the lecture and laboratory exercises could gain a…
Mukai, Kazuo; Ouchi, Aya; Nagaoka, Shin-ichi; Nakano, Masahiko; Ikemoto, Kazuto
2016-01-01
Measurements of the reaction of sodium salt of pyrroloquinoline quinone (PQQNa2) with vitamin C (Vit C) were performed in phosphate-buffered solution (pH 7.4) at 25 °C under nitrogen atmosphere, using UV-vis spectrophotometry. The absorption spectrum of PQQNa2 decreased in intensity due to the reaction with Vit C and was changed to that of pyrroloquinoline quinol (PQQH2, a reduced form of PQQ). One molecule of PQQ was reduced by two molecules of Vit C producing a molecule of PQQH2 in the buffer solution. PQQH2, thus produced, was recycled to PQQ due to air oxidation. PQQ and Vit C coexist in many biological systems, such as vegetables, fruits, as well as in human tissues. The results obtained suggest that PQQ is reduced by Vit C and functions as an antioxidant in biological systems, because it has been reported that PQQH2 shows very high free-radical scavenging and singlet-oxygen quenching activities in buffer solutions.
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan
1985-01-01
Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.
NASA Astrophysics Data System (ADS)
Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Ikehara, Yuzuru; Hori, Masaru
2017-10-01
Oxalate was synthesized in the glucose solution by irradiation with non-equilibrium atmospheric pressure plasma (NEAPP), in which the NEAPP plume contacted the solution surface, via the generation of several intermediate organic products such as gluconic acid. A thermodynamically unstable phase of calcium oxalate dihydrate crystallized rapidly during incubation of a NEAPP-irradiated glucose solution that contained calcium ions and was buffered at neutral pH. Longer irradiation times increased the growth rate and the number of seed crystals.
Fathallah, Anas M; Turner, Michael R; Mager, Donald E; Balu-Iyer, Sathy V
2015-03-01
The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability. Copyright © 2014 John Wiley & Sons, Ltd.
Fathallah, Anas M.; Turner, Michael R.; Balu-Iyer, Sathy V.
2015-01-01
Subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after sc administration remains a major challenge. In this work we investigated the effects of excipient dependent hyper-osmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as our animal model, we compared the effects of NaCl, mannitol and, O-Phospho-L-Serine (OPLS) on plasma concentration of rituximab over 5 days after sc administration. We observed an increase in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, as compared to isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph node in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatic, as estimated by the model, increased from 0.05 % in isotonic buffer to 13% in hyper-tonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. Our data suggests that hypertonic solutions may be a viable option to improve sc bioavailability. PMID:25377184
Song, Young-Hyun; Hidayat, Syarif; Kim, Han-Ki; Park, Joo-Yang
2016-06-01
The aim of this work was to use substrate without buffer solution in a microbial reverse-electrodialysis electrolysis cell (MREC) for hydrogen production under continuous flow condition (10 cell pairs of RED stacks, HRT=5, 7.5, and 15h). Decreasing in the HRT (increasing in the organic matter) made cell current stable and increased. Hydrogen gas was produced at a rate of 0.61m(3)-H2/m(3)-Van/d in H-MREC, with a COD removal efficiency of 81% (1.55g/L/d) and a Coulombic efficiency of 41%. This MREC system without buffer solution could successfully produce hydrogen gas at a consistent rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamics of diamond nanoparticles in solution and cells.
Neugart, Felix; Zappe, Andrea; Jelezko, Fedor; Tietz, C; Boudou, Jean Paul; Krueger, Anke; Wrachtrup, Jörg
2007-12-01
The fluorescence and motional dynamics of single diamond nanocrystals in buffer solution and in living cells is investigated. Stable hydrosols of nanodiamonds in buffer solutions are investigated by fluorescence correlation spectroscopy. Measurement of the effective hydrodynamic radius yields particles of 48 nm diameter, which is in excellent agreement with atomic force microscopy measurements made on the same particles. Fluorescence correlation spectroscopy measurements indicate that nanocrystals easily form aggregates when the buffer pH is changed. This tendency is reduced when the surface of the diamonds is covered with surfactants. Upon incubation, cells spontaneously take up nanocrystals that uniformly distribute in cells. Most of the particles get immobilized within a few minutes. The binding of streptavidin to biotinylated aggregates of 4 nm diameter nanodiamonds is demonstrated.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
Method for detecting coliform organisms
NASA Technical Reports Server (NTRS)
Nishioka, K.; Nibley, D. A.; Jeffers, E. L.; Brooks, R. L. (Inventor)
1983-01-01
A method and apparatus are disclosed for determining the concentration of coliform bacteria in a sample. The sample containing the coliform bacteria is cultured in a liquid growth medium. The cultured bacteria produce hydrogen and the hydrogen is vented to a second cell containing a buffer solution in which the hydrogen dissolves. By measuring the potential change in the buffer solution caused by the hydrogen, as a function of time, the initial concentration of bacteria in the sample is determined. Alternatively, the potential change in the buffer solution can be compared with the potential change in the liquid growth medium to verify that the potential change in the liquid growth medium is produced primarily by the hydrogen gas produced by the coliform bacteria.
Loh, Shih-Hurng; Lee, Chung-Yi; Tsai, Yi-Ting; Shih, Shou-Jou; Chen, Li-Wei; Cheng, Tzu-Hurng; Chang, Chung-Yi; Tsai, Chein-Sung
2014-01-01
Homeostasis of the intracellular pH (pHi) in mammalian cells plays a pivotal role in maintaining cell function. Thus far, the housekeeping Na+-H+ exchanger (NHE) and the Na+-HCO3 − co-transporter (NBC) have been confirmed in many mammalian cells as major acid extruders. However, the role of acid-extruding regulators in human renal artery smooth muscle cells (HRASMCs) remains unclear. It has been demonstrated that lipopolysaccharide (LPS)-induced vascular occlusion is associated with the apoptosis, activating calpain and increased [Ca2+]i that are related to NHE1 activity in endothelia cells. This study determines the acid-extruding mechanisms and the effect of LPS on the resting pHi and active acid extruders in cultured HRASMCs. The mechanism of pHi recovery from intracellular acidosis (induced by NH4Cl-prepulse) is determined using BCECF-fluorescence in cultured HRASMCs. It is seen that (a) the resting pHi is 7.19±0.03 and 7.10±0.02 for HEPES- and CO2/HCO3 −- buffered solution, respectively; (b) apart from the housekeeping NHE1, another Na+-coupled HCO3 − transporter i.e. NBC, functionally co-exists to achieve acid-equivalent extrusion; (c) three different isoforms of NBC: NBCn1 (SLC4A7; electroneutral), NBCe1 (SLC4A4; electrogenic) and NBCe2 (SLC4A5), are detected in protein/mRNA level; and (d) pHi and NHE protein expression/activity are significantly increased by LPS, in both a dose- and time- dependent manner, but NBCs protein expression is not. In conclusion, it is demonstrated, for the first time, that four pHi acid-extruding regulators: NHE1, NBCn1, NBCe1 and NBCe2, co-exist in cultured HRASMCs. LPS also increases cellular growth, pHi and NHE in a dose- and time-dependent manner. PMID:24587308
Musa-Aziz, Raif; Boron, Walter F.
2014-01-01
Exposing an oocyte to CO2/HCO3− causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3− solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3− (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3− or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive. PMID:24965589
Occhipinti, Rossana; Boron, Walter F.
2014-01-01
Human carbonic anhydrase IV (CA IV) is GPI-anchored to the outer membrane surface, catalyzing CO2/HCO3− hydration-dehydration. We examined effects of heterologously expressed CA IV on intracellular-pH (pHi) and surface-pH (pHS) transients caused by exposing oocytes to CO2/HCO3−/pH 7.50. CO2 influx causes a sustained pHi fall and a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA IV increases magnitudes of maximal rate of pHi change (dpHi/dt)max, and maximal pHS change (ΔpHS) and decreases time constants for pHi changes (τpHi) and pHS relaxations (τpHS). Decreases in time constants indicate that CA IV enhances CO2 fluxes. Extracellular acetazolamide blocks all CA IV effects, but not those of injected CA II. Injected acetazolamide partially reduces CA IV effects. Thus, extracellular CA is required for, and the equivalent of cytosol-accessible CA augments, the effects of CA IV. Increasing the concentration of the extracellular non-CO2/HCO3− buffer (i.e., HEPES), in the presence of extracellular CA or at high [CO2], accelerates CO2 influx. Simultaneous measurements with two pHS electrodes, one on the oocyte meridian perpendicular to the axis of flow and one downstream from the direction of extracellular-solution flow, reveal that the downstream electrode has a larger (i.e., slower) τpHS, indicating [CO2] asymmetry over the oocyte surface. A reaction-diffusion mathematical model (third paper in series) accounts for the above general features, and supports the conclusion that extracellular CA, which replenishes entering CO2 or consumes exiting CO2 at the extracellular surface, enhances the gradient driving CO2 influx across the cell membrane. PMID:24965590
Loke, K E; Messina, E J; Mital, S; Hintze, T H
2000-12-01
We investigated the role of kinin and nitric oxide (NO) in the modulation of cardiac O(2)consumption in Syrian hamsters with overt heart failure (HF) and age-matched normal hamsters. Using echocardiography, the hamsters with heart failure had reduced ejection fraction [31(+/-8) v 76(+/-5)%] and LV dilation [4.9(+/-0. 2) v 5.7(+/-0.3) mm, both P<0.05 from normal]. O(2)consumption in the left ventricular free wall was measured using a Clark-type O(2)electrode in an air-tight chamber, containing Krebs solution buffered with Hepes (37 degrees C, pH 7.4). Concentration response curves to bradykinin (BK), ramiprilat (RAM), amlodipine (AMLO) and the NO donor, S -nitroso- N -acetyl-penicillamine (SNAP) were performed. Basal myocardial O(2)consumption was lower in the HF group compared to normal [316(+/-21) v 404(+/-36) nmol O(2)/min/g, respectively, P<0.05]. In the hearts from normal hamsters BK (10(-4)mol/l), RAM (10(-4)mol/l), and AMLO (10(-5)mol/l) all significantly reduced myocardial O(2)consumption by 42(+/-6)%, 29(+/-7)% and 27(+/-5)% respectively. This reduction was attenuated in the presence of N -nitro- l -arginine methyl ester (l -NAME) [BK: 3.3(+/-1.5)%, RAM: 3.3(+/-1.2)%, AMLO: 2.3(+/-1.2)%, P<0.05]. Interestingly in the hearts from HF group, BK, RAM and AMLO caused a significantly smaller reduction in myocardial O(2)consumption [10(+/-2)%, 2.5(+/-1.3)%, 6.3(+/-2.3)%, P<0.05]. In contrast, the NO donor SNAP reduced myocardial O(2)consumption in both groups and all those responses were not affected by l -NAME. These data indicate that endogenous NO production through the kinin-dependent mechanism is impaired at end-stage heart failure. The loss of kinin and NO control of mitochondrial respiration may contribute to the pathogenesis of heart failure. Copyright 2000 Academic Press.
Sophocleous, Andreas M; Desai, Kashappa-Goud H; Mazzara, J Maxwell; Tong, Ling; Cheng, Ji-Xin; Olsen, Karl F; Schwendeman, Steven P
2013-12-28
An important poorly understood phenomenon in controlled-release depots involves the strong interaction between common cationic peptides and low Mw free acid end-group poly(lactic-co-glycolic acids) (PLGAs) used to achieve continuous peptide release kinetics. The kinetics of peptide sorption to PLGA was examined by incubating peptide solutions of 0.2-4mM octreotide or leuprolide acetate salts in a 0.1M HEPES buffer, pH7.4, with polymer particles or films at 4-37°C for 24h. The extent of absorption/loading of peptides in PLGA particles/films was assayed by two-phase extraction and amino acid analysis. Confocal Raman microspectroscopy, stimulated Raman scattering (SRS) and laser scanning confocal imaging, and microtome sectioning techniques were used to examine peptide penetration into the polymer phase. The release of sorbed peptide from leuprolide-PLGA particles was evaluated both in vitro (PBST+0.02% sodium azide, 37°C) and in vivo (male Sprague-Dawley rats). We found that when the PLGA-COOH chains are sufficiently mobilized, therapeutic peptides not only bind at the surface, a common belief to date, but also can be internalized and distributed throughout the polymer phase at physiological temperature forming a salt with low-molecular weight PLGA-COOH. Importantly, absorption of leuprolide into low MW PLGA-COOH particles yielded ~17 wt.% leuprolide loading in the polymer (i.e., ~70% of PLGA-COOH acids occupied), and the absorbed peptide was released from the polymer for >2 weeks in a controlled fashion in vitro and as indicated by sustained testosterone suppression in male Sprague-Dawley rats. This new approach, which bypasses the traditional encapsulation method and associated production cost, opens up the potential for facile production of low-cost controlled-release injectable depots for leuprolide and related peptides. © 2013.
Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells
López, Melany; Bollag, Roni J.; Yu, Jack C.; Isales, Carlos M.; Eroglu, Ali
2016-01-01
The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs). These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS)-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate), two polymers (PVA and ficoll), two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide), a disaccharide (trehalose), and a calcium chelator (EGTA) to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum) were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the plating efficiency to the level of unfrozen controls. Moreover, ASCs cryopreserved in this defined medium retained their multipotency and chromosomal normality. These results are of significance for tissue engineering and clinical applications of stem cells. PMID:27010403
Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M
2017-03-01
Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Milačič, Radmila; Ajlec, Dejan; Zuliani, Tea; Žigon, Dušan; Ščančar, Janez
2012-11-15
In human milk zinc (Zn) is bound to proteins and low molecular mass (LMM) ligands. Numerous investigations demonstrated that Zn bioavailability in human milk is for infant much higher than in cow's milk. It was presumed that in the LMM human milk fraction highly bioavailable Zn-citrate prevails. However, literature data are controversial regarding the amount of Zn-citrate in human milk since analytical procedures reported were not quantitative. So, complex investigation was carried out to develop analytical method for quantitative determination of this biologically important molecule. Studies were performed within the pH range 5-7 by the use of synthetic solutions of Zn-citrate prepared in HEPES, MOPS and MES buffers. Zn-citrate was separated on weak anion-exchange convective interaction media (CIM) diethylaminoethyl (DEAE) monolithic chromatographic column using NH(4)NO(3) as an eluent. Separated Zn species were determined by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). Quantitative separation of Zn-citrate complexes ([Zn(Cit)](-) and [Zn(Cit)(2)](4-); column recoveries 94-102%) and good repeatability and reproducibility of results with relative standard deviation (RSD±3.0%) were obtained. In fractions under the chromatographic peaks Zn-binding ligand was identified by electrospray ionization tandem mass spectrometry (ESI-MS-MS). Limits of detection (LOD) for determination of Zn-citrate species by CIM DEAE-FAAS and CIM DEAE-ICP-MS were 0.01 μg Zn mL(-1) and 0.0005 μg Zn mL(-1), respectively. Both techniques were sensitive enough for quantification of Zn-citrate in human milk. Results demonstrated that about 23% of total Zn was present in the LMM milk fraction and that LMM-Zn corresponded to Zn-citrate. The developed speciation method represents a reliable analytical tool for investigation of the percentage and the amount of Zn-citrate in human milk. Copyright © 2012 Elsevier B.V. All rights reserved.
Sophocleous, Andreas M.; Desai, Kashappa-Goud H.; Mazzara, J. Maxwell; Tong, Ling; Cheng, Ji-Xin; Olsen, Karl F.; Schwendeman, Steven P.
2013-01-01
An important poorly understood phenomenon in controlled-release depots involves the strong interaction between common cationic peptides and low Mw free acid end-group poly(lactic-co-glycolic acids) (PLGAs) used to achieve continuous peptide release kinetics. The kinetics of peptide sorption to PLGA was examined by incubating peptide solutions of 0.2-4 mM octreotide or leuprolide acetate salts in 0.1 M HEPES buffer, pH 7.4, with polymer particles or films at 4-37 °C for 24 h. The extent of absorption/loading of peptides in PLGA particles/films was assayed by two-phase extraction and amino acid analysis. Confocal Raman microspectroscopy and stimulated Raman scattering (SRS) and laser scanning confocal imaging techniques were used to examine peptide penetration in the polymer phase. The release of sorbed peptide from leuprolide-PLGA particles was evaluated both in vitro (PBST + 0.02% sodium azide, 37 °C) and in vivo (male Sprague-Dawley rats). We found that when the PLGA-COOH chains are sufficiently mobilized, therapeutic peptides not only bind at the surface, a common belief to date, but can also internalized and distributed throughout the polymer phase at physiological temperature forming a salt with low-molecular weight PLGA-COOH. Importantly, absorption of leuprolide into low MW PLGA-COOH particles yielded ~17 wt% leuprolide loading in the polymer (i.e., ~70% of PLGA-COOH acids occupied), and the absorbed peptide was released from the polymer for > 2 weeks in a controlled fashion in vitro and as indicated by sustained testosterone suppression in male Sprague-Dawley rats. This new approach, which bypasses the traditional encapsulation method and associated production cost, opens up the potential for facile production of low-cost controlled-release injectable depots for leuprolide and related peptides. PMID:24021356
Murphy, George W.
1983-01-01
A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment.
SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS
Cowan, G.A.
1959-08-25
The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.
Mohtashamian, Shahab; Boddohi, Soheil; Hosseinkhani, Saman
2018-02-01
Self-assembled nanogel was prepared by electrostatic complexation of two oppositely charged biological macromolecules, which were cationic nisin and anionic chondroitin sulfate (ChS). The critical factors affected the physical properties of ChS-nisin nanogel was screened and optimized by Plackett-Burman design (PB) and central composite design (CCD). The independent factors selected were: concentration ratio of nisin to ChS, injection rate of nisin solution, buffer solvent type, magnetic stirring rate, pH of initial buffer solution, centrifuge-cooling temperature, and centrifuge rotation speed. Among these factors, concentration ratio changed the entrapment efficiency and loading capacity significantly. In addition, the hydrodynamic diameter and loading capacity were significantly influenced by injection rate and pH of initial buffer solution. The optimized nanogel structure was obtained by concentration ratio of 6.4mg/mL nisin to 1mg/mL ChS, pH of buffer solution at 4.6, and nisin solution injection rate of 0.2mL/min. The observed values of dependent responses were close to predicted values confirmed by model from response surface methodology. The results obviously showed that quality by design concept (QbD) could be effectively applied to optimize the developed ChS-nisin nanogel. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Manard, Benjamin T.; Marcus, R. Kenneth
2012-08-01
Capillary-channeled polymer (C-CP) fibers are employed in a micropipette tip format to affect a stationary phase for the solid phase extraction (SPE) of proteins from buffer solutions prior to MALDI-MS analysis. Proteins readily adsorb to the polypropylene (PP) C-CP fibers while buffer species are easily washed off the tips using DI-H2O. Elution of the solutes is achieved with an aliquot of 50:50 ACN:H2O, which is compatible with the subsequent spotting on the MALDI target with the matrix solution. Lysozyme and cytochrome c are used as test species, with a primary buffer composition of 100 mM Tris-HCl. In this case, direct MALDI-MS produces no discernible protein signals. SPE on the C-CP fibers yields high fidelity mass spectra for 1 μL sample volumes. Limits of detection for cytochrome c in 100 mM Tris-HCl are on the order of 40 nM. Extraction of cytochrome c from buffer concentrations of up to 1 M Tris-HCl, provides signal recoveries that are suppressed by only ~50 % versus neat protein solutions. Finally, extraction of 3.1 μM cytochrome c from a synthetic urine matrix exhibits excellent recovery.
Robeck, T R; O'Brien, J K
2004-05-01
Research was conducted to develop an effective method for cryopreserving bottlenose dolphin (Tursiops truncatus) semen processed immediately after collection or after 24-h liquid storage. In each of two experiments, four ejaculates were collected from three males. In experiment 1, three cryopreservation methods (CM1, CM2, and CM3), two straw sizes (0.25 and 0.5 ml), and three thawing rates (slow, medium, and fast) were evaluated. Evaluations were conducted at collection, prefreeze, and 0-, 3-, and 6-h postthaw. A sperm motility index (SMI; total motility [TM] x % progressive motility [PPM] x kinetic rating [KR, scale of 0-5]) was calculated and expressed as a percentage MI of the initial ejaculate. For all ejaculates, initial TM and PPM were greater than 85%, and KR was five. At 0-h postthaw, differences in SMI among cryopreservation methods and thaw rates were observed (P < 0.05), but no effect of straw size was observed. In experiment 2, ejaculates were divided into four aliquots for dilution (1:1) and storage at 4 degrees C with a skim milk- glucose or a N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid (TES)-TRIS egg yolk solution and at 21 degrees C with a Hepes-Tyrode balanced salt solution (containing bovine albumin and HEPES) (TALP) medium or no dilution. After 24 h, samples were frozen and thawed (CM3, 0.5-ml straws, fast thawing rate) at 20 x 10(6) spermatozoa ml(-1) (low concentration) or at 100 x 10(6) spermatozoa ml(-1) (standard concentration). The SMI at 0-h postthaw was higher for samples stored at 4 degrees C than for samples stored at 21 degrees C (P < 0.001), and at 6-h postthaw, the SMI was higher for samples frozen at the standard concentration than for samples frozen at the low concentration (P < 0.05). For both experiments, acrosome integrity was similar across treatments. In summary, a semen cryopreservation protocol applied to fresh or liquid-stored semen maintained high levels of initial ejaculate sperm characteristics.
NASA Astrophysics Data System (ADS)
Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun
2013-10-01
Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.
Murphy, G.W.
1983-09-13
A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment. 3 figs.
On the delay analysis of a TDMA channel with finite buffer capacity
NASA Technical Reports Server (NTRS)
Yan, T.-Y.
1982-01-01
The throughput performance of a TDMA channel with finite buffer capacity for transmitting data messages is considered. Each station has limited message buffer capacity and has Poisson message arrivals. Message arrivals will be blocked if the buffers are congested. Using the embedded Markov chain model, the solution procedure for the limiting system-size probabilities is presented in a recursive fashion. Numerical examples are given to demonstrate the tradeoffs between the blocking probabilities and the buffer sizing strategy.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...
CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, Mariappan Parans
We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less
In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris
NASA Astrophysics Data System (ADS)
Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun
2018-05-01
Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.
In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris
NASA Astrophysics Data System (ADS)
Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun
2018-06-01
Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.
Tian, Jin Hui; Ma, Bin; Yang, KeHu; Liu, Yali; Tan, Jiying; Liu, Tian Xi
2015-03-05
Acute kidney injury (AKI) is a severe loss of kidney function that results in patients' inability to appropriately excrete nitrogenous wastes and creatinine. Continuous haemodiafiltration (HDF) or haemofiltration (HF) are commonly used renal replacement therapies for people with AKI. Buffered dialysates and solutions used in HDF or HF have varying effects on acid-base physiology and several electrolytes. The benefits and harms of bicarbonate- versus lactate-buffered HDF or HF solutions for treating patients with AKI remain unclear. To assess the benefits and harms of bicarbonate- versus lactate-buffered solutions for HDF or HF for treating people with AKI. We searched the Cochrane Renal Group's Specialised Register to 6 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. We also searched the Chinese Biomedical Literature Database. All randomised controlled trials (RCT) and quasi-RCTs that reported comparisons of bicarbonate-buffered solutions with lactate-buffered solutions for AKI were selected for inclusion irrespective of publication status or language. Two authors independently assessed titles and abstracts, and where necessary the full text of studies, to determine which satisfied our inclusion criteria. Data were extracted by two authors who independently assessed studies for eligibility and quality using a standardised data extraction form. Methodological quality was assessed using the Cochrane risk of bias tool. Results were expressed as risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI). We identified four studies (171 patients) that met our inclusion criteria. Overall, study quality was suboptimal. There were significant reporting omissions related to methodological issues and potential harms. Outcome measures were not defined or reported adequately. The studies were small and lacked follow-up phases.Serum lactate levels were significantly lower in patients treated with bicarbonate-buffered solutions (4 studies, 171 participants: MD -1.09 mmol/L, 95% CI -1.30 to -0.87; I(2) = 0%). There were no differences in mortality (3 studies, 163 participants: RR 0.76, 95% CI 0.50 to 1.15; I(2) = 0%); serum bicarbonate levels (3 studies, 163 participants: MD 0.27 mmol/L, 95% CI -1.45 to 1.99; I(2) = 78%), serum creatinine (2 studies, 137 participants: MD -22.81 µmol/L, 95% CI -129.61 to 83.99; I(2) = 73%), serum base excess (3 studies, 145 participants: MD 0.80, 95% CI -0.91 to 2.50; I(2) = 38%), serum pH (4 studies, 171 participants: MD 0.01, 95% CI -0.02 to 0.03; I(2) = 70%) or carbon dioxide partial pressure (3 studies, 151 participants: MD -1.04, 95% CI -3.84 to 1.76; I(2) = 83%). A single study reported fewer cardiovascular events (RR 0.39, 95% CI 0.20 to 0.79), higher mean arterial pressure (10.25 mm Hg, 95% CI 6.68 to 13.82) and less hypotensive events (RR 0.44, 95% CI 0.26 to 0.75) in patients receiving bicarbonate-buffered solutions. One study reported no significant difference in central venous pressure (MD 2.00 cm H2O, 95% CI -0.7 to, 4.77). Total length of hospital and ICU stay and relapse were not reported by any of the included studies. There were no significant different between bicarbonate- and lactate-buffered solutions for mortality, serum bicarbonate levels, serum creatinine, serum base excess, serum pH, carbon dioxide partial pressure, central venous pressure and serum electrolytes. Patients treated with bicarbonate-buffered solutions may experience fewer cardiovascular events, lower serum lactate levels, higher mean arterial pressure and less hypotensive events. With the exception of mortality, we were not able to assess the main primary outcomes of this review - length of time in ICU, total length of hospital stay and relapse.
Free flow cell electrophoresis using zwitterionic buffer
NASA Technical Reports Server (NTRS)
Rodkey, R. Scott
1990-01-01
Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.
In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung
2016-09-15
A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moon, Su-Young; Proussaloglou, Emmanuel; Peterson, Gregory W; DeCoste, Jared B; Hall, Morgan G; Howarth, Ashlee J; Hupp, Joseph T; Farha, Omar K
2016-10-10
Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr 6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non-volatile, water-insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Erosion of water-based cements evaluated by volumetric and gravimetric methods.
Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F
2003-05-01
To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.
Wellhoefer, Martin; Sprinzl, Wolfgang; Hahn, Rainer; Jungbauer, Alois
2014-04-11
Continuous processing of recombinant proteins was accomplished by combining continuous matrix-assisted refolding and purification by tandem simulated moving bed (SMB) size-exclusion chromatography (SEC). Recombinant proteins, N(pro) fusion proteins from inclusion bodies were dissolved with NaOH and refolded in the SMB system with a closed-loop set-up with refolding buffer as the desorbent buffer and buffer recycling of the refolding buffer of the raffinate by tangential flow filtration. For further purification of the refolded proteins, a second SMB operation also based on SEC was added. The whole system could be operated isocratically with refolding buffer as the desorbent buffer, and buffer recycling could also be applied in the purification step. Thus, a significant reduction in buffer consumption was achieved. The system was evaluated with two proteins, the N(pro) fusion pep6His and N(pro) fusion MCP-1. Refolding solution, which contained residual N(pro) fusion peptide, the cleaved autoprotease N(pro), and the cleaved target peptide was used as feed solution. Full separation of the cleaved target peptide from residual proteins was achieved at a purity and recovery in the raffinate and extract, respectively, of approximately 100%. In addition, more than 99% of the refolding buffer of the raffinate was recycled. A comparison of throughput, productivity, and buffer consumption of the integrated continuous process with two batch processes demonstrated that up to 60-fold higher throughput, up to 180-fold higher productivity, and at least 28-fold lower buffer consumption can be obtained by the integrated continuous process, which compensates for the higher complexity. Copyright © 2014 Elsevier B.V. All rights reserved.
The effects of cooling rates and type of freezing extenders on cryosurvival of rat sperm
Varisli, Omer; Scott, Hollie; Agca, Cansu; Agca, Yuksel
2013-01-01
Cryopreservation of rat sperm is very challenging due to its sensitivity to various stress factors. The objective of this study was to determine the optimal cooling rate and extender for epididymal sperm of outbred Sprague Dawley (SD) and inbred Fischer 344 (F344) rat strains. The epididymal sperm from 10–12 weeks old sexually mature SD and F344 strains were suspended in five different freezing extenders, namely HEPES buffered Tyrode’s lactate (TL-HEPES), modified Kreb’s Ringer bicarbonate (mKRB), 3% dehydrated skim milk (SM), Salamon’s Tris-citrate (TRIS), and tes/tris (TES). All extenders contained 20% egg yolk, 0.75% Equex Paste and 0.1 M raffinose or 0.1 M sucrose. The sperm samples in each extender were cooled to 4°C and held for 45 min for equilibration before freezing. The equilibrated sperm samples in each extender were placed onto a shallow quartz dish inserted into Linkam Cryostage (BCS 196). The samples were then cooled to a final temperature of −150 °C by using various cooling rates (10, 40, 70, and 100 °C/min). For thawing, the quartz dish containing the sperm samples were rapidly removed from the Linkam cryo-stage and placed on a 37 °C slide warmer and held for 1 min before motility analysis. Sperm membrane and acrosomal integrity and mitochondrial membrane potential (MMP) were assessed by SYBR-14/Propidium iodide, Alexa Fluor-488-PNA conjugate and JC-1, respectively. The total motility, acrosomal integrity, membrane integrity and MMP values were compared among cooling rates and extenders. Both cooling rate and type of extender had significant effect on cryosurvival (P<0.05). Sperm motility increased as cooling rate was increased for both strains (P<0.05). Highest cryosurvival was achieved when 100 °C/min cooling rate was used in combination with TES extender containing 20% egg yolk, 0.75% Equex paste and either 0.1 M sucrose or raffinose (P < 0.05). This study showed that TES extender containing 0.1 M raffinose or sucrose with 70 °C /min and 100 °C /min cooling rate improved post-thaw motility of rat sperm. PMID:23727068
Indrasumunar, Arief; Gresshoff, Peter M
2013-11-14
Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.
Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.
1998-01-01
The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.
Polymyxin B self-associated with phospholipid nanomicelles.
Brandenburg, Kenneth S; Rubinstein, Israel; Sadikot, Ruxana T; Önyüksel, Hayat
2012-01-01
Although Polymyxin B (PXB) is an effective antibiotic for Gram-negative bacterial infections, clinical use is hampered by toxicity and protein binding, which may be overcome by delivering PXB using a safe nanocarrier. To determine whether PXB self-associates with long-circulating biocompatible/biodegradable PEGylated phospholipid nanomicelles (SSM) and change the PXB in vitro bioactivity. PXB and SSM (15 nm) composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N [methoxy(polyethylene glycol)-2000] (DSPE-PEG(2000)) were prepared in 10 mM HEPES-buffered saline. Interactions between PXB and SSM were determined by dynamic light scattering and fluorescence spectroscopy. Anti-infective effects of PXB-SSM were tested against Pseudomonas aeruginosa strain PA01 in vitro. Approximately four PXB molecules self-associated with each SSM. However, significant decrease in P. aeruginosa killing was observed with PXB-SSM relative to PXB alone (P < 0.05). Empty SSM had no significant effect on bacterial growth. PXB's self-association with SSM resulted in mitigation of the in vitro antibacterial activity. This phenomenon could be attributed, in part, to PEG(2000) hindering electrostatic interactions between cationic PXB and anionic bacterial cell wall. PXB association with SSM formed a stable nanomedicine, resulting in decreased bioactivity of the drug in vitro. Effectiveness of this nanomedicine in vivo is yet to be studied.
In vitro fertilization of water buffalo follicular oocytes and their ability to cleave in vitro.
Suzuki, T; Singla, S K; Sujata, J; Madan, M L
1992-12-01
Water buffalo (Murrah) oocytes were collected from ovaries obtained from a local slaughterhouse. They were classified according to the character of the cumulus cells under a stereomicroscope and then cultured in 25 mM Hepes buffered tissue culture medium-199 (TCM-199) supplemented with 5% estrous water buffalo serum in an atmosphere containing 5% CO2 in air at 39 degrees C. After 20 to 24 hours of in vitro maturation, the oocytes were cultured at 38.5 degrees C in TCM-199 supplemented with 1% estrous water buffalo serum and in an atmosphere containing 5% CO2 in air. Oocytes with compact and dense cumulus cells cleaved significantly further (P<0.01, 67.3%, 33/49) than those with fair, partially denuded oocytes with thin cumulus layers (27.5%, 25/91) or small remnants of cumulus cells and poor naked oocytes (3/100). A substantial variation in fertilization and developmental rates (16.0 to 43.8%) was observed among 4 different bulls. Late morulae were transferred nonsurgically into 14 buffalo recipients on Day 6 or 7 of their estrous cycle. One recipient was diagnosed to be pregnant by palpation per rectum on Day 60 and delivered a calf in October 1991.
Naphthol-based fluorescent sensors for aluminium ion and application to bioimaging
NASA Astrophysics Data System (ADS)
Liu, Bin; Wang, Pan-feng; Chai, Jie; Hu, Xiang-quan; Gao, Tingting; Chao, Jian-bin; Chen, Ting-gui; Yang, Bin-sheng
2016-11-01
Three naphthol Schiff base-type fluorescent sensors, 1,3-Bis(2-hydroxy-1-naphthylideneamino)propane (L1), 1,3-Bis(1-naphthylideneamino)-2-hydroxypropane (L2) and 1,3-Bis(2-hydroxy-1-naphthylideneamino)-2-hydroxypropane (L3), have been synthesized. Their recognition abilities for Al3 + are studied by fluorescence spectra. Coordination with Al3 + inhibited the Cdbnd N isomerization of Schiff base which intensely increase the fluorescence of L1-L3. Possessing a suitable space coordination structure, L3 is a best selective probe for Al3 + over other metal ions in MeOH-HEPES buffer (3/7, V/V, pH = 6.6, 25 °C, λem = 435 nm). A turn-on ratio over 140-fold is triggered with the addition of 1.0 equiv. Al3 + to L3. The binding constant Ka of L3-Al3 + is found to be 1.01 × 106.5 M- 1 in a 1:1 complex mode. The detection limit for Al3 + is 0.05 μM. Theoretical calculations have also been included in support of the configuration of the L3-Al3 + complex. Importantly, the probe L3 has been successfully used for fluorescence imaging in colon cancer SW480 cells.
Stimulus specific effect of ibuprofen on chemiluminescence of sheep neutrophils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahamont, M.V.; Margiotta, M.; Gee, M.H.
1986-03-05
The authors have shown that pretreatment with ibuprofen inhibits free radical release from complement stimulated neutrophils. To further examine the effect of ibuprofen on neutrophil free radical release, they stimulated neutrophils with the synthetic peptide, FMLP, phorbol myristate acetate (PMA), or zymosan-activated plasma (ZAP). Pure (>95%), viable (>95%) sheep neutrophils (2 x 10/sup 6/) were placed in HEPES buffer, luminol, drug or vehicle and stimulated in the luminometer with one of the stimuli. The chemiluminescence (CL) response was recorded and the drug treated samples were compared to vehicle treated controls. Ibuprofen had a dose dependent effect on CL in ZAPmore » stimulated neutrophils. At the highest dose (10/sup -2/M) these cells produced only 37 +/- 7% of the CL response observed in the control cells. In contrast, at the same dose, ibuprofen did not significantly attenuate CL seen in FMLP stimulated cells, with these cells producing 79 +/- 7% of the control cells; nor did ibuprofen effect PMA stimulated CL, as these cells produced a CL response that was 85 +/- 8% of the control cells. Ibuprofen appears to have a stimulus specific effect on free radical release in activated neutrophils. It is also apparent that ibuprofen inhibits complement stimulated free radical release by some mechanism independent of its cyclooxygenase inhibitory effect.« less
van Rooy, Inge; Wu, Shin-Ying; Storm, Gert; Hennink, Wim E; Dinter-Heidorn, Heike; Schiffelers, Raymond M; Mastrobattista, Enrico
2011-09-20
Neurotensin-degrading enzyme (NTDE) inhibitors hold great potential for treating psychotic disorders. However, brain uptake of such compounds in vivo is generally low due to the presence of the blood-brain barrier. In this study, liposomal formulations of two NTDE inhibitors, named compound 1 (C1) and compound 2 (C2) were prepared. Association of these compounds with the liposomal bilayer, subsequent liposomal stability, and compound release in the presence of albumin was studied. Entrapment of the compounds in the liposomal bilayer showed the solubilizing properties of the liposomes. Size and polydispersity index of the compound-entrapped liposomes did not change over 1 month, showing colloidal stability of the liposomal drug formulations. The amount of compounds associated with the liposomes decreased within one day. After this, the association remained stable at 4°C. For C1, association remained stable at 37°C in HEPES buffered saline, and the compound was gradually released in the presence of bovine serum albumin. For C2, the release was rapid in both HBS and BSA at 37°C. In conclusion, the formulation of NTDE inhibitors C1 and C2 in liposomes has been demonstrated and holds promise to deliver NTDE inhibitors in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.
Karppi, Jouni; Akerman, Satu; Akerman, Kari; Sundell, Annika; Nyyssönen, Kristiina; Penttilä, Ilkka
2007-06-29
The influence of charge and lipophilicity of acidic and basic model drugs on their adsorption onto poly(N,N-dimethyl aminoethyl methacrylic acid) grafted poly(vinylidene fluoride) (DMAEMA-PVDF) membranes was evaluated. The effect of serum proteins (albumin, IgG) and hormones (cortisol, free thyroxine (T(4)F) and thyrotropin (TSH)) on drug adsorption was also studied. Acidic model drugs (antiepileptics and benzodiazepies) adsorbed to a greater extent onto the membrane from Hepes buffer at ionic strength of 25mM and pH 7.0 than basic drugs (antidepressants) did. Adsorption of acidic model drugs was based on electrostatic interactions between positively charged tertiary amino groups of DMAEMA side-chain and acidic negatively charged drug. Albumin diminished the adsorption of drugs from serum onto the membrane. Lipophilicity was related to the adsorption of acidic model drugs from serum onto the membrane. The degree of grafting had the greatest effect on adsorption of lipophilic drugs, but no influence was observed on adsorption of hydrophilic drugs. The present results showed that acidic drugs and albumin adsorbed onto the membrane, which suggests that the PVDF-DMAEMA membrane may be suitable for separating acidic drugs from protein-free substances for subsequent monitoring and evaluation.
Wolters, Niklas; Schembecker, Gerhard; Merz, Juliane
2015-12-01
Erinacine C is a cyathane scaffold-based secondary metabolite, which is naturally produced by the filamentous fungus Hericium erinaceus and has a high potential to treat nervous diseases such as Alzheimer's disease. The investigated approach consists of combining an optimised precultivation of H. erinaceus with an enhanced erinacine C production by developing a suitable main cultivation medium enabling the utilisation of high biomass contents. The final erinacine C production medium is buffered by 100 mM HEPES to ensure a stable pH value of 7.5 during main cultivation at inoculation ratios of up to 5:10 (v/v). The medium components, such as 5.0 g L(-1) oatmeal, 1.5 g L(-1) calcium carbonate, and 0.5 g L(-1) Edamin(®) K are crucial for an increased erinacine C production. Besides, different carbon to nitrogen ratios of 25, 64, and 103 do not affect the erinacine C synthesis. The investigated approach enables the production of 2.73 g erinacine C per litre main cultivation broth, which is tenfold higher than published data. In addition, erinacine C biosynthesis is determined to occur mainly in the first six days of main cultivation. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan
2012-09-01
Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Xiaodong; Fan, Xi; Sun, Xianke; Zhang, Yunli; Zhu, Ziqiang
2015-01-01
In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs). Compared with TiOx films and CsOx films, the TiOx/CsOx double-buffer film exhibited a favorable energy-level alignment among TiOx, CsOx, and the electron acceptor of PCBM or ICBA a better surface morphology; and an enhanced wetting and adhesion property with a contact angle of 21.0°, leading to a higher electron mobility of 5.52 × 10(-3) cm(2) V(-1)·s(-1). Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively. Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.
Vein Graft Preservation Solutions, Patency, and Outcomes After Coronary Artery Bypass Graft Surgery
Harskamp, Ralf E.; Alexander, John H.; Schulte, Phillip J.; Brophy, Colleen M.; Mack, Michael J.; Peterson, Eric D.; Williams, Judson B.; Gibson, C. Michael; Califf, Robert M.; Kouchoukos, Nicholas T.; Harrington, Robert A.; Ferguson, T. Bruce; Lopes, Renato D.
2015-01-01
IMPORTANCE In vitro and animal model data suggest that intraoperative preservation solutions may influence endothelial function and vein graft failure (VGF) after coronary artery bypass graft (CABG) surgery. Clinical studies to validate these findings are lacking. OBJECTIVE To evaluate the effect of vein graft preservation solutions on VGF and clinical outcomes in patients undergoing CABG surgery. DESIGN, SETTING, AND PARTICIPANTS Data from the Project of Ex-Vivo Vein Graft Engineering via Transfection IV (PREVENT IV) study, a phase 3, multicenter, randomized, double-blind, placebo-controlled trial that enrolled 3014 patients at 107 US sites from August 1, 2002, through October 22, 2003, were used. Eligibility criteria for the trial included CABG surgery for coronary artery disease with at least 2 planned vein grafts. INTERVENTIONS Preservation of vein grafts in saline, blood, or buffered saline solutions. MAIN OUTCOMES AND MEASURES One-year angiographic VGF and 5-year rates of death, myocardial infarction, and subsequent revascularization. RESULTS Most patients had grafts preserved in saline (1339 [44.4%]), followed by blood (971 [32.2%]) and buffered saline (507 [16.8%]). Baseline characteristics were similar among groups. One-year VGF rates were much lower in the buffered saline group than in the saline group (patient-level odds ratio [OR], 0.59 [95% CI, 0.45-0.78; P < .001]; graft-level OR, 0.63 [95% CI, 0.49-0.79; P < .001]) or the blood group (patient-level OR, 0.62 [95% CI, 0.46-0.83; P = .001]; graft-level OR, 0.63 [95% CI, 0.48-0.81; P < .001]). Use of buffered saline solution also tended to be associated with a lower 5-year risk for death, myocardial infarction, or subsequent revascularization compared with saline (hazard ratio, 0.81 [95% CI, 0.64-1.02; P = .08]) and blood (0.81 [0.63-1.03; P = .09]) solutions. CONCLUSIONS AND RELEVANCE Patients undergoing CABG whose vein grafts were preserved in a buffered saline solution had lower VGF rates and trends toward better long-term clinical outcomes compared with patients whose grafts were preserved in saline- or blood-based solutions. PMID:25073921
Ion sensitivity of large-area epitaxial graphene film on SiC substrate
NASA Astrophysics Data System (ADS)
Mitsuno, Takanori; Taniguchi, Yoshiaki; Ohno, Yasuhide; Nagase, Masao
2017-11-01
We investigated the intrinsic ion sensitivity of graphene field-effect transistors (FETs) fabricated by a resist-free stencil mask lithography process from a large-scale graphene film epitaxially grown on a SiC substrate. A pH-adjusted phosphate-buffered solution was used for the measurement to eliminate the interference of other ions on the graphene FET's ion sensitivity. The charge neutrality point shifted negligibly with changing pH for the pH-adjusted phosphate-buffered solution, whereas for the mixed buffer solution, it shifted toward the negative gate voltage owing to the decrease in the concentration of phthalate ions. This phenomenon is contrary to that observed in previous reports. Overall, our results indicate that the graphene film is intrinsically insensitive to ions except for those with functional groups that interact with the graphene surface.
Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells.
Li, Xiaodong; Zhang, Wenjun; Wu, Yulei; Min, Chao; Fang, Junfeng
2013-09-25
We reported a facile solution-processed method to fabricate a MoSx anode buffer layer through thermal decomposition of (NH4)2MoS4. Organic solar cells (OSCs) based on in situ growth MoSx as the anode buffer layer showed impressive improvements, and the power conversion efficiency was higher than that of conventional PEDOT:PSS-based device. The MoSx films obtained at different temperatures and the corresponding device performance were systematically studied. The results indicated that both MoS3 and MoS2 were beneficial to the device performance. MoS3 could result in higher Voc, while MoS2 could lead to higher Jsc. Our results proved that, apart from MoO3, molybdenum sulfides and Mo(4+) were also promising candidates for the anode buffer materials in OSCs.
Calculated and measured [Ca(2+)] in buffers used to calibrate Ca(2+) macroelectrodes.
McGuigan, John A S; Stumpff, Friederike
2013-05-01
The ionized concentration of calcium in physiological buffers ([Ca(2+)]) is normally calculated using either tabulated constants or software programs. To investigate the accuracy of such calculations, the [Ca(2+)] in EGTA [ethylene glycol-bis(β-aminoethylether)-N,N,N|,N|-tetraacetic acid], BAPTA [1,2-bis(o-aminophenoxy) ethane-N,N,N|,N|-tetraacetic acid], HEDTA [N-(2-hydroxyethyl)-ethylenediamine-N,N|,N|-triacetic acid], and NTA [N,N-bis(carboxymethyl)glycine] buffers was estimated using the ligand optimization method, and these measured values were compared with calculated values. All measurements overlapped in the pCa range of 3.51 (NTA) to 8.12 (EGTA). In all four buffer solutions, there was no correlation between measured and calculated values; the calculated values differed among themselves by factors varying from 1.3 (NTA) to 6.9 (EGTA). Independent measurements of EGTA purity and the apparent dissociation constants for HEDTA and NTA were not significantly different from the values estimated by the ligand optimization method, further substantiating the method. Using two calibration solutions of pCa 2.0 and 3.01 and seven buffers in the pCa range of 4.0-7.5, calibration of a Ca(2+) electrode over the pCa range of 2.0-7.5 became a routine procedure. It is proposed that such Ca(2+) calibration/buffer solutions be internationally defined and made commercially available to allow the precise measurement of [Ca(2+)] in biology. Copyright © 2013 Elsevier Inc. All rights reserved.
Study of buffer substrate and Arenga wood fiber size on hydroponic Kailan (Brassica alboglabra)
NASA Astrophysics Data System (ADS)
Harjoko, D.; Anggraheny, M. D.; Arniputri, R. B.
2018-03-01
Kailan is a kind of vegetable that has high economic value, however its prospect is not well developed. One of obstacles in Kailan cultivation is the limitation of fertile soil, that can be solved by using hydroponic substrate. Considering its amount and potential, the fiber waste of Arenga wood was selected as substrate candidate. For that, this research aims to study the growth and yield of Kailan with different soaking treatment using buffer solution and size of Arenga wood fiber in the hydroponic substrate. Research was conducted at Green House Laboratory, Faculty of Agriculture Sebelas Maret University Surakarta from February to May 2017. The treatments were soaking buffer solution with EC 1.2 mScm-1; 1.4 mScm-1; and 1.6 mScm-1 and the size of Arenga fiber <1 cm, 1-2 cm and 2-3 cm. In this experiment, sand media was used as control. Result show that, soaking in 1.6 mScm-1 EC buffer solution with Arenga fiber size lower than 3 cm gives higher root volume compared to other treatments combination.
Buffered hydrochloric acid: a modern method of treating metabolic alkalosis.
Finkle, D; Dean, R E
1981-03-01
Twenty-one patients with metabolic alkalosis were treated successfully with intravenous hydrochloric acid (HCl) buffered in an amino acid solution (TPN). No complications of HCl were seen. TPN was used to meet energy needs and provide a buffering effect through the interaction of HCl and amino acids. Buffered HCl therapy should be considered as the initial treatment in patients with metabolic alkalosis associated with congestive heart failure, renal failure, hepatic failure, cerebral edema, or refractory metabolic alkalosis.
Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry.
Marák, Jozef; Stanová, Andrea
2014-05-01
In this work, the impact of buffer salts/matrix effects on the signal in direct injection MS with an electrospray interface (DI-ESI-MS) following pITP fractionation of the sample was studied. A range of buffers frequently used in CE analyses (pH 3-10) was prepared containing 10, 50, and 90% v/v of ACN, respectively. The sets of calibration solutions of cetirizine (an antihistaminic drug with an amphiprotic character) within a 0.05-2.0 mg/L concentration range were prepared in different buffers. The greatest enhancements in the MS signal (in terms of change in the slope of the calibration line) were obtained for the beta-alanine buffer (pH 3.5) in positive ionization and for the borate buffer (pH 9.2) in negative ionization, respectively. The procedure was successfully applied to the analysis of buserelin (a peptidic drug). The slope of the calibration line for solutions containing the beta-alanine buffer with 50% of ACN was 4 times higher than for water or urine, respectively. This study clearly demonstrates that the buffer salt/matrix effects in an offline combination of pITP and DI-ESI-MS can also play a positive role, as they can enhance the signal in MS. A similar influence of the above effects can also be presumed in the CE techniques combined on-line with ESI-MS.
[Study on stability of curcumine, demethoxycurcumin and bisdemethoxycurcumin].
Han, Gang; Cui, Jing-jing; Bi, Rui; Zhao, Lin-lin; Zhang, Wei-guo
2008-11-01
To investigate the stability of curcumin, demethoxycurcumin and bisdemethoxycurcumin in different buffer solution. To determine concentration of curcumin by HPLC when added curcumin, demethoxycurcumin and bisdemethoxycurcumin into the buffer solution the equation of degradation was established. The sequence of stability are bisdemethoxycurcumin > or = demethoxycurcumin > or =curcumin at the same condition. The demethoxycurcumin can stabilize curcumin more strong than the others. The demethoxycurcumin is a nature stabilizing agent for curcumin.
Legallais, C; Anspach, F B; Bueno, S M; Haupt, K; Vijayalakshmi, M A
1997-03-28
The depyrogenation of different IgG solutions using the histidine-linked hollow fiber membrane developed in our laboratory is presented here. Three strategies for endotoxin (ET) removal were investigated according to the immobilized histidine's ability to bind different immunoglobulins: (1) ET removal from 1 mg/ml non histidine-binding mouse monoclonal IgG1 (MabCD4) solution was achieved in the presence of acetate buffer (pH 5.0) without any protein loss. (2) For contaminated human IgG, combined adsorption of ET and IgG in the presence of MOPS of Tris buffer was tested, followed by differential elution using increasing salt concentrations. This attempt was not successful since ET were quantitatively found in the IgG elution fraction. (3) Alternatively, it was proposed to adsorb selectively ET in the presence of acetate buffer (pH 5.0) under non binding conditions for human IgG. Human IgG could then be purified if necessary with the same membrane in the presence of MOPS buffer (pH 6.5). With a 1 m2 histidine-PEVA module under these operating conditions, it is estimated that the depyrogenation of 3 l of 1 mg/ml IgG (human or murine) solution containing 80 EU/ml of ET should be possible.
Common stock solutions, buffers, and media.
2001-05-01
This section describes the preparation of buffers and reagents used in this manual for cell culture, manipulation of tissue, and cell biological methods. Also discussed are special considerations for PCR experiments and for working with RNA.
Wen, Jia; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K
2016-11-01
The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.
Aqueous photolysis of niclosamide
Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.
2004-01-01
The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.
2011-10-01
blocking buffer, 5% fat -free milk in 0.1% Tris-buffered solution/Tween-20, for 1 hour at room temperature and then probed overnight at 5°C with...and blotting onto Immun-Blot PVDF membrane (Bio-Rad, Hercules, CA). Membranes were blocked with blocking buffer, 5% fat -free milk in 1x PBS buffer...distribution unlimited 13. SUPPLEMENTARY NOTES The aim of this study is to uncover novel transient receptor potential protein vanilloid-1 (TRPV1
Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra
2014-01-23
The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.
Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K.
2006-01-01
Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation. PMID:16798808
Lew, Susie Q; Kohn, Orly F; Cheng, Yuk-Lun; Kjellstrand, Carl M; Ing, Todd S
2017-06-01
Hemodialysis patients can acquire buffer base (i.e., bicarbonate and buffer base equivalents of certain organic anions) from the acid and base concentrates of a three-stream, dual-concentrate, bicarbonate-based, dialysis solution delivery machine. The differences between dialysis fluid concentrate systems containing acetic acid versus sodium diacetate in the amount of potential buffering power were reviewed. Any organic anion such as acetate, citrate, or lactate (unless when combined with hydrogen) delivered to the body has the potential of being converted to bicarbonate. The prescribing physician aware of the role that organic anions in the concentrates can play in providing buffering power to the final dialysis fluid, will have a better knowledge of the amount of bicarbonate and bicarbonate precursors delivered to the patient. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Fukuda, Masakazu; Moriyama, Chifumi; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko
2015-12-01
To investigate the relationship between viscosity of concentrated MAb solutions and particle size parameters obtained from small-angle X-ray scattering (SAXS). The viscosity of three MAb solutions (MAb1, MAb2, and MAb3; 40-200 mg/mL) was measured by electromagnetically spinning viscometer. The protein interactions of MAb solutions (at 60 mg/mL) was evaluated by SAXS. The phase behavior of 60 mg/mL MAb solutions in a low-salt buffer was observed after 1 week storage at 25°C. The MAb1 solutions exhibited the highest viscosity among the three MAbs in the buffer containing 50 mM NaCl. Viscosity of MAb1 solutions decreased with increasing temperature, increasing salt concentration, and addition of amino acids. Viscosity of MAb1 solutions was lowest in the buffer containing histidine, arginine, and aspartic acid. Particle size parameters obtained from SAXS measurements correlated very well with the viscosity of MAb solutions at 200 mg/mL. MAb1 exhibited liquid-liquid phase separation at a low salt concentration. Simultaneous addition of basic and acidic amino acids effectively suppressed intermolecular attractive interactions and decreased viscosity of MAb1 solutions. SAXS can be performed using a small volume of samples; therefore, the particle size parameters obtained from SAXS at intermediate protein concentration could be used to screen for low viscosity antibodies in the early development stage.
NASA Astrophysics Data System (ADS)
Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan
2017-04-01
We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.
Tang, Lijun; Huang, Zhenlong; Zheng, Zhuxuan; Zhong, Keli; Bian, Yanjiang
2016-09-01
Selective fluorescence turn on Zn(2+) sensor with long-wavelength emission and a large Stokes shift is highly desirable in Zn(2+) sensing area. We reported herein the synthesis and Zn(2+) recognition properties of a new thiosemicarbazone-based fluorescent sensor L. L displays high selectivity and sensitivity toward Zn(2+) over other metal ions in DMSO-H2O (1:1, v/v, HEPES 10 mM, pH = 7.4) solution with a long-wavelength emission at 572 nm and a large Stokes shift of 222 nm. Confocal fluorescence microscopy experiments demonstrate that L is cell-permeable and capable of monitoring intracellular Zn(2+). Graphical Abstract We report a new thiosemicarbazone-based fluorescent sensor (L) for selective recognition of Zn(2+) with a long wavelength emission and a large Stokes shift.
TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.
Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš
2011-06-01
The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A
2014-02-01
This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.
Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin.
Hung, Chi-Feng; Lin, Yin-Ku; Huang, Zih-Rou; Fang, Jia-You
2008-05-01
Resveratrol, the main active polyphenol in red wine, has been demonstrated to show benefits against skin disorders. The bioavailability of orally administered resveratrol is insufficient to permit high enough drug concentrations for systemic therapy. In this study, we examined the feasibility of the topical/transdermal delivery of resveratrol. The effects of vehicles on the in vitro permeation and skin deposition from saturated solutions such as aqueous buffers and soybean oil were investigated. The general trend for the delivery from solutions was: pH 6 buffer=pH 8 buffer>10% glycerol formal in pH 6 buffer>pH 9.9 buffer>pH 10.8 buffer>soybean oil. A linear relationship was established between the permeability coefficient (K(p)) and drug accumulation in the skin reservoir. Viable epidermis/dermis served as the predominant barrier for non-ionic resveratrol permeation. On the other hand, both the stratum corneum (SC) and viable skin acted as barriers to anionic resveratrol. Several prototype hydrogel systems were also studied as resveratrol vehicles. The viscosity but not the polarity of the hydrogels controlled resveratrol permeation/deposition. Piceatannol, a derivative of resveratrol with high pharmacological activity, showed 11.6-fold lower skin permeation compared to resveratrol. The safety profiles of resveratrol suggested that the hydrogel caused no SC disruption or skin erythema. It was concluded that delivery via a skin route may be a potent way to achieve the therapeutic effects of resveratrol. This is the first report to establish the permeation profiles for topically applied resveratrol.
Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells.
Neumann, Avidan U; Phillips, Sandra; Levine, Idit; Ijaz, Samreen; Dahari, Harel; Eren, Rachel; Dagan, Shlomo; Naoumov, Nikolai V
2010-09-01
Antibodies are thought to exert antiviral activities by blocking viral entry into cells and/or accelerating viral clearance from circulation. In particular, antibodies to hepatitis B virus (HBV) surface antigen (HBsAg) confer protection, by binding circulating virus. Here, we used mathematical modeling to gain information about viral dynamics during and after single or multiple infusions of a combination of two human monoclonal anti-HBs (HepeX-B) antibodies in patients with chronic hepatitis B. The antibody HBV-17 recognizes a conformational epitope, whereas antibody HBV-19 recognizes a linear epitope on the HBsAg. The kinetic profiles of the decline of serum HBV DNA and HBsAg revealed partial blocking of virion release from infected cells as a new antiviral mechanism, in addition to acceleration of HBV clearance from the circulation. We then replicated this approach in vitro, using cells secreting HBsAg, and compared the prediction of the mathematical modeling obtained from the in vivo kinetics. In vitro, HepeX-B treatment of HBsAg-producing cells showed cellular uptake of antibodies, resulting in intracellular accumulation of viral particles. Blocking of HBsAg secretion also continued after HepeX-B was removed from the cell culture supernatants. These results identify a novel antiviral mechanism of antibodies to HBsAg (anti-HBs) involving prolonged blocking of the HBV and HBsAg subviral particles release from infected cells. This may have implications in designing new therapies for patients with chronic HBV infection and may also be relevant in other viral infections.
The adsorption mechanism of nortryptiline on C18-bonded discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A
2005-08-01
The adsorption isotherms of an ionizable compound, nortriptyline, were accurately measured by frontal analysis (FA) on a C{sub 18}-Discovery column, first without buffer (in an aqueous solution of acetonitrile at 15%, v/v of ACN), then with a buffer (in 28%, v/v ACN solution). The buffers were aqueous solutions containing 20 mM of formic acid or a phosphate buffer at pH 2.70. The linear range of the isotherm could not be reached with the non-buffered mobile phase using a dynamic range larger than 40,000 (from 1.2 x 10{sup -3} g/L to 50 g/L). With a 20 mM buffer in the liquidmore » phase, the isotherm is linear for concentrations of nortriptyline inferior to 10{sup -3} g/L (or 3 {micro} mol/L). The adsorption energy distribution (AED) was calculated to determine the heterogeneity of the adsorption process. AED and FA were consistent and lead to a trimodal distribution. A tri-Moreau and a tri-Langmuir isotherm models accounted the best for the adsorption of nortriptyline without and with buffer, respectively. The nature of the buffer affects significantly the middle-energy sites while the properties of the lowest and highest of the three types of energy sites are almost unchanged. The desorption profiles of nortriptyline show some anomalies in relation with the formation of a complex multilayer adsorbed phase of acetonitrile whose excess isotherm was measured by the minor disturbance method. The C{sub 18}-Discovery column has about the same total saturation capacity, around 200 g of nortriptyline per liter of adsorbent (or 116 mg/g), with or without buffer. About 98-99% of the available surface consists in low energy sites. The coexistence of these different types of sites on the surface solves the McCalley's enigma, that the column efficiency begins to drop rapidly when the analyte concentration reaches values that are almost one hundred times lower than those that could be predicted from the isotherm data acquired under the same experimental conditions. Due to the presence of some relatively rare high energy sites, the largest part of the saturation capacity is not practically useful.« less
Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing
NASA Astrophysics Data System (ADS)
Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.
Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.
Closed-form solutions of performability. [modeling of a degradable buffer/multiprocessor system
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1981-01-01
Methods which yield closed form performability solutions for continuous valued variables are developed. The models are similar to those employed in performance modeling (i.e., Markovian queueing models) but are extended so as to account for variations in structure due to faults. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. To avoid known difficulties associated with exact transient solutions, an approximate decomposition of the model is employed permitting certain submodels to be solved in equilibrium. These solutions are then incorporated in a model with fewer transient states and by solving the latter, a closed form solution of the system's performability is obtained. In conclusion, some applications of this solution are discussed and illustrated, including an example of design optimization.
Zhang, Jiewen; Bell, Leonard N
2017-04-01
Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.
Ljubić, Ivan; Matasović, Brunislav; Bonifačić, Marija
2013-11-07
A remarkable buffer-mediated control between free-radical substitution (FRS) and proton-coupled electron transfer (PCET) is demonstrated for the reaction between iodoethane and the α-hydroxyethyl radical in neutral aqueous solution in the presence of bicarbonate or phosphate buffer. The reaction is initiated by the γ-radiolysis of the water solvent, and the products, either the iodine atom (FRS) or anion (PCET), are analysed using ion chromatographic and spectrophotometric techniques. A detailed insight into the mechanism is gained by employing density functional theory (M06-2X), Møller-Plesset perturbation treatment to the second order (MP2), and multireference methods (CASSCF/CASPT2). Addition of a basic buffer anion is indispensable for the reaction to occur and the competition between the two channels depends subtly on its proton accepting affinity, with FRS being the dominant channel in the phosphate and PCET in the bicarbonate containing solutions. Unlike the former, the latter channel sustains a chain-like process which significantly enhances the dehalogenation. The present systems furnish an example of the novel PCET/FRS dichotomy, as well as insights into possibilities of its efficient control.
Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis.
Bender, Thorsten O; Witowski, Janusz; Aufricht, Christoph; Endemann, Michaela; Frei, Ulrich; Passlick-Deetjen, Jutta; Jörres, Achim
2008-09-01
Amino-acid-based peritoneal dialysis (PD) fluids have been developed to improve the nutritional status of PD patients. As they may potentially exacerbate acidosis, an amino-acid-containing solution buffered with bicarbonate (Aminobic) has been proposed to effectively maintain acid-base balance. The aim of this study was to evaluate the mesothelial biocompatibility profile of this solution in comparison with a conventional low-glucose-based fluid. Omentum-derived human peritoneal mesothelial cells (HPMC) were preexposed to test PD solutions for up to 120 min, then allowed to recover in control medium for 24 h, and assessed for heat-shock response, viability, and basal and stimulated cytokine [interleukin (IL)-6] and prostaglandin (PGE(2)) release. Acute exposure of HPMC to conventional low-glucose-based PD solution resulted in a time-dependent increase in heat-shock protein (HSP-72) expression, impaired viability, and reduced ability to release IL-6 in response to stimulation. In contrast, in cells treated with Aminobic, the expression of HSP-72 was significantly lower, and viability and cytokine-producing capacity were preserved and did not differ from those seen in control cells. In addition, exposure to Aminobic increased basal release of IL-6 and PGE(2). These data point to a favorable biocompatibility profile of the amino-acid-based bicarbonate-buffered PD solution toward HPMC.
Investigations Concerning Hydrolysis and Stabilization of Antiradiation Compounds
1982-01-01
Stability of Unencapsulated WR 2721 31 V. DISCUSSION 35 A. Microencapsulation 35 1. Microspheres 35 2. Microcapsules 35 B. Hydrolytic Stability of...in 1.5 hours at 370C in buffered solutions of pH 1.0 or 3.0. 3^ The more promising microspheres and microcapsules released the WR 2721 within two...hours at pH 7.5 in buffered solutions. 4) Analytical procedures were developed for: "♦ WR 2721 (directly) in microcapsules using an HPLC
Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.
2017-01-24
A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.
Li, Ning; Ziegemeier, Daisy; Bass, Laura; Wang, Wei
2008-12-15
In this study, size exclusion high performance liquid chromatography was evaluated for its application in separation and quantitation of free polyethylene glycol (PEG) and its PEGylated-protein-conjugate (PEG-conjugate). Although the large mass of the free PEG (2-fold greater than the protein) made separation difficult, chromatographic conditions were identified enabling resolution and quantitation of the free PEG, PEG-conjugate and non-PEGylated protein with Shodex Protein KW803 and KW804 columns in series and refractive index detection. The optimum resolution of 1.7 and 2.0 was achieved for the free PEG and PEG-conjugate as well as the free PEG and non-PEGylated protein using 20mM HEPES buffer at pH 6.5. Under this condition, the plot of log(10)MW of all the pertinent analytes against retention time showed a linear relationship with a correlation coefficient of 1. Limited assay performance evaluation demonstrated that the method was linear in the concentration range of 10 to 250 microg/mL of free PEG with correlation coefficients of > or = 0.99. When free PEG in this concentration range was spiked into PEG-conjugate samples at 1mg/mL, the recovery was in the range of 78%-120%. Detection and quantitation limits were determined to be, respectively, 10 and 25 microg/mL for free PEG. The R.S.D. for intra- and inter-day precision was 0.09% or less for retention time measurements and 2.9% or less for area count measurements. Robustness testing was performed by deliberately deviating +/-0.2 pH units away from the desired pH as well as by increasing the flow rate. These deviations resulted in no significant impact on area percent distribution of all species. However, separation was found to be sensitive to high ionic strength and buffer species.
Truta, Liliana A A N A; Ferreira, Nádia S; Sales, M Goreti F
2014-12-20
This works presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl)trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6×10 -5 mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.
Truta, Liliana A.A.N.A.; Ferreira, Nádia S.; Sales, M. Goreti F.
2015-01-01
This works presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl)trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (−57.4mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6×10−5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications. PMID:26456975
ter Wee, P M; Beelen, R H J; van den Born, J
2003-12-01
The application of animal models to study the biocompatibility of bicarbonate-buffered peritoneal dialysis solutions. Patients treated with peritoneal dialysis (PD) are at risk for development of ultrafiltration failure and peritonitis. These two significant complications can result in the termination of PD treatment. The relative unphysiologic composition of the currently used standard peritoneal dialysis fluids (PDF) is considered to be a major cause for the development of morphologic changes of the peritoneal membrane, ultimately resulting in ultrafiltration failure and probably contributing to changes in local defense mechanisms with the associated increased risk of peritonitis. In recent years, a major research focus has become the development of new and improved PD solutions. This has resulted in the development of an amino-acid-based PDF, a glucose polymer-based PDF, and several bicarbonate-buffered PDF. Typically, the first phase of biocompatibility testing of new PD solutions involves in vitro testing, employing isolated cells such as peritoneal macrophages or cell culture systems using human peritoneal mesothelial cells. The results of such evaluations are useful in providing insights into the biocompatibility performance of any given formulation, but suffer from several disadvantages, which can be better addressed using animal models. In vivo studies using animals permit the analysis of biocompatibility under conditions that allow for cell-to-cell interactions and dynamic changes in solution composition that more closely mimic the clinical situation. In this paper, we will review the use of animal models for the study of PDF biocompatibility and their application to the assessment of bicarbonate-buffered PDF.
NASA Astrophysics Data System (ADS)
Kurmaz, S. V.; Gak, V. Yu.; Kurmaz, V. A.; Konev, D. V.
2018-02-01
Water-soluble forms of a hydrophobic dye, zinc tetraphenylporphyrinate, are obtained via its solubilization by polymer particles of the micellar type formed by a copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate. Hydrodynamic radii R h and the size distribution of such particles in neutral aqueous buffer solutions are determined via dynamic light scattering. The electrochemical activity of the encapsulated dye is found, and its photochemical properties (absorption and fluorescence) are studied.
Hickethier, T; Dämmrich, J; Silber, R E; Finster, S; Elert, O
1999-02-01
In the present study the influence of different storage solutions on endothelial integrity or damage was investigated with direct methods particularly with transmission electron microscopy (TEM), scanning electron microscopy (SEM) and immunohistochemistry. Saphenous vein segments of 10 cm in length were taken surgically from 6 male CABG-patients (aged 60-70) under standardized conditions. Each vein segment was cut into rings, which were incubated at room temperature for 45 minutes in different storage solutions, particularly in 0.9% sodium chloride solution and in buffered solution (M 199) with 5% human serum albumin respectively. Then, the vein segments were fixed in 3.5% glutaraldehyde and prepared for scanning and transmission electron microscopy to evaluate the endothelial damage. In addition, immunohistochemical staining (CD34, PECAM and Factor VIII) was performed. When using 0.9% sodium chloride solution, the SEM-examination revealed that 55% of the cell population was destroyed. In comparison to these findings only 26% of the endothelial cell population was damaged when the venous segment was stored in buffered solution with 5% albumin (p<0.01). In immunohistochemistry (CD34, PECAM, Factor VIII) these findings were supported. This study demonstrates the importance of storage solutions in regard to endothelial integrity. For best preservation of endothelium it is necessary to modify conventional storage methods. So, storage in buffered solution with albumin has shown much better endothelial cell preservation compared with physiological saline which might reduce the obliteration rate of CABG in future.
Xiong, Yongliang; Wood, Scott A
2002-01-01
To understand the aqueous species important for transport of rhenium under supercritical conditions, we conducted a series of solubility experiments on the Re–ReO2 buffer assemblage and ReS2. In these experiments, pH was buffered by the K–feldspar–muscovite–quartz assemblage; in sulfur-free systems was buffered by the Re–ReO2 assemblage; and and in sulfur-containing systems were buffered by the magnetite–pyrite–pyrrhotite assemblage. Our experimental studies indicate that the species ReCl40 is dominant at 400°C in slightly acidic to near-neutral, and chloride-rich (total chloride concentrations ranging from 0.5 to 1.0 M) environments, and ReCl3+ may predominate at 500°C in a solution with total chloride concentrations ranging from 0.5 to 1.5 M. The results also demonstrate that the solubility of ReS2 is about two orders of magnitude less than that of ReO2. This finding not only suggests that ReS2 (or a ReS2 component in molybdenite) is the solubility-controlling phase in sulfur-containing, reducing environments but also implies that a mixing process involving an oxidized, rhenium-containing solution and a solution with reduced sulfur is one of the most effective mechanisms for deposition of rhenium. In analogy with Re, TcS2 may be the stable Tc-bearing phase in deep geological repositories of radioactive wastes.
In vitro behaviour of three biocompatible glasses in composite implants.
Varila, Leena; Lehtonen, Timo; Tuominen, Jukka; Hupa, Mikko; Hupa, Leena
2012-10-01
Poly(L,DL-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.
Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.
Nwokoro, Ogbonnaya; Anthonia, Odiase
2015-01-01
Amylases are among the main enzymes used in food and other industries. They hydrolyse starch molecules into polymers composing glucose units. Amylases have potential applications in a number of industrial processes including foods and pharmaceutical industries. Alkaline α-amylase has the potential of hydrolysing starch under alkaline pH and is useful in the starch and textile industries and as an ingredient of detergents. Amylases are produced from plants, however, microbial production processes have dominated applications in the industries. Optimization of microbial production processes can result in improved enzyme yields. Amylase activity was assayed by incubating the enzyme solution (0.5 ml) with 1% soluble starch (0.5 ml) in 0.1 M Tris/HCl buffer (pH 8.5). After 30 minutes, the reaction was stopped by the addition of 4 mL of 3,5-dinitrosalicylic acid (DNS) reagent then heated for 10 min in boiling water bath and cooled in a refrigerator. Absorbance readings were used to estimate the units of enzyme activity from glucose standard curve. Hydrolysed native starches from cassava, rice, corn, coco yam, maize and potato and soluble starch were adjusted to pH 8.5 prior to incubation with crude enzyme solution. Reducing sugars produced were therefore determined. The effect of pH on enzyme activity of the alkaline α-amylase was determined by using buffer solutions of different pH (potassium phosphate buffer, 6.0-7.0; Tris-HCl buffer 7.5 to 9.0 and carbonate/bicarbonate buffer, pH 9.5-11) for enzyme assay. The pH stability profile of the enzyme was determined by incubating 0.5 ml of α-amylase enzyme in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h in various buffers. The effect of temperature on enzyme activity was studied by incubating 0.5 mL of the enzyme solution contained in the test tube and 0.5 mL of 1% soluble starch (Merck) solution prepared in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (25, 30, 35, 40, 45, 50, 55 and 60°C) in a thermo static water bath. The reactions were stopped by adding DNS reagent. The enzyme activity was therefore determined. Thermal stability was studied by incubating 0.5 ml of enzyme solution in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (20, 30, 40, 50, 60 and 70°C) for 60 min. The enzyme displayed optimal activity at pH 8.0 at which it produced maximum specific activity of 34.3 units/mg protein. Maximum stability was at pH 8.0 to 9.0. Maximum activity was observed at temperature of 50°C while thermo stability of the enzyme was observed at 40-50°C. The enzyme displayed a wide range of activities on starch and caused the release of 5.86, 4.75, 5.98, 3.44, 3.96, 8.84 mg/mL reducing sugar from cassava, potato, cocoyam, corn, rice and soluble starch respectively. This investigation reports some biochemical characterization of alkaline α-amylase from Bacillus subtilis CB-18. The substrate specificities of this enzyme on various starches suggested that the alkaline α-amylase enzyme had combined activities on raw and soluble starch.
Pyrophosphorolytic dismutation of oligodeoxy-nucleotides by terminal deoxynucleotidyltransferase.
Anderson, R S; Bollum, F J; Beattie, K L
1999-01-01
Terminal transferase (TdT), when incubated with a purified(32)P-5"-end-labeled oligonucleotide of defined length in the presence of Co(2+), Mn(2+)or Mg(2+)and 2-mercaptoethanol in cacodylate or HEPES buffer, pH 7.2, exhibits the ability to remove a 3"-nucleotide from one oligonucleotide and add it to the 3"-end of another. When analyzed by urea-PAGE, this activity is observed as a disproportionation of the starting oligonucleotide into a ladder of shorter and longer oligonucleotides distributed around the starting material. Optimal metal ion concentration is 1-2 mM. All three metal ions support this activity with Co(2+)> Mn(2+) congruent with Mg(2+). Oligonucleotides p(dT) and p(dA) are more efficient substrates than p(dG) and p(dC) because the latter may form secondary structures. The dismutase activity is significant even in the presence of dNTP concentrations comparable to those that exist in the nucleus during the G(1)phase of the cell cycle. Using BetaScope image analysis the rate of pyrophosphorolytic dismutase activity was found to be only moderately slower than the poly-merization activity. These results may help explain the GC-richness of immunoglobulin gene segment joins (N regions) and the loss of bases that occur during gene rearrangements in pre-B and pre-T cells. PMID:10454617
Alam, Rabiul; Islam, Abu Saleh Musha; Sasmal, Mihir; Katarkar, Atul; Ali, Mahammad
2018-05-10
A new sensor (L3) based on Rhodamine-B-en (2) and 2-(pyridin-2-ylmethoxy)benzaldehyde (1) has been developed for highly sensitive and selective recognition of NO in purely aqueous medium where the reaction of NO with the fluorophore leads to an unusual formation of nitrosohydroxylamine with the selective opening of the spirolactam ring over different cations, anions, amino-acids and other biological species with prominent enhancement in absorption and emission intensities. A large enhancement of fluorescence intensity for NO (11 fold) was observed upon addition of 3 equivalents of NO into the sensor in aqueous HEPES buffer (20 mM) at pH 7.20, μ = 0.05 M NaCl with naked eye detection. The corresponding Kf value was evaluated to be (7.55 ± 2.04) × 104 M-1 from the fluorescence titration plot. Quantum yields of L3 and the [L3 + NO] compound are found to be 0.07 and 0.77, respectively, using Rhodamine-6G as the standard. The LOD for NO was determined by the 3σ method and found to be 83.4 nM. The L3 sensor has low cytotoxicity, and is cell permeable and suitable for in vitro NO sensing. The in vivo compatibility of the sensor was also checked on zebrafish.
Eskandari, Faeze; Talesh, Ghazal Alipour; Parooie, Maryam; Jaafari, Mahmoud Reza; Khamesipour, Ali; Saberi, Zahra; Abbasi, Azam; Badiee, Ali
2014-11-01
Development of new generation of vaccines against leishmaniasis requires adjuvants to elicit the type and intensity of immune response needed for protection. The coupling of target-specific antibodies to the liposomal surface to create immunoliposomes has appeared as a promising way in achieving a liposome active targeting. In this study, immunoliposomes were prepared by grafting non-immune mouse IgG onto the liposomal surface. The influence of active targeted immunoliposomes on the type and intensity of generated immune response against Leishmania was then investigated and compared with that of liposomes and control groups which received either SLA or HEPES buffer alone. All formulations contained SLA and were used to immunize the mice in the left hind footpad three times in 3-week intervals. Evaluation of lesion development and parasite burden in the foot and spleen after challenge with Leishmania major, evaluation of Th1 cytokine (IFN-γ), and titration of IgG isotypes were carried out to assess the type of generated immune response and the extent of protection. The results indicated that liposomes might be effective adjuvant systems to induce protection against L. major challenge in BALB/c mice, but stronger cell mediated immune responses were induced when immunoliposomes were utilized. Thus, immune modulation using immunoliposomes might be a practical approach to improve the immunization against L. major. Copyright © 2014 Elsevier Inc. All rights reserved.
Optimization and inhibition of the adherent ability of Plasmodium falciparum-infected erythrocytes.
Smith, H; Crandall, I; Prudhomme, J; Sherman, I W
1992-01-01
The vast majority of the 1-2 million malaria associated deaths that occur each year are due to anemia and cerebral malaria (the attachment of erythrocytes containing mature forms of Plasmodium falciparum to the endothelial cells that line the vascular beds of the brain). A "model system" for the study of cerebral malaria employs amelanotic melanoma cells as the "target" cells in an in vitro cytoadherence assay. Using this model system we determined that the optimum pH for adherence is 6.6 to 6.8, that high concentrations of Ca2+ (50mM) result in increased levels of binding, and that the type of buffer used influences adherence (Bis Tris > MOPS > HEPES > PIPES). We also observed that the ability of infected erythrocytes to cytoadhere varied from (erythrocyte) donor to donor. We have produced murine monoclonal antibodies against P. falciparum-infected red cells which recognize modified forms of human band 3; these inhibit the adherence of infected erythrocytes to melanoma cells in a dose-responsive fashion. Antimalarials (chloroquine, quinacrine, mefloquine, artemisinin), on the other hand, affected adherence in an indirect fashion i.e. since cytoadherence is due, in part, to the presence of knobs on the surface of the infected erythrocyte, and knob formation is dependent on intracellular parasite growth, when plasmodial development is inhibited so is knob production, and consequently adherence is ablated.
Salton, S R; Margolis, R U; Margolis, R K
1983-10-01
Cultured PC12 pheochromocytoma cells were labeled with [3H]glucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM). The released complex carbohydrates include chromogranins, dopamine beta-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(beta 1 leads to 3)N-acetylgalactosamine, as well as several mono- and disialyl O-glycosidically-linked oligosaccharides, and the tetrasaccharide AcNeu(alpha 2 leads to 3)Gal(beta 1 leads to 3)[AcNeu(alpha 2 leads to 6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23-68%), heparan sulfate (16-23%), and glycoprotein oligosaccharides (16-54%), which are of the tri- and tetraantennary and O-glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.
New methods and media for the centrifugation of honey bee (Hymenoptera: Apidae) drone semen.
Wegener, Jakob; May, Tanja; Kamp, Günter; Bienefeld, Kaspar
2014-02-01
Centrifugation of Apis mellifera L. drone semen is a necessary step in the homogenization of semen pools for the enlargement of the effective breeding population, as well as in the collection of semen by the so-called washing technique. It is also of interest for the removal of cryoprotectants after cryopreservation. The adoption of methods involving semen centrifugation has been hampered by their damaging effect to sperm. Here, we tested four new diluents as well as three additives (catalase, hen egg yolk, and a protease inhibitor), using sperm motility and dual fluorescent staining as indicators of semen quality. Three of the new diluents significantly reduced motility losses after centrifugation, as compared with the literature standard. Values of motility and propidium iodide negativity obtained with two of these diluents were not different from those measured with untreated semen. The least damaging diluent, a citrate-HEPES buffer containing trehalose, was then tested in an insemination experiment with centrifuged semen. Most queens receiving this semen produced normal brood, and the number of sperm reaching the storage organ of the queen was not significantly different from that in queens receiving untreated semen. These results could improve the acceptance of techniques involving the centrifugation of drone semen. The diluent used in the insemination experiment could also serve as semen extender for applications not involving centrifugation.
Guccione, Clizia; Oufir, Mouhssin; Piazzini, Vieri; Eigenmann, Daniela Elisabeth; Jähne, Evelyn Andrea; Zabela, Volha; Faleschini, Maria Teresa; Bergonzi, Maria Camilla; Smiesko, Martin; Hamburger, Matthias; Bilia, Anna Rita
2017-10-01
Andrographolide (AG) is a major diterpenoid of the Asian medicinal plant Andrographis paniculata which has shown exciting pharmacological potential for the treatment of inflammation-related pathologies including neurodegenerative disorders. Conversely, the low bioavailability of AG still represents a limiting factor for its use. To overcome these limitations, AG was loaded into human serum albumin based nanoparticles (HSA NPs) and poly ethylcyanoacrylate nanoparticles (PECA NPs). HSA NPs were prepared by thermal (HSAT AG NPs) and chemical cross-linking (HSAC AG NPs), while PECA AG NPs were produced by emulsion-polymerization. NPs were characterized in terms of size, zeta (ζ)-potential, polydispersity, and release studies of AG. In addition, the ability of free AG and AG-loaded in PECA and HSAT NPs to cross the blood-brain barrier (BBB) was assessed using an in vitro BBB model based on human cerebral microvascular endothelial cell line (hCMEC/D3). For BBB drug permeability assays, a quantitative UPLC-MS/MS method for AG in Ringer HEPES buffer was developed and validated according to international regulatory guidelines for industry. Free AG did not permeate the BBB model, as also predicted by in silico studies. HSAT NPs improved by two-fold the permeation of AG while maintaining the integrity of the cell layer, while PECA NPs temporarily disrupted BBB integrity. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimisation of isolation of richly pure and homogeneous primary human colonic smooth muscle cells.
Tattoli, I; Corleto, V D; Taffuri, M; Campanini, N; Rindi, G; Caprilli, R; Delle Fave, G; Severi, C
2004-11-01
Inherent properties of gastrointestinal smooth muscle can be assessed using isolated cell suspensions. Currently available isolation techniques, based on short 2-h enzymatic digestion, however, present the disadvantage of low cellular yield with brief viability. These features are an important limiting factor especially in studies in humans in which tissue may not be available daily and mixing of samples is not recommended. To optimise the isolation procedure of cells from human colon to obtain a richly pure primary smooth muscle cell preparation. Slices of circular muscle layer, obtained from surgical specimens of human colon, were incubated overnight in Dulbecco's modified eagle's medium supplemented with antibiotics, foetal bovine serum, an ATP-regenerating system and collagenase. On the following day, digested muscle strips were suspended in HEPES buffer, and spontaneously dissociated smooth muscle cells were harvested and used either immediately or maintained in suspension for up to 72 h. Cell yield, purity, viability, contractile responses, associated intracellular calcium signals and RNA and protein extraction were evaluated and compared to cell suspensions obtained with the current short digestion protocol. The overnight isolation protocol offers the advantage of obtaining a pure, homogeneous, long-life viable cell suspension that maintains a fully differentiated smooth muscle phenotype unchanged for at least 72 h and that allows multiple functional/biochemical studies and efficient RNA extraction from a single human specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, F.; Xu, Y; Azzi, A
2010-01-01
Annexin B1 (AnxB1) is a calcium-dependent phospholipid binding protein from Taenia solium cysticercus and has been reported to possess anticoagulant activity, to inhibit phospholipase A{sub 2}, and to regulate membrane transport. Native AnxB1 and its selenomethionyl derivative have been overproduced in Escherichia coli and purified. The results of dynamic light scattering analysis showed that Hepes buffer combined with low concentration salts (NaCl or CaCl{sub 2}) was beneficial for preventing aggregation and for AnxB1 stabilization in the storage. After the additive screen, crystals have been yielded in the presence of guanidine hydrochloride (Gn-HCl). We determined that a low concentration of Gn-HClmore » significantly delayed clotting time and increased anticoagulant activity. Analysis of the crystal showed that in the presence of Gn-HCl, AnxB1 crystallizes in orthorhombic space group, which is modified from the cubic space group for crystals grown in the absence of Gn-HCl. A high quality data set (at 1.9 {angstrom}) has been collected successfully for crystals of L-selenomethionine labeled protein in the presence of Gn-HCl, to solve the structure with the single anomalous dispersion method (SAD). The unit cell parameters are a = 102.35 {angstrom}, b = 103.59 {angstrom}, c = 114.60 {angstrom}, {alpha} = {beta} = {gamma} = 90.00{sup o}.« less
Divanovic, Senad; Dalli, Jesmond; Jorge-Nebert, Lucia F; Flick, Leah M; Gálvez-Peralta, Marina; Boespflug, Nicholas D; Stankiewicz, Traci E; Fitzgerald, Jonathan M; Somarathna, Maheshika; Karp, Christopher L; Serhan, Charles N; Nebert, Daniel W
2013-09-15
All three cytochrome P450 1 (CYP1) monooxygenases are believed to participate in lipid mediator biosynthesis and/or their local inactivation; however, distinct metabolic steps are unknown. We used multiple-reaction monitoring and liquid chromatography-UV coupled with tandem mass spectrometry-based lipid-mediator metabololipidomics to identify and quantify three lipid-mediator metabolomes in basal peritoneal and zymosan-stimulated inflammatory exudates, comparing Cyp1a1/1a2/1b1(⁻/⁻) C57BL/6J-background triple-knockout mice with C57BL/6J wild-type mice. Significant differences between untreated triple-knockout and wild-type mice were not found for peritoneal cell number or type or for basal CYP1 activities involving 11 identified metabolic steps. Following zymosan-initiated inflammation, 18 lipid mediators were identified, including members of the eicosanoids and specialized proresolving mediators (i.e., resolvins and protectins). Compared with wild-type mice, Cyp1 triple-knockout mice exhibited increased neutrophil recruitment in zymosan-treated peritoneal exudates. Zymosan stimulation was associated with eight statistically significantly altered metabolic steps: increased arachidonic acid-derived leukotriene B₄ (LTB₄) and decreased 5S-hydroxyeicosatetraenoic acid; decreased docosahexaenoic acid-derived neuroprotectin D1/protectin D1, 17S-hydroxydocosahexaenoic acid, and 14S-hydroxydocosahexaenoic acid; and decreased eicosapentaenoic acid-derived 18R-hydroxyeicosapentaenoic acid (HEPE), 15S-HEPE, and 12S-HEPE. In neutrophils analyzed ex vivo, elevated LTB₄ levels were shown to parallel increased neutrophil numbers, and 20-hydroxy-LTB₄ formation was found to be deficient in Cyp1 triple-knockout mice. Together, these results demonstrate novel contributions of CYP1 enzymes to the local metabolite profile of lipid mediators that regulate neutrophilic inflammation.
Pilkington, Suzanne M; Rhodes, Lesley E; Al-Aasswad, Naser M I; Massey, Karen A; Nicolaou, Anna
2014-01-01
Scope Eicosapentaenoic acid (EPA), abundant in oily fish, is reported to reduce skin inflammation and provide photoprotection, potential mechanisms include competition with arachidonic acid (AA) for metabolism by cyclooxygenases/lipoxygenases to less pro-inflammatory mediators. We thus examine impact of EPA intake on levels of AA, EPA and their resulting eicosanoids in human skin with or without ultraviolet radiation (UVR) challenge. Methods and results In a double-blind randomised controlled study, 79 females took 5 g EPA-rich or control lipid for 12 wk. Pre- and post-supplementation, red blood cell and skin polyunsaturated fatty acids were assessed by GC, and eicosanoids from unexposed and UVR-exposed skin by LC-MS/MS. Active supplementation increased red blood cell and dermal EPA versus control (both p < 0.001), lowering relative AA:EPA content (4:1 versus 15:1 and 5:1 versus 11:1, respectively; both p < 0.001). Pre-supplementation, UVR increased PGE2, 12-hydroxyeicosatetraenoic acids, 12-HEPE (all p < 0.001) and PGE3 (p < 0.05). Post-EPA, PGE2 was reduced in unchallenged skin (p < 0.05) while EPA-derived PGE3 (non-sign) and 12-HEPE (p < 0.01) were elevated post-UVR. Thus, post-EPA, PGE2:PGE3 was lower in unchallenged (12:1 versus 28:1; p < 0.05) and UVR exposed (12:1 versus 54:1; p < 0.01) skin; 12-hydroxyeicosatetraenoic acids:12-HEPE was lower in UVR-exposed skin (3:1 versus 11:1; p < 0.001). Conclusion Dietary EPA augments skin EPA:AA content, shifting eicosanoid synthesis towards less pro-inflammatory species, and promoting a regulatory milieu under basal conditions and in response to inflammatory insult. PMID:24311515
Barden, Anne; Mas, Emilie; Croft, Kevin D; Phillips, Michael; Mori, Trevor A
2014-11-01
Resolution of inflammation is an active process involving specialized proresolving mediators (SPM) formed from the n-3 fatty acids. This study examined the effect of n-3 fatty acid supplementation and aspirin on plasma SPMs in healthy humans. Healthy volunteers (n = 21) were supplemented with n-3 fatty acids (2.4g/day) for 7 days with random assignment to take aspirin (300 mg/day) or placebo from day 5 to day 7. Blood was collected at baseline (day 0), day 5, and day 7. Plasma 18R/S-HEPE, E-series resolvins, 17R/S-HDHA, D-series resolvins, 14R/S-HDHA, and MaR-1 were measured by LC/MS/MS. At baseline concentrations of E- and D- series resolvins and the upstream precursors 18R/S-HEPE, 17R/S-HDHA ranged from 0.1nM to 0.2nM. 14R/S-HDHA was 3-fold higher than the other SPMs at baseline but MaR-1 was below the limit of detection. Supplementation with n-3 fatty acids significantly increased RvE1, 18R/S-HEPE, 17R/S-HDHA, and 14R/S-HDHA but not other SPMs. The addition of aspirin after 5 days of n-3 fatty acids did not affect concentrations of any SPM. N-3 fatty acid supplementation for 5 days results in concentrations of SPMs that are biologically active in healthy humans. Aspirin administered after n-3 fatty acids did not offer any additional benefit in elevating the levels of SPMs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Rabito, Mirela Fulgencio; Reis, Adriano Valim; Freitas, Adonilson dos Reis; Tambourgi, Elias Basile; Cavalcanti, Osvaldo Albuquerque
2012-01-01
Polymer film based on pH-dependent Eudragit FS 30 D acrylic polymer in association with arabinoxylane, a polysaccharide issued from gum psyllium, was produced by way of solvent casting. Physical-chemical characterization of the polymer film samples was performed by means of thermogravimetry (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Furthermore, water-equilibrium swelling index (I(s)) and weight loss of the films in KCl buffer solution of pH 1.2, in KH(2)PO(4) buffer solution of pH 5.0, or in KH(2)PO(4) buffer solution of pH 5.0 consisting of 4% enzyme Pectinex 3X-L (w/v) were also carried out for the film characterization. No chemical interactions between the Eudragit FS 30 D and the arabinoxylane polymer chains were evidenced, thus suggesting that the film-forming polymer structure was obtained from a physical mixture of both polymers. The arabinoxylane-loader films showed a more pronounced weight loss after their immersion in buffer solution containing enzyme Pectinex 3X-L. The introduction of the arabinoxylane makes the film more susceptible to undergo an enzymatic degradation. This meant that the enzyme-dependent propriety issued from the arabinoxylane has been imprinted into the film formulation. This type of polymer film is an interesting system for applications in colon-specific drug delivery system.
Walter, A; Kuehl, G; Barnes, K; VanderWaerdt, G
2000-11-23
The vesicle-to-micelle transition of egg phosphatidylcholine LUVs induced by octylglucoside was studied in buffers with 0-4 M sodium chloride, sucrose or urea. We used both light scattering and fluorescent probes to follow the lipid-detergent complexes in these buffers. The vesicle-to-micelle transition process was fundamentally the same in each solute. However, the detergent-to-lipid ratio required for micelle formation shifted in ways that depended on the aqueous solute. The partitioning of octylglucoside between the vesicles and the aqueous phase was primarily determined by the change in its critical micelle concentration (cmc) induced by each solute. Specifically, the cmc decreased in high salt and sucrose buffers but increased in high concentrations of urea. Cmc for two additional nonionic detergents, decyl- and dodecyl-maltoside, and three zwittergents (3-12, 3-14 and 3-16) were determined as a function of concentration for each of the solutes. In all cases NaCl and sucrose decreased the solubility of the detergents, whereas urea increased their solubilities. The effects clearly depended on acyl chain length in urea-containing solutions, but this dependence was less clear with increasing NaCl and sucrose concentrations. The contributions of these solutes to solubility and to interfacial interactions in the bilayers, pure and mixed micelles are considered.
Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions.
Granero, Gladys E; Ramachandran, Chandrasekharan; Amidon, Gordon L
2005-10-01
The solubility of fenofibrate in pH 6.8 McIlvaine buffers containing varying concentrations of sodium lauryl sulfate was determined. The dissolution behavior of fenofibrate was also examined in the same solutions with rotating disk experiments. It was observed that the enhancement in intrinsic dissolution rate was approximately 500-fold and the enhancement in solubility was approximately 2000-fold in a pH 6.8 buffer containing 2% (w/v) sodium lauryl sulfate compared to that in buffer alone. The micellar solubilization equilibrium coefficient (k*) was estimated from the solubility data and found to be 30884+/-213 L/mol. The diffusivity for the free solute, 7.15x10(-6) cm2/s, was calculated using Schroeder's additive molal volume estimates and Hayduk-Laurie correlation. The diffusivity of the drug-loaded micelle, estimated from the experimental solubility and dissolution data and the calculated value for free solute diffusivity, was 0.86x10(-6) cm2/s. Thus, the much lower enhancement in dissolution of fenofibrate compared to its enhancement in solubility in surfactant solutions appears to be consistent with the contribution to the total transport due to enhanced micellar solubilization as well as a large decrease (approximately 8-fold) in the diffusivity of the drug-loaded micelle.
Ferguson, J H
1942-03-20
By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (+/-0.2) pH in salt-containing buffer solutions and pH = 5.3 (+/-0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution.
Chopra, Radhika; Jindal, Garima; Sachdev, Vinod; Sandhu, Meera
2016-01-01
Buffering of anesthetic solutions has been suggested to reduce pain on injection and onset of anesthesia. The purpose of this study was to assess the reduction in pain on injection during inferior alveolar nerve block administration in children. A double blind crossover study was designed where 30 six- to 12-year-old patients received two sessions of inferior alveolar nerve block scheduled one week apart. Two percent lidocaine with 1:200,000 epinephrine was given during one appointment, and a buffered solution was given during the other. Pain on injection was assessed using the sound, eye, and motor (SEM) scale, and the time to onset was assessed after gingival probing. The Heft-Parker visual analogue scale (HP-VAS) was self recorded by the patient after administration of local anesthesia. When tested using Mann-Whitney analysis, no significant differences were found between the SEM scores (P=0.71) and HP-VAS scores (P=0.93) for the two solutions used. Student's t test was used to assess the difference in the onset of anesthesia, which was also found to be statistically insignificant (P=0.824). Buffered lidocaine did not reduce the pain on injection or time to onset of anesthesia for inferior alveolar nerve block in children.
Moriyama, Brad; Henning, Stacey A.; Jin, Haksong; Kolf, Mike; Rehak, Nadja N.; Danner, Robert L.; Walsh, Thomas J.; Grimes, George J.
2011-01-01
PURPOSE To assess the physical compatibility of magnesium sulfate and sodium bicarbonate in a pharmacy-compounded bicarbonate-buffered hemofiltration solution used at the National Institutes of Health Clinical Center (http://www.cc.nih.gov). METHODS Two hemofiltration fluid formulations with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L or 15 mEq/L were prepared in triplicate with an automated compounding device. The hemofiltration solution with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L contains the maximum concentration of additives that we use in clinical practice. The hemofiltration solution of 15 mEq/L of magnesium and 50 mEq/L of bicarbonate was used to study the physicochemical properties of this interaction. The solutions were stored without light protection at 22 to 25 °C for 48 hours. Physical compatibility was assessed by visual inspection and microscopy. The pH of the solutions was assayed at 3 to 4 hours and 52 to 53 hours after compounding. In addition, electrolyte and glucose concentrations in the solutions were assayed at two time points after preparation: 3 to 4 hours and 50 to 51 hours. RESULTS No particulate matter was observed by visual and microscopic inspection in the compounded hemofiltration solutions at 48 hours. Electrolyte and glucose concentrations and pH were similar at both time points after solution preparation. CONCLUSION Magnesium sulfate (1.5 mEq/L) and sodium bicarbonate (50 mEq/L) were physically compatible in a pharmacy-compounded bicarbonate-buffered hemofiltration solution at room temperature without light protection at 48 hours. PMID:20237384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, K.; Goto, M.; Fukuda, H.
1983-02-21
When investigating the effects of divalent cations (Mg/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, Ba/sup 2 +/, Mn/sup 2 +/ and Ni/sup 2 +/) on /sup 3/H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of /sup 3/H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn/sup 2 +/ approx. = Ni/sup 2 +/ > Mg/sup 2 +/ > Ca/sup 2 +/ > Sr/sup 2 +/ > Ba/sup 2 +/. Scatchard analysis of the binding datamore » revealed a single component of the binding sites in the presence of 2.5 mM MgCl/sub 2/, 2.5 mM CaCl/sub 2/ or 0.3 mM MnCl/sub 2/ whereas two components appeared in the presence of 2.5 mM MnCl/sub 2/ or 1 mM NiCl/sub 2/. In the former, divalent cations altered the apparent affinity (K/sub d/) without affecting density of the binding sites (B/sub max/). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg/sup 2 +/, Ca/sup 2 +/, Mn/sup 2 +/, and Ni/sup 2 +/) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABA/sub B/ sites, the affinity for (-), (+) and (+/-)baclofen, GABA and ..beta..-phenyl GABA increased 2 - 6 fold in the presence of 2.5 mM MnCl/sub 2/, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl/sub 2/ and 1.2 mM MgSO/sub 4/), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABA/sub B/ sites for its ligands is probably regulated by divalent cations, through common sites of action.« less
Qi, Zhengliang; Zhu, Zhangliang; Wang, Jian-Wen; Li, Songtao; Guo, Qianqian; Xu, Panpan; Lu, Fuping; Qin, Hui-Min
2017-11-09
D-Tagatose 3-epimerase epimerizes D-fructose to yield D-psicose, which is a rare sugar that exists in small quantities in nature and is difficult to synthesize chemically. We aim to explore potential industrial biocatalysts for commercial-scale manufacture of this rare sugar. A D-tagatose 3-epimerase from Rhodobacter sphaeroides (RsDTE) has recently been identified as a D-tagatose 3-epimerase that can epimerize D-fructose to yield D-psicose with a high conversion rate. The purified RsDTE by Ni-affinity chromatography, ionic exchange chromatography and gel filtration forms a tetramer in solution. The maximal activity was in Tris-HCl buffer pH 8.5, and the optimal temperature was at 35 °C. The product, D-psicose, was confirmed using HPLC and NMR. Crystals of RsDTE were obtained using crystal kits and further refined under crystallization conditions such as 10% PEG 8000,0.1 M HEPES pH 7.5, and 8% ethylene glycol at 20 °C using the sitting-drop vapor diffusion method. The RsDTE homology model showed that it possessed the characteristic TIM-barrel fold. Four residues, Glu156, Asp189, Gln215 and Glu250, forms a hydrogen bond network with the active Mn(II) for the hydride transfer reaction. These residues may constitute the catalytic tetrad of RsDTE. The residues around O1, O2 and O3 of the substrates were conserved. However, the binding-site residues are different at O4, O5 and O6. Arg118 formed the unique hydrogen bond with O4 of D-fructose which indicates RsDTE's preference of D-fructose more than any other family enzymes. RsDTE possesses a different metal-binding site. Arg118, forming unique hydrogen bond with O4 of D-fructose, regulates the substrate recognition. The research on D-tagatose 3-epimerase or D-psicose 3-epimerase enzymes attracts enormous commercial interest and would be widely used for rare sugar production in the future.
Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y
2016-12-01
The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Asgari, Hamed
2018-05-01
In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.
Ichikawa, Makoto; Ide, Nagatoshi; Shiraishi, Sumihiro; Ono, Kazuhisa
2005-06-01
Combination of cyanocobalamin (VB12) and ascorbic acid (VC) has been widely seen in pharmaceutical products and dietary supplements. However, VB12 has been reported that its behavior in stability in aqueous solution is quite different when VC is mixed. In the present study, we examined the stabilities of these vitamins in acetate buffer (pH 4.8) using high performance liquid chromatography. Degradation of VB12 was not observed in the absence of VC in the buffer. However, when VC was mixed in the VB12 solution, VB12 concentrations decreased in accordance with VC degradation. VB12 and VC degradations were inhibited by adding sodium halides to acetate buffer at pH 4.8. These stabilization effects were also observed in the range from pH 3.5 to 5.3 and by adding potassium, magnesium, and calcium halides. Furthermore, our data demonstrated that increases in the halide anion concentrations and atomic number (Cl-
Golas, Avantika; Yeh, Chyi-Huey Josh; Pitakjakpipop, Harit; Siedlecki, Christopher A.; Vogler, Erwin A.
2012-01-01
Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. The only plausible explanation consistent with current understanding of coagulation-cascade biochemistry is that procoagulant stimulus arising from the activation complex of the intrinsic pathway is dependent on activator surface area. And yet, it is herein shown that activation of the blood zymogen factor XII (Hageman factor, FXII) dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a “mechanochemical” reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results of this study strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway. PMID:23117212
Traveling waves in the discrete fast buffered bistable system.
Tsai, Je-Chiang; Sneyd, James
2007-11-01
We study the existence and uniqueness of traveling wave solutions of the discrete buffered bistable equation. Buffered excitable systems are used to model, among other things, the propagation of waves of increased calcium concentration, and discrete models are often used to describe the propagation of such waves across multiple cells. We derive necessary conditions for the existence of waves, and, under some restrictive technical assumptions, we derive sufficient conditions. When the wave exists it is unique and stable.
Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F
2002-09-01
Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.
Zhou, Marilyn X; Foley, Joe P
2006-03-15
To optimize separations in capillary electrophoresis, it is important to control the electroosmotic mobility of the running buffer and the factors that affect it. Through the application of a site-dissociation-site-binding model, we demonstrated that the electroosmotic mobility could be controlled qualitatively and quantitatively by the parameters related to the physical and chemical properties of the running buffer: pH, cation valence, ionic strength, viscosity, activity, and dissociation constant. Our study illustrated that the logarithm of the number of apparent silanol sites on a fused-silica surface has a linear relationship with the pH of a buffer solution. The extension of the chemical kinetics approach allowed us to obtain the thickness of the electrical double layer when multivalent inorganic cations are present with monovalent cations in a buffer solution, and we found that the thickness of the electrical double layer does not depend on the charge of anions. The general equation to predict the electroosmotic mobility suggested here also indicates the increase of electroosmotic mobility with temperature. The general equation was experimentally verified by three buffer scenarios: (i) buffers containing only monovalent cations; (ii) buffers containing multivalent inorganic cations; and (iii) buffers containing cations and neutral additives. The general equation can explain the experimental observations of (i) a maximum electroosmotic mobility for the first scenario as the pH was varied at constant ionic strength and (ii) the inversion and maximum value of the electroosmotic mobility for the second scenario when the concentration of divalent cations was varied at constant pH. A good agreement between theory and experiment was obtained for each scenario.
Kotova, Oxana; Comby, Steve; Gunnlaugsson, Thorfinnur
2011-06-28
1·Eu·BPS was developed as a luminescent lanthanide sensor for use in displacement assays for detection of d-metal ions by monitoring the changes in the europium emission, which was quenched for iron(II), with a detection limit of ∼10 pM (0.002 μg L(-1)) for Fe(II) in buffered pH 7.4 solution. This journal is © The Royal Society of Chemistry 2011
Development of Multifunctional Nanoparticles for Cancer Therapy Applications
NASA Astrophysics Data System (ADS)
Huth, Christopher
The focus of this thesis is the functionalization and tailoring of nanoparticle surfaces to perform specific objectives in a biological environment. The nanoparticles examined include carbon nanotubes (CNTs), superparamagnetic iron oxide nanoparticles and superparamagnetic iron oxide nanocomposites. The unique nanomaterials have been developed to address continued issues in cancer therapy, including cancer diagnosis and efficient drug delivery. CNT surfaces were modified by plasma polymerization, providing functional groups for conjugation. Luminescent amine labeled quantum dots were fixed to the surface of the CNTs to aid in cancer diagnosis by in vivo imaging. Mice, injected with the quantum dot functionalized carbon nanotubes, were imaged displaying the in vivo imaging capability. In addition, the drug loading and drug release capabilities were examined by incorporating the drug paclitaxel into PLGA-coated CNTs, which showed much higher cytotoxicity to PC-3MM2 human prostate carcinoma cells compared to CNTs without paclitaxel. Paclitaxel was loaded at 112.5 microg/mg of PLGA-coated CNTs. Iron oxide nanocomposites were functionalized with quantum dots for diagnosis applications. Because the nanocomposites contain iron oxide, the nanoparticle provides the opportunity for magnetic hyperthermia, creating a unique material for diagnosis and therapy. Mice, injected with the quantum dot functionalized iron oxide nanocomposites, were imaged displaying the in vivo imaging capability. The magnetic hyperthermic property of the quantum dot functionalized nanocomposites was observed with the attainment of temperatures above 50°C during exposure to an alternating magnetic field. Thermoresponsive nanoparticles were prepared by immobilizing a 2 - 3 nm thick phospholipid layer on the surface of superparamagnetic Fe3O 4 nanoparticles via high affinity avidin/biotin interactions. Morphological and physicochemical surface properties were assessed using TEM, confocal laser scanning microscopy, differential scanning calorimetry, and ATR-FTIR. The zeta potential of Fe3O4 colloids in phosphate buffered saline (PBS) decreased from -23.6 to -5.0 mV as a consequence of phospholipid immobilization. Hyperthermia-relevant temperatures greater than 40°C were achieved within 10--15 min using a 7-mT magnetic field alternating at a frequency of 1MHz. Loading of the surface-associated phospholipid layer with the hydrophobic dye dansylcadaverine was accomplished at an efficiency of 479 ng/mg Fe3O4. Release of this drug surrogate was temperature-dependent, resulting in a 2.5-fold greater release rate when nanoparticles were exposed to temperatures above the experimentally determined melting temperature of 39.7°C. In vitro cytotoxicity studies by release of the cytotoxic drug, doxorubicin, from the thermoresponsive nanoparticles was lastly intended. However, colloidal stability became an issue, prompting a thorough review of nanoparticle stabilization. Factors affecting stabilization, including dispersant, the nanoparticle, and the thermoresponsive coating, were characterized by dynamic light scattering and zeta potential. PBS was compared to two dispersants containing lower ionic concentrations, HBSS and HEPES, using the original iron oxide nanoparticles compared to an iron oxide nanocomposite. The nanocomposite in the HEPES buffer displayed the greatest stability with a zeta potential of -30.47 mV and particle size of 155.4 nm. Stabilization of the immobilized phospholipid bilayer was examined with and without incorporation of the cationic lipid stearylamine. Zeta potential (33.6 mV) and size (315 nm) data indicate that stearylamine incorporated DPPC coated nanoparticles provide better stability.
Ferreira, Cecília F G; Benelli, Elaine M; Klein, Jorge J; Schreiner, Wido; Camargo, Paulo C
2009-10-15
The adsorption of proteins and its buffer solution on mica surfaces was investigated by atomic force microscopy (AFM). Different salt concentration of the Herbaspirillum seropedicae GlnB protein (GlnB-Hs) solution deposited on mica was investigated. This protein is a globular, soluble homotrimer (36kDa), member of PII-like proteins family involved in signal transducing in prokaryote. Supramolecular structures were formed when this protein was deposited onto bare mica surface. The topographic AFM images of the GlnB-Hs films showed that at high salt concentration the supramolecular structures are spherical-like, instead of the typical doughnut-like shape for low salt concentration. AFM images of NaCl and Tris from the buffer solution showed structures with the same pattern as those observed for high salt protein solution, misleading the image interpretation. XPS experiments showed that GlnB protein film covers the mica surface without chemical reaction.
Buffered lidocaine and bupivacaine mixture - the ideal local anesthetic solution?
Best, Corliss A; Best, Alyssa A; Best, Timothy J; Hamilton, Danielle A
2015-01-01
The use of injectable local anesthetic solutions to facilitate pain-free surgery is an integral component of many procedures performed by the plastic surgeon. In many instances, a solution that has both rapid onset and prolonged duration of analgesia is optimal. A combination of lidocaine and bupivacaine, plain or with epinephrine, is readily available in most Canadian health care settings where such procedures are performed, and fulfills these criteria. However, commercially available solutions of both medications are acidic and cause a burning sensation on injection. Buffering to neutral pH with sodium bicarbonate is a practical method to mitigate the burning sensation, and has the added benefit of increasing the fraction of nonionized lipid soluble drug available. The authors report on the proportions of the three drugs to yield a neutral pH, and the results of an initial survey regarding the use of the combined solution with epinephrine in hand surgery.
Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.
Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E
2014-11-01
Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jenke, Dennis R; Zietlow, David; Garber, Mary Jo; Sadain, Salma; Reiber, Duane; Terbush, William
2007-01-01
Plastic materials are widely used in medical items, such as solution containers, transfusion sets, transfer tubing, and devices. An emerging trend in the biotechnology industry is the utilization of plastic containers to prepare, transport, and store an assortment of solutions including buffers, media, and in-process and finished product. The direct contact of such containers with the product at one or more points in its lifetime raises the possibility that container leachables may accumulate in the finished product. The interaction between several commercially available container materials and numerous model test solutions (representative of buffers and media used in biopharmaceutical applications) was investigated. This paper summarizes the identification of leachables associated with the container materials and documents the levels to which targeted leachables accumulate in the test solutions under defined storage conditions.
The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement
Koen, Erin L.; Garroway, Colin J.; Wilson, Paul J.; Bowman, Jeff
2010-01-01
Background Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a substitute for the true, but unknown, habitat. Methodology/Principal Findings We randomly assigned landscape resistance values to map cells in the buffer in proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result in an overestimate of landscape resistance. Conclusions/Significance Artificial map boundaries overestimate resistance values. We recommend the use of a buffer composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied. Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape genetics studies. PMID:20668690
Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí
2007-01-05
The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.
Detection of Legume Protease Inhibitors by the Gel-X-ray Film Contact Print Technique
ERIC Educational Resources Information Center
Mulimani, Veerappa H.; Sudheendra, Kulkarni; Giri, Ashok P.
2002-01-01
Redgram (Cajanus cajan L.) extracts have been analyzed for the protease inhibitors using a new, sensitive, simple, and rapid method for detection of electrophoretically separated protease inhibitors. The detection involves equilibrating the gel successively in the protease assay buffer and protease solution, rinsing the gel in assay buffer, and…
Perlovich, German L; Skar, Merete; Bauer-Brandl, Annette
2003-10-01
Cyclodextrins are often used in order to increase the aqueous solubility of drug substances by complexation. In order to investigate the complexation reaction of ibuprofen and hydroxypropyl-beta-cyclodextrin, titration calorimetry was used as a direct method. The thermodynamic parameters of the complexation process (stability constant, K(11); complexation enthalpy, deltaH(c) degrees ) were obtained in two different buffer systems (citric acid/sodium-phosphate and phosphoric acid) at various pH values. Based on these data the relative contributions of the enthalpic and entropic terms of the Gibbs energy to the complexation process have been analyzed. In both buffers the enthalpic and entropic terms are of different sign and this case corresponds to a 'nonclassical' model of hydrophobic interaction. In citric buffer, the main driving force of complexation is the entropy, which increases from 60 to 67% while the pH of the solution increases from 3.2 to 8.0. However, for the phosphoric buffer the entropic term decreases from 60 to 45%, while the pH-value of the solution increases from 5.0 to 8.2, and the driving force of the complexation process changes from entropy to enthalpy. The experimental data of the present study are compared to results of other authors and discrepancies discussed in detail.
Diluents for stabilization of tuberculin
Magnusson, Mogens; Guld, Johannes; Magnus, Knut; Waaler, Hans
1958-01-01
Tuberculin is known to be adsorbed to containers and syringes. In the present paper, the adsorption which takes place in the ampoules has been studied in relation to the diluent for the tuberculin. Adsorption was most evident in dilutions prepared with saline or with phosphate buffer containing dextran. The inclusion in phosphate buffer diluent of small amounts of proteins or synthetic surface-active agents decreased or prevented adsorption. A boric-acid sodium-borate diluent containing gum arabic, previously recommended for the preparation of stabilized tuberculin dilutions, was found to be ineffective. The most suitable diluent for the preparation of stable tuberculin dilutions was a 0.05‰ solution of Tween 80 in phosphate-buffered saline; this diluent appeared to prevent adsorption under a variety of experimental conditions. The inclusion of Tween 80 in the diluent had little or no effect on the general storage stability of purified tuberculin. Sensitization experiments in guinea-pigs, rabbits and humans showed that no sensitization against Tween 80 need be feared when a 0.05‰ solution of Tween 80 in phosphate buffered saline is used in the preparation of tuberculin dilutions. PMID:13618720
Li, Minfen; Liu, Jingxian; Song, Jianxing
2006-08-01
The inability to determine the structure of the buffer-insoluble Nogo extracellular domain retarded further design of Nogo receptor (NgR) antagonists to treat CNS axonal injuries. Very surprisingly, we recently discovered that Nogo-60 was soluble and structured in salt-free water, thus allowing the determination of the first Nogo structure by heteronuclear NMR spectroscopy. Nogo-60 adopts an unusual helical structure with the N- and C-terminal helices connected by a long middle helix. While the N-helix has no contact with the rest of the molecule, the C-helix flips back to pack against the 20-residue middle helix. This packing appears to trigger the formation of the stable Nogo-60 structure because Nogo-40 with the last helix truncated is unstructured. The Nogo-60 structure offered us rationales for further design of the structured and buffer-soluble Nogo-54, which may be used as a novel NgR antagonist. Furthermore, our discovery may imply a general solution to solubilizing a category of buffer-insoluble proteins for urgent structural investigations.
Tan, Zhan'ao; Li, Shusheng; Wang, Fuzhi; Qian, Deping; Lin, Jun; Hou, Jianhui; Li, Yongfang
2014-01-01
Low-work-function active metals are commonly used as cathode in polymer solar cells (PSCs), but sensitivity of the active metals towards moisture and oxygen results in poor stability of the devices. Therefore, solution-proceessable and stable cathode buffer layer is of great importance for the application of PSCs. Here we demonstrate high performance PSCs by employing as-prepared zirconium acetylacetonate (a-ZrAcac) film spin-cast from its ethanol solution as cathode buffer layer. The PSCs based on a low bandgap polymer PBDTBDD as donor and PC60BM as acceptor with a-ZrAcac/Al cathode demonstrated an average power conversion efficiency (PCE) of 8.75% which is significantly improved than that of the devices with traditional Ca/Al cathode. The improved photovoltaic performance is benefitted from the decreased series resistance and enhanced light harvest of the PSCs with the a-ZrAcac/Al cathode. The results indicate that a-ZrAcac is a promising high performance cathode buffer layer for fabricating large area flexible PSCs. PMID:24732976
Khalil, E; Sallam, A
1999-04-01
The copolymer of ammoniomethacrylate Eudragit RL (ERL) interacted with diclofenac acid salts (sodium and diethylamine salts) in aqueous solutions, forming a complex. Sorption experiments were done in aqueous solutions of either sodium lauryl sulfate (SLS), Tween 20, or Tween 80. The SLS competed strongly with the drug, even at low concentrations, and reduced significantly the amount of drug sorbed by ERL. Tweens at high concentrations exhibited two phase profiles: the sorption phase, which was short and during which drug concentration dropped sharply, and the release phase, during which the drug was released slowly over 24 hr and which was accompanied by dispersion of ERL particles into the colloidal dispersion. The interaction was dependent on temperature, ionic strength, and nature of the additives. The extent of interaction in water and phosphate buffer solutions was in the following order: water > pH 6 > pH 7-8. In-vitro dissolution studies of the dried complex were done over 24 hr. In water, the drug remained bound to the polymer. In aqueous surfactant solutions (SLS, Tween 20, and Tween 80) and phosphate buffer at pH 6.8, a linear relationship between drug concentration and the square root of time was obtained, indicating a matrix diffusion-controlled mechanism. However, 100% release was not reached, and resorption was observed in the phosphate buffer solution.
Ferguson, John H.
1942-01-01
By means of a novel adaptation of the Evelyn photoelectric colorimeter to the measurement of relative turbidities, the question of the flocculation maximum (F.M.) in acetate buffer solutions of varying pH and salt content has been studied on (a) an exceptionally stable prothrombin-free fibrinogen and its solutions after incipient thermal denaturation and incomplete tryptic proteolysis, (b) plasma, similarly treated, (c) prothrombin, thrombin, and (brain) thromboplastin solutions. All the fibrinogens show a remarkable uniformity of the precipitation pattern, viz. F.M. =4.7 (±0.2) pH in salt-containing buffer solutions and pH = 5.3 (±0.2) in salt-poor buffer (N/100 acetate). The latter approximates the isoelectric point (5.4) obtained by cataphoresis (14). There is no evidence that denaturation or digestion can produce any "second maximum." The data support the view that fibrin formation (under the specific influence of thrombin) is intrinsically unrelated to denaturation and digestion phenomena, although all three can proceed simultaneously in crude materials. A criticism is offered, therefore, of Wöhlisch's blood clotting theory. Further applications of the photoelectric colorimeter to coagulation problems are suggested, including kinetic study of fibrin formation and the assay of fibrinogen, with a possible sensitivity of 7.5 mg. protein in 100 cc. solution. PMID:19873299
Mode of Action of Membrane Perturbing Agents: Snake Venom Cardiotoxins and Phospholipases A
1989-07-15
PLAz neurotoxins. Experimental Methods: Materials. Vencm from 1 nAjA atra, CTX from Naja n9ja kaouthia venom (Lots 125F-4007), bee venom PLAz ( Apis ... mellifera ), melittin, B-bungarotoxin, Tris base, Hepes (4-(2-hydroxyethyl)-l-piperazineethanesulfonic acid), Mes (4- morpholineethanesulfonic acid), bovine
Nia, Yacine; Rodriguez, Mélanie; Zeleny, Reinhard; Herbin, Sabine; Auvray, Frédéric; Fiebig, Uwe; Avondet, Marc-André; Munoz, Amalia; Hennekinne, Jacques-Antoine
2016-01-01
The aim of this work was to organize the first proficiency test (PT) dedicated to staphylococcal enterotoxin B (SEB) detection in milk and buffer solutions. This paper describes the organization of the PT trial according to EN ISO 17043 requirements. Characterization of the SEB stock solution was performed using SDS-PAGE and SE-specific ELISA, and amino acid analysis was used to assign its protein concentration. The solution was then used to prepare six PT materials (four milk and two buffer batches) at a ng/g toxin level, which included one blank and one SEA-containing milk as specificity control. Suitable material homogeneity and stability were assessed using screening and quantitative ELISAs. Among the methods used by the participants, ELISA-based methods demonstrated their efficiency for the detection of SEB in both simple and complex matrices. The results serve as a basis for further improving the detection capabilities in expert laboratories and can therefore be considered as a contribution to biopreparedness. PMID:27649244
Stability and tribological performances of fluid phospholipid bilayers: effect of buffer and ions.
Dekkiche, F; Corneci, M C; Trunfio-Sfarghiu, A-M; Munteanu, B; Berthier, Y; Kaabar, W; Rieu, J-P
2010-10-15
We have investigated the mechanical and tribological properties of supported Dioleoyl phosphatidylcholine (DOPC) bilayers in different solutions: ultrapure water (pH 5.5), saline solution (150 mM NaCl, pH 5.8), Tris buffer (pH 7.2) and Tris saline buffer (150 mM NaCl, pH 7.2). Friction forces are measured using a homemade biotribometer. Lipid bilayer degradation is controlled in situ during friction tests using fluorescence microscopy. Mechanical resistance to indentation is measured by force spectroscopy with an atomic force microscope. This study confirms that mechanical stability under shear or normal load is essential to obtain low and constant friction coefficients. In ultrapure water, bilayers are not resistant and have poor lubricant properties. On the other hand, in Tris saline buffer, they fully resist to indentation and exhibit low (micro=0.035) and stable friction coefficient with no visible wear during the 50 min of the friction test. The unbuffered saline solution improves the mechanical resistance to indentation but not the lubrication. These results suggest that the adsorption of ions to the zwiterrionic bilayers has different effects on the mechanical and tribological properties of bilayers: higher resistance to normal indentation due to an increase in bilayer cohesion, higher lubrication due to an increase in bilayer-bilayer repulsion. Copyright (c) 2010 Elsevier B.V. All rights reserved.
A magnetic trap for living cells suspended in a paramagnetic buffer
NASA Astrophysics Data System (ADS)
Winkleman, Adam; Gudiksen, Katherine L.; Ryan, Declan; Whitesides, George M.; Greenfield, Derek; Prentiss, Mara
2004-09-01
This manuscript describes the fabrication and use of a three-dimensional magnetic trap for diamagnetic objects in an aqueous solution of paramagnetic ions; this trap uses permanent magnets. It demonstrates trapping of polystyrene spheres, and of various types of living cells: mouse fibroblast (NIH-3T3), yeast (Saccharomyces cerevisiae), and algae (Chlamydomonas reinhardtii). For a 40mM solution of gadolinium (III) diethylenetriaminepentaacetic acid (Gd .DTPA) in aqueous buffer, the smallest cell (particle) that could be trapped had a radius of ˜2.5μm. The trapped particle and location of the magnetic trap can be translated in three dimensions by independent manipulation of the permanent magnets. This letter a1so characterizes the biocompatibility of the trapping solution.
Slow equilibration of reversed-phase columns for the separation of ionized solutes.
Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R
2003-10-10
Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.
Yue, Yongkang; Huo, Fangjun; Zhang, Yongbin; Chao, Jianbin; Martínez-Máñez, Ramón; Yin, Caixia
2016-11-01
We report herein a highly selective and sensitive turn-on fluorescent probe (compound 1) with a fast response time (less than 2 min) for thiophenol detection based on an "enhanced S N Ar" reaction between thiophenols and a sulfonyl-ester moiety covalently attach to curcumin. Reaction of 1 in Hepes-MeOH (1:1, v/v, pH 7.4) in the presence of 4-methylthiophenol (MTP) resulted in a remarkable enhancement of the fluorescence. A linear response in the presence of MTP of the relative fluorescent intensity (F - F 0 ) of 1 at 536 nm in the 0-40 μM MTP concentration range was found. A limit of detection (LOD) for the detection of MTP of 26 nM, based on the definition by IUPAC (C DL = 3 Sb/m), was calculated. Probe 1 was applied to monitor and imaging exogenous MTP in live cells and to the detection of MTP in real water samples.
NASA Astrophysics Data System (ADS)
He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi
2018-02-01
A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.
NASA Astrophysics Data System (ADS)
Ahmed, Sayeed Ashique; Seth, Debabrata
2018-01-01
The photophysics of an alkaloid harmaline in aqueous buffer solution and in the presence of cucurbit[7]uril have been studied. The photophysical properties of harmaline were modulated several folds due to addition of cucurbit[7]uril in the aqueous buffer solution. We have observed quenching of fluorescence intensity of harmaline with gradual addition of CB7. Isothermal titration calorimetry technique (ITC) was performed to get an idea about the thermodynamic parameters involved in the complexation process. From ITC, we observed that the complexation process was exothermic in nature and enthalpy driven process.
Nuijen, B; Bouma, M; Manada, C; Jimeno, J M; Bult, A; Beijnen, J H
2001-01-01
An in vitro biocompatibility study was performed with the pharmaceutical formulation of the investigational, marine-derived anticancer agent kahalalide F developed for early clinical studies. The pharmaceutical formulation consists of a lyophilized product containing 150 micrograms kahalalide F, 3 mg citric acid, 3 mg polysorbate 80, and 150 mg of sucrose per dosage unit, to be reconstituted with 3 mL of a mixture composed of Cremophor EL, ethanol, and water (5/5/90% v/v/v), resulting in a solution of pH 3 and to be further diluted in normal saline for infusion. The reconstituted product, infusion solutions, and Cremophor/ethanol (CE) vehicle were tested for hemolytic potential and buffer capacity. No significant hemolysis due to the kahalalide F formulation as well as the CE vehicle was found using both a static and dynamic test model. FB-ratio's (ratio of formulation solution (F) and volume of blood simulant (B) necessary to maintain physiological pH) as a measure of the buffer capacity of the kahalalide F infusion solutions examined indicated that no vascular irritation due to pH effects is expected in the intended administration schedule in the forthcoming Phase I study.
NASA Technical Reports Server (NTRS)
Goree, J. G.
1982-01-01
The fracture behavior of unifirectional hybrid (buffer strip) composite laminates is studied. Three particular solutions are discussed: (1) broken fibers in a unidirectional half plane; (2) adjoined half planes of different fiber and matrix properties and (3) the solution of two half planes bounding a third distinct region of finite width. This finite width region represents a buffer strip and the potential of this strip to arrest a crack that originates in one of the half planes is investigated. The analysis is based on a materials modeling approach using the classical shear lag assumption to described the stress transfer between fibers. Explicit fiber and matrix properties of the three regions are retained and changes in the laminate behavior as a function of the relative material properties, buffer strip width and initial crack length are discussed.
Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA
NASA Astrophysics Data System (ADS)
Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk
2015-07-01
We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.
Analysis of pilocarpine and its trans epimer, isopilocarpine, by capillary electrophoresis.
Baeyens, W; Weiss, G; Van Der Weken, G; Van Den Bossche, W
1993-05-28
Capillary zone electrophoresis was used for the separation of pilocarpine from its epimer, isopilocarpine, using coated fused-silica capillaries of 20 cm x 25 microm I.D., 8 kV running voltage, migration buffer of 0.1 M sodium dihydrogenphosphate pH 8, detection at 217 nm and injection by electromigration. Injections of aqueous, acid and basic solutions were compared. Linearity of the signal for pilocarpine hydrochloride up to 200 microg ml(-1) in 0.05 M hydrochloric acid was obtained, using naphazoline nitrate as internal standard. Optimization of migration buffer pH using coated silica capillaries of 50 cm x 50 microm I.D. showed that at pH 6.9 pilocarpine can be separated from ++isopilocarpine. Inclusion of beta-cyclodextrin in the buffer allows full baseline separation of both epimers. The method was applied to the analysis of a commercial ophthalmic pilocarpine solution.
Role of osmotic and hydrostatic pressures in bacteriophage genome ejection
NASA Astrophysics Data System (ADS)
Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.
2013-02-01
A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.
Characterization of pH-fractionated humic acids with respect to their dissociation behaviour.
Klučáková, Martina
2016-04-01
Humic acids were divided into several fractions using buffer solutions as extraction agents with different pH values. Two methods of fractionation were used. The first one was subsequent dissolution of bulk humic acids in buffers adjusted to different pH. The second one was sequential dissolution in buffers with increasing pH values. Experimental data were compared with hypothesis of partial solubility of humic acids in aqueous solutions. Behaviour of humic fractions obtained by sequential dissolution, original bulk sample and residual fractions obtained by subsequent dissolution at pH 10 and 12 agrees with the hypothesis. Results demonstrated that regardless the common mechanism, solubility and dissociation degree of various humic fractions may be very different and can be estimated using parameters of the model based on the proposed mechanism. Presented results suggest that dissolving of solid humic acids in water environment is more complex than conventional solubility behaviour of sparingly soluble solids.
On the Preparation of Buffer Solutions.
ERIC Educational Resources Information Center
Thomson, Bruce M.; Kessick, Michael A.
1981-01-01
Presents a method, suitable for use on programmable calculators, which allows calculation of the pH and ionic strength (I) of a mixed solution of salts of an acid or amounts necessary to produce a solution of a particular pH and I. Includes limitations when using the calculations described. (SK)
ELECTRODEPOSITION OF PLUTONIUM
Wolter, F.J.
1957-09-10
A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.
Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang
2008-11-01
Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).
Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik
2017-09-15
The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.
ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-01-01
The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks. PMID:27761104
Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J
2017-06-01
The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p < 0.05). SEM imaging revealed the potential for PDL cells to attach and spread on all surfaces. The results from the present study demonstrate that cell survival and spreading of PDL cells on root surfaces is possible following either air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in treating root surfaces and allowed for near 100 % PDL cell survival, attachment, and spreading onto all root surfaces.
Suzuki, T; Singla, S K; Sujata, J; Madan, M L
1991-06-01
Water buffalo (Murrah) oocytes were collected from ovaries obtained from the slaughter house. They were classified according to the character of the cumulus cells under a stereomicroscope, and cultured in 25 mM Hepes buffered Tissue Culture Medium-199 (TCM-199) supplemented with 5% estrous water buffalo serum in an atmosphere containing 5% CO2 in air at 39 degrees C. After 20-24 hr of in vitro maturation, the oocytes were fertilized using capacitated sperm obtained from 4 different bulls. For cleavage the oocytes were cultured at 39 degrees C in TCM-199 supplemented with 1% estrous water buffalo serum and in an atmosphere containing 5% CO2 in air. The good oocytes, with compact and dense cumulus cells cleaved significantly higher (p less than 0.01, 67.3%), than those of fair. partially naked oocytes with thin cumulus layers (27.5%, 25/91) or small remnants of cumulus cells and poor naked oocytes (3/100). A substantial variation cumulus layers (27.5% 25/91) or small remnants of cumulus cells and poor naked oocytes (3/100). A substantial variation in fertilization and developmental rates (16.0% to 43.8%) was observed among 4 different bulls. Late non-surgically into 14 buffalo recipients on day 6 or 7 of their estrous cycle. One recipient was diagnosed to be pregnant by rectal palpation on day 60 and confirmed to be so on day 90 post-estrus.
Heravi Shargh, Vahid; Jaafari, Mahmoud Reza; Khamesipour, Ali; Jalali, Seyed Amir; Firouzmand, Hengameh; Abbasi, Azam; Badiee, Ali
2012-07-01
Development of an effective vaccine against leishmaniasis is possible due to the fact that individuals cured from cutaneous leishmaniasis (CL) are protected from further infection. First generation Leishmania vaccines consisting of whole killed parasites reached to phase 3 clinical trials but failed to show enough efficacies mainly due to the lack of an appropriate adjuvant. In this study, an efficient liposomal protein-based vaccine against Leishmania major infection was developed using soluble Leishmania antigens (SLA) as a first generation vaccine and cytidine phosphate guanosine oligodeoxynucleotides (CpG ODNs) as an immunostimulatory adjuvant. 1, 2-Dioleoyl-3-trimethylammonium-propane was used as a cationic lipid to prepare the liposomes due to its intrinsic adjuvanticity. BALB/c mice were immunized subcutaneously (SC), three times in 2-week intervals, with Lip-SLA-CpG, Lip-SLA, SLA + CpG, SLA, or HEPES buffer. As criteria for protection, footpad swelling at the site of challenge and spleen parasite loads were assessed, and the immune responses were evaluated by determination of IFN-γ and IL-4 levels of cultured splenocytes, and IgG subtypes. The group of mice that received Lip-SLA-CpG showed a significantly smaller footpad swelling, lower spleen parasite burden, higher IgG2a antibody, and lower IL-4 level compared to the control groups. It is concluded that cationic liposomes containing SLA and CpG ODNs are appropriate to induce Th1 type of immune response and protection against leishmaniasis.
Validation of an immortalized human (hBMEC) in vitro blood-brain barrier model.
Eigenmann, Daniela Elisabeth; Jähne, Evelyn Andrea; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin
2016-03-01
We recently established and optimized an immortalized human in vitro blood-brain barrier (BBB) model based on the hBMEC cell line. In the present work, we validated this mono-culture 24-well model with a representative series of drug substances which are known to cross or not to cross the BBB. For each individual compound, a quantitative UHPLC-MS/MS method in Ringer HEPES buffer was developed and validated according to current regulatory guidelines, with respect to selectivity, precision, and reliability. Various biological and analytical challenges were met during method validation, highlighting the importance of careful method development. The positive controls antipyrine, caffeine, diazepam, and propranolol showed mean endothelial permeability coefficients (P e) in the range of 17-70 × 10(-6) cm/s, indicating moderate to high BBB permeability when compared to the barrier integrity marker sodium fluorescein (mean P e 3-5 × 10(-6) cm/s). The negative controls atenolol, cimetidine, and vinblastine showed mean P e values < 10 × 10(-6) cm/s, suggesting low permeability. In silico calculations were in agreement with in vitro data. With the exception of quinidine (P-glycoprotein inhibitor and substrate), BBB permeability of all control compounds was correctly predicted by this new, easy, and fast to set up human in vitro BBB model. Addition of retinoic acid and puromycin did not increase transendothelial electrical resistance (TEER) values of the BBB model.
Chandir, Subhash; Ahamed, Kabir U; Baqui, Abdullah H; Sutter, Roland W; Okayasu, Hiromasa; Pallansch, Mark A; Oberste, Mark S; Moulton, Lawrence H; Halsey, Neal A
2014-11-01
Polio eradication efforts have been hampered by low responses to trivalent oral poliovirus vaccine (tOPV) in some developing countries. Since stomach acidity may neutralize vaccine viruses, we assessed whether administration of a buffer solution could improve the immunogenicity of tOPV. Healthy infants 4-6 weeks old in Sylhet, Bangladesh, were randomized to receive tOPV with or without a sodium bicarbonate and sodium citrate buffer at age 6, 10, and 14 weeks. Levels of serum neutralizing antibodies for poliovirus types 1, 2, and 3 were measured before and after vaccination, at 6 and 18 weeks of age, respectively. Serologic response rates following 3 doses of tOPV for buffer recipients and control infants were 95% and 88% (P=.065), respectively, for type 1 poliovirus; 95% and 97% (P=.543), respectively, for type 2 poliovirus; and 90% and 89% (P=.79), respectively, for type 3 poliovirus. Administration of a buffer solution prior to vaccination was not associated with statistically significant increases in the immune response to tOPV; however, a marginal 7% increase (P=.065) in serologic response to poliovirus type 1 was observed. NCT01579825. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Eloi, J-C; Okuda, M; Jones, S E Ward; Schwarzacher, W
2013-06-18
For applications from food science to the freeze-thawing of proteins it is important to understand the often complex freezing behavior of solutions of biomolecules. Here we use a magnetic method to monitor the Brownian rotation of a quasi-spherical cage-shaped protein, apoferritin, approaching the glass transition Tg in a freeze-concentrated buffer (Tris-HCl). The protein incorporates a synthetic magnetic nanoparticle (Co-doped Fe3O4 (magnetite)). We use the magnetic signal from the nanoparticles to monitor the protein orientation. As T decreases toward Tg of the buffer solution the protein's rotational relaxation time increases exponentially, taking values in the range from a few seconds up to thousands of seconds, i.e., orders of magnitude greater than usually accessed, e.g., by NMR. The longest relaxation times measured correspond to estimated viscosities >2 MPa s. As well as being a means to study low-temperature, high-viscosity environments, our method provides evidence that, for the cooling protocol used, the following applies: 1), the concentration of the freeze-concentrated buffer at Tg is independent of its initial concentration; 2), little protein adsorption takes place at the interface between ice and buffer; and 3), the protein is free to rotate even at temperatures as low as 207 K. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Complexation in two-component chlortetracycline-melanin solutions
NASA Astrophysics Data System (ADS)
Lapina, V. A.; Pershukevich, P. P.; Dontsov, A. E.; Bel'Kov, M. V.
2008-01-01
The spectra and kinetics of fluorescence of two-component solutions of the chlortetracycline (CHTC)-DOPA-melanin (melanin or ME) system in water have been investigated. The data obtained have been compared to similar data for solutions of CHTC-melanosome from bull eye (MB), which contains natural melanin, in K-phosphate buffer at pH 7.4. The overall results indicate the occurrence of complexation between molecules of CHTC and ME as they are being excited. The studies of complexation in the solution of CHTC-MB in the buffer are complicated by the formation of a CHTC-buffer complex. The effect of optical radiation in the range 330-750 nm on the CHTC-ME complex shows selectivity: the greatest change in the spectrum occurs when the wavelength of the exciting radiation coincides with the long-wavelength band maximum of the fluorescence excitation spectrum of the CHTC-ME complex in aqueous solution. In this range, CHTC and especially ME show high photochemical stability. The nature of the radiation effect on the studied compounds in the hard UV range (λ < 330 nm) differs greatly from that in the range 330-750 nm. It is apparently accompanied by significant photochemical transmutations of all system components. By comparing the characteristics of the CHTC-ME systems with those of the related drug doxycycline (DC-ME), the conclusion has been made that the chlorine atom plays a vital role in formation of the short-wavelength band in the fluorescence spectrum of the CHTC-ME complex.
Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J
2008-07-01
The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.
40 CFR Appendix B to Part 425 - Modified Monier-Williams Method
Code of Federal Regulations, 2014 CFR
2014-07-01
... is removed by scrubbing the nitrogen gas stream in a pH 7 buffer solution. The sulfide gas is collected by passage through an alkaline hydrogen peroxide scrubbing solution in which it is oxidized to sulfate. Sulfate concentration in the scrubbing solution is determined by either EPA gravimetric test...
40 CFR Appendix B to Part 425 - Modified Monier-Williams Method
Code of Federal Regulations, 2013 CFR
2013-07-01
... is removed by scrubbing the nitrogen gas stream in a pH 7 buffer solution. The sulfide gas is collected by passage through an alkaline hydrogen peroxide scrubbing solution in which it is oxidized to sulfate. Sulfate concentration in the scrubbing solution is determined by either EPA gravimetric test...
Pilkington, Suzanne M; Rhodes, Lesley E; Al-Aasswad, Naser M I; Massey, Karen A; Nicolaou, Anna
2014-03-01
Eicosapentaenoic acid (EPA), abundant in oily fish, is reported to reduce skin inflammation and provide photoprotection, potential mechanisms include competition with arachidonic acid (AA) for metabolism by cyclooxygenases/lipoxygenases to less pro-inflammatory mediators. We thus examine impact of EPA intake on levels of AA, EPA and their resulting eicosanoids in human skin with or without ultraviolet radiation (UVR) challenge. In a double-blind randomised controlled study, 79 females took 5 g EPA-rich or control lipid for 12 wk. Pre- and post-supplementation, red blood cell and skin polyunsaturated fatty acids were assessed by GC, and eicosanoids from unexposed and UVR-exposed skin by LC-MS/MS. Active supplementation increased red blood cell and dermal EPA versus control (both p < 0.001), lowering relative AA:EPA content (4:1 versus 15:1 and 5:1 versus 11:1, respectively; both p < 0.001). Pre-supplementation, UVR increased PGE2, 12-hydroxyeicosatetraenoic acids, 12-HEPE (all p < 0.001) and PGE3 (p < 0.05). Post-EPA, PGE2 was reduced in unchallenged skin (p < 0.05) while EPA-derived PGE3 (non-sign) and 12-HEPE (p < 0.01) were elevated post-UVR. Thus, post-EPA, PGE2 :PGE3 was lower in unchallenged (12:1 versus 28:1; p < 0.05) and UVR exposed (12:1 versus 54:1; p < 0.01) skin; 12-hydroxyeicosatetraenoic acids:12-HEPE was lower in UVR-exposed skin (3:1 versus 11:1; p < 0.001). Dietary EPA augments skin EPA:AA content, shifting eicosanoid synthesis towards less pro-inflammatory species, and promoting a regulatory milieu under basal conditions and in response to inflammatory insult. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Yajin; Fang, Xuan; Zhang, Xu; Huang, Jing; He, Jinlong; Peng, Liyuan; Ye, Chenji; Wang, Yingmei; Xue, Fengxia; Ai, Ding; Li, Dan; Zhu, Yi
2018-04-01
Atherosclerosis results from a maladaptive inflammatory response initiated by the intramural retention of LDL in susceptible areas of the arterial vasculature. The ω-3 polyunsaturated fatty acids (ω-3) have protective effects in atherosclerosis; however, their molecular mechanism is still largely unknown. The present study used a metabolomic approach to reveal the atheroprotective metabolites of ω-3 and investigate the underlying mechanisms. We evaluated the development of atherosclerosis in LDL receptor-deficient mice (LDLR -/- ) fed a Western-type diet (WTD) plus ω-3 and also LDLR -/- and fat-1 transgenic (LDLR -/- -fat-1 tg ) mice fed a WTD. The profiles of ω-3 in the plasma were screened by LC-MS/MS using unbiased systematic metabolomics analysis. We also studied the effect of metabolites of eicosapentaenoic acid (EPA) on endothelial activation in vitro. The ω-3 diet and fat-1 transgene decreased monocyte infiltration, inhibited the expression of pro-inflammatory genes and significantly attenuated atherosclerotic plaque formation and enhanced plaque stability in LDLR -/- mice. The content of 18-hydroxy-eicosapentaenoic acid (18-HEPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EEQ), from the cytochrome P450 pathway of EPA, was significantly higher in plasma from both ω-3-treated LDLR -/- and LDLR -/- -fat-1 tg mice as compared with WTD-fed LDLR -/- mice. In vitro in endothelial cells, 18-HEPE or 17,18-EEQ decreased inflammatory gene expression induced by TNFα via NF-κB signalling and thereby inhibited monocyte adhesion to endothelial cells. EPA protected against the development of atherosclerosis in atheroprone mice via the metabolites 18-HEPE and/or 17,18-EEQ, which reduced endothelial activation. These compounds may have therapeutic implications in atherosclerosis. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.
Schaller, Melinda S; Zahner, Greg J; Gasper, Warren J; Harris, William S; Conte, Michael S; Hills, Nancy K; Grenon, S Marlene
Oral supplementation with n-3 polyunsaturated fatty acids (PUFA) increases the omega-3 index, a biomarker of red blood cell eicosapentaenoic acid and docosahexaenoic acid, and plasma levels of biosynthesis pathway markers and potent lipid mediators involved in the resolution of inflammation among patients with peripheral arterial disease (PAD). We aimed to quantify the association between an upstream change in the omega-3 index and downstream changes in lipid mediator production. We conducted a secondary analysis of the OMEGA-PAD I Trial, a randomized, placebo controlled trial investigating high-dose n-3 PUFA oral supplementation in PAD patients. Eighty subjects were randomized to either 4.4 g of fish oil or placebo for 1 month. Regression analyses using generalized estimating equation techniques were used to investigate the relationship between changes in the omega-3 index and changes in lipid mediators, pre- and post-intervention. In the fish oil group, there was a significant increase in the omega-3 index (5 ± 1% to 9 ± 2%, P < .001) as well as in the plasma levels of several downstream lipid mediator pathway markers of resolution, which are involved with the regulation of leukocyte effector function and host defense. A doubling of the omega-3 index correlated with increases of 2.3-fold in 18-hydroxy-eicosapentaenoic acid (HEPE; P < .0001), 1.7-fold in 15-HEPE (P = .03), 1.9-fold in 5-HEPE (P = .04), and 3.6-fold in 4-hydroxy-docosahexaenoic acid (P < .001). Among subjects with symptomatic PAD who took oral fish oil supplements for 1 month, observed changes in the omega-3 index were strongly associated with increases in downstream mediators in the biochemical pathways of resolution. Copyright © 2017 National Lipid Association. All rights reserved.
Improvements in multimedia data buffering using master/slave architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, S.; Ganesan, R.
1996-12-31
Advances in the networking technology and multimedia technology has necessitated a need for multimedia servers to be robust and reliable. Existing solutions have direct limitations such as I/O bottleneck and reliability of data retrieval. The system can store the stream of incoming data if enough buffer space is available or the mass storage is clearing the buffer data faster than queue input. A single buffer queue is not sufficient to handle the large frames. Queue sizes are normally several megabytes in length and thus in turn will introduce a state of overflow. The system should also keep track of themore » rewind, fast forwarding, and pause requests, otherwise queue management will become intricate. In this paper, we present a master/slave (server that is designated to monitor the workflow of the complete system. This server holds every other information of slaves by maintaining a dynamic table. It also controls the workload on each of the systems by redistributing request to others or handles the request by itself) approach which will overcome the limitations of today`s storage and also satisfy tomorrow`s storage needs. This approach will maintain the system reliability and yield faster response by using more storage units in parallel. A network of master/slave can handle many requests and synchronize them at all times. Using dedicated CPU and a common pool of queues we explain how queues can be controlled and buffer overflow can be avoided. We propose a layered approach to the buffering problem and provide a read-ahead solution to ensure continuous storage and retrieval of multimedia data.« less
Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao
2016-01-13
The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated.
Arutiunian, A V; Ivanova, M A; Kurliand, D I; Kapshin, Iu S; Landa, S B; Poshekhonov, S T; Drobchenko, E A; Shevelev, I V
2011-01-01
Changes in the rigidity of the polymetric chain of phage lambda double-strand DNA have been studied by laser correlation spectroscopy. It was shown that, as the ionic strength increases, the effect of the screening of the hydrodynamic interaction of the links of the polymeric chain specific for polymeric coils arises in a DNA solution. It is assumed that the screening occurs when the threshold of the overlapping of DNA coils is achieved. The overlapping of coils is the result of a previously observed significant rise of DNA coil size from abnormally small DNA coils in low ionic strength buffers (about 10(-2) M Na+ or less) to maximum possible large coils in the 5SSC and 5SSC-like buffers. Further analysis of the far interlink interactions in linear lambda phage DNA coils in similar buffers at pH 7 and 4 confirms the earlier proposal about the role of H+ ions in the appearance of abnormally small DNA coils. The abnormal decrease in the DNA coil size in low ionic strength buffers is not a specific feature of lambda phage DNA only.
Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.
Lin, Ya-Ting; Liang, Chenju
2015-10-01
Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell
NASA Astrophysics Data System (ADS)
Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko
2017-02-01
We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.
Ciro, John; Ramírez, Daniel; Mejía Escobar, Mario Alejandro; Montoya, Juan Felipe; Mesa, Santiago; Betancur, Rafael; Jaramillo, Franklin
2017-04-12
Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.
NASA Technical Reports Server (NTRS)
1985-01-01
Two buffers were explored for testing: low ionic strength electrophoresis buffer with and without density gradient material. It was found that the electrophoresis routine was better tolerated when Ficoll was present. The results of a viability study of primary human fetal kidney (HFK-1) cells at the first passage are shown. Cell strain HFK-1 was used in several experiments at the first and second passage. The HFK consisted mainly of fibroblasts, and HFK-1 has a high epithelioid cell content. The chromosomes of HFK were examined and found to be euploid. The stock medium for cell electrophoresis is described. In this solution density gradient solutes such as sucrose and Ficoll are dissolved to bring the osmolarity to 0.30. Its ionic strength is less than 0.01M, and its conductivity is usually 0.0011 mho/cm. Methods for viability determination included direct microscopic counting of the percent cells attached and spread within 24 hr of plating test cultures or electrophoretically separated fractions. The Cytograf viability assay concept was tested, and shown that blue stained cells scatter less light into the 0.8 to 3.3 deg angular interval than do unstained cells.
Hauptmann, Astrid; Podgoršek, Katja; Kuzman, Drago; Srčič, Stanko; Hoelzl, Georg; Loerting, Thomas
2018-03-19
This study addresses the effect of freezing and thawing on a therapeutic monoclonal antibody (mAb) solution and the corresponding buffer formulation. Particle formation, crystallization behaviour, morphology changes and cryo-concentration effects were studied after varying the freezing and thawing rates, buffer formulation and protein concentration. The impact of undergoing multiple freeze/thaw (FT)-cycles at controlled and uncontrolled temperature rates on mAb solutions was investigated in terms of particle formation. Physicochemical characteristics were analysed by Differential Scanning Calorimetry whereas morphology changes are visualized by cryomicroscopy measurements. Micro Flow Imaging, Archimedes and Dynamic Light Scattering were used to investigate particle formation. Data retrieved in the present study emphasizes the damage caused by multiple FT-cyles and the need for sucrose as a cryoprotectant preventing cold-crystallization specifically at high protein concentrations. Low protein concentrations cause an increase of micron particle formation. Low freezing rates lead to a decreased particle number with increased particle diameter. The overall goal of this research is to gain a better understanding of the freezing and thawing behaviour of mAb solutions with the ultimate aim to optimize this process step by reducing the unwanted particle formation, which also includes protein aggregates.
Solution Preserves Nucleic Acids in Body-Fluid Specimens
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Stowe, Raymond P.
2004-01-01
A solution has been formulated to preserve deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in specimens of blood, saliva, and other bodily fluids. Specimens of this type are collected for diagnostic molecular pathology, which is becoming the method of choice for diagnosis of many diseases. The solution makes it possible to store such specimens at room temperature, without risk of decomposition, for subsequent analysis in a laboratory that could be remote from the sampling location. Thus, the solution could be a means to bring the benefits of diagnostic molecular pathology to geographic regions where refrigeration equipment and diagnostic laboratories are not available. The table lists the ingredients of the solution. The functions of the ingredients are the following: EDTA chelates divalent cations that are necessary cofactors for nuclease activity. In so doing, it functionally removes these cations and thereby retards the action of nucleases. EDTA also stabilizes the DNA helix. Tris serves as a buffering agent, which is needed because minor contaminants in an unbuffered solution can exert pronounced effects on pH and thereby cause spontaneous degradation of DNA. SDS is an ionic detergent that inhibits ribonuclease activity. SDS has been used in some lysis buffers and as a storage buffer for RNA after purification. The use of the solution is straightforward. For example, a sample of saliva is collected by placing a cotton roll around in the subject's mouth until it becomes saturated, then the cotton is placed in a collection tube. Next, 1.5 mL of the solution are injected directly into the cotton and the tube is capped for storage at room temperature. The effectiveness of the solution has been demonstrated in tests on specimens of saliva containing herpes simplex virus. In the tests, the viral DNA, as amplified by polymerase chain reaction, was detected even after storage for 120 days.
NASA Astrophysics Data System (ADS)
Chi, Yixia; Xue, Lianqing; Zhang, Zhanyu; Li, Dongying
2018-01-01
Based on the simulation experiments of solute transport in channel buffer bank and pot experiments, this study analyzed the transport of nitrogen pollution from farmland drains along the South-North Water Transfer east route project; and compared the nitrogen transport rule and purification effect of alfalfa in channel buffer bank soil under situations of bare land and alfalfa mulching. The results showed that: (1) soil nitrogen content decreased gradually with the width increase of channel buffer bank by the soil adsorption and decomposition; (2) the migration rates of nitrogen were 0.06 g·kg-1 by the alfalfa mulching; (3) the removed rates of nitrogen from the soil were 0.088 g·kg-1 by cutting alfalfa; (4) the residual nitrogen of soil with alfalfa was 10% of the bare land. Alfalfa in channel buffer bank had obvious reduction and hysteresis effect to soil nitrogen pollution.
NASA Astrophysics Data System (ADS)
Aleshin, A. N.; Bugaev, A. S.; Ruban, O. A.; Tabachkova, N. Yu.; Shchetinin, I. V.
2017-10-01
Spatial distribution of residual elastic strain in the layers of two step-graded metamophic buffers of various designs, grown by molecular beam epitaxy from ternary InxAl1-xAs solutions on GaAs(001) substrates, is obtained using reciprocal space mapping by three-axis X-ray diffractometry and the linear theory of elasticity. The difference in the design of the buffers enabled the formation of a dislocation-free layer with different thickness in each of the heterostructures, which was the main basis of this study. It is shown that, in spite of the different design of graded metamorphic buffers, the nature of strain fields in them is the same, and the residual elastic strains in the final elements of both buffers adjusted for the effect of work hardening subject to the same phenomenological law, which describes the strain relief process in single-layer heterostructures.
Concept cartoons for diagnosing student’s misconceptions in the topic of buffers
NASA Astrophysics Data System (ADS)
Kusumaningrum, I. A.; Ashadi; Indriyanti, N. Y.
2018-05-01
Student’s misconceptions have been concerned over twenty years in the chemistry education research. It influences students to learn new knowledge and gain a correct concept. The buffer solution is found as a difficult topic due to student’s misconception. However, the research related this subject are still rare. Concept cartoon has been used as one of the effective tools to diagnose misconceptions. This study aims to identify the effectiveness of concept cartoon to diagnose them. The concept cartoon consists of three concept questions. 98 students of grade 11 as respondents of this research and followed by interview for selected students. The data obtain of the study are analyzed by using a scoring key. The detected misconceptions are about what buffers do, what buffers are, and how buffers are able to do what they do. Concept cartoon is potential as a basic tool for remedial teaching.
Expanding the range of free calcium regulation in biological solutions.
Dweck, David; Reyes-Alfonso, Avelino; Potter, James D
2005-12-15
Many biological systems use ethylene glycol bis (beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) to regulate the free calcium concentration ([Ca(2+)](free)) in the presence of physiological levels of free Mg(2+) ([Mg(2+)](free)). Frequently, it is necessary to work at [Ca(2+)](free) beyond EGTA's buffering capabilities. Therefore, we have developed methods to extend the buffering range by adding nitrilotriacetic acid (NTA) to solutions containing EGTA. This extension results from NTA having a lower K'(dCa) than EGTA. Such equilibria are solved by pCa Calculator, a computer program designed to aid in the study of Ca(2+)-dependent physiological processes while accounting for the effects of pH, temperature, and ionic strength. With multiple chelators and pH buffers from which to choose, pCa Calculator calculates the total concentration of each species required to achieve specified free concentrations of Ca(2+), ATP, and Mg(2+). The program is intuitive, user-friendly, and flexible enough to fix or vary the [Mg-ATP(2-)] and ionic strength. Moreover, it can account for increases in experimental volume from calcium addition. A comparative analysis is reported for testing solutions in the presence and absence of NTA by measuring the calcium binding affinity of fluorescent cardiac troponin C. These findings demonstrate that EGTA, when used in conjunction with NTA, improves and expands the regulation of free calcium in solution.
Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua
2008-11-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A
2008-01-01
The parameters that affect the shape of the band profiles of acido-basic compounds under moderately overloaded conditions (sample size less than 500 nmol for a conventional column) in RPLC are discussed. Only analytes that have a single pK{sub a} are considered. In the buffer mobile phase used for their elution, their dissociation may, under certain conditions, cause a significant pH perturbation during the passage of the band. Two consecutive injections (3.3 and 10 {micro}L) of each one of three sample solutions (0.5, 5, and 50 mM) of ten compounds were injected on five C{sub 18}-bonded packing materials, including the 5more » {micro}m Xterra-C{sub 18} (121 {angstrom}), 5 {micro}m Gemini-C{sub 18} (110 {angstrom}), 5 {micro}m Luna-C{sub 18}(2) (93 {angstrom}), 3.5 {micro}m Extend-C{sub 18} (80 {angstrom}), and 2.7 {micro}m Halo-C{sub 18} (90 {angstrom}). The mobile phase was an aqueous solution of methanol buffered at a constant {sub W}{sup W}pH of 6, with a phosphate buffer. The total concentration of the phosphate groups was constant at 50 mM. The methanol concentration was adjusted to keep all the retention factors between 1 and 10. The compounds injected were phenol, caffeine, 3-phenyl 1-propanol, 2-phenyl butyric acid, amphetamine, aniline, benzylamine, p-toluidine, procainamidium chloride, and propranololium chloride. Depending on the relative values of the analyte pK{sub a} and the buffer solution pH, these analytes elute as the neutral, the cationic, or the anionic species. The influence of structural parameters such as the charge, the size, and the hydrophobicity of the analytes on the shape of its overloaded band profile is discussed. Simple but general rules predict these shapes. An original adsorption model is proposed that accounts for the unusual peak shapes observed when the analyte is partially dissociated in the buffer solution during its elution.« less
Roth, T L; Swanson, W F; Collins, D; Burton, M; Garell, D M; Wildt, D E
1996-01-01
To better understand the biology of snow leopard spermatozoa and to facilitate developing assisted reproduction, a series of studies was conducted to: 1) identify the component(s) of complex culture media responsible for the detrimental effect on sperm survival in vitro, 2) optimize medium for supporting sperm viability, and 3) evaluate sperm capacitation in vitro. Constituents of complex media were added systematically to phosphate-buffered saline (PBS) to isolate the factor(s) influencing snow leopard sperm motility in vitro. Sperm capacitation was also assessed following incubation in PBS with bovine serum albumin (BSA), fetal calf serum (FCS), or heparin. For maintaining sperm motility, there was no benefit (P > or = 0.05) to supplementing PBS with low (5%) or high (20%) concentrations of snow leopard serum (SLS) versus FCS or BSA. Likewise, adding supplemental energy substrates (pyruvate, glucose, lactate, or glutamine) did not enhance or hinder (P > or = 0.05) sperm motility. However, motility rapidly decreased (P < 0.05) with the addition of NaHCO3 to PBS or Ham's F10 nutrient mixture. Surprisingly, Ham's F10 with no buffering component or with both NaHCO3 and N-Z-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) maintained sperm motility at levels similar (P > or = 0.05) to PBS. Although sperm motility in all treatments decreased with time, there was a strong inverse relationship (P < 0.01; r = 0.90) between motility and sample pH at 6 hours. Spermatozoa incubated in PBS containing FCS, BSA, or heparin did not undergo the acrosome reaction when exposed to calcium ionophore. In summary, alkaline pH has a profound detrimental effect on snow leopard sperm motility, and capacitation does not occur under conditions that normally promote this event in other felid species. These results clearly demonstrate a high degree of interspecific variation among felids in fundamental sperm function, and they provide evidence for the necessity of basic research when developing assisted reproduction in little-studied nondomestic species.
Zen, E.-A.
1973-01-01
Reversed univariant hydrothermal phase-equilibrium reactions, in which a redox reaction occurs and is controlled by oxygen buffers, can be used to extract thermochemical data on minerals. The dominant gaseous species present, even for relatively oxidizing buffers such as the QFM buffer, are H2O and H2; the main problem is to calculate the chemical potentials of these components in a binary mixture. The mixing of these two species in the gas phase was assumed by Eugster and Wones (1962) to be ideal; this assumption allows calculation of the chemical potentials of the two components in a binary gas mixture, using data in the literature. A simple-mixture model of nonideal mixing, such as that proposed by Shaw (1967), can also be combined with the equations of state for oxygen buffers to permit derivation of the chemical potentials of the two components. The two mixing models yield closely comparable results for the more oxidizing buffers such as the QFM buffer. For reducing buffers such as IQF, the nonideal-mixing correction can be significant and the Shaw model is better. The procedure of calculation of mineralogical thermochemical data, in reactions where hydrogen and H2O simultaneously appear, is applied to the experimental data on annite, given by Wones et al. (1971), and on almandine, given by Hsu (1968). For annite the results are: Standard entropy of formation from the elements, Sf0 (298, 1)=-283.35??2.2 gb/gf, S0 (298, 1) =+92.5 gb/gf. Gf0 (298, 1)=-1148.2??6 kcal, and Hf0 (298, 1)=-1232.7??7 kcal. For almandine, the calculation takes into account the mutual solution of FeAl2O4 (Hc) in magnetite and of Fe3O4 (Mt) in hercynite and the temperature dependence of this solid solution, as given by Turnock and Eugster (1962); the calculations assume a regular-solution model for this binary spinel system. The standard entropy of formation of almandine, Sf,A0 (298, 1) is -272.33??3 gb/gf. The third law entropy, S0 (298, 1) is +68.3??3 gb/gf, a value much less than the oxide-sum estimate but the deviation is nearly the same as that of grossularite, referring to a comparable set of oxide standard states. The Gibbs free energy Gf,A0 (298, 1) is -1192.36??4 kcal, and the enthalpy Hf,A0 (298, 1) is -1273.56??5 kcal. ?? 1973 Springer-Verlag.
Contact activation of blood-plasma coagulation
NASA Astrophysics Data System (ADS)
Golas, Avantika
Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an "adsorption-dilution" effect that blocks FXII contact with hydrophobic activator surfaces. The adsorption-dilution effect explains the apparent specificity for hydrophilic activators pursued by earlier investigators. Finally a comparison of FXII autoactivation in buffer, serum, protein cocktail, and plasma solutions is shown herein. Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. However, activation of factor XII dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a "mechanochemical" reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway.
Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven
2015-11-01
We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer-based formulations, especially at protein concentrations up to and including 115 mg/mL. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
O'Brien, Leah C.; Root, Hannah B.; Wei, Chin-Chuan; Jensen, Drake; Shabestary, Nahid; De Meo, Cristina; Eder, Douglas J.
2015-01-01
Isothermal titration calorimetry was used to experimentally determine thermodynamic values for the ethylenediaminetetraacetic acid (EDTA)(aq) + M[superscript 2+](aq) reactions (M[superscript 2+] = Ca[superscript 2+] and Mg[superscript 2+]). Students showed that for reactions in a N-(2-hydroxyethyl)piperazine-N"-ethanesulfonic acid (HEPES)…
Solution immersed silicon (SIS)-based biosensors: a new approach in biosensing.
Diware, M S; Cho, H M; Chegal, W; Cho, Y J; Jo, J H; O, S W; Paek, S H; Yoon, Y H; Kim, D
2015-02-07
A novel, solution immersed silicon (SIS)-based sensor has been developed which employs the non-reflecting condition (NRC) for a p-polarized wave. The SIS sensor's response is almost independent of change in the refractive index (RI) of a buffer solution (BS) which makes it capable of measuring low-concentration and/or low-molecular-weight compounds.
Sirichai, S; de Mello, A J
2001-01-01
The separation and detection of both print and film developing agents (CD-3 and CD-4) in photographic processing solutions using chip-based capillary electrophoresis is presented. For simultaneous detection of both analytes under identical experimental conditions a buffer pH of 11.9 is used to partially ionise the analytes. Detection is made possible by indirect fluorescence, where the ions of the analytes displace the anionic fluorescing buffer ion to create negative peaks. Under optimal conditions, both analytes can be analyzed within 30 s. The limits of detection for CD-3 and CD-4 are 0.17 mM and 0.39 mM, respectively. The applicability of the method for the analysis of seasoned photographic processing developer solutions is also examined.
Wu, Jian; Zhang, Yupeng; He, Yeyuan; Liu, Chunyu; Guolt, Wenbin; Ruan, Shengping
2014-06-01
We used a hydrothermal method to synthesis the solution-processed V2O5 as anode buffer layer, which applied on inverted polymer solar cells based on FTO substrate. The structure of the device is glass/FTO/TiO2/P3HT:PCBM/V2O5/Ag. We discussed the dependence of device performance on the concentrations of V2O5 solution. It is found that when the concentration of V2O5 is 300 microg/ml, the power conversion efficiency (PCE of 2.38%) is the highest, which is much higher than that of the device without anode buffer layer (PCE of only 0.87%). Moreover, it can significantly reduce the energy consumption and make it more cost-effective.
USDA-ARS?s Scientific Manuscript database
We determined the viability of Listeria monocytogenes on uncured turkey breast containing buffered vinegar (BV) and surface treated with a stabilized solution of sodium chlorite in vinegar (VSC). Commercially-produced, uncured, deli-style turkey breast was formulated with BV (0.0, 2.0, 2.5, or 3.0%)...
Mapping tradeoffs in values at risk at the interface between wilderness and non-wilderness lands
Alan Watson; Roian Matt; Tim Waters; Kari Gunderson; Steve Carver; Brett Davis
2009-01-01
On the Flathead Indian Reservation in Montana, U.S., the Mission Mountains Tribal Wilderness is bordered by a buffer zone. To successfully improve forest health within that buffer zone and restore fire in the wilderness, the managing agency and the public need to work together to find solutions to increasingly threatening fuel buildups. A combination of qualitative,...
Accurate chemical master equation solution using multi-finite buffers
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-06-29
Here, the discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multifinite buffers for reducing the state spacemore » by $O(n!)$, exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.« less
Jain, Rohit; Wu, Zimei; Bork, Olaf; Tucker, Ian G
2012-01-01
Penethamate (PNT) is a diethylaminoethyl ester prodrug of benzylpenicillin used to treat bovine mastitis via the intramuscular route. Because of its instability, PNT products must be reconstituted before administration and the reconstituted injection has a short shelf life (7 days at 2-8°C). The purpose of this paper was to investigate whether the stability of PNT can be improved in order to achieve a chemically stable ready-to-use aqueous-based PNT formulation or at least to extend the shelf life of the reconstituted suspension. A chemical stability study of PNT in aqueous-based solutions as a function of pH, buffer strength, solvent mixtures and temperature, supported by studies of its solubility in mixed solvents, allowed predictions of the shelf life of PNT solution and suspension formulations. PNT degraded in aqueous solutions by several pathways over the pH range 2.0-9.3 with a V-shaped pH-rate profile and a minimum pH of around 4.5. The stability of PNT solutions in mixed solvents was greater than in aqueous solutions. For example, in propylene glycol:citrate buffer (60:40, v/v, pH 4.5), the half-life of PNT was 4.3 days compared with 1.8 days in aqueous buffer. However, solubility of PNT in the mixed solvent was higher than that in aqueous solution and this had an adverse effect on the stability of suspensions. By judicious choosing of pH and mixed solvent, it is possible to achieve a storage life of a PNT suspension of 5.5 months at 5°C, not sufficient for a ready-to-use product but a dramatic improvement in the storage life of the reconstituted product.
Accurate chemical master equation solution using multi-finite buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Youfang; Terebus, Anna; Liang, Jie
Here, the discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multifinite buffers for reducing the state spacemore » by $O(n!)$, exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.« less
A pilot study of the validation of percutaneous testing in cats.
Rossi, Michael A; Messinger, Linda; Olivry, Thierry; Hoontrakoon, Raweewan
2013-10-01
Intradermal testing is useful for the identification of environmental allergens to which cats could be hypersensitive; intradermal test reactions are often subtle and difficult to interpret in cats. Percutaneous testing is the standard technique for the detection of significant environmental allergens in people, but it has not yet been evaluated in cats with hypersensitivity dermatitis. The purpose of this study was to evaluate and compare the skin test responses of healthy cats to percutaneous application and intradermal injections of control solutions. Ten clinically healthy cats were studied. Percutaneous applications of 0.0275 and 0.1 mg/mL aqueous histamine, 6 mg/mL glycerinated histamine, 0.9% buffered saline and 50% glycerosaline solution were performed using Greer Pick (Greer Laboratories, Lenoir, NC, USA) and Duotip-Test II (Lincoln Diagnostics, Decatur, IL, USA) percutaneous applicators. Reactions were compared with intradermal injections of 0.0275 mg/mL aqueous histamine and 0.9% buffered saline as controls. Positive responses to histamine solutions were significantly greater with the Greer Pick than with the Duotip-Test II. There were no significant differences between the histamine reactions using the Greer Pick applicator and the intradermal injections. Percutaneous reactions to histamine were more well demarcated and easier to read than intradermal injection reactions. Reactions to the saline controls were not noted. Percutaneous application of 6 mg/mL glycerinated histamine solution, 50% glycerosaline solution and 0.9% buffered saline produced similar positive and negative control wheals. These observations warrant further studies of percutaneous allergen testing in cats with hypersensitivity dermatitis. © 2013 ESVD and ACVD.
Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien
2015-01-01
Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.
Harreld, Taryn Kratz; Fowler, Sara; Drum, Melissa; Reader, Al; Nusstein, John; Beck, Mike
2015-10-01
Incision and drainage of symptomatic emergency patients with facial swelling is painful even after local anesthetics are administered. The purpose of this prospective, randomized, double-blind study was to compare the pain of infiltration and the pain of an incision and drainage procedure of a buffered versus a nonbuffered 4% lidocaine formulation in symptomatic emergency patients presenting with a diagnosis of pulpal necrosis, associated periapical area, and an acute clinical swelling. Eighty-eight emergency patients were randomly divided into 2 groups to receive 2 intraoral infiltration injections (mesial and distal to the swelling) of either 4% lidocaine with 1:100,000 epinephrine buffered with 0.18 mL 8.4% sodium bicarbonate using the Onpharma (Los Gatos, CA) buffering system or 4% lidocaine with 1:100,000 epinephrine. Subjects rated the pain of needle insertion, needle placement, and solution deposition for each injection using a 170-mm visual analog scale. An incision and drainage procedure was performed, and subjects rated the pain of incision, drainage, and dissection on a 170-mm visual analog scale. No significant differences between the buffered and nonbuffered 4% lidocaine formulations were found for needle insertion, placement, and solution deposition of the infiltration injections or for the treatment phases of incision, drainage, and dissection. Buffering a 4% lidocaine formulation did not significantly decrease the pain of infiltrations or significantly decrease the pain of the incision and drainage procedure when compared with a nonbuffered 4% lidocaine formulation in symptomatic patients with a diagnosis of pulpal necrosis and associated acute swelling. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Taha, Mohamed; Lee, Ming-Jer
2013-06-28
Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.
Zhai, Yihui; Bloch, Jacek; Hömme, Meike; Schaefer, Julia; Hackert, Thilo; Philippin, Bärbel; Schwenger, Vedat; Schaefer, Franz; Schmitt, Claus P
2012-07-01
Biocompatible peritoneal dialysis fluids (PDF) are buffered with lactate and/or bicarbonate. We hypothesized that the reduced toxicity of the biocompatible solutions might unmask specific effects of the buffer type on mesothelial cell functions. Human peritoneal mesothelial cells (HPMC) were incubated with bicarbonate (B-)PDF or lactate-buffered (L-)PDF followed by messenger RNA (mRNA) and protein analysis. Gene silencing was achieved using small interfering RNA (siRNA), functional studies using Transwell culture systems, and monolayer wound-healing assays. Incubation with B-PDF increased HPMC migration in the Transwell and monolayer wound-healing assay to 245 ± 99 and 137 ± 11% compared with L-PDF. Gene silencing showed this effect to be entirely dependent on the expression of aquaporin-1 (AQP-1) and independent of AQP-3. Exposure of HPMC to B-PDF increased AQP-1 mRNA and protein abundance to 209 ± 80 and 197 ± 60% of medium control; the effect was pH dependent. L-PDF reduced AQP-1 mRNA. Addition of bicarbonate to L-PDF increased AQP-1 abundance by threefold; mRNA half-life remained unchanged. Immunocytochemistry confirmed opposite changes of AQP-1 cell-membrane abundance with B-PDF and L-PDF. Peritoneal mesothelial AQP-1 abundance and migration capacity is regulated by pH and buffer agents used in PD solutions. In vivo studies are required to delineate the impact with respect to long-term peritoneal membrane integrity and function.
Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads.
Park, Jongman; Lee, Dami; Kim, Won; Horiike, Shigeyoshi; Nishimoto, Takahiro; Lee, Se Hwan; Ahn, Chong H
2007-04-15
A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique. The silica packed chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly packing at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface area-to-volume ratio of the silica packing, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.
Chou, A; Hori, S; Takase, M
1985-01-01
Subconjunctival injection of 0.2 ml of the following solutions was carried out once a day for two weeks in the albino and pigmented rabbit: commercial 0.5% timolol or 1% befunolol ophthalmic solutions, both containing benzalkonium chloride, and also these drug solutions containing no preservative, ophthalmic base solutions containing benzalkonium chloride, physiological saline solution or phosphate buffer solution. One week after daily injections of the commercial drug solutions or base solutions with benzalkonium chloride, the electroretinogram (ERG) showed a marked reduction in the a- and b-wave amplitudes in the pigmented rabbit, but the ERG changes were slight in the albino rabbit. After two weeks of injections, histological studies of the pigmented rabbit eyes revealed retinal detachment, visual cell loss and atrophy of the retinal pigment epithelium and choroid; the changes in the albino rabbit eyes were minimal. Injections of the beta-blockers containing no benzalkonium resulted in no significant changes in the ERG or in the tissue structures of all rabbits. Injections of only physiological saline or phosphate buffer had no deleterious effects. Therefore, the ocular toxicity of the beta-blockers was thought to be minor and the toxic effects seen in this study were thought to be due to benzalkonium chloride, which possibly accumulates in the ocular pigments.
Chemical solution deposition method of fabricating highly aligned MgO templates
Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2012-01-03
A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.
NASA Astrophysics Data System (ADS)
Kobayashi, Tsuyoshi; Hashizume, Hiroshi; Ohta, Takayuki; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi
2015-09-01
The inactivation of microorganisms using nonequilbrium atmospheric pressure plasmas has been attracted much attention due to the low temperature processing and high speed treatment. In this study, we have inactivated E. coli suspended in solutions with neutral pH using an atmospheric-pressure oxygen radical source which can selectively supply electrically neutral oxygen radicals. E. coli cells were suspended with deionized distilled water (DDW) (pH = 6.8) or phosphate buffered saline (PBS) (pH = 7.4) or Citrate-Na buffer (pH = 6.5). The treated samples were diluted and spread on nutrient agar (Nutrient Broth). They were cultured at 37° C. The inactivation effects of oxygen radicals on those cells in solutions were evaluated by colony-counting method. O2 diluted by Ar gas were employed as a working gas for the radical source. The total gas flow rate and the gas mixture ratio of O2/(Ar + O2) were set at 5 slm and 0.6%, respectively. The distance between the radical exit and the suspension surface were set at 10 mm. As a result, the D values for DDW(pH = 6.8), PBS(pH = 7.4) and Citrate-Na buffer(pH = 6.5) were estimated to be 1.4 min, 0.9 min and 16.8 min respectively. The inactivation rates in DDW, PBS were significantly different from that in Citrate-Na buffer. This work was partly supported by JSPS KAKENHI Grant Number 26286072 and project for promoting Research Center in Meijo University.
Growth And Characterization Of LPE CdHgTe/CdZnTe/CdZnTe Structure
NASA Astrophysics Data System (ADS)
Pelliciari, B.; Chamonal, J. P.; Destefanis, G. L.; Dicioccio, L.
1988-05-01
The liquid phase epitaxial technique is used to grow Hgl_x Cdx Te (x = .23) from a Te - rich solution onto a Cdl_y ZnyTe (y = .04) buffer layer grown from a Te-rich solution onto a Cdi_yZnyTe bulk substrate in an open tube multibin horizontal slider apparatus.Growth conditions and physical characterizations of both the buffer layer and the CdHgTe layer are given ; electrical properties of the CdHgTe layer are also presen-ted. PV detectors were successfully obtained on such a structure using an ion-implanted technology and their characteristics at 77 K for a 10.1 ,um cut-off wavelength are given.
NASA Astrophysics Data System (ADS)
Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong
2016-05-01
This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.
Cristofoletti, Rodrigo; Dressman, Jennifer B
2016-06-01
The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...
Carrizosa, Jaime; Levison, Matthew E.; Kaye, Donald
1974-01-01
In a double-blind study with each patient as his own control, a buffered and an unbuffered cephalothin solution was administered to 13 patients in opposite arms for a period of 48 h each. Neither the incidence of phlebitis nor the degree of phlebitis was different with the two diluents, and there was no difference in the time of onset of phlebitis. PMID:4840431
Program on Resorbable Radio Devices
2014-05-05
radio circuit - + PDMS Copper Mg PBS Buffer 1© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com Transient, Biocompatible...way, ZnO provides an alternative to silicon [ 16 ] or organic semi- conductors [ 17–20 ] for physically transient forms of electronics and sensors...immersion in several different types of solutions, such as phosphate buffer saline (PBS, pH 4.0, Sigma- Figure 1 . Materials and designs for
Inorganic Substrates and Encapsulation Layers for Transient Electronics
2014-07-01
surface oxidation of the nitrides, the measurements were conducted shortly after oxide removal in buffered oxide etchant (BOE) 6:1 (Transene Company Inc...values for the time-dependent dissolution of thermally grown SiO2 (dry oxidation) in buffer solutions (black, pH 7.4; red, pH 8; blue, pH 10...22 5.1.3 Contractor will Identify and Measure Key Performance Characteristics of Candidate Metal Conductive Layers for
Abu-Raiya, Hisham; Pargament, Kenneth I; Krause, Neal
2016-05-01
Previous studies have established robust links between religious/spiritual struggles (r/s struggles) and poorer well-being and psychological distress. A critical issue involves identifying the religious factors that buffer this relationship. This is the first study to empirically address this question. Specifically, it examines four religious factors (i.e., religious commitment, life sanctification, religious support, religious hope) as potential buffers of the links between r/s struggle and one indicator of subjective well-being (i.e., happiness) and one indicator of psychological distress (i.e., depressive symptoms). We utilized a cross-sectional design and a nationally representative sample of American adults (N = 2140) dealing with a wide range of major life stressors. We found that the interactions between r/s struggle and all potential moderators were significant in predicting happiness and/or depression. The linkage between r/s struggle and lower levels of happiness was moderated by higher levels of each of the four proposed religious buffers. Religious commitment and life sanctification moderated the ties between r/s struggles and depressive symptoms. The findings underscore the multifaceted character of religion: Paradoxically, religion may be a source of solutions to problems that may be an inherent part of religious life.
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
The quantitation of buffering action I. A formal & general approach.
Schmitt, Bernhard M
2005-03-15
Although "buffering" as a homeostatic mechanism is a universal phenomenon, the quantitation of buffering action remains controversial and problematic. Major shortcomings are: lack of a buffering strength unit for some buffering phenomena, multiple and mutually incommensurable units for others, and lack of a genuine ratio scale for buffering strength. Here, I present a concept of buffering that overcomes these shortcomings. Briefly, when, for instance, some "free" H+ ions are added to a solution (e.g. in the form of strong acid), buffering is said to be present when not all H+ ions remain "free" (i.e., bound to H2O), but some become "bound" (i.e., bound to molecules other than H2O). The greater the number of H+ ions that become "bound" in this process, the greater the buffering action. This number can be expressed in two ways: 1) With respect to the number of total free ions added as "buffering coefficient b", defined in differential form as b = d(bound)/d(total). This measure expresses buffering action from nil to complete by a dimensionless number between 0 and 1, analogous to probabilites. 2) With respect to the complementary number of added ions that remain free as "buffering ratio B", defined as the differential B = d(bound)/d(free). The buffering ratio B provides an absolute ratio scale, where buffering action from nil to perfect corresponds to dimensionless numbers between 0 and infinity, and where equal differences of buffering action result in equal intervals on the scale. Formulated in purely mathematical, axiomatic form, the concept reveals striking overlap with the mathematical concept of probability. However, the concept also allows one to devise simple physical models capable of visualizing buffered systems and their behavior in an exact yet intuitive way. These two measures of buffering action can be generalized easily to any arbitrary quantity that partitions into two compartments or states, and are thus suited to serve as standard units for buffering action. Some exemplary treatments of classical and non-classical buffering phenomena are presented in the accompanying paper.
ERIC Educational Resources Information Center
Davies, Randall S.; Mendenhall, Robert
This evaluation compared online (i.e., World Wide Web-based) and classroom instructional delivery methods for the Health Education/Physical Education course, "Fitness and Lifestyle Management," at Brigham Young University (Utah). The results of the study were intended to add to the discussion on the value of web-based courses as a means…
Albumin adsorption onto surfaces of urine collection and analysis containers☆
Robinson, Mary K.; Caudill, Samuel P.; Koch, David D.; Ritchie, James; Hortin, Glen; Eckfeldt, John H.; Sandberg, Sverre; Williams, Desmond; Myers, Gary; Miller, W. Greg
2017-01-01
Background Adsorption of albumin onto urine collection and analysis containers may cause falsely low concentrations. Methods We added 125I-labeled human serum albumin to urine and to phosphate buffered solutions, incubated them with 22 plastic container materials and measured adsorption by liquid scintillation counting. Results Adsorption of urine albumin (UA) at 5–6 mg/l was <0.9%; and at 90 mg/l was <0.4%. Adsorption was generally less at pH 8 than pH 5 but only 3 cases had p <0.05. Adsorption from 11 unaltered urine samples with albumin 5–333 mg/l was <0.8%. Albumin adsorption for the material with greatest binding was extrapolated to the surface areas of 100 ml and 2 l collection containers, and to instrument sample cups and showed <1% change in concentration at 5 mg/l and <0.5% change at 20 mg/l or higher concentrations. Adsorption of albumin from phosphate buffered solutions (2–28%) was larger than that from urine. Conclusions Albumin adsorption differed among urine samples and plastic materials, but the total influence of adsorption was <1% for all materials and urine samples tested. Adsorption of albumin from phosphate buffered solutions was larger than that from urine and could be a limitation for preparations used as calibrators. PMID:24513540
Albumin adsorption onto surfaces of urine collection and analysis containers.
Robinson, Mary K; Caudill, Samuel P; Koch, David D; Ritchie, James; Hortin, Glen; Eckfeldt, John H; Sandberg, Sverre; Williams, Desmond; Myers, Gary; Miller, W Greg
2014-04-20
Adsorption of albumin onto urine collection and analysis containers may cause falsely low concentrations. We added (125)I-labeled human serum albumin to urine and to phosphate buffered solutions, incubated them with 22 plastic container materials and measured adsorption by liquid scintillation counting. Adsorption of urine albumin (UA) at 5-6 mg/l was <0.9%; and at 90 mg/l was <0.4%. Adsorption was generally less at pH8 than pH5 but only 3 cases had p<0.05. Adsorption from 11 unaltered urine samples with albumin 5-333 mg/l was <0.8%. Albumin adsorption for the material with greatest binding was extrapolated to the surface areas of 100 ml and 2l collection containers, and to instrument sample cups and showed <1% change in concentration at 5 mg/l and <0.5% change at 20 mg/l or higher concentrations. Adsorption of albumin from phosphate buffered solutions (2-28%) was larger than that from urine. Albumin adsorption differed among urine samples and plastic materials, but the total influence of adsorption was <1% for all materials and urine samples tested. Adsorption of albumin from phosphate buffered solutions was larger than that from urine and could be a limitation for preparations used as calibrators. Copyright © 2014 Elsevier B.V. All rights reserved.
Akiyama, C; Kobayashi, S; Nonaka, I
1992-01-01
We compared the morphologic characteristics of muscle fiber necrosis and subsequent regeneration after injury induced by intramuscular injections of bupivacaine hydrochloride (BPVC) and a variety of solutions at acid and alkaline pH (acetic anhydride, citric acid buffer, and sodium carbonate buffer). After BPVC injection the necrotic muscle fibers were rapidly invaded by phagocytic cells, followed by active regeneration and very little fibrous scar formation. The regenerating muscle fibers increased rapidly in size and attained complete fiber type differentiation and regained their initial fiber diameter within 1 month. Both alkaline and acid solutions induced muscle fiber necrosis followed by regeneration. Fiber necrosis induced by alkaline buffers and acetic anhydride solutions above pH 5.0 produced changes quite similar to that induced by BPVC. However, injection with 0.1 M acetic anhydride at pH below 4.0 resulted in coagulative necrosis of the injured muscle with very little phagocytic infiltration with poor regenerative activity and dense fibrous tissue scarring. Thus, pH 4.0 appears to be the critical pH determining the type of muscle injury and subsequent poor phagocytic and regenerative activities. This model of acidic acetic anhydride injury may lead to the identification of factors which interfere with regeneration and cause fibrous tissue scarring in human muscular dystrophy.
Laser Raman spectra of mono-, oligo- and polysaccharides in solution
NASA Astrophysics Data System (ADS)
Barrett, T. W.
We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.
Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong
2016-02-01
The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.
Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions.
Wang, Lu-Ning; Huang, Xian-Qiu; Shinbine, Alyssa; Luo, Jing-Li
2013-02-01
The corrosion behaviour of Zr in phosphate buffered saline (PBS) solutions with various concentrations (0-4 g L(-1)) of albumin was studied by electrochemical techniques and surface analysis. Addition of albumin to PBS solutions moved the open circuit potential (OCP) to less nobler direction. OCP, polarization resistance and impedance increased and the corrosion current decreased over immersion duration. At early stages of immersion, the resistance was increased with the concentration of albumin because of the high adsorption kinetics of albumin on metal. After the long term immersion, the resistance in PBS without albumin was higher than PBS with albumin owing to the anodic dissolution effect of albumin on metal. According to the analysis of effective capacitances, a normal distribution of time-constants was proposed to estimate the surface film on Zr. A corrosion mechanism of Zr in PBS with different albumin was proposed based on electrochemical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Luo, Wensui
2008-01-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less
Casson, Florence Boux de; Moal, Valérie; Gauchez, Anne-Sophie; Moineau, Marie-Pierre; Sault, Corinne; Schlageter, Marie-Hélène; Massart, Catherine
2017-04-01
The aim of this study was to evaluate the pre-analytical factors contributing to uncertainty in thyroglobulin measurement in fluids from fine-needle aspiration (FNA) washout of cervical lymph nodes. We studied pre-analytical stability, in different conditions, of 41 samples prepared with concentrated solutions of thyroglobulin (FNA washout or certified standard) diluted in physiological saline solution or buffer containing 6% albumin. In this buffer, over time, no changes in thyroglobulin concentrations were observed in all storage conditions tested. In albumin free saline solution, thyroglobulin recovery rates depended on initial sample concentrations and on modalities of their conservation (in conventional storage tubes, recovery mean was 56% after 3 hours-storage at room temperature and 19% after 24 hours-storage for concentrations ranged from 2 to 183 μg/L; recovery was 95%, after 3 hours or 24 hours-storage at room temperature, for a concentration of 5,656 μg/L). We show here that these results are due to non-specific adsorption of thyroglobulin in storage tubes, which depends on sample protein concentrations. We also show that possible contamination of fluids from FNA washout by plasma proteins do not always adequately prevent this adsorption. In conclusion, non-specific adsorption in storage tubes strongly contributes to uncertainty in thyroglobulin measurement in physiological saline solution. It is therefore recommended, for FNA washout, to use a buffer containing proteins provided by the laboratory.
Yaqin, Zhao; Binsheng, Yang
2005-11-01
The interaction between N,N'-ethylenebis-[2-(o-hydroxyphenolic)glycine] (EHPG) and lanthanum was studied by the difference UV spectra and fluorescence spectra. At pH 7.4, 0.01 M N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (Hepes), with the addition of 1.0 x 10(-3)M lanthanum, two new peaks were observed at 238 nm and 294 nm by absorptivity spectroscopy compared with blank solution EHPG suggesting the interaction of lanthanum and EHPG. At the same time, the reaction could be measured by fluorescence spectra. The fluorescence intensity of EHPG at 310 nm was significantly decreased in the presence of lanthanum. The 1:1 stoichiometric ratio of EHPG to lanthanum was confirmed by both fluorescence and UV titration curves. In addition, the molar absorptivity of La-EHPG at 238 nm is (1.23+/-0.01)x10(4)cm(-1)M(-1). The conditional binding constant was calculated to be log K(La-EHPG)=12.09+/-0.37 on the basis of the result of UV titration curves.
Vorst, Keith L; Todd, Ewen C D; Rysert, Elliot T
2004-10-01
Four sampling devices, a sterile environmental sponge (ES), a sterile cotton-tipped swab (CS), a sterile calcium alginate fiber-tipped swab (CAS), and a one-ply composite tissue (CT), were evaluated for quantitative recovery of Listeria monocytogenes from a food-grade stainless steel surface. Sterile 304-grade stainless steel plates (6 by 6 cm) were inoculated with approximately 106 CFU/cm2 L. monocytogenes strain Scott A and dried for 1 h. The ES and CT sampling devices were rehydrated in phosphate buffer solution. After plate swabbing, ES and CT were placed in 40 ml of phosphate buffer solution, stomached for 1 min and hand massaged for 30 s. Each CS and CAS device was rehydrated in 0.1% peptone before swabbing. After swabbing, CS and CAS were vortexed in 0.1% peptone for 1 min. Samples were spiral plated on modified Oxford agar with modified Oxford agar Rodac Contact plates used to recover any remaining cells from the stainless steel surface. Potential inhibition from CT was examined in both phosphate buffer solution and in a modified disc-diffusion assay. Recovery was 2.70, 1.34, and 0.62 log greater using CT compared with ES, CS, and CAS, respectively, with these differences statistically significant (P < 0.001) for ES and CT and for CAS, CS, and CT (P < 0.05). Rodac plates were typically overgrown following ES, positive after CS and CAS, and negative after CT sampling. CT was noninhibitory in both phosphate buffer solution and the modified disc-diffusion assay. Using scanning electron microscopy, Listeria cells were observed on stainless steel plates sampled with each sampling device except CT. The CT device, which is inexpensive and easy to use, represents a major improvement over other methods in quantifying L. monocytogenes on stainless steel surfaces and is likely applicable to enrichment of environmental samples.
Rodamilans, Bernardo; Montoya, Guillermo
2007-01-01
DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P21, with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 Å, α = γ = 90, β = 101.02°, and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 Å using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). PMID:17401195
Rodamilans, Bernardo; Montoya, Guillermo
2007-04-01
DDX3 is a human RNA helicase that is involved in RNA processing and important human diseases. This enzyme belongs to the DEAD-box protein family, the members of which are characterized by the presence of nine conserved motifs including the Asp-Glu-Ala-Asp motif that defines the family. DDX3 has two distinct domains: an ATP-binding domain in the central region of the protein and a helicase domain in the carboxy-terminal region. The helicase domain of DDX3 was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that were suitable for X-ray diffraction analysis. The final crystallization conditions were a reservoir solution consisting of 2 M ammonium sulfate, 0.1 M imidazole pH 6.4 plus 5 mM spermine tetrahydrochloride and a protein solution containing 10 mM HEPES, 500 mM ammonium sulfate pH 8.0. The crystals of the helicase domain belong to the monoclinic space group P2(1), with unit-cell parameters a = 43.85, b = 60.72, c = 88.39 A, alpha = gamma = 90, beta = 101.02 degrees , and contained three molecules per asymmetric unit. These crystals diffracted to a resolution limit of 2.2 A using synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS).
Klovrzová, Sylva; Zahálka, Lukáš; Matysová, Ludmila; Horák, Petr; Sklubalová, Zdenka
2013-02-01
The aim of this study is to formulate an extemporaneous pediatric oral solution of propranolol hydrochloride (PRO) 2 mg/ml for the therapy of infantile haemangioma or hypertension in a target age group of 1 month to school children and to evaluate its stability. A citric acid solution and/or a citrate-phosphate buffer solution, respectively, were used as the vehicles to achieve pH value of about 3, optimal for the stability of PRO. In order to mask the bitter taste of PRO, simple syrup was used as the sweetener. All solutions were stored in tightly closed brown glass bottles at 5 ± 3 °C and/or 25 ± 3 °C, respectively. The validated HPLC method was used to evaluate the concentration of PRO and a preservative, sodium benzoate, at time intervals of 0-180 days. All preparations were stable at both storage temperatures with pH values in the range of 2.8-3.2. According to pharmacopoeial requirements, the efficacy of sodium benzoate 0.05 % w/v was proved (Ph.Eur., 5.1.3). The preparation formulated with the citrate-phosphate buffer, in our experience, had better palatability than that formulated with the citric acid solution. propranolol hydrochloride pediatric preparation extemporaneous preparation solution stability testing HPLC.
NASA Astrophysics Data System (ADS)
Going, Catherine C.; Xia, Zijie; Williams, Evan R.
2016-06-01
Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few μL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling.
40 CFR Appendix A to Part 425 - Potassium Ferricyanide Titration Method
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Potassium Ferricyanide Titration..., App. A Appendix A to Part 425—Potassium Ferricyanide Titration Method Source The potassium... buffered sulfide solution is titrated with standard potassium ferricyanide solution in the presence of a...
40 CFR Appendix A to Part 425 - Potassium Ferricyanide Titration Method
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Potassium Ferricyanide Titration..., App. A Appendix A to Part 425—Potassium Ferricyanide Titration Method Source The potassium... buffered sulfide solution is titrated with standard potassium ferricyanide solution in the presence of a...
An improved robust buffer allocation method for the project scheduling problem
NASA Astrophysics Data System (ADS)
Ghoddousi, Parviz; Ansari, Ramin; Makui, Ahmad
2017-04-01
Unpredictable uncertainties cause delays and additional costs for projects. Often, when using traditional approaches, the optimizing procedure of the baseline project plan fails and leads to delays. In this study, a two-stage multi-objective buffer allocation approach is applied for robust project scheduling. In the first stage, some decisions are made on buffer sizes and allocation to the project activities. A set of Pareto-optimal robust schedules is designed using the meta-heuristic non-dominated sorting genetic algorithm (NSGA-II) based on the decisions made in the buffer allocation step. In the second stage, the Pareto solutions are evaluated in terms of the deviation from the initial start time and due dates. The proposed approach was implemented on a real dam construction project. The outcomes indicated that the obtained buffered schedule reduces the cost of disruptions by 17.7% compared with the baseline plan, with an increase of about 0.3% in the project completion time.
Role of Ca++ in Shoot Gravitropism. [avena
NASA Technical Reports Server (NTRS)
Rayle, D. L.
1985-01-01
A cornerstone in the argument that Ca(2+) levels may regulate growth is the finding the EGTA promotes straight growth. The usual explanation for these results is that Ca(2+) chelation from cell walls results in wall loosening and thus accelerated straight growth. The ability of frozen-thawed Avena coleoptile tissue (subjected to 15g tension) to extend in response to EGTA and Quin II was examined. The EGTA when applied in weakly buffered (i.e., 0.1mM) neutral solutions initiates rapid extension. When the buffer strength is increased, similar concentrations of EGTA produce no growth response. This implies when EGTA liberated protons are released upon Ca(2+) chelation they can either initiate acid growth (low buffer conditions) or if consumed (high buffer conditions) have no effect. Thus Ca(2+) chelation in itself apparently does not result in straight growth.
Code of Federal Regulations, 2013 CFR
2013-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50 mL of the hydroxylamine hydrochloride solution...
Code of Federal Regulations, 2014 CFR
2014-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50 mL of the hydroxylamine hydrochloride solution...
Dakin Solution Alters Macrophage Viability and Function
2014-07-18
A, Guerrero JM, Calvo JR. Comparative effects of two endodontic irrigants, chlorhexidine digluconate and sodium hypochlorite , on macrophage adhesion...July 2014 Available online 18 July 2014 Keywords: Sodium hypochlorite Dakin solution Macrophages Phagocytosis a b s t r a c t Background: Macrophages are...important in wound defense and healing. Dakin’s solution (DS), buffered sodium hypochlorite , has been used since World War I as a topical antimi
Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform
NASA Technical Reports Server (NTRS)
Brown, R. D.
1992-01-01
Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.
Deduction of a calcium ion circuit affecting rooster sperm in vitro.
Froman, D P
2016-08-01
Four premises for rooster sperm preservation were outlined previously. Understanding mitochondrial Ca cycling in terms of whole-cell Ca flux was one premise. The present work tested the hypothesis that sperm mitochondria can be damaged by intracellular as well as extracellular Ca. Sperm were washed by centrifugation through 12% (wt/vol) Sperm were washed by centrifugation through 12%(at/vol) Accudenz to procure sperm at a physiological concentration within a chemically-defined suspension. Five solutions were tested. Each solution contained 30 m glucose, and had an osmolality of 320 mmol/kg and a pH of 7.4. Washed sperm were diluted to 2.0 × 10 sperm/mL. Each replicate sperm suspension was cooled to 10°C. Sperm mobility was measured after 1, 2, 4, 8, 12, and 24 h. Data were plotted as a function of time in each experiment. Function type was confirmed by lack of fit analysis. A parabola with a maximum at 3.7 h was observed when sperm were suspended in 205 m taurine buffered with 50 m-tris[hydroxyl-methyl]methyl-2-amino-ethanesulfonic acid (TES). This effect was attributed to a Ca flux from the nuclear envelope into mitochondria. An exponential decay was observed when TES-buffered taurine contained 2 m Ca. This effect was attributed to mitochondrial Ca overload induced by uptake of extracellular Ca. Exponential decay also was observed when TES-buffered taurine contained a Ca chelator. This effect was attributed to a Ca flux from the nuclear envelope through mitochondria and then into an extracellular Ca sink. This possibility was supported by the response of sperm to thapsigargin. Specifically, inhibition of sarcoendoplasmic reticulum Ca-ATPase compromised sperm mobility relative to a buffer control. Finally, a 60 m phosphate buffer containing 2 m citrate yielded a linear relationship in contrast to the TES-buffered solutions tested. Sperm mobility after 24 h of storage in the phosphate buffer was 92% of that observed for prewashed sperm. The linear response was attributed to weak chelators providing resistance within a Ca circuit and thereby preventing mitochondrial Ca overload. Fertility, however, was compromised when hens were inseminated with mobile sperm recovered after either 8 or 24 h of storage at 10°C. In conclusion, sperm cell Ca homeostasis was proven to be critical for maintaining sperm mobility in vitro, but mitochondrial Ca uptake is not the sole phenomenon that compromises sperm function during in vitro storage.
Measurements of atmospheric nitrous acid and nitric acid
NASA Astrophysics Data System (ADS)
Huang, Gu; Zhou, Xianliang; Deng, Guohong; Qiao, Huancheng; Civerolo, Kevin
A highly sensitive technique for the measurement of atmospheric HONO and HNO 3 is reported. The technique is based on aqueous scrubbing using two coil samplers, followed by conversion of HNO 3 to nitrite, derivatization of nitrite to a highly light-absorbing azo dye with sulfanilamide (SA) and N-(1-naphthyl) ethylenediamine (NED), and high performance liquid chromatography (HPLC) analysis. HNO 3 concentration was obtained by the difference of the two channels. Two scrubbing solutions were used for sampling the two species: a 1-mM phosphate buffer solution (pH 7) for the measurement of HONO and a 180 mM NH 4Cl/NH 3 buffer solution (pH 8.5) for the measurement of HONO+HNO 3. The scrubbing solution flow rate was 0.24 ml min -1 and the gas sampling flow rate was 2 l min -1. HNO 3 in the NH 4Cl/NH 3 buffer solution was quantitatively reduced to nitrite along an on-line 0.8-cm Cd reductor column. Nitrite in both channels was derivatized with 2 mM SA and 0.2 mM NED in 25 mM HCl. Quantitative derivatization was achieved within 5 min at 55°C. The azo dye derivative was then separated from the SA/NED reagent by reversed-phase HPLC and detected with a UV-vis detector at 540 nm. With an on-line SEP-PAK C-18 cartridge for the reagent purification, the method detection limit is estimated to be better than 1 pptv for HONO and about 20 pptv for HNO 3. The sample integration time was about 2 min and the sampling frequency is every 10 min. Data collected in downtown Albany and Whiteface Mountain, NY, are shown as examples of applications of this technique in both urban and remote clean environments.
Sample collection system for gel electrophoresis
Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo
2004-09-21
An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.
Tencer, Michal; Berini, Pierre
2008-11-04
We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.
NASA Astrophysics Data System (ADS)
Ragavan, Anusha; Khan, Aamir I.; O'Hare, Dermot
2006-05-01
2,4-Dichlorophenoxyacetic acid (2,4-D) has been fully intercalated into the rhombohedral polymorph of [LiAl2(OH)6]Cl·xH2O ([rhom-Li Al] LDH) by an ion exchange method. The controlled release of 2,4-D from the interlamellar spaces of [rhom-Li Al] LDH has been studied in a phosphate buffer, natural rainwater and deionised water. In buffer solution and rainwater, the intercalated herbicide is exchanged for anions in solution. In contrast, in deionised water the herbicide is released as part of the Li+/herbicide ion pair, leading to the formation of Al(OH)3 and the solvated ions.
Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme
NASA Technical Reports Server (NTRS)
Gibson, Ursula J.
1999-01-01
The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.
Glucose metabolism of isolated perfused rat hemidiaphragms stimulated via the phrenic nerve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassett, D.J.P.; Bowen-Kelly, E.; Bierkamper, G.
1986-03-01
Few investigations using indirect electrical stimulation of diaphragm muscles have measured metabolic pathways involved in energy production. In this study, hemidiaphragm (HD) glucose catabolism was determined while resting and during stimulation with trains of either five (T5) or fifteen (T15) 50 Hz bursts per second. Tissues were perfused and bathed in HEPES buffer pH 7.4 equilibrated with 100% O/sub 2/, and containing 11mM (U-/sup 14/C)(5-/sup 3/H) D-glucose. Resting glucose catabolism via the Emden-Meyerhof pathway was indicated by a /sup 3/H/sub 2/O production rate of 1.45 +/- 0.07 ..mu..mol/h/HD (+/- S.E.M., n = 3), of which 47% was recovered as /supmore » 14/C lactate. Following an initial decline in peak isometric tension from 100 g within the first 30 min, T5 and T15 stimulation gave constant tensions of 48 and 22 g during the next 60 min, respectively. These tensions were associated with linear rates of /sup 3/H/sub 2/O production of 2.93 +/- 0.41 and 2.84 +/- 0.25 ..mu..mol/h/HD (+/- S.E.M., n = 3). Since T5 and T15 stimulation had no significant effect on lactate formation from either exogenous or endogenous sources, the observed increased glycolytic rate was assumed to be associated with enhanced mitochondrial oxidation of glucose carbons to CO/sub 2/. Increased oxidative catabolism of glucose could therefore be correlated with the increased energy demands of a stimulated diaphragm.« less
In vitro and in vivo transdermal studies of atenolol using iontophoresis.
Inal, Ozge; Kiliçarslan, Müge; Ari, Nuray; Baykara, Tamer
2008-01-01
Matrix formulations of Eudragit E 100: NE 40D polymers (100:0, 70:30, 60:40, 50:50% w/w) with 20% w/w of triacetine and 5% w/w of atenolol were prepared by film casting method with different solvents (methanol, 2-propanol and acetone). In vitro release of atenolol from the films were studied by vertical Franz diffusion cells in HEPES buffer (pH 7.4) for 78 h. Direct currents of 0.1 and 0.5 mA/cm2 were applied for 6 h to the formulations with Ag/AgCl electrodes. Also, transdermal application for the Eudragit E 100: NE 40 D (70:30% w/w) formulation was compared by iontophoresis or oleic acid (2.5% w/v) with control group on Wistar rats. As a result, the in vitro release rate of atenolol from films were increased with iontophoresis by increasing the current density (from 0.240 to 0.424 mg/cm2 for 70:3% w/w formulation) and also increased with the amount of Eudragit NE 40D (from 0.646 to 1.30 mg/cm2 at the end of 78 h). It is obtained from the in vivo studies that oleic acid provided a higher plasma and skin concentration (0.825 mg/mL and 12.5 mg/cm2, respectively) than iontophoresis treatment (0.399 mg/mL and 1.81 mg/cm2, respectively) due to the different mechanisms. However, the results showed that iontophoresis is a good alternative for enhancing the transdermal delivery of atenolol.
Does thrombin stimulation of human platelets proceed via a simultaneous Na/sup +/-H/sup +/ exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, T.A.; Katona, E.; Vasilescu, V.
1986-03-05
Thrombin stimulation of human platelets initiates a membrane depolarization attributable to a Na/sup +/ influx into, and an alkalinization of, the cytoplasm, both of which follow a similar rapid time scale and thrombin dose dependence. These responses precede secretion of the contents of dense granules (serotonin) and, after 1 min, of lysosomes (..beta..-glucuronidase). These markers have been used to determine whether the Na/sup +/ influx and H/sup +/ efflux are sequential or simultaneous. They have examined these parameters in D/sub 2/O-Hepes buffers. NMR evidence indicates that equilibration is rapid, and virtually complete within the 3 minute pre-stimulation platelets equilibration period.more » The rate of depolarization is 70-80% slower in D/sub 2/O than in H/sub 2/O. The time to reach maximal depolarization is 5-10 sec longer, the extent of depolarization 60% inhibited, and the (H/sup +/) change 85-100% inhibited. The serotonin secretion is unaltered, and the ..beta..-glucuronidase secretion is 130-180% enhanced. 10/sup -4/ M amiloride inhibits Na/sup +/ influx, i.e. depolarization, and the pH change completely. Adjustment to pH/sub i/ 7.3 with NH/sub 4/Cl led to a 30-80% enhanced ..beta..-glucuronidase release upon thrombin exposure. These results suggest that the Na/sup +/ and H/sup +/ fluxes across the platelet membrane occur sequentially, the Na/sup +/ occurring first. Furthermore, granule secretion, previously shown by us to be independent of the existent Na/sup +/ gradient, depends on the cytoplasmic K/sup +/ and H/sup +/ concentrations.« less
Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O
2011-09-06
Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society
The complexity of minocycline serum protein binding.
Zhou, Jian; Tran, Brian T; Tam, Vincent H
2017-06-01
Serum protein binding is critical for understanding the pharmacology of antimicrobial agents. Tigecycline and eravacycline were previously reported to have atypical non-linear protein binding; the percentage of free fraction decreased with increasing total concentration. In this study, we extended the investigation to other tetracyclines and examined the factors that might impact protein binding. Different minocycline concentrations (0.5-50 mg/L) and perfusion media (saline, 0.1 M HEPES buffer and 0.1 and 1 M PBS) were examined by in vitro microdialysis. After equilibration, two dialysate samples were taken from each experiment and the respective antimicrobial agent concentrations were analysed by validated LC-MS/MS methods. For comparison, the serum protein bindings of doxycycline and levofloxacin were also determined. The free fraction of minocycline decreased with increasing total concentration, and the results depended on the perfusion media used. The trends of minocycline protein binding in mouse and human sera were similar. In addition, serum protein binding of doxycycline showed the same concentration-dependent trend as minocycline, while the results of levofloxacin were concentration independent. The serum protein bindings of minocycline and doxycycline are negatively correlated with their total concentrations. It is possible that all tetracyclines share the same pharmacological property. Moreover, the specific perfusion media used could also impact the results of microdialysis. Additional studies are warranted to understand the mechanism(s) and clinical implications of serum protein binding of tetracyclines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Palmgrén, Joni J; Mönkkönen, Jukka; Korjamo, Timo; Hassinen, Anssi; Auriola, Seppo
2006-11-01
Loss of drug content during cell culture transport experiment can lead to misinterpretations in permeability analysis. This study analyses drug adsorption to various plastic containers and drug retention in cultured cells under in vitro conditions. The loss of various drugs to polystyrene tubes and well plates was compared to polypropylene and glass tubes both in deionised water and buffer solution. In cellular uptake experiments, administered drugs were obtained from cultured cells by liquid extraction. Samples were collected at various time points and drug concentrations were measured by a new HPLC-MS/MS method. Acidic drugs (hydrochlorothiazide, naproxen, probenicid, and indomethacin) showed little if any sorption to all tested materials in either water or buffer. In the case of basic drugs, substantial loss to polystyrene tubes and well plates was observed. After 4.5 h, the relative amount remaining in aqueous test solution stored in polystyrene tubes was 64.7 +/- 6.8%, 38.4 +/- 9.1%, 31.9 +/- 6.7%, and 23.5 +/- 6.1% for metoprolol, medetomidine, propranolol, and midazolam, respectively. Interestingly, there was no significant loss of drugs dissolved in buffer to any of the tested materials indicating that buffer reduced surficial interaction. The effect of drug concentration to sorption was also tested. Results indicated that the higher the concentration in the test solution the lower the proportional drug loss, suggesting that the polystyrene contained a limited amount of binding sites. Cellular uptake studies showed considerable retention of drugs in cultured cells. The amounts of absorbed drugs in cellular structures were 0.45%, 4.88%, 13.15%, 43.80%, 23.57% and 11.22% for atenolol, metoprolol, medetomidine, propranolol, midazolam, and diazepam, respectively. Overall, these findings will benefit development and validation of further in vitro drug permeation experiments.
Protein Buffering in Model Systems and in Whole Human Saliva
Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian
2007-01-01
The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and α-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva. PMID:17327922
Dial-A-Decon Solution Chemistry GAP Testing
2012-04-01
34 The tubes were serially diluted using Buttcrfield’s buffer solution and plated in triplicate on Tryptic Soy Agar. Plates were enumerated the...of 200 uL HD to 10 mL of the surfactant solution. The energy to create the oil in water (O/W) emulsions was provided by magnetic stirring. Solutions...emulsify a mixture of water and oil such as HD, one or more emulsifiers are required. Each surfactant system can be characterized by an HLB value
Ávila-Román, Javier; Talero, Elena; de Los Reyes, Carolina; García-Mauriño, Sofía; Motilva, Virginia
2018-02-01
Oxylipins (OXLs) are bioactive molecules generated by the oxidation of fatty acids that promote the resolution of acute inflammation and prevent chronic inflammatory processes through molecular mechanisms that are not well known. We have previously reported the anti-inflammatory activity of microalgae-derived OXLs and OXL-containing biomass in two inflammatory bowel disease (IBD) models: 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis and TNBS-induced recurrent colitis. In this study, we examined the in vitro anti-inflammatory mechanism of action of the most abundant OXLs isolated from Chlamydomonas debaryana (13S-HOTE and 13S-HODE) and Nannochloropsis gaditana (15S-HEPE). These OXLs decreased IL-1β and IL-6 pro-inflammatory cytokines production as well as iNOS and COX-2 expression levels in THP-1 macrophages. In addition, OXLs decreased IL-8 production in HT-29 colon cells, the major chemokine produced by these cells. The interaction of OXLs with NFκB and PPAR-γ signaling pathways was studied by confocal microscopy. In THP-1 macrophages and HT-29 colon cells, stimulated by LPS and TNFα respectively, a pre-treatment with 13S-HOTE, 13S-HODE and 15S-HEPE (100μM) resulted in a lower nuclear presence of NFκB in both cell lines. The study of the subcellular localization of PPAR-γ showed that the treatment of THP-1 and HT-29 cells with these OXLs caused the migration of PPAR-γ into the nucleus. Colocalization analysis of both transcription factors in LPS-stimulated THP-1 macrophages showed that the pre-treatment with 13S-HOTE, 13S-HODE or 15S-HEPE lowered nuclear colocalization similar to control value, and increased cytosolic localization above control level. These results indicate that these OXLs could act as agonist of PPAR-γ and consequently inhibit NFκB signaling pathway activation, thus lowering the production of inflammatory markers, highlighting the therapeutic potential of these OXLs in inflammatory diseases such as IBD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sato, Masahiro; Ishikawa, Aki
2004-05-01
To explore optimal conditions for in vitro sperm survival, we examined the effects of several media used for murine egg culture and in vitro fertilization (IVF; including M16, M2, PB1, TYH, and CZB) on motility of murine spermatozoa stored at 22 degrees C under paraffin oil. Of media tested, M2 medium, that had been adjusted to pH 7.2 by adding N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), was found to be the best. Addition of various concentrations of HEPES to TYH did not improve sperm survival, suggesting that HEPES (and probably neutral pH) do not enhance survival of murine sperm. Since M16 has higher amounts of bicarbonate than M2 (25 mM versus 4.15 mM), four variations of M16 media containing 4.15, 8.30, 16.60, or 33.20 mM bicarbonate were prepared and tested. The modified M16 media with 4.15-16.60 mM bicarbonate yielded good sperm survival (comparable to M2 medium), while relatively high concentrations of bicarbonate (ranging from 16.60 to 33.20 mM) were deleterious to isolated sperm, suggesting the need for a minimum level of residual bicarbonate. However, the mechanism by which the lifespan of spermatozoa is extended remains unknown. The in vitro fertilizing abilities of spermatozoa left in M2 medium for 1, 3, and 5 days at 22 degrees C were 52.5, 21.8, and 7.0%, respectively, when the cleavage rate to the two-cell stage was examined. Transfer of two-cell embryos produced in vitro with spermatozoa stored for 1, 3, and 5 days at 22 degrees C resulted in production of fetuses with efficiencies of 42.5, 23.4, and 12.5%, respectively, which were lower than that of embryos derived from in vitro fertilization with fresh spermatozoa (68.1%). In conclusion, spermatozoa kept in M2 medium for up to 5 days at 22 degrees C can fertilize oocytes.
Letica, Jelena; Marković, Slavko; Zirojević, Jelena; Nikolić, Katarina; Agbaba, Danica
2010-01-01
An RP-HPLC method for simultaneous separation and quantification of pantoprazole and its five main impurities in pharmaceutical formulations was developed and validated. The separation was accomplished on a Zorbax Eclipse XDB C18 column (5 microm particle size, 150 x 4.6 mm id) using a gradient with mobile phase A [buffer-acetonitrile (70 + 30, v/v)], and mobile phase B [buffer-acetonitrile (30 + 70, v/v)]. The buffer was 0.01 M ammonium acetate solution with addition of 1 mL triethylamine/L of the solution, adjusted to pH 4.5 with orthophosphoric acid. The eluent flow rate was 1 mL/min, the temperature of the column was 30 degrees C, and the eluate was monitored at 290 nm. Linearity (r = 0.999), recovery (97.6-105.8%), RSD (0.55-1.90%), and LOQ (0.099-1.48 microg/mL) were evaluated and found to be satisfactory. The proposed method can be used for simultaneous identification and quantification of the analyzed compounds in pharmaceutical formulations.
Hybridization parameters revisited: solutions containing SDS.
Rose, Ken; Mason, John O; Lathe, Richard
2002-07-01
Salt concentration governs nucleic acid hybridization according to the Schildkraut-Lifson equation. High concentrations of SDS are used in some common protocols, but the effects of SDS on hybridization stringency have not been reported. We investigated hybridization parameters in solutions containing SDS. With targets immobilized on nylon membranes and PCR- or transcription-generated probes, we report that the 50% dissociation temperature (Tm*) in the absence of SDS was 15 degrees C-17degrees C lower than the calculated Tm. SDS had only modest effects on Tm* [1% (w/v) equating to 8 mM NaCl]. RNA/DNA hybrids were approximately 11 degrees C more stable than DNA/DNA hybrids. Incomplete homology (69%) significantly reduced the Tm* for DNA/DNA hybrids (approximately /4degrees C; 0.45 degrees C/% nonhomology) but far less so for RNA/DNA hybrids (approximately 2.3 degrees C; approximately 0.07 degrees C/% non-homology); incomplete homology also markedly reduced the extent of hybridization. On these nylonfilters, SDS had a major effect on nonspecific binding. Buffers lacking SDS, or with low salt concentration, gave high hybridization backgrounds; buffers containing SDS, or high-salt buffers, gave reproducibly low backgrounds.
Long life hydrocarbon conversion catalyst and method of making
Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA
2002-11-12
The present invention includes a catalyst that has at least four layers, (1) porous support, (2) buffer layer, (3) interfacial layer, and optionally (4) catalyst layer. The buffer layer provides a transition of thermal expansion coefficient from the porous support to the interfacial layer thereby reducing thermal expansion stress as the catalyst is heated to high operating temperatures. The method of the present invention for making the at least three layer catalyst has the steps of (1) selecting a porous support, (2) solution depositing an interfacial layer thereon, and optionally (3) depositing a catalyst material onto the interfacial layer; wherein the improvement comprises (4) depositing a buffer layer between the porous support and the interfacial layer.
Impact of added nutrients in sweet sorghum syrup fermentation to produce ethanol
USDA-ARS?s Scientific Manuscript database
This work demonstrated that sweet sorghum syrup was efficiently converted to ethanol by yeast. Fermentation broth with sweet sorghum syrup performed better (at least faster) than with only pure sugars due to the pH-buffering effect of sweet sorghum syrup solutions. Sugar solutions containing up to 2...
Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung
2016-03-15
A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.
Integrated Arrival and Departure Schedule Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Xue, Min; Zelinski, Shannon
2014-01-01
In terminal airspace, integrating arrivals and departures with shared waypoints provides the potential of improving operational efficiency by allowing direct routes when possible. Incorporating stochastic evaluation as a post-analysis process of deterministic optimization, and imposing a safety buffer in deterministic optimization, are two ways to learn and alleviate the impact of uncertainty and to avoid unexpected outcomes. This work presents a third and direct way to take uncertainty into consideration during the optimization. The impact of uncertainty was incorporated into cost evaluations when searching for the optimal solutions. The controller intervention count was computed using a heuristic model and served as another stochastic cost besides total delay. Costs under uncertainty were evaluated using Monte Carlo simulations. The Pareto fronts that contain a set of solutions were identified and the trade-off between delays and controller intervention count was shown. Solutions that shared similar delays but had different intervention counts were investigated. The results showed that optimization under uncertainty could identify compromise solutions on Pareto fonts, which is better than deterministic optimization with extra safety buffers. It helps decision-makers reduce controller intervention while achieving low delays.
Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.
Stauber, Hagit; Waisman, Dan; Korin, Netanel; Sznitman, Josué
2017-10-01
Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays. Copyright © 2017. Published by Elsevier Ltd.
Tucker, E B
1988-06-01
pH-buffered carboxyfluorescein (Buffered-CF) alone (control), or Buffered-CF solutions containing one of the following: (1)D-myo-inositol (I); (2)D-myo-inositol 2-monophosphate (IP1); (3)D-myo-inositol 1,4-bisphosphate (IP2); (4)D-myo-inositol 1,4,5-trisphosphate (IP3); (5)D-fructose 2,6-diphosphate (F-2,6P2) were microinjected into the terminal cells of staminal hairs ofSetcreasea purpurea Boom. Passage of the CF from this terminal cell along the chain of cells towards the filament was monitored for 5 min using fluorescence microscopy and quantified using computer-assisted fluorescence-intensity video analysis. Cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either I, IP1 or F-2,6P2 was similar to that in hairs microinjected with Buffered-CF only. On the other hand, cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either IP2 or IP3 was inhibited. These results indicate that polyphosphoinositols may be involved in the regulation of intercellular transport of low-molecular-weight, hydrophilic molecules in plants.
A mathematical model of tumour and blood pHe regulation: The HCO3-/CO2 buffering system.
Martin, Natasha K; Gaffney, Eamonn A; Gatenby, Robert A; Gillies, Robert J; Robey, Ian F; Maini, Philip K
2011-03-01
Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised ordinary differential equation model of pHe regulation by the HCO3-/CO2 buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pHe. Copyright © 2010 Elsevier Inc. All rights reserved.
ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells
Bhattacharya, Raghu N [Littleton, CO
2009-11-03
The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.... 3.8Timer. 4. Reagents 4.1Standardized 1.0 N sodium hydroxide solution. 4.2Hydroxylamine.... Start the timer. 5.6Stir for 5 minutes. Titrate to pH 4.0 with standardized 1.0 N sodium hydroxide...
Mockus, Linas N; Paul, Timothy W; Pease, Nathan A; Harper, Nancy J; Basu, Prabir K; Oslos, Elizabeth A; Sacha, Gregory A; Kuu, Wei Y; Hardwick, Lisa M; Karty, Jacquelyn J; Pikal, Michael J; Hee, Eun; Khan, Mansoor A; Nail, Steven L
2011-01-01
A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.
Fischer, Sarah Maud; Parmentier, Johannes; Buckley, Stephen Timothy; Reimold, Isolde; Brandl, Martin; Fricker, Gert
2012-11-01
The aim of the current study was to investigate the effect of poloxamer 188 (P-188) on the bioavailability of the BCS class 2 drug ketoprofen in vivo. Aqueous suspension and solution formulations of ketoprofen with and without P-188 were orally administered to fasted male Wistar rats. The intrinsic dissolution rate and solubility of ketoprofen in simulated intestinal fluid, in both the presence and absence of P-188, was measured. The AUC and C(max) were found to be significantly enhanced when ketoprofen was administered as suspension and P-188 was present in the formulation (Susp P-188) as compared to the surfactant-free formulation (∼4-fold higher AUC, 7-fold higher C(max) ). While drug solubility appeared to be almost unaffected by P-188, a significantly faster dissolution was observed. In addition, the influence of P-188 on the drug absorption process was investigated by comparison of solution formulations with and without P-188. The in-vivo performance of these solutions, a pure buffer solution and a P-188-containing buffer solution showed no significant difference, suggesting that the increase in bioavailability for Susp P-188 was primarily a consequence of the dissolution rate-enhancing effect. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Wang, Lai-Hao; Li, Wen-Jie
2011-09-06
The electrochemical behaviors of thiazolidine (tetrahydrothiazole) on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77-11.61), acetate buffer (pH 4.31), phosphate buffer solutions (pH 2.11 and 6.38) and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate) as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L-1 was found. The limit of quantification (LOQ) of the method for thiazolidine was found to be 1 ng.
Solution formulation development of a VEGF inhibitor for intravitreal injection.
Marra, Michelle T; Khamphavong, Penney; Wisniecki, Peter; Gukasyan, Hovhannes J; Sueda, Katsuhiko
2011-03-01
PF-00337210 is a potent, selective small molecule inhibitor of VEGFRs and has been under consideration for the treatment of age-related macular degeneration. An ophthalmic solution formulation intended for intravitreal injection was developed. This formulation was designed to maximize drug properties such that the formulation would precipitate upon injection into the vitreous for sustained delivery. As a parenteral formulation with additional constraints dictated by this specialized delivery route, multiple features were balanced in order to develop a successful formulation. Some of these considerations included low dosing volumes (≤0.1 mL), a limited repertoire of safe excipients for intravitreal injection, and the unique physical chemical properties of the drug. The aqueous solubility as a function of pH was characterized, buffer stressing studies to select the minimal amount of buffer were conducted, and both chemical and physical stability studies were executed. The selected formulation consisted of an isotonic solution comprised of PF-00337210 free base in a citrate-buffered vehicle containing NaCl for tonicity. The highest strength for regulatory toxicology studies was 60 mg/mL. The selected formulation exhibited sufficient chemical stability upon storage with no precipitation, and acceptable potency and recovery through an intravitreal dosing syringe. Formulation performance was simulated by precipitation experiments using extracted vitreous humor. In simulated injection experiments, PF-00337210 solutions reproducibly precipitated upon introduction to the vitreous so that a depot was formed. To our knowledge, this is the first time that a nonpolymeric in situ-forming depot formulation has been developed for intravitreal delivery, with the active ingredient as the precipitating agent. © 2011 American Association of Pharmaceutical Scientists
NASA Astrophysics Data System (ADS)
Helfenstein, Julian; Jegminat, Jannes; McLaren, Timothy I.; Frossard, Emmanuel
2018-01-01
The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil-solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a common form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also that of 18 long-term P fertilizer field experiments. Analysis of the global compilation data set revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate-buffering capacity. Our study highlights the importance of calculating Km for understanding the kinetics of P between the soil solid and solution phases where it is bioavailable. We argue that our derivation can also be used to calculate soil solution turnover of other environmentally relevant and strongly sorbing elements that can be traced with radioisotopes, such as zinc, cadmium, nickel, arsenic, and uranium.
Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots
Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.
1987-09-04
After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.
Pan, Zhongqin; Liu, Xiaojun; Xie, Jing; Bao, Ning; He, Hong; Li, Xiaodong; Zeng, Jiang; Gu, Haiying
2015-05-01
Although pH-switchable behaviors have been reported based on multilayer films modified electrodes, their pH-switchable biosensing is still difficult due to the existence of the electroactive mediator. In this study, we report the pH-dependable determination of hydrogen peroxide (H2O2) based on a four-bilayer film fabricated through layer by layer assembly between hemoglobin (Hb) and multiwall carbon nanotubes (MWCNTs). We observed that response of electroactive probe Fe(CN)6(3-) at the multilayer films was very sensitive and reversible to pH values of phosphate buffer solutions phosphate buffer solution with cyclic voltammetry. The reduction peak height of Fe(CN)6(3-) at the multilayer film could reach ∼221μA at pH 3.0 while 0μA at pH 9.0. The linear range for the detection of H2O2 at pH 3.0 was from 12.5μM to 10.4mM, which was much wider than that at pH 9.0. Our results demonstrated that the detection of H2O2 with the proposed modified electrode is dependent on pH values of phosphate buffer solution. Moreover, the component of multilayer films has impacts on the performance of biosensors with pH-switchable behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.
Rebolj, Katja; Pahovnik, David; Zagar, Ema
2012-09-04
In this study we present detailed characterization of a protein-PEG conjugate using two separation techniques, that is, asymmetrical-flow field-flow fractionation (AF4) and size-exclusion chromatography (SEC), which were online coupled to a series of successively connected detectors: an ultraviolet, a multiangle light-scattering, a quasi-elastic light-scattering, and a refractive-index detector (UV-MALS(QELS)-RI). Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used as a complementary characterization technique. The results of AF4 as well as SEC on two columns connected in series, with both separation techniques coupled to a multidetection system, indicate the uniform molar mass and chemical composition of the conjugate, that is, the molar ratio of protein to PEG is 1/1, the presence of minute amounts of residual unreacted protein and the aggregates with the same chemical composition as that of the conjugate. Since the portion of aggregated species is smaller in the acetate buffer solution containing 5% sorbitol than in the acetate buffer solution with 200-mM sodium chloride, the former buffer solution is more suitable for conjugate storage. The separation using only one SEC column results in poorly resolved peaks of the PEGylated protein conjugate and the aggregates, whereas MALDI-TOF MS analysis reveal the presence of the residual protein, but not the aggregates.
Bosch, T; Wendler, T; Maschke, H
2003-06-01
DALI (direct adsorption of lipids) is the first LDL-apheresis technique able to adsorb low-density lipoprotein (LDL) and lipoproteina) directly from whole blood. In the standard procedure, acid citrate dextrose (ACD-A) is used as anticoagulation and the adsorber is rinsed with a specially manufactured priming solution (PS). Using neutral trisodium citrate (TSC) instead of ACD-A might improve the acid-base homeostasis during DALI apheresis; moreover, applying wholesale hemofiltration solutions instead of the special PS might avoid the use of two separate solutions for both priming before and reinfusion after the treatment, thus simplifiying the procedure. The present study was performed to test the effect of neutral (TSC) anticoagulation and of two different commercially available hemofiltration (HF) priming solutions on the efficacy and biocompatibility of DALI apheresis. Five hypercholesterolemic chronic DALI patients were treated prospectively, on a weekly or biweekly basis, 3 times each by standard DALI-apheresis (A). by DALI using 4% TSC and bicarbonate-buffered HF BIC35-210 priming (B). as well as by DALI using 4% TSC and lactate-buffered HF 23 priming (C). After the sessions, the extracorporeal circuit (ECC) was rinsed with saline in study arm A and with the corresponding HF solutions in study arms B and C, respectively. Acute LDL-cholesterol reductions in the study arms A/B/C averaged 64/64/63%, for Lp(a) 62/64/62%, respectively (n=15). Clinically, all sessions were essentially uneventful and no clots were observed in the ECC. No major differences were found between the 3 study arms with respect to biocompatibility (elastase, C3a, thrombin-antithrombin, beta-thromboglobulin, bradykinin). DALI apheresis using TSC anticoagulation and HF solutions for both priming and reinfusion proved to be as safe and effective as the standard DALI apheresis. These modifications, however, further simplify the procedure.
Prauchner, Carlos A; Kozloski, Gilberto V; Farenzena, Roberta
2013-05-01
The methodological procedures for studying the fibrolytic activity of rumen bacteria are not clearly established. In this study the efficiency of sonication treatment and buffer composition (i.e. buffer varying in tonicity or pH) on the level of protein extraction from the residue of forage samples incubated in the rumen of a grazing steer and the effect of buffer composition or CaCl₂ concentration on the carboxymethylcellulase (CMCase) activity of the released protein were evaluated. The amount of protein released from the residue of incubation was higher (P < 0.05) for the sonicated material and increased linearly with increasing buffer pH (P < 0.05). The CMCase activity of the released protein was not improved by sonication treatment, whereas it was higher (P < 0.05) for hypotonic than for hypertonic buffer. Both linear and quadratic effects (P < 0.05) of buffer pH on CMCase activity were significant, with CMCase activity being maximal at pH 5.4-6.1. CMCase activity was higher (P < 0.05) at a CaCl₂ concentration of 1 mmol L(-1) compared with lower values. Although sonication treatment increases the amount of protein extracted from rumen bacteria adhered to the residue of incubation, the CMCase activity of the released protein might be measured without sonication treatment and should be carried out with a hypotonic buffer solution that includes a calcium source. When pH is not a treatment factor, the buffer pH should be between 5.5 and 6. © 2012 Society of Chemical Industry.
Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators.
Berlin, J R; Konishi, M
1993-01-01
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters. PMID:8274651
Hirsh, Allen G; Tsonev, Latchezar I
2017-04-28
This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein-membrane interactions are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Behavior of soluble and immobilized acid phosphatase in hydro-organic media.
Wan, H; Horvath, C
1975-11-20
The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.
Effect of Carboxymethylation on the Rheological Properties of Hyaluronan
Wendling, Rian J.; Christensen, Amanda M.; Quast, Arthur D.; Atzet, Sarah K.; Mann, Brenda K.
2016-01-01
Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30–40% modification. This was followed by an increase in viscosity around 45–50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions. PMID:27611817
Direct Assembly of Modified Proteins on Carbon Nanotubes in an Aqueous Solution
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol; Harrison, Joycelyn S.
2007-01-01
Carbon nanotubes (CNTs) have superior mechanical and electrical properties that have opened up many potential applications. However, poor dispersibility and solubility, due to the substantial van der Waals attraction between tubes, have prevented the use of CNTs in practical applications, especially biotechnology applications. Effective dispersion of CNTs into small bundles or individual tubes in solvents is crucial to ensure homogeneous properties and enable practical applications. In addition to dispersion of CNTs into a solvent, the selection of appropriate solvent, which is compatible with a desired matrix, is an important factor to improve the mechanical, thermal, optical, and electrical properties of CNT-based fibers and composites. In particular, dispersion of CNTs into an aqueous system has been a challenge due to the hydrophobic nature of CNTs. Here we show an effective method for dispersion of both single wall CNTs (SWCNTs) and few wall CNTs (FWCNTs) in an aqueous buffer solution. We also show an assembly of cationized Pt-cored ferritins on the well dispersed CNTs in an aqueous buffer solution.
Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, F. W.; Lane, M. W., E-mail: mlane@ehc.edu; Gates, S. M.
2014-05-15
Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, thismore » work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.« less
Branch target buffer design and optimization
NASA Technical Reports Server (NTRS)
Perleberg, Chris H.; Smith, Alan J.
1993-01-01
Consideration is given to two major issues in the design of branch target buffers (BTBs), with the goal of achieving maximum performance for a given number of bits allocated to the BTB design. The first issue is BTB management; the second is what information to keep in the BTB. A number of solutions to these problems are reviewed, and various optimizations in the design of BTBs are discussed. Design target miss ratios for BTBs are developed, making it possible to estimate the performance of BTBs for real workloads.
Development of an On-Demand, Generic, Drug-Delivery System
1985-08-06
systems Two systems were evaluated for CO2 evolution. The first of these was an enzymatic system based on urea and urease . The second system was based...PHM 84 Research pH Meter was used te monitor pH. Solutions of various buffer concen- trations and pHs were prepared for each buffer system. One urease ...Measurement of carbon dio~ide production was accomplished using the apparatus shown in Figure 2. Carbon dioxide was generated by putting a urease tablet in the
Method and compositions for detecting of bloodstains using fluorescin-fluorescein reaction
Di Benedetto, John; Kyle, Kevin; Boan, Terry; Marie, Charlene
2004-02-17
A method, compositions and kit are set forth for detecting blood stains. A reactant solution includes fluorescin solubilized (reduced) in acetic acid in ethanol. The solution may be buffered to a pH of approximately 9. After spraying the reactant solution on the suspected area an oxidizer is applied to promote the fluorescin to fluorescein reaction with the blood. The reacted fluorescein is then detected through luminescence for capture by photography.
Asparagine deamidation dependence on buffer type, pH, and temperature.
Pace, Amanda L; Wong, Rita L; Zhang, Yonghua Taylor; Kao, Yung-Hsiang; Wang, Y John
2013-06-01
The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments. From this, deamidation rates of each fragment can be calculated. To generate kinetic parameters useful in setting shelf life, buffers prepared at room temperature and then placed at the appropriate stability temperatures. Solution pH was not adjusted to the same at different temperatures. Deamidation rate at 40°C was faster in acidic buffers than in basic buffers. However, this trend is reversed at 5°C, attributed to the change in hydroxide ion concentration influenced by buffer and temperature. The apparent activation energy was higher for rates generated in an acidic buffer than in a basic buffer. The rate-pH profile for mAb1 can be deconvoluted to Fc and Fab. The Fc deamidation showed a V-shaped profile: deamidation of PENNY peptide is responsible for the rate at high-pH, whereas deamidation of a new site, Asn323, may be responsible for the rate at low-pH. The profile for Fab is a straight line without curvature. Copyright © 2013 Wiley Periodicals, Inc.
Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan
2014-01-01
The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.
NASA Astrophysics Data System (ADS)
Duan, Yifei; Zhao, Wei; Xue, Jing; Sun, Dan; Wang, Kaige; Wang, Guiren; Li, Junjie; Bai, Jintao; Gu, Changzhi
2017-03-01
In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate single bio-molecules and analyze their characteristics. To accurately and flexibly control the movement of single-molecule within micro/nanofluidic channels which are the basic components of Lab-chips, the current signals in micro/nanocapillaries filled with solutions of DNA molecules or polystyrene (PS) nanoparticles are systematically studied. Experimental results indicate that the current response along the micro/nanocapillaries can be significantly influenced by the diameter of the capillaries and the pH value of the solutions. Specifically, when there is only a pure (TBE) solution, the electric conductance does not monotonically decrease with decreasing the diameter of the capillaries, but slightly increases with decreasing the capillary diameter. When λ-DNA molecules or PS nanoparticles are added into the TBE buffer, the size effect on the electric conductance of the solutions are quite different. Although in the former, the electric conductance behaves differently from that in the pure TBE solution and decreases with the decreasing diameter, in the latter, the change is similar to that in the pure TBE solution. Besides, an abnormal ‘falling’ of the electric conductance is observed in a capillary with diameter of 200 nm. The investigation will significantly enhance the understanding on the electric properties of the solutions of biomolecules and particles in micro/nanofluidics. This is especially helpful for designing functional Lab-chip devices.
Length scales involved in decoherence of trapped bosons by buffer-gas scattering
NASA Astrophysics Data System (ADS)
Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.
2014-05-01
We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.
Müller, Michael; König, Finja; Meyer, Nina; Gattlen, Jasmin; Pieles, Uwe; Peters, Kirsten; Kreikemeyer, Bernd; Mathes, Stephanie; Saxer, Sina
2018-01-01
Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy. PMID:29657766
Fish Viruses: Buffers and Methods for Plaquing Eight Agents Under Normal Atmosphere
Wolf, Ken; Quimby, M. C.
1973-01-01
A universal procedure was sought for plaque assay of eight fish viruses (bluegill myxovirus, channel catfish virus, eel virus, Egtved virus, infectious hematopoietic necrosis virus, infectious pancreatic necrosis virus, lymphocystis virus, and the agent of spring viremia of carp (Rhabdovirus carpio), in dish cultures of various fish cells. Eagle minimal essential medium with sodium bicarbonate-CO2 buffer (Earle’s salt solution) was compared with minimal essential medium buffered principally with tris (hydroxymethyl)aminomethane or N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid at a pH or in the range of 7.6 to 8.0 depending upon temperature. Five fish cell lines collectively capable of replicating all fish viruses thus far isolated were tested and quantitatively found to grow comparably well in the three media. Two-phase (gel-liquid) media incorporating the various buffer systems allowed plaquing at 15 to 33 C either in partial pressures of CO2 or in normal atmosphere, but greater efficiency and sensitivity were obtained with the organic buffers, and, overall, the best results were obtained with tris(hydroxymethyl)aminomethane. Epizootiological data, specific fish cell line response, and plaque morphology permit presumptive identification of most of the agents. At proper pH, use of organic buffers obviates the need for CO2 incubators. Images PMID:4349252
Robinson, Wesley D; Richter, Mark M
2015-02-01
The spectroscopic, electrochemical and coreactant electrogenerated chemiluminescence (ECL) properties of Ir(ppy)3 (where ppy = 2-phenylpyridine) have been obtained in aqueous buffered (KH2PO4), 50 : 50 (v/v) acetonitrile-aqueous buffered (MeCN-KH2PO4) and 30% trifluoroethanol (TFE) solutions. Tri-n-propylamine was used as the oxidative-reductive ECL coreactant. The photoluminescence (PL) efficiency (ϕem) of Ir(ppy)3 in TFE (ϕem ≈ 0.029) was slightly higher than in 50 : 50 MeCN-KH2PO4 (ϕem ≈ 0.0021) and water (ϕem ≈ 0.00016) compared to a Ru(bpy)32+ standard solution in water (Φem ≈ 0.042). PL and ECL emission spectra were nearly identical in all three solvents, with dual emission maxima at 510 and 530 nm. The similarity between the ECL and PL spectra indicate that the same excited state is probably formed in both experiments. ECL efficiencies (ϕecl) in 30% TFE solution (ϕecl = 0.0098) were higher than aqueous solution (ϕecl = 0.00092) system yet lower than a 50% MeCN-KH2PO4 solution (ϕecl = 0.0091). Copyright © 2014 John Wiley & Sons, Ltd.
Plasma-Lyte 148: A clinical review
Weinberg, Laurence; Collins, Neil; Van Mourik, Kiara; Tan, Chong; Bellomo, Rinaldo
2016-01-01
AIM To outline the physiochemical properties and specific clinical uses of Plasma-Lyte 148 as choice of solution for fluid intervention in critical illness, surgery and perioperative medicine. METHODS We performed an electronic literature search from Medline and PubMed (via Ovid), anesthesia and pharmacology textbooks, and online sources including studies that compared Plasma-Lyte 148 to other crystalloid solutions. The following keywords were used: “surgery”, “anaesthesia”, “anesthesia”, “anesthesiology”, “anaesthesiology”, “fluids”, “fluid therapy”, “crystalloid”, “saline”, “plasma-Lyte”, “plasmalyte”, “hartmann’s”, “ringers” “acetate”, “gluconate”, “malate”, “lactate”. All relevant articles were accessed in full. We summarized the data and reported the data in tables and text. RESULTS We retrieved 104 articles relevant to the choice of Plasma-Lyte 148 for fluid intervention in critical illness, surgery and perioperative medicine. We analyzed the data and reported the results in tables and text. CONCLUSION Plasma-Lyte 148 is an isotonic, buffered intravenous crystalloid solution with a physiochemical composition that closely reflects human plasma. Emerging data supports the use of buffered crystalloid solutions in preference to saline in improving physicochemical outcomes. Further large randomized controlled trials assessing the comparative effectiveness of Plasma-Lyte 148 and other crystalloid solutions in measuring clinically important outcomes such as morbidity and mortality are needed. PMID:27896148
NASA Technical Reports Server (NTRS)
Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.
1991-01-01
The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.
Friuli, Valeria; Bruni, Giovanna; Musitelli, Giorgio; Conte, Ubaldo; Maggi, Lauretta
2018-01-01
The purpose of this investigation is to determine how the dissolution media may influence the release rate of an insoluble drug in in vitro conditions. Some oral dosage forms containing ibuprofen, a molecule that shows pH-dependent solubility, are tested. They are evaluated in different media to simulate the gastrointestinal transit at paddle rotation speeds of 50 and 100 rpm. Moreover, the potential effect of different ethanol concentrations on drug release is tested. The dissolution profiles of the tablets show a similar behavior in water (pH 1.0) and phosphate buffer (pH 4.5) where the 2 doses are not completely dissolved. The soft capsules show a different behavior: a certain amount of ibuprofen, which is in solution inside the capsule, reprecipitates in water and in the pH 4.5 buffer. Instead, ibuprofen dissolves rapidly in the pH 6.8 buffer from all the formulations. In the water-ethanol solutions, the dissolution curves show a valuable increase in the drug dissolved at higher ethanol concentrations. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Hu, Xiaoqin; You, Huiyan
2009-11-01
In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., readable to 0.01 g or better. 3.2pH meter, standardized to pH 4.0 with pH 4.0 buffer and pH 7 with pH 7.0... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0, using the...
Sample distribution in peak mode isotachophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran, E-mail: mberco@technion.ac.il
We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify andmore » validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.« less