Science.gov

Sample records for her-2 pre-mrna splicing

  1. Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer

    PubMed Central

    Castagnoli, L; Ghedini, G C; Koschorke, A; Triulzi, T; Dugo, M; Gasparini, P; Casalini, P; Palladini, A; Iezzi, M; Lamolinara, A; Lollini, P L; Nanni, P; Chiodoni, C; Tagliabue, E; Pupa, S M

    2017-01-01

    We have previously shown that the d16HER2 splice variant is linked to HER2-positive breast cancer (BC) tumorigenesis, progression and response to Trastuzumab. However, the mechanisms by which d16HER2 contributes to HER2-driven aggressiveness and targeted therapy susceptibility remain uncertain. Here, we report that the d16HER2-positive mammary tumor cell lines MI6 and MI7, derived from spontaneous lesions of d16HER2 transgenic (tg) mice and resembling the aggressive features of primary lesions, are enriched in the expression of Wnt, Notch and epithelial–mesenchymal transition pathways related genes compared with full-length wild-type (WT) HER2-positive cells (WTHER2_1 and WTHER2_2) derived from spontaneous tumors arising in WTHER2 tg mice. MI6 cells exhibited increased resistance to anoikis and significantly higher mammosphere-forming efficiency (MFE) and self-renewal capability than the WTHER2-positive counterpart. Furthermore, d16HER2-positive tumor cells expressed a higher fraction of CD29High/CD24+/SCA1Low cells and displayed greater in vivo tumor engraftment in serial dilution conditions than WTHER2_1 cells. Accordingly, NOTCH inhibitors impaired mammosphere formation only in MI6 cells. A comparative analysis of stemness-related features driven by d16HER2 and WTHER2 in ad hoc engineered human BC cells (MCF7 and T47D) revealed a higher MFE and aldehyde dehydrogenase-positive staining in d16HER2- vs WTHER2-infected cells, sustaining consistent BC-initiating cell enrichment in the human setting. Moreover, marked CD44 expression was found in MCF7_d16 and T47D_d16 cells vs their WTHER2 and Mock counterparts. Clinically, BC cases from two distinct HER2-positive cohorts characterized by high levels of expression of the activated-d16HER2 metagene were significantly enriched in the Notch family and signal transducer genes vs those with low levels of the metagene. PMID:27641338

  2. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys

  3. The Human Splice Variant Δ16HER2 Induces Rapid Tumor Onset in a Reporter Transgenic Mouse

    PubMed Central

    Iezzi, Manuela; Zenobi, Santa; Montani, Maura; Pietrella, Lucia; Kalogris, Cristina; Rossini, Anna; Ciravolo, Valentina; Castagnoli, Lorenzo; Tagliabue, Elda; Pupa, Serenella M.; Musiani, Piero; Monaci, Paolo; Menard, Sylvie; Amici, Augusto

    2011-01-01

    Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ16HER2 to transform mammary epithelium in vivo and to monitor Δ16HER2-driven tumorigenesis in live mice, we generated and characterized a mouse line that transgenically expresses both human Δ16HER2 and firefly luciferase under the transcriptional control of the MMTV promoter. All the transgenic females developed multifocal mammary tumors with a rapid onset and an average latency of 15.11 weeks. Immunohistochemical analysis revealed the concurrent expression of luciferase and the human Δ16HER2 oncogene only in the mammary gland and in strict correlation with tumor development. Transgenic Δ16HER2 expressed on the tumor cell plasma membrane from spontaneous mammary adenocarcinomas formed constitutively active homodimers able to activate the oncogenic signal transduction pathway mediated through Src kinase. These new transgenic animals demonstrate the ability of the human Δ16HER2 isoform to transform “per se” mammary epithelium in vivo. The high tumor incidence as well as the short latency strongly suggests that the Δ16HER2 splice variant represents the transforming form of the HER2 oncoprotein. PMID:21559085

  4. SRSF3 and hnRNP H1 regulate a splicing hotspot of HER2 in breast cancer cells

    PubMed Central

    Gautrey, Hannah; Jackson, Claire; Dittrich, Anna-Lena; Browell, David; Lennard, Thomas; Tyson-Capper, Alison

    2015-01-01

    Overexpression of the oncogene HER2 occurs in 20–30% of invasive breast cancer and is associated with poor prognosis. A number of different splice variants of HER2 have been identified which produce functionally different proteins. Previously these splice variants have been investigated separately, but in the present study we collectively look at the expression and regulation of a group of HER2 splice variants produced by a splicing hotspot. Initial investigation in a cohort of tumor samples showed large variations in HER2 variant expression between patient samples. RNA interference studies identified 2 splicing factors involved in the regulation of splicing within this region, hnRNP H1 and SRSF3. siRNA targeting hnRNP H1 increases levels of X5 and the oncogenic variant Δ16HER2. Furthermore RNA chromatography assays demonstrated binding of hnRNP H1 to RNA in this region. Additionally the proto-oncogene SRSF3 was also identified as an important regulator of splicing with SRSF3 knockdown resulting in changes in all the splice variants located at the hotspot. Most notably knockdown of SRSF3 resulted in a switch from the oncogenic Δ16HER2 to p100 which inhibits cell proliferation. Binding of SRSF3 to RNA within this region was also demonstrated by RNA chromatography and more specifically 2 SRSF3 binding sites were identified within exon 15. SRSF3 and hnRNP H1 are the first splicing factors identified which regulate the production of these functionally distinct HER2 splice variants and therefore maybe important for the regulation of HER2 signaling. PMID:26367347

  5. Computational Inferences of the Functions of Alternative/Noncanonical Splice Isoforms Specific to HER2+/ER-/PR- Breast Cancers, a Chromosome 17 C-HPP Study.

    PubMed

    Menon, Rajasree; Panwar, Bharat; Eksi, Ridvan; Kleer, Celina; Guan, Yuanfang; Omenn, Gilbert S

    2015-09-04

    This study was conducted as a part of the Chromosome-Centric Human Proteome Project (C-HPP) of the Human Proteome Organization. The main objective is to identify and evaluate functionality of a set of specific noncanonical isoforms expressed in HER2-neu positive, estrogen receptor negative (ER-), and progesterone receptor negative (PR-) breast cancers (HER2+/ER-/PR- BC), an aggressive subtype of breast cancers that cause significant morbidity and mortality. We identified 11 alternative splice isoforms that were differentially expressed in HER2+/ER-/PR- BC compared to normal mammary, triple negative breast cancer and triple positive breast cancer tissues (HER2+/ER+/PR+). We used a stringent criterion that differentially expressed noncanonical isoforms (adjusted p value < 0.05) and have to be expressed in all replicates of HER2+/ER-/PR- BC samples, and the trend in differential expression (up or down) is the same in all comparisons. Of the 11 protein isoforms, six were overexpressed in HER2+/ER-/PR- BC. We explored possible functional roles of these six proteins using several complementary computational tools. Biological processes including cell cycle events and glycolysis were linked to four of these proteins. For example, glycolysis was the top ranking functional process for DMXL2 isoform 3, with a fold change of 27 compared to just two for the canonical protein. No previous reports link DMXL2 with any metabolic processes; the canonical protein is known to participate in signaling pathways. Our results clearly indicate distinct functions for the six overexpressed alternative splice isoforms, and these functions could be specific to HER2+/ER-/PR- tumor progression. Further detailed analysis is warranted as these proteins could be explored as potential biomarkers and therapeutic targets for HER2+/ER-/PR- BC patients.

  6. Calmodulin Binds HER2 and Modulates HER2 Signaling

    PubMed Central

    White, Colin D.; Li, Zhigang; Sacks, David B.

    2011-01-01

    Human epidermal growth factor receptor 2 (HER2), a member of the ErbB family of receptor tyrosine kinases, has defined roles in neoplastic transformation and tumor progression. Overexpression of HER2 is an adverse prognostic factor in several human neoplasms and, particularly in breast cancer, correlates strongly with a decrease in overall patient survival. HER2 stimulates breast tumorigenesis by forming protein-protein interactions with a diverse array of intracellular signaling molecules, and evidence suggests that manipulation of these associations holds therapeutic potential. To modulate specific HER2 interactions, the region(s) of HER2 to which each target binds must be accurately identified. Calmodulin (CaM), a ubiquitously expressed Ca2+ binding protein, interacts with multiple intracellular substrates. Interestingly, CaM binds the juxtamembrane region of the epidermal growth factor receptor, a HER2 homolog. Here, we show that CaM interacts, in a Ca2+-regulated manner, with two distinct sites on the N-terminal portion of the HER2 intracellular domain. Deletion of residues 676–689 and 714–732 from HER2 prevented CaM-HER2 binding. Inhibition of CaM function or deletion of the CaM binding sites from HER2 significantly decreased both HER2 phosphorylation and HER2-stimulated cell growth. Collectively, these data suggest that inhibition of CaM-HER2 interaction may represent a rational therapeutic strategy for the treatment of patients with breast cancer. PMID:21185879

  7. HER2 signaling regulates HER2 localization and membrane retention

    PubMed Central

    Jeong, Jaekwang; Kim, Wonnam; Kim, Lark Kyun; VanHouten, Joshua; Wysolmerski, John J.

    2017-01-01

    ErbB2/HER2/Neu is a receptor tyrosine kinase that is overexpressed in 25–30% of human breast cancers, usually associated with amplification of the ERBB2 gene. HER2 has no recognized ligands and heterodimers between HER2 and EGFR (ErbB1/HER1) or HER2 and ErbB3/HER3 are important in breast cancer. Unlike other ErbB family members, HER2 is resistant to internalization and degradation, and remains at the cell surface to signal for prolonged periods after it is activated. Although the mechanisms underlying retention of HER2 at the cell surface are not fully understood, prior studies have shown that, in order to avoid internalization, HER2 must interact with the chaperone, HSP90, and the calcium pump, PMCA2, within specific plasma membrane domains that protrude from the cell surface. In this report, we demonstrate that HER2 signaling, itself, is important for the formation and maintenance of membrane protrusions, at least in part, by maintaining PMCA2 expression and preventing increased intracellular calcium concentrations. Partial genetic knockdown of HER2 expression or pharmacologic inhibition of HER2 signaling causes the depletion of membrane protrusions and disruption of the interactions between HER2 and HSP90. This is associated with the ubiquitination of HER2, its internalization with EGFR or HER3, and its degradation. These results suggest a model by which some threshold of HER2 signaling is required for the formation and/or maintenance of multi-protein signaling complexes that reinforce and prolong HER2/EGFR or HER2/HER3 signaling by inhibiting HER2 ubiquitination and internalization. PMID:28369073

  8. [Anti-HER2 vaccines: The HER2 immunotargeting future?].

    PubMed

    Ladjemi, M Z; Jacot, W; Pèlegrin, A; Navarro-Teulon, I

    2011-06-01

    Breast cancer is a widely spread women's disease. In spite of progress in the field of surgery and adjuvant therapies, the risk of breast cancer metastatic relapses remains high especially in those overexpressing HER2. Different studies have shown cellular and/or humoral immune responses against HER2 in patients with HER2-overexpressing tumors. This immune response is associated with a lower tumor development at early stages of the disease. These observations, associated with the efficiency today demonstrated by a trastuzumab-based anti-HER2 immunotherapy, allowed to envisage various vaccinal strategies against HER2. These findings have so led to the hypothesis that the generation of an anti-HER2 immune response should protect patients from HER2-overexpressing tumor growth, and induction of a stable and strong immunity by cancer vaccines is expected to lead to establishment of immune memory, thereby preventing tumor recurrence. However, an immunological tolerance against HER2 antigen exists representing a barrier to effective vaccination against this oncoprotein. As a consequence, the current challenge for vaccines is to find the best conditions to break this immunological tolerance. In this review, we will discuss the different anti-HER2 vaccine strategies currently developed; considering the strategies having reached the clinical phases as well as those still in preclinical development. The used antigen can be composed of tumoral allogenic cells or autologous cells or be specific of HER2. It can be delivered by denditric cells or in a DNA, peptidic or proteic form. Another area of the research concerns the use of anti-idiotypic antibodies mimicking HER2.

  9. Activated d16HER2 homodimers and SRC kinase mediate optimal efficacy for trastuzumab.

    PubMed

    Castagnoli, Lorenzo; Iezzi, Manuela; Ghedini, Gaia C; Ciravolo, Valentina; Marzano, Giulia; Lamolinara, Alessia; Zappasodi, Roberta; Gasparini, Patrizia; Campiglio, Manuela; Amici, Augusto; Chiodoni, Claudia; Palladini, Arianna; Lollini, Pier Luigi; Triulzi, Tiziana; Menard, Sylvie; Nanni, Patrizia; Tagliabue, Elda; Pupa, Serenella M

    2014-11-01

    A splice isoform of the HER2 receptor that lacks exon 16 (d16HER2) is expressed in many HER2-positive breast tumors, where it has been linked with resistance to the HER2-targeting antibody trastuzumab, but the impact of d16HER2 on tumor pathobiology and therapeutic response remains uncertain. Here, we provide genetic evidence in transgenic mice that expression of d16HER2 is sufficient to accelerate mammary tumorigenesis and improve the response to trastuzumab. A comparative analysis of effector signaling pathways activated by d16HER2 and wild-type HER2 revealed that d16HER2 was optimally functional through a link to SRC activation (pSRC). Clinically, HER2-positive breast cancers from patients who received trastuzumab exhibited a positive correlation in d16HER2 and pSRC abundance, consistent with the mouse genetic results. Moreover, patients expressing high pSRC or an activated "d16HER2 metagene" were found to derive the greatest benefit from trastuzumab treatment. Overall, our results establish the d16HER2 signaling axis as a signature for decreased risk of relapse after trastuzumab treatment.

  10. HER2/Leptin Crosstalk in Breast Cancer

    DTIC Science & Technology

    2009-09-01

    obtained in HEK 293T kidney cells engineered to overexpress ObR and HER2 suggested that leptin can transactivate HER2 [22]. Thus, we examined whether...TITLE: HER2/ Leptin crosstalk in breast cancer PRINCIPAL INVESTIGATOR: Eva Surmacz, Ph.D...2. REPORT TYPE Final 3. DATES COVERED (From - To) September 1, 2007-August 30, 2009 4. TITLE AND SUBTITLE HER2/ Leptin crosstalk in breast cancer

  11. HER2/Leptin Crosstalk in Breast Cancer

    DTIC Science & Technology

    2008-09-01

    in human embryonic kidney HEK 293T cells engineered to coexpress HER2 and ObRs or ObRl suggested that leptin , acting through either ObR isoform, can...obtained in HEK 293T kidney cells engineered to overexpress ObR and HER2 suggested that leptin can transactivate HER2 [22]. Thus, we examined whether...AD_________________ Award Number: W81XWH-07-1-0603 TITLE: HER2/ Leptin Crosstalk in Breast Cancer

  12. HER-2/neu diagnostics in breast cancer

    PubMed Central

    Carney, Walter P; Leitzel, Kim; Ali, Suhail; Neumann, Rainer; Lipton, Allan

    2007-01-01

    HER-2/neu status of the primary breast cancer (PBC) is determined by immunohistochemistry and fluorescent in situ hybridization. Because of a variety of technical factors, however, the PBC may not accurately reflect the metastatic tumor in terms of HER-2/neu status. Recently published guidelines recommend that tumors be defined as HER-2/neu positive if 30% or more of the cells are 3+. Circulating levels of the HER-2 extracellular domain can be measured in serum using a test cleared by the US Food and Drug Administration, and increased serum HER-2/neu levels to above 15 ng/ml can reflect tumor progression. Studies comparing tissue HER-2/neu status of the PBC and HER-2/neu levels above 15 ng/ml in metastatic breast cancer patients are also reviewed. PMID:17561991

  13. HER2 somatic mutations are associated with poor survival in HER2-negative breast cancers.

    PubMed

    Wang, Tonghui; Xu, Ye; Sheng, Shuyan; Yuan, Hua; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2017-02-06

    It is well documented that HER2 overexpression/amplification is associated with the poor survival in breast cancer patients. However, it is largely unknown whether HER2 somatic mutations are associated with the survival in HER2-negative breast cancer patients. Here, we identified HER2 somatic mutations in tumors from 1,348 unselected breast cancer patients by sequencing the entire HER2 coding region. All these mutations were tested for in corresponding blood samples to determine whether they were somatic or germline mutations. We further investigated the associations between the HER2 somatic mutations and recurrence-free survival (RFS) and distant recurrence-free survival (DRFS) in this cohort of patients. We found that 27 of 1,348 (2.0%) of these patients carried a HER2 somatic mutation. In vitro experiments demonstrated that some of novel mutations and those with unknown functions increased HER2 activity. HER2 status was available for 1,306 patients, and the HER2 somatic mutation rates in HER2-positive (n=353) and HER2-negative breast cancers (n=953) were 1.4% and 2.3%, respectively. Among the HER2-negative patients, those with a HER2 somatic mutation had a significantly worse recurrence-free survival (unadjusted hazard ratio [HR] =2.67; 95% confidence interval [CI]: 1.25-5.72, P=0.002) and distant recurrence-free survival (unadjusted HR=2.50; 95% CI: 1.10-5.68, P=0.004) than those with wild-type HER2. Taken together, our findings suggested that HER2 somatic mutations occur at a higher frequency in HER2-negative breast cancer, and HER2-negative breast cancer patients with these mutations have poor survival. Therefore, HER2-negative patients with a HER2 somatic mutation are potentially good candidates for HER2-targeted therapy. This article is protected by copyright. All rights reserved.

  14. Treatment of HER2-positive breast cancer.

    PubMed

    Figueroa-Magalhães, Maria Cristina; Jelovac, Danijela; Connolly, Roisin M; Wolff, Antonio C

    2014-04-01

    The human epidermal growth factor receptor 2 gene (HER2) is overexpressed and/or amplified in ~15% of breast cancer patients and was identified a quarter century ago as a marker of poor prognosis. By 1998, antibody therapy targeting the HER2 pathway was shown to demonstrably improve progression-free and overall survival in metastatic disease, and in 2005 evidence of improvement in disease-free and overall survival from the first generation of trastuzumab adjuvant trials became available. However, not all patients with HER2 overexpression benefit from trastuzumab. Second-generation studies in metastatic disease led to the approval of several new HER2-targeted therapies using small molecule tyrosine kinase inhibitors such as lapatinib, new HER2/HER3 antibodies such as pertuzumab, and the new antibody chemotherapy conjugate ado-trastuzumab emtansine. These successes supported the launch of second-generation adjuvant trials testing single and dual HER2-targeted agents, administered concomitantly or sequentially with chemotherapy that will soon complete accrual. HER2-positive breast cancer in the setting of HER2-targeted therapy is no longer associated with poor prognosis, and recent guidance by the US Food and Drug Administration suggests that pathologic response to HER2-targeted therapy given preoperatively may allow an earlier assessment of their clinical benefit in the adjuvant setting. An adjuvant trial of trastuzumab in patient whose tumors express normal levels of HER2 and trials of single/dual HER2-targeting without chemotherapy are also ongoing. In this article, we review the current data on the therapeutic management of HER2-positive breast cancer.

  15. Carboplatin+Nab-paclitaxel, Plus Trastuzumab (HER2+) or Bevacizumab (HER2-) in the Neoadjuvant Setting

    ClinicalTrials.gov

    2016-11-28

    Breast Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  16. Therapeutic siRNA for drug-resistant HER2-positive breast cancer

    PubMed Central

    Ngamcherdtrakul, Worapol; Castro, David J.; Morry, Jingga; Reda, Moataz M.; Gray, Joe W.; Yantasee, Wassana

    2016-01-01

    HER2 is overexpressed in about 20% of breast cancers and contributes to poor prognosis. Unfortunately, a large fraction of patients have primary or acquired resistance to the HER2-targeted therapy trastuzumab, thus a multi-drug combination is utilized in the clinic, putting significant burden on patients. We systematically identified an optimal HER2 siRNA from 76 potential sequences and demonstrated its utility in overcoming intrinsic and acquired resistance to trastuzumab and lapatinib in 18 HER2-positive cancer cell lines. We provided evidence that the drug-resistant cancer maintains dependence on HER2 for survival. Importantly, cell lines did not readily develop resistance following extended treatment with HER2 siRNA. Using our recently developed nanoparticle platform, systemic delivery of HER2 siRNA to trastuzumab-resistant tumors resulted in significant growth inhibition. Moreover, the optimal HER2 siRNA could also silence an exon 16 skipped HER2 splice variant reported to be highly oncogenic and linked to trastuzumab resistance. PMID:26894975

  17. HER2-positive gastric cancer identified by serum HER2: A case report

    PubMed Central

    SAITO, MAYUKO; KAWAKAMI, YUJIRO; YAMASHITA, KENTARO; NASUNO, HIROSHI; ISHIMINE, YU; FUKUDA, KOICHIRO; ISSHIKI, HIROYUKI; SUZUKI, RYO; ARIMURA, YOSHIAKI; SHINOMURA, YASUHISA

    2016-01-01

    Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are the current standards methods for the determination of tissue human epidermal growth factor receptor 2 (HER2) status in gastric cancer, as for breast cancer. However, HER2-positive gastric cancer occasionally exhibits heterogeneous tissue HER2 overexpression, raising concern regarding false-negative results in unresectable cases diagnosed by biopsy samples. Serum HER2, the concentration of the extracellular domain of HER2 protein shed into the bloodstream, has the potential to supplement the use of IHC or FISH to determine HER2 status. However, the clinical significance of serum HER2 has not been well studied in gastric cancer. The present study describes an illustrative case of metastatic gastric cancer initially diagnosed as HER2-negative (IHC score 1+). The patient exhibited an elevated serum HER2 level, which prompted a reevaluation of the tissue by IHC, using an alternative antibody, and FISH; re-biopsy analyses confirmed the case as HER2-positive, and trastuzumab was subsequently added to the combination chemotherapy with capecitabine and cisplatin. Serum HER2 may aid in avoiding false-negative diagnoses of HER2 gastric cancer. PMID:27284358

  18. ER and HER2 expression are positively correlated in HER2 non-overexpressing breast cancer

    PubMed Central

    2012-01-01

    Introduction Estrogen receptor-α (ER) and human epidermal growth factor receptor 2 (HER2) positivity are inversely correlated by standard criteria. However, we investigated the quantitative relation between ER and HER2 expression at both RNA and protein levels in HER2+ve and HER2-ve breast carcinomas. Methods ER and HER2 levels were assessed with immunohistochemistry (IHC) and (for HER2) fluorescent in situ hybridization (FISH) and by quantitative reverse transcription-polymerase chain reaction (q-RT-PCR) in formalin-fixed primary breast cancers from 448 patients in the National Cancer Research Institute (NCRI) Adjuvant Breast Cancer Trial (ABC) tamoxifen-only arm. Relations at the RNA level were assessed in 1,139 TransATAC tumors. Results ER and HER2 RNA levels were negatively correlated as expected in HER2+ve (IHC 3+ and/or FISH-amplified) tumors (r = -0.45; P = 0.0028). However, in HER2-ve tumors (ER+ve and ER-ve combined), a significant positive correlation was found (r = 0.43; P < 0.0001), HER2 RNA levels being 1.74-fold higher in ER+ve versus ER-ve tumors. This correlation was maintained in the ER+veHER2-ve subgroup (r = 0.24; P = 0.0023) and confirmed in this subgroup in 1,139 TransATAC tumours (r = 0.25; P < 0.0001). The positive relation extended to IHC-detected ER in ABC: mean ± 95% confidence interval (CI) H-scores were 90 ± 19 and 134 ± 19 for 0 and 1+ HER2 IHC categories, respectively (P = 0.0013). A trend toward lower relapse-free survival (RFS) was observed in patients with the lowest levels of ER and HER2 RNA levels within the ER+veHER2-ve subgroup both for ABC and TransATAC cohorts. Conclusions ER and HER2 expression is positively correlated in HER2-ve tumors. The distinction between HER2+ve and HER2-ve is greater in ER-ve than in ER+ve tumors. These findings are important to consider in clinical trials of anti-HER2 and anti-endocrine therapy in HER2-ve disease. Trial Registration Clinical trial identifier: ISRCTN31514446. PMID:22417870

  19. HER2-directed therapy: current treatment options for HER2-positive breast cancer.

    PubMed

    Ahmed, Shahid; Sami, Amer; Xiang, Jim

    2015-03-01

    Over the past decade, the management of HER2-positive breast cancer has evolved dramatically. In addition to advances in screening, genetic testing, imaging, surgical and radiation techniques, innovations in medical therapy including widespread use of HER2-directed therapy in early and advanced breast cancer have revolutionized breast cancer care and changed the natural history of HER2-positive breast cancer. A substantial number of HER2-targeted agents are being developed including monoclonal antibodies, small molecule inhibitors, and antibody drug conjugates. Trastuzumab is the prototype HER2-directed therapy that was introduced in the late 1990s for the management of metastatic breast cancer and later showed efficacy in early stage disease. Despite the practice changing impact of trastuzumab and improvement in outcomes of women with HER2-positive breast cancer resistance to trrastuzumab is a major clinical issue, occurring in both early stage and advanced disease, and new treatment strategies are clearly required. Combining HER2-targeted agents and dual HER2 blockade has been successful in early and advanced breast cancer. Furthermore, selected delivery of potent chemotherapeutic agent coupled with HER2 inhibition promises new treatment options. This review is focused on current HER2-directed treatments for women with HER2-positive breast cancer including monoclonal antibodies, small molecule inhibitors, and antibody drug conjugates.

  20. Novel Peptidomimetics for Inhibition of HER2:HER3 Heterodimerization in HER2-Positive Breast Cancer.

    PubMed

    Kanthala, Shanthi; Banappagari, Sashikanth; Gokhale, Ameya; Liu, Yong-Yu; Xin, Gu; Zhao, Yunfeng; Jois, Seetharama

    2015-06-01

    The current approach to treating HER2-overexpressed breast cancer is the use of monoclonal antibodies or a combination of antibodies with traditional chemotherapeutic agents or kinase inhibitors. Our approach is to target clinically validated HER2 domain IV with peptidomimetics and inhibit the protein-protein interactions (PPI) of HERs. Unlike antibodies, peptidomimetics have advantages in terms of stability, modification, and molecular size. We have designed peptidomimetics (compounds 5 and 9) that bind to HER2 domain IV, inhibit protein-protein interactions, and decrease cell viability in breast cancer cells with HER2 overexpression. We have shown, using enzyme fragment complementation and proximity ligation assays, that peptidomimetics inhibit the PPI of HER2:HER3. Compounds 5 and 9 suppressed the tumor growth in a xenograft mouse model. Furthermore, we have shown that these compounds inhibit PPI of HER2:HER3 and phosphorylation of HER2 as compared to control in tissue samples derived from in vivo studies. The stability of the compounds was also investigated in mouse serum, and the compounds exhibited stability with a half-life of up to 3 h. These results suggest that the novel peptidomimetics we have developed target the extracellular domain of HER2 protein and inhibit HER2:HER3 interaction, providing a novel method to treat HER2-positive cancer.

  1. Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2

    PubMed Central

    2014-01-01

    Introduction The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. Methods FVB-huHER2 mice were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. Results Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses. The DNA vaccine mainly induced a high and sustained level of anti-huHER2 antibodies, the cell vaccine also elicited interferon (IFN)-γ production. Sera of DNA-vaccinated mice transferred to xenograft-carrying mice significantly inhibited the growth of human HER2-positive cancer cells. Conclusions Anti-huHER2 antibodies elicited in the tolerant host exert antitumor activity. PMID:24451168

  2. Basal/HER2 breast carcinomas

    PubMed Central

    Martin-Castillo, Begoña; Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cufí, Silvia; Moreno, José Manuel; Corominas-Faja, Bruna; Urruticoechea, Ander; Martín, Ángel G.; López-Bonet, Eugeni; Menendez, Javier A.

    2013-01-01

    High rates of inherent primary resistance to the humanized monoclonal antibody trastuzumab (Herceptin) are frequent among HER2 gene-amplified breast carcinomas in both metastatic and adjuvant settings. The clinical efficacy of trastuzumab is highly correlated with its ability to specifically and efficiently target HER2-driven populations of breast cancer stem cells (CSCs). Intriguingly, many of the possible mechanisms by which cancer cells escape trastuzumab involve many of the same biomarkers that have been implicated in the biology of CS-like tumor-initiating cells. In the traditional, one-way hierarchy of CSCs in which all cancer cells descend from special self-renewing CSCs, HER2-positive CSCs can occur solely by self-renewal. Therefore, by targeting CSC self-renewal and resistance, trastuzumab is expected to induce tumor shrinkage and further reduce breast cancer recurrence rates when used alongside traditional therapies. In a new, alternate model, more differentiated non-stem cancer cells can revert to trastuzumab-refractory, CS-like cells via the activation of intrinsic or microenvironmental paths-to-stemness, such as the epithelial-to-mesenchymal transition (EMT). Alternatively, stochastic transitions of trastuzumab-responsive CSCs might also give rise to non-CSC cellular states that lack major attributes of CSCs and, therefore, can remain “hidden” from trastuzumab activity. Here, we hypothesize that a better understanding of the CSC/non-CSC social structure within HER2-overexpressing breast carcinomas is critical for trastuzumab-based treatment decisions in the clinic. First, we decipher the biological significance of CSC features and the EMT on the molecular effects and efficacy of trastuzumab in HER2-positive breast cancer cells. Second, we reinterpret the genetic heterogeneity that differentiates trastuzumab-responders from non-responders in terms of CSC cellular states. Finally, we propose that novel predictive approaches aimed at better

  3. HER2 isoforms co-expression differently tunes mammary tumor phenotypes affecting onset, vasculature and therapeutic response

    PubMed Central

    Balboni, Tania; Ianzano, Marianna L.; Laranga, Roberta; Landuzzi, Lorena; Giusti, Veronica; Ceccarelli, Claudio; Santini, Donatella; Taffurelli, Mario; Di Oto, Enrico; Asioli, Sofia; Amici, Augusto; Pupa, Serenella M.; De Giovanni, Carla; Tagliabue, Elda; Iezzi, Manuela; Nanni, Patrizia; Lollini, Pier-Luigi

    2017-01-01

    Full-length HER2 oncoprotein and splice variant Delta16 are co-expressed in human breast cancer. We studied their interaction in hybrid transgenic mice bearing human full-length HER2 and Delta16 (F1 HER2/Delta16) in comparison to parental HER2 and Delta16 transgenic mice. Mammary carcinomas onset was faster in F1 HER2/Delta16 and Delta16 than in HER2 mice, however tumor growth was slower, and metastatic spread was comparable in all transgenic mice. Full-length HER2 tumors contained few large vessels or vascular lacunae, whereas Delta16 tumors presented a more regular vascularization with numerous endothelium-lined small vessels. Delta16-expressing tumors showed a higher accumulation of i.v. injected doxorubicin than tumors expressing full-length HER2. F1 HER2/Delta16 tumors with high full-length HER2 expression made few large vessels, whereas tumors with low full-length HER2 and high Delta16 contained numerous small vessels and expressed higher levels of VEGF and VEGFR2. Trastuzumab strongly inhibited tumor onset in F1 HER2/Delta16 and Delta16 mice, but not in full-length HER2 mice. Addiction of F1 tumors to Delta16 was also shown by long-term stability of Delta16 levels during serial transplants, in contrast full-length HER2 levels underwent wide fluctuations. In conclusion, full-length HER2 leads to a faster tumor growth and to an irregular vascularization, whereas Delta16 leads to a faster tumor onset, with more regular vessels, which in turn could better transport cytotoxic drugs within the tumor, and to a higher sensitivity to targeted therapeutic agents. F1 HER2/Delta16 mice are a new immunocompetent mouse model, complementary to patient-derived xenografts, for studies of mammary carcinoma onset, prevention and therapy. PMID:28903354

  4. Could HER2 Heterogeneity Open New Therapeutic Options in Patients with HER2-Primary Breast Cancer

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0444 TITLE: Could HER2 Heterogeneity Open New Therapeutic Options in Patients with HER2- Primary Breast Cancer ...HER2- Primary Breast Cancer ? 5b. GRANT NUMBER W81XWH-14-1-0444 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gary Ulaner 5d. PROJECT NUMBER 5e. TASK...negative primary breast cancer . An initial nine patients have completed the trial. Five patients demonstrated suspicious foci on 89 Zr-trastuzumab

  5. Could HER2 Heterogeneity Open New Therapeutic Options in Patients with HER2-Primary Breast Cancer

    DTIC Science & Technology

    2016-10-01

    Zr-trastuzumab PET / CT . Two of nine patients with suspicious foci had biopsy-proven HER2-positive metastases. Thus, 89 Zr-trastuzumab PET / CT may...into clinical use, and a more specific radiotracer will be needed. 15. SUBJECT TERMS Breast cancer, HER2, tumor heterogeneity, PET / CT , 89Zr...KEYWORDS: Breast cancer Human epidermal growth factor receptor 2 (HER2) Tumor heterogeneity PET / CT Targeted imaging 89Zr-trastuzumab 3

  6. Dual HER2 Blockade in Non-Small Cell Lung Cancer Harboring a HER2 Mutation.

    PubMed

    Mar, Nataliya; Vredenburgh, James J

    2015-10-01

    Identification of targetable oncogenic mutations in non-small cell lung cancer (NSCLC) has been a major advance in cancer treatment. Laboratory techniques to assess human epidermal growth factor receptor 2 (HER2) positivity in NSCLC include immunohistochemistry (IHC) for protein overexpression, fluorescent in situ hybridization (FISH) for gene amplification, and next generation sequencing (NGS) for HER2 gene mutations. These tests have a controversial prognostic and predictive value, with an emerging association between HER2 gene mutations and treatment response to HER2 targeted therapy. We present a case of a woman with metastatic lung adenocarcinoma with HER2 positivity assessed by IHC and FISH, as well as a high gene copy number noted on NGS. She was observed to have significant disease progression following standard first-line platinum doublet chemotherapy. She was started on dual HER2 blockade in the second-line setting, which yielded a great response in the liver with stable disease elsewhere. To our knowledge, this is the first report describing successful use of dual HER2 blockade in metastatic HER2 positive NSCLC. We also review common laboratory techniques for determining HER2 positivity in NSCLC and their clinical applications.

  7. [Targeted detecting HER2 expression with recombinant anti HER2 ScFv-GFP fusion antibody].

    PubMed

    Gao, Guohui; Chen, Chong; Yang, Yanmei; Yang, Han; Wang, Jindan; Zheng, Yi; Huang, Qidi; Hu, Xiaoqu

    2012-08-01

    To verify the reliability of targeted detecting HER2 positive cancer cells and clinical pathological tissue specimens with a recombinant anti HER2 single chain antibody in single chain Fv fragment (scFv) format, we have constructed the fusion variable regions of the ScFv specific for HER2/neu. labeled a green-fluorescent protein(GFP). The humanized recombinant Anti HER2 ScFv-GFP gene was inserted into pFast Bac HT A, and expressed in insect cells sf9. Then the recombinant fusion protein Anti HER2 ScFv-GFP was properly purified with Ni2+-NTA affinity chromatography from the infected sf9 cells used to test the specificity of the fusion antibody for HER2 positive cancer cells. Firstly, the purified antibody incubated with HER2 positive breast cancer cells SKBR3, BT474 and HER2 negative breast cancer cells MCF7 for 12 h/24 h/48 h at 37 degrees C, in order to confirm targeted detecting HER2 positive breast cancer cells by Laser Confocal Microscopy. Furthermore, the same clinical pathological tissue samples were assessed by immunohistochemistry (IHC) and the fusion antibody Anti HER2 ScFv-GFP in the meanwhile. The data obtained indicated that the recombinant eukaryotic expression plasmid pFast Bac HT A/Anti HER2 ScFv-GFP was constructed successfully In addition, obvious green fluorescent was observed in insect cells sf9. When the purified fusion antibody was incubated with different cancer cells, much more green fluorescent was observed on the surface of the HER2 positive cancer cells SKBR3 and BT474. In contrast, no green fluorescent on the surface of the HER2 negative cancer cells MCF7 was detected. The concentration of the purified fusion antibody was 115.5 microg/mL, of which protein relative molecular weight was 60 kDa. The analysis showed the purity was about 97% and the titer was about 1:64. The detection results of IHC and fusion antibody testing indicated the conformity. In summary, the study showed that the new fusion antibody Anti HER2 ScFv-GFP can test HER2

  8. The positive is inside the negative: HER2-negative tumors can express the HER2 intracellular domain and present a HER2-positive phenotype.

    PubMed

    Panis, Carolina; Pizzatti, Luciana; Corrêa, Stephany; Binato, Renata; Lemos, Gabriela Ferreira; Herrera, Ana Cristina da Silva do Amaral; Seixas, Teresa Fernandes; Cecchini, Rubens; Abdelhay, Eliana

    2015-02-01

    Overexpression of human epithelial growth factor receptor 2 (HER2) is a poor prognostic factor in breast cancer. HER2 is a transmembrane receptor comprising an extracellular domain (ECD), a single transmembrane domain, and an intracellular domain (ICD) with tyrosine-kinase activity. Receptor dimerization triggers pivotal effector pathways in cancer, such as phosphatidylinositol 3-kinase (PI3K) signaling. Currently, screening of HER2 in breast tumors for prognostic and therapeutic purposes involves immunohistochemical (IHC) phenotyping for the ECD, in which tumors with IHC scores below 2+ are reported as HER2-negative. We used a label-free liquid chromatography-mass spectrometry (LC-MS) proteomic approach to compare plasma samples from patients with HER2-positive breast tumors and patients with HER2-negative tumors. Patients with HER2-negative tumors expressed higher circulating levels of calpain-10 than patients with HER2-positive tumors. Calpains cleave HER2, releasing its ECD and transforming phenotypically positive tumors into phenotypically negative tumors. Therefore, we investigated the expression of the ICD in HER2-negative samples that overexpressed calpain-10. We found that 16% of HER2-negative tumors were positive for HER2-ICD, which was associated with circulating HER2-ECD. HER2 gene amplification was also observed in some HER2-negative tumors. Positive staining for the PI3K pathway was observed in the HER2-negative, ICD-positive tumors, similar to the HER2-positive cohort. Microarray analysis revealed that HER2-negative, ICD-positive samples clustered between HER2-positive tumors and triple-negative tumors. Survival analysis revealed that outcome in women with HER2-negative, ICD-positive tumors was better than in women bearing HER2-negative, ICD-negative (triple negative) tumors but was quite similar to HER2-positive tumors and worse than women with luminal A tumors. Moreover, in vitro analyses revealed that MDA-MB 231, a triple negative cell line

  9. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  10. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer

    PubMed Central

    de Melo Gagliato, Debora; Leonardo Fontes Jardim, Denis; Marchesi, Mario Sergio Pereira; Hortobagyi, Gabriel N.

    2016-01-01

    Breast Cancer (BC) is a highly prevalent disease. A woman living in the United States has a 12.3% lifetime risk of being diagnosed with breast cancer [1]. It is the most common female cancer and the second most common cause of cancer death in women [2]. Of note, amplification or overexpression of Human Epidermal Receptor 2 (HER2) oncogene is present in approximately 18 to 20% of primary invasive breast cancers, and until personalized therapy became available for this specific BC subtype, the worst rates of Overall Survival (OS) and Recurrence-Free Survival (RFS) were observed in the HER2+ BC cohort, compared to all other types, including triple negative BC (TNBC) [3]. HER2 is a member of the epidermal growth factor receptor (EGFR) family. Other family members include EGFR or HER1, HER3 and HER4. HER2 can form heterodimers with any of the other three receptors, and is considered to be the preferred dimerization partner of the other HER or ErbB receptors [4]. Phosphorylation of tyrosine residues within the cytoplasmic domain is the result of receptor dimerization and culminates into initiation of a variety of signalling pathways involved in cellular proliferation, transcription, motility and apoptosis inhibition [5]. In addition to being an important prognostic factor in women diagnosed with BC, HER2 overexpression also identifies those patients who benefit from treatment with agents that target HER2, such as trastuzumab, pertuzumab, trastuzumab emtansine (T-DM1) and small molecules tyrosine kinase inhibitors of HER2 [6, 11, 127]. In fact, trastuzumab altered the natural history of patients diagnosed with HER2+ BC, both in early and metastatic disease setting, in a major way [8–10]. Nevertheless, there are many women that will eventually develop metastatic disease, despite being treated with anti-HER2 therapy in the early disease setting. Moreover, advanced tumors may reach a point where no anti-HER2 treatment will achieve disease control, including recently

  11. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer.

    PubMed

    de Melo Gagliato, Debora; Jardim, Denis Leonardo Fontes; Marchesi, Mario Sergio Pereira; Hortobagyi, Gabriel N

    2016-09-27

    Breast Cancer (BC) is a highly prevalent disease. A woman living in the United States has a 12.3% lifetime risk of being diagnosed with breast cancer [1]. It is the most common female cancer and the second most common cause of cancer death in women [2]. Of note, amplification or overexpression of Human Epidermal Receptor 2 (HER2) oncogene is present in approximately 18 to 20% of primary invasive breast cancers, and until personalized therapy became available for this specific BC subtype, the worst rates of Overall Survival (OS) and Recurrence-Free Survival (RFS) were observed in the HER2+ BC cohort, compared to all other types, including triple negative BC (TNBC) [3].HER2 is a member of the epidermal growth factor receptor (EGFR) family. Other family members include EGFR or HER1, HER3 and HER4. HER2 can form heterodimers with any of the other three receptors, and is considered to be the preferred dimerization partner of the other HER or ErbB receptors [4]. Phosphorylation of tyrosine residues within the cytoplasmic domain is the result of receptor dimerization and culminates into initiation of a variety of signalling pathways involved in cellular proliferation, transcription, motility and apoptosis inhibition [5].In addition to being an important prognostic factor in women diagnosed with BC, HER2 overexpression also identifies those patients who benefit from treatment with agents that target HER2, such as trastuzumab, pertuzumab, trastuzumab emtansine (T-DM1) and small molecules tyrosine kinase inhibitors of HER2 [6, 11, 127].In fact, trastuzumab altered the natural history of patients diagnosed with HER2+ BC, both in early and metastatic disease setting, in a major way [8-10]. Nevertheless, there are many women that will eventually develop metastatic disease, despite being treated with anti-HER2 therapy in the early disease setting. Moreover, advanced tumors may reach a point where no anti-HER2 treatment will achieve disease control, including recently approved

  12. Overcoming resistance to HER2-targeted therapy with a novel HER2/CD3 bispecific antibody

    PubMed Central

    Lopez-Albaitero, Andres; Xu, Hong; Guo, Hongfen; Wang, Linlin; Wu, Zhihao; Tran, Hoa; Chandarlapaty, Sarat; Scaltriti, Maurizio; Janjigian, Yelena; de Stanchina, Elisa

    2017-01-01

    ABSTRACT T-cell-based therapies have emerged as one of the most clinically effective ways to target solid and non-solid tumors. HER2 is responsible for the oncogenesis and treatment resistance of several human solid tumors. As a member of the HER family of tyrosine kinase receptors, its over-activity confers unfavorable clinical outcome. Targeted therapies directed at this receptor have achieved responses, although development of resistance is common. We explored a novel HER2/CD3 bispecific antibody (HER2-BsAb) platform that while preserving the anti-proliferative effects of trastuzumab, it recruits and activates non-specific circulating T-cells, promoting T cell tumor infiltration and ablating HER2(+) tumors, even when these are resistant to standard HER2-targeted therapies. Its in vitro tumor cytotoxicity, when expressed as EC50, correlated with the surface HER2 expression in a large panel of human tumor cell lines, irrespective of lineage or tumor type. HER2-BsAb-mediated cytotoxicity was relatively insensitive to PD-1/PD-L1 immune checkpoint inhibition. In four separate humanized mouse models of human breast cancer and ovarian cancer cell line xenografts, as well as human breast cancer and gastric cancer patient-derived xenografts (PDXs), HER2-BsAb was highly effective in promoting T cell infiltration and suppressing tumor growth when used in the presence of human peripheral blood mononuclear cells (PBMC) or activated T cells (ATC). The in vivo and in vitro antitumor properties of this BsAb support its further clinical development as a cancer immunotherapeutic. PMID:28405494

  13. Outcomes of chemotherapies and HER2 directed therapies in advanced HER2-mutant lung cancers.

    PubMed

    Eng, Juliana; Hsu, Meier; Chaft, Jamie E; Kris, Mark G; Arcila, Maria E; Li, Bob T

    2016-09-01

    Human epidermal growth factor receptor 2 (HER2, ERBB2) mutations occur in 3% of lung adenocarcinomas. While case reports and series have shown activity of HER2 targeted agents in these patients, little is known about outcomes of chemotherapies. Patients with stage IV HER2-mutant lung cancers at Memorial Sloan Kettering were reviewed. Patient demographics, types of HER2 mutations, duration of systemic treatments and survival were analyzed. We identified 38 patients with HER2-mutant lung cancers: median age 62; majority were women (n=24), never smokers (n=22), and all had adenocarcinomas. A 12 base pair in-frame insertion YVMA in exon 20 (p.A775_G776insYVMA) was present in 24 (63%, 95% CI 46-78%) patients. In addition, there were four 9 base pair insertions, one 6 base pair insertion, and five 3 base pair insertions in exon 20, and four single bp substitutions (exon 20 L755F, V777L, D769H, exon 8 S310F). The median overall survival from date of diagnosis of stage IV disease was 2.3 years (95% CI 1.2-2.6). The median duration of chemotherapy was 4.3 months (68 treatments, range 0-21 months): 6.2 months for pemetrexed ±platinum/bevacizumab, 4 months for taxane ±platinum/bevacizumab, 2.6 months for gemcitabine, 3.5 months for vinorelbine. The median duration of HER2 tyrosine kinase inhibitors was 2.2 months (28 treatments, range 0.3-16.3 months). As we search for better targeted therapies for patients with HER2-mutant lung cancers, chemotherapy remains an important component of care.

  14. In situ detection of HER2:HER2 and HER2:HER3 protein-protein interactions demonstrates prognostic significance in early breast cancer.

    PubMed

    Spears, Melanie; Taylor, Karen J; Munro, Alison F; Cunningham, Carrie A; Mallon, Elizabeth A; Twelves, Chris J; Cameron, David A; Thomas, Jeremy; Bartlett, John M S

    2012-04-01

    HER2 overexpression/amplification is linked with poor prognosis in early breast cancer. Co-expression of HER2 and HER3 is associated with endocrine and chemotherapy resistance, driven not simply by expression but by signalling via HER2:HER3 or HER2:HER2 dimers. Proximity ligation assays (PLAs) detect protein-protein complexes at a single-molecule level and allow study of signalling pathways in situ. A cohort of 100 tumours was analyzed by PLA, IHC and FISH. HER complexes were analyzed by PLA in a further 321 tumours from the BR9601 trial comparing cyclophosphamide, methotrexate and fluorouracil (CMF) with epirubicin followed by CMF (epi-CMF). The relationships between HER dimer expression and RFS and OS were investigated, and multivariate regression analysis identified factors influencing patient prognosis. PLA successfully and reproducibly detected HER2:HER2 and HER2:HER3 protein complexes in vivo. A significant association (P < 0.00001) was identified between HER2 homodimerization and HER2 gene amplification. Following a minimum p value approach high levels of HER2:HER2 dimers were significantly associated with reduced relapse-free (RFS; hazard ratio = 1.72, 95% confidence interval 1.15-2.56, P = 0.008) and overall survival (OS HR = 1.69 95% CI = 1.09-2.62, P = 0.019). Similarly, high levels of HER2:HER3 dimers were associated with reduced RFS (HR = 2.18, 95% CI = 1.46-3.26, P = 0.00016) and OS (HR = 2.21, 95% CI = 1.41-3.47, P = 0.001). This study demonstrates that in situ detection of HER2 and HER2:3 protein:protein complexes can be performed robustly and reproducibly in clinical specimens, provides novel prognostic information and opens a significant novel opportunity to probe the clinical impact of cellular signalling processes.

  15. The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells.

    PubMed

    Ram, Sripad; Kim, Dongyoung; Ober, Raimund J; Ward, E Sally

    2014-01-01

    The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2.

  16. Drug response to HER2 gatekeeper T798M mutation in HER2-positive breast cancer.

    PubMed

    Meng, Xuli; Li, Yongfeng; Tang, Hongchao; Mao, Weimin; Yang, Hongjian; Wang, Xiaojia; Ding, Xianfeng; Xie, Shangnao

    2016-02-01

    The gatekeeper T798M mutation in HER2 kinase domain has been observed to considerably shift drug sensitivity to HER2 in breast cancer therapy. Here, drug response of clinical tyrosine kinase inhibitors (TKIs) to the mutation was profiled using a synthetic biology protocol. It was found that TKIs can be grouped into three classes in terms of their response behavior to T798M mutation: class I inhibitors exhibit drug resistance upon the mutation, such as lapatinib, TAK-285 and AEE788; class II inhibitors are insensitive to the mutation, such as erlotinib and gefitinib; and class III inhibitors can be sensitized by the mutation, such as staurosporine. However, kinetic study indicated that the mutation has only a modest effect on the binding of substrate ATP to HER2. Binding free energy analysis revealed that the drug response is primarily determined by direct interaction between the kinase and inhibitors, but not by indirect kinase interaction with competitive ATP. This is different to the molecular mechanism of "generic" drug resistance conferring from EGFR gatekeeper T790M mutation, which is caused by increased ATP affinity upon the mutation. Structural analysis of kinase-inhibitor complexes unraveled that HER2 T798M mutation induces significant steric hindrance to class I inhibitors, but can establish additional nonbonded interactions for class III inhibitors.

  17. Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status

    PubMed Central

    Soares, Maria; Ribeiro, Rita; Najmudin, Shabir; Gameiro, Andreia; Rodrigues, Rita; Cardoso, Fátima; Ferreira, Fernando

    2016-01-01

    HER2 is overexpressed in about 30% of feline mammary carcinomas (FMC) and in 15-30% of breast cancers. Women with HER2-positive breast tumors are associated with shorter survival. This study aimed to optimize the detection and quantification of serum HER2 (sHER2) in cats and to evaluate its potential in diagnosing cats with mammary carcinomas (MC) overexpressing HER2. A prospective study was conducted in 60 queens showing MC and 20 healthy animals. Pre-operative serum samples were collected for sHER2 quantification using two immunoassays: ELISA and Dot blot assay. sHER2 levels were compared with tissue HER2 status assessed by immunohistochemistry. Queens with FMC showed significantly higher mean levels of sHER2 by both ELISA and Dot blot assay. A significant difference in the sHER2 levels was also found between cats with HER2-positive MC and those with low-expressing HER2 MC. A significant correlation between sHER2 levels and tumor HER2 status was also found, particularly when ELISA was used (r = 0.58, p < 0.0001). The value of 10 ng/ml was proposed as the optimal cutoff for both immunoassays by ROC analysis. Like in humans, sHER2 levels are increased in cats with MC HER2-positive, strongly suggesting that evaluation of sHER2 levels can be very useful in feline oncology. The results show that ELISA and Dot blot assay can replace the immunohistochemistry technique, due to their efficacy and lower costs for diagnostic purposes and for monitoring the response to anti-HER2 therapies in cats. PMID:26909614

  18. PRP4K is a HER2-regulated modifier of taxane sensitivity

    PubMed Central

    Corkery, Dale P; Le Page, Cécile; Meunier, Liliane; Provencher, Diane; Mes-Masson, Anne-Marie; Dellaire, Graham

    2015-01-01

    The taxanes are used alone or in combination with anthracyclines or platinum drugs to treat breast and ovarian cancer, respectively. Taxanes target microtubules in cancer cells and modifiers of taxane sensitivity have been identified in vitro, including drug efflux and mitotic checkpoint proteins. Human epidermal growth factor receptor 2 (HER2/ERBB2) gene amplification is associated with benefit from taxane therapy in breast cancer yet high HER2 expression also correlates with poor survival in both breast and ovarian cancer. The pre-mRNA splicing factor 4 kinase PRP4K (PRPF4B), which we identified as a component of the U5 snRNP also plays a role in regulating the spindle assembly checkpoint (SAC) in response to microtubule-targeting drugs. In this study, we found a positive correlation between PRP4K expression and HER2 status in breast and ovarian cancer patient tumors, which we determined was a direct result of PRP4K regulation by HER2 signaling. Knock-down of PRP4K expression reduced the sensitivity of breast and ovarian cancer cell lines to taxanes, and low PRP4K levels correlated with in vitro-derived and patient acquired taxane resistance in breast and ovarian cancer. Patients with high-grade serous ovarian cancer and high HER2 levels had poor overall survival; however, better survival in the low HER2 patient subgroup treated with platinum/taxane-based therapy correlated positively with PRP4K expression (HR = 0.37 [95% CI 0.15-0.88]; p = 0.03). Thus, PRP4K functions as a HER2-regulated modifier of taxane sensitivity that may have prognostic value as a marker of better overall survival in taxane-treated ovarian cancer patients. PMID:25602630

  19. An Integrated Model of the Transcriptome of HER2-Positive Breast Cancer

    PubMed Central

    Kalari, Krishna R.; Necela, Brian M.; Tang, Xiaojia; Thompson, Kevin J.; Lau, Melissa; Eckel-Passow, Jeanette E.; Kachergus, Jennifer M.; Anderson, S. Keith; Sun, Zhifu; Baheti, Saurabh; Carr, Jennifer M.; Baker, Tiffany R.; Barman, Poulami; Radisky, Derek C.; Joseph, Richard W.; McLaughlin, Sarah A.; Chai, High-seng; Camille, Stephan; Rossell, David; Asmann, Yan W.; Thompson, E. Aubrey; Perez, Edith A.

    2013-01-01

    Our goal in these analyses was to use genomic features from a test set of primary breast tumors to build an integrated transcriptome landscape model that makes relevant hypothetical predictions about the biological and/or clinical behavior of HER2-positive breast cancer. We interrogated RNA-Seq data from benign breast lesions, ER+, triple negative, and HER2-positive tumors to identify 685 differentially expressed genes, 102 alternatively spliced genes, and 303 genes that expressed single nucleotide sequence variants (eSNVs) that were associated with the HER2-positive tumors in our survey panel. These features were integrated into a transcriptome landscape model that identified 12 highly interconnected genomic modules, each of which represents a cellular processes pathway that appears to define the genomic architecture of the HER2-positive tumors in our test set. The generality of the model was confirmed by the observation that several key pathways were enriched in HER2-positive TCGA breast tumors. The ability of this model to make relevant predictions about the biology of breast cancer cells was established by the observation that integrin signaling was linked to lapatinib sensitivity in vitro and strongly associated with risk of relapse in the NCCTG N9831 adjuvant trastuzumab clinical trial dataset. Additional modules from the HER2 transcriptome model, including ubiquitin-mediated proteolysis, TGF-beta signaling, RHO-family GTPase signaling, and M-phase progression, were linked to response to lapatinib and paclitaxel in vitro and/or risk of relapse in the N9831 dataset. These data indicate that an integrated transcriptome landscape model derived from a test set of HER2-positive breast tumors has potential for predicting outcome and for identifying novel potential therapeutic strategies for this breast cancer subtype. PMID:24223926

  20. HER2-Positive Breast Cancer: What Is It?

    MedlinePlus

    ... it? A friend of mine has HER2-positive breast cancer. Can you tell me what this means? Answers from Timothy J. Moynihan, M.D. HER2-positive breast cancer is a breast cancer that tests positive for ...

  1. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway

    PubMed Central

    Ohtsuka, Tomoaki; Sakaguchi, Masakiyo; Yamamoto, Hiromasa; Tomida, Shuta; Takata, Katsuyoshi; Shien, Kazuhiko; Hashida, Shinsuke; Miyata-Takata, Tomoko; Watanabe, Mototsugu; Suzawa, Ken; Soh, Junichi; Youyi, Chen; Sato, Hiroki; Namba, Kei; Torigoe, Hidejiro; Tsukuda, Kazunori; Yoshino, Tadashi; Miyoshi, Shinichiro; Toyooka, Shinichi

    2016-01-01

    HER2 is a receptor tyrosine kinase and its upregulation via activating mutations or amplification has been identified in some malignant tumors, including lung cancers. Because HER2 can be a therapeutic target in HER2-driven malignancies, it is important to understand the molecular mechanisms of HER2 activation. In the current study, we identified that cytokeratin 19 (KRT19) binds to HER2 at the inside face of plasma membrane. HER2 and KRT19, which were concurrently introduced to a human embryonic kidney 293 T cells, revealed an association with each other and resulted in phosphorylation of HER2 with the subsequent activation of a downstream Erk-associated pathway. A binding assay revealed that both the NH2-terminal head domain of KRT19 and the COOH-terminal domain of HER2 were essential for their binding. To investigate the impact of the interaction between HER2 and KRT19 in lung cancer, we examined their expressions and localizations in lung cancers. We found that KRT19 was highly expressed in HER2-positive lung cancer cells, and KRT19 and HER2 were co-localized at the cell membrane. In conclusion, we found that KRT19 intracellularly binds to HER2, playing a critical role in HER2 activation. PMID:28008968

  2. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer.

    PubMed

    Jeong, Jaekwang; VanHouten, Joshua N; Dann, Pamela; Kim, Wonnam; Sullivan, Catherine; Yu, Herbert; Liotta, Lance; Espina, Virginia; Stern, David F; Friedman, Peter A; Wysolmerski, John J

    2016-01-19

    In the lactating mammary gland, the plasma membrane calcium ATPase2 (PMCA2) transports milk calcium. Its expression is activated in breast cancers, where high tumor levels predict increased mortality. We find that PMCA2 expression correlates with HER2 levels in breast cancers and that PMCA2 interacts with HER2 in specific actin-rich membrane domains. Knocking down PMCA2 increases intracellular calcium, disrupts interactions between HER2 and HSP-90, inhibits HER2 signaling, and results in internalization and degradation of HER2. Manipulating PMCA2 levels regulates the growth of breast cancer cells, and knocking out PMCA2 inhibits the formation of tumors in mouse mammary tumor virus (MMTV)-Neu mice. These data reveal previously unappreciated molecular interactions regulating HER2 localization, membrane retention, and signaling, as well as the ability of HER2 to generate breast tumors, suggesting that interactions between PMCA2 and HER2 may represent therapeutic targets for breast cancer.

  3. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer

    PubMed Central

    Jeong, Jaekwang; VanHouten, Joshua N.; Dann, Pamela; Kim, Wonnam; Sullivan, Catherine; Yu, Herbert; Liotta, Lance; Espina, Virginia; Stern, David F.; Friedman, Peter A.; Wysolmerski, John J.

    2016-01-01

    In the lactating mammary gland, the plasma membrane calcium ATPase2 (PMCA2) transports milk calcium. Its expression is activated in breast cancers, where high tumor levels predict increased mortality. We find that PMCA2 expression correlates with HER2 levels in breast cancers and that PMCA2 interacts with HER2 in specific actin-rich membrane domains. Knocking down PMCA2 increases intracellular calcium, disrupts interactions between HER2 and HSP-90, inhibits HER2 signaling, and results in internalization and degradation of HER2. Manipulating PMCA2 levels regulates the growth of breast cancer cells, and knocking out PMCA2 inhibits the formation of tumors in mouse mammary tumor virus (MMTV)-Neu mice. These data reveal previously unappreciated molecular interactions regulating HER2 localization, membrane retention, and signaling, as well as the ability of HER2 to generate breast tumors, suggesting that interactions between PMCA2 and HER2 may represent therapeutic targets for breast cancer. PMID:26729871

  4. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    NASA Astrophysics Data System (ADS)

    Shukla, Rameshwer; Thomas, Thommey P.; Desai, Ankur M.; Kotlyar, Alina; Park, Steve J.; Baker, James R., Jr.

    2008-07-01

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket.

  5. High HER2 protein levels correlate with increased survival in breast cancer patients treated with anti-HER2 therapy

    PubMed Central

    Aura, Claudia; Garrido-Castro, Ana; Vilaro, Marta; Peg, Vicente; Jimenez, José; Vicario, Rocio; Cecchi, Fabiola; Hoos, William; Burrows, Jon; Hembrough, Todd; Ferreres, Juan Carles; Perez-Garcia, José; Arribas, Joaquin; Cortes, Javier; Scaltriti, Maurizio

    2016-01-01

    Introduction Current methods to determine HER2 (human epidermal growth factor receptor 2) status are affected by reproducibility issues and do not reliably predict benefit from anti-HER2 therapy. Quantitative measurement of HER2 may more accurately identify breast cancer (BC) patients who will respond to anti-HER2 treatments. Methods Using selected reaction monitoring mass spectrometry (SRM-MS), we quantified HER2 protein levels in formalin-fixed, paraffin-embedded (FFPE) tissue samples that had been classified as HER2 0, 1+, 2+ or 3+ by immunohistochemistry (IHC). Receiver operator curve (ROC) analysis was conducted to obtain optimal HER2 protein expression thresholds predictive of HER2 status (by standard IHC or in situ hybridization [ISH]) and of survival benefit after anti-HER2 therapy. Results Absolute HER2 amol/μg levels were significantly correlated with both HER2 IHC and amplification status by ISH (p < 0.0001). A HER2 threshold of 740 amol/μg showed an agreement rate of 94% with IHC and ISH standard HER2 testing (p < 0.0001). Discordant cases (SRM-MS-negative/ISH-positive) showed a characteristic amplification pattern known as double minutes. HER2 levels >2200 amol/μg were significantly associated with longer disease-free survival (DFS) and overall survival (OS) in an adjuvant setting and with longer OS in a metastatic setting. Conclusion Quantitative HER2 measurement by SRM-MS is superior to IHC and ISH in predicting outcome after treatment with anti-HER2 therapy. PMID:26422389

  6. Inhibitor Response to HER2 G776(YVMA) In-frame Insertion in HER2-positive Breast Cancer.

    PubMed

    Zheng, Ya-Bing; Yu, Yang; Chen, Bo; Hu, Jin-Lin; Jing, Tian; Zhang, Xi-Ping

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2/neu or HER2) has long been recognized as an attractive therapeutic target for breast cancer. The YVMA in-frame insertion at the residue G776 (G776(YVMA)) of HER2 kinase domain is a frequently observed mutation that can largely shift drug sensitivity in targeted therapy of HER2-positive breast cancer. Here, the molecular mechanism and biological significance of tyrosine kinase inhibitor (TKI) response to HER2 G776(YVMA) insertion were investigated in detail. An established protocol that integrated bioinformatics modeling and kinase inhibition assay was employed to examine the structural basis, energetic property, and biological implication underlying the intermolecular interaction between HER2 kinase domain and three representative TKIs, i.e. two FDA-approved drugs lapatinib and gefitinib as well as a pan-kinase inhibitor staurosporine. It was found that the insertion mutation can moderately sensitize lapatinib, but cannot influence the inhibitory capability of staurosporine essentially, suggesting that the two inhibitors exhibit differentiated selectivity between the wild-type HER2 (HER2(WT)) and HER2 G776(YVMA) (HER2(YVMA)) variant. In addition, the gefitinib, which was originally developed as EGFR inhibitor, only possesses modest potency against its noncogate target HER2(WT), and the insertion can further impair the potency, causing a strong resistance for the agent to HER2(YVMA) variant.

  7. ATM kinase sustains HER2 tumorigenicity in breast cancer.

    PubMed

    Stagni, Venturina; Manni, Isabella; Oropallo, Veronica; Mottolese, Marcella; Di Benedetto, Anna; Piaggio, Giulia; Falcioni, Rita; Giaccari, Danilo; Di Carlo, Selene; Sperati, Francesca; Cencioni, Maria Teresa; Barilà, Daniela

    2015-04-16

    ATM kinase preserves genomic stability by acting as a tumour suppressor. However, its identification as a component of several signalling networks suggests a dualism for ATM in cancer. Here we report that ATM expression and activity promotes HER2-dependent tumorigenicity in vitro and in vivo. We reveal a correlation between ATM activation and the reduced time to recurrence in patients diagnosed with invasive HER2-positive breast cancer. Furthermore, we identify ATM as a novel modulator of HER2 protein stability that acts by promoting a complex of HER2 with the chaperone HSP90, therefore preventing HER2 ubiquitination and degradation. As a consequence, ATM sustains AKT activation downstream of HER2 and may modulate the response to therapeutic approaches, suggesting that the status of ATM activity may be informative for the treatment and prognosis of HER2-positive tumours. Our findings provide evidence for ATM's tumorigenic potential revising the canonical role of ATM as a pure tumour suppressor.

  8. HER2 as a target in invasive urothelial carcinoma.

    PubMed

    Bellmunt, Joaquim; Werner, Lillian; Bamias, Aristotle; Fay, André P; Park, Rachel S; Riester, Markus; Selvarajah, Shamini; Barletta, Justine A; Berman, David M; de Muga, Silvia; Salido, Marta; Gallardo, Enrique; Rojo, Federico; Guancial, Elizabeth A; Bambury, Richard; Mullane, Stephanie A; Choueiri, Toni K; Loda, Massimo; Stack, Edward; Rosenberg, Jonathan

    2015-06-01

    We evaluated primary tumors from two cohorts, Spain (N = 111) and Greece (N = 102), for patients who were treated with platinum-based chemotherapy. Patients were tested for HER2 status (IHC score of 3+ or FISH ratio of ≥ 2.2) by immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), DNA copy number, mRNA expression, and mutation status in patients with metastatic urothelial carcinoma (UC), and its impact on survival. ERBB2 mutation was determined by hotspot sequencing. mRNA expression was assessed using NanoString counting. Association of overall survival (OS) and HER2 status was assessed by a Cox regression model. NIH-3T3 cells containing HER2 V777L were assessed for growth, invasion, and HER2 kinase activation. In all, 22% of Spanish and 4% of Greek cohorts had 3+ HER2 staining by IHC. FISH amplification was identified in 20% of Spanish and 4% of Greek cohorts. Kappa coefficient between FISH and IHC was 0.47. HER2 status was not associated with OS in univariate (Spanish P = 0.34; Greek P = 0.11) or multivariate (Spanish P = 0.49; Greek P = 0.12) analysis. HER2-positive tumors expressed higher levels of HER2 mRNA than HER2-negative tumors (P < 0.001). HER2 mutations (V777L and L755S) were identified in two (2%) patients. In vitro analysis of V777L results in transformation of NIH-3T3 cells, leading to increased growth, invasion on soft agar, and HER2 kinase constitutive activation. In summary, HER2 overexpression or amplification in the primary tumor did not predict OS in patients with metastatic UC. HER2 positivity rates can differ between different populations. Further trials in genomically screened patients are needed to assess HER2-targeted therapies in UC.

  9. HER2 as a target in invasive urothelial carcinoma

    PubMed Central

    Bellmunt, Joaquim; Werner, Lillian; Bamias, Aristotle; Fay, André P; Park, Rachel S; Riester, Markus; Selvarajah, Shamini; Barletta, Justine A; Berman, David M; de Muga, Silvia; Salido, Marta; Gallardo, Enrique; Rojo, Federico; Guancial, Elizabeth A; Bambury, Richard; Mullane, Stephanie A; Choueiri, Toni K; Loda, Massimo; Stack, Edward; Rosenberg, Jonathan

    2015-01-01

    We evaluated primary tumors from two cohorts, Spain (N = 111) and Greece (N = 102), for patients who were treated with platinum-based chemotherapy. Patients were tested for HER2 status (IHC score of 3+ or FISH ratio of ≥2.2) by immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), DNA copy number, mRNA expression, and mutation status in patients with metastatic urothelial carcinoma (UC), and its impact on survival. ERBB2 mutation was determined by hotspot sequencing. mRNA expression was assessed using NanoString counting. Association of overall survival (OS) and HER2 status was assessed by a Cox regression model. NIH-3T3 cells containing HER2 V777L were assessed for growth, invasion, and HER2 kinase activation. In all, 22% of Spanish and 4% of Greek cohorts had 3+ HER2 staining by IHC. FISH amplification was identified in 20% of Spanish and 4% of Greek cohorts. Kappa coefficient between FISH and IHC was 0.47. HER2 status was not associated with OS in univariate (Spanish P = 0.34; Greek P = 0.11) or multivariate (Spanish P = 0.49; Greek P = 0.12) analysis. HER2-positive tumors expressed higher levels of HER2 mRNA than HER2-negative tumors (P < 0.001). HER2 mutations (V777L and L755S) were identified in two (2%) patients. In vitro analysis of V777L results in transformation of NIH-3T3 cells, leading to increased growth, invasion on soft agar, and HER2 kinase constitutive activation. In summary, HER2 overexpression or amplification in the primary tumor did not predict OS in patients with metastatic UC. HER2 positivity rates can differ between different populations. Further trials in genomically screened patients are needed to assess HER2-targeted therapies in UC. PMID:25720673

  10. Phosphoproteomic analysis of Her2/neu signaling and inhibition

    PubMed Central

    Bose, Ron; Molina, Henrik; Patterson, A. Scott; Bitok, John K.; Periaswamy, Balamurugan; Bader, Joel S.; Pandey, Akhilesh; Cole, Philip A.

    2006-01-01

    Her2/neu (Her2) is a tyrosine kinase belonging to the EGF receptor (EGFR)/ErbB family and is overexpressed in 20–30% of human breast cancers. We sought to characterize Her2 signal transduction pathways further by using MS-based quantitative proteomics. Stably transfected cell lines overexpressing Her2 or empty vector were generated, and the effect of an EGFR and Her2 selective tyrosine kinase inhibitor, PD168393, on these cells was characterized. Quantitative measurements were obtained on 462 proteins by using the SILAC (stable isotope labeling with amino acids in cell culture) method to monitor three conditions simultaneously. Of these proteins, 198 showed a significant increase in tyrosine phosphorylation in Her2-overexpressing cells, and 81 showed a significant decrease in phosphorylation. Treatment of Her2-overexpressing cells with PD168393 showed rapid reversibility of the majority of the Her2-triggered phosphorylation events. Phosphoproteins that were identified included many known Her2 signaling molecules as well as known EGFR signaling proteins that had not been previously linked to Her2, such as Stat1, Dok1, and δ-catenin. Importantly, several previously uncharacterized Her2 signaling proteins were identified, including Axl tyrosine kinase, the adaptor protein Fyb, and the calcium-binding protein Pdcd-6/Alg-2. We also identified a phosphorylation site in Her2, Y877, which is located in the activation loop of the kinase domain, is distinct from the known C-terminal tail autophosphorylation sites, and may have important implications for regulation of Her2 signaling. Network modeling, which combined phosphoproteomic results with literature-curated protein–protein interaction data, was used to suggest roles for some of the previously unidentified Her2 signaling proteins. PMID:16785428

  11. HER2 over-expressing high grade endometrial cancer expresses high levels of p95HER2 variant

    PubMed Central

    Growdon, Whitfield B.; Groeneweg, Jolijn; Byron, Virginia; DiGloria, Celeste; Borger, Darrell R.; Tambouret, Rosemary; Foster, Rosemary; Chenna, Ahmed; Sperinde, Jeff; Winslow, John; Rueda, Bo R.

    2015-01-01

    Background Subsets of high grade endometrial cancer (EnCa) over-express HER2 (ERBB2), yet clinical trials have failed to demonstrate any anti-tumor activity utilizing trastuzumab, an approved platform for HER2 positive breast cancer (BrCa). A truncated p95HER2 variant lacking the trastuzumab binding site may confer resistance. The objective of this investigation was to characterize the expression of the p95HER2 truncated variant in EnCa. Materials and Methods With institutional approval, 86 high grade EnCa tumors were identified with tumor specimens from surgeries performed between 2000-2011. Clinical data were collected and all specimens underwent tumor genotyping, HER2 immunohistochemistry (IHC, HercepTest®), HER2 fluorescent in situ hybridization (FISH), along with total HER2 (H2T) and p95HER2 assessment with VeraTag® testing. Regression models were used to compare a cohort of 86 breast tumors selected for equivalent HER2 protein expression. Results We identified 44 high grade endometrioid and 42 uterine serous carcinomas (USC). IHC identified high HER2 expression (2+ or 3+) in 59% of the tumors. HER2 gene amplification was observed in 16 tumors (12 USC, 4 endometrioid). Both HER2 gene amplification and protein expression correlated with H2T values. High p95HER2 expression above 2.8 RF/mm2 was observed in 53% (n = 54) with significant correlation with H2T levels. When matched to a cohort of 107 breast tumors based on HercepTest HER2 expression, high grade EnCa presented with higher p95 levels (p < 0.001). Conclusions: These data demonstrate that compared to BrCa, high grade EnCa expresses higher levels of p95HER2 possibly providing rationale for the trastuzumab resistance observed in EnCa. PMID:25602714

  12. Quantitative Analysis of HER2-mediated Effects on HER2 and Epidermal Growth Factor Receptor Endocytosis: DISTRIBUTION OF HOMO- AND HETERODIMERS DEPENDS ON RELATIVE HER2 LEVELS

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee ); Wiley, H Steven ); Lauffenburger, Douglas A.

    2003-05-15

    Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR) family. Many cell types express multiple EGFR family members (including EGFR, HER2, HER3 and/or HER4) that interact to form an array of homo- and hetero-dimers. Differential trafficking of these receptors should strongly affect signaling through this system by changing substrate access and heterodimerization efficiency. Because of the complexity of these dynamic processes we used a quantitative, computational model to understand this system. As a test case, parameters characterizing EGFR and HER2 interactions were derived using experimental data obtained from mammary epithelial cells constructed to express different levels of HER2. With this data we were able to estimate receptor-specific internalization rate constants and dimer uncoupling rate constants. These parameters were not otherwise experimentally accessible due to the complex system interplay. Our models indicated that HER2:EGFR heterodimers traffic as single entities. Direct experiments using EGF and anti-HER2 and anti-EGFR antibodies using independently derived cell lines confirmed many of the predictions of the model. Furthermore, our model could predict the relationship between HER2 expression levels and the transient distribution of EGFR homodimers and heterodimers. Our results suggest that the levels of HER2 found on normal cells are barely at the threshold necessary to drive efficient heterodimerization. Thus, altering local HER2 concentrations in membrane microdomains could serve as an effective mechanism for regulating HER2 heterodimerization and could explain why HER2 overexpression found in some cancers have such a profound effect on cell physiology.

  13. HER2-associated radiation resistance of breast cancer stem cells isolated from HER2-negative breast cancer cells

    PubMed Central

    Duru, Nadire; Fan, Ming; Candas, Demet; Menaa, Cheikh; Liu, Hsin-Chen; Nantajit, Danupon; Wen, Yunfei; Xiao, Kai; Eldridge, Angela; Chromy, Brett A.; Li, Shiyong; Spitz, Douglas R.; Lam, Kit S.; Wicha, Max S.; Li, Jian Jian

    2012-01-01

    Purpose To understand the role of HER2-associated signaling network in breast cancer stem cells (BCSCs); using radiation-resistant breast cancer cells and clinical recurrent breast cancers to evaluate HER2-targeted therapy as a tumor eliminating strategy for recurrent HER2−/low breast cancers. Experimental Design HER2-expressing BCSCs (HER2+/CD44+/CD24−/low) were isolated from radiation-treated breast cancer MCF7 cells and in vivo irradiated MCF7 xenograft tumors. Tumor aggressiveness and radiation resistance were analyzed by gap filling, Matrigel invasion, tumor-sphere formation, and clonogenic survival assays. The HER2/CD44 feature was analyzed in 40 primary and recurrent breast cancer specimens. Protein expression profiling in HER2+/CD44+/CD24−/low versus HER2−/CD44+/CD24−/low BCSCs was conducted with 2-D DIGE and HPLC-MS/MS analysis and HER2-mediated signaling network was generated by MetaCore™ program. Results Compared to HER2-negative BCSCs, HER2+/CD44+/CD24−/low cells showed elevated aldehyde dehydrogenase (ALDH) activity and aggressiveness tested by matrigel invasion, tumor sphere formation and in vivo tumorigenesis. The enhanced aggressive phenotype and radioresistance of the HER2+/CD44+/CD24−/low cells were markedly reduced by inhibition of HER2 via siRNA or Herceptin treatments. Clinical breast cancer specimens revealed that cells co-expressing HER2 and CD44 were more frequently detected in recurrent (84.6%) than primary tumors (57.1%). In addition, 2-D DIGE and HPLC-MS/MS of HER2+/CD44+/CD24−/low versus HER2−/CD44+/CD24−/low BCSCs reported a unique HER2-associated protein profile including effectors involved in tumor metastasis, apoptosis, mitochondrial function and DNA repair. A specific feature of HER2-STAT3 network was identified. Conclusion This study provides the evidence that HER2-mediated pro-survival signaling network is responsible for the aggressive phenotype of breast cancer stem cells that could be targeted to control

  14. Genetic heterogeneity in HER2 testing may influence therapy eligibility.

    PubMed

    Bernasconi, Barbara; Chiaravalli, Anna Maria; Finzi, Giovanna; Milani, Katia; Tibiletti, Maria Grazia

    2012-05-01

    Prospective studies have demonstrated that approximately 20% of HER2 testing may be inaccurate. When carefully validated testing is conducted, available data do not clearly demonstrate the superiority of either IHC or fluorescence in situ hybridization (FISH) as a predictor of benefit from anti-HER2 therapy. In addition, the interpretation of the findings of HER2 tests according to international guidelines is not uniform. The American Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP) recently published practice guidelines for a definition of HER2 amplification heterogeneity that can give rise to discrepant results between IHC and FISH assays for HER2. In this article, we compare the HER2 status of 291 non consecutive breast cancers. The status is determined by both IHC and FISH approaches, using a specific FISH strategy to investigate genetic heterogeneity. Our data demonstrate that HER2 amplified cells may be found as diffuse, clustered in a specific area or section, intermingled with non-amplified cells or confined to metastatic nodules. The correct evaluation of ratio value in the presence of genetic heterogeneity and of polysomy contributes to the accurate assessment of HER2 status and potentially affects the selection of appropriate anti-HER2 therapy. By taking into account the presence of different genetic cell populations, the immunotherapy eligibility criteria for HER2 FISH scoring proposed in the CAP (2009) and SIGU guidelines identify an additional subset of cases for trastuzumab or lapatinib therapy compared to the ASCO/CAP (2007) guidelines.

  15. HER2 aberrations in cancer: implications for therapy.

    PubMed

    Yan, Min; Parker, Barbara A; Schwab, Richard; Kurzrock, Razelle

    2014-07-01

    Although anti-HER2 (human epidermal growth factor receptor 2) therapy is currently approved for breast, gastric, and gastroesophageal cancers overexpressing the HER2 protein or amplified for the HER2 gene, HER2 aberrations (gene amplification, gene mutations, and protein overexpression) are reported in other diverse malignancies. Indeed, about 1-37% of tumors of the following types harbor HER2 aberrations: bladder, cervix, colon, endometrium, germ cell, glioblastoma, head and neck, liver, lung, ovarian, pancreas, and salivary duct. Four HER2-targeted therapies have been approved for HER2-positive breast cancer: two antibodies (trastuzumab and pertuzumab), an antibody-drug conjugate (ado-trastuzumab emtansine), and a small molecule kinase inhibitor (lapatinib). In addition, afatinib, a small molecule kinase inhibitor that causes irreversible inhibition of EGFR (epidermal growth factor receptor) and HER2, was recently approved for EGFR-mutated non-small cell lung cancer. A large number of novel HER2-targeted agents are also in clinical trials. Herein we discuss the state of the art in understanding and targeting HER2 across anatomic tumor types.

  16. The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells.

    PubMed

    Sahlberg, Kristine Kleivi; Hongisto, Vesa; Edgren, Henrik; Mäkelä, Rami; Hellström, Kirsi; Due, Eldri U; Moen Vollan, Hans Kristian; Sahlberg, Niko; Wolf, Maija; Børresen-Dale, Anne-Lise; Perälä, Merja; Kallioniemi, Olli

    2013-06-01

    About 20% of breast cancers are characterized by amplification and overexpression of the HER2 oncogene. Although significant progress has been achieved for treating such patients with HER2 inhibitor trastuzumab, more than half of the patients respond poorly or become resistant to the treatment. Since the HER2 amplicon at 17q12 contains multiple genes, we have systematically explored the role of the HER2 co-amplified genes in breast cancer cell growth and their relation to trastuzumab resistance. We integrated aCGH data of the HER2 amplicon from 71 HER2 positive breast tumors and 10 cell lines with systematic functional RNA interference analysis of 23 core amplicon genes with several phenotypic endpoints in a panel of trastuzumab responding and non-responding HER2 positive breast cancer cells. Silencing of HER2 caused a greater growth arrest and apoptosis in the responding compared to the non-responding cell lines, indicating that the resistant cells are inherently less dependent on the HER2 pathway. Several other genes in the amplicon also showed a more pronounced effect when silenced; indicating that expression of HER2 co-amplified genes may be needed to sustain the growth of breast cancer cells. Importantly, co-silencing of STARD3, GRB7, PSMD3 and PERLD1 together with HER2 led to an additive inhibition of cell viability as well as induced apoptosis. These studies indicate that breast cancer cells may become addicted to the amplification of several genes that reside in the HER2 amplicon. The simultaneous targeting of these genes may increase the efficacy of the anti-HER2 therapies and possibly also counteract trastuzumab resistance. The observed additive effects seem to culminate to both apoptosis and cell proliferation pathways indicating that these pathways may be interesting targets for combinatorial treatment of HER2+ breast cancers.

  17. Serum HER2 as a predictive biomarker for tissue HER2 status and prognosis in patients with gastric cancer

    PubMed Central

    Shi, Hong-Zhi; Wang, Yu-Ning; Huang, Xiao-Hui; Zhang, Ke-Cheng; Xi, Hong-Qing; Cui, Jian-Xin; Liu, Guo-Xiao; Liang, Wen-Tao; Wei, Bo; Chen, Lin

    2017-01-01

    AIM To investigate the association between serum human epidermal growth factor receptor 2 (HER2) extracellular domain (ECD) and tissue HER2 status, and the prognostic value of serum HER2 ECD in patients with gastric cancer. METHODS A total of 239 patients with gastric cancer were enrolled from December 2012 to June 2013. Serum HER2 ECD was determined by chemiluminescent assay, and tissue HER2 status was evaluated by immunohistochemistry and fluorescence in situ hybridization assay. A receiver operating characteristic (ROC) curve was plotted to identify the optimal cut-off value for serum HER2 ECD assay for predicting survival in gastric cancer patients. RESULTS Serum HER2 ECD was significantly correlated with tissue HER2 status (P < 0.001), tumor size (P < 0.001), and intestinal type of gastric cancer (P = 0.021). Serum HER2 ECD levels differed significantly between patients with HER2-positive tissue expression and those with HER2-negative tissue expression. ROC analysis yielded an area under the curve value of 0.79 (95%CI: 0.71-0.87, P < 0.001), with a sensitivity and specificity of 0.54 (95%CI: 0.37-0.70) and 0.93 (95%CI: 0.88-0.96), respectively. With a cut-off value of 24.75 ng/mL, high serum HER2 ECD had a negative impact on overall survival of the patients (HR: 1.93, 95%CI: 1.32-4.38, P = 0.006). CONCLUSION Serum HER2 ECD could be a highly specific surrogate biomarker for tissue HER2 status in gastric cancer. Optimal cut-off criteria for predicting survival should be established. PMID:28348489

  18. A HER2-specific Modified Fc Fragment (Fcab) Induces Antitumor Effects Through Degradation of HER2 and Apoptosis

    PubMed Central

    Leung, Kin-Mei; Batey, Sarah; Rowlands, Robert; Isaac, Samine J; Jones, Phil; Drewett, Victoria; Carvalho, Joana; Gaspar, Miguel; Weller, Sarah; Medcalf, Melanie; Wydro, Mateusz M; Pegram, Robert; Mudde, Geert C; Bauer, Anton; Moulder, Kevin; Woisetschläger, Max; Tuna, Mihriban; Haurum, John S; Sun, Haijun

    2015-01-01

    FS102 is a HER2-specific Fcab (Fc fragment with antigen binding), which binds HER2 with high affinity and recognizes an epitope that does not overlap with those of trastuzumab or pertuzumab. In tumor cells that express high levels of HER2, FS102 caused profound HER2 internalization and degradation leading to tumor cell apoptosis. The antitumor effect of FS102 in patient-derived xenografts (PDXs) correlated strongly with the HER2 amplification status of the tumors. Superior activity of FS102 over trastuzumab or the combination of trastuzumab and pertuzumab was observed in vitro and in vivo when the gene copy number of HER2 was equal to or exceeded 10 per cell based on quantitative polymerase chain reaction (qPCR). Thus, FS102 induced complete and sustained tumor regression in a significant proportion of HER2-high PDX tumor models. We hypothesize that the unique structure and/or epitope of FS102 enables the Fcab to internalize and degrade cell surface HER2 more efficiently than standard of care antibodies. In turn, increased depletion of HER2 commits the cells to apoptosis as a result of oncogene shock. FS102 has the potential of a biomarker-driven therapeutic that derives superior antitumor effects from a unique mechanism-of-action in tumor cells which are oncogenically addicted to the HER2 pathway due to overexpression. PMID:26234505

  19. A HER2-specific Modified Fc Fragment (Fcab) Induces Antitumor Effects Through Degradation of HER2 and Apoptosis.

    PubMed

    Leung, Kin-Mei; Batey, Sarah; Rowlands, Robert; Isaac, Samine J; Jones, Phil; Drewett, Victoria; Carvalho, Joana; Gaspar, Miguel; Weller, Sarah; Medcalf, Melanie; Wydro, Mateusz M; Pegram, Robert; Mudde, Geert C; Bauer, Anton; Moulder, Kevin; Woisetschläger, Max; Tuna, Mihriban; Haurum, John S; Sun, Haijun

    2015-11-01

    FS102 is a HER2-specific Fcab (Fc fragment with antigen binding), which binds HER2 with high affinity and recognizes an epitope that does not overlap with those of trastuzumab or pertuzumab. In tumor cells that express high levels of HER2, FS102 caused profound HER2 internalization and degradation leading to tumor cell apoptosis. The antitumor effect of FS102 in patient-derived xenografts (PDXs) correlated strongly with the HER2 amplification status of the tumors. Superior activity of FS102 over trastuzumab or the combination of trastuzumab and pertuzumab was observed in vitro and in vivo when the gene copy number of HER2 was equal to or exceeded 10 per cell based on quantitative polymerase chain reaction (qPCR). Thus, FS102 induced complete and sustained tumor regression in a significant proportion of HER2-high PDX tumor models. We hypothesize that the unique structure and/or epitope of FS102 enables the Fcab to internalize and degrade cell surface HER2 more efficiently than standard of care antibodies. In turn, increased depletion of HER2 commits the cells to apoptosis as a result of oncogene shock. FS102 has the potential of a biomarker-driven therapeutic that derives superior antitumor effects from a unique mechanism-of-action in tumor cells which are oncogenically addicted to the HER2 pathway due to overexpression.

  20. Gene Signal Distribution and HER2 Amplification in Gastroesophageal Cancer.

    PubMed

    Jørgensen, Jan Trøst; Nielsen, Karsten Bork; Kjærsgaard, Gitte; Jepsen, Anna; Mollerup, Jens

    2017-01-01

    Background: HER2 serves as an important therapeutic target in gastroesophageal cancer. Differences in HER2 gene signal distribution patterns can be observed at the tissue level, but how it influences the HER2 amplification status has not been studied so far. Here, we investigated the link between HER2 amplification and the different types of gene signal distribution. Methods: Tumor samples from 140 patients with gastroesophageal adenocarcinoma where analyzed using the HER2 IQFISH pharmDx™ assay. Specimens covered non-amplified and amplified cases with a preselected high proportion of HER2 amplified cases. Based on the HER2/CEN-17 ratio, specimens were categorized into amplified or non-amplified. The signal distribution patterns were divided into homogeneous, heterogeneous focal or heterogeneous mosaic. The study was conducted based on anonymized specimens with limited access to clinicopathological data. Results: Among the 140 analyzed specimens 83 had a heterogeneous HER2 signal distribution, with 62 being focal and 21 of the mosaic type. The remaining 57 specimens had a homogeneous signal distribution. HER2 amplification was observed in 63 of the 140 specimens, and nearly all (93.7%) were found among specimens with a heterogeneous focal signal distribution (p<0.0001). The mean HER2/CEN-17 ratio for the focal heterogeneous group was 8.75 (CI95%: 6.87 - 10.63), compared to 1.53 (CI95%: 1.45 - 1.61) and 1.70 (CI95%: 1.22 - 2.18) for the heterogeneous mosaic and homogeneous groups, respectively, (p<0.0001). Conclusions: A clear relationship between HER2 amplification and the focal heterogeneous signal distribution was demonstrated in tumor specimens from patients with gastroesophageal cancer. Furthermore, we raise the hypothesis that the signal distribution patterns observed with FISH might be related to different subpopulations of HER2 positive tumor cells.

  1. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function

    PubMed Central

    Garrett, Joan T.; Sutton, Cammie R.; Kuba, María Gabriela; Cook, Rebecca S .; Arteaga, Carlos L.

    2012-01-01

    Purpose Dual blockade of HER2 with trastuzumab with lapatinib or with pertuzumab is a superior treatment approach compared to single agent HER2 inhibitors. However, many HER2-overexpressing breast cancers still escape from this combinatorial approach. Inhibition of HER2 and downstream phosphatidylinositol-3 kinase (PI3K)/AKT causes a transcriptional and post-translational upregulation of HER3 which, in turn, counteracts the antitumor action of the HER2-directed therapies. We hypothesized that suppression of HER3 would synergize with dual blockade of HER2 in breast cancer cells sensitive and refractory to HER2 antagonists. Experimental Design Inhibition of HER2/HER3 in HER2+ breast cancer cell lines was evaluated by western blot. We analyzed drug-induced apoptosis and 2- and 3-dimensional growth in vitro. Growth inhibition of PI3K was examined in vivo in xenografts treated with combinations of trastuzumab, lapatinib, and the HER3 neutralizing monoclonal antibody U3-1287. Results Treatment with U3-1287 blocked the upregulation of total and phosphorylated HER3 that followed treatment with lapatinib and trastuzumab and, in turn, enhanced the anti-tumor action of the combination against trastuzumab-sensitive and -resistant cells. Mice bearing HER2+ xenografts treated with lapatinib, trastuzumab, and U3-1287 exhibited fewer recurrences and better survival compared to mice treated with lapatinib and trastuzumab. Conclusions Dual blockade of HER2 with trastuzumab and lapatinib does not eliminate the compensatory upregulation of HER3. Therapeutic inhibitors of HER3 should be considered as part of multi-drug combinations aimed at completely and rapidly disabling the HER2 network in HER2-overexpressing breast cancers. PMID:23224399

  2. Assay for isolation of inhibitors of her2-kinase expression.

    PubMed

    Chiosis, Gabriela; Keeton, Adam B

    2009-01-01

    Her2 (ErbB2) protein is overexpressed in breast and other solid tumors, and its expression is associated with progressive disease. Current therapies directed toward Her2 either block dimerization of the receptor or inhibit tyrosine kinase activity to disrupt intracellular signaling. However, little is known about alternative mechanisms for suppressing Her2 expression, possibly by inducing degradation or blocking synthesis. Here, we describe a hybrid western-blotting and enzyme-linked immunosorbent assay (ELISA) designed to identify in low- to medium-throughput format noncytotoxic compounds that reduce expression of Her2 protein.

  3. HER2-Positive Circulating Tumor Cells in Breast Cancer

    PubMed Central

    Ignatiadis, Michail; Rothé, Françoise; Chaboteaux, Carole; Durbecq, Virginie; Rouas, Ghizlane; Criscitiello, Carmen; Metallo, Jessica; Kheddoumi, Naima; Singhal, Sandeep K.; Michiels, Stefan; Veys, Isabelle; Rossari, José; Larsimont, Denis; Carly, Birgit; Pestrin, Marta; Bessi, Silvia; Buxant, Frédéric; Liebens, Fabienne; Piccart, Martine; Sotiriou, Christos

    2011-01-01

    Purpose Circulating Tumor Cells (CTCs) detection and phenotyping are currently evaluated in Breast Cancer (BC). Tumor cell dissemination has been suggested to occur early in BC progression. To interrogate dissemination in BC, we studied CTCs and HER2 expression on CTCs across the spectrum of BC staging. Methods Spiking experiments with 6 BC cell lines were performed and blood samples from healthy women and women with BC were analyzed for HER2-positive CTCs using the CellSearch®. Results Based on BC cell lines experiments, HER2-positive CTCs were defined as CTCs with HER2 immunofluoresence intensity that was at least 2.5 times higher than the background. No HER2-positive CTC was detected in 42 women without BC (95% confidence interval (CI) 0–8.4%) whereas 4.1% (95%CI 1.4–11.4%) of 73 patients with ductal/lobular carcinoma in situ (DCIS/LCIS) had 1 HER2-positive CTC/22.5 mL, 7.9%, (95%CI 4.1–14.9%) of 101 women with non metastatic (M0) BC had ≥1 HER2-positive CTC/22.5 mL (median 1 cell, range 1–3 cells) and 35.9% (95%CI 22.7–51.9%) of 39 patients with metastatic BC had ≥1 HER2-positive CTC/7.5 mL (median 1.5 cells, range 1–42 cells). In CTC-positive women with DCIS/LCIS or M0 BC, HER2-positive CTCs were more commonly detected in HER2-positive (5 of 5 women) than HER2-negative BC (5 of 12 women) (p = 0.03). Conclusion HER2-positive CTCs were detected in DCIS/LCIS or M0 BC irrespective of the primary tumor HER2 status. Nevertheless, their presence was more common in women with HER2-positive disease. Monitoring of HER2 expression on CTCs might be useful in trials with anti-HER2 therapies. PMID:21264346

  4. HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2(+) Breast Cancer.

    PubMed

    Xu, Xiaowei; De Angelis, Carmine; Burke, Kathleen A; Nardone, Agostina; Hu, Huizhong; Qin, Lanfang; Veeraraghavan, Jamunarani; Sethunath, Vidyalakshmi; Heiser, Laura M; Wang, Nicholas; Ng, Charlotte K Y; Chen, Edward S; Renwick, Alexander; Wang, Tao; Nanda, Sarmistha; Shea, Martin; Mitchell, Tamika; Rajendran, Mahitha; Waters, Ian; Zabransky, Daniel J; Scott, Kenneth L; Gutierrez, Carolina; Nagi, Chandandeep; Geyer, Felipe C; Chamness, Gary C; Park, Ben H; Shaw, Chad A; Hilsenbeck, Susan G; Rimawi, Mothaffar F; Gray, Joe W; Weigelt, Britta; Reis-Filho, Jorge S; Osborne, C Kent; Schiff, Rachel

    2017-09-01

    Purpose: Resistance to anti-HER2 therapies in HER2(+) breast cancer can occur through activation of alternative survival pathways or reactivation of the HER signaling network. Here we employed BT474 parental and treatment-resistant cell line models to investigate a mechanism by which HER2(+) breast cancer can reactivate the HER network under potent HER2-targeted therapies.Experimental Design: Resistant derivatives to lapatinib (L), trastuzumab (T), or the combination (LR/TR/LTR) were developed independently from two independent estrogen receptor ER(+)/HER2(+) BT474 cell lines (AZ/ATCC). Two derivatives resistant to the lapatinib-containing regimens (BT474/AZ-LR and BT474/ATCC-LTR lines) that showed HER2 reactivation at the time of resistance were subjected to massive parallel sequencing and compared with parental lines. Ectopic expression and mutant-specific siRNA interference were applied to analyze the mutation functionally. In vitro and in vivo experiments were performed to test alternative therapies for mutant HER2 inhibition.Results: Genomic analyses revealed that the HER2L755S mutation was the only common somatic mutation gained in the BT474/AZ-LR and BT474/ATCC-LTR lines. Ectopic expression of HER2L755S induced acquired lapatinib resistance in the BT474/AZ, SK-BR-3, and AU565 parental cell lines. HER2L755S-specific siRNA knockdown reversed the resistance in BT474/AZ-LR and BT474/ATCC-LTR lines. The HER1/2-irreversible inhibitors afatinib and neratinib substantially inhibited both resistant cell growth and the HER2 and downstream AKT/MAPK signaling driven by HER2L755S in vitro and in vivoConclusions: HER2 reactivation through acquisition of the HER2L755S mutation was identified as a mechanism of acquired resistance to lapatinib-containing HER2-targeted therapy in preclinical HER2-amplified breast cancer models, which can be overcome by irreversible HER1/2 inhibitors. Clin Cancer Res; 23(17); 5123-34. ©2017 AACR. ©2017 American Association for Cancer

  5. Super resolution imaging of HER2 gene amplification

    NASA Astrophysics Data System (ADS)

    Okada, Masaya; Kubo, Takuya; Masumoto, Kanako; Iwanaga, Shigeki

    2016-02-01

    HER2 positive breast cancer is currently examined by counting HER2 genes using fluorescence in situ hybridization (FISH)-stained breast carcinoma samples. In this research, two-dimensional super resolution fluorescence microscopy based on stochastic optical reconstruction microscopy (STORM), with a spatial resolution of approximately 20 nm in the lateral direction, was used to more precisely distinguish and count HER2 genes in a FISH-stained tissue section. Furthermore, by introducing double-helix point spread function (DH-PSF), an optical phase modulation technique, to super resolution microscopy, three-dimensional images were obtained of HER2 in a breast carcinoma sample approximately 4 μm thick.

  6. In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection.

    PubMed

    Niazi, Javed H; Verma, Sandeep K; Niazi, Sarfaraj; Qureshi, Anjum

    2015-01-07

    A new in vitro assay was developed to detect human epidermal growth factor receptor 2 (HER2) protein, based on affinity dissociation of carbon nanotube (CNT)-wrapped anti-HER2 ssDNA aptamers. First, we selected an anti-HER2 ssDNA aptamer (H2) using an in vitro serial evolution of ligands by an exponential enrichment (SELEX) process. Then the fluorescently labelled H2 ssDNAs were tightly packed on CNTs that had previously been coupled with magnetic microbeads (MBs), forming MB-CNT-H2 hybrids. The loading capacity of these MB-CNTs heterostructures (2.8 × 10(8)) was determined to be 0.025 to 3.125 μM of H2. HER2 protein-induced H2 dissociation occurred from MB-CNT-H2 hybrids, which was specifically induced by the target HER2 protein, with a dissociation constant (Kd) of 270 nM. The stoichiometric affinity dissociation ratio with respect to H2-to-HER2 protein was shown to be approximately 1 : 1. Our results demonstrated that the developed assay can be an effective approach in detecting native forms of disease biomarkers in free solutions or in biological samples, for accurate diagnosis.

  7. Therapeutic implication of HER2 in advanced biliary tract cancer

    PubMed Central

    Cha, Yongjun; Ha, Hyerim; Park, Ji Eun; Bang, Ju-Hee; Jin, Mei Hua; Lee, Kyung-Hun; Kim, Tae-Yong; Han, Sae-Won; Im, Seock-Ah; Kim, Tae-You; Oh, Do-Youn; Bang, Yung-Jue

    2016-01-01

    Currently, there is no validated therapeutic target for biliary tract cancer (BTC). This study aimed to investigate the pre-clinical and clinical implication of HER2 as a therapeutic target in BTC. We established two novel HER2-amplified BTC cell lines, SNU-2670 and SNU-2773, from gallbladder cancer patients. SNU-2670 and SNU-2773 cells were sensitive to trastuzumab, dacomitinib, and afatinib compared with nine HER2-negative BTC cell lines. Dacomitinib and afatinib led to G1 cell cycle arrest in SNU-2773 cells and apoptosis in SNU-2670 cells. Furthermore, dacomitinib, afatinib, and trastuzumab showed synergistic cytotoxicity when combined with some cytotoxic drugs including gemcitabine, cisplatin, paclitaxel, and 5-fluorouracil. In a SNU-2670 mouse xenograft model, trastuzumab demonstrated a good anti-tumor effect as a monotherapy and in combination with gemcitabine increasing apoptosis. In our clinical data, 13.0% of patients with advanced BTC were defined as HER2-positive. Of these, three patients completed HER2-targeted chemotherapy. Two of them demonstrated a partial response, and the other one showed stable disease for 18 weeks. In summary, these pre-clinical and clinical data suggest that HER2 could be a therapeutic target, and that a HER2-targeting strategy should be developed further in patients with HER2-positive advanced BTC. PMID:27517322

  8. Neoadjuvant and Adjuvant Therapy for HER2 Positive Disease.

    PubMed

    Chia, Stephen K

    2015-01-01

    Since the initial description of the HER2 proto-oncogene as a poor prognostic factor in breast cancer in 1987, to the first randomized trial of a monoclonal antibody directed against HER2 in combination with chemotherapy for the treatment of metastatic HER2-positive breast cancer published in 2001, to the American Society of Clinical Oncology (ASCO) 2005 Annual Meeting in which we saw the unprecedented collective presentations demonstrating the dramatic benefit of trastuzumab in the adjuvant setting-the clinical landscape of HER2-overexpressing breast cancer has forever changed. More recently, there has been increasing use of preoperative chemotherapy and anti-HER2 targeted therapies in primary operable HER2 disease in the research domain and in clinical practice. In the next few years, we will see if dual adjuvant anti-HER2 antibody inhibition produces clinically significant improvements in outcome; understand if there is a role of small molecule inhibitors of the HER family of receptors either in combination or sequential to trastuzumab; further refine the relationship between pathologic complete response (pCR) and long-term clinical outcomes; and find predictive biomarkers to identify cohorts of patients that may need differential combinations and/or durations of anti-HER2 therapies.

  9. Targeting HER2 Positive Breast Cancer with Chemopreventive Agents

    PubMed Central

    Wahler, Joseph; Suh, Nanjoo

    2015-01-01

    Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is a subtype of breast cancer that is exhibited in approximately 20-30% of breast cancer cases. The overexpression of HER2 is typically associated with a more aggressive disease and poor prognosis. Currently, the therapeutic drugs trastuzumab and lapatinib are the most commonly used to combat HER2+ breast cancer. However, tumors can develop resistance to these drugs. A better understanding of the mechanism of how HER2+ breast cancer works will help aid the development for new therapeutic approaches which more closely target the source of the signaling dysfunction. This review summarizes four major points in the context of HER2 over-expressing breast cancer (i) HER2 as a molecular target in breast cancer therapy, (ii) current treatment options as well as ongoing clinical studies, (iii) animal and cellular models for the study of HER2 over-expressing breast cancer, and (iv) future therapies and chemopreventive agents used to target HER2+ breast cancer. PMID:26442201

  10. HER2-positive metastatic breast cancer: a changing scenario.

    PubMed

    Mustacchi, G; Biganzoli, L; Pronzato, P; Montemurro, F; Dambrosio, M; Minelli, M; Molteni, L; Scaltriti, L

    2015-07-01

    Adjuvant trastuzumab (AT) dramatically improved HER2-positive breast cancer prognosis. Relapsed disease after AT has different patterns and information is available from observational studies. In this Review Chemotherapy regimens combined to anti-HER2 blockade are discussed, focusing in particular the role of anthracyclines, taxanes and capecitabine. The use of trastuzumab beyond progression and the role of other anti-HER2 agents like lapatinib, pertuzumab and T-DM1 are explored, as also dual blockade and in trastuzumab resistant Patients. Metastatic "de novo" HER2 Luminal (co-expression of HER2 and hormone receptors) Patients are eligible for anastrozole and trastuzumab but if pretreated with trastuzumab they are also eligible for lapatinib and letrozole. In any case endocrine treatment plays a complementary role to chemotherapy which remains pivotal. The last topic explored is treatment options for patients with brain metastases where both trastuzumab given concurrent with radiotherapy or lapatinib and capecitabine appear as potentially active.

  11. Mycoplasmal lipoprotein p37 binds human protein HER2.

    PubMed

    Wu, Jun; Wu, Lijuan; Fang, Cheng; Nie, Rong; Wang, Jiamou; Wang, Xuan; Liu, Wenbin

    2016-11-01

    Mycoplasmas are a group of microbes that can cause human diseases. The mycoplasmal lipoprotein p37 promotes cancer metastasis, at least in part, by interacting with EGFR. In this study, we show that the p37 lipoprotein binds another member of the EGFR family, HER2, through the HER2 extracellular domain. The binding of p37-HER2 promotes phosphorylation of HER2 and activates the downstream signaling molecule Erk1/2. Because the HER2 signaling pathway contributes to breast tumor metastasis, our results imply that the mycoplasmal lipoprotein p37 may also be involved in breast cancer metastasis. This study contributes to our understanding of mycoplasmal lipoprotein p37 function and its potential involvement in tumorigenesis. Copyright © 2016. Published by Elsevier GmbH.

  12. Tumor targeting using anti-her2 immunoliposomes.

    PubMed

    Park, J W; Kirpotin, D B; Hong, K; Shalaby, R; Shao, Y; Nielsen, U B; Marks, J D; Papahadjopoulos, D; Benz, C C

    2001-07-06

    We have generated anti-HER2 (ErbB2) immunoliposomes (ILs), consisting of long circulating liposomes linked to anti-HER2 monoclonal antibody (MAb) fragments, to provide targeted drug delivery to HER2-overexpressing cells. Immunoliposomes were constructed using a modular strategy in which components were optimized for internalization and intracellular drug delivery. Parameters included choice of antibody construct, antibody density, antibody conjugation procedure, and choice of liposome construct. Anti-HER2 immunoliposomes bound efficiently to and internalized in HER2-overexpressing cells in vitro as determined by fluorescence microscopy, electron microscopy, and quantitative analysis of fluorescent probe delivery. Delivery via ILs in HER2-overexpressing cells yielded drug uptake that was up to 700-fold greater than with non-targeted sterically stabilized liposomes. In vivo, anti-HER2 ILs showed extremely long circulation as stable constructs in normal adult rats after a single i.v. dose, with pharmacokinetics that were indistinguishable from sterically stabilized liposomes. Repeat administrations revealed no increase in clearance, further confirming that ILs retain the long circulation and non-immunogenicity of sterically stabilized liposomes. In five different HER2-overexpressing xenograft models, anti-HER2 ILs loaded with doxorubicin (dox) showed potent anticancer activity, including tumor inhibition, regressions, and cures (pathologic complete responses). ILs were significantly superior vs. all other treatment conditions tested: free dox, liposomal dox, free MAb (trastuzumab), and combinations of dox+MAb or liposomal dox+MAb. For example, ILs produced significantly superior antitumor effects vs. non-targeted liposomes (P values from <0.0001 to 0.04 in eight separate experiments). In a non-HER2-overexpressing xenograft model (MCF7), ILs and non-targeted liposomal dox produced equivalent antitumor effects. Detailed studies of tumor localization indicated a novel

  13. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors

    PubMed Central

    Garrett, Joan T

    2011-01-01

    The antibody trastuzumab and the tyrosine kinase inhibitor lapatinib are approved by the FDA for the treatment of HER2-overexpressing breast cancer. These anti-HER2 drugs are changing the natural history of HER2-overexpressing breast cancer. However, therapeutic resistance to trastuzumab or lapatinib, as either single-agents or in combination with chemotherapy in the metastatic setting, typically occurs within months of starting therapy. Several mechanisms of trastuzumab-resistance have been reported that include signaling from other HER receptors, signaling from receptor tyrosine kinases (RTKs) outside of the HER (ErbB) family, increased phosphatidylinositol-3-kinase signaling, and the presence of truncated forms of HER2. Mechanisms of resistance to lapatinib also point to increased phosphatidylinositol 3-kinase signaling as well as derepression/activation of compensatory survival pathways. In this review, we discuss how these models and mechanisms enhance our understanding of the clinical resistance to HER2-directed therapies. PMID:21307659

  14. Lin28 promotes Her2 expression and Lin28/Her2 predicts poorer survival in gastric cancer.

    PubMed

    Wang, Qinchuan; Zhou, Jichun; Guo, Jufeng; Teng, Rongyue; Shen, Jianguo; Huang, Yasheng; Xie, Shuduo; Wei, Qun; Zhao, Wenhe; Chen, Wenjun; Yuan, Xiaoming; Chen, Yongxia; Wang, Linbo

    2014-11-01

    The main purpose of this study is to investigate the interactions between Lin28 and Her2 in gastric cancer. Lin28 and Her2 expression were evaluated in surgically resected samples of 298 gastric cancer patients using immunohistochemical staining. The correlations between Lin28/Her2 expression and clinical variables were retrospectively analyzed. The mRNA level of LIN28 and HER2 was detected by reverse-transcriptase polymerase chain reaction. Among all gastric cancer patients, 33.9% (101/298) were determined as Her2-positive, and 43.0% (128/298) were defined as Lin28-positive. Lin28 was significantly associated with Her2, advanced tumor stage, lesion size, and Ki67 level (p<0.05 for each). Kaplan-Meier analysis illustrated that both Lin28 and Her2 are poor prognostic factors in gastric cancer; Lin28(+)/Her2(+) patients have the poorest survival (median survival = 17 months, p<0.01). Multivariate Cox analysis showed that Lin28 is a significant prognostic factor (hazard ratio (HR) = 1.79, 95% confidence interval (CI) 1.23-2.62). Further stratification analysis indicated that Lin28 may be a prognostic factor in chemotherapy. In vitro data on MKN-28 and MKN-45 cells showed that Lin28 can upregulate Her2 expression at translational level. Both Lin28 and Her2 are poor prognostic factors in gastric cancer. Lin28 may regulate Her2 post-transcriptionally in gastric cancer cells, which indicates it might be a potential target in the treatment of gastric cancer.

  15. A bifunctional targeted peptide that blocks HER-2 tyrosine kinase and disables mitochondrial function in HER-2-positive carcinoma cells.

    PubMed

    Fantin, Valeria R; Berardi, Marcelo J; Babbe, Holger; Michelman, Montserrat V; Manning, Charlene M; Leder, Philip

    2005-08-01

    The HER-2 oncoprotein is commonly overexpressed in a variety of human malignancies and has become an attractive antitumor target. A number of strategies to inhibit the HER-2 receptor tyrosine kinase are currently the focus of intensive preclinical and clinical research. In the present study, we have engineered a bifunctional peptide, BHAP, which consists of two modular domains: a HER-2-targeting/neutralizing domain and a mitochondriotoxic, proapoptotic domain. The chimeric peptide is biologically active and capable of selectively triggering apoptosis of HER-2-overexpressing cancer cells in culture, even those previously described as Herceptin resistant. Furthermore, BHAP slows down growth of HER-2-overexpressing human mammary xenografts established in SCID mice. This approach can be extended to the development of tailored targeted chimeric peptides against a number of overexpressed cellular receptors implicated in the development and progression of cancer.

  16. Current neoadjuvant treatment options for HER2-positive breast cancer

    PubMed Central

    Abdel-Razeq, Hikmat; Marei, Lina

    2011-01-01

    Approximately one quarter of patients with breast cancer demonstrate amplification of the human epidermal receptor type 2 (HER2) gene, the expression of which is associated with a relatively poor prognosis independent of other clinical and pathologic variables. Trastuzumab, a humanized recombinant monoclonal antibody specifically directed against the HER2 receptor, has been shown to be biologically active and of considerable clinical utility in HER2-positive breast cancer patients. Neoadjuvant chemotherapy has been used in breast cancer to downstage the tumor and increase the opportunity for breast-conserving surgery. Preoperative chemotherapy can also serve as an in vivo testing of chemotherapy sensitivity. Additionally, a pathologic complete response is usually a surrogate marker of disease-free survival. Following the successful use of trastuzumab in the metastatic and adjuvant settings, many clinical trials have recently reported the successful use of anti-HER2 therapy in combination with different chemotherapy regimens in the neoadjuvant setting with a significantly higher pathologic complete response. With the recent introduction of new anti-HER2 drugs, interest has shifted toward dual HER2 blockade. Two such studies were recently reported, both showing a significant advantage of dual anti-HER2 therapy using lapatinib or pertuzumab in addition to trastuzumab and chemotherapy. However, several key questions need to be investigated further, such as the preferred combination chemotherapy and the optimal duration of trastuzumab in patients who achieve a pathologic complete response following preoperative chemotherapy with trastuzumab. These issues and others are discussed in this review. PMID:21847344

  17. Anti-HER2 cancer therapy and cardiotoxicity.

    PubMed

    Babar, Tania; Blomberg, Christopher; Hoffner, Eileen; Yan, Xinhua

    2014-01-01

    A significant milestone in the treatment of breast cancer is the identification of the HER2 receptor as a drug target for cancer therapies. Trastuzumab (Herceptin), a monoclonal antibody that blocks the HER2 receptor, is among the first of such drugs approved by the US Food and Drug Administration for targeted cancer therapy. Clinical studies have shown that Trastuzumab significantly improves the overall survival of breast cancer patients. However, an unforeseen significant side-effect of cardiotoxicity manifested as left ventricular dysfunction and heart failure. Concurrent studies have demonstrated the essential role of the HER2 receptor in cardiac development and maintaining the physiological function of an adult heart. The HER2 receptor, therefore, has become a critical link between the oncology and cardiology fields. In addition to Trastuzumab, new drugs targeting the HER2 receptor, such as Lapatinib, Pertuzumab and Afatinib, are either approved or being evaluated in clinical trials for cancer therapy. With the concern of cardiotoxicity caused by HER2 inhibition, it becomes clear that new therapeutic strategies for preventing such cardiac side effects need to be developed. It is the intent of this paper to review the potential cardiac impact of anti-HER2 cancer therapy.

  18. Clinical significance of Her2/neu overexpression in urothelial carcinomas.

    PubMed

    Alexa, Aurora; Baderca, Flavia; Zăhoi, Delia Elena; Lighezan, Rodica; Izvernariu, D; Raica, M

    2010-01-01

    HER2/neu is a defective transmembrane tyrosine kinase receptor, homologue to the epidermal growth factor receptor, showing overexpression in a large variety of tumor cells. There are no studies published so far regarding HER2/neu overexpression and sensitivity of the urothelial tumors of the urinary bladder to anti-HER2/neu therapy. There are a relatively high number of articles in the literature referring to HER2/neu expression in urothelial tumors of the urinary bladder, but only two of them had investigated HER2/neu expression in patients with urothelial tumors of the upper urinary tract. We have studied HER2/neu overexpression in 59 patients with urothelial carcinomas of the urinary tract by immunohistochemistry. Normal urothelium and the elements of the neighboring renal parenchyma were negative. Out of the 59 cases of urothelial carcinomas, 38 were negative (0 and +1) and 21 were positive: eight were moderately and 13 were intensely positive (+2 and +3). The percentage of positive cases was 35.59%. The negative cases were mostly well-differentiated, G1 tumors, no matter the T-tumor stage. Most of the cases were diagnosed as papillary or, rarely, infiltrative. There is no correlation between HER2/neu overexpression and the tumor stage. The same was true for the lymph node status. The expression intensity, however, was significantly correlated with the differentiation grade. Overexpression was most likely present in tumors with high differentiation grade (p<0.05).

  19. HER2/ERBB2 immunoreactivity in human retinoblastoma.

    PubMed

    Seigel, G M; Sharma, S; Hackam, A S; Shah, Dhaval K

    2016-05-01

    Retinoblastoma (RB) is an ocular malignancy of early childhood. Although mutations in the Rb1 gene and expression of stem cell markers have been identified in RB, additional information on RB-specific alterations in signaling pathways and protein expression would be useful for the design of targeted RB therapies. Here we have evaluated the expression of HER2 (ERBB2) in RB. HER2 is a member of the epidermal growth factor family, which is overexpressed in breast, ovarian, gastric, colorectal, pancreatic, and endometrial cancers in a stratified manner. Overexpression and gene amplification of HER2 is associated with aggressive malignancies, accompanied by chemoresistance and poor outcomes. In this study, we present the first evidence of HER2 immunoreactivity in retinoblastoma, as shown by immunocytochemistry, flow cytometry, and western immunoblot, with validation by reverse transcription PCR (RT-PCR) in both RB cell lines and clinical RB tumors. Our results suggest that the HER2 protein expressed in RB is a truncated version that spares the trastuzumab binding site, while HER2 is not detected in normal ocular tissues. Our discovery of HER2 expression in RB may lead to innovative and targeted drug treatment options designed to spare the eye and preserve vision in RB patients.

  20. HER-2 Positive Breast Cancer - a Mini-Review.

    PubMed

    Asif, Hafiz Muhammad; Sultana, Sabira; Ahmed, Saeed; Akhtar, Naheed; Tariq, Muhammad

    2016-01-01

    Breast cancer is one of among all cancers with increased incidence, high mortality rate, and high economic and social costs. The the most common type of cancer among females worldwide, breast cancer is actually the uncontrolled proliferation of cells which attain malignancy. Recently it has shown that breast cancer contributes 11% among all types of cancer diagnosed globally on an annual basis and it is one of the leading causes of death among women. The human epidermal growth factor receptor 2 (HER-2) is a receptor tyrosine-protein kinase erbB-2 normally involved in the proliferation and division of breast cells. In some abnormal cases the HER2 gene does not work correctly and makes too many copies of itself. HER2-positive (HER2+) breast cancers constitute an aggressive type of breast cancer and tend to grow faster and are more likely to spread. However, therapies that specifically target HER2, such as Herceptin® (traztuzumab), are very effective. HER2 targeted therapies, has significantly improved the therapeutic outcome for patients with HER2 positive breast cancer.

  1. Histopathologic characteristics predicting HER-2/neu amplification in breast cancer.

    PubMed

    Prati, Raquel; Apple, Sophia K; He, Jianbo; Gornbein, Jeffrey A; Chang, Helena R

    2005-01-01

    The HER-2/neu gene is a proto-oncogene that is amplified in 10-30% of breast cancers. New drugs for targeted therapy, such as Herceptin, are effective for patients with HER-2/neu-positive tumors, making it necessary to have a noncostly and accurate method to assess HER-2/neu status. We studied the correlation of findings made by fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC) staining and the possibility of combining IHC and other clinicopathologic characteristics of breast tumors to predict FISH-determined HER-2/neu status. The clinicopathologic characteristics analyzed were the size of the tumor, p53, lymph-vascular invasion, estrogen/progesterone receptors (ER/PR), tumor grade, axillary lymph node status, and patient age. A total of 199 cases of invasive breast cancer studied at the UCLA Pathology Laboratory during 2003 were included in this study. Tumors with IHC 0, 1+, 2+, and 3+ scores were found to be FISH positive in 3.5%, 6.4%, 25.7%, and 81.5% of the respective groups. Our study showed a strong association between the FISH-negative and IHC scored 0 and 1+ tumors, suggesting that the FISH test may not be necessary in these cases (p<0.0001). Although the concordance between IHC 3+ and FISH positive is high, 18% of the patients with overexpression of HER-2/neu fail to show gene amplification by FISH. HER-2/neu positivity was found to be proportionally associated with increasing grade in infiltrating ductal carcinoma (p<0.0001). p53-positive tumors are more likely to be HER-2/neu amplified (p=0.0003). Tumors that are negative for ER/PR are also associated with HER-2/neu positivity by FISH (31.15%, p=0.0016). FISH-determined HER-2/neu status is not associated with histologic type, tumor size, nodal status, lymph-vascular invasion, or patient age.

  2. Mechanisms of lapatinib resistance in HER2-driven breast cancer.

    PubMed

    D'Amato, Valentina; Raimondo, Lucia; Formisano, Luigi; Giuliano, Mario; De Placido, Sabino; Rosa, Roberta; Bianco, Roberto

    2015-12-01

    Targeted therapies have been approved for various malignancies but the acquisition of resistance remains a substantial challenge in the clinical management of advanced cancers. Twenty-five per cent of breast cancers overexpress ErbB2/HER2, which confers a more aggressive phenotype and is associated with a poor prognosis. HER2-targeting therapies (trastuzumab, pertuzumab, TDM1 and lapatinib) are available, but a significant fraction of HER2-positive breast cancers eventually relapse or progress. This suggests that acquired or intrinsic resistance enables escape from HER2 inhibition. This review focuses on mechanisms of intrinsic/acquired resistance to lapatinib identified in preclinical and clinical studies. A better understanding of these mechanisms could lead to novel predictive markers of lapatinib response and to novel therapeutic strategies for breast cancer patients.

  3. Trastuzumab Emtansine for HER2-Positive Breast Cancer

    Cancer.gov

    An NCI Cancer Currents blog on results from the TH3RESA and EMILIA clinical trials showing trastuzumab emtansine (T-DM1) improved overall survival in patients with previously treated metastatic HER2-positive breast cancer.

  4. HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2.

    PubMed

    Hanker, Ariella B; Garrett, Joan T; Estrada, Mónica Valeria; Moore, Preston D; Ericsson, Paula González; Koch, James P; Langley, Emma; Singh, Sharat; Kim, Phillip S; Frampton, Garrett M; Sanford, Eric; Owens, Philip; Becker, Jennifer; Groseclose, M Reid; Castellino, Stephen; Joensuu, Heikki; Huober, Jens; Brase, Jan C; Majjaj, Samira; Brohée, Sylvain; Venet, David; Brown, David; Baselga, José; Piccart, Martine; Sotiriou, Christos; Arteaga, Carlos L

    2017-08-01

    Purpose: Dual blockade of HER2 with trastuzumab and lapatinib or pertuzumab has been shown to be superior to single-agent trastuzumab. However, a significant fraction of HER2-overexpressing (HER2(+)) breast cancers escape from these drug combinations. In this study, we sought to discover the mechanisms of acquired resistance to the combination of lapatinib + trastuzumab.Experimental Design: HER2(+) BT474 xenografts were treated with lapatinib + trastuzumab long-term until resistance developed. Potential mechanisms of acquired resistance were evaluated in lapatinib + trastuzumab-resistant (LTR) tumors by targeted capture next-generation sequencing. In vitro experiments were performed to corroborate these findings, and a novel drug combination was tested against LTR xenografts. Gene expression and copy-number analyses were performed to corroborate our findings in clinical samples.Results: LTR tumors exhibited an increase in FGF3/4/19 copy number, together with an increase in FGFR phosphorylation, marked stromal changes in the tumor microenvironment, and reduced tumor uptake of lapatinib. Stimulation of BT474 cells with FGF4 promoted resistance to lapatinib + trastuzumab in vitro Treatment with FGFR tyrosine kinase inhibitors reversed these changes and overcame resistance to lapatinib + trastuzumab. High expression of FGFR1 correlated with a statistically shorter progression-free survival in patients with HER2(+) early breast cancer treated with adjuvant trastuzumab. Finally, FGFR1 and/or FGF3 gene amplification correlated with a lower pathologic complete response in patients with HER2(+) early breast cancer treated with neoadjuvant anti-HER2 therapy.Conclusions: Amplification of FGFR signaling promotes resistance to HER2 inhibition, which can be diminished by the combination of HER2 and FGFR inhibitors. Clin Cancer Res; 23(15); 4323-34. ©2017 AACR. ©2017 American Association for Cancer Research.

  5. Does Lapatinib Work against HER2-negative Breast Cancers?

    PubMed Central

    Mayer, Ingrid A.; Arteaga, Carlos L.

    2012-01-01

    Aberrant growth factor receptor signaling can augment or suppress estrogen receptor (ER) function in hormone-dependent breast cancer cells and lead to escape from anti-estrogen therapy. Interruption of HER2/ER cross-talk with lapatinib can restore sensitivity to anti-estrogens and thus, should be investigated in combination with endocrine therapy in patients with ER+/HER2−negative breast cancers. PMID:20179241

  6. Targeting siRNA Missiles to HER2+ Breast Cancer

    DTIC Science & Technology

    2007-06-01

    Breast Cancer PRINCIPAL INVESTIGATOR: Lali K. Medina-Kauwe, Ph.D. CONTRACTING ORGANIZATION: Cedars-Sinai Medical Center...5a. CONTRACT NUMBER Targeting siRNA Missiles to HER2+ Breast Cancer 5b. GRANT NUMBER W81XWH-06-1-0549 5c. PROGRAM ELEMENT NUMBER 6...that delivery conjugates can be assembled that can direct siRNA molecules to target cells, including HER2+ human breast cancer cells, in culture in

  7. Somatic mutations of the HER2 in metastatic breast cancer.

    PubMed

    Fang, Yi; Jiang, Yanxia; Wang, Xin; Yang, Xue; Gao, Yinqi; Wang, Jing

    2014-12-01

    Mutations in the epidermal growth factor receptor gene (EGFR) in lung cancers predict for sensitivity to EGFR kinase inhibitors. HER2 (also known as NEU, EGFR2, or ERBB2) is a member of the EGFR family of receptor tyrosine kinases and plays important roles in the pathogenesis of certain human cancers, and mutations have recently been reported in lung cancers. We sequenced the full length of HER2 in 198 metastatic breast cancers (MBC) as well as 34 other epithelial cancers (bladder, prostate, and colorectal cancers) and compared the mutational status with clinic pathologic features and the presence of EGFR or KRAS mutations. HER2 mutations were present in 11.6 % (23 of 198) of MBC and were absent in other types of cancers. HER2 mutations were located in exon 15 and the in-frame insertions in exon 20 with corresponding region as did EGFR insertions. HER2 mutations were significantly more frequent in patient after the administration of trastuzumab (34.8 %, 8 of 23; P = 0.02). Mutations in exon 15 and 20 were more potent than wild-type HER2 in associating with activating signal transducers and inducing survival, invasiveness, and tumorigenicity.

  8. Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using 89Zr-Trastuzumab PET/CT.

    PubMed

    Ulaner, Gary A; Hyman, David M; Ross, Dara S; Corben, Adriana; Chandarlapaty, Sarat; Goldfarb, Shari; McArthur, Heather; Erinjeri, Joseph P; Solomon, Stephen B; Kolb, Hartmuth; Lyashchenko, Serge K; Lewis, Jason S; Carrasquillo, Jorge A

    2016-10-01

    Our objective was to determine whether imaging with a human epidermal growth factor receptor 2 (HER2)-targeted PET tracer can detect HER2-positive metastases in patients with HER2-negative primary breast cancer.

  9. A Her2-let-7-β2-AR circuit affects prognosis in patients with Her2-positive breast cancer.

    PubMed

    Liu, Dan; Deng, Que; Sun, Limin; Wang, Tao; Yang, Zhengyan; Chen, Hongyu; Guo, Liang; Liu, Yanjun; Ma, Yuanfang; Guo, Ning; Shi, Ming

    2015-11-02

    Our previous studies show that β2-adrenergic receptor (β2-AR) is highly expressed in most Her2-overexpressing breast cancers. However, the mechanisms underlying upregulation of the β2-AR expression in Her2-overexpressing breast cancer cells are not fully understood. The clinical significance of the β2-AR overexpression in breast cancer is unclear. Human breast cancer cells MCF-7 and MCF-7/Her2 were transfected with the let-7 mimics or inhibitors. The expression of β2-AR was analyzed by Western blot. The β2-AR status in primary and metastatic sites of breast cancer and the human breast cancer tissue microarrays containing 49 primary tumors and 50 metastatic lymph node tissues was analyzed by immunohistochemistry. The correlation of lymph node metastasis with the β2-AR level was determined in 59 primary tumor tissues from the patients with Her2-positive breast cancer. The clinical prognostic significance of the β2-AR overexpression in the patients with Her2-positive breast cancers was evaluated by a retrospective study. The let-7f level in Her2-overexpressing breast cancer cells SKBR3 and BT474 was significantly lower than that in MCF-7 cells, which express low level of Her2. Ectopic expression of Her2 in MCF-7 cells (MCF-7/Her2) represses the expression of microRNA let-7f, which is previously identified to regulate baseline β2-AR expression. The treatment with MEK1/2 inhibitors PD98059 or PD184352 effectively restored the let-7f level, suggesting that Her2-overexpression-mediated ERK constitutive activation inhibited let-7f, leading to the upregulation of the β2-AR expression. The transfection with the let-7f mimics markedly downregulated the β2-AR level, whereas the let-7 inhibitor significantly upregulated the β2-AR expression in both parental MCF-7 and MCF-7/Her2 cells. In addition, treatment of MCF-7/Her2 cells with isoproterenol resulted in a concentration-dependent reduction of the let-7f expression, demonstrating that the inhibitory effect of Her2

  10. A Conjugate Based on Anti-HER2 Diaffibody and Auristatin E Targets HER2-Positive Cancer Cells

    PubMed Central

    Serwotka-Suszczak, Anna M.; Sochaj-Gregorczyk, Alicja M.; Pieczykolan, Jerzy; Krowarsch, Daniel; Jelen, Filip; Otlewski, Jacek

    2017-01-01

    Antibody-drug conjugates (ADCs) have recently emerged as efficient and selective cancer treatment therapeutics. Currently, alternative forms of drug carriers that can replace monoclonal antibodies are under intensive investigation. Here, a cytotoxic conjugate of an anti-HER2 (Human Epidermal Growth Factor Receptor 2) diaffibody with monomethyl-auristatin E (MMAE) is proposed as a potential anticancer therapeutic. The anti-HER2 diaffibody was based on the ZHER2:4 affibody amino acid sequence. The anti-HER2 diaffibody has been expressed as a His-tagged protein in E. coli and purified by Ni-nitrilotriacetyl (Ni-NTA) agarose chromatography. The molecule was properly folded, and the high affinity and specificity of its interaction with HER2 was confirmed by surface plasmon resonance (SPR) and flow cytometry, respectively. The (ZHER2:4)2DCS-MMAE conjugate was obtained by coupling the maleimide group linked with MMAE to cysteines, which were introduced in a drug conjugation sequence (DCS). Cytotoxicity of the conjugate was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide MTT assay and the xCELLigence Real-Time Cell Analyzer. Our experiments demonstrated that the conjugate delivered auristatin E specifically to HER2-positive tumor cells, which finally led to their death. These results indicate that the cytotoxic diaffibody conjugate is a highly potent molecule for the treatment of various types of cancer overexpressing HER2 receptors. PMID:28216573

  11. Problems In Determining Her2 Status In Breast Carcinoma

    PubMed Central

    Pala, Emel Ebru; Bayol, Ümit; Özgüzer, Alp; Küçük, Ülkü; Akdeniz, Çağlar Yıldız; Sezer, Özlem

    2015-01-01

    Objective Human epidermal growth factor receptor 2 (HER2) oncoprotein is overexpressed in 15–25% of breast carcinomas and associated with poor outcome. Assessment of HER2 status accurately is important to select patients who will benefit from targeted therapy. Materials and Methods In this study immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) were used to determine the HER2 status in 308 breast carcinoma cases of which 129 were consultation. The major problems in determining HER2 status and the reasons of discordant results between methods were discussed. Results HER2 expression was (−) in 124, (+) in 29, (++) in 92, (+++) in 63 cases. 25 of 76 cases consulted as (++) were evaluated as (++) and 15 of 35 cases consulted as (+++) were evaluated as (+++). HER2 amplification was found in 88 (28.6%) of 308 cases by FISH. 3 of 124 (−), 1 of 29 (+), 22 of 92 (++), 62 of 63 (+++) cases were amplified by FISH. The relation between HER2 expression and amplification was statistically significant (p<0.001). Centromere 17 (CEN 17) region amplification was noted in 11 cases of which 2 were (+++), 9 were (++). 6 of the 11 cases showed focal low level, 1 of them showed diffuse high level amplification. Conclusion The concordance rate between IHC (+++) cases and FISH was 95.4% for consultation cases, 100% for our cases. The final concordance rate for both case groups was 98.4%. The possible reasons of discrepancy were triple negativity, preanalytical and analytical procedures of consultation cases and trucut samples.

  12. HER2 as a novel therapeutic target for cervical cancer

    PubMed Central

    Oh, Ensel; Choi, Jung-Joo; Jung, Kyungsoo; Song, Ji-Young; Ahn, Suzie E.; Kim, Byoung-Gie; Bae, Duk-Soo; Park, Woong-Yang

    2015-01-01

    Surgery and radiation are the current standard treatments for cervical cancer. However, there is no effective therapy for metastatic or recurrent cases, necessitating the identification of therapeutic targets. In order to create preclinical models for screening potential therapeutic targets, we established 14 patient-derived xenograft (PDX) models of cervical cancers using subrenal implantation methods. Serially passaged PDX tumors retained the histopathologic and genomic features of the original tumors. Among the 9 molecularly profiled cervical cancer patient samples, a HER2-amplified tumor was detected by array comparative genomic hybridization and targeted next-generation sequencing. We confirmed HER2 overexpression in the tumor and serially passaged PDX. Co-administration of trastuzumab and lapatinib in the HER2-overexpressed PDX significantly inhibited tumor growth compared to the control. Thus, we established histopathologically and genomically homologous PDX models of cervical cancer using subrenal implantation. Furthermore, we propose HER2 inhibitor-based therapy for HER2-amplified cervical cancer refractory to conventional therapy. PMID:26435481

  13. EGFR and HER2 signaling in breast cancer brain metastasis

    PubMed Central

    Sirkisoon, Sherona R.; Carpenter, Richard L.; Rimkus, Tadas; Miller, Lance; Metheny-Barlow, Linda; Lo, Hui-Wen

    2016-01-01

    Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis. PMID:26709660

  14. HER2 therapies and gastric cancer: A step forward

    PubMed Central

    de Mello, Ramon Andrade; Marques, Andrea Marin; Araújo, António

    2013-01-01

    Gastric cancer usually is diagnosed in advanced stages and thus current medical practice affords limited therapeutic options. However, recent studies established the role of human epidermal growth factor receptor 2 (HER2) in clinical management. Trastuzumab, an anti-HER2 monoclonal antibody, acquired a main role in advanced gastric cancer harboring HER2 overexpression and/or amplification improving survival to 17.1 mo according to trastuzumab for gastric cancer phase III trial results. Also, new promising drugs, such as c-Met inhibitors, are in development and assessment for this setting. Certainly, novel drugs will emerge in the next feel years for help oncologists improve clinical management of advanced gastric cancer providing higher survival and quality of life. In this mini-review we will discuss some issues in this regard and provide an actual overview of this setting. PMID:24115812

  15. Prognostic impact of HER-2 Subclonal Amplification in breast cancer.

    PubMed

    Di Oto, Enrico; Brandes, Alba A; Cucchi, Maria C; Foschini, Maria P

    2017-06-02

    The presence of a limited number of cells with HER-2 amplification (Subclonal Amplification) in breast carcinomas is occasionally encountered, but its prognostic impact is poorly known. The purpose of this study is to evaluate the prognostic impact of HER-2 Subclonal Amplification in a retrospective series of breast cancers. Accordingly, 81 consecutive breast carcinomas showing HER-2 Subclonal Amplification were obtained from the histology files (case series). These cases were subdivided into two groups: (a) those cases in which the HER-2 Subclonal Amplification was consonant to the accepted criteria for amplification, showing clusters of amplified cells, and (b) those cases with rare HER-2 Subclonal Amplification that did not reflect the accepted criteria for amplification, showing scattered amplified cells only. The incidence of metastases and late recurrences of the case series was compared with a series composed of 109 consecutive cases, being HER-2 homogeneous (comprising 14 Amplified and 95 Non-Amplified cases), matched for grade and stage (control series). It appeared that cases showing Subclonal Amplification had an incidence of metastases intermediate between the cases Amplified and Non-Amplified. Specifically, Subclonal Amplification with clustered cells had a lower incidence of metastases than Amplified cases (12.9 versus 21.4%). On the contrary, Subclonal Amplification with scattered cells showed an incidence of metastases higher than Non-Amplified cases (14 versus 9.47%). In addition, patients Subclonal Amplification with clustered cells, who were treated with the specific monoclonal antibody, had a lower incidence of metastases than patients showing Subclonal Amplification with scattered cells, who did not receive target therapy. These data, together with those recently published, indicate that Subclonal Amplification has an impact on prognosis and should be taken into consideration to correctly plan the treatment of breast cancer patients.

  16. An Acquired HER2(T798I) Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 Mutant-Driven Breast Cancer.

    PubMed

    Hanker, Ariella B; Brewer, Monica Red; Sheehan, Jonathan H; Koch, James P; Sliwoski, Gregory R; Nagy, Rebecca; Lanman, Richard; Berger, Michael F; Hyman, David M; Solit, David B; He, Jie; Miller, Vincent; Cutler, Richard E; Lalani, Alshad S; Cross, Darren; Lovly, Christine M; Meiler, Jens; Arteaga, Carlos L

    2017-06-01

    We report a HER2(T798I) gatekeeper mutation in a patient with HER2(L869R)-mutant breast cancer with acquired resistance to neratinib. Laboratory studies suggested that HER2(L869R) is a neratinib-sensitive, gain-of-function mutation that upon dimerization with mutant HER3(E928G), also present in the breast cancer, amplifies HER2 signaling. The patient was treated with neratinib and exhibited a sustained partial response. Upon clinical progression, HER2(T798I) was detected in plasma tumor cell-free DNA. Structural modeling of this acquired mutation suggested that the increased bulk of isoleucine in HER2(T798I) reduces neratinib binding. Neratinib blocked HER2-mediated signaling and growth in cells expressing HER2(L869R) but not HER2(L869R/T798I) In contrast, afatinib and the osimertinib metabolite AZ5104 strongly suppressed HER2(L869R/T798I)-induced signaling and cell growth. Acquisition of HER2(T798I) upon development of resistance to neratinib in a breast cancer with an initial activating HER2 mutation suggests HER2(L869R) is a driver mutation. HER2(T798I)-mediated neratinib resistance may be overcome by other irreversible HER2 inhibitors like afatinib.Significance: We found an acquired HER2 gatekeeper mutation in a patient with HER2-mutant breast cancer upon clinical progression on neratinib. We speculate that HER2(T798I) may arise as a secondary mutation following response to effective HER2 tyrosine kinase inhibitors (TKI) in other cancers with HER2-activating mutations. This resistance may be overcome by other irreversible HER2 TKIs, such as afatinib. Cancer Discov; 7(6); 575-85. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 539. ©2017 American Association for Cancer Research.

  17. A functional signal profiling test for identifying a subset of HER2-negative breast cancers with abnormally amplified HER2 signaling activity

    PubMed Central

    Huang, Yao; Burns, David J; Rich, Benjamin E; MacNeil, Ian A; Dandapat, Abhijit; Soltani, Sajjad M.; Myhre, Samantha; Sullivan, Brian F; Furcht, Leo T; Lange, Carol A; Hurvitz, Sara A; Laing, Lance G

    2016-01-01

    The results of clinical trials evaluating the efficacy of HER2 inhibitors in patients with breast cancer indicate that the correlation between HER2 receptor levels and patient outcomes is as low as 50%. The relatively weak correlation between HER2 status and response to HER2-targeting drugs suggests that measurement of HER2 signaling activity, rather than absolute HER2 levels, may more accurately diagnose HER2-driven breast cancer. A new diagnostic test, the CELx HER2 Signaling Profile (CELx HSP) test, is demonstrated to measure real-time HER2 signaling function in live primary cells. In the present study, epithelial cells extracted fresh from breast cancer patient tumors classified as HER2 negative (HER2−, n = 34 of which 33 were estrogen receptor positive) and healthy subjects (n = 16) were evaluated along with reference breast cancer cell lines (n = 19). Live cell response to specific HER2 agonists (NRG1b and EGF) and antagonist (pertuzumab) was measured. Of the HER2− breast tumor cell samples tested, 7 of 34 patients (20.5%; 95% CI = 10%–37%) had HER2 signaling activity that was characterized as abnormally high. Amongst the tumor samples there was no correlation between HER2 protein status (by cell cytometry) and HER2 signaling activity (hyperactive or normal) (Regression analysis P = 0.144, R2 = 0.068). One conclusion is that measurement of HER2 signaling activity can identify a subset of breast cancers with normal HER2 receptor levels with abnormally high levels of HER2 signaling. This result constitutes a new subtype of breast cancer that should be considered for treatment with HER2 pathway inhibitors. PMID:27713176

  18. Tailoring DNA Vaccines: Designing Strategies Against HER2-Positive Cancers

    PubMed Central

    Marchini, Cristina; Kalogris, Cristina; Garulli, Chiara; Pietrella, Lucia; Gabrielli, Federico; Curcio, Claudia; Quaglino, Elena; Cavallo, Federica; Amici, Augusto

    2013-01-01

    The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs, and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long-lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing Phase I clinical trial (EudraCT 2011-001104-34). PMID:23675574

  19. Clinical benefit of lapatinib-based therapy in patients with HER2-positive breast tumors co-expressing the truncated p95HER2 receptor

    PubMed Central

    Scaltriti, Maurizio; Chandarlapaty, Sarat; Prudkin, Ludmila; Aura, Claudia; Jimenez, José; Angelini, Pier Davide; Sánchez, Gertrudis; Guzman, Marta; Parra, Josep Lluis; Ellis, Catherine; Gagnon, Robert; Koehler, Maria; Gomez, Henry; Geyer, Charles; Cameron, David; Arribas, Joaquin; Rosen, Neal; Baselga, José

    2011-01-01

    Purpose A subgroup of HER2 overexpressing breast tumors co-expresses p95HER2, a truncated HER2 receptor that retains a highly functional HER2 kinase domain but lacks the extracellular domain and results in intrinsic trastuzumab resistance. We hypothesized that lapatinib, a HER2 tyrosine kinase inhibitor, would be active in these tumors. We have studied the correlation between p95HER2 expression and response to lapatinib, both in preclinical models and in the clinical setting Experimental design Two different p95HER2 animal models were used for preclinical studies. Expression of p95HER2 was analyzed in HER2 overexpressing breast primary tumors from a first line lapatinib monotherapy study (EGF20009) and a second line lapatinib in combination with capecitabine study (EGF100151). p95HER2 expression was correlated with overall response rate (complete + partial response), clinical benefit rate (complete response + partial response + stable disease ≥ 24 weeks) and progression-free survival using logistic regression and Cox-proportional hazard models. Results Lapatinib inhibited tumor growth and HER2 downstream signaling of p95HER2 expressing tumors. A total of 68 and 156 tumors from studies EGF20009 and EGF100151 were evaluable, respectively, for p95HER2 detection. The percentage of p95HER2 positive patients was 20.5% in the EGF20009 study and 28.5% in the EGF100151 study. In both studies there was no statistically significant difference in progression-free survival, clinical benefit rate and overall response rate between p95HER2-positive and p95HER2-negative tumors. Conclusions Lapatinib as a monotherapy or in combination with capecitabine appears to be equally effective in patients with p95HER2-positive and p95HER2-negative HER2-positive breast tumors. PMID:20406840

  20. Polyclonal HER2-specific antibodies induced by vaccination mediate receptor internalization and degradation in tumor cells

    PubMed Central

    2012-01-01

    Introduction Sustained HER2 signaling at the cell surface is an oncogenic mechanism in a significant proportion of breast cancers. While clinically effective therapies targeting HER2 such as mAbs and tyrosine kinase inhibitors exist, tumors overexpressing HER2 eventually progress despite treatment. Thus, abrogation of persistent HER2 expression at the plasma membrane to synergize with current approaches may represent a novel therapeutic strategy. Methods We generated polyclonal anti-HER2 antibodies (HER2-VIA) by vaccinating mice with an adenovirus expressing human HER2, and assessed their signaling effects in vitro and anti-tumor effects in a xenograft model. In addition, we studied the signaling effects of human HER2-specific antibodies induced by vaccinating breast cancer patients with a HER2 protein vaccine. Results HER2-VIA bound HER2 at the plasma membrane, initially activating the downstream kinases extracellular signal-regulated protein kinase 1/2 and Akt, but subsequently inducing receptor internalization in clathrin-coated pits in a HER2 kinase-independent manner, followed by ubiquitination and degradation of HER2 into a 130 kDa fragment phosphorylated at tyrosine residues 1,221/1,222 and 1,248. Following vaccination of breast cancer patients with the HER2 protein vaccine, HER2-specific antibodies were detectable and these antibodies bound to cell surface-expressed HER2 and inhibited HER2 signaling through blocking tyrosine 877 phosphorylation of HER2. In contrast to the murine antibodies, human anti-HER2 antibodies induced by protein vaccination did not mediate receptor internalization and degradation. Conclusion These data provide new insight into HER2 trafficking at the plasma membrane and the changes induced by polyclonal HER2-specific antibodies. The reduction of HER2 membrane expression and HER2 signaling by polyclonal antibodies induced by adenoviral HER2 vaccines supports human clinical trials with this strategy for those breast cancer patients

  1. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells.

    PubMed

    Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong

    2016-12-01

    Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.

  2. Phase II Study of a HER-2/neu (HER2) Intracellular Domain (ICD) Peptide-Based Vaccine Administered to Stage IIIB and IV HER2 Positive Breast Cancer Patients Receiving Trastuzumab Monotherapy

    DTIC Science & Technology

    2008-05-01

    Intracellular Domain (ICD) Peptide - Based Vaccine Administered to Stage IIIB and IV HER2 Positive Breast Cancer Patients Receiving Trastuzumab...To) 27 APR 2007 - 26 APR 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Phase II Study of a HER-2/neu (HER2) Intracellular Domain (ICD) Peptide ...intracellular domain (ICD) peptide -based vaccine while receiving maintenance trastuzumab. Patients enrolled will be HER2 overexpressing stage IIIB and IV

  3. Pre-Mrna Introns as a Model for Cryptographic Algorithm:. Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Regoli, Massimo

    2010-01-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. In particular the RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions", are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by Biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behaviour in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  4. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT

    PubMed Central

    Ulaner, Gary A.; Hyman, David M.; Ross, Dara S.; Corben, Adriana; Chandarlapaty, Sarat; Goldfarb, Shari; McArthur, Heather; Erinjeri, Joseph P; Solomon, Stephen B; Kolb, Hartmuth; Lyashchenko, Serge K; Lewis, Jason S.; Carrasquillo, Jorge A.

    2016-01-01

    To determine if imaging with a human epidermal growth factor receptor 2 (HER2)-targeting PET tracer can detect HER2-positive metastases in patients with HER2-negative primary breast cancer. Materials and Methods Patients with HER2-negative primary breast cancer and evidence of distant metastases were enrolled in an Institutional Review Board (IRB)-approved prospective clinical trial. Archived pathology from the patient’s primary breast cancer was retested to confirm HER2-negative disease. Patients with confirmed HER2-negative primary breast cancer underwent 89Zr-trastuzumab PET/CT to screen for 89Zr-trastuzumab metastases. Metastases avid for 89Zr-trastuzumab by PET/CT were biopsied and pathologically examined to define HER2 status. Patients with pathologically proven HER2-positive metastases subsequently received off-protocol HER2 targeted therapy to evaluate treatment response. Results Nine patients were enrolled, all of whom had pathologic retesting that confirmed HER2-negative primary breast cancer. Five demonstrated suspicious foci on 89Zr-trastuzumab PET/CT. Of these five with suspicious foci, two had biopsy proven HER2-positive metastases and went on to benefit from HER2 targeted therapy. Three of the five patients with suspicious foci had biopsy without evidence of HER2-positive disease, and were considered false positive false positive 89Zr-trastuzumab PET foci. Conclusion In this proof-of-concept study, we demonstrate that 89Zr-trastuzmab PET/CT detects unsuspected HER2-positive metastases in patients with HER2-negtive primary breast cancer. While these are only initial results in a small sample, it is a proof of concept that HER2-targeted imaging can identify additional candidates for HER2-targeted therapy. More specific HER2-targeting agents will be needed for clinical use. PMID:27151988

  5. Somatic mutation analysis of KRAS, BRAF, HER2 and PTEN in EGFR mutation-negative non-small cell lung carcinoma: determination of frequency, distribution pattern and identification of novel deletion in HER2 gene from Indian patients.

    PubMed

    Bhaumik, Sangeet; Ahmad, Firoz; Das, Bibhu Ranjan

    2016-10-01

    Somatic mutations of KRAS, BRAF, HER2, PTEN genes are the most important molecular markers after the EGFR gene mutation. The current study evaluated the frequency and distribution pattern of KRAS, BRAF, HER2, PTEN mutation in Indian non-small cell lung carcinoma patients. The frequency of KRAS, BRAF, HER2, PTEN mutations was 6.4 % (14/204), 1.5 % (3/204), 1.5 % (3/204), 0 % (0/204), respectively. KRAS, BRAF, HER2 mutations were more prevalent in males than in females. KRAS and HER2 showed a trend of a higher frequency of mutation in the age group of <60 years, whereas BRAF mutations were more frequent in the age group of ≥60 years. Sequencing analysis of KRAS gene revealed c.34G>T (G12C) (n = 8), c.35G>A (G12D) (n = 3), c.35G>T (G12 V) (n = 1) and c.34G>T (G12C)/c.41T>C (V14A) (n = 2) mutations. Three different BRAF mutations (L584P: n = 1, V600E: n = 1, K601E: n = 1) were detected. Two cases harboured c.2324_2325ins12 (ATACGTGATGGC duplication) in HER2 gene, and one case was positive for NG_007503.2 (NM_001005862.2):c.2218-4del. It is less certain, but still quite possible that this mutation will affect splicing as the deletion of one C actually brings in one additional purine into the region. In conclusion, the present study demonstrates an instance of diverse nature of KRAS, BRAF, HER2 and PTEN gene in Indian patients and confirms that the frequency of these gene mutations varies globally. To the best of our knowledge, this is the first Indian study to evaluate KRAS, BRAF, HER2 and PTEN gene mutations.

  6. Mechanisms of resistance to HER2 target therapy.

    PubMed

    Tortora, Giampaolo

    2011-01-01

    In the past years, several agents targeting signaling proteins critical for breast cancer growth and dissemination entered clinical evaluation. They include drugs directed against the HER/ErbB family of receptor tyrosine kinases, especially HER2; several downstream signal transducers; and proteins involved in tumor angiogenesis and dissemination. Unfortunately, resistance to targeted agents is a quite common feature, and understanding of the molecular mechanisms predicting response or failure has become a crucial issue to optimize treatment and select patients who are the best candidates to respond. The neoadjuvant setting offers unique opportunities allowing tumor sampling and search for molecular determinants of response. A variety of tumor and host factors may account for the onset of resistance. Major progress has been made in the understanding of the mechanisms involved in the primary and acquired resistance to targeted agents, especially the anti-HER2 drugs, which play a pivotal role in the weaponry against breast cancer.

  7. Targeting HER 2 and angiogenesis in gastric cancer.

    PubMed

    Jomrich, G; Schoppmann, S F

    2016-01-01

    Gastric cancer is one of the most commonly diagnosed and the second leading cause of cancer death worldwide. Surgery combined with multimodal therapy remains the only curative therapy. However, local relapse or distant metastases occur in more than 50% of radically resected patients. Due to molecular therapies, targeting HER2 and angiogenesis, major advances in the treatment of gastric cancer could be achieved. Nevertheless, development of resistance to monoclonal antibodies, such as trastuzumab, is arising. Currently a number of promising new therapeutic are under investigation, combining chemotherapy with newly developed agents to overcome cancer resistance. In this review we report current clinical applications of targeted therapies and overview ongoing trials, investigating the use of monoclonal antibodies in (HER2 positive) gastric cancer.

  8. HER2 expression identifies dynamic functional states within circulating breast cancer cells

    PubMed Central

    Jordan, Nicole Vincent; Bardia, Aditya; Wittner, Ben S.; Benes, Cyril; Ligorio, Matteo; Zheng, Yu; Yu, Min; Sundaresan, Tilak K.; Licausi, Joseph A.; Desai, Rushil; O’Keefe, Ryan M.; Ebright, Richard Y.; Boukhali, Myriam; Sil, Srinjoy; Onozato, Maristela L.; Iafrate, Anthony J.; Kapur, Ravi; Sgroi, Dennis; Ting, David T.; Toner, Mehmet; Ramaswamy, Sridhar; Haas, Wilhelm; Maheswaran, Shyamala; Haber, Daniel A.

    2016-01-01

    Circulating tumor cells (CTCs) in women with advanced estrogen receptor-positive/HER2-negative breast cancer acquire a HER2-positive subpopulation following multiple courses of therapy1,2. In contrast to HER2-amplified primary breast cancer, which is highly sensitive to HER2-targeted therapy, the clinical significance of acquired HER2 heterogeneity during the evolution of metastatic breast cancer is unknown. Here, we analyzed CTCs from 19 ER+/HER2− patients, 84% of whom had acquired CTCs expressing HER2. Cultured CTCs maintain discrete HER2+ and HER2− subpopulations: HER2+ CTCs are more proliferative but not addicted to HER2, consistent with activation of multiple signaling pathways. HER2− CTCs show activation of Notch and DNA damage pathways, exhibiting resistance to cytotoxic chemotherapy, but sensitivity to Notch inhibition. HER2+ and HER2− CTCs interconvert spontaneously, with cells of one phenotype producing daughters of the opposite within four cell doublings. While HER2+ and HER2− CTCs have comparable tumor initiating potential, differential proliferation favors the HER2+ state, while oxidative stress or cytotoxic chemotherapy enhances transition to the HER2− phenotype. Simultaneous treatment with paclitaxel and Notch inhibitors achieves sustained suppression of tumorigenesis in orthotopic CTC-derived tumor models. Together, these results point to distinct yet interconverting phenotypes within patient-derived CTCs, contributing to progression of breast cancer and acquisition of drug resistance. PMID:27556950

  9. Morphological and molecular characteristics of HER2 amplified urothelial bladder cancer.

    PubMed

    Tschui, J; Vassella, E; Bandi, N; Baumgartner, U; Genitsch, V; Rotzer, D; Seiler, R; Thalmann, G N; Fleischmann, A

    2015-06-01

    Several (pre-) clinical trials are currently investigating the benefit of HER2-targeted therapy in urothelial bladder cancer (UBC). Patients with HER2 amplified UBC could potentially profit from these therapies. However, little is known about histomorphology, HER2 protein expression patterns and occurrence of alterations in the HER2 gene in their tumors. Among 150 metastasizing primary UBC, 13 HER2 amplified tumors were identified. Their histopathological features were compared with 13 matched, non-amplified UBC. HER2 protein expression was determined by immunohistochemistry. The 26 tumors were screened for mutations in exons 19 and 20 of the HER2 gene. UBC with HER2 amplification presented with a broad variety of histological variants (median 2 vs. 1), frequently featured micropapillary tumor components (77 % vs. 8 %) and demonstrated a high amount of tumor associated inflammation. Immunohistochemically, 10 of 13 (77 %) HER2 amplified tumors were strongly HER2 protein positive. Three tumors (23 %) were scored as HER2 negative. One of the HER2 amplified tumors harbored a D769N mutation in exon 19 of the HER2 gene; all other tested tumors were wild type. In conclusion, HER2 amplified UBC feature specific morphological characteristics. They frequently express the HER2 protein diffusely and are, therefore, promising candidates for HER2 targeted therapies. The detection of mutations at the HER2 locus might add new aspects to molecular testing of UBC.

  10. Gene therapy using plasmid DNA-encoded anti-HER2 antibody for cancers that overexpress HER2

    PubMed Central

    Kim, H; Danishmalik, S N; Hwang, H; Sin, J-I; Oh, J; Cho, Y; Lee, H; Jeong, M; Kim, S-H; Hong, H J

    2016-01-01

    Plasmid DNA-encoded antibodies, or DNA-based monoclonal antibodies (dMAbs), are delivered by intramuscular injection and in vivo electroporation (EP) and are effective in virus neutralization, although they have not been evaluated for tumor gene therapy. Here we investigated whether a dMAb was appropriate for tumor gene therapy. We constructed the expression plasmids coding for the heavy or light chain of a parental murine antibody of Herceptin with the antibody genes codon- and RNA-optimized and fused to the Kozak-IgE leader sequence in pVax1. Transfection of the plasmids into human muscle RD cells resulted in functional expression of the antibody, and this exhibited the same in vitro antiproliferative activity as Herceptin. A single intramuscular injection and in vivo EP of the plasmids (100 μg per head) resulted in high and sustained antibody expression in the sera of normal mice and in effective inhibition of tumor growth in nude mice bearing HER2-positive human breast carcinoma BT474 xenografts. The antitumor efficacy of the anti-HER2 dMAb was similar to that of four doses of intravenously injected 10 mg kg−1 Herceptin. The results demonstrate that the dMAb is effective in the treatment of HER2-positive breast cancer, suggesting that this dMAb may be applicable for tumor gene therapy. PMID:27632934

  11. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor.

    PubMed

    Ben-Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M; Ma, Cynthia X; Ellis, Matthew J

    2015-09-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted.

  12. Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases.

    PubMed

    Kanojia, Deepak; Balyasnikova, Irina V; Morshed, Ramin A; Frank, Richard T; Yu, Dou; Zhang, Lingjiao; Spencer, Drew A; Kim, Julius W; Han, Yu; Yu, Dihua; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S

    2015-10-01

    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation.

  13. Application of the 2013 ASCO/CAP guideline and the SISH technique for HER2 testing of breast cancer selects more patients for anti-HER2 treatment.

    PubMed

    Polónia, António; Leitão, Dina; Schmitt, Fernando

    2016-04-01

    The aim of this study is to assess the impact of changes of the 2013 ASCO/CAP guideline on the results of HER2 testing in breast cancer. A series of 916 primary invasive breast cancer cases, assessed as HER2 2+ by IHC in part using the 2007 and in part the 2013 ASCO/CAP criteria, was evaluated for HER2 amplification status by SISH and classified according to both 2007 and 2013 ASCO/CAP ISH guideline criteria. We observed a significant increase of HER2-positive cases (12.4 to 16.8%) and a decrease of HER2-equivocal cases (3.6 to 0.7%). Of the cases studied, 52.1% fulfilled both criteria of HER2/CEP17 ratio and average HER2 copy number per cell to be classified as HER2-positive. Reclassification of the cases from before the introduction of the new ASCO/CAP guideline with the 2013 ISH criteria resulted in an increase of cases with a HER2-positive status (12.4 to 14.2%) and in a decrease of HER2-equivocal cases (3.6 to 1.6%). The 2013 ASCO/CAP guideline selects more patients for anti-HER2 targeted therapy, mostly based on the modifications of criteria to evaluate ISH-HER2.

  14. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  15. Activating mutations and senescence secretome: new insights into HER2 activation, drug sensitivity and metastatic progression.

    PubMed

    Acharyya, Swarnali

    2013-04-23

    HER2 amplification and overexpression is observed in approximately 20% of breast cancers and is strongly associated with poor prognosis and therapeutic responsiveness to HER2 targeted agents. A recent study by Bose and colleagues suggests that another subset of breast cancer patients without HER2 amplification but with activating HER2 mutation might also benefit from existing HER2-targeted agents and the authors functionally characterize these somatic mutations in experimental models. In a second study on HER2-driven breast cancer, Angelini and colleagues investigate how the constitutively active, truncated carboxy-terminal fragment of HER2, p95HER2, promotes metastatic progression through non-cellautonomous secretion of factors from senescent cells. These new findings advance our understanding of HER2 biology in the context of HER2 activation as well as offer new insights into our understanding of drug sensitivity and metastatic progression.

  16. Affinity enhancement of HER2-binding Z(HER2:342) affibody via rational design approach: a molecular dynamics study.

    PubMed

    Ghaffari, Mohammad Ali; Zeinali, Majid; Barzegari Asadabadi, Ebrahim; Jamalan, Mostafa; Jahandideh, Samad

    2014-12-01

    Human epidermal growth factor receptor 2 (HER2) contributes to the development of breast cancers and malignancies. On the other hand, engineered affibody Z(HER2:342) that binds to HER2 can be successfully used for both diagnostic purposes and specific ablation of malignant HER2-positive cell lines. In the current study, electrostatics-based prediction was applied for improving Z(HER2:342) binding affinity using computational design. The affibody Z(HER2:342) alone and in complex with HER2 was energetically minimized, solvated in explicit water, and neutralized. After heating and equilibration steps, the system was studied by isothermal-isobaric (NPT) MD simulation. According to trajectories, Z(HER2:342) specifically binds to HER2 through hydrogen bonds and salt bridges. Based on the electrostatic binding contributions, two affinity-matured variants namely V1 (Tyr35Arg) and V2 (Asn6Asp and Met9Glu) were rationally designed. More investigations through MD simulation show that V1 interacts with HER2 receptor more strongly, compared to Z(HER2:342) and V2.

  17. Prolonged Response to Trastuzumab in a Patient With HER2-Nonamplified Breast Cancer With Elevated HER2 Dimerization Harboring an ERBB2 S310F Mutation.

    PubMed

    Chumsri, Saranya; Weidler, Jodi; Ali, Siraj; Balasubramanian, Sohail; Wallweber, Gerald; DeFazio-Eli, Lisa; Chenna, Ahmed; Huang, Weidong; DeRidder, Angela; Goicocheal, Lindsay; Perez, Edith A

    2015-09-01

    In the current genomic era, increasing evidence demonstrates that approximately 2% of HER2-negative breast cancers, by current standard testings, harbor activating mutations of ERBB2. However, whether patients with HER2-negative breast cancer with activating mutations of ERBB2 also experience response to anti-HER2 therapies remains unclear. This case report describes a patient with HER2-nonamplified heavily pretreated breast cancer who experienced prolonged response to trastuzumab in combination with pertuzumab and fulvestrant. Further molecular analysis demonstrated that her tumors had an elevated HER2 dimerization that corresponded to ERBB2 S310F mutation. Located in the extracellular domain of the HER2 protein, this mutation was reported to promote noncovalent dimerization that results in the activation of the downstream signaling pathways. This case highlights the fact that HER2-targeted therapy may be valuable in patients harboring an ERBB2 S310F mutation.

  18. The E75 HER2/neu peptide vaccine.

    PubMed

    Mittendorf, Elizabeth A; Holmes, Jarrod P; Ponniah, Sathibalan; Peoples, George E

    2008-10-01

    E75 (HER2/neu 369-377) is an immunogenic peptide from the HER2/neu protein which is overexpressed in many breast cancer patients. A large amount of preclinical work and a small number of Phase I trials have been completed evaluating the vaccine potential of the E75 peptide mixed with an immunoadjuvant. Our group has performed two concurrent E75 + GM-CSF Phase II trials in node-positive and node-negative disease-free breast cancer patients. These trials, totaling 186 patients, were designed to assess the ability of the E75 vaccine to prevent disease recurrence in these high risk patients. In this review article, we discuss the safety of the vaccine, the immunologic response to the peptide, and most importantly, the potential clinical benefit of the vaccine. The recurrence rate, mortality associated with recurrence, and the distribution of recurrences are presented and discussed. Additionally, the lessons learned from these trials to include optimal dosing and the need for booster inoculations are addressed. We also present data exploring possible explanations and mechanisms behind the potential clinical utility of this simple single epitope vaccine. Finally, we present some of the future directions for our Cancer Vaccine Development Program assessing multi-epitope peptide vaccines and combination immunotherapies.

  19. Evaluation of Her2 status using photoacoustic spectroscopic CT techniques

    NASA Astrophysics Data System (ADS)

    Shaffer, Michael; Kruger, Robert; Reinecke, Daniel; Chin-Sinex, Helen; Mendonca, Marc; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to determine the feasibility of using photacoustic CT spectroscopy(PCT-s) to track a near infrared dye conjugated with trastuzumab in vivo. Materials and Methods: An animal model was developed which contained both high and low Her2 expression tumor xenografts on the same mouse. The tumors were imaged at multiple wavelengths (680- 950nm) in the PCT scanner one day prior to injection of the near infrared conjugated probe. Baseline optical imaging data was acquired and the probe was then injected via the tail vein. Fluorescence data was acquired over the next week, PCT spectroscopic data was also acquired during this timeframe. The mice were sacrificed and tumors were extirpated and sent to pathology for IHC staining to verify Her2 expression levels. The optical fluorescence images were analyzed to determine probe uptake dynamics. Reconstructed PCT spectroscopic data was analyzed using IDL routines to deconvolve the probe signal from endogenous background signals, and to determine oxygen saturation. Results: The location of the NIR conjugate was able to be identified within the tumor utilizing IDL fitting routines, in addition oxygen saturation, and hemoglobin concentrations were discernible from the spectroscopic data. Conclusion: Photacoustic spectroscopy allows for the determination of in vivo tumor drug delivery at greater depths than can be determined from optical imaging techniques.

  20. Survival benefit of anti-HER2 therapy after whole-brain radiotherapy in HER2-positive breast cancer patients with brain metastasis.

    PubMed

    Zhang, Qian; Chen, Jian; Yu, Xiaoli; Cai, Gang; Yang, Zhaozhi; Cao, Lu; Hu, Chaosu; Guo, Xiaomao; Sun, Jing; Chen, Jiayi

    2016-09-01

    We aimed to assess the survival benefit of epidermal growth factor receptor 2 (HER2)-positive breast cancer patients with brain metastasis (BM) after whole-brain radiotherapy (WBRT) in combination with systemic treatments, especially anti-HER2 therapy. This retrospective study analyzed the overall survival (OS) of 60 HER2-positive breast cancer patients with BM after WBRT in combination with systemic treatments. Among them, 42 patients received chemotherapy while 18 patients did not receive after WBRT. With regard to anti-HER2 therapy, after WBRT, 17 patients received anti-HER2 treatment without prior adjuvant trastuzumab-based therapy, 7 patients received anti-HER2 treatment with prior adjuvant trastuzumab-based therapy, and 36 patients did not receive further anti-HER2 treatment. All patients were followed up regularly until January 23, 2013. The median OS of patients with BM was 12 months. Patients who received anti-HER2 therapy and chemotherapy after WBRT had significantly better survival compared with patients who did not receive further treatment. Patients who received anti-HER2 treatment after WBRT but did not receive adjuvant trastuzumab-based therapy for early breast cancer had better OS, followed by patients who received anti-HER2 agent both in adjuvant treatment and after WBRT and patients who did not receive anti-HER2 treatment. Multivariate analysis showed that Karnofsky Performance Status, control of extracranial metastases, chemotherapy after WBRT, and anti-HER2 therapy combined with WBRT were all independent predictors for OS. Both chemotherapy and anti-HER2 therapy after WBRT could improve OS. Moreover, patients without prior exposure to adjuvant anti-HER2 treatment may have survival benefit superior to those of patients with prior exposure.

  1. Direct inhibition of PI3K in combination with dual HER2 inhibitors is required for optimal antitumor activity in HER2+ breast cancer cells.

    PubMed

    Rexer, Brent N; Chanthaphaychith, Siprachanh; Dahlman, Kimberly; Arteaga, Carlos L

    2014-01-23

    Despite multiple advances in the treatment of HER2+ breast cancers, resistance develops even to combinations of HER2 targeting agents. Inhibition of PI3K pathway signaling is critical for the efficacy of HER2 inhibitors. Activating mutations in PIK3CA can overlap with HER2 amplification and have been shown to confer resistance to HER2 inhibitors in preclinical studies. Lapatinib-resistant cells were profiled for mutations in the PI3K pathway with the SNaPshot assay. Hotspot PIK3CA mutations were retrovirally transduced into HER2-amplified cells. The impact of PIK3CA mutations on the effect of HER2 and PI3K inhibitors was assayed by immunoblot, proliferation and apoptosis assays. Uncoupling of PI3K signaling from HER2 was investigated by ELISA for phosphoproteins in the HER2-PI3K signaling cascade. The combination of HER2 inhibitors with PI3K inhibition was studied in HER2-amplified xenograft models with wild-type or mutant PIK3CA. Here we describe the acquisition of a hotspot PIK3CA mutation in cells selected for resistance to the HER2 tyrosine kinase inhibitor lapatinib. We also show that the gain of function conferred by these PIK3CA mutations partially uncouples PI3K signaling from the HER2 receptor upstream. Drug resistance conferred by this uncoupling was overcome by blockade of PI3K with the pan-p110 inhibitor BKM120. In mice bearing HER2-amplified wild-type PIK3CA xenografts, dual HER2 targeting with trastuzumab and lapatinib resulted in tumor regression. The addition of a PI3K inhibitor further improved tumor regression and decreased tumor relapse after discontinuation of treatment. In a PIK3CA-mutant HER2+ xenograft, PI3K inhibition with BKM120 in combination with lapatinib and trastuzumab was required to achieve tumor regression. These results suggest that the combination of PI3K inhibition with dual HER2 blockade is necessary to circumvent the resistance to HER2 inhibitors conferred by PIK3CA mutation and also provides benefit to HER2+ tumors with wild

  2. Pre-clinical evaluation of [111In]-benzyl-DOTA-Z(HER2:342), a potential agent for imaging of HER2 expression in malignant tumors.

    PubMed

    Orlova, Anna; Tran, Thuy; Widström, Charles; Engfeldt, Torun; Eriksson Karlström, Amelie; Tolmachev, Vladimir

    2007-09-01

    Imaging of expression of human epidermal growth factor receptor type 2 (HER2) in breast carcinomas may help to select patients eligible for trastuzumab therapy. The Affibody molecule Z(HER2:342) is a small (7-kDa) non-immunoglobulin affinity protein, which binds to HER2 with a picomolar affinity. Previously, a benzyl-DTPA conjugate of Z(HER2:342) was labeled with 111In and demonstrated good targeting in murine xenografts. We considered that the use of the macrocyclic chelator DOTA could increase the label stability and enhance a choice of nuclides, which could be used as a label for Z(HER2:342). The goal of this study was the preparation and pre-clinical evaluation of the indium-111- labeled DOTA-derivative of Z(HER2:342). Isothiocyanate-benzyl-DOTA was coupled to recombinant Z(HER2:342), and the conjugate was efficiently labeled with 111In at 60 degrees C. The specificity of 111In-benzyl-DOTA-Z(HER2:342) binding to HER2 was confirmed in vitro using HER2-expressing breast carcinoma BT474 and ovarian carcinoma SKOV-3 cell lines. Biodistribution of 111In-benzyl-DOTA-Z(HER2:342) was performed in nude mice bearing LS174T xenografts and compared directly with the biodistribution of 111In-benzyl-DTPA-Z(HER2:342). In vivo, 111In-benzyl-DOTA-Z(HER2:342) demonstrated quick clearance from blood and non-specific organs except the kidneys. Four hours post injection (pi), the tumor uptake of 111In-benzyl-DOTA-Z(HER2:342) (4.4+/-1.0% IA/g) was specific and the tumor-to-blood ratio was 23. The use of benzyl-DTPA provided higher tumor-to-blood and tumor-to-liver ratios. gamma-camera imaging showed clear visualization of HER2-expressing xenografts using 111In-benzyl-DOTA-Z(HER2:342). 111In-benzyl-DOTA-Z(HER2:342) has a potential for imaging of HER2 expression in malignant tumors.

  3. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells.

    PubMed

    Ma, Jui-Wen; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Kao, Jung-Yie; Way, Tzong-Der

    2016-09-13

    Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer.

  4. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells

    PubMed Central

    Ma, Jui-Wen; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Kao, Jung-Yie; Way, Tzong-Der

    2016-01-01

    Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer. PMID:27391337

  5. Anti-Her-2/neu antibody induces apoptosis in Her-2/neu overexpressing breast cancer cells independently from p53 status

    PubMed Central

    Brodowicz, T; Kandioler, D; Tomek, S; Ludwig, C; Rudas, M; Kunstfeld, R; Koestler, W; Hejna, M; Budinsky, A; Wiltschke, C; Zielinski, C C

    2001-01-01

    Anti-Her-2/neu antibody is known to induce apoptosis in HER-2/neu overexpressing breast cancer cells. However, exact regulatory mechanisms mediating and controlling this phenomenon are still unknown. In the present study, we have investigated the effect of anti-Her-2/neu antibody on apoptosis of HER-2/neu overexpressing human breast cancer cell lines SK-BR-3, HTB-24, HTB-25, HTB-27, HTB-128, HTB-130 and HTB-131 in relation to p53 genotype and bcl-2 status. SK-BR-3, HTB-24, HTB-128 and HTB-130 cells exhibited mutant p53, whereas wild type p53 was found in HTB-25, HTB-27 and HTB-131 cells. All seven cell lines weakly expressed bcl-2 protein (10–20%). Anti-Her-2/neu antibody, irrespective of p53 and bcl-2 status, induced apoptosis in all 7 cell lines dose- and time-dependently and correlated with Her-2/neu overexpression. In addition, incubation of cell lines with anti-Her-2/neu antibody did not alter p53 or bcl-2 expression. Anti-HER-2/neu antibody did not induce apoptosis in HER-2/neu negative HBL-100 and HTB-132 cell lines. Our results indicate that within the panel of tested breast cancer cell lines, anti-Her-2/neu antibody-induced apoptosis was independent from the presence of intact p53. © 2001 Cancer Research Compaign http://www.bjcancer.com PMID:11742500

  6. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies.

    PubMed

    Hanker, Ariella B; Pfefferle, Adam D; Balko, Justin M; Kuba, María Gabriela; Young, Christian D; Sánchez, Violeta; Sutton, Cammie R; Cheng, Hailing; Perou, Charles M; Zhao, Jean J; Cook, Rebecca S; Arteaga, Carlos L

    2013-08-27

    Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway has been shown to correlate with a diminished response to HER2-directed therapies. We generated a mouse model of HER2-overexpressing (HER2(+)), PIK3CA(H1047R)-mutant breast cancer. Mice expressing both human HER2 and mutant PIK3CA in the mammary epithelium developed tumors with shorter latencies compared with mice expressing either oncogene alone. HER2 and mutant PIK3CA also cooperated to promote lung metastases. By microarray analysis, HER2-driven tumors clustered with luminal breast cancers, whereas mutant PIK3CA tumors were associated with claudin-low breast cancers. PIK3CA and HER2(+)/PIK3CA tumors expressed elevated transcripts encoding markers of epithelial-to-mesenchymal transition and stem cells. Cells from HER2(+)/PIK3CA tumors more efficiently formed mammospheres and lung metastases. Finally, HER2(+)/PIK3CA tumors were resistant to trastuzumab alone and in combination with lapatinib or pertuzumab. Both drug resistance and enhanced mammosphere formation were reversed by treatment with a PI3K inhibitor. In sum, PIK3CA(H1047R) accelerates HER2-mediated breast epithelial transformation and metastatic progression, alters the intrinsic phenotype of HER2-overexpressing cancers, and generates resistance to approved combinations of anti-HER2 therapies.

  7. Identification of Targetable HER2 Aberrations in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Birkeland, Andrew C.; Yanik, Megan; Tillman, Brittny N.; Scott, Megan V.; Foltin, Susan K.; Mann, Jacqueline E.; Michmerhuizen, Nicole L.; Ludwig, Megan L.; Sandelski, Morgan M.; Komarck, Christine M.; Carey, Thomas E.; Prince, Mark E.P.; Bradford, Carol R.; McHugh, Jonathan B.; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Importance HER2 is an important drug target in breast cancer, where anti-HER2 therapy has been shown to lead to improvements in disease recurrence and overall survival. HER2 status in head and neck squamous cell carcinoma (HNSCC) has not been well studied. Identification of HER2 positive tumors and characterization of response to HER2 therapy could lead to targeted treatment options in HNSCC. Objective To identify HER2 aberrations in HNSCCs and investigate potential for HER2 targeted therapy in HNSCCs. Design, Setting, and Participants Retrospective case series of patients with laryngeal and oral cavity SCC enrolled in the University of MichiganSPORE. Publically available sequencing data(TCGA) was reviewed to identify additional mutations and overexpression in HER2 in HNSCC. Established HNSCC cell lines were used for follow-up in vitro analysis. Interventions Using targeted, amplicon-based sequencing with the Oncomine Cancer Panel, we assessed the copy number and mutation status of commonly altered genes in HNSCCs. Immunohistochemical staining was performed on tissue microarrays of HNSCCs to assess expression of HER2. Western blotting for HNSCC cell line HER2 expression, and cell survival assays after treatment with HER2 inhibitors were performed. Main Outcomes and Measures Prevalence of HER2 genetic aberrations and HER2 overexpression in laryngeal and oral cavity squamous cell carcinomas (SCCs). Prevalence of HER2 aberrations in HNSCC in TCGA. HER2 protein expression in HNSCC cell lines. Response of HNSCC cell lines to targeted HER2 inhibitors. Results Forty-two laryngeal SCC samples were screened by targeted sequencing, of which 4 were positive for HER2 amplification. Two samples identified with sequencing showed HER2 overexpression on immunohistochemistry. Two of 94 oral cavity SCC samples were positive for HER2 on immunohistochemistry. Analysis of 288 patients from publicly available HNSCC sequencing data revealed 9 amplifications in HER2. Protein expression

  8. Adjuvant trastuzumab in HER2-positive breast cancer.

    PubMed

    Slamon, Dennis; Eiermann, Wolfgang; Robert, Nicholas; Pienkowski, Tadeusz; Martin, Miguel; Press, Michael; Mackey, John; Glaspy, John; Chan, Arlene; Pawlicki, Marek; Pinter, Tamas; Valero, Vicente; Liu, Mei-Ching; Sauter, Guido; von Minckwitz, Gunter; Visco, Frances; Bee, Valerie; Buyse, Marc; Bendahmane, Belguendouz; Tabah-Fisch, Isabelle; Lindsay, Mary-Ann; Riva, Alessandro; Crown, John

    2011-10-06

    Trastuzumab improves survival in the adjuvant treatment of HER-positive breast cancer, although combined therapy with anthracycline-based regimens has been associated with cardiac toxicity. We wanted to evaluate the efficacy and safety of a new nonanthracycline regimen with trastuzumab. We randomly assigned 3222 women with HER2-positive early-stage breast cancer to receive doxorubicin and cyclophosphamide followed by docetaxel every 3 weeks (AC-T), the same regimen plus 52 weeks of trastuzumab (AC-T plus trastuzumab), or docetaxel and carboplatin plus 52 weeks of trastuzumab (TCH). The primary study end point was disease-free survival. Secondary end points were overall survival and safety. At a median follow-up of 65 months, 656 events triggered this protocol-specified analysis. The estimated disease-free survival rates at 5 years were 75% among patients receiving AC-T, 84% among those receiving AC-T plus trastuzumab, and 81% among those receiving TCH. Estimated rates of overall survival were 87%, 92%, and 91%, respectively. No significant differences in efficacy (disease-free or overall survival) were found between the two trastuzumab regimens, whereas both were superior to AC-T. The rates of congestive heart failure and cardiac dysfunction were significantly higher in the group receiving AC-T plus trastuzumab than in the TCH group (P<0.001). Eight cases of acute leukemia were reported: seven in the groups receiving the anthracycline-based regimens and one in the TCH group subsequent to receiving an anthracycline outside the study. The addition of 1 year of adjuvant trastuzumab significantly improved disease-free and overall survival among women with HER2-positive breast cancer. The risk-benefit ratio favored the nonanthracycline TCH regimen over AC-T plus trastuzumab, given its similar efficacy, fewer acute toxic effects, and lower risks of cardiotoxicity and leukemia. (Funded by Sanofi-Aventis and Genentech; BCIRG-006 ClinicalTrials.gov number, NCT00021255.).

  9. Induction of HER2 Immunity in Outbred Domestic Cats by DNA Electrovaccination.

    PubMed

    Gibson, Heather M; Veenstra, Jesse J; Jones, Richard; Vaishampayan, Ulka; Sauerbrey, Michele; Bepler, Gerold; Lum, Lawrence; Reyes, Joyce; Weise, Amy; Wei, Wei-Zen

    2015-07-01

    Domestic cats share human living environments and genetic traits. They develop spontaneous feline mammary carcinoma (FMC) with similar histopathology to human breast cancer. HER2 and AKT phosphorylation was demonstrated in primary FMC by immunoblot analysis, indicating HER2 as a therapeutic target. FMC lines K12 and K248 expressing HER1, HER2, and HER3 were sensitive to receptor tyrosine kinase (RTK) inhibitors gefitinib and lapatinib. To test HER2 vaccine response in cats, purpose-bred, healthy cats were electrovaccinated with heterologous (xenogeneic) or point-mutated feline HER2 DNA. T-cell reactivity to feline self-HER2 was detected in 4 of 10 cats that received bear HER2, human-rat fusion HER2 (E2Neu) or mutant feline HER2 (feHER2-K), which contains a single amino acid substitution. The variable T-cell responses may resemble that in the genetically heterogeneous human population. All immune sera to heterologous HER2 recognized feline HER2 expressed in 3T3 cells (3T3/HER2), but not that in FMC K12 or K248. Immune sera to mutant pfeHER2-K bound 3T3/HER2 cells weakly, but they showed better recognition of K12 and K248 cells that also express HER1 and HER3, suggesting distinct HER2 epitopes displayed by FMC that may be simulated by feHER2-K. In summary, HER2 DNA electroporation overcomes T-cell immune tolerance in approximately 40% of healthy cats and induces antibodies with distinct specificity. Vaccination studies in domestic cats can expedite vaccine iteration to guide human vaccine design and better predict outcome, with the added benefit of helping feline mammary tumor patients.

  10. Induction of HER2 Immunity in Outbred Domestic Cats by DNA Electrovaccination

    PubMed Central

    Gibson, Heather; Veenstra, Jesse; Jones, Richard; Vaishampayan, Ulka; Sauerbrey, Michele; Bepler, Gerold; Lum, Lawrence; Reyes, Joyce; Weise, Amy; Wei, Wei-Zen

    2015-01-01

    Domestic cats share human living environments and genetic traits. They develop spontaneous feline mammary carcinoma (FMC) with histopathology similar to human breast cancer. HER2 and AKT phosphorylation was demonstrated in primary FMC by immunoblot, indicating HER2 as a therapeutic target. FMC lines K12 and K248 expressing HER1, HER2 and HER3 were sensitive to receptor tyrosine kinase (RTK) inhibitors gefitinib and lapatinib. To test HER2 vaccine response in cats, purpose-bred, healthy cats were electrovaccinated with heterologous (xenogeneic) or point-mutated feline HER2 DNA. T-cell reactivity to feline self-HER2 was detected in 4 of 10 cats that received bear HER2, human/rat fusion HER2 (E2Neu) or mutant feline HER2 (feHER2-K) which contains a single amino acid substitution. The variable T-cell responses may resemble that in the genetically heterogeneous human population. All immune sera to heterologous HER2 recognized feline HER2 expressed in 3T3 cells (3T3/HER2), but not that in FMC K12 or K248. Immune sera to mutant pfeHER2-K bound 3T3/HER2 cells weakly, but they demonstrated better recognition of K12 and K248 cells that also express HER1 and HER3, suggesting distinct HER2 epitopes displayed by FMC that may be simulated by feHER2-K. In summary, HER2 DNA electroporation overcomes T-cell immune tolerance in ~40% healthy cats and induces antibodies with distinct specificity. Vaccination studies in domestic cats can expedite vaccine iteration to guide human vaccine design and better predict outcome, with the added benefit of helping feline mammary tumor patients. PMID:25711535

  11. HER2 expression identifies dynamic functional states within circulating breast cancer cells.

    PubMed

    Jordan, Nicole Vincent; Bardia, Aditya; Wittner, Ben S; Benes, Cyril; Ligorio, Matteo; Zheng, Yu; Yu, Min; Sundaresan, Tilak K; Licausi, Joseph A; Desai, Rushil; O'Keefe, Ryan M; Ebright, Richard Y; Boukhali, Myriam; Sil, Srinjoy; Onozato, Maristela L; Iafrate, Anthony J; Kapur, Ravi; Sgroi, Dennis; Ting, David T; Toner, Mehmet; Ramaswamy, Sridhar; Haas, Wilhelm; Maheswaran, Shyamala; Haber, Daniel A

    2016-09-01

    Circulating tumour cells in women with advanced oestrogen-receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer acquire a HER2-positive subpopulation after multiple courses of therapy. In contrast to HER2-amplified primary breast cancer, which is highly sensitive to HER2-targeted therapy, the clinical significance of acquired HER2 heterogeneity during the evolution of metastatic breast cancer is unknown. Here we analyse circulating tumour cells from 19 women with ER(+)/HER2(-) primary tumours, 84% of whom had acquired circulating tumour cells expressing HER2. Cultured circulating tumour cells maintain discrete HER2(+) and HER2(-) subpopulations: HER2(+) circulating tumour cells are more proliferative but not addicted to HER2, consistent with activation of multiple signalling pathways; HER2(-) circulating tumour cells show activation of Notch and DNA damage pathways, exhibiting resistance to cytotoxic chemotherapy, but sensitivity to Notch inhibition. HER2(+) and HER2(-) circulating tumour cells interconvert spontaneously, with cells of one phenotype producing daughters of the opposite within four cell doublings. Although HER2(+) and HER2(-) circulating tumour cells have comparable tumour initiating potential, differential proliferation favours the HER2(+) state, while oxidative stress or cytotoxic chemotherapy enhances transition to the HER2(-) phenotype. Simultaneous treatment with paclitaxel and Notch inhibitors achieves sustained suppression of tumorigenesis in orthotopic circulating tumour cell-derived tumour models. Together, these results point to distinct yet interconverting phenotypes within patient-derived circulating tumour cells, contributing to progression of breast cancer and acquisition of drug resistance.

  12. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Way, Tzong-Der; Kao, Ming-Ching; Lin, Jen-Kun

    2004-02-06

    Apigenin is a low toxicity and non-mutagenic phytopolyphenol and protein kinase inhibitor. It exhibits anti-proliferating effects on human breast cancer cells. Here we examined several human breast cancer cell lines having different levels of HER2/neu expression and found that apigenin exhibited potent growth-inhibitory activity in HER2/neu-overexpressing breast cancer cells but was much less effective for those cells expressing basal levels of HER2/neu. Induction of apoptosis was also observed in HER2/neu-overexpressing breast cancer cells in a dose- and time-dependent manner. However, the one or more molecular mechanisms of apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells remained to be elucidated. A cell survival pathway involving phosphatidylinositol 3-kinase (PI3K), and Akt is known to play an important role in inhibiting apoptosis in response to HER2/neu-overexpressing breast cancer cells, which prompted us to investigate whether this pathway plays a role in apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells. Our results showed that apigenin inhibits Akt function in tumor cells in a complex manner. First, apigenin directly inhibited the PI3K activity while indirectly inhibiting the Akt kinase activity. Second, inhibition of HER2/neu autophosphorylation and transphosphorylation resulting from depleting HER2/neu protein in vivo was also observed. In addition, apigenin inhibited Akt kinase activity by preventing the docking of PI3K to HER2/HER3 heterodimers. Therefore, we proposed that apigenin-induced cellular effects result from loss of HER2/neu and HER3 expression with subsequent inactivation of PI3K and AKT in cells that are dependent on this pathway for cell proliferation and inhibition of apoptosis. This implies that the inhibition of the HER2/HER3 heterodimer function provided an especially effective strategy for blocking the HER2/neu-mediated transformation of breast cancer cells. Our results also

  13. HER2 amplification level is not a prognostic factor for HER2-positive breast cancer with trastuzumab-based adjuvant treatment: a systematic review and meta-analysis

    PubMed Central

    Xu, Qian-Qian; Pan, Bo; Wang, Chang-Jun; Zhou, Yi-Dong; Mao, Feng; Lin, Yan; Guan, Jing-Hong; Shen, Song-Jie; Zhang, Xiao-Hui; Xu, Ya-Li; Zhong, Ying; Wang, Xue-Jing; Zhang, Yan-Na; Sun, Qiang

    2016-01-01

    Background Trastuzumab-based therapy is a standard, targeted treatment for HER2-positive breast cancer in the adjuvant setting. However, patients do not benefit equally from it and the association between HER2 amplification level and patients' survival remains controversial. A systematic review and meta-analysis was conducted by incorporating all available evidence to evaluate the association between disease free survival (DFS) and HER2 amplification level. Results Three cohort studies involving 1360 HER2-positive breast cancer patients stratified by HER2 amplification magnitude were eligible for meta-analysis. The combined HRs for DFS were 1.05 (95% CI: 0.80−1.36, p = 0.74) and 0.97 (95% CI: 0.73−1.29, p = 0.83) for HER2 gene copy number (GCN) and HER2/CEP 17 ratio. No evidence of heterogeneity or public bias was found. Methods Databases including PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials (CENTRAL), were searched for eligible literature. HER2 amplification level was evaluated by fluorescence in situ hybridization (FISH) in terms of gene copy number (GCN) and HER2/CEP17 ratio. Hazard ratios (HRs) for DFS with 95% confidence interval (CI) according to the amplification level of HER2 were extracted. The outcomes were synthesized based on a fixed-effects model. Conclusions HER2 amplification level is not a prognostic factor for HER2-positive breast cancer with trastuzumab-based targeted therapy in the clinical adjuvant setting. PMID:27566580

  14. HER2 amplification and overexpression are significantly correlated in mucinous epithelial ovarian cancer.

    PubMed

    Chao, Wan-Ru; Lee, Ming-Yung; Lin, Wea-Long; Chen, Chi-Kuan; Lin, Jau-Chen; Koo, Chiew-Loon; Sheu, Gwo-Tarng; Han, Chih-Ping

    2014-04-01

    HER2 gene amplification and protein over-expression are important factors in predicting clinical sensitivity to anti-HER2 therapies in breast, gastric or gastroesophageal junction cancer patients. The aim of this study was to evaluate the correlation between HER2 gene copy numbers and HER2 protein expressions in mucinous epithelial ovarian cancer (EOC). Of the 49 tissue microarray samples of mucinous EOC, we applied 2010 ToGA trial (Trastuzumab for Gastric Cancer) surgical specimen scoring criteria to analyze the HER2 protein expression by an immunohistochemistry (IHC) test with Dako (Carpenteria, CA), c-erb-B2 antibody, and the HER2 gene amplification by the fluorescence in situ hybridization (FISH) test with Abbott/Vysis PathVysion HER2 DNA Probe Kit (Abbott Molecular Inc., Des Plaines, IA). We achieved a high overall concordance of 97.56% between nonequivocal HER2 results by IHC and FISH tests. In addition, HER2 gene copies before chromosome-17 correction increased significantly in a stepwise order through the negative, equivocal and positive IHC result categories (P<.001), as did the HER2 gene copies after chromosome-17 correction (P<.001). On the other hand, HER2 IHC results correlated significantly with both chromosome-17-uncorrected HER2 gene copy numbers (ρ=0.630, P<.001) and chromosome-17 corrected HER2 gene copy numbers (ρ=0.558, P<.001). We concluded that both chromosome-17 corrected and uncorrected HER2 gene copies correlated significantly with HER2 IHC results. Tests for the HER2 gene copies per tumor cell either before or after correction of chromosome-17 can be applied as a potentially valuable tool to analyze the HER2 status in mucinous EOC.

  15. Utility of comprehensive genomic sequencing for detecting HER2-positive colorectal cancer.

    PubMed

    Shimada, Yoshifumi; Yagi, Ryoma; Kameyama, Hitoshi; Nagahashi, Masayuki; Ichikawa, Hiroshi; Tajima, Yosuke; Okamura, Takuma; Nakano, Mae; Nakano, Masato; Sato, Yo; Matsuzawa, Takeaki; Sakata, Jun; Kobayashi, Takashi; Nogami, Hitoshi; Maruyama, Satoshi; Takii, Yasumasa; Kawasaki, Takashi; Homma, Kei-Ichi; Izutsu, Hiroshi; Kodama, Keisuke; Ring, Jennifer E; Protopopov, Alexei; Lyle, Stephen; Okuda, Shujiro; Akazawa, Kohei; Wakai, Toshifumi

    2017-02-21

    HER2-targeted therapy is considered effective for KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (CRC). In general, HER2 status is determined by the use of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Comprehensive genomic sequencing (CGS) enables the detection of gene mutations and copy number alterations including KRAS mutation and HER2 amplification; however, little is known about the utility of CGS for detecting HER2-positive CRC. To assess its utility, we retrospectively investigated 201 patients with stage I-IV CRC. The HER2 status of the primary site was assessed using IHC and FISH, and HER2 amplification of the primary site was also assessed using CGS, and the findings of these approaches were compared in each patient. CGS successfully detected alterations in 415 genes including KRAS codon 12/13 mutation and HER2 amplification. Fifty-nine (29%) patients had a KRAS codon 12/13 mutation. Ten (5%) patients were diagnosed as HER2-positive because of HER2 IHC 3+, and the same 10 (5%) patients had HER2 amplification evaluated using CGS. The results of HER2 status and HER2 amplification were completely identical in all 201 patients (P < 0.001). Nine of the 10 HER2-positive patients were KRAS 12/13 wild-type and were considered possible candidates for HER2-targeted therapy. CGS has the same utility as IHC and FISH for detecting HER2-positive patients who are candidates for HER2-targeted therapy, and facilitates precision medicine and tailor-made treatment.

  16. Marked heterogeneity of HER2/NEU gene amplification in endometrial serous carcinoma.

    PubMed

    Buza, Natalia; Hui, Pei

    2013-12-01

    Significant heterogeneity of HER2 protein expression has been recently observed in HER2 positive endometrial serous carcinomas. Tumor cells with HER2 overexpression and/or gene amplification in a heterogeneous tumor may represent a biologically more aggressive subclone that is clinically relevant to prognosis and potential targeted therapy. To correlate with HER2 protein heterogeneity, we investigated the heterogeneity of HER2/NEU gene amplification in endometrial serous carcinoma. A total of 17 endometrial serous carcinomas with heterogeneous HER2 protein expression were selected for the study, including nine cases with a 3+ and eight cases with a 2+ immunohistochemical score. Initial reflex HER2 FISH was available for seven of the eight 2+ cases, five of which showed HER2/NEU gene amplification. All 17 cases underwent repeat FISH targeting larger tumor tissue areas. Ten cases (72%) displayed striking heterogeneity of HER2/NEU gene copy number in the form of cluster amplification. Diffuse HER2 amplification was observed in four cases, no amplification was seen in three tumors. In cases with cluster amplification, HER2 protein overexpression by immunohistochemistry closely correlated at the cellular level with HER2/NEU gene amplification. In conclusion, the significant percentage of cases with heterogeneous HER2/NEU gene amplification indicates that the existing HER2 testing guidelines designed for breast cancer may not be applicable to endometrial serous carcinoma. Clinical testing on multiple different tumor samples or large tumor tissue sections is recommended for both immunohistochemistry and FISH assessment of HER2 status. Direct comparison with the HER2 immunostaining pattern may be helpful in detecting HER2 amplified areas in a heterogeneous tumor.

  17. Intrinsic HER2 V777L mutation mediates resistance to trastuzumab in a breast cancer patient.

    PubMed

    Hirotsu, Yosuke; Nakagomi, Hiroshi; Amemiya, Kenji; Oyama, Toshio; Inoue, Masayuki; Mochizuki, Hitoshi; Omata, Masao

    2017-01-01

    HER2 (ERBB2) is an oncogene and 20% of breast cancers display HER2 amplification. The HER2 monoclonal antibody, trastuzumab, is used to treat breast cancers that display HER2 amplification, with good responses in 80-90% of cases; however, 10% of tumours develop resistance to trastuzumab. In this study, we collected data of primary breast cancer patients who treated at hospital during 2004-2014. In our cohort, 205 of 1497 primary breast cancer patients showed HER2-amplification, and 20 experienced recurrence after trastuzumab therapy. Of the 20 recurrent cases, only six patients had metastatic sites, excluding brain metastases, which were resistant to trastuzumab. To examine trastuzumab resistance in HER2-amplified breast cancer, we analysed clinical specimens before and after trastuzumab therapy. The results indicated that an intrinsic activating mutation leads to a valine-to-leucine substitution at codon 777 within the HER2 kinase domain (HER2 V777L). This was identified in one of six cases of a HER2-amplified breast cancer, both pre- and post-treatment; however, HER2 V777L was not identified in 14 responders who were treated with trastuzumab. These results suggest that HER2 V777L mutation is responsible for, and a predictive marker of, trastuzumab resistance. This is the first report to show that HER2 V777L is coincident with HER2-amplification in breast cancers that have developed trastuzumab resistance.

  18. HER2 missense mutations have distinct effects on oncogenic signaling and migration.

    PubMed

    Zabransky, Daniel J; Yankaskas, Christopher L; Cochran, Rory L; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M; Red Brewer, Monica; Rosen, D Marc; Dalton, W Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A; Manto, Kristen M; Bose, Ron; Lauring, Josh; Arteaga, Carlos L; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-11-10

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as "negative" by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them.

  19. HER2 heterogeneity in gastric/gastroesophageal cancers: From benchside to practice.

    PubMed

    Grillo, Federica; Fassan, Matteo; Sarocchi, Francesca; Fiocca, Roberto; Mastracci, Luca

    2016-07-14

    HER2 is overexpressed in approximately 10%-20% of gastric and gastroesophageal junction carcinomas. In these types of cancer, accurate assessment of HER2 status is mandatory, for selecting patients who may benefit from targeted therapies with anti-HER2 drugs such as Trastuzumab. This manuscript focuses on HER2 in gastric carcinogenesis, on optimal evaluation of HER2 and on the possible causes which may contribute to inaccurate HER2 evaluation. Similarly to breast cancer HER2 evaluation, standardization of HER2 testing in gastric cancer is necessary in diagnostic practice. The three principle aspects which require consideration are: (1) the choice of sample with regards to cancer morphology - intestinal vs diffuse areas; (2) the choice of scoring criteria - use of HER2 scoring criteria specific for gastric cancer; and (3) the choice of HER2 evaluation methods - use of an algorithm in which both immunohistochemistry and in situ hybridization play a role. Problematic issues include: (1) pre-analytic variables with particular emphasis on fixation; (2) recommended methodology for HER2 assessment (immunohistochemistry vs in situ hybridization); (3) HER2 heterogeneity both within the primary tumor and between primary tumor and metastases; (4) reliability of biopsies in HER 2 evaluation; and (5) quantity of sample (FFPE blocks from surgical specimens or endoscopic biopsies) necessary for an adequate assessment.

  20. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  1. HER2 heterogeneity in gastric/gastroesophageal cancers: From benchside to practice

    PubMed Central

    Grillo, Federica; Fassan, Matteo; Sarocchi, Francesca; Fiocca, Roberto; Mastracci, Luca

    2016-01-01

    HER2 is overexpressed in approximately 10%-20% of gastric and gastroesophageal junction carcinomas. In these types of cancer, accurate assessment of HER2 status is mandatory, for selecting patients who may benefit from targeted therapies with anti-HER2 drugs such as Trastuzumab. This manuscript focuses on HER2 in gastric carcinogenesis, on optimal evaluation of HER2 and on the possible causes which may contribute to inaccurate HER2 evaluation. Similarly to breast cancer HER2 evaluation, standardization of HER2 testing in gastric cancer is necessary in diagnostic practice. The three principle aspects which require consideration are: (1) the choice of sample with regards to cancer morphology - intestinal vs diffuse areas; (2) the choice of scoring criteria - use of HER2 scoring criteria specific for gastric cancer; and (3) the choice of HER2 evaluation methods - use of an algorithm in which both immunohistochemistry and in situ hybridization play a role. Problematic issues include: (1) pre-analytic variables with particular emphasis on fixation; (2) recommended methodology for HER2 assessment (immunohistochemistry vs in situ hybridization); (3) HER2 heterogeneity both within the primary tumor and between primary tumor and metastases; (4) reliability of biopsies in HER 2 evaluation; and (5) quantity of sample (FFPE blocks from surgical specimens or endoscopic biopsies) necessary for an adequate assessment. PMID:27468182

  2. A systematic analysis of the resistance and sensitivity of HER2YVMA receptor tyrosine kinase mutant to tyrosine kinase inhibitors in HER2-positive lung cancer.

    PubMed

    Shen, Xiaokun; Chen, Beibei; Ma, Zhaosheng; Xie, Bojian; Cao, Xinguang; Yang, Tiejun; Zhao, Yuzhou; Qin, Jianjun; Li, Jicheng; Cao, Feilin; Chen, Xiaobing

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) has become a well-established target for the treatment of HER2-positive lung cancer. However, a frequently observed in-frame mutation that inserts amino acid quadruplex Tyr776-Val777-Met778-Ala779 at G776 (G776(YVMA)) in HER2 kinase domain can cause drug resistance and sensitivity, largely limiting the application of reversible tyrosine kinase inhibitors in lung cancer therapy. A systematic investigation of the intermolecular interactions between the HER2(YVMA) mutant and clinical small-molecule inhibitors would help to establish a complete picture of drug response to HER2 G776(YVMA) insertion in lung cancer, and to design new tyrosine kinase inhibitors with high potency and selectivity to target the lung cancer-related HER2(YVMA) mutant. Here, we combined homology modeling, ligand grafting, structure minimization, molecular simulation and binding affinity analysis to profile a number of tyrosine kinase inhibitors against the G776(YVMA) insertion in HER2. It is found that the insertion is far away from HER2 active pocket and thus cannot contact inhibitor ligand directly. However, the insertion is expected to induce marked allosteric effect on some regions around the pocket, including A-loop and hinges connecting between the N- and C-lobes of HER2 kinase domain, which may exert indirect influence to inhibitor binding. Most investigated inhibitors exhibit weak binding strength to both wild-type and mutant HER2, which can be attributed to steric hindrance that impairs ligand compatibility with HER2 active pocket. However, the cognate inhibitor lapatinib and the non-cognate inhibitor bosutinib were predicted to have low affinity for wild-type HER2 but high affinity for HER2(YVMA) mutant, which was confirmed by subsequent kinase assay experiments; the inhibitory potencies of bosutinib against wild-type and mutant HER2 were determined to be IC(50) > 1000 and =27 nM, respectively, suggesting that the bosutinib might be

  3. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer.

    PubMed

    Gijsen, Merel; King, Peter; Perera, Tim; Parker, Peter J; Harris, Adrian L; Larijani, Banafshé; Kong, Anthony

    2010-12-21

    Herceptin (trastuzumab) is used in patients with breast cancer who have HER2 (ErbB2)-positive tumours. However, its mechanisms of action and how acquired resistance to Herceptin occurs are still poorly understood. It was previously thought that the anti-HER2 monoclonal antibody Herceptin inhibits HER2 signalling, but recent studies have shown that Herceptin does not decrease HER2 phosphorylation. Its failure to abolish HER2 phosphorylation may be a key to why acquired resistance inevitably occurs for all responders if Herceptin is given as monotherapy. To date, no studies have explained why Herceptin does not abolish HER2 phosphorylation. The objective of this study was to investigate why Herceptin did not decrease HER2 phosphorylation despite being an anti-HER2 monoclonal antibody. We also investigated the effects of acute and chronic Herceptin treatment on HER3 and PKB phosphorylation in HER2-positive breast cancer cells. Using both Förster resonance energy transfer (FRET) methodology and conventional Western blot, we have found the molecular mechanisms whereby Herceptin fails to abolish HER2 phosphorylation. HER2 phosphorylation is maintained by ligand-mediated activation of EGFR, HER3, and HER4 receptors, resulting in their dimerisation with HER2. The release of HER ligands was mediated by ADAM17 through a PKB negative feedback loop. The feedback loop was activated because of the inhibition of PKB by Herceptin treatment since up-regulation of HER ligands and ADAM17 also occurred when PKB phosphorylation was inhibited by a PKB inhibitor (Akt inhibitor VIII, Akti-1/2). The combination of Herceptin with ADAM17 inhibitors or the panHER inhibitor JNJ-26483327 was able to abrogate the feedback loop and decrease HER2 phosphorylation. Furthermore, the combination of Herceptin with JNJ-26483327 was synergistic in tumour inhibition in a BT474 xenograft model. We have determined that a PKB negative feedback loop links ADAM17 and HER ligands in maintaining HER2

  4. Comparison between Real-Time Quantitative PCR Detection of HER2 mRNA Copy Number in Peripheral Blood and ELISA of Serum HER2 Protein for Determining HER2 Status in Breast Cancer Patients

    PubMed Central

    Savino, Maria; Parrella, Paola; Copetti, Massimiliano; Barbano, Raffaela; Murgo, Roberto; Fazio, Vito Michele; Valori, Vanna Maria; Carella, Massimo; Garrubba, Maria; Santini, Stefano Angelo

    2009-01-01

    Background: The development of non-invasive procedure to determine HER2 status may represent a powerful method for monitoring disease progression and response to the treatment. Methods: Serum samples and RNA from peripheral blood were evaluated in 85 breast cancer patients (49 HER2 positive and 36 HER2 negative) and 22 healthy controls. HER2 mRNA levels were measured by real-time quantitative PCR (QPCR) and serum HER2 protein by immunoenzimatic assay (EIA). ROC curve analyses were used to determine the optimal cut off values. Results: A statistically significant difference was detected for both QPCR and EIA in HER2 positive patients as compared with both healthy controls and HER2 negative tumours. QPCR showed a 91% (CI95%: 84%–98%) specificity and a 78% (CI95%: 68%–88%) sensitivity for an optimal cut off value of 4.74. The optimal cut off value for EIA was 22 ng/ml yielding a 95% (CI95%: 90%–100%) specificity and a 59% (CI95%: 48%–70%) sensitivity. The QPCR assay was slightly less specific than EIA in discriminating HER2 positive breast cancers from HER2 negative tumours (78% CI95%: 69%–87% versus 86% CI95%: 79%–93%), but it was more sensitive (76% CI95%: 67%–85% versus 55% CI95%: 44%–66%). Conclusions: Our results indicate that QPCR performs better than EIA in the determination of HER2 status of breast cancer patients and could be useful in monitoring the disease during follow up. PMID:19478388

  5. High cell-surface density of HER2 deforms cell membranes

    PubMed Central

    Chung, Inhee; Reichelt, Mike; Shao, Lily; Akita, Robert W.; Koeppen, Hartmut; Rangell, Linda; Schaefer, Gabriele; Mellman, Ira; Sliwkowski, Mark X.

    2016-01-01

    Breast cancers (BC) with HER2 overexpression (referred to as HER2 positive) progress more aggressively than those with normal expression. Targeted therapies against HER2 can successfully delay the progression of HER2-positive BC, but details of how this overexpression drives the disease are not fully understood. Using single-molecule biophysical approaches, we discovered a new effect of HER2 overexpression on disease-relevant cell biological changes in these BC. We found HER2 overexpression causes deformation of the cell membranes, and this in turn disrupts epithelial features by perturbing cell–substrate and cell–cell contacts. This membrane deformation does not require receptor signalling activities, but results from the high levels of HER2 on the cell surface. Our finding suggests that early-stage morphological alterations of HER2-positive BC cells during cancer progression can occur in a physical and signalling-independent manner. PMID:27599456

  6. Simvastatin inhibits tumor angiogenesis in HER2-overexpressing human colorectal cancer.

    PubMed

    Li, Gang; Zheng, Junhua; Xu, Bin; Ling, Jie; Qiu, Wei; Wang, Yongbing

    2017-01-01

    Overexpression of the HER2 oncogene contributes to tumor angiogenesis, which is an essential hallmark of cancer. Simvastatin has been reported to exhibit antitumor activities in several cancers; however, its roles and molecular mechanismsin the regulation of colorectal angiogenesis remain to be clarified. Here, we show that colon cancer cells express high levels of VEGF, total HER2 and phosphorylated HER2, and simvastatin apparently decreased their expression in HER2-overexpressing colon cancer cells. Simvastatin pretreatment reduced endothelial tube formation in vitro and microvessel density in vivo. Furthermore, simvastatin markedly inhibited tumor angiogenesis even in the presence of heregulin (HRG)-β1 (a HER2 co-activator) pretreatment in HER2+ tumor cells. Mechanistic investigation showed that simvastatin significantly abrogated HER2-induced tumor angiogenesis by inhibiting VEGF secretion. Together, these results provide a novel mechanism underlying the simvastatin-induced inhibition of tumor angiogenesis through regulating HER2/VEGF axis.

  7. Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers -- role of estrogen receptor and HER2 reactivation

    PubMed Central

    2011-01-01

    Introduction The human epidermal growth factor receptor 2 (HER2)-targeted therapies trastuzumab (T) and lapatinib (L) show high efficacy in patients with HER2-positive breast cancer, but resistance is prevalent. Here we investigate resistance mechanisms to each drug alone, or to their combination using a large panel of HER2-positive cell lines made resistant to these drugs. Methods Response to L + T treatment was characterized in a panel of 13 HER2-positive cell lines to identify lines that were de novo resistant. Acquired resistant lines were then established by long-term exposure to increasing drug concentrations. Levels and activity of HER2 and estrogen receptor (ER) pathways were determined by qRT-PCR, immunohistochemistry, and immunoblotting assays. Cell growth, proliferation, and apoptosis in parental cells and resistant derivatives were assessed in response to inhibition of HER or ER pathways, either pharmacologically (L, T, L + T, or fulvestrant) or by using siRNAs. Efficacy of combined endocrine and anti-HER2 therapies was studied in vivo using UACC-812 xenografts. Results ER or its downstream products increased in four out of the five ER+/HER2+ lines, and was evident in one of the two intrinsically resistant lines. In UACC-812 and BT474 parental and resistant derivatives, HER2 inhibition by T reactivated HER network activity to promote resistance. T-resistant lines remained sensitive to HER2 inhibition by either L or HER2 siRNA. With more complete HER2 blockade, resistance to L-containing regimens required the activation of a redundant survival pathway, ER, which was up-regulated and promoted survival via various Bcl2 family members. These L- and L + T-resistant lines were responsive to fulvestrant and to ER siRNA. However, after prolonged treatment with L, but not L + T, BT474 cells switched from depending on ER as a survival pathway, to relying again on the HER network (increased HER2, HER3, and receptor ligands) to overcome L's effects. The combination

  8. JWA loss promotes cell migration and cytoskeletal rearrangement by affecting HER2 expression and identifies a high-risk subgroup of HER2-positive gastric carcinoma patients

    PubMed Central

    Qian, Jing; Zhu, Weiyou; Wang, Keming; Ma, Lin; Xu, Jin; Xu, Tongpeng; Røe, Oluf Dimitri; Li, Aiping; Zhou, Jianwei; Shu, Yongqian

    2016-01-01

    Background and Aims JWA, a microtubule-associated protein (MAP) involved in apoptosis, has been identified as a suppressor of metastasis, and it affects cell migration in melanoma and its downregulation in tumor is an idependent negative prognostic factor in resectable gastric cancer. HER2 overexpression has been observed in gastric cancer (GC) cells and implicated in the metastatic phenotype. However, the biological role of JWA in migration and its clinical value in HER2-positive GC remain elusive. Results JWA suppresses EGF-induced cell migration and actin cytoskeletal rearrangement by abrogating HER2 expression and downstream PI3K/AKT signaling in HER2-overexpressing GC cell lines. The modulation of HER2 by JWA is dependent on ERK activation and consequent PEA3 upregulation and activation. Reduced JWA expression is associated with high HER2 expression and with poor survival in patients with AGC, whereas HER2 expression alone is not associated with survival. However, concomitant low JWA and high HER2 expression is associated with unfavorable outcomes. Additionally, when patients were stratified by JWA expression, those with higher HER2 expression in the low JWA expression subgroup exhibited worse survival. Methods The impact of JWA on the EGF-induced migration of HER2-positive GC cells was studied using transwell assays and G-LISA assays. Western blotting, real-time PCR, electrophoretic mobility shift assays and luciferase assays were utilized to investigate the mechanisms by which JWA affects HER2. The association of JWA with HER2 and its clinical value were further analyzed by IHC in 128 pairs of advanced gastric cancer (AGC) and adjacent normal tissue samples. Conclusions This study characterizes a novel mechanism for regulating cell motility in HER2-overexpressing GC cells involving JWA-mediated MEK/ERK/PEA3 signaling activation and HER2 downregulation. Furthermore, JWA may be a useful prognostic indicator for advanced GC and may help stratify HER2-positive

  9. New ASCO/CAP guideline recommendations for HER2 testing increase the proportion of reflex in situ hybridization tests and of HER2 positive breast cancers.

    PubMed

    Tchrakian, N; Flanagan, L; Harford, J; Gannon, J M; Quinn, C M

    2016-02-01

    Accurate determination of tumour human epidermal growth factor receptor type 2 (HER2) status is critical for optimal treatment of breast cancer. In October 2013, the American Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP) issued joint updated guideline recommendations for HER2 testing in breast cancer, with a revised algorithm for interpretation of immunohistochemistry (IHC) and in situ hybridisation (ISH) results. This study investigates the impact on HER2 IHC categorisation, implication for reflex ISH testing and potential for identification of false negative IHC. HER2 IHC preparations on 251 invasive breast tumours, originally reported according to 2007 guidelines, were re-scored using 2013 guidelines and the diagnostic categories compared. The results of ISH testing on a separate cohort of 32 breast tumours reported as HER2 IHC 2+ following the introduction of the 2013 guidelines, that would have been designated 1+ according to 2007, were reviewed. Application of 2013 guidelines resulted in a decrease in tumours classified as HER2 negative (83/251 vs 144/251) and a comparable increase in those classified as equivocal (2+) (139/251 vs 80/251). Relatively few tumours were re-classified as positive (29/251 vs 27/251). Furthermore, 3/32 breast cancer cases (HER2 IHC 2+ as per 2013 guidelines, 1+ using 2007 guidelines) were HER2 ISH positive. Application of the 2013 guidelines increases the HER2 IHC equivocal (2+) category and requirement for reflex ISH testing. The reduced threshold for ISH testing identifies some patients with HER2 positive breast cancer whose tumours would have been categorised as HER2 negative according to the 2007 guidelines.

  10. Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells.

    PubMed

    Liu, Phillip C C; Liu, Xiangdong; Li, Yanlong; Covington, Maryanne; Wynn, Richard; Huber, Reid; Hillman, Milton; Yang, Gengjie; Ellis, Dawn; Marando, Cindy; Katiyar, Kamna; Bradley, Jodi; Abremski, Kenneth; Stow, Mark; Rupar, Mark; Zhuo, Jincong; Li, Yun-Long; Lin, Qiyan; Burns, David; Xu, Meizhong; Zhang, Colin; Qian, Ding-Quan; He, Chunhong; Sharief, Vaqar; Weng, Lingkai; Agrios, Costas; Shi, Eric; Metcalf, Brian; Newton, Robert; Friedman, Steven; Yao, Wenqing; Scherle, Peggy; Hollis, Gregory; Burn, Timothy C

    2006-06-01

    Overexpression and activating mutations of ErbB family members have been implicated in the development and progression of a variety of tumor types. Cleavage of the HER2 receptor by an as yet unidentified ectodomain sheddase has been shown to liberate the HER2 extracellular domain (ECD) leaving a fragment with constitutive kinase activity that can provide ligand-independent growth and survival signals to the cell. This process is clinically relevant since HER2 ECD serum levels in metastatic breast cancer patients are associated with a poorer prognosis. Thus, inhibition of the HER2 sheddase may provide a novel therapeutic approach for breast cancer. We describe the use of transcriptional profiling, pharmacological and in vitro approaches to identify the major source of HER2 sheddase activity. Real-time PCR was used to identify those ADAM family members which were expressed in HER2 shedding cell lines. siRNAs that selectively inhibited ADAM10 expression reduced HER2 shedding. In addition, we profiled over 1000 small molecules for in vitro inhibition of a panel of ADAM and MMP proteins; a positive correlation was observed only between ADAM10 inhibition and reduction of HER2 ECD shedding in a cell based assay. Finally, in vitro studies demonstrate that in combination with low doses of Herceptin, selective ADAM10 inhibitors decrease proliferation in HER2 overexpressing cell lines while inhibitors, that do not inhibit ADAM10, have no impact. These results are consistent with ADAM10 being a major determinant of HER2 shedding, the inhibition of which, may provide a novel therapeutic approach for treating a variety of cancers with active HER2 signaling.

  11. HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status

    PubMed Central

    Lawler, Katherine; Patel, Gargi; Woodman, Natalie; Kelleher, Muireann T.; Pinder, Sarah E.; Rowley, Mark; Ellis, Paul A.; Purushotham, Anand D.; Coolen, Anthonius C.; Kholodenko, Boris N.; Vojnovic, Borivoj; Gillett, Cheryl; Ng, Tony

    2016-01-01

    Overexpression of HER2 is an important prognostic marker, and the only predictive biomarker of response to HER2-targeted therapies in invasive breast cancer. HER2-HER3 dimer has been shown to drive proliferation and tumor progression, and targeting of this dimer with pertuzumab alongside chemotherapy and trastuzumab, has shown significant clinical utility. The purpose of this study was to accurately quantify HER2-HER3 dimerisation in formalin fixed paraffin embedded (FFPE) breast cancer tissue as a novel prognostic biomarker. FFPE tissues were obtained from patients included in the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) study. HER2-HER3 dimerisation was quantified using an improved fluorescence lifetime imaging microscopy (FLIM) histology-based analysis. Analysis of 131 tissue microarray cores demonstrated that the extent of HER2-HER3 dimer formation as measured by Förster Resonance Energy Transfer (FRET) determined through FLIM predicts the likelihood of metastatic relapse up to 10 years after surgery (hazard ratio 3.91 (1.61–9.5), p = 0.003) independently of HER2 expression, in a multivariate model. Interestingly there was no correlation between the level of HER2 protein expressed and HER2-HER3 heterodimer formation. We used a mathematical model that takes into account the complex interactions in a network of all four HER proteins to explain this counterintuitive finding. Future utility of this technique may highlight a group of patients who do not overexpress HER2 protein but are nevertheless dependent on the HER2-HER3 heterodimer as driver of proliferation. This assay could, if validated in a group of patients treated with, for instance pertuzumab, be used as a predictive biomarker to predict for response to such targeted therapies. PMID:27618787

  12. Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma

    PubMed Central

    Ahmed, Nabil; Brawley, Vita S.; Hegde, Meenakshi; Robertson, Catherine; Ghazi, Alexia; Gerken, Claudia; Liu, Enli; Dakhova, Olga; Ashoori, Aidin; Corder, Amanda; Gray, Tara; Wu, Meng-Fen; Liu, Hao; Hicks, John; Rainusso, Nino; Dotti, Gianpietro; Mei, Zhuyong; Grilley, Bambi; Gee, Adrian; Rooney, Cliona M.; Brenner, Malcolm K.; Heslop, Helen E.; Wels, Winfried S.; Wang, Lisa L.; Anderson, Peter; Gottschalk, Stephen

    2015-01-01

    Purpose The outcome for patients with metastatic or recurrent sarcoma remains poor. Adoptive therapy with tumor-directed T cells is an attractive therapeutic option but has never been evaluated in sarcoma. Patients and Methods We conducted a phase I/II clinical study in which patients with recurrent/refractory human epidermal growth factor receptor 2 (HER2) –positive sarcoma received escalating doses (1 × 104/m2 to 1 × 108/m2) of T cells expressing an HER2-specific chimeric antigen receptor with a CD28.ζ signaling domain (HER2-CAR T cells). Results We enrolled 19 patients with HER2-positive tumors (16 osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal tumor, and one desmoplastic small round cell tumor). HER2-CAR T-cell infusions were well tolerated with no dose-limiting toxicity. At dose level 3 (1 × 105/m2) and above, we detected HER2-CAR T cells 3 hours after infusion by quantitative polymerase chain reaction in 14 of 16 patients. HER2-CAR T cells persisted for at least 6 weeks in seven of the nine evaluable patients who received greater than 1 × 106/m2 HER2-CAR T cells (P = .005). HER2-CAR T cells were detected at tumor sites of two of two patients examined. Of 17 evaluable patients, four had stable disease for 12 weeks to 14 months. Three of these patients had their tumor removed, with one showing ≥ 90% necrosis. The median overall survival of all 19 infused patients was 10.3 months (range, 5.1 to 29.1 months). Conclusion This first evaluation of the safety and efficacy of HER2-CAR T cells in patients with cancer shows the cells can persist for 6 weeks without evident toxicities, setting the stage for studies that combine HER2-CAR T cells with other immunomodulatory approaches to enhance their expansion and persistence. PMID:25800760

  13. HER2 expression and PI3K-Akt pathway alterations in gastric cancer.

    PubMed

    Sukawa, Yasutaka; Yamamoto, Hiroyuki; Nosho, Katsuhiko; Ito, Miki; Igarashi, Hisayoshi; Naito, Takafumi; Mitsuhashi, Kei; Matsunaga, Yasutaka; Takahashi, Taiga; Mikami, Masashi; Adachi, Yasushi; Suzuki, Hiromu; Shinomura, Yasuhisa

    2014-01-01

    The anti-HER2 antibody trastuzumab has led to an era of personalized therapy in gastric cancer (GC). As a result, HER2 expression has become a major concern in GC. HER2 overexpression is seen in 7-34% of GC cases. Trastuzumab is an antibody that targets the HER2 extracellular domain and induces antibody-dependent cellular cytotoxicity and inhibition of the HER2 downstream signals. Mechanisms of resistance to trastuzumab have been reported in breast cancer. There are various mechanisms underlying trastuzumab resistance, such as alterations of HER2 structure or surroundings, dysregulation of HER2 downstream signal effectors and interaction of HER2 with other membrane receptors. The PI3K-Akt pathway is one of the main downstream signaling pathways of HER2. It is well known that PIK3CA mutations and phosphate and tensin homolog (PTEN) inactivation cause over-activation of the downstream signal without an upstream signal activation. Frequencies of PIK3CA mutations and PTEN inactivation have been reported to be 4-25 and 16-77%, respectively. However, little is known about the association between HER2 expression and PI3K-Akt pathway alterations in GC. We have found that HER2 over-expression was significantly correlated with pAkt expression in GC tissues. Furthermore, pAkt expression was correlated with poor prognosis. These results suggest that the PI3K-Akt pathway plays an important role in HER2-positive GC. Moreover, PIK3CA mutations and/or PTEN inactivation might affect the effectiveness of HER2-targeting therapy. Hence, it is necessary to clarify not only HER2 alterations but also PI3K-Akt pathway alterations for HER2-targeting therapy in GC. This review will introduce recent investigations and consider the current status of HER2-targeted therapy for treatment of GC.

  14. Her2+ and b-HCG Producing Undifferentiated Gastric Adenocarcinoma.

    PubMed

    Eivaz-Mohammadi, Sahar; Gonzalez-Ibarra, Fernando; Abdul, Waheed; Tarar, Omer; Malik, Khurram; Syed, Amer K

    2014-01-01

    A 25-year-old Hispanic female with a history of anemia, schizoaffective disorder, and psychosis was admitted for anemia associated with fatigue, weakness, shortness of breath, night sweats, weight loss, and abdominal and lower back pain for the past two months. On routine management, she was found to have a positive serum b-HCG of 80.4 (0-5 mIU/mL) but the patient denied any sexual activity in her life. During her admission, U/S of the pelvis was noncontributory. CT angiogram of the chest was significant for prominent mediastinal and hilar lymph nodes, diffusely thickened stomach suggesting gastric malignancy with multiple hypoenhancing lesions in the liver and diffuse lytic lesions in the spine and sacrum suspicious for metastatic disease. The MRI of the abdomen confirmed the CT angiogram findings. After these findings, EGD was performed which showed lesions in the antrum, body of the stomach, fundus, and cardia on the lesser curvature of the stomach body correlating with carcinoma. The biopsy was positive for Her2, b-HCG producing poorly differentiated gastric adenocarcinoma. Patient underwent one successful round of chemotherapy with Taxotene, Cisplatin, and 5-FU for Stage IV gastric adenocarcinoma.

  15. HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer

    PubMed Central

    Choi, Yiseul; Ko, Young San; Park, Jinju; Choi, Youngsun; Kim, Younghoon; Pyo, Jung-Soo; Jang, Bo Gun; Hwang, Douk Ho; Kim, Woo Ho; Lee, Byung Lan

    2016-01-01

    AIM To investigated the relationships between HER2, c-Jun N-terminal kinase (JNK) and protein kinase B (AKT) with respect to metastatic potential of HER2-positive gastric cancer (GC) cells. METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility. CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC. PMID:27895401

  16. Even With Very Small Breast Tumors, Studies Find HER2 Status Matters | Division of Cancer Prevention

    Cancer.gov

    Two retrospective studies have found that women with HER2-positive breast tumors (that is, tumors that produce too much of the HER2 protein) that are 1 centimeter or smaller had a higher risk of their disease returning within 5 years than women with similarly small HER2-negative tumors. |

  17. Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer.

    PubMed

    Corominas-Faja, Bruna; Vellon, Luciano; Cuyàs, Elisabet; Buxó, Maria; Martin-Castillo, Begoña; Serra, Dolors; García, Jordi; Lupu, Ruth; Menendez, Javier A

    2017-07-01

    Fatty acid synthase (FASN) is a key lipogenic enzyme for de novo fatty acid biosynthesis and a druggable metabolic oncoprotein that is activated in most human cancers. We evaluated whether the HER2-driven lipogenic phenotype might represent a biomarker for sensitivity to pharmacological FASN blockade. A majority of clinically HER2-positive tumors were scored as FASN overexpressors in a series of almost 200 patients with invasive breast carcinoma. Re-classification of HER2-positive breast tumors based on FASN gene expression predicted a significantly inferior relapse-free and distant metastasis-free survival in HER2+/FASN+ patients. Notably, non-tumorigenic MCF10A breast epithelial cells engineered to overexpress HER2 upregulated FASN gene expression, and the FASN inhibitor C75 abolished HER2-induced anchorage-independent growth and survival. Furthermore, in the presence of high concentrations of C75, HER2-negative MCF-7 breast cancer cells overexpressing HER2 (MCF-7/HER2) had significantly higher levels of apoptosis than HER2-negative cells. Finally, C75 at non-cytotoxic concentrations significantly reduced the capacity of MCF-7/HER2 cells to form mammospheres, an in vitro indicator of cancer stem-like cells. Collectively, our findings strongly suggest that the HER2-FASN lipogenic axis delineates a group of breast cancer patients that might benefit from treatment with therapeutic regimens containing FASN inhibitors.

  18. Why is this effective HSP90 inhibitor not being developed in HER2+ breast cancer?

    PubMed

    Arteaga, Carlos L

    2011-08-01

    Inhibition of the HSP90 chaperone leads to degradation of the HER2 receptor. The HSP90 inhibitor tanespimycin in combination with trastuzumab is active in patients with HER2-overexpressing metastatic breast cancer. This combination is one of several HER2-targeted therapies that will significantly improve the outcome of patients with this subtype of breast cancer. ©2011 AACR.

  19. Why is this effective HSP90 inhibitor not being developed in HER2+ breast cancer?

    PubMed Central

    Arteaga, Carlos L.

    2011-01-01

    Inhibition of the HSP90 chaperone leads to degradation of the HER2 receptor. The HSP90 inhibitor tanespimycin in combination with trastuzumab is active in patients with HER2-overexpressing metastatic breast cancer. This combination is one of several HER2-targeted therapies that will significantly improve the outcome of patients with this subtype of breast cancer. PMID:21670086

  20. HER2 regulates Brk/PTK6 stability via upregulating calpastatin, an inhibitor of calpain

    PubMed Central

    Ai, Midan; Qiu, Songbo; Lu, Yang; Fan, Zhen

    2013-01-01

    Breast tumor kinase (Brk), also known as protein kinase-6 (PTK6), is a nonreceptor protein-tyrosine kinase that has a close functional relationship with the human epidermal growth factor receptor 2 (HER2). High levels of Brk were found in HER2-positive tumor specimens from patients with invasive ductal breast cancer; however, the underlying mechanism of the cooverexpression of Brk and HER2 remains elusive. In the current study, we explored the mechanism of HER2 and Brk co-overexpression in breast cancer cells by investigating the effect of overexpression and knockdown of HER2 on the level of Brk in breast cancer cells. We found that Brk was more stable in HER2-elevated cells than in control vector-transfected cells and was less stable in HER2 siRNA-treated cells than in control siRNA-treated cells, suggesting that HER2 regulates Brk protein stability. Further studies indicated that degradation of Brk involved a calpain-1-mediated proteolytic pathway and indicated an inverse relationship between the level of HER2 expression and calpain-1 activity. We found that HER2 inhibited calpain-1 activity through upregulating calpastatin, an endogenous calpain inhibitor. Silencing of HER2 downregulated calpastatin, and the downregulation could be rescued by overexpression of constitutively active MEK. Together, these data offer novel mechanistic insights into the functional relationship between Brk and HER2. PMID:23707532

  1. Analysis of HER2 status in gastroesophageal tumor specimens using a new automated HER2 IQFISH pharmDx™ (Dako Omnis) assay.

    PubMed

    Viale, Giuseppe; Paterson, Jennifer; Bloch, Miriam; Csathy, George; Allen, David; Dell'Orto, Patrizia; Kjærsgaard, Gitte; Levy, Yaron Y; Jørgensen, Jan Trøst

    2016-12-01

    The human epidermal growth factor receptor 2 (HER2) is an important target for treatment of gastroesophageal cancer. Different slide-based assays are available for assessment of HER2 status. Overexpression of the HER2 protein is assessed by immunohistochemistry (IHC) whereas amplification of the HER2 gene is assessed by fluorescence in situ hybridization (FISH) or other in situ hybridization (ISH) methods. Here we report a summary of the validation data on HER2 IQFISH pharmDx™ (Dako Omnis), a newly developed assay for the automated staining platform Dako Omnis. This assay uses a non-toxic buffer that significantly reduces the hybridization time, which results in a total turnaround time of less than 4 hours from deparaffinization to counting of the gene and centromere signals. The data reported in the current summary cover method comparison, assessment of staining quality, observer-to-observer reproducibility as well as reproducibility within and between laboratories. Based on data from the different studies it was concluded that HER2 IQFISH pharmDx (Dako Omnis) is a reliable and robust assay, with high precision and at least comparable to the manual HER2 IQFISH pharmDx™ assay. The HER2 IQFISH pharmDx (Dako Omnis) assay is currently not commercially available outside the Europe Union.

  2. Extracellular Matrix/Integrin Signaling Promotes Resistance to Combined Inhibition of HER2 and PI3K in HER2(+) Breast Cancer.

    PubMed

    Hanker, Ariella B; Estrada, Mónica Valeria; Bianchini, Giampaolo; Moore, Preston D; Zhao, Junfei; Cheng, Feixiong; Koch, James P; Gianni, Luca; Tyson, Darren R; Sánchez, Violeta; Rexer, Brent N; Sanders, Melinda E; Zhao, Zhongming; Stricker, Thomas P; Arteaga, Carlos L

    2017-06-15

    PIK3CA mutations are associated with resistance to HER2-targeted therapies. We previously showed that HER2(+)/PIK3CA(H1047R) transgenic mammary tumors are resistant to the HER2 antibodies trastuzumab and pertuzumab but respond to PI3K inhibitor buparlisib (TPB). In this study, we identified mechanisms of resistance to combined inhibition of HER2 and PI3K. TPB-resistant tumors were generated by treating HER2(+)/PIK3CA(H1047R) tumor-bearing mice long term with the drug combination. RNA sequencing of TPB-resistant tumors revealed that extracellular matrix and cell adhesion genes, including collagen II (Col2a1), were markedly upregulated, accompanied by activation of integrin β1/Src. Cells derived from drug-resistant tumors were sensitive to TBP when grown in vitro, but exhibited resistance when plated on collagen or when reintroduced into mice. Drug resistance was partially reversed by the collagen synthesis inhibitor ethyl-3,4-dihydroxybenzoate. Inhibition of integrin β1/Src blocked collagen-induced resistance to TPB and inhibited growth of drug-resistant tumors. High collagen II expression was associated with significantly lower clinical response to neoadjuvant anti-HER2 therapy in HER2(+) breast cancer patients. Overall, these data suggest that upregulation of collagen/integrin/Src signaling contributes to resistance to combinatorial HER2 and PI3K inhibition. Cancer Res; 77(12); 3280-92. ©2017 AACR. ©2017 American Association for Cancer Research.

  3. Dual-colour HER2/chromosome 17 chromogenic in situ hybridisation enables accurate assessment of HER2 genomic status in ovarian tumours.

    PubMed

    Yan, Benedict; Choo, Shoa Nian; Mulyadi, Patricia; Srivastava, Supriya; Ong, Chee Wee; Yong, Kol Jia; Putti, Thomas; Salto-Tellez, Manuel; Lim, Gkeok Stzuan Diana

    2011-12-01

    Ovarian cancer is a leading cause of gynaecological cancer-related morbidity and mortality. There has been increasing interest in the potential utility of anti-human epidermal growth factor receptor 2 (anti-HER2) agents in the treatment of this disease, with the attendant need to identify suitable predictive biomarkers of response to treatment. The authors studied the prevalence of HER2 genomic amplification and overexpression in 85 ovarian tumours in the local patient cohort of this study, as well as the concordance rate between immunohistochemistry, fluorescent in situ hybridisation (FISH) and a dual-colour HER2/chromosome 17 centromere chromogenic in situ hybridisation (CISH) assay. The authors identified HER2 genomic amplification and protein overexpression in 35.3% (6/17) and 29.4% (5/17), respectively, of primary ovarian mucinous carcinomas. No other cancer subtypes displayed HER2 amplification or protein overexpression. The authors also found a perfect concordance between FISH and dual-colour CISH analysis (κ coefficient 1.0, p<0.001). The results of this study support existing reports that HER2 genomic amplification and protein overexpression are predominantly found in primary ovarian mucinous carcinomas. Given the perfect concordance between the FISH and dual-colour CISH assays and the advantages of CISH over FISH analysis, future clinical trials investigating the use of anti-HER2 therapeutics in ovarian carcinomas should incorporate dual-colour CISH as part of the HER2 status assessment algorithm.

  4. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy

    PubMed Central

    Giuliano, Mario; Hu, Huizhong; Wang, Yen-Chao; Fu, Xiaoyong; Nardone, Agostina; Herrera, Sabrina; Mao, Sufeng; Contreras, Alejandro; Gutierrez, Carolina; Wang, Tao; Hilsenbeck, Susan G.; De Angelis, Carmine; Wang, Nicholas J.; Heiser, Laura M.; Gray, Joe W.; Lopez-Tarruella, Sara; Pavlick, Anne C.; Trivedi, Meghana V.; Chamness, Gary C.; Chang, Jenny C.; Osborne, C. Kent; Rimawi, Mothaffar F.; Schiff, Rachel

    2015-01-01

    Purpose To investigate the direct effect and therapeutic consequences of epidermal growth factor receptor 2 (HER2)-targeting therapy on expression of estrogen receptor (ER) and Bcl2 in preclinical models and clinical tumor samples. Experimental design Archived xenograft tumors from two preclinical models (UACC812 and MCF7/HER2-18) treated with ER and HER2-targeting therapies, and also HER2+ clinical breast cancer specimens collected in a lapatinib neoadjuvant trial (baseline and week 2 post treatment), were used. Expression levels of ER and Bcl2 were evaluated by immunohistochemistry and western blot. The effects of Bcl2 and ER inhibition, by ABT-737 and fulvestrant respectively, were tested in parental versus lapatinib-resistant UACC812 cells in vitro. Results Expression of ER and Bcl2 was significantly increased in xenograft tumors with acquired resistance to anti-HER2 therapy, compared with untreated tumors, in both preclinical models (UACC812: ER p=0.0014; Bcl2 p<0.001. MCF7/HER2-18: ER p=0.0007; Bcl2 p=0.0306). In the neoadjuvant clinical study, lapatinib treatment for two weeks was associated with parallel upregulation of ER and Bcl2 (Spearman’s coefficient: 0.70; p=0.0002). Importantly, 18% of tumors originally ER-negative (ER−) converted to ER+ upon anti-HER2 therapy. In ER−/HER2+ MCF7/HER2-18 xenografts, ER re-expression was primarily observed in tumors responding to potent combination of anti-HER2 drugs. Estrogen deprivation added to this anti-HER2 regimen significantly delayed tumor progression (p=0.018). In the UACC812 cells, fulvestrant, but not ABT-737, was able to completely inhibit anti-HER2-resistant growth (p<0.0001). Conclusion HER2 inhibition can enhance or restore ER expression with parallel Bcl2 upregulation, representing an ER-dependent survival mechanism potentially leading to anti-HER2 resistance. PMID:26015514

  5. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity.

    PubMed

    Hanna, Wedad M; Rüschoff, Josef; Bilous, Michael; Coudry, Renata A; Dowsett, Mitch; Osamura, Robert Y; Penault-Llorca, Frédérique; van de Vijver, Marc; Viale, Giuseppe

    2014-01-01

    Trastuzumab-containing therapy is a standard of care for patients with HER2+ breast cancer. HER2 status is routinely assigned using in situ hybridization to assess HER2 gene amplification, but interpretation of in situ hybridization results may be challenging in tumors with chromosome 17 polysomy or intratumoral genetic heterogeneity. Apparent chromosome 17 polysomy, defined by increased chromosome enumeration probe 17 (CEP17) signal number, is a common genetic aberration in breast cancer and represents an alternative mechanism for increasing HER2 copy number. Some studies have linked elevated CEP17 count ('polysomy') with adverse clinicopathologic features and HER2 overexpression, although there are numerous discrepancies in the literature. There is evidence that elevated CEP17 ('polysomy') count might account for trastuzumab response in tumors with normal HER2:CEP17 ratios. Nonetheless, recent studies establish that apparent 'polysomy' (CEP17 increase) is usually related to focal pericentromeric gains rather than true polysomy. Assigning HER2 status may also be complex where multiple cell subclones with distinct HER2 amplification characteristics coexist within the same tumor. Such genetic heterogeneity affects up to 40% of breast cancers when assessed according to a College of American Pathologists guideline, although other definitions have been proposed. Recent data have associated heterogeneity with unfavorable clinicopathologic variables and poor prognosis. Genetically heterogeneous tumors harboring HER2-amplified subclones have the potential to benefit from trastuzumab, but this has yet to be evaluated in clinical studies. In this review, we discuss the implications of apparent polysomy 17 and genetic heterogeneity for assigning HER2 status in clinical practice. Among our recommendations, we support the use of mean HER2 copy number rather than HER2:CEP17 ratio to define HER2 positivity in cases where coamplification of the centromere might mask HER2

  6. Bovine herpesvirus 4-based vector delivering a hybrid rat/human HER-2 oncoantigen efficiently protects mice from autochthonous Her-2+ mammary cancer

    PubMed Central

    Jacca, Sarah; Rolih, Valeria; Quaglino, Elena; Franceschi, Valentina; Tebaldi, Giulia; Bolli, Elisabetta; Rosamilia, Alfonso; Ottonello, Simone; Cavallo, Federica; Donofrio, Gaetano

    2016-01-01

    ABSTRACT The epidermal growth factor receptor 2 (HER-2) oncogene is a major target for the immunotherapy of breast cancer. Following up to the therapeutic success achieved with Her-2-targeting monoclonal antibodies, immune-prophylactic approaches directed against Her-2 have also been investigated taking into account, and trying to overcome, Her-2 self-tolerance. Perhaps due to safety (and efficacy) concerns, the least explored anti-Her-2 active immunization strategy so far has been the one relying on viral-vectored vaccine formulations. Taking advantage of the favorable properties of bovine herpesvirus 4 (BoHV-4) in terms of safety and ease of manipulation as well as its previously documented ability to transduce and confer immunogenicity to heterologous antigens, we tested the ability of different recombinant HER-2-BoHV-4 immunogens to 8break tolerance and elicit a protective, anti-mammary tumor antibody response in HER-2 transgenic BALB-neuT mice. All the tested constructs expressed the HER-2 transgenes at high levels and elicited significant cellular immune responses in BALB/c mice upon administration via either DNA vaccination or viral infection. In BALB-neuT mice, instead, only the viral construct expressing the membrane-bound chimeric form of Her-2 protein (BoHV-4-RHuT-gD) elicited a humoral immune response that was more intense and earlier-appearing than that induced by DNA vaccination. In keeping with this observation, two administrations of BoHV-4-RHuT-gD effectively protected BALB-neuT mice from tumor formation, with 50% of vaccinated animals tumor-free after 30 weeks from immunization compared to 100% of animals exhibiting at least one palpable tumor in the case of animals vaccinated with the other BoHV-4-HER-2 constructs. PMID:27141335

  7. Human breast cancer cells harboring a gatekeeper T798M mutation in HER2 overexpress EGFR ligands and are sensitive to dual inhibition of EGFR and HER2.

    PubMed

    Rexer, Brent N; Ghosh, Ritwik; Narasanna, Archana; Estrada, Mónica Valeria; Chakrabarty, Anindita; Song, Youngchul; Engelman, Jeffrey A; Arteaga, Carlos L

    2013-10-01

    Mutations in receptor tyrosine kinase (RTK) genes can confer resistance to receptor-targeted therapies. A T798M mutation in the HER2 oncogene has been shown to confer resistance to the tyrosine kinase inhibitor (TKI) lapatinib. We studied the mechanisms of HER2-T798M-induced resistance to identify potential strategies to overcome that resistance. HER2-T798M was stably expressed in BT474 and MCF10A cells. Mutant cells and xenografts were evaluated for effects of the mutation on proliferation, signaling, and tumor growth after treatment with combinations of inhibitors targeting the EGFR/HER2/HER3/PI3K axis. A low 3% allelic frequency of the T798M mutant shifted 10-fold the IC50 of lapatinib. In mutant-expressing cells, lapatinib did not block basal phosphorylation of HER2, HER3, AKT, and ERK1/2. In vitro kinase assays showed increased autocatalytic activity of HER2-T798M. HER3 association with PI3K p85 was increased in mutant-expressing cells. BT474-T798M cells were also resistant to the HER2 antibody trastuzumab. These cells were sensitive to the pan-PI3K inhibitors BKM120 and XL147 and the irreversible HER2/EGFR TKI afatinib but not the MEK1/2 inhibitor CI-1040, suggesting continued dependence of the mutant cells on ErbB receptors and downstream PI3K signaling. BT474-T798M cells showed increased expression of the EGFR ligands EGF, TGFα, amphiregulin, and HB-EGF. Addition of the EGFR neutralizing antibody cetuximab or lapatinib restored trastuzumab sensitivity of BT474-T798M cells and xenografts, suggesting that increased EGFR ligand production was causally associated with drug resistance. Simultaneous blockade of HER2 and EGFR should be an effective treatment strategy against HER2 gene-amplified breast cancer cells harboring T798M mutant alleles. ©2013 AACR.

  8. Determining true HER2 gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes: implications for anti-HER2 targeted therapy.

    PubMed

    Tse, Chun Hing; Hwang, Harry C; Goldstein, Lynn C; Kandalaft, Patricia L; Wiley, Jesse C; Kussick, Steven J; Gown, Allen M

    2011-11-01

    The ratio of human epidermal growth factor receptor 2 (HER2) to CEP17 by fluorescent in situ hybridization (FISH) with the centromeric probe CEP17 is used to determine HER2 gene status in breast cancer. Increases in CEP17 copy number have been interpreted as representing polysomy 17. However, pangenomic studies have demonstrated that polysomy 17 is rare. This study tests the hypothesis that the use of alternative chromosome 17 reference genes might more accurately assess true HER2 gene status. In all, 171 patients with breast cancer who had HER2 FISH that had increased mean CEP17 copy numbers (> 2.6) were selected for additional chromosome 17 studies that used probes for Smith-Magenis syndrome (SMS), retinoic acid receptor alpha (RARA), and tumor protein p53 (TP53) genes. A eusomic copy number exhibited in one or more of these loci was used to calculate a revised HER2-to-chromosome-17 ratio by using the eusomic gene locus as the reference. Of 132 cases classified as nonamplified on the basis of their HER2:CEP17 ratios, 58 (43.9%) were scored as amplified by using alternative chromosome 17 reference gene probes, and 13 (92.9%) of 14 cases scored as equivocal were reclassified as amplified. Among the cases with mean HER2 copy number of 4 to 6, 41 (47.7%) of 86 had their HER2 gene status upgraded from nonamplified to amplified, and four (4.7%) of 86 were upgraded from equivocal to amplified. Our results support the findings of recent pangenomic studies that true polysomy 17 is uncommon. Additional FISH studies that use probes to the SMS, RARA, and TP53 genes are an effective way to determine the true HER2 amplification status in patients with polysomy 17 and they have important potential implications for guiding HER2-targeted therapy in breast cancer.

  9. HER2 phosphorylates and destabilizes pro-apoptotic PUMA, leading to antagonized apoptosis in cancer cells.

    PubMed

    Carpenter, Richard L; Han, Woody; Paw, Ivy; Lo, Hui-Wen

    2013-01-01

    HER2 is overexpressed in 15-20% of breast cancers. HER2 overexpression is known to reduce apoptosis but the underlying mechanisms for this association remain unclear. To elucidate the mechanisms for HER2-mediated survival, we investigated the relationship between HER2 and p53 upregulated modulator of apoptosis (PUMA), a potent apoptosis inducer. Our results showed that HER2 interacts with PUMA, which was independent of HER2 activation. In addition, we observed that HER2 interacted with PUMA in both mitochondrial and non-mitochondrial compartments. We next examined whether HER2 phosphorylates PUMA. Notably, PUMA tyrosine phosphorylation has never been reported. Using an intracellular assay, we found PUMA to be phosphorylated in breast cancer cells with activated HER2. Via cell-free HER2 kinase assay, we observed that PUMA was directly phosphorylated by HER2. Activation of HER2 decreased PUMA protein half-life. To identify which of the three tyrosines within PUMA are targeted by HER2, we generated three PUMA non-phosphorylation mutants each with a single Tyr→Phe substitution. Results indicated that each PUMA single mutant had lost some, but not all phosphorylation by HER2 indicating that HER2 targets all three tyrosines. Consequently, we created an additional PUMA mutant with all three tyrosines mutated (TM-PUMA) that could not be phosphorylated by HER2. Importantly, TM-PUMA was found to have a longer half-life than PUMA. An inverse association was observed between HER2 and PUMA in 93 invasive breast carcinoma samples. We further found that TM-PUMA suppressed growth of breast cancer cells to a greater degree than PUMA. Also, TM-PUMA had a stronger propensity to induce apoptosis than PUMA. Together, our results demonstrate, for the first time, that PUMA can be tyrosine phosphorylated and that HER2-mediated phosphorylation destabilizes PUMA protein. The HER2-PUMA interplay represents a novel mechanism by which PUMA is regulated and a new molecular basis for HER2

  10. HER2 Phosphorylates and Destabilizes Pro-Apoptotic PUMA, Leading to Antagonized Apoptosis in Cancer Cells

    PubMed Central

    Carpenter, Richard L.; Han, Woody; Paw, Ivy; Lo, Hui-Wen

    2013-01-01

    HER2 is overexpressed in 15–20% of breast cancers. HER2 overexpression is known to reduce apoptosis but the underlying mechanisms for this association remain unclear. To elucidate the mechanisms for HER2-mediated survival, we investigated the relationship between HER2 and p53 upregulated modulator of apoptosis (PUMA), a potent apoptosis inducer. Our results showed that HER2 interacts with PUMA, which was independent of HER2 activation. In addition, we observed that HER2 interacted with PUMA in both mitochondrial and non-mitochondrial compartments. We next examined whether HER2 phosphorylates PUMA. Notably, PUMA tyrosine phosphorylation has never been reported. Using an intracellular assay, we found PUMA to be phosphorylated in breast cancer cells with activated HER2. Via cell-free HER2 kinase assay, we observed that PUMA was directly phosphorylated by HER2. Activation of HER2 decreased PUMA protein half-life. To identify which of the three tyrosines within PUMA are targeted by HER2, we generated three PUMA non-phosphorylation mutants each with a single Tyr→Phe substitution. Results indicated that each PUMA single mutant had lost some, but not all phosphorylation by HER2 indicating that HER2 targets all three tyrosines. Consequently, we created an additional PUMA mutant with all three tyrosines mutated (TM-PUMA) that could not be phosphorylated by HER2. Importantly, TM-PUMA was found to have a longer half-life than PUMA. An inverse association was observed between HER2 and PUMA in 93 invasive breast carcinoma samples. We further found that TM-PUMA suppressed growth of breast cancer cells to a greater degree than PUMA. Also, TM-PUMA had a stronger propensity to induce apoptosis than PUMA. Together, our results demonstrate, for the first time, that PUMA can be tyrosine phosphorylated and that HER2-mediated phosphorylation destabilizes PUMA protein. The HER2-PUMA interplay represents a novel mechanism by which PUMA is regulated and a new molecular basis for HER2

  11. Blockade of a key region in the extracellular domain inhibits HER2 dimerization and signaling.

    PubMed

    Menendez, Javier A; Schroeder, Barbara; Peirce, Susan K; Vellon, Luciano; Papadimitropoulou, Adriana; Espinoza, Ingrid; Lupu, Ruth

    2015-06-01

    Several treatment strategies target the human epidermal growth factor receptor 2 (HER2) in breast carcinomas, including monoclonal antibodies directed against HER2's extracellular domain (ECD) and small molecule inhibitors of its tyrosine kinase activity. Yet, novel therapies are needed that prevent HER2 dimerization with other HER family members, because current treatments are only partially effective. To test the hypothesis that HER2 activation requires a protein sequence in the HER2-ECD that mediates HER2 homo- and heterodimerization, we introduced a series of deletion mutations in the third subdomain of HER2-ECD. These deletion mutants were retrovirally expressed in breast cancer (BC) cells that naturally overexpress HER2 and in noncancerous, HER2-negative breast epithelial cells. One-factor analysis of variance or Student's t test were used to analyze differences. All statistical tests were two-sided. The smallest deletion in the ECD domain of HER2, which removed only 16 amino acids (HER2-ECDΔ451-466), completely disrupted the oncogenic potential of HER2. In contrast to wild-type HER2, the mutant-inhibited anchorage-independent growth (mean number of colonies: mutant, 70, 95% confidence interval [CI] = 55 to 85; wild-type, 400, 95% CI = 320 to 480, P < .001) increased sensitivity to paclitaxel treatment in both transformed and nontransformed cells. Overexpression of HER2Δ451-466 efficiently inhibited activation of HER1, HER2, and HER3 in all cell lines tested. These findings reveal that an essential "activating" sequence exists in the extracellular domain of HER2. Disruption of this sequence disables the HER2 dimerization loop, blocks subsequent activation of HER2-driven oncogenic signaling, and generates a dominant-negative form of HER2. Reagents specifically against this molecular activation switch may represent a novel targeted approach for the management of HER2-overexpressing carcinomas. © The Author 2015. Published by Oxford University Press. All

  12. Challenges in the clinical utility of the serum test for HER2 ECD

    PubMed Central

    Lam, Lian; McAndrew, Nicholas; Yee, Marla; Fu, Ting; Tchou, Julia C.; Zhang, Hongtao

    2012-01-01

    Approximately 15–30% of breast cancers over-express the HER2/neu receptor. Historically, over-expression of HER2/neu has been identified using IHC or FISH, both of which are invasive approaches requiring tissue samples. Recent evidence has shown that some tumors identified as “negative” using these methods can respond to HER2/neu targeted therapy. Shedding of the extracellular domain (ECD) of the receptor into the circulation has led to the development of serum test of HER2 ECD as an additional approach to probe HER2/neu overexpression. The serum test will be able to monitor the dynamic changes of HER2 status over the course of disease progression. Some studies further suggest that the serum HER2 ECD level and its change may serve as a biomarker to reflect patients’ response to therapy. Yet more than 10 years after the first serum HER2 ECD test was approved by the FDA, serum HER2 testing has yet to be widely used in clinical practice. In this article we will review the progress of the serum HER2 ECD test and discuss some obstacles impeding its incorporation into broad clinical practice. We will also discuss recent improvements in the sensitivity and specificity of the assay that offer some hope for the future of serum HER2 test. PMID:22521738

  13. Systematic assessment of HER2/neu in gynecologic neoplasms, an institutional experience.

    PubMed

    Woo, Jennifer S; Apple, Sophia K; Sullivan, Peggy S; Rao, Jian-Yu; Ostrzega, Nora; Moatamed, Neda A

    2016-10-22

    HER2/neu overexpression and/or amplification has been widely studied in a number of solid tumors, primarily in the breast. In gynecologic neoplasms, determination of HER2/neu status has not been well studied as a predictive biomarker in anti-HER2/neu treatment. We systematically evaluated the HER2/neu reactions by immunohistochemistry and fluorescent in situ hybridization in malignant gynecologic neoplasms as experienced in our institution. The HER2/neu overexpression or amplification occurred in 8 % of the cancers of the gynecological organs in our series. Majority of the HER2/neu overexpression and/or amplification occurred in clear cell (27 %) and serous (11 %) carcinomas. HER2/neu positivity was also seen in undifferentiated as well as in mixed clear cell and serous carcinomas. Discordant IHC and FISH results (positive by FISH but not IHC) was seen in 2 cases. Majority of the HER2/neu overexpression and/or amplification occurs in the endometrium rather than the ovary. Heterogeneity of the HER2/neu by IHC staining was in < 2 % of the tumors in our series. We recommend the HER2/neu studies on Müllerian carcinomas of clear cell, serous, and undifferentiated types, particularly when they arise in the endometrium. Since there are some discordant IHC/FISH results, we also propose performing the HER2/neu testing by FISH when the IHC score is less than 3 + .

  14. HER2 Dimerization Inhibitor Pertuzumab - Mode of Action and Clinical Data in Breast Cancer.

    PubMed

    Harbeck, Nadia; Beckmann, Matthias W; Rody, Achim; Schneeweiss, Andreas; Müller, Volkmar; Fehm, Tanja; Marschner, Norbert; Gluz, Oleg; Schrader, Iris; Heinrich, Georg; Untch, Michael; Jackisch, Christian

    2013-03-01

    The humanized monoclonal antibody pertuzumab prevents the dimerization of HER2 with other HER receptors, in particular the pairing of the most potent signaling heterodimer HER2/HER3, thus providing a potent strategy for dual HER2 inhibition. It binds to the extracellular domain of HER2 at a different epitope than trastuzumab. Pertuzumab and trastuzumab act in a complementary fashion and provide a more complete blockade of HER2-mediated signal transduction than either agent alone. Phase II studies demonstrated that pertuzumab was generally well tolerated as a single agent or in combination with trastuzumab and/or cytotoxic agents, and implied an improved clinical efficacy of the combination of pertuzumab and trastuzumab in early and advanced HER2-positive breast cancer. Results of the pivotal phase III study CLEOPATRA in patients with HER2-positive metastatic breast cancer demonstrated that the addition of pertuzumab to first-line combination therapy with docetaxel and trastuzumab significantly prolonged progression-free and overall survival without increasing cardiac toxicity. Currently, the combination of both antibodies is being explored in the palliative setting as well as in the treatment of early HER2-positive breast cancer. Dual HER2 inhibition with the HER2 dimerization inhibitor pertuzumab and trastuzumab may change clinical practice in HER2-positive first-line metastatic breast cancer treatment.

  15. Quantitative analysis of Her2 receptor expression in vivo by near-infrared optical imaging.

    PubMed

    Chernomordik, Victor; Hassan, Moinuddin; Lee, Sang Bong; Zielinski, Rafal; Gandjbakhche, Amir; Capala, Jacek

    2010-08-01

    Human epidermal growth factor receptor 2 (HER2) overexpression in breast cancers is associated with poor prognosis and resistance to therapy. Current techniques for estimating this important characteristic use ex vivo assays that require tissue biopsies. We suggest a novel noninvasive method to characterize HER2 expression in vivo, using optical imaging, based on HER2-specific probes (albumin-binding domain-fused-(ZHER2:342)2-Cys Affibody molecules [Affibody AB, Solna, Sweden], labeled with Alexa Fluor 750 [Molecular Probes, Invitrogen, Carlsbad, CA]) that could be used concomitantly with HER2-targeted therapy. Subcutaneous tumor xenografts, expressing different levels of HER2, were imaged with a near-infrared fluorescence small-animal imaging system at several times postinjection of the probe. The compartmental ligand-receptor model was used to calculate HER2 expression from imaging data. Correlation between HER2 amplification/overexpression in tumor cells and parameters, directly estimated from the sequence of optical images, was observed (eg, experimental data for BT474 xenografts indicate that initial slope, characterizing the temporal dependence of the fluorescence intensity detected in the tumor, linearly depends on the HER2 expression, as measured ex vivo by an enzyme-linked immunosorbent assay for the same tumor). The results obtained from tumors expressing different levels of HER2 substantiate a similar relationship between the initial slope and HER2 amplification/overexpression. This work shows that optical imaging, combined with mathematical modeling, allows noninvasive monitoring of HER2 expression in vivo.

  16. The genomics and therapeutics of HER2-positive gastric cancer—from trastuzumab and beyond

    PubMed Central

    Kelly, Ciara M.

    2016-01-01

    Gastric cancer is a biologically heterogeneous tumor. The identification of human epidermal growth factor receptor-2 (HER2) biomarker overexpression in gastric cancer represented a significant step towards unraveling the molecular complexity of this disease. Trastuzumab in combination with chemotherapy, in the first-line setting of patients with metastatic, HER2-positive gastric and gastroesophageal, represents the first targeted therapeutic to demonstrate improvement in response rate and survival in gastric cancer. However, not all patients with HER2-positive gastric cancer respond to trastuzumab and the majority of patients who do initially benefit from trastuzumab develop resistance to it. Advances in molecular oncology and cancer genomics have helped to classify gastric cancer into molecularly distinct subtypes. This information informs research efforts investigating the etiology of mechanisms of resistance to HER2-directed therapy and guides clinical investigation in methods to overcome this resistance. This article reviews anti-HER2-therapies that are currently used as standard of care in advanced, HER2-positive, breast cancer and are now under investigation as monotherapy and in combination with chemotherapy and/or a second HER2-directed agent in advanced HER2-positive gastric cancer. The future directions of clinical investigation in HER2-positive gastric cancer are also discussed including: novel HER2-directed therapies, the pharmacokinetics and pharmacodynamics of anti-HER2-therapies, the role of functional imaging, the potential of patient derived xenograft preclinical models and the importance of tumor genomic sequencing. PMID:27747089

  17. Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer.

    PubMed

    Wang, G; Qiu, J; Wang, R; Krause, A; Boyer, J L; Hackett, N R; Crystal, R G

    2010-08-01

    Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody (mAb) directed against an extracellular region of the human epidermal growth-factor receptor type 2 (HER2) protein. We hypothesized that a single adeno-associated virus (AAV)-mediated genetic delivery of an anti-HER2 antibody should be effective in mediating long-term production of anti-HER2 and in suppressing the growth of human tumors in a xenograft model in nude mice. The adeno-associated virus gene transfer vector AAVrh.10alphaHER2 was constructed based on a non-human primate AAV serotype rh.10 to express the complementary DNAs for the heavy and light chains of mAb 4D5, the murine precursor to trastuzumab. The data show that genetically transferred anti-HER2 selectively bound human HER2 protein and suppressed the proliferation of HER2(+) tumor cell lines. A single administration of AAVrh.10alphaHER2 provided long-term therapeutic levels of anti-HER2 antibody expression without inducing an anti-idiotype response, suppressed the growth of HER2(+) tumors and increased the survival of tumor bearing mice. In the context that trastuzumab therapy requires frequent and repeated administration, this strategy might be developed as an alternate platform for delivery of anti-HER2 therapy.

  18. Therapeutic strategies and mechanisms of tumorigenesis of HER2-overexpressing breast cancer

    PubMed Central

    Emde, Anna; Köstler, Wolfgang J.; Yarden, Yosef

    2010-01-01

    1. Abstract The receptor tyrosine kinase HER2 is overexpressed in approximately 25% of breast cancers. HER2 acts as a signal amplifier for its siblings, namely three different transmembrane receptors that collectively bind with 11 distinct growth factors of the EGF family. Thus, overexpression of HER2 confers aggressive invasive growth in preclinical models and in patients. Specific therapies targeting HER2 include monoclonal antibodies, antibody-drug conjugates, small molecule tyrosine kinase inhibitors, as well as heat shock protein and sheddase inhibitors. Two of these drugs have shown impressive – yet mostly transient – efficacy in patients with HER2 overexpressing breast cancer. We highlight the biological roles of HER2 in breast cancer progression, and overview the available therapeutic armamentarium directed against this receptor-kinase molecule. Focusing on the mechanisms that confer resistance to individual HER2 targeting agents, we envisage therapeutic approaches to delay or overcome the evolvement of resistance in patients. PMID:20951604

  19. Moderate HER2 expression as a prognostic factor in hormone receptor positive breast cancer.

    PubMed

    Eggemann, Holm; Ignatov, Tanja; Burger, Elke; Kantelhardt, Eva Johanna; Fettke, Franziska; Thomssen, Christoph; Costa, Serban Dan; Ignatov, Atanas

    2015-10-01

    Overexpression and/or amplification of human epidermal growth factor receptor 2 (HER2) is associated with poor prognosis in breast cancer and predicts response to anti-HER2 therapy in breast cancer. The prognostic relevance of moderate expression of HER2 is unclear. Data of 9872 patients with primary nonmetastatic breast cancer from the cancer registries of Magdeburg and Halle, Germany, were analyzed retrospectively. A total of 5907 patients with complete data sets including follow-up were eligible for analysis. HER2 status was determined as recommended by international guidelines. Of 5907 patients investigated, 5023 (68.4%) had HER2 0 and 1+ expression and 884 (12.0%) had HER2 (2+)/HER2- expression. Patients with hormone receptor positive (HR+) and HER2 (2+) tumors had a shorter median disease-free survival (DFS; P<0.0001) and breast cancer specific survival (BCSS; P=0.019) than HR+ patients with HER2 (0/1+) tumors. Among patients with HR- breast cancer there was no significant difference between HER2 (2+) and HER2 (0/1+) tumors. In multivariate analysis after adjustment for other prognostic factors, HER2 (2+) status remained an unfavorable prognostic factor for DFS (hazard ratio (HR)=1.217, 95% CI=1.052-1.408; P=0.008) but not for BCSS (HR=1.045, 95% CI=0.926-1.178; P=0.474). The HER2 (2+) status is an unfavorable prognostic factor for survival of patients with HR+ breast cancer. The impact of anti-HER2 therapy in this group of patients should be evaluated.

  20. SYNERGISM FROM COMBINED IMMUNOLOGIC AND PHARMACOLOGIC INHIBITION OF HER2 IN VIVO

    PubMed Central

    Morse, Michael A.; Wei, Junping; Hartman, Zachary; Xia, Wenle; Ren, Xiu-Rong; Lei, Gangjun; Barry, William T.; Osada, Takuya; Hobeika, Amy C.; Peplinski, Sharon; Jiang, Haixiang; Devi, Gayathri R.; Chen, Wei; Spector, Neil; Amalfitano, Andrea; Lyerly, H. Kim; Clay, Timothy M.

    2009-01-01

    The monoclonal antibody trastuzumab and the EGFR/HER2 tyrosine kinase inhibitor lapatinib improve the clinical outcome of patients with HER2-overexpressing breast cancer. However, the majority of metastatic cancers will eventually progress suggesting the need for other therapies. Because HER2 overexpression persists, we hypothesized that the anti-HER2 immune response induced by cancer vaccines would be an effective strategy for treating trastuzumab and lapatinib-refractory tumors. Furthermore, we hypothesized that the antibody response could synergize with lapatinib to enhance tumor inhibition. We developed a recombinant adenoviral vector expressing a kinase-inactive HER2 (Ad-HER2-ki) to use as a cancer vaccine. Vaccine-induced polyclonal HER2-specific anti-serum was analyzed for receptor internalization and signaling effects alone and in combination with lapatinib. Ad-HER2-ki vaccine induced potent T cell and antibody responses in mice and the vaccine-induced polyclonal HER2-specific anti-serum mediated receptor internalization and degradation much more effectively than trastuzumab. Our in vitro studies demonstrated that HER2-vaccine induced antibodies effectively caused a decrease in HER2 expression, but when combined with lapatinib caused significant inhibition of HER2 signaling, decreased pERK and pAKT levels, and reduced breast tumor cell proliferation. In addition, a known mechanism of resistance to lapatinib, induction of survivin, was inhibited. The combination of Ad-HER2-ki plus lapatinib also showed superior anti-tumor efficacy in vivo. Based on these results, we feel clinical studies using this approach to target HER2-overexpressing breast cancer, including trastuzumab- and lapatinib-resistant tumors is warranted. PMID:19856307

  1. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2012-01-01

    Approximately 25% of human breast cancers overexpress the HER2 (ErbB2) proto-oncogene, which confers a more aggressive tumor phenotype and associates with a poor prognosis in patients with this disease. Two approved therapies targeting HER2, the monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib, are clinically active against this type of breast cancer. However, a significant fraction of patients with HER2+ breast cancer treated with these agents eventually relapse or develop progressive disease. This suggests that tumors acquire or possess intrinsic mechanisms of resistance that allow escape from HER2 inhibition. This review focuses on mechanisms of intrinsic and/or acquired resistance to HER2-targeted therapies that have been identified in preclinical and clinical studies. These mechanisms involve alterations to HER2 itself, coexpression or acquisition of bypass signaling through other receptor or intracellular signaling pathways, defects in mechanisms of cell cycle regulation or apoptosis, and host factors that may modulate drug response. Emerging clinical evidence already suggests that combinations of therapies targeting HER2 as well as these resistance pathways will be effective in overcoming or preventing resistance.

  2. Assessment of HER2 amplification status in breast cancer using a new automated HER2 IQFISH pharmDx™ (Dako Omnis) assay.

    PubMed

    Viale, Giuseppe; Paterson, Jennifer; Bloch, Miriam; Csathy, George; Allen, David; Dell'Orto, Patrizia; Kjærsgaard, Gitte; Levy, Yaron Y; Jørgensen, Jan Trøst

    2016-08-01

    In breast cancer the human epidermal growth factor receptor 2 (HER2) is an important target for a number of different HER2 inhibitors. Different slide-based assays are available for assessment of treatment eligibility, which include fluorescence in situ hybridization (FISH) or other in situ hybridization (ISH) methods for assessment of the HER2 gene status. Here we report a summary of the validation data on HER2 IQFISH pharmDx™ (Dako Omnis), a newly developed assay for the automated staining platform Dako Omnis. The assay uses a non-toxic buffer that significantly reduces the hybridization time, which results in a total turnaround time of 3½ to 4h from deparaffinization to counting of the gene and centromere signals. The data reported in the current summary covers method comparison, assessment of staining quality, observer-to-observer reproducibility as well as reproducibility within and between laboratories. Based on data from the different studies it was concluded that HER2 IQFISH pharmDx (Dako Omnis) is a reliable and robust assay with a high precision that is at least comparable to the manual HER2 IQFISH pharmDx™ assay and the PathVysion(®)HER-2 DNA Probe Kit. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Intrinsic and Acquired Resistance to HER2-Targeted Therapies in HER2 Gene-Amplified Breast Cancer: Mechanisms and Clinical Implications

    PubMed Central

    Rexer, Brent N.; Arteaga, Carlos L.

    2012-01-01

    Approximately 25% of human breast cancers overexpress the HER2 (ErbB2) proto-oncogene, which confers a more aggressive tumor phenotype and associates with a poor prognosis in patients with this disease. Two approved therapies targeting HER2, the monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib, are clinically active against this type of breast cancer. However, a significant fraction of patients with HER2+ breast cancer treated with these agents eventually relapse or develop progressive disease. This suggests that tumors acquire or possess intrinsic mechanisms of resistance that allow escape from HER2 inhibition. This review focuses on mechanisms of intrinsic and/or acquired resistance to HER2-targeted therapies that have been identified in preclinical and clinical studies. These mechanisms involve alterations to HER2 itself, coexpression or acquisition of bypass signaling through other receptor or intracellular signaling pathways, defects in mechanisms of cell cycle regulation or apoptosis, and host factors that may modulate drug response. Emerging clinical evidence already suggests that combinations of therapies targeting HER2 as well as these resistance pathways will be effective in overcoming or preventing resistance. PMID:22471661

  4. HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: Implications for efficacy of adjuvant trastuzumab

    PubMed Central

    Ithimakin, Suthinee; Day, Kathleen C.; Malik, Fayaz; Zen, Qin; Dawsey, Scott J.; Bersano-Begey, Tom F.; Quraishi, Ahmed A.; Ignatoski, Kathleen Woods; Daignault, Stephanie; Davis, April; Hall, Christopher L.; Palanisamy, Nallasivam; Heath, Amber N.; Tawakkol, Nader; Luther, Tahra K.; Clouthier, Shawn G.; Chadwick, Whitney A.; Day, Mark L.; Kleer, Celina G.; Thomas, Dafydd G.; Hayes, Daniel F.; Korkaya, Hasan; Wicha, Max S.

    2013-01-01

    Although current breast cancer treatment guidelines limit the use of HER2 blocking agents to tumors with HER2 gene amplification, recent retrospective analyses suggest that a wider group of patients may benefit from this therapy. Utilizing breast cancer cell lines, mouse xenograft models and matched human primary and metastatic tissues, we demonstrate that HER2 is selectively expressed in and regulates self-renewal of the cancer stem cell population in ER+, HER2− luminal breast cancers. Although trastuzumab had no effects on the growth of established luminal breast cancer mouse xenografts, administration after tumor inoculation blocked subsequent tumor growth. HER2 expression is increased in luminal tumors grown in mouse bone xenografts, as well as in bone metastases from breast cancer patients compared to matched primary tumors. Furthermore this increase in HER2 protein expression was not due to gene amplification but rather was mediated by RANK-ligand in the bone microenvironment. These studies suggest that the clinical efficacy of adjuvant trastuzumab may relate to the ability of this agent to target the cancer stem cell population in a process that does not require HER2 gene amplification. Furthermore these studies support a cancer stem cell model in which maximal clinical benefit is achieved when cancer stem cell targeting agents are administered in the adjuvant setting. PMID:23442322

  5. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure

    SciTech Connect

    Azuma, Koichi; Tsurutani, Junji; Sakai, Kazuko; Kaneda, Hiroyasu; Fujisaka, Yasuhito; Takeda, Masayuki; Watatani, Masahiro; Arao, Tokuzo; Satoh, Taroh; Okamoto, Isamu; Kurata, Takayasu; Nishio, Kazuto; Nakagawa, Kazuhiko

    2011-04-01

    Highlights: {yields} A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. {yields} Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. {yields} Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC{sub 50} of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.

  6. An anti-HER2 antibody conjugated with monomethyl auristatin E is highly effective in HER2-positive human gastric cancer

    PubMed Central

    Li, Hongwen; Yu, Chao; Jiang, Jing; Huang, Changjiang; Yao, Xuejing; Xu, Qiaoyu; Yu, Fang; Lou, Liguang; Fang, Jianmin

    2016-01-01

    ABSTRACT Antibody-drug conjugate (ADC) is a novel class of therapeutics for cancer target therapy. This study assessed antitumor activity of ADC with an antimitotic agent, monomethyl auristatin E (MMAE) and a humanized monoclonal anti-HER2 antibody, hertuzumab, in gastric cancer. The efficacy of hertuzumab-MC-Val-Cit-PAB-MMAE (hertuzumab-vcMMAE) on human epidermal growth factor receptor 2 (HER2) positive human gastric cancer cells, NCI-N87, was evaluated in vitro and in vivo. The cytotoxicity of hertuzumab was significantly enhanced after conjugation with MMAE. Compared to trastuzumab, hertuzumab had a higher affinity to HER2 and had more potent antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. After conjugation with MMAE, the binding specificity for HER2 was not affected. Furthermore, the internalization of hertuzumab-vcMMAE in HER2 positive gastric cancer cells was verified. Although the conjugation of hertuzumab and MMAE decreased the ADCC effect, the overall cytotoxicity was dramatically increased in HER2 positive gastric cancer cells. In vitro data on this hertuzumab-vcMMAE has exerted much stronger antitumor activity compared to trastuzumab-DM1 in HER2 positive gastric cancer cells. A single administration of hertuzumab-vcMMAE at 5 or 10 mg/kg showed high potency and a sustained tumor inhibitory effect on NCI-N87 xenografts in mice. In conclusion, hertuzumab-vcMMAE conjugate is a highly effective anti-HER2 targeted therapy for HER2-positive gastric cancer. PMID:26853765

  7. Significance of HER2 protein examination in ductal carcinoma in situ.

    PubMed

    Horimoto, Yoshiya; Tokuda, Emi; Arakawa, Atsushi; Kosaka, Taijiro; Saito, Mitsue; Kasumi, Fujio

    2011-05-15

    HER2 expression is routinely checked in ductal carcinoma in situ, as in invasive ductal carcinoma. However, the effect of HER2 status in ductal carcinoma in situ on the development of malignancy and the significance of overexpression of HER2 are still not clear. We experienced 103 cases that were diagnosed as pure ductal carcinoma in situ from operative specimens in the 2-y period from 2006 to 2007. We examined their HER2 status and other markers. We added 38 cases of ductal carcinoma in situ with small invasive disease 5mm or less in diameter as subjects. We also examined how accurately HER2 status in biopsy specimens predicted the existence of an invasive component. In pure ductal carcinoma in situ, tumors that were comedo type, high grade, or ER negative showed a high frequency of HER2 overexpression. In cases with small invasion, HER2 expression was higher than that in pure ductal carcinoma in situ. Among cases that were diagnosed as ductal carcinoma in situ by biopsy, 28% had invasive disease in operative specimens. In tumors that were palpable, large, or expressed HER2 3+ in biopsy samples, invasive disease was frequently observed in operative specimens. Overexpression of HER2 in ductal carcinoma in situ might not always be necessary for progression to invasive ductal carcinoma. To clarify the significance of HER2 examination in DCIS, further investigations of the potential for invasive ductal carcinoma and the prognosis are still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Current and emerging therapies of HER2-positive metastatic breast cancer.

    PubMed

    Hernández-Blanquisett, Abraham; Touya, Diego; Strasser-Weippl, Kathrin; Ruiz, Rossana; St Louis, Jessica; Goss, Paul

    2016-10-01

    The HER2 receptor as measured by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) is overexpressed in 15-20% of all breast cancers and traditionally represents adverse biology and a guarded prognosis, particularly in HER2 positive metastatic breast cancer (MBC). Trastuzumab and newer anti-HER2 targeting agents have significantly improved the clinical outcomes of patients with HER2 positive MBC. The development of new techniques has led to discovery of promising biomarkers that can lead to more precise selection of patients for anti-HER2 therapies. This paper summarizes these new biomarkers, useful in selecting patients for treatment with new and emerging therapies for HER2 positive MBC. Emerging next generation sequencing techniques have truly changed the landscape of HER2 positive MBC. Deployment of multiple anti-HER2 therapies in combination is a strategy which has yielded additive or even synergistic effects and has led to markedly improved patient outcomes in HER2+ MBC. In the future, in order to further improve the treatment of these patients and to reduce toxicities, we need to improve our understanding of HER2-dependent pathways and their function, and to develop further treatment combinations while optimizing selection of patients by identifying new biomarkers. The results of prospective studies using CTCs, cDNA and other promising new biomarkers are awaited with great interest.

  9. Recent Insights into the Development of Preclinical Trastuzumab-Resistant HER2+ Breast Cancer Models.

    PubMed

    González-Alonso, Paula; Cristóbal, Ion; Zazo, Sandra; Martín-Aparicio, Ester; Chamizo, Cristina; Madoz-Gúrpide, Juan; Rovira, Ana; Eroles, Pilar; Lluch, Ana; Albanell, Joan; Rojo, Federico

    2016-12-16

    Overexpression and amplification of the human epidermal growth factor receptor 2 (HER2) occurs in 20% of total breast carcinomas. HER2-overexpression is implicated in disease initiation and progression and associated with poor prognosis. Trastuzumab, a humanized monoclonal antibody, is the standard HER2-targeted therapy for early and metastatic HER2-amplified breast cancer patients. Trastuzumab has significantly increased clinical benefit in HER2+ metastatic and adjuvant settings, however, it is not effective for many patients due to primary or acquired resistance to the drug. During the last decade, many studies have revealed a number of novel molecular traits of HER2+ breast cancer, allowing us to uncover the molecular mechanisms involved in trastuzumab resistance and develop strategies to overcome resistance to therapy. In this review, we comprehensively addressed the current achievements in preclinical studies; we discussed molecular mechanisms of acquired trastuzumab resistance in HER2+ breast cancer models and potential therapeutic approaches based on the molecular features for HER2+ breast cancer. Enhanced understanding of the molecular profiles in HER2+ breast cancer may lead to identification of novel biomarkers for development of diagnostic approaches and improvement of therapeutic targets for prevention and treatment of trastuzumab resistant HER2+ breast cancer.

  10. Role of pertuzumab in the treatment of HER2-positive breast cancer.

    PubMed

    Hubalek, Michael; Brantner, Christine; Marth, Christian

    2012-05-28

    Pertuzumab, a humanized monoclonal antibody to the HER2 receptor, represents a promising new anti-HER2 agent with a novel mechanism of action targeting the inhibition of HER2 dimerization. Nonclinical and clinical data to date indicate that pertuzumab provides a broader HER2 blockade through the inhibition of HER2 heterodimerization. In preclinical experiments, pertuzumab has demonstrated superior antitumor effects when combined with other anti-HER2 treatments such as trastuzumab, compared to when used as monotherapy. Trastuzumab and pertuzumab monoclonal antibodies bind to distinct epitopes on the HER2 receptor without competing with each other, resulting in distinctive mechanisms for disrupting HER2 signaling. These mechanisms are complementary and result in augmented therapeutic efficacy when pertuzumab and trastuzumab are given in combination. Clinically, pertuzumab may have optimal therapeutic effects when given to patients with HER2-positive cancers, in combination with trastuzumab. This observation is supported by recent clinical trials in the metastatic as well as neoadjuvant setting. Intravenous pertuzumab had an acceptable tolerability profile when added to trastuzumab and chemotherapy. This overview will review recent advances in the clinical development of this HER2-targeted therapy.

  11. Concurrent HER2 vaccination and inhibition of kinase activity: safety and immunogenicity.

    PubMed

    Albrecht, Huguette

    2012-07-01

    Passive immunotherapy with the monoclonal antibody trastuzumab and tyrosine kinase activity inhibition with lapatinib are HER2-targeted therapies used in the clinic for the treatment of HER2-overexpressing breast cancers. Unfortunately, the therapeutic efficacy of both these therapies is abolished by primary and acquired tumor resistance. Active immunotherapy against HER2, which, thanks to trastuzumab, is a clinically validated tumor-associated antigen, might provide an alternative therapeutic strategy for HER2-overexpressing breast cancers. This Phase I study of HER2 immunotherapy with concomitant lapatinib treatment in 12 patients with metastatic breast cancer resistant to trastuzumab demonstrates the feasibility and safety of concurrent vaccination against HER2 and inhibition of HER1 and HER2 kinases. However, it is inconclusive regarding the effect of lapatinib on the immune responses induced by dHER2/AS15; vaccination triggered variable levels of anti-HER2 antibodies in all the patients, but a HER2-specific T-cell response was detected in one patient only. Since the presence of Tregs in these patients was not assessed, it remains unclear whether lapatinib and/or Tregs account for the near absence of a T-cell response.

  12. HER2 mutations in Chinese patients with non-small cell lung cancer

    PubMed Central

    Song, Zhengbo; Yu, Xinmin; Shi, Zhiyong; Zhao, Jun; Zhang, Yiping

    2016-01-01

    Background ERBB2 (HER2) is a driver gene identified in non-small cell lung cancer (NSCLC). The prevalence, clinicopathology, genetic variability and treatment of HER2-positive NSCLC in Chinese population are unclear. Patients and Methods Eight hundred and fifty-nine patients with pathologically confirmed NSCLC were screened for HER2 mutations using Sanger sequencing. Next-generation sequencing (NGS) was performed in positive cases. HER2 amplification was detected with FISH. Overall survival (OS) was evaluated using Kaplan-Meier methods and compared with log-rank tests. Results Twenty-one cases carrying HER2 mutations were identified with a prevalence of 2.4%. HER2 mutations were more frequently encountered in females, non-smokers and adenocarcinoma. NGS was performed in 19 out of 21 patients, The results showed 16 cases with additional genetic aberrations, most commonly associated with TP53 (n = 6), followed by EGFR (n = 3), NF1 (n = 3), KRAS (n = 2) and other mutations. One patient harbored HER2 amplification. Four patients with stage IV received afatinib treatment, and three showed stable disease with a median progression-free survival of 4 months and one patient was diagnosed with progressive disease. Conclusion HER2 mutations represent a distinct subset of NSCLC. NGS showed that HER2 mutations commonly co-existed with other driver genes. Afatinib treatment displayed moderate efficacy in patients with HER2 mutations. PMID:27825109

  13. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer

    PubMed Central

    Sachaphibulkij, Karishma; Stursa, Jan; Bezawork-Geleta, Ayenachew; Blecha, Jan; Endaya, Berwini; Werner, Lukas; Cerny, Jiri; Zobalova, Renata; Goodwin, Jacob; Spacek, Tomas; Alizadeh Pesdar, Elham; Yan, Bing; Nguyen, Maria Nga; Vondrusova, Magdalena; Sobol, Margaryta; Jezek, Petr; Hozak, Pavel; Truksa, Jaroslav; Dong, Lan-Feng

    2017-01-01

    Abstract Aims: Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2high disease. Results: We demonstrate that Her2high cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2high tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2high background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2high cells to MitoTam is dependent on the mitochondrial fraction of Her2. Innovation: Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam. Conclusion: We propose that the ETC is a suitable therapeutic target in Her2high disease. Antioxid. Redox Signal. 26, 84–103. PMID:27392540

  14. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2(high) Breast Cancer.

    PubMed

    Rohlenova, Katerina; Sachaphibulkij, Karishma; Stursa, Jan; Bezawork-Geleta, Ayenachew; Blecha, Jan; Endaya, Berwini; Werner, Lukas; Cerny, Jiri; Zobalova, Renata; Goodwin, Jacob; Spacek, Tomas; Alizadeh Pesdar, Elham; Yan, Bing; Nguyen, Maria Nga; Vondrusova, Magdalena; Sobol, Margaryta; Jezek, Petr; Hozak, Pavel; Truksa, Jaroslav; Rohlena, Jakub; Dong, Lan-Feng; Neuzil, Jiri

    2017-01-10

    Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2(high) disease. We demonstrate that Her2(high) cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2(high) tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2(high) background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2(high) cells to MitoTam is dependent on the mitochondrial fraction of Her2. Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam. We propose that the ETC is a suitable therapeutic target in Her2(high) disease. Antioxid. Redox Signal. 26, 84-103.

  15. Serum HER-2/neu in the management of breast cancer patients.

    PubMed

    Lüftner, Diana; Lüke, Claudia; Possinger, Kurt

    2003-06-01

    The clinical role of HER-2/neu, a 185 kD epithelial transmembranous protein, has evolved after the approval of the anti-HER-2/neu targeted monoclonal antibody trastuzumab (Herceptin) for the therapy of metastatic breast cancer. The extracellular domain of HER-2/neu undergoes proteolytic cleavage from the full-length protein by metalloproteases, and is shed into the blood as a circulating antigen. While HER-2/neu gene amplification and/or protein overexpression are detected in approximately 25% of primary breast cancers, serum HER-2/neu levels are elevated beyond the upper limit of normal in 50 to 60% of stage IV breast cancer patients. HER-2/neu in serum can be detected by enzyme immunoassays (manual and automated versions). It has been shown to have prognostic and predictive information in breast cancer patients. Monitoring for recurrence by serum HER-2/neu reaches a high sensitivity for HER-2/neu positive tumors. Longitudinal follow-up of patients during any kind of systemic therapy allows for monitoring of the therapeutic success. When utilized in these applications, serum HER-2/neu testing is complementary to HER-2/neu tissue results and to the determination of classical tumor markers such as CA 15-3, CA 27.29 and CEA, which are not targeted by specific forms of systemic therapy.

  16. Comparable clinical outcomes in patients with HER2-mutant and EGFR-mutant lung adenocarcinomas.

    PubMed

    Gow, Chien-Hung; Chang, Hou-Tai; Lim, Chor-Kuan; Liu, Chao-Yu; Chen, Jin-Shing; Shih, Jin-Yuan

    2017-05-01

    HER2 is a major proliferative driver in lung cancer. HER2 gene aberrations impact the prognosis of lung adenocarcinoma (ADC). A one-step reverse transcription-polymerase chain reaction was performed using RNA samples from 888 Asian lung cancer patients to detect HER2, EGFR, KRAS, ALK, and ROS1 mutations. The demographic data and treatment outcomes of HER2 mutation-positive lung ADC patients were analyzed and compared to those with HER2 mutation-negative tumors. HER2 mutation was identified in 40 (4.5%) lung ADC patients. HER2 mutations tended to occur in male patients with advanced-stage disease and never-smokers. A775_G776insYVMA (n = 22, 55%) was the most prevalent HER2 mutation, followed by P780_Y781insGSP (n = 4, 10%). For patients diagnosed with stage-IIIB/IV disease, HER2-mutant patients showed clinical outcomes comparable to EGFR-mutant patients (P = 0.721, log-rank test) and a better overall survival (OS) compared to patients lacking driver mutations in the investigated genes (P = 0.033, Breslow test). Specifically, lung ADC patients with stage-IV HER2-mutant tumors treated with chemotherapy or targeted agents, even without afatinib or anti-HER2 targeted therapy, showed similar clinical outcomes to lung ADC patients harboring EGFR exon 19 deletion or L858R mutations (P = 0.870). In addition, multivariate analysis indicated that HER2 mutation status was not a major risk factor for diminished OS in stage-IV lung cancer. In conclusion, lung ADC harboring HER2 mutations showed distinct characteristics from other driver mutations, including increased chemosensitivity with in advanced stage disease.

  17. Targeting the function of the HER2 oncogene in human cancer therapeutics

    PubMed Central

    Moasser, Mark M.

    2011-01-01

    The year 2007 marks exactly two decades since HER2 was functionally implicated in the pathogenesis of human breast cancer (Slamon et al. 1987). This finding established the HER2 oncogene hypothesis for the development of some human cancers. An abundance of experimental evidence compiled over the past two decades now solidly supports the HER2 oncogene hypothesis. A direct consequence of this hypothesis was the promise that inhibitors of oncogenic HER2 would be highly effective treatments for HER2-driven cancers. This treatment hypothesis has led to the development and widespread use of anti-HER2 antibodies (trastuzumab) in clinical management resulting in significantly improved clinical anti-tumor efficacies that have transformed the clinical practice of oncology. In the shadows of this irrefutable clinical success, scientific studies have not yet been able to mechanistically validate that trastuzumab inhibits oncogenic HER2 function and it remains possible that the current clinical advances are a consequence of the oncogene hypothesis but not a translation of it. These looming scientific uncertainties suggest that the full promise of the treatment hypothesis may not yet have been realized. The coming decade will see a second generation of HER2 targeting agents brought into clinical testing and a renewed attempt to treat HER2-driven cancers through the inactivation HER2. Here I review the development of treatments that target HER2 in the context of the HER2 oncogene hypothesis, and where we stand with regards to the clinical translation of the HER2 oncogene hypothesis. PMID:17486079

  18. The Prognostic Significance of Her2-Neu Over expression in Gastric Carcinomas

    PubMed Central

    Ansari, J; Chehrei, A; Amini, M; Alizade, SH; Sanei, MH

    2011-01-01

    Background Her2/neu is one of the epidermal growth factor receptors families and seems to have prognostic significance of some solid tumors. The objective of this study is to evaluate the possibility of Her2 expression in gastric cancers and the possible relationship of Her2 with tumor’s clinicopathologic parameters and also its prognostic role. Methods This study was performed on 100 cases of gastric carcinoma with stage I b to III (according to TNM staging). Survival, recurrence date of patients, grade and lymph nodes involvement were assessed. Her2/neu expression was determined by immunohistochemical method on received sample blocks. Survival of patients with or without Her2-neu expression were evaluated by Kaplan- Meier method and compared with the log-rank test followed by multivariate analysis using Cox regression. Results Seven cases were 3+ membranous Her2 reactivity, 5 cases were 2+ and13 cases were 1+; also 75% of cases demonstrated no reactivity. Regardingrelationship between tumor grade and membranous Her2 , all patients with poorly differentiated tumors were Her2 negative but patients with moderate and well differentiated tumor had 18.1% and 19.6% Her2 reactivity respectively; there were no significant difference between groups statistically(P>0.05). Median overall survival was 27.25 and 46 months in Her2 negative and her2 positive cases respectively; there were no significant difference between groups statistically as well (P>0.05). Conclusion Her2 reactivity has not relationship with tumor grade and lymph node involvement as well as tumor stage. From the other point of view no significant correlation is found between Her2 expression and disease free survival or overall survival of gastric cancer patients. PMID:26322194

  19. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu.

    PubMed

    Fry, Elizabeth A; Taneja, Pankaj; Inoue, Kazushi

    2017-02-01

    The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.

  20. Expression of Hormone Receptors and HER-2 in Benign and Malignant Salivary Gland Tumors.

    PubMed

    Can, Nhu Thuy; Lingen, Mark W; Mashek, Heather; McElherne, James; Briese, Renee; Fitzpatrick, Carrie; van Zante, Annemieke; Cipriani, Nicole A

    2017-07-05

    With the advent of targeted therapies, expression of sex hormone receptors and HER-2 in salivary gland tumors (SGTs) is of clinical interest. Previous reports of estrogen (ER) and progesterone (PR) receptor expression have varied. Androgen receptor (AR) and HER-2 overexpression are frequently reported in salivary duct carcinoma (SDC), but have not been studied systematically in other SGTs. This study examines ER, PR, AR, and HER-2 expression in SGTs. Immunohistochemistry for ER, PR, AR, and HER-2 was performed on 254 SGTs (134 malignant). ER, PR, and AR expression was scored using Allred system. HER-2 expression was scored using Dako HercepTest guidelines. FISH for HER-2 amplification was performed on select cases with HER-2 overexpression (2-3+). No SGT demonstrated strong expression of ER or PR. Combined strong AR and HER-2 expression was seen in 22 carcinomas: 14/25 SDC, 3/16 poorly differentiated, two oncocytic, and one each carcinoma ex pleomorphic adenoma, squamous cell, and intraductal carcinoma. Eighteen additional high grade carcinomas had HER-2 overexpression with absent, weak, or moderate AR expression; eight high grade carcinomas had isolated strong AR expression with 0-1+ HER-2 staining. Of 15 tested cases, six demonstrated HER-2 amplification by FISH, all of which had 3+ immunoreactivity. Neither benign nor malignant SGTs had strong expression of ER or PR. None of the benign SGTs overexpressed AR or HER-2. Coexpression of AR and HER-2 should not define SDC, but immunostaining should be considered in high grade salivary carcinomas, as some show overexpression and may benefit from targeted therapy.

  1. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma.

    PubMed

    Ahmed, Nabil; Brawley, Vita S; Hegde, Meenakshi; Robertson, Catherine; Ghazi, Alexia; Gerken, Claudia; Liu, Enli; Dakhova, Olga; Ashoori, Aidin; Corder, Amanda; Gray, Tara; Wu, Meng-Fen; Liu, Hao; Hicks, John; Rainusso, Nino; Dotti, Gianpietro; Mei, Zhuyong; Grilley, Bambi; Gee, Adrian; Rooney, Cliona M; Brenner, Malcolm K; Heslop, Helen E; Wels, Winfried S; Wang, Lisa L; Anderson, Peter; Gottschalk, Stephen

    2015-05-20

    The outcome for patients with metastatic or recurrent sarcoma remains poor. Adoptive therapy with tumor-directed T cells is an attractive therapeutic option but has never been evaluated in sarcoma. We conducted a phase I/II clinical study in which patients with recurrent/refractory human epidermal growth factor receptor 2 (HER2) -positive sarcoma received escalating doses (1 × 10(4)/m(2) to 1 × 10(8)/m(2)) of T cells expressing an HER2-specific chimeric antigen receptor with a CD28.ζ signaling domain (HER2-CAR T cells). We enrolled 19 patients with HER2-positive tumors (16 osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal tumor, and one desmoplastic small round cell tumor). HER2-CAR T-cell infusions were well tolerated with no dose-limiting toxicity. At dose level 3 (1 × 10(5)/m(2)) and above, we detected HER2-CAR T cells 3 hours after infusion by quantitative polymerase chain reaction in 14 of 16 patients. HER2-CAR T cells persisted for at least 6 weeks in seven of the nine evaluable patients who received greater than 1 × 10(6)/m(2) HER2-CAR T cells (P = .005). HER2-CAR T cells were detected at tumor sites of two of two patients examined. Of 17 evaluable patients, four had stable disease for 12 weeks to 14 months. Three of these patients had their tumor removed, with one showing ≥ 90% necrosis. The median overall survival of all 19 infused patients was 10.3 months (range, 5.1 to 29.1 months). This first evaluation of the safety and efficacy of HER2-CAR T cells in patients with cancer shows the cells can persist for 6 weeks without evident toxicities, setting the stage for studies that combine HER2-CAR T cells with other immunomodulatory approaches to enhance their expansion and persistence. © 2015 by American Society of Clinical Oncology.

  2. HER2 FISH classification of equivocal HER2 IHC breast cancers with use of the 2013 ASCO/CAP practice guideline.

    PubMed

    Fan, Yao-Shan; Casas, Carmen E; Peng, Jinghong; Watkins, Melanie; Fan, Lynn; Chapman, Jennifer; Ikpatt, Offiong Francis; Gomez, Carmen; Zhao, Wei; Reis, Isildinha M

    2016-02-01

    The status of human epidermal growth factor receptor 2 (HER2, ERBB2) determines the eligibility of breast cancer patients to receive HER2-targeted therapy. The majority of HER2 testing in the U.S. is performed using a combination of immunohistochemistry (IHC) screening followed by fluorescence in situ hybridization (FISH) for IHC equivocal cases. In 2013, the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) updated the guideline for HER2 testing. This study evaluates the impact of the 2013 ASCO/CAP updated guideline on final HER2 FISH classification of breast cancers with an equivocal IHC result. For each case, we reported a FISH result according to the 2013 updated guideline and recorded a separated result using the 2007 guideline for investigational purpose. McNemar's test and Bowker's symmetry test were used to compare the classifications by the two guidelines. Among 172 HER2 IHC 2+ equivocal cases, use of the 2103 guideline changed classifications in 36 cases (21 %) when compared with the results expected by use of the 2007 guideline, and yielded a higher proportion of positive (28.5 vs. 23.3 %) and equivocal (16.3 vs. 4.1 %), and a lower proportion of negative (55.2 vs. 72.7 %) cases (p < 0.001). The major classification change with use of the updated guideline is from the HER2 FISH negative to equivocal in 26 cases (15 %). Our study has shown that implementation of the 2013 ASCO/CAP updated guideline has significant impact on HER2 classification for breast cancers with an equivocal HER2 IHC result and therefore increased the use of HER2-targeted therapy. Our data have also shown that reflex FISH is effective for final classification of the IHC equivocal cases and that polysomy 17 (CEP17 copy number ≥3/cell) is present in a significantly higher proportion of cases with an equivocal HER2 FISH classification.

  3. Dual Fatty Acid Synthase and HER2 Signaling Blockade Shows Marked Antitumor Activity against Breast Cancer Models Resistant to Anti-HER2 Drugs

    PubMed Central

    Blancafort, Adriana; Giró-Perafita, Ariadna; Oliveras, Glòria; Palomeras, Sònia; Turrado, Carlos; Campuzano, Òscar; Carrión-Salip, Dolors; Massaguer, Anna; Brugada, Ramon; Palafox, Marta; Gómez-Miragaya, Jorge; González-Suárez, Eva; Puig, Teresa

    2015-01-01

    Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies. PMID:26107737

  4. Targeting CXCR1/2 Significantly Reduces Breast Cancer Stem Cell Activity and Increases the Efficacy of Inhibiting HER2 via HER2-dependent and -independent Mechanisms

    PubMed Central

    Singh, Jagdeep K.; Farnie, Gillian; Bundred, Nigel J.; Simões, Bruno M; Shergill, Amrita; Landberg, Göran; Howell, Sacha; Clarke, Robert B.

    2012-01-01

    Purpose Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are predicted to be responsible for tumour initiation, maintenance and metastases. Interleukin-8 (IL-8) is upregulated in breast cancer and associated with poor prognosis. Breast cancer cell line studies indicate that IL-8 via its cognate receptors, CXCR1 and CXCR2, is important in regulating breast CSC activity. We investigated the role of IL-8 in the regulation of CSC activity using patient-derived breast cancers and determined the potential benefit of combining CXCR1/2 inhibition with HER2-targeted therapy. Experimental design CSC activity of metastatic and invasive human breast cancers (n=19) was assessed ex vivo using the mammosphere colony forming assay. Results Metastatic fluid IL-8 level correlated directly with mammosphere formation (r=0.652; P<0.05; n=10). Recombinant IL-8 directly increased mammosphere formation/self-renewal in metastatic and invasive breast cancers (n=17). IL-8 induced activation of EGFR/HER2 and downstream signalling pathways and effects were abrogated by inhibition of SRC, EGFR/HER2, PI3K or MEK. Furthermore, lapatinib inhibited the mammosphere-promoting effect of IL-8 in both HER2-positive and negative patient-derived cancers. CXCR1/2 inhibition also blocked the effect of IL-8 on mammosphere formation and added to the efficacy of lapatinib in HER2-positive cancers. Conclusions These studies establish a role for IL-8 in the regulation of patient-derived breast CSC activity and demonstrate that IL-8/CXCR1/2 signalling is partly mediated via a novel SRC and EGFR/HER2-dependent pathway. Combining CXCR1/2 inhibitors with current HER2-targeted therapies has potential as an effective therapeutic strategy to reduce CSC activity in breast cancer and improve the survival of HER2-positive patients. PMID:23149820

  5. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    SciTech Connect

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  6. Investigating AP-2 and YY1 protein expression as a cause of high HER2 gene transcription in breast cancers with discordant HER2 gene amplification.

    PubMed

    Powe, Desmond G; Akhtar, Gulfareen; Habashy, Hany Onsy; Abdel-Fatah, Tarek; Rakha, Emad A; Green, Andrew R; Ellis, Ian O

    2009-01-01

    Candidacy for anti-HER2 adjuvant therapy in breast cancer is assessed using tumour HER2 status but recently it has been proposed that the transcription factors AP-2alpha and YY1 may cause Her2 protein overexpression independently of gene amplification. We characterised AP-2alpha/beta, AP-2alpha and YY1 with HER2 gene and protein expression, other relevant biomarkers, and clinical outcome using tissue microarrays (TMAs) and immunohistochemistry in a large (n = 1,176) clinically annotated series of early stage operable breast cancer. The associations and prognostic independence of AP-2 and YY1 was assessed in all patients and an oestrogen receptor negative subgroup. Nuclear expression of AP-2alpha/beta, AP-2alpha and YY1 was detected in 23%, 44% and 33% of cases respectively. AP-2alpha/beta significantly correlated with YY1 and both markers were increased in luminal oestrogen receptor (ER) positive tumours of small size and low grade but only AP-2alpha/beta correlated with good prognosis breast cancer specific survival and disease free interval (BCSS and DFI). These characteristics were lost in oestrogen receptor negative patients. AP-2alpha also correlated with luminal-type tumours but not with YY1 expression or good prognosis. AP-2alpha and YY1 showed a significant correlation with Her2 protein expression and in addition, YY1 correlated with HER2 gene expression. Discordant HER2 gene and protein expression was identified in six cases (0.71% of the study group) with four of these showing AP-2alpha but absence of AP-2alpha/beta and YY1 expression. AP-2alpha/beta and YY1 are markers of good prognosis principally due to their association with oestrogen receptor but are not independent predictors. Discordant HER2 protein/gene expression is a rare event that is not always explained by the actions of AP-2 and YY1.

  7. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs.

    PubMed

    Blancafort, Adriana; Giró-Perafita, Ariadna; Oliveras, Glòria; Palomeras, Sònia; Turrado, Carlos; Campuzano, Òscar; Carrión-Salip, Dolors; Massaguer, Anna; Brugada, Ramon; Palafox, Marta; Gómez-Miragaya, Jorge; González-Suárez, Eva; Puig, Teresa

    2015-01-01

    Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies.

  8. Inhibition of mTOR is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells

    PubMed Central

    Miller, Todd W.; Forbes, James T.; Shah, Chirayu; Wyatt, Shelby K.; Manning, H. Charles; Olivares, Maria G.; Sanchez, Violeta; Dugger, Teresa C.; Granja, Nara de Matos; Narasanna, Archana; Cook, Rebecca S.; Kennedy, J. Phillip; Lindsley, Craig W.; Arteaga, Carlos L.

    2009-01-01

    Purpose A significant fraction of HER2-overexpressing breast cancers exhibit resistance to the HER2 antibody trastuzumab. Hyperactivity of the phosphatidylinositol-3 kinase (PI3K)/AKT pathway confers trastuzumab resistance, and mTOR is a major downstream effector of PI3K/AKT. Therefore, we examined whether mTOR inhibitors synergize with trastuzumab. Experimental Design Immunocompetent mice bearing HER2-positive mammary tumors were treated with trastuzumab, the mTOR inhibitor rapamycin, or the combination. Mice were imaged for tumor cell death using an optical Annexin-V probe and with [18F]FDG-PET. The signaling and growth effects of the mTOR inhibitor RAD001 on HER2+ cells treated with trastuzumab or lapatinib were evaluated. Results Treatment of mice with trastuzumab plus rapamycin was more effective than single-agent treatments, inducing complete regression of 26/26 tumors. The combination induced tumor cell death (Annexin-V binding) and inhibited FDG uptake. Rapamycin inhibited mTOR and tumor cell proliferation as determined by phospho-S6 and Ki67 immunohistochemistry, respectively. In culture, the combination of RAD001 plus trastuzumab inhibited cell growth more effectively than either drug alone. Trastuzumab partially decreased PI3K but not mTOR activity. Knockdown of TSC2 resulted in HER2-independent activation of mTOR and dampened the response to trastuzumab and lapatinib. Treatment with the HER2 inhibitor lapatinib decreased phospho-S6 and growth in TSC2-expressing but not in TSC2-knockdown cells. Conclusions Inhibition of PI3K and mTOR are required for the growth inhibitory effect of HER2 antagonists. These findings collectively support the combined use of trastuzumab and mTOR inhibitors for the treatment of HER2+ breast cancer. PMID:19934303

  9. Her2 Challenge Contest: A Detailed Assessment of Automated Her2 Scoring Algorithms in Whole Slide Images of Breast Cancer Tissues.

    PubMed

    Qaiser, Talha; Mukherjee, Abhik; Reddy Pb, Chaitanya; Munugoti, Sai Dileep; Tallam, Vamsi; Pitkäaho, Tomi; Lehtimäki, Taina; Naughton, Thomas; Berseth, Matt; Pedraza, Aníbal; Mukundan, Ramakrishnan; Smith, Matthew; Bhalerao, Abhir; Rodner, Erik; Simon, Marcel; Denzler, Joachim; Huang, Chao-Hui; Bueno, Gloria; Snead, David; Ellis, Ian O; Ilyas, Mohammad; Rajpoot, Nasir

    2017-08-03

    Evaluating expression of the Human epidermal growth factor receptor 2 (Her2) by visual examination of immunohistochemistry (IHC) on invasive breast cancer (BCa) is a key part of the diagnostic assessment of BCa due to its recognised importance as a predictive and prognostic marker in clinical practice. However, visual scoring of Her2 is subjective and consequently prone to inter-observer variability. Given the prognostic and therapeutic implications of Her2 scoring, a more objective method is required. In this paper, we report on a recent automated Her2 scoring contest, held in conjunction with the annual PathSoc meeting held in Nottingham in June 2016, aimed at systematically comparing and advancing the state-of-the-art Artificial Intelligence (AI) based automated methods for Her2 scoring. The contest dataset comprised of digitised whole slide images (WSI) of sections from 86 cases of invasive breast carcinoma stained with both Haematoxylin & Eosin (H&E) and IHC for Her2. The contesting algorithms automatically predicted scores of the IHC slides for an unseen subset of the dataset and the predicted scores were compared with the "ground truth" (a consensus score from at least two experts). We also report on a simple Man vs Machine contest for the scoring of Her2 and show that the automated methods could beat the pathology experts on this contest dataset. This paper presents a benchmark for comparing the performance of automated algorithms for scoring of Her2. It also demonstrates the enormous potential of automated algorithms in assisting the pathologist with objective IHC scoring. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. The effects of bufadienolides on HER2 overexpressing breast cancer cells.

    PubMed

    Wang, Tianjiao; Mu, Lin; Jin, Haifeng; Zhang, Peng; Wang, Yueyue; Ma, Xiaochi; Pan, Jinjin; Miao, Jian; Yuan, Yuhui

    2016-06-01

    HER2 is a proto-oncogene frequently amplified in human breast cancer, its overexpression is correlated with tamoxifen resistance and decreased recurrence-free survival. Arenobufagin and bufalin are homogeneous bufadienolides of cardiac glycosides agents. In this research, we studied the effects of arenobufagin and bufalin on cellular survival and proliferation of HER2 overexpressing breast cancer cells and the mechanism under the results including the direct effect on HER2 downstream pathways. Our results showed that arenobufagin and bufalin could significantly inhibit the proliferation and survival of HER2 overexpressing breast cancer cells, along with the declination of SRC-1, SRC-3, nuclear transcription factor E2F1, phosphorylated AKT, and ERK. And the combination of each bufadienolide in low dose with tamoxifen could significantly enhance the inhibitory effect of tamoxifen on HER2 overexpressing breast cancer cells. All above suggest that arenobufagin and bufalin may be potential therapy adjuvants for HER2 overexpressing breast cancer therapy.

  11. Targeting HER2 in the treatment of non-small cell lung cancer.

    PubMed

    Mar, Nataliya; Vredenburgh, James J; Wasser, Jeffrey S

    2015-03-01

    Oncogenic driver mutations have emerged as major treatment targets for molecular therapies in a variety of cancers. HER2 positivity has been well-studied in breast cancer, but its importance is still being explored in non-small cell lung cancer (NSCLC). Laboratory methods for assessment of HER2 positivity in NSCLC include immunohistochemistry (IHC) for protein overexpression, fluorescent in situ hybridization (FISH) for gene amplification, and next generation sequencing (NGS) for gene mutations. The prognostic and predictive significance of these tests remain to be validated, with an emerging association between HER2 gene mutations and response to HER2 targeted therapies. Despite the assay used to determine the HER2 status of lung tumors, all patients with advanced HER2 positive lung adenocarcinoma should be evaluated for treatment with targeted agents. Several clinical approaches for inclusion of these drugs into patient treatment plans exist, but there is no defined algorithm specific to NSCLC.

  12. HER-2 inhibition in gastric and colorectal cancers: tangible achievements, novel acquisitions and future perspectives

    PubMed Central

    Rihawi, Karim; Avallone, Antonio; Silvestris, Nicola; Fornaro, Lorenzo; Vasile, Enrico; Antonuzzo, Lorenzo; Leone, Francesco; Rosati, Gerardo; Giuliani, Francesco; Bordonaro, Roberto; Scartozzi, Mario; Maglio, Giovanna De; Negri, Francesca V.; Fasola, Gianpiero; Aprile, Giuseppe

    2016-01-01

    HER-2 (ErbB-2, c-erbB2 or Her2/neu), a member of the HER-family, is directly involved in the pathogenesis and progression of several human cancers; as such, it is also often considered as a poor prognostic factor. Following the revolutionary impact of anti-HER-2 therapy in breast cancer patients, the role of HER-2 and its blockade has also been extensively evaluated in other tumor types, including gastric and colorectal adenocarcinoma. The aims of this review are to recall the important results achieved with the use of HER-2 inhibitors in both gastric and colorectal cancer, and to discuss on the updates available on the role of HER-2 as prognostic and predictive factor in these malignancies. PMID:27542243

  13. Constitutive HER2 signaling promotes breast cancer metastasis through cellular senescence.

    PubMed

    Angelini, Pier Davide; Zacarias Fluck, Mariano F; Pedersen, Kim; Parra-Palau, Josep Lluís; Guiu, Marc; Bernadó Morales, Cristina; Vicario, Rocio; Luque-García, Antonio; Navalpotro, Nerea Peiró; Giralt, Jordi; Canals, Francesc; Gomis, Roger R; Tabernero, Josep; Baselga, José; Villanueva, Josep; Arribas, Joaquín

    2013-01-01

    Senescence, a terminal cell proliferation arrest, can be triggered by oncogenes. Oncogene-induced senescence is classically considered a tumor defense barrier. However, several findings show that, under certain circumstances, senescent cells may favor tumor progression because of their secretory phenotype. Here, we show that the expression in different breast epithelial cell lines of p95HER2, a constitutively active fragment of the tyrosine kinase receptor HER2, results in either increased proliferation or senescence. In senescent cells, p95HER2 elicits a secretome enriched in proteases, cytokines, and growth factors. This secretory phenotype is not a mere consequence of the senescence status and requires continuous HER2 signaling to be maintained. Underscoring the functional relevance of the p95HER2-induced senescence secretome, we show that p95HER2-induced senescent cells promote metastasis in vivo in a non-cell-autonomous manner.

  14. HER2 status in molecular apocrine breast cancer: associations with clinical, pathological, and molecular features.

    PubMed

    Guo, Wenwen; Wang, Wei; Zhu, Yun; Zhu, Xiaojing; Shi, Zhongyuan; Wang, Yan

    2015-01-01

    Molecular apocrine breast cancer (MABC) is a distinct subtype of breast cancer. The purpose of this study was to investigate the relationship between HER2 status and clinicopathologic characteristics of MABCs from Chinese Han cohort. A cohort of 90 MABC patients were enrolled. Immunohistochemical method was performed to analyze the molecular expression, and the human epidermal growth factor receptor 2 (HER2) amplification was verified by fluorescence in situ hybridization (FISH). By studying these 90 MABC cases, the majority of studied patients were premenopausal young women (median age 48 yr) with high grade tumors. We also found that MABCs had high positive expression rates of HER2, CK8, CD44, CD166, p53 and BRCA1, the elevated Ki-67 labeling index, and favorable prognosis. There was a significantly higher incidence of lymph node metastasis and lower CD166 positive rate in HER2-negative patients compared to HER2-positive patients (54.5% vs. 37.0%, P = 0.044 and 72.7% vs. 91.3%, P = 0.021, respectively). The CK5/6 and EGFR expression rates were significant higher in HER2-negative cases than in HER2-positive cases, suggesting that there is overlap between MABC with HER2-negative phenotype and basal-like breast cancer. In addition, HER2 positive was found to be significantly associated a poor overall survival in MABCs. In conclusion, HER2 are highly expressed, and HER2 positivity could be considered as a significant biomarker of poor prognosis in MABC. The results also suggest that a subtype tumor with distinct patterns of molecule expression depending on HER2 status presented in MABC.

  15. Relationship Between HER2 Status and Prognosis in Women With Brain Metastases From Breast Cancer

    SciTech Connect

    Xu Zhiyuan; Marko, Nicholas F.; Chao, Sam T.; Angelov, Lilyana; Vogelbaum, Michael A.; Suh, John H.; Barnett, Gene H.; Weil, Robert J.

    2012-04-01

    Purpose: To analyze factors affecting outcomes in breast cancer patients with brain metastases (BM) and characterize the role of HER2 status. Methods and Materials: We identified 264 breast cancer patients treated between 1999 and 2008 for BM. HER2 status was known definitively for 172 patients and was used to define cohorts in which survival and risk factors were analyzed. Results: Kaplan-Meier survival analysis demonstrated improved mean overall survival (105.7 vs. 74.3 months, p < 0.02), survival after diagnosis of BM (neurologic survival, NS) (32.2 vs. 18.9 months, p < 0.01), and survival after treatment with stereotactic radiosurgery (RS) (31.3 vs. 14.1, p < 0.01) in HER2+ patients relative to those with HER2- breast cancer. HER2+ status was an independent, positive prognostic factor for survival on univariate and multivariate hazard analysis (hazard ratio: overall survival = 0.66, 0.18; NS = 0.50, 0.34). Additionally, subgroup analysis suggests that stereotactic radiosurgery may be of particular benefit in patients with HER2+ tumors. Conclusions: Overall survival, NS, and RS are improved in patients with HER2+ tumors, relative to those with HER2- lesions, and HER2 amplification is independently associated with increased survival in patients with BM from breast cancer. Our findings suggest that the prognosis of HER2+ patients may be better than that of otherwise similar patients who are HER2- and that stereotactic radiosurgery may be beneficial for some patients with HER2+ lesions.

  16. HER2 status in molecular apocrine breast cancer: associations with clinical, pathological, and molecular features

    PubMed Central

    Guo, Wenwen; Wang, Wei; Zhu, Yun; Zhu, Xiaojing; Shi, Zhongyuan; Wang, Yan

    2015-01-01

    Molecular apocrine breast cancer (MABC) is a distinct subtype of breast cancer. The purpose of this study was to investigate the relationship between HER2 status and clinicopathologic characteristics of MABCs from Chinese Han cohort. A cohort of 90 MABC patients were enrolled. Immunohistochemical method was performed to analyze the molecular expression, and the human epidermal growth factor receptor 2 (HER2) amplification was verified by fluorescence in situ hybridization (FISH). By studying these 90 MABC cases, the majority of studied patients were premenopausal young women (median age 48 yr) with high grade tumors. We also found that MABCs had high positive expression rates of HER2, CK8, CD44, CD166, p53 and BRCA1, the elevated Ki-67 labeling index, and favorable prognosis. There was a significantly higher incidence of lymph node metastasis and lower CD166 positive rate in HER2-negative patients compared to HER2-positive patients (54.5% vs. 37.0%, P = 0.044 and 72.7% vs. 91.3%, P = 0.021, respectively). The CK5/6 and EGFR expression rates were significant higher in HER2-negative cases than in HER2-positive cases, suggesting that there is overlap between MABC with HER2-negative phenotype and basal-like breast cancer. In addition, HER2 positive was found to be significantly associated a poor overall survival in MABCs. In conclusion, HER2 are highly expressed, and HER2 positivity could be considered as a significant biomarker of poor prognosis in MABC. The results also suggest that a subtype tumor with distinct patterns of molecule expression depending on HER2 status presented in MABC. PMID:26339367

  17. Clinical applications of mouse models for breast cancer engaging HER2/neu

    PubMed Central

    Fry, Elizabeth A.; Taneja, Pankaj; Inoue, Kazushi

    2016-01-01

    Human c-ErbB2 (HER2) has long been used as a marker of breast cancer (BC) for sub-categorization for the prediction of prognosis, and determination of therapeutic strategies. HER2 overexpressing BCs are more invasive/metastatic; but patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors, at least at early stages. To date, numerous mouse models that faithfully reproduce HER2(+) BCs have been created in mice. We recently reviewed different mouse models of BC overexpressing wild type or mutant neu driven by MMTV, neu, or doxycycline-inducible promoters. These mice have been used to demonstrate the histopathology, oncogenic signaling pathways initiated by aberrant overexpression of HER2 in the mammary epithelium, and interaction between oncogenes and tumor suppressor genes at molecular levels. In this review, we focus on their clinical applications. They can be used to test the efficacy of HER(2) inhibitors before starting clinical trials, characterize the tumor-initiating cells that could be the cause of relapse after therapy as well as to analyze the molecular mechanisms of therapeutic resistance targeting HER2. MMTV-human ErbB2 (HER2) mouse models have recently been established since the monoclonal antibody to HER2 (trastuzumab; Herceptin®) does not recognize the rat neu protein. It has been reported that early intervention with HER2 monoclonal antibody would be beneficial for preventing mammary carcinogenesis. MDA-7/IL-24 as well as naturally-occurring chemicals have also been tested using MMTV-neu models. Recent studies have shown that MMTV-neu models are useful to develop vaccines to HER2 for immunotherapy. The mouse models employing HER2/neu will be essential for future antibody or drug screenings to overcome resistance to trastuzumab or HER(2)-specific tyrosine kinase inhibitors. PMID:28133539

  18. Autocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells

    PubMed Central

    Kho, Dhong Hyo; Nangia-Makker, Pratima; Balan, Vitaly; Hogan, Victor; Tait, Larry; Wang, Yi; Raz, Avraham

    2013-01-01

    Trastuzumab (Herceptin®) is an effective targeted therapy in HER2 overexpressing human breast carcinoma. However, many HER2-positive patients initially or eventually become resistant to this treatment, so elucidating mechanisms of trastuzumab resistance that emerge in breast carcinoma cells is clinically important. Here we show that autocrine motility factor (AMF) binds to HER2 and induces cleavage to the ectodomain-deleted and constitutively active form p95HER2. Mechanistic investigations indicated that interaction of AMF with HER2 triggers HER2 phosphorylation and metalloprotease-mediated ectodomain shedding, activating PI3K and MAPK signaling and ablating the ability of trastuzumab to inhibit breast carcinoma cell growth. Further, we found that HER2 expression and AMF secretion were inversely related in breast carcinoma cells. Based on this evidence that AMF may contribute to HER2-mediated breast cancer progression, our findings suggest that AMF-HER2 interaction might be a novel target for therapeutic management of breast cancer patients whose disease is resistant to trastuzumab. PMID:23248119

  19. US Incidence of Breast Cancer Subtypes Defined by Joint Hormone Receptor and HER2 Status

    PubMed Central

    Altekruse, Sean F.; Li, Christopher I.; Chen, Vivien W.; Clarke, Christina A.; Ries, Lynn A. G.; Cronin, Kathleen A.

    2014-01-01

    Background In 2010, Surveillance, Epidemiology, and End Results (SEER) registries began collecting human epidermal growth factor 2 (HER2) receptor status for breast cancer cases. Methods Breast cancer subtypes defined by joint hormone receptor (HR; estrogen receptor [ER] and progesterone receptor [PR]) and HER2 status were assessed across the 28% of the US population that is covered by SEER registries. Age-specific incidence rates by subtype were calculated for non-Hispanic (NH) white, NH black, NH Asian Pacific Islander (API), and Hispanic women. Joint HR/HER2 status distributions by age, race/ethnicity, county-level poverty, registry, stage, Bloom–Richardson grade, tumor size, and nodal status were evaluated using multivariable adjusted polytomous logistic regression. All statistical tests were two-sided. Results Among case patients with known HR/HER2 status, 36810 (72.7%) were found to be HR+/HER2−, 6193 (12.2%) were triple-negative (HR−/HER2−), 5240 (10.3%) were HR+/HER2+, and 2328 (4.6%) were HR−/HER2+; 6912 (12%) had unknown HR/HER2 status. NH white women had the highest incidence rate of the HR+/HER2− subtype, and NH black women had the highest rate of the triple-negative subtype. Compared with women with the HR+/HER2− subtype, triple-negative patients were more likely to be NH black and Hispanic; HR+/HER2+ patients were more likely to be NH API; and HR−/HER2+ patients were more likely to be NH black, NH API, and Hispanic. Patients with triple-negative, HR+/HER2+, and HR−/HER2+ breast cancer were 10% to 30% less likely to be diagnosed at older ages compared with HR+/HER2− patients and 6.4-fold to 20.0-fold more likely to present with high-grade disease. Conclusions In the future, SEER data can be used to monitor clinical outcomes in women diagnosed with different molecular subtypes of breast cancer for a large portion (approximately 28%) of the US population. PMID:24777111

  20. HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing.

    PubMed

    Rüschoff, Josef; Dietel, Manfred; Baretton, Gustavo; Arbogast, Susanne; Walch, Axel; Monges, Geneviéve; Chenard, Marie-Pierre; Penault-Llorca, Frédérique; Nagelmeier, Iris; Schlake, Werner; Höfler, H; Kreipe, H H

    2010-09-01

    Trastuzumab-based therapy has been shown to confer overall survival benefit in HER2-positive patients with advanced gastric cancer in a large multicentric trial (ToGA study). Subgroup analysis identified adenocarcinomas of the stomach and gastroesophageal (GE) junction with overexpression of HER2 according to immunohistochemistry (IHC) as potential responders. Due to recent approval of trastuzumab for HER2 positive metastatic gastric and GE-junction cancer in Europe (EMEA) HER2 diagnostics is now mandatory with IHC being the primary test followed by fluorescence in situ hybridization (FISH) in IHC2+ cases. However, in order to not miss patients potentially responding to targeted therapy determination of a HER2-positive status for gastric cancer required modification of scoring as had been proposed in a pre-ToGA study. To validate this new HER2 status testing procedure in terms of inter-laboratory and inter-observer consensus for IHC scoring a series of 547 gastric cancer tissue samples on a tissue microarray (TMA) was used. In the first step, 30 representative cores were used to identify specific IHC HER2 scoring issues among eight French and German laboratories, while in the second step the full set of 547 cores was used to determine IHC HER2 intensity and area score concordance between six German pathologists. Specific issues relating to discordance were identified and recommendations formulated which proved to be effective to reliably determine HER2 status in a prospective test series of 447 diagnostic gastric cancer specimens.

  1. HER2 in solid tumors: more than 10 years under the microscope; where are we now?

    PubMed

    Martin, Vittoria; Cappuzzo, Federico; Mazzucchelli, Luca; Frattini, Milo

    2014-06-01

    HER2 is a well-recognized mediator of the cancerogenic process. It is dysregulated in a wide range of solid tumors, mainly via protein overexpression and/or gene amplification, thus making HER2 an attractive target for tailored treatment. The anti-HER2 therapy trastuzumab was approved for the treatment of HER2-positive metastatic breast cancer patients more than 10 years ago. Since then, trastuzumab and other HER2-inhibitors have been entered into clinical practice for the treatment of breast cancer and, more recently, have been approved to treat HER2-positive metastatic gastric cancers. Currently, HER2-targeted therapies are under evaluation in other tumor types. Due to the relevance of proper patient selection, the accurate assessment of HER2 status is fundamental. This review will discuss the established knowledge and novel insights into the HER2 story, mainly focusing on breast, gastric and colorectal cancers, as well as providing a brief overview of salivary gland, bladder, ovarian and lung tumors.

  2. Molecular effects of lapatinib in patients with HER2 positive ductal carcinoma in situ.

    PubMed

    Estévez, Laura G; Suarez-Gauthier, Ana; García, Elena; Miró, Cristina; Calvo, Isabel; Fernández-Abad, María; Herrero, Mercedes; Marcos, Manuel; Márquez, Cristina; Lopez Ríos, Fernando; Perea, Sofía; Hidalgo, Manuel

    2014-09-04

    Human epidermal growth factor receptor 2 (HER2) amplification is frequent in ductal carcinoma in situ (DCIS) of the breast and is associated with poorly differentiated tumors and adverse prognosis features. This study aimed to determine the molecular effects of the HER2 inhibitor lapatinib in patients with HER2 positive DCIS. Patients with HER2 positive DCIS received 1,500 mg daily of lapatinib for four consecutive weeks prior to surgical resection. Magnetic resonance imaging (MRI) was used to determine changes in tumor volume. The molecular effects of lapatinib on HER2 signaling (PI3K/AKT and RAS/MAPK pathways), cell proliferation (Ki67 and p27) and apoptosis (TUNEL) were determined in pre and post-lapatinib treatment samples. A total of 20 patients were included. Lapatinib was well tolerated with only minor and transient side effects. The agent effectively modulated HER2 signaling decreasing significantly pHER2 and pERK1 expression, together with a decrease in tumor size evaluated by MRI. There was no evidence of changes in Ki67. Four weeks of neoadjuvant lapatinib in patients with HER2-positive DCIS resulted in inhibition of HER2 and RAS/MAPK signaling pathway. 2008-004492-21 (Registered June 25th 2008).

  3. Effective treatment of HER2-amplified breast cancer by targeting HER3 and β1 integrin

    PubMed Central

    Campbell, Marcia R.; Zhang, Hui; Ziaee, Shabnam; Ruiz-Saenz, Ana; Gulizia, Nathaniel; Oeffinger, Julie; Amin, Dhara N.; Ahuja, Deepika; Moasser, Mark M.; Park, Catherine C.

    2016-01-01

    The central role of HER2 as the disease driver and HER3 as its essential partner has made them rational targets for the treatment of HER2-amplifed breast cancers, and there is considerable interest in developing highly effective treatment regimens for this disease that consist of targeted therapies alone. Much of these efforts are focused on dual targeting approaches, particularly dual targeting of the HER2-HER3 tumor driver complex itself, or vertical combinations that target downstream PI3K or Akt in addition to HER2. There is also potential in lateral combinations based on evidence implicating cross-talk with other membrane receptor systems, particularly integrins, and such lateral combinations can potentially involve either HER2 or HER3. We established a preclinical model of targeting HER3 using doxycycline-inducible shRNA and determined the efficacy of a β1 integrin inhibitor in combination with targeting HER3. We report that targeting HER3 and β1 integrin provides a particularly effective combination therapy approach for HER2-amplified cancers, surpassing the combination of HER2 and β1 integrin targeting, and evading some of the safety concerns associated with direct HER2-targeting. This further validates HER3 as a major hub mediating the tumorigenic functions of HER2 and identifies it as a high value target for lateral combination therapy strategies. PMID:26860947

  4. Prognostic significance of performing universal HER2 testing in cases of advanced gastric cancer.

    PubMed

    Jiménez-Fonseca, Paula; Carmona-Bayonas, Alberto; Sánchez Lorenzo, Maria Luisa; Plazas, Javier Gallego; Custodio, Ana; Hernández, Raquel; Garrido, Marcelo; García, Teresa; Echavarría, Isabel; Cano, Juana María; Rodríguez Palomo, Alberto; Mangas, Monserrat; Macías Declara, Ismael; Ramchandani, Avinash; Visa, Laura; Viudez, Antonio; Buxó, Elvira; Díaz-Serrano, Asunción; López, Carlos; Azkarate, Aitor; Longo, Federico; Castañón, Eduardo; Sánchez Bayona, Rodrigo; Pimentel, Paola; Limón, Maria Luisa; Cerdá, Paula; Álvarez Llosa, Renata; Serrano, Raquel; Lobera, Maria Pilar Felices; Alsina, María; Hurtado Nuño, Alicia; Gómez-Martin, Carlos

    2017-05-01

    Trastuzumab significantly improves overall survival (OS) when added to cisplatin and fluoropyrimidine as a treatment for HER2-positive advanced gastric cancers (AGC). The aim of this study was to evaluate the impact of the gradual implementation of HER2 testing on patient prognosis in a national registry of AGC. This Spanish National Cancer Registry includes cases who were consecutively recruited at 28 centers from January 2008 to January 2016. The effect of missing HER2 status was assessed using stratified Cox proportional hazards (PH) regression. The rate of HER2 testing increased steadily over time, from 58.3 % in 2008 to 92.9 % in 2016. HER2 was positive in 194 tumors (21.3 %). In the stratified Cox PH regression, each 1 % increase in patients who were not tested for HER2 at the institutions was associated with an approximately 0.3 % increase in the risk of death: hazard ratio, 1.0035 (CI 95 %, 1.001-1.005), P = 0.0019. Median OS was significantly lower at institutions with the highest proportions of patients who were not tested for HER2. Patients treated at centers that took longer to implement HER2 testing exhibited worse clinical outcomes. The speed of implementation behaves as a quality-of-care indicator. Reviewed guidelines on HER2 testing should be used to achieve this goal in a timely manner.

  5. Tucatinib (ONT-380) and Trastuzumab for Patients With HER2-positive Metastatic Colorectal Cancer (MOUNTAINEER)

    ClinicalTrials.gov

    2017-02-13

    Colorectal Cancer; Colorectal Carcinoma; Colorectal Tumors; Neoplasms, Colorectal; HER-2 Gene Amplification; Metastatic Cancer; Metastatic Colon Cancer; Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum

  6. A conformationally constrained peptidomimetic binds to the extracellular region of HER2 protein.

    PubMed

    Banappagari, Sashikanth; Ronald, Sharon; Satyanarayanajois, Seetharama D

    2010-12-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases (other members include EGFR or HER1, HER3, and HER4) that are involved in signaling cascades for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating a role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (HERP5, Arg-beta Naph-Phe) exhibited antiproliferative activity with IC(50) values in the micromolar-to-nanomolar range in breast cancer cell lines. Binding of fluorescently labeled HERP5 to HER2 protein was evaluated by fluorescence assay, microscopy, and circular dichroism spectroscopy. Results indicated that HERP5 binds to the extracellular region of the HER2 protein. Structure of the peptidomimetic HERP5 was studied by NMR and molecular dynamics simulations. Based on these results a model was proposed for HER2-EGFR dimerization and possible blocking by HERP5 peptidomimetic using a protein-protein docking method.

  7. In vivo method to monitor changes in HER2 expression using near-infrared fluorescence imaging.

    PubMed

    Hassan, Moinuddin; Chernomordik, Victor; Zielinski, Rafal; Ardeshirpour, Yasaman; Capala, Jacek; Gandjbakhche, Amir

    2012-06-01

    Human epidermal growth factor receptor type 2 (HER2) is a well-known biomarker that is overexpressed in many breast carcinomas. HER2 expression level is an important factor to optimize the therapeutic strategy and monitor the treatment. We used albumin binding domain-fused HER2-specific Affibody molecules, labeled with Alexa Fluor750 dye, to characterize HER2 expression in vivo. Near-infrared optical imaging studies were carried out using mice with subcutaneous HER2-positive tumors. Animals were divided into groups of five: no treatment and 12 hours and 1 week after treatment of the tumors with the Hsp90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). The compartmental ligands-receptor model, describing binding kinetics, was used to evaluate HER2 expression from the time sequence of the fluorescence images after the intravenous probe injection. The normalized rate of accumulation of the specific fluorescent biomarkers, estimated from this time sequence, linearly correlates with the conventional ex vivo enzyme-linked immunosorbent assay (ELISA) readings for the same tumor. Such correspondence makes properly arranged fluorescence imaging an excellent candidate for estimating HER2 overexpression in tumors, complementing ELISA and other ex vivo assays. Application of this method to the fluorescence data from HER2-positive xenografts reveals that the 17-DMAG treatment results in downregulation of HER2. Application of the AngioSense 750 probe confirmed the antiangiogenic effect of 17-DMAG found with Affibody-Alexa Fluor 750 conjugate.

  8. Epidemiological study of HER-2 mutations among EGFR wild-type lung adenocarcinoma patients in China.

    PubMed

    Li, Xuefei; Zhao, Chao; Su, Chunxia; Ren, Shengxiang; Chen, Xiaoxia; Zhou, Caicun

    2016-10-28

    Human epidermal growth factor receptor (HER)-2 is a driver gene in non-small cell lung cancer (NSCLC). The present study evaluated the mutation rate of HER-2 within the wild-type epidermal growth factor receptor (EGFR) lung adenocarcinoma population in China. Formalin-fixed, paraffin-embedded samples from 456 patients with wild-type EGFR lung adenocarcinoma were analyzed for HER-2 mutations by amplification-refractory mutation system (ARMS), and HER-2 protein expression was evaluated by immunohistochemistry. All samples positive for HER-2 mutation underwent direct sequencing for further verification. HER-2 mutation was detected in 22/456 cases (4.8 %); the rate was 6.7 % among 331 triple-negative samples (i.e., wild-type EGFR, anaplastic lymphoma kinase, and ROS proto-oncogene 1). Direct sequencing confirmed that the results were consistent with those obtained by ARMS analysis in 19 cases. The positive rate was 15.4 % by immunohistochemical analysis of HER-2 expression; this was not correlated with mutation rate. HER-2 mutation and positivity were not correlated with gender, age, smoking status, disease stage, or histological subtype. The 22 cases of HER-2 mutations occurred only in acinar (36.4 %), papillary (36.4 %), minimally invasive (13.6 %), solid (9.2 %), and invasive mucinous (4.5 %) subtypes. Disease-free and overall survival were not associated with HER-2 mutation or HER-2 protein overexpression. The HER-2 mutation rate was 4.8 % among EGFR wild-type lung adenocarcinoma patients in China, and 6.7 % among driver genes, triple-negative lung adenocarcinoma. The incidence of HER-2 mutation varied among different lung adenocarcinoma subtypes, occurring mainly in acinar and papillary predominant subtypes. 15.4 % of EGFR wild-type lung adenocarcinoma patients showed HER-2 protein overexpression, but this was not correlated to HER-2 mutation. Existing follow-up data did not show a correlation between HER-2 mutation with DFS or OS.

  9. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α

    PubMed Central

    2012-01-01

    Background One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α). Methods Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. Results We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells, but antagonistically on BT

  10. The oncogene HER2; Its signaling and transforming functions and its role in human cancer pathogenesis

    PubMed Central

    Moasser, Mark M.

    2011-01-01

    The year 2007 marks exactly two decades since HER2 was functionally implicated in the pathogenesis of human breast cancer (Slamon et al. 1987). This finding established the HER2 oncogene hypothesis for the development of some human cancers. The subsequent two decades have brought about an explosion of information about the biology of HER2 and the Human Epidermal Growth Factor Receptor (HER) family. An abundance of experimental evidence now solidly supports the HER2 oncogene hypothesis and etiologically links amplification of the HER2 gene locus with human cancer pathogenesis. The molecular mechanisms underlying HER2 tumorigenesis appear to be complex and a unified mechanistic model of HER2 induced transformation has not emerged. Numerous hypotheses implicating diverse transforming pathways have been proposed and are individually supported by experimental models and HER2 may indeed induce cell transformation through multiple mechanisms. Here I review the evidence supporting the oncogenic function of HER2, the mechanisms that are felt to mediate its oncogenic functions, and the evidence that links the experimental evidence with human cancer pathogenesis. PMID:17471238

  11. Human epidermal growth factor receptor 2 (HER2) immunoreactivity: specificity of three pharmacodiagnostic antibodies

    PubMed Central

    Schrohl, Anne-Sofie; Pedersen, Hans Christian; Jensen, Sussie Steen; Nielsen, Signe Lykke; Brünner, Nils

    2011-01-01

    Aims The availability of specific antibody-based test systems is essential to testing of HER2 protein expression. Here, we mapped epitopes recognized by three pharmacodiagnostic HER2 antibodies and investigated their specificity towards peptides and fusion proteins homologous to the intracellular domains of HER1, HER2, HER3 and HER4. The investigated antibodies were PATHWAY® HER2 (clone 4B5; Ventana Medical Systems Inc., Tucson, AZ, USA), HercepTest™ (Dako Denmark A/S, Glostrup, Denmark), and Oracle® HER2 (clone CB11; Leica Microsystems GmbH, Wetzlar, Germany). Methods and results Epitopes were mapped using the alanine scanning method. Specificity was investigated in immunohistochemical stainings, competitive enzyme-linked immunosorbent assay (ELISA) and immunoblotting. All three antibodies reacted with HER2 proteins and peptides in immunohistochemical stainings, ELISA and immunoblotting. PATHWAY® HER2 also stained HER4-expressing cells, reacted with HER4 peptide in ELISA and detected HER4 fusion protein in an immunoblot. Oracle® HER2 weakly detected HER4 in immunohistochemical stainings, whereas the HercepTest™ antibody showed no cross-reactivity with other HER proteins. Conclusion Our study shows that the PATHWAY® HER2 antibody can bind HER4 peptides and fusion proteins in three different experimental settings. This should be investigated further to determine whether binding of HER4 also occurs in tissue samples and if such binding would have implications for therapy decisions for breast cancer patients. PMID:22092409

  12. Quantum dots-based double-color imaging of HER2 positive breast cancer invasion

    SciTech Connect

    Liu, Xiu-Li; Peng, Chun-Wei; Chen, Chuang; Yang, Xue-Qin; Hu, Ming-Bai; Xia, He-Shun; Liu, Shao-Ping; and others

    2011-06-10

    Highlights: {yields} HER2 level is closely related to the biologic behaviors of breast cancer cells. {yields} A new method to simultaneously image HER2 and type IV collagen was established. {yields} HER2 status and type IV collagen degradation predict breast cancer invasion. {yields} The complex interactions between tumor and its environment were revealed. -- Abstract: It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support such notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.

  13. Comparison of HER2 gene amplification assessed by fluorescence in situ hybridization and HER2 protein expression assessed by immunohistochemistry in gastric cancer.

    PubMed

    Yano, Tomonori; Doi, Toshihiko; Ohtsu, Atsushi; Boku, Narikazu; Hashizume, Kaoru; Nakanishi, Mamoru; Ochiai, Atsushi

    2006-01-01

    A monoclonal antibody to HER2 protein is widely used in the treatment of patients with HER2-overexpressing breast cancer and has also been found to exhibit antitumor activity in human gastric cancer cells that overexpress HER2. The purpose of this study was to evaluate the frequency of HER2 overexpression and concordance between the results for protein expression and gene amplification in both surgical and biopsy specimens of gastric cancer as assessed with two commercial kits, one for immunohistochemistry (IHC) and the other for fluorescence in situ hybridization (FISH). The specimens consisted of formalin-fixed, paraffin-embedded sections of biopsy specimens and surgically resected tumors from 200 cases of invasive gastric cancer that had been treated surgically at the National Cancer Center Hospital East. The lesions were analyzed with the IHC kit, and expression was graded by the United States Food and Drug Administration (FDA)-approved grading system. Gene amplification was evaluated by FISH. IHC revealed HER2 overexpression in 46 of the 200 (23%) cases. The FISH assay was technically successful in 199 cases (99.5%), and gene amplification was observed in 54 cases (27.1%). The concordance rate between the results obtained by IHC and FISH was 86.9%. The concordance rate between the findings in the surgically resected tumors and the 200 pre-treatment biopsy specimens was 88.7%. HER2 expression can be assessed in gastric cancer with a commercial kit as previously reported in breast cancer. Even small biopsy specimens were found to be suitable for evaluating gastric cancer for HER2 overexpression.

  14. HER2-targeted recombinant protein immuno-caspase-6 effectively induces apoptosis in HER2-overexpressing GBM cells in vitro and in vivo.

    PubMed

    Zhang, Leiming; Ren, Junlin; Zhang, Hangyu; Cheng, Gang; Xu, Yanming; Yang, Shuangwu; Dong, Chao; Fang, Dandong; Zhang, Jianning; Yang, Angang

    2016-11-01

    Glioblastoma multiforme (GBM), which is associated with a high rate of morbidity and mortality, is among the most malignant and treatment-refractory neoplasms in human adults. As GBM is highly resistant to conventional therapies, immunotherapies are a promising treatment candidate. HER2 is an attractive target for GBM immunotherapy, as its expression is highly associated with various types of GBM. We previously reported that a novel HER2-targeted recombinant protein e23sFv-Fdt-casp6 has an antitumor effect on HER2-positive gastric cancer cells. In this study, we established a genetically modified Chinese hamster ovary cell line, which produced and secreted e23sFv-Fdt-casp6 proteins. Following specific binding to and internalization into HER2-overexpressing tumor cells, the e23sFv-Fdt-casp6 protein induced tumor cell apoptosis and inhibited the proliferation of HER2-overexpressing A172 and U251MG cells in vitro, but not in U87MG cells with undetectable HER2. The e23sFv-Fdt-casp6 gene was introduced into severe combined immunodeficient mice bearing human glioblastoma xenografts by using intramuscular injections of a liposome-encapsulated vector. The recombinant protein e23sFv-Fdt-casp6 specifically targeted tumor cells and induced apoptosis, thereby leading to potent inhibition of tumor growth and prolonged the survival time of tumor-bearing mice. We concluded that e23sFv‑Fdt‑casp6 represents a promising HER2-targeted treatment option for human gliomas.

  15. Amplification of HER2 is a marker for global genomic instability

    PubMed Central

    Ellsworth, Rachel E; Ellsworth, Darrell L; Patney, Heather L; Deyarmin, Brenda; Love, Brad; Hooke, Jeffrey A; Shriver, Craig D

    2008-01-01

    Background Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu) are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. Methods HER2 status was determined using the PathVysion® assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39) or HER2 negative (n = 142) tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI) was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. Results The frequency of AI was significantly higher (P < 0.005) in HER2 amplified (27%) compared to HER2 negative tumors (19%). Samples with HER2 amplification showed significantly higher levels of AI (P < 0.05) at chromosomes 11q23, 16q22-q24 and 18q21. Partial correlations including ER status and tumor grade supported associations between HER2 status and alterations at 11q13.1, 16q22-q24 and 18q21. Conclusion The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may

  16. Amplification of HER2 is a marker for global genomic instability.

    PubMed

    Ellsworth, Rachel E; Ellsworth, Darrell L; Patney, Heather L; Deyarmin, Brenda; Love, Brad; Hooke, Jeffrey A; Shriver, Craig D

    2008-10-14

    Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu) are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. HER2 status was determined using the PathVysion assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n=39) or HER2 negative (n=142) tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI) was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. The frequency of AI was significantly higher (P<0.005) in HER2 amplified (27%) compared to HER2 negative tumors (19%). Samples with HER2 amplification showed significantly higher levels of AI (P<0.05) at chromosomes 11q23, 16q22-q24 and 18q21. Partial correlations including ER status and tumor grade supported associations between HER2 status and alterations at 11q13.1, 16q22-q24 and 18q21. The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2 amplification

  17. Neratinib shows efficacy in the treatment of HER2 amplified carcinosarcoma in vitro and in vivo

    PubMed Central

    Schwab, Carlton L.; English, Diana P.; Black, Jonathan; Bellone, Stefania; Lopez, Salvatore; Cocco, Emiliano; Bonazzoli, Elena; Bussi, Beatrice; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Rutherford, Thomas; Schwartz, Peter E.; Santin, Alessandro D.

    2015-01-01

    Objective Carcinosarcoma is a deadly gynecologic malignancy with few effective treatment options. The study of new therapies is difficult because of its rarity. The objective of this study was to determine the efficacy of neratinib in the treatment of HER2 amplified carcinosarcoma. Methods The efficacy of neratinib in the treatment of HER2 amplified carcinosarcoma was determined in vitro using seven primary carcinosarcoma cell lines with differential expression of HER2/neu. Data regarding IC50, cell cycle distribution, and cell signaling changes were assessed by flow cytometry. The efficacy of neratinib was determined in treating mice harboring HER2 amplified carcinosarcoma xenografts. Results Two of seven (28.5%) carcinosarcoma cell lines were HER2/neu amplified. HER2/neu amplified cell lines SARARK6 and SARARK9 were significantly more sensitive to neratinib than the five non-HER2/neu amplified carcinosarcoma cell lines (mean±SEM IC50: 0.014μM±0.004 vs. 0.164μM±0.019 p=0.0003). Neratinib treatment caused a significant build up in G0/G1 phase of the cell cycle, arrest auto phosphorylation of HER2/neu and activation of S6. Neratinib inhibited tumor growth (p=0.012) and prolonged survival in mice harboring HER2 amplified carcinosarcoma xenografts (p=0.0039). Conclusions Neratinib inhibits HER2 amplified carcinosarcoma proliferation, signaling, cell cycle progression and tumor growth in vitro. Neratinib inhibits HER2/neu amplified xenograft growth and improves overall survival. Clinical trials are warranted. PMID:26260909

  18. Effects of Herceptin on circulating tumor cells in HER2 positive early breast cancer.

    PubMed

    Zhang, J-L; Yao, Q; Chen Y Wang, J-H; Wang, H; Fan, Q; Ling, R; Yi, J; Wang, L

    2015-03-20

    The objective of this study was to determine the changes in peripheral blood circulating tumor cells in HER2-positive early breast cancer before and after Herceptin therapy, and to explore the effects of the HER2 gene and Herceptin on circulating tumor cells. CK19 mRNA expression in peripheral blood was evaluated by qRT-PCR as an index of circulating tumor cells in 15 cases of HER-2-positive breast cancer and 18 cases of HER2-negative breast cancer before, and after chemotherapy as well. Ten cases of HER2-positive breast cancer continued on Herceptin therapy for 3 months after chemotherapy, and their peripheral blood was again drawn and assayed for CK-19 mRNA expression. Preoperatively, all cases of HER2-positive cancer were positive for CK19 mRNA in peripheral blood, but 6 cases of HER2-negative breast cancer were positive (33.3%), where there was a substantial difference between the two groups. After 6 cycles of adjuvant chemotherapy, CK19 positive rates in cases of HER2-positive and -negative breast cancer reduced by 93.3 and 11.1%, respectively, with a significant difference still existing. After 3 months of Herceptin therapy, expression of CK19 mRNA declined considerably in 10 cases of HER2 positive breast cancer (113.66 ± 88.65 vs 63.35 ± 49.27, P = 0.025). HER-2 gene expression closely correlated with circulating tumor cells in peripheral blood of early breast cancer patients. Moreover, Herceptin, a monoclonal antibody for HER2, can reduce the number of circulating tumor cells, which can be an early predictive factor for Herceptin therapy effectiveness against breast cancer.

  19. Discordant HER2 expression and response to neoadjuvant chemoradiotherapy in esophagogastric adenocarcinoma

    PubMed Central

    Chan, Ellie; Duckworth, Lizette Vila; Alkhasawneh, Ahmad; Toro, Tania Zuluaga; Lu, Xiaomin; Ben-David, Kfir; Hughes, Steven J.; Rossidis, Georgios; Zlotecki, Robert; Lightsey, Judith; Daily, Karen C.; Dang, Long; Allegra, Carmen J.; King, Brent

    2016-01-01

    Background Targeting human epidermal growth factor receptor 2 (HER2) with trastuzumab in metastatic esophagogastric adenocarcinoma (EGA) improves survival. The impact of HER2 inhibition in combination with chemoradiotherapy (CRT) in early stage EGA is under investigation. This study analyzed the pattern of HER2 overexpression in matched-pair tumor samples of patients who underwent neoadjuvant CRT followed by surgery. Methods All patients with EGA who underwent standard neoadjuvant CRT followed by esophagectomy at the University of Florida were included. Demographics, risk factors, tumor features, and outcome data were analyzed. Descriptive statistics, Chi-square exact test, uni- and multivariate analyses, and Kaplan Meier method were used. HER2 expression determined by immunohistochemical (IHC) was scored as negative (0, 1+), indeterminate (2+) or positive (3+). Results Among 49 sequential patients (41 M/8 F) with matched-pair tumor samples, 9/49 patients (18%) had pathologic complete response (pCR), 10/49 had near pCR or not enough tumor (NET) to examine in the post- treatment samples. Patients with initial HER2 negativity demonstrated conversion to HER2 positivity after neoadjuvant CRT (7/30 cases; 23%). Baseline HER2 overexpression was more common in lower stage/node negative patients (67% in stages I, IIA vs. 33% in stages IIB, III) and did not correlate with treatment response or survival. Conclusions Although limited by a relatively small sample size, our study failed to demonstrate that baseline HER2 protein over-expression in EGA predicts response to standard CRT. However, our data suggested that HER2 was up regulated by CRT resulting in unreliable concordance between pre-treatment (pre-tx) and post-treatment (post-tx) samples. Pre-therapy HER2 expression may not reliably reflect the HER2 status of persistent or recurrent disease. PMID:27034783

  20. Impact of HER2 expression on outcome in gastric cancer patients with liver metastasis.

    PubMed

    Jiang, H; Li, Q; Yu, S; Yu, Y; Wang, Y; Li, W; Cui, Y; Liu, T

    2017-02-01

    We aim to investigate the correlation of HER2 expression with liver metastasis and the impact of HER2 status and trastuzumab therapy on the prognosis of gastric cancer with liver metastasis (GCLM) patients. This prospective observational study was carried out in Shanghai Zhongshan Hospital, Fudan University, from January 2012 to June 2015. HER2 status and baseline characteristics were collected from the patient record. GCLM patients were divided into three groups according to HER2 status and trastuzumab therapy. A total of 290 patients were included, and94 patients were diagnosed with liver metastasis. The HER2 positivity was 37.2 % (35/94) in GCLM patients and 21 % (61/290) in the overall GC patients. Among 94 GCLM patients, 28 HER2-positive patients received trastuzumab-based therapy (group A), 7 HER2-positive patients received chemotherapy alone (group B) and the other 59 patients were HER2 negative (group C). The median progression-free survival (PFS) for groups A, B and C was 7.83, 6.30 and 5.33 months, respectively (P = 0.007). The median overall survival (OS) for groups A, B and C was 12.00, 10.47 and 8.67 months, respectively (P = 0.056). Further Cox analysis showed that there was no significant difference in OS (P = 0.917) and PFS (P = 0.456) between group B and C. HER2 positivity was higher in GCLM patients. HER2 status itself was not an independent prognostic factor in GCLM patients. Trastuzumab-based therapy could significantly improve survival in HER2-positive GCLM patients.

  1. Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells.

    PubMed

    Way, Tzong-Der; Kao, Ming-Ching; Lin, Jen-Kun

    2005-01-03

    We have shown that exposure of the HER2/neu-overexpressing breast cancer cells to apigenin resulted in induction of apoptosis by depleting HER2/neu protein and, in turn, suppressing the signaling of the HER2/HER3-PI3K/Akt pathway. Here, we examined whether inhibition of this pathway played a role in the anti-tumor effect. The results revealed that treatment with apigenin induced apoptosis through cytochrome c release and caused a rapid induction of caspase-3 activity and stimulated proteolytic cleavage of DFF-45. Furthermore, apigenin downregulated cyclin D1, D3 and Cdk4 and increased p27 protein levels. Colony formation in the soft agar assay, a hallmark of the transformation phenotype, was preferentially suppressed in HER2/neu-overexpressing breast cancer cells in the presence of apigenin. In addition, a structure-activity relationship study indicated that (1) the position of B ring; and (2) the existence of the 3', 4'-hydroxyl group on the 2-phenyl group were important for the depletion of HER2/neu protein by flavonoids. These results provided new insights into the structure-activity relationship of flavonoids.

  2. Design, synthesis and characterization of peptidomimetic conjugate of BODIPY targeting HER2 protein extracellular domain

    USDA-ARS?s Scientific Manuscript database

    Among the EGFRs, HER2 is a major heterodimer partner and also has important implications in the formation of particular tumors. Interaction of HER2 protein with other EGFR proteins can be modulated by small molecule ligands and, hence, these protein-protein interactions play a key role in biochemica...

  3. Cross-reactivity of EGFR mutation-specific immunohistochemistry assay in HER2-positive tumors.

    PubMed

    Verdu, Montse; Trias, Isabel; Roman, Ruth; Rodon, Natalia; Pubill, Carme; Arraiza, Nuria; Martinez, Begonya; Garcia-Pelaez, Beatriz; Serrano, Teresa; Puig, Xavier

    2015-09-01

    The coexpression of HER2 and EGFR L858R in a solitary nodule removed from the lung, whose mutation was not confirmed by molecular techniques, made us think about the possible existence of a cross-reaction between HER2 and the EGFR L858R-specific antibody. Our study was designed to further analyze the existence of this cross-reaction and stress the need to exclude a metastatic breast cancer when dealing with EGFR L858R-positive cases. The series consists of 42 primary breast carcinomas, 22 HER2 positive for overexpression and amplification, and 20 negative for both. EGFR mutations were studied by immunohistochemistry and confirmed using real-time PCR when positive. Immunohistochemistry assay with EGFR L858R was positive in 19 (86%) of the HER2-positive breast carcinomas and negative in all HER2-negative carcinomas. The EGFR L858R antibody gives false-positive results in most of the breast carcinomas with HER2 overexpression/amplification. As a consequence, it is essential to confirm any EGFR L858R-positive cases by molecular methods or at least discard the presence of HER2 overexpression/amplification before rendering a diagnosis. It is also important to consider that HER2 has been described in other carcinomas such as urothelial, gastric or ovarian, as well as lung, although infrequently.

  4. Rapid Translation of a Novel and Potent Vaccine in HER2+ Metastatic Breast Cancer Patients

    DTIC Science & Technology

    2013-10-01

    G. Komen Foundation Postdoctoral Fellowship Award (KG080627) (Z.C.H.). References [1] Delcayre A, Estelles A, Sperinde J, Roulon T, Paz P, Aguilar B... moral response, we next investigated these aspects of our Ad-HER2-ki and Ad-HER2-ECD-TM vaccine-induced anti- bodies (VIA). Isotype-specific ELISA

  5. HER2 Analysis in Sporadic Thyroid Cancer of Follicular Cell Origin

    PubMed Central

    Ruggeri, Rosaria M.; Campennì, Alfredo; Giuffrè, Giuseppe; Giovanella, Luca; Siracusa, Massimiliano; Simone, Angela; Branca, Giovanni; Scarfì, Rosa; Trimarchi, Francesco; Ieni, Antonio; Tuccari, Giovanni

    2016-01-01

    The Epidermal Growth Factor Receoptor (EGFR) family member human epidermal growth factor receptor 2 (HER2) is overexpressed in many human epithelial malignancies, representing a molecular target for specific anti-neoplastic drugs. Few data are available on HER2 status in differentiated thyroid cancer (DTC). The present study was aimed to investigate HER2 status in sporadic cancers of follicular cell origin to better clarify the role of this receptor in the stratification of thyroid cancer. By immunohistochemistry and fluorescence in-situ hybridization, HER2 expression was investigated in formalin-fixed paraffin-embedded surgical specimens from 90 DTC patients, 45 follicular (FTC) and 45 papillary (PTC) histotypes. No HER2 immunostaining was recorded in background thyroid tissue. By contrast, overall HER2 overexpression was found in 20/45 (44%) FTC and 8/45 (18%) PTC, with a significant difference between the two histotypes (p = 0.046). Five of the six patients who developed metastatic disease during a median nine-year follow-up had a HER2-positive tumor. Therefore, we suggest that HER2 expression may represent an additional aid to identify a subset of patients who are characterized by a worse prognosis and are potentially eligible for targeted therapy. PMID:27929428

  6. The role of MAPK signaling pathway in the Her-2-positive meningiomas

    PubMed Central

    Wang, Zhaoyin; Wang, Weijia; Xu, Shan; Wang, Shanshan; Tu, Yi; Xiong, Yifeng; Mei, Jinhong; Wang, Chunliang

    2016-01-01

    Meningiomas are common types of adult nerve system tumors. Although most cases are considered benign, due to its high rate of recurrence and easy malignant progression to anaplastic meningioma they present a puzzle for the current treatment. The HER-2 oncogene has important value for meningioma cells development and progression. So far, little is known about the effect on the exact underlying signal pathway and molecular mechanisms of HER-2-positive meningioma cells. The goal of the present study was to determine the effects of HER-2 gene and possible involvement of MAPK signal pathway in human malignant meningioma. We applied q-PCR analysis, immunofluorescence (IF) staining, western blot analysis, animal model, MAPK inhibition, MTT assay and cell invasion analysis for the investigation. The results demonstrated that the downregulation of the expression of HER-2 significantly inhibited cell motility and proliferation of human meningioma cells in vivo. Accordingly, in the HER-2-overexpression meningioma cells with the inhibition of ERK1/2, ERK5, JNK, in the cells with the ERK1/2, ERK5 inhibition, protein expression was markedly suppressed as well as the cell proliferation resistance. No difference was observed in the HER-2-overexpression meningioma cells with the inhibition of JNK. These findings suggest that HER-2 gene can affect the proliferation ability of human meningioma cells in vivo and MAPK signal pathway may contribute to the carcinogenesis and development of human meningiomas combinating with HER-2. PMID:27279438

  7. Clinical Practice Patterns and Cost-Effectiveness of HER2 Testing Strategies in Breast Cancer Patients

    PubMed Central

    Phillips, Kathryn A.; Marshall, Deborah A.; Haas, Jennifer S.; Elkin, Elena B.; Liang, Su-Ying; Hassett, Michael J.; Ferrusi, Ilia; Brock, Jane E.; Van Bebber, Stephanie L

    2009-01-01

    Background Testing technologies are increasingly used to target cancer therapies. Human epidermal growth factor receptor 2 (HER2) testing to target trastuzumab for patients with breast cancer provides insights into the evidence needed for emerging testing technologies. Methods We reviewed literature on HER2 test utilization and cost-effectiveness of HER2 testing for patients with breast cancer. We examined available evidence on: percentage of eligible patients tested for HER2; test methods used; concordance of test results between community and central/reference laboratories; use of trastuzumab by HER2 test result; and cost-effectiveness of testing strategies. Results Little evidence is available to determine whether all eligible patients are tested; how many are retested to confirm results; and how many with negative HER2 test results still receive trastuzumab. Studies suggest that up to 66% of eligible patients had no documentation of testing in claims records; up to 20% of patients receiving trastuzumab were not tested or had no documentation of a positive test; and 20% of HER2 results may be incorrect. Few cost-effectiveness analyses of trastuzumab explicitly considered the economic implications of various testing strategies. Conclusions There is little information about the actual use of HER2 testing in clinical practice, but evidence suggests important variations in testing practices and key gaps in knowledge exist. Given the increasing use of targeted therapies, it is critical to build an evidence base that supports informed decision-making on emerging testing technologies in cancer care. PMID:19753618

  8. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    NASA Astrophysics Data System (ADS)

    Glukhov, S.; Berestovoy, M.; Chames, P.; Baty, D.; Nabiev, I.; Sukhanova, A.

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or "nanobodies") conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD-sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis.

  9. Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer.

    PubMed

    Korsak, Barbara; Almeida, Gabriela M; Rocha, Sara; Pereira, Carla; Mendes, Nuno; Osório, Hugo; Pereira, Patrícia M R; Rodrigues, João M M; Schneider, Rudolf J; Sarmento, Bruno; Tomé, João P C; Oliveira, Carla

    2017-10-01

    Gastric cancer (GC) is the 3rd deadliest cancer worldwide, due to limited treatment options and late diagnosis. Human epidermal growth factor receptor-2 (HER2) is overexpressed in ∼20% of GC cases and anti-HER2 antibody trastuzumab in combination with conventional chemotherapy, is recognized as standard therapy for HER2-positive metastatic GC. This strategy improves GC patients' survival by 2-3 months, however its optimal results in breast cancer indicate that GC survival may be improved. A new photoimmunoconjugate was developed by conjugating a porphyrin with trastuzumab (Trast:Porph) for targeted photodynamic therapy in HER2-positive GC. Using mass spectrometry analysis, the lysine residues in the trastuzumab structure most prone for porphyrin conjugation were mapped. The in vitro data demonstrates that Trast:Porph specifically binds to HER2-positive cells, accumulates intracellularly, co-localizes with lysosomal marker LAMP1, and induces massive HER2-positive cell death upon cellular irradiation. The high selectivity and cytotoxicity of Trast:Porph based photoimmunotherapy is confirmed in vivo in comparison with trastuzumab alone, using nude mice xenografted with a HER2-positive GC cell line. In the setting of human disease, these data suggest that repetitive cycles of Trast:Porph photoimmunotherapy may be used as an improved treatment strategy in HER2-positive GC patients. © 2017 UICC.

  10. Evaluation of the Expression of the Human Epithelial Receptor 2 (HER2) in Gastric Carcinoma

    PubMed Central

    Claro, Laura Carolina Lopez; Fukuhara, Daniel Kenji; Thuler, Fábio Rodrigues; Ilias, Elias Jirjoss

    2016-01-01

    Objective. To evaluate the HER2 expression on gastric adenocarcinoma from a Brazilian population and also to analyze the relations between the receptor and clinical characteristics, as well as the survival status. Materials and Methods. A retrospective analysis was conducted from January of 2008 to July of 2012, considering only gastrectomies with curative intent. Tumors were tested for HER2 status using immunohistochemistry. The relation between HER2 status and clinical aspects, surgical findings, and survival were also analyzed. Results. 222 patients with gastric carcinoma were submitted to surgery during that period, but only 121 (54,5%) were with curative intention. The immunohistochemistry revealed that 4 patients (3,3%) were HER2-positive, 6 patients (4,9%) HER2-undetermined, and 111 patients (91,7%) HER2-negative. There was no statistical concordance between HER2 status and survival or the clinical aspects. Conclusion. The HER2 overexpression rate was very low in this Brazilian population sample and cannot be considered as a prognostic factor. PMID:28105465

  11. Trastuzumab Emtansine in HER2+ Recurrent Metastatic Non-Small-Cell Lung Cancer: Study Protocol.

    PubMed

    Ohashi, Kadoaki; Hotta, Katsuyuki; Hirata, Taizo; Aoe, Keisuke; Kozuki, Toshiyuki; Ninomiya, Kiichiro; Kayatani, Hiroe; Yanai, Hiroyuki; Toyooka, Shinichi; Hinotsu, Shiro; Takata, Minoru; Kiura, Katsuyuki

    2017-01-01

    The treatment outcome has been unsatisfactory for patients with non-small-cell lung cancer (NSCLC) refractory to standard first-line chemotherapy. Trastuzumab emtansine (T-DM1), an anti-HER2 antibody conjugated with a vinca alkaloid, has been approved for clinical use in HER2+ breast cancer in many countries. Approximately 5% of NSCLC tumors possess HER2 alterations, and T-DM1 has shown excellent antitumor effects against HER2+ lung cancer cell lines in preclinical models. Therefore, we hypothesized that T-DM1 could significantly inhibit the growth of HER2+ lung cancers. We have launched a nonrandomized phase II trial of T-DM1 monotherapy for patients with HER2+ lung cancers. The major eligibility criteria are as follows: age ≥ 20 years, pathologically diagnosed NSCLC with documented HER2 positivity (immunohistochemistry 3+, both immunohistochemistry 2+ and fluorescence in situ hybridization positive, or exon 20 insertion mutation), and previous chemotherapy. Thirty patients will receive T-DM1 3.6 mg/kg every 3 weeks. The primary endpoint is the overall response rate. This trial will provide information on whether T-DM1 monotherapy is effective against HER2+ lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The status of Her2 amplification and Kras mutations in mucinous ovarian carcinoma.

    PubMed

    Chang, Kuang-Leei; Lee, Ming-Yung; Chao, Wan-Ru; Han, Chih-Ping

    2016-12-28

    Jayson GC et al. remarked in Lancet that nearly 100% of mucinous ovarian cancer cases have Kras mutation as well as a high frequency of Her2 amplification. Using the Abbott PathVysion Her2 DNA Probe Kit and Kras mutant-enriched PCR Kits (FemtoPath®), 21 samples of primary ovarian mucinous cystadenocarcinomas from Taiwanese patients were examined to determine the status of Her2 amplification and Kras mutations. Our results showed the Her2 amplification rates were 33.33%, while the Kras mutation rates were 61.90%. We present here our results in order to enlighten the readership that the ~100% Kras mutant frequency and the high Her2 amplification rate reported by Jayson et al. may be too exaggerated to be applicable into all populations. Additionally, we report another 2 novel Kras mutations (A11V, V14I).

  13. HER-2 tissue expression correlated with serum levels in breast cancer patients.

    PubMed

    Pribylová, O; Springer, D; Vítková, I; Zima, T; Petruzelka, L

    2007-01-01

    We explored the relationship between circulating HER-2 extracellular domain and tissue HER-2 status in a group of 42 postmenopausal breast cancer patients. All patients were examined before adjuvant chemotherapy or other adjuvant treatment. Serum levels were measured by BAYER Advia Centaur System, Golden, CO (the cut-off level was in our conditions considered at 12 ng/ml). Tissue expression was assayed with the DAKO HercepTest, North America, Inc, Carpinteria, CA. Our findings that serum levels are in consonance with tissue expression could be important in metastatic breast cancer, when it is impossible to get a new tumour sample and establish the actual HER-2 status, which may be different from the primary tumour. Although we know that serum HER-2 concentration cannot be substituted for IHC or FISH, we have observed a statistically significant correlation between serum level concentration and tissue HER-2 status.

  14. Improved Aptamers for the Diagnosis and Potential Treatment of HER2-Positive Cancer

    PubMed Central

    Gijs, Marlies; Penner, Gregory; Blackler, Garth B.; Impens, Nathalie R.E.N.; Baatout, Sarah; Luxen, André; Aerts, An M.

    2016-01-01

    Aptamers provide a potential source of alternative targeting molecules for existing antibody diagnostics and therapeutics. In this work, we selected novel DNA aptamers targeting the HER2 receptor by an adherent whole-cell SELEX approach. Individual aptamers were identified by next generation sequencing and bioinformatics analysis. Two aptamers, HeA2_1 and HeA2_3, were shown to bind the HER2 protein with affinities in the nanomolar range. In addition, both aptamers were able to bind with high specificity to HER2-overexpressing cells and HER2-positive tumor tissue samples. Furthermore, we demonstrated that aptamer HeA2_3 is being internalized into cancer cells and has an inhibitory effect on cancer cell growth and viability. In the end, we selected novel DNA aptamers with great potential for the diagnosis and possible treatment of HER2-positive cancer. PMID:27213406

  15. A critical review of HER2-positive gastric cancer evaluation and treatment: from trastuzumab, and beyond.

    PubMed

    Gomez-Martín, Carlos; Lopez-Rios, Fernando; Aparicio, Jorge; Barriuso, Jorge; García-Carbonero, Rocio; Pazo, Roberto; Rivera, Fernando; Salgado, Mercedes; Salud, Antonieta; Vázquez-Sequeiros, Enrique; Lordick, Florian

    2014-08-28

    Identification of the importance of human epidermal growth factor receptor-2 (HER2) status, biomarker testing and the development of anti-HER2 treatments have changed the prognosis of breast and gastric cancers. The addition of trastuzumab to chemotherapy has improved outcomes for patients with HER2-positive metastatic adenocarcinoma of the stomach and gastroesophageal junction, but some relevant issues remain to be elucidated or will emerge with new drugs. This article reviews the current state of HER2 in gastric cancer focusing on diagnostic and anti-HER2 targeted treatment issues and the role of trastuzumab in localized disease, and its combination or integration with new therapies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Recent advances in systemic therapy. When HER2 is not the target: advances in the treatment of HER2-negative metastatic breast cancer

    PubMed Central

    Miles, David W

    2009-01-01

    The anti-human epidermal growth factor receptor 2 (HER2) agent trastuzumab has improved outcomes in breast cancer patients with HER2 over-expressing tumours. However, systemic treatment for patients with HER2-negative disease is still limited to endocrine and cytotoxic therapies. The increasing use of the anthracyclines and taxanes in early stage disease has reduced the available therapeutic options for patients with relapsed disease, and choices are further limited for patients with triple-negative tumours, who typically have a poor prognosis. The novel agents bevacizumab and ixabepilone were recently approved for metastatic breast cancer, and numerous other agents are currently in clinical development that may contribute further valuable therapeutic options. PMID:19744307

  17. The frequency and clinical impact of HER2 alterations in lung adenocarcinoma

    PubMed Central

    Kim, Eun Kyung; Kim, Kyung A.; Lee, Chang Young

    2017-01-01

    Human epidermal growth factor receptor 2 (HER2 or ErbB2) can be overexpressed, amplified and/or mutated in malignant tumors, and is a candidate for therapeutic targeting. However, molecular associations and clinical significances of these alterations were controversial in lung cancer. In this study, we investigated the frequency and clinicopathological significance of HER2 dysregulation in patients with lung adenocarcinoma. HER2 protein overexpression, gene amplification, and gene mutation were evaluated by immunohistochemistry (IHC), silver in situ hybridization, and direct sequencing, respectively. The H-scoring method and American Society of Clinical Oncology/College of American Pathologists breast cancer guidelines were used to interpret IHC results. Genetic analyses of EGFR and KRAS mutations, and of ALK and ROS1 rearrangements, were also performed. Of the 321 adenocarcinoma patients identified, HER2 overexpression (H-score ≥200) and gene amplification were found in 6 (1.9%) and 46 (14.3%), respectively. HER2 overexpression was correlated with papillary predominant histology; furthermore, it indicated poor overall survival and was an independent prognostic factor. HER2 amplification was associated with pleural invasion and showed a tendency towards shorter overall and disease-free survival. High-level gene amplification (HER2/CEP17 ratio ≥5 or copy number ≥10) was a poor prognostic factor for disease-free survival. HER2 mutations were detected in 6.7% (7 of 104) of driver oncogene-negative adenocarcinomas. Our study suggests that HER2 overexpression or amplification is a poor prognostic factor in lung adenocarcinoma, although the frequency of such events is low. Since molecular targeted agents are being tested in clinical trials, awareness of the specific HER2 status can influence the prognostic stratification and treatment of patients with molecularly defined subsets of lung adenocarcinoma. PMID:28146588

  18. Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization

    PubMed Central

    Steven, André; Leisz, Sandra; Sychra, Katharina; Hiebl, Bernhard; Wickenhauser, Claudia; Mougiakakos, Dimitrios; Kiessling, Rolf; Denkert, Carsten; Seliger, Barbara

    2016-01-01

    The cAMP-responsive element-binding protein (CREB) is involved in the tumorigenicity of HER-2/neu-overexpressing murine and human tumor cells, but a link between the HER-2/neu-mediated CREB activation, its posttranslational modification and localization and changes in the cellular metabolism, due to an altered (tumor) microenvironment remains to be established. The present study demonstrated that shRNA-mediated silencing of CREB in HER-2/neu-transformed cells resulted in decreased tumor formation, which was associated with reduced angiogenesis, but increased necrotic and hypoxic areas in the tumor. Hypoxia induced pCREBSer133, but not pCREBSer121 expression in HER-2/neu-transformed cells. This was accompanied by upregulation of the hypoxia-inducible genes GLUT1 and VEGF, increased cell migration and matrix metalloproteinase-mediated invasion. Treatment of HER-2/neu+ cells with signal transduction inhibitors targeting in particular HER-2/neu was able to revert hypoxia-controlled CREB activation. In addition to changes in the phosphorylation, hypoxic response of HER-2/neu+ cells caused a transient ubiquitination and SUMOylation as well as a co-localization of nuclear CREB to the mitochondrial matrix. A mitochondrial localization of CREB was also demonstrated in hypoxic areas of HER-2/neu+ mammary carcinoma lesions. This was accompanied by an altered gene expression pattern, activity and metabolism of mitochondria leading to an increased respiratory rate, oxidative phosphorylation and mitochondrial membrane potential and consequently to an enhanced apoptosis and reduced cell viability. These data suggest that the HER-2/neu-mediated CREB activation caused by a hypoxic tumor microenvironment contributes to the neoplastic phenotype of HER-2/neu+ cells at various levels. PMID:27409833

  19. Optimizing HER2 assessment in breast cancer: application of automated image analysis.

    PubMed

    Holten-Rossing, Henrik; Møller Talman, Maj-Lis; Kristensson, Martin; Vainer, Ben

    2015-07-01

    In breast cancer, analysis of HER2 expression is pivotal for treatment decision. This study aimed at comparing digital, automated image analysis with manual reading using the HER2-CONNECT algorithm (Visiopharm) in order to minimize the number of equivocal 2+ scores and the need for reflex fluorescence in situ hybridization (FISH) analysis. Consecutive samples from 462 patients were included. Tissue micro arrays (TMAs) were routinely manufactured including two 2 mm cores from each patient, and each core was assessed in order to ensure the presence of invasive carcinoma. Immunohistochemical staining (IHC) was performed with Roche/Ventana's HER2 ready-to-use kit. TMAs were scanned in a Zeiss Axio Z1 scanner, and one batch analysis of the HER2-CONNECT algorithm including all core samples was run using Visiopharm's cloud-based software. The automated reading was compared to conventional manual assessment of HER2 protein expression, together with FISH analysis of HER2 gene amplification for borderline (2+) protein expression samples. Compared to FISH analysis, manual assessment of the HER2 protein expression demonstrated a sensitivity of 85.8% and a specificity of 86.0% with 14.0% equivocal samples. With HER2-CONNECT, sensitivity increased to 100 % and specificity to 95.5% with less than 4.5% equivocal. Total agreement when comparing HER2-CONNECT with manual IHC assessment supplemented by FISH for borderline (2+) cases was 93.6%. Application of automated image analysis for HER2 protein expression instead of manual assessment decreases the need for supplementary FISH testing by 68%. In the routine diagnostic setting, this would have significant impact on cost reduction and turn-around time.

  20. L1CAM and HER2 Expression in Early Endometrioid Uterine Cancer.

    PubMed

    Abdel Azim, Samira; Sprung, Susanne; Mutz-Dehbalaie, Irene; Fessler, Siegfried; Zeimet, Alain G; Marth, Christian

    2017-02-17

    Recently L1CAM was shown to be a promising biomarker for early-stage endometrial carcinoma (EC). As L1CAM expression was found to be related to serous ECs and areas of serous differentiation in endometrioid carcinomas, there is evidence that L1CAM-positive cancers more likely resemble type II carcinomas. Furthermore, expression of growth factor receptor HER2 has been found to be closely associated with serous ECs. We conducted a retrospective study on 142 patients in FIGO stages I and II with endometrioid EC and analyzed L1CAM and HER2 expression by double-staining immunohistochemistry. The association between these 2 transmembrane molecules and their impact on patient outcome was analyzed. Both L1CAM and HER2 showed a significant association with recurrent disease (P<0.001 and P=0.007, respectively). We found 39 (27%) L1CAM-positive cases and 17 (12%) HER2-positive cases. About 6.3% of cases were positive for both biomarkers. Survival of L1CAM-positive patients showed a significant difference between HER2-positive and HER2-negative patients (P=0.019) regarding disease-free survival. The most unfavorable disease-free survival and overall survival was found for patients with L1CAM and HER2 double-positive tumors (P<0.001). Double immunostaining revealed a mutually exclusive staining pattern for L1CAM and HER2 expression on the level of tumor cells. In early endometrioid uterine carcinoma, an additional expression of HER2 to L1CAM seems to further worsen disease-free survival and overall survival. In terms of "personalized medicine," detection of these molecules in endometrioid ECs may open new avenues for targeted therapies with the newly available anti-HER2 drugs and/or with the upcoming humanized anti-L1CAM antibodies.

  1. Ideal number of biopsy tumor fragments for predicting HER2 status in gastric carcinoma resection specimens.

    PubMed

    Ahn, Sangjeong; Ahn, Soomin; Van Vrancken, Michael; Lee, Minju; Ha, Sang Yun; Lee, Hyuk; Min, Byung-Hoon; Lee, Jun Haeng; Kim, Jae J; Choi, Sunkyu; Jung, Sin-Ho; Choi, Min Gew; Lee, Jun-Ho; Sohn, Tae Sung; Bae, Jae Moon; Kim, Sung; Kim, Kyoung-Mee

    2015-11-10

    Intratumoral heterogeneity of HER2 expression is common in gastric cancers and pose a challenge for identifying patients who would benefit from anti-HER2 therapy. The aim of this study is to compare HER2 expression in biopsy and resection specimens of gastric carcinoma by immunohistochemistry (IHC) and to find the ideal number of biopsy tumor fragments that can accurately predict HER2 overexpression in the corresponding surgically resected specimen. The HER2 IHC results of 702 paired biopsy and resection specimens of gastric cancer were compared.The mean number of biopsy fragments among all cases was 4.3 (range 1-11). HER2 was positive in 130 (18.5%) endoscopic biopsies and in 102 (14.5%) gastrectomy specimens. Intratumoral heterogeneity of HER2 was found in 80 (61.5%) biopsies and 70 (68.6%) resection specimens. Out of the 70 surgical specimens with intratumoral heterogeneity, 24 (34.3%) of the corresponding biopsies were categorized as negative (positive conversion). In the 86 (12.3%) discrepant cases, negative conversion was observed in 57 (66.3%) cases and positive conversion in 29 (33.7%). The fragment numbers were significantly correlated with the discrepancy of results and positive predictability (P = 0.0315 and P = 0.0052). ROC curve analysis and positive predictability showed that 4 fragments should be obtained to minimize the differences in HER2 scores between biopsy and resection specimen.In gastric carcinomas with discrepant HER2 results between biopsy and surgical resection specimens, intratumoral heterogeneity is common with most of them showing positive conversion. To predict HER2 status precisely, at least 4 biopsy fragments containing tumor cells are required.

  2. Ideal number of biopsy tumor fragments for predicting HER2 status in gastric carcinoma resection specimens

    PubMed Central

    Lee, Minju; Ha, Sang Yun; Lee, Hyuk; Min, Byung-Hoon; Lee, Jun Haeng; Kim, Jae J.; Choi, Sunkyu; Jung, Sin-Ho; Choi, Min Gew; Lee, Jun-Ho; Sohn, Tae Sung; Bae, Jae Moon; Kim, Sung; Kim, Kyoung-Mee

    2015-01-01

    Intratumoral heterogeneity of HER2 expression is common in gastric cancers and pose a challenge for identifying patients who would benefit from anti-HER2 therapy. The aim of this study is to compare HER2 expression in biopsy and resection specimens of gastric carcinoma by immunohistochemistry (IHC) and to find the ideal number of biopsy tumor fragments that can accurately predict HER2 overexpression in the corresponding surgically resected specimen. The HER2 IHC results of 702 paired biopsy and resection specimens of gastric cancer were compared. The mean number of biopsy fragments among all cases was 4.3 (range 1–11). HER2 was positive in 130 (18.5%) endoscopic biopsies and in 102 (14.5%) gastrectomy specimens. Intratumoral heterogeneity of HER2 was found in 80 (61.5%) biopsies and 70 (68.6%) resection specimens. Out of the 70 surgical specimens with intratumoral heterogeneity, 24 (34.3%) of the corresponding biopsies were categorized as negative (positive conversion). In the 86 (12.3%) discrepant cases, negative conversion was observed in 57 (66.3%) cases and positive conversion in 29 (33.7%). The fragment numbers were significantly correlated with the discrepancy of results and positive predictability (P = 0.0315 and P = 0.0052). ROC curve analysis and positive predictability showed that 4 fragments should be obtained to minimize the differences in HER2 scores between biopsy and resection specimen. In gastric carcinomas with discrepant HER2 results between biopsy and surgical resection specimens, intratumoral heterogeneity is common with most of them showing positive conversion. To predict HER2 status precisely, at least 4 biopsy fragments containing tumor cells are required. PMID:26460823

  3. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging.

    PubMed

    Lee, Sang Bong; Hassan, Moinuddin; Fisher, Robert; Chertov, Oleg; Chernomordik, Victor; Kramer-Marek, Gabriela; Gandjbakhche, Amir; Capala, Jacek

    2008-06-15

    HER2 overexpression has been associated with a poor prognosis and resistance to therapy in breast cancer patients. We are developing molecular probes for in vivo quantitative imaging of HER2 receptors using near-infrared (NIR) optical imaging. The goal is to provide probes that will minimally interfere with the studied system, that is, whose binding does not interfere with the binding of the therapeutic agents and whose effect on the target cells is minimal. We used three different types of HER2-specific Affibody molecules [monomer ZHER2:342, dimer (ZHER2:477)2, and albumin-binding domain-fused-(ZHER2:342)2] as targeting agents and labeled them with Alexa Fluor dyes. Trastuzumab was also conjugated, using commercially available kits, as a standard control. The resulting conjugates were characterized in vitro by toxicity assays, Biacore affinity measurements, flow cytometry, and confocal microscopy. Semiquantitative in vivo NIR optical imaging studies were carried out using mice with s.c. xenografts of HER2-positive tumors. The HER2-specific Affibody molecules were not toxic to HER2-overexpressing cells and their binding to HER2 did interfere with neither binding nor effectives of trastuzumab. The binding affinities and specificities of the Affibody-Alexa Fluor fluorescent conjugates to HER2 were unchanged or minimally affected by the modifications. Pharmacokinetics and biodistribution studies showed the albumin-binding domain-fused-(ZHER2:342)2-Alexa Fluor 750 conjugate to be an optimal probe for optical imaging of HER2 in vivo. Our results suggest that Affibody-Alexa Fluor conjugates may be used as a specific NIR probe for the noninvasive semiquantitative imaging of HER2 expression in vivo.

  4. Hypothesized role of pregnancy hormones on HER2+ breast tumor development.

    PubMed

    Cruz, Giovanna I; Martínez, María Elena; Natarajan, Loki; Wertheim, Betsy C; Gago-Dominguez, Manuela; Bondy, Melissa; Daneri-Navarro, Adrian; Meza-Montenegro, María Mercedes; Gutierrez-Millan, Luis Enrique; Brewster, Abenaa; Schedin, Pepper; Komenaka, Ian K; Castelao, J Esteban; Carracedo, Angel; Redondo, Carmen M; Thompson, Patricia A

    2013-01-01

    Breast cancer incidence rates have declined among older but not younger women; the latter are more likely to be diagnosed with breast cancers carrying a poor prognosis. Epidemiological evidence supports an increase in breast cancer incidence following pregnancy with risk elevated as much as 10 years post-partum. We investigated the association between years since last full-term pregnancy at the time of diagnosis (≤10 or >10 years) and breast tumor subtype in a case series of premenopausal Hispanic women (n = 627). Participants were recruited in the United States, Mexico, and Spain. Cases with known estrogen receptor (ER), progesterone receptor (PR), and HER2 status, with one or more full-term pregnancies ≥1 year prior to diagnosis were eligible for this analysis. Cases were classified into three tumor subtypes according to hormone receptor (HR+ = ER+ and/or PR+; HR- = ER- and PR-) expression and HER2 status: HR+/HER2-, HER2+ (regardless of HR), and triple negative breast cancer. Case-only odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated for HER2+ tumors in reference to HR+/HER2- tumors. Participants were pooled in a mixed-effects logistic regression model with years since pregnancy as a fixed effect and study site as a random effect. When compared to HR+/HER2- cases, women with HER2+ tumors were more likely be diagnosed in the post-partum period of ≤10 years (OR = 1.68; 95 % CI, 1.12-2.52). The effect was present across all source populations and independent of the HR status of the HER2+ tumor. Adjusting for age at diagnosis (≤45 or >45 years) did not materially alter our results (OR = 1.78; 95 % CI, 1.08-2.93). These findings support the novel hypothesis that factors associated with the post-partum breast, possibly hormonal, are involved in the development of HER2+ tumors.

  5. A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines

    PubMed Central

    2011-01-01

    Introduction Inhibiting the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of breast carcinoma cells, and this is linked to human epidermal growth factor receptor 2 (HER2) signaling pathways in models of simultaneous expression of FASN and HER2. Methods In a xenograft model of breast carcinoma cells that are FASN+ and HER2+, we have characterised the anticancer activity and the toxicity profile of G28UCM, the lead compound of a novel family of synthetic FASN inhibitors. In vitro, we analysed the cellular and molecular interactions of combining G28UCM with anti-HER drugs. Finally, we tested the cytotoxic ability of G28UCM on breast cancer cells resistant to trastuzumab or lapatinib, that we developed in our laboratory. Results In vivo, G28UCM reduced the size of 5 out of 14 established xenografts. In the responding tumours, we observed inhibition of FASN activity, cleavage of poly-ADPribose polymerase (PARP) and a decrease of p-HER2, p- protein kinase B (AKT) and p-ERK1/2, which were not observed in the nonresponding tumours. In the G28UCM-treated animals, no significant toxicities occurred, and weight loss was not observed. In vitro, G28UCM showed marked synergistic interactions with trastuzumab, lapatinib, erlotinib or gefitinib (but not with cetuximab), which correlated with increases in apoptosis and with decreases in the activation of HER2, extracellular signal-regulated kinase (ERK)1/2 and AKT. In trastuzumab-resistant and in lapatinib-resistant breast cancer cells, in which trastuzumab and lapatinib were not effective, G28UCM retained the anticancer activity observed in the parental cells. Conclusions G28UCM inhibits fatty acid synthase (FASN) activity and the growth of breast carcinoma xenografts in vivo, and is active in cells with acquired resistance to anti-HER2 drugs, which make it a candidate for further pre-clinical development. PMID:22177475

  6. Dual HER2/PIK3CA Targeting Overcomes Single-Agent Acquired Resistance in HER2-Amplified Uterine Serous Carcinoma Cell Lines In Vitro and In Vivo.

    PubMed

    Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L; English, Diana P; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D

    2015-11-01

    HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC) and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib, and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA-mutated and PIK3CA wild-type HER2/neu-amplified USC cell lines. Cell viability and cell-cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC xenografts. We found both single-agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long-lasting growth inhibition in both USC xenografts when compared with single-agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0-G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single-agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA and pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild-type PIK3CA resistant to chemotherapy.

  7. Investigating AP-2 and YY1 protein expression as a cause of high HER2 gene transcription in breast cancers with discordant HER2 gene amplification

    PubMed Central

    2009-01-01

    Introduction Candidacy for anti-HER2 adjuvant therapy in breast cancer is assessed using tumour HER2 status but recently it has been proposed that the transcription factors AP-2α and YY1 may cause Her2 protein overexpression independently of gene amplification. Methods We characterised AP-2α/β, AP-2α and YY1 with HER2 gene and protein expression, other relevant biomarkers, and clinical outcome using tissue microarrays (TMAs) and immunohistochemistry in a large (n = 1,176) clinically annotated series of early stage operable breast cancer. The associations and prognostic independence of AP-2 and YY1 was assessed in all patients and an oestrogen receptor negative subgroup. Results Nuclear expression of AP-2α/β, AP-2α and YY1 was detected in 23%, 44% and 33% of cases respectively. AP-2α/β significantly correlated with YY1 and both markers were increased in luminal oestrogen receptor (ER) positive tumours of small size and low grade but only AP-2α/β correlated with good prognosis breast cancer specific survival and disease free interval (BCSS and DFI). These characteristics were lost in oestrogen receptor negative patients. AP-2α also correlated with luminal-type tumours but not with YY1 expression or good prognosis. AP-2α and YY1 showed a significant correlation with Her2 protein expression and in addition, YY1 correlated with HER2 gene expression. Discordant HER2 gene and protein expression was identified in six cases (0.71% of the study group) with four of these showing AP-2α but absence of AP-2α/β and YY1 expression. Conclusions AP-2α/β and YY1 are markers of good prognosis principally due to their association with oestrogen receptor but are not independent predictors. Discordant HER2 protein/gene expression is a rare event that is not always explained by the actions of AP-2 and YY1. PMID:20025767

  8. The benefit of HER2-targeted therapies on overall survival of patients with metastatic HER2-positive breast cancer--a systematic review.

    PubMed

    Mendes, Diogo; Alves, Carlos; Afonso, Noémia; Cardoso, Fátima; Passos-Coelho, José Luís; Costa, Luís; Andrade, Sofia; Batel-Marques, Francisco

    2015-11-17

    This study aimed at evaluating the overall survival (OS) gain associated with human epidermal growth factor receptor 2 (HER2)-directed therapies in patients with metastatic breast cancer (mBC). A bibliographic search was conducted in PubMed and Cochrane databases. Only phase III randomized controlled trials (RCTs) including HER2-positive (HER2+) mBC patients were included in this review. OS was defined as time from randomization until the occurrence of death from any cause. Studies have been grouped according to the line of treatment, i.e., first-line or second-line or beyond. Nineteen RCTs were eligible for inclusion, of which 12 assessed therapies targeting HER2+ mBC in the first-line setting. OS improved from 20.3 months in the first RCT (standard chemotherapy; Slamon et al. (N Engl J Med 344:783-92, 2001)) evaluating HER2-targeting therapies to 48 months in the study of Swain et al. (Lancet Oncol 14:461-71, 2013), with triple combination of pertuzumab, trastuzumab and docetaxel. Seven RCTs evaluated the OS of HER2-targeting therapies in the second-line setting and beyond. The OS in second-line setting improved from 15.3 months (capecitabine; Cameron et al. (Breast Cancer Res Treat 112:533-43, 2008)) to 30.7 months (trastuzumab emtansine; Verma et al. (N Engl J Med 367:1783-91, 2012)). In the third-line setting, the association of lapatinib and trastuzumab has demonstrated to improve OS to 4.5 months compared with lapatinib alone (14 months vs. 9.5 months; Blackwell et al. (J Clin Oncol 30:2585-92, 2012)). HER2-directed therapies had an undeniable beneficial impact on the OS of patients with HER2+ mBC. The triple combination of docetaxel, pertuzumab and trastuzumab is associated with a survival extent of more than 4.5 years, compared with a life expectancy of 1.5 years achieved 14 years ago.

  9. An Adenoviral Vaccine Encoding Full-Length Inactivated Human HER2 Exhibits Potent Immunogenicty and Enhanced Therapeutic Efficacy Without Oncogenicity

    PubMed Central

    Hartman, Zachary; Wei, Junping; Osada, Takuya; Glass, Oliver; Lei, Gangjun; Yang, Xiao-Yi; Peplinski, Sharon; Kim, Dong-Wan; Xia, Wenle; Spector, Neil; Marks, Jeffrey; Barry, William; Hobeika, Amy; Devi, Gayathri; Amalfitano, Andrea; Morse, Michael A.; Lyerly, H. Kim; Clay, Timothy M.

    2010-01-01

    Purpose Overexpression of the breast cancer oncogene HER2 correlates with poor survival. Current HER2-directed therapies confer limited clinical benefits and most patients experience progressive disease. Because refractory tumors remain strongly HER2+, vaccine approaches targeting HER2 have therapeutic potential, but wild type (wt) HER2 cannot safely be delivered in imunogenic viral vectors because it is a potent oncogene. We designed and tested several HER2 vaccines devoid of oncogenic activity to develop a safe vaccine for clinical use. Experimental Design We created recombinant adenoviral vectors expressing the extracellular domain of HER2 (Ad-HER2-ECD), ECD plus the transmembrane domain (Ad-HER2-ECD-TM) and full length HER2 inactivated for kinase function (Ad-HER2-ki) and determined their immunogenicity and anti-tumor effect in wild type (WT) and HER2 tolerant mice. To assess their safety, we compared their effect on the cellular transcriptome, cell proliferation, anchorage-dependent growth, and transformation potential in vivo. Results Ad-HER2-ki was the most immunogenic vector in WT animals, retained immunogenicity in HER2-transgenic tolerant animals, and showed strong therapeutic efficacy in treatment models. Despite being highly expressed, HER2-ki protein was not phosphorylated and did not produce an oncogenic gene signature in primary human cells. And, in contrast to HER2-wt, cells overexpressing HER2-ki were less proliferative, displayed less anchorage independent growth and were not transformed in vivo. Conclusions Vaccination with mutationally inactivated, non-oncogenic Ad-HER2-ki results in robust polyclonal immune responses to HER2 in tolerant models, which translates into strong and effective anti-tumor responses in vivo. Ad-HER2-ki is thus a safe and promising vaccine for evaluation in clinical trials. PMID:20179231

  10. MUC13 Interaction with Receptor Tyrosine Kinase HER2 Drives Pancreatic Ductal Adenocarcinoma Progression

    PubMed Central

    Khan, Sheema; Sikander, Mohammed; Ebeling, Mara C.; Ganju, Aditya; Kumari, Sonam; Yallapu, Murali M.; Hafeez, Bilal Bin; Ise, Tomoko; Nagata, Satoshi; Zafar, Nadeem; Behrman, Stephen W.; Wan, Jim Y.; Ghimire, Hemendra M.; Sahay, Peeyush; Pradhan, Prabhakar; Chauhan, Subhash C.; Jaggi, Meena

    2016-01-01

    Although MUC13, a transmembrane mucin, is aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC) and generally correlates with increased expression of HER2, the underlying mechanism remains poorly understood. Herein, we found that MUC13 co-localizes and interacts with HER2 in PDAC cells (reciprocal co-immunoprecipitation, immunofluorescence, proximity ligation, co-capping assays) and tissues (immunohistofluorescence). The results from this study demonstrate that MUC13 functionally interacts and activates HER2 at p1248 in PDAC cells, leading to stimulation of HER2 signaling cascade including, ERK1/2, FAK, AKT and PAK1 as well as regulation of the growth, cytoskeleton remodeling and motility and invasion of PDAC cells - all collectively contributing to PDAC progression. Interestingly, all of these phenotypic effects of MUC13-HER2 co-localization could be effectively compromised by depleting MUC13 and mediated by the first and second EGF-like domains of MUC13. Further, MUC13-HER2 co-localization also holds true in PDAC tissues with a strong functional correlation with events contributing to increased degree of disorder and cancer aggressiveness. In brief, findings presented here provide compelling evidence of a functional ramification of MUC13-HER2: this interaction could be potentially exploited for targeted therapeutics in a subset of patients harboring an aggressive form of PDAC. PMID:27321183

  11. Determination of HER2 amplification status in breast cancer cells using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bi, Xiaohong; Rexer, Brent; Arteaga, Carlos L.; Guo, Mingsheng; Li, Ming; Mahadevan-Jansen, Anita

    2010-02-01

    The overexpression of HER2 (human epidermal growth factor receptor 2) in breast cancer is associated with increased disease recurrence and worse prognosis. Current diagnosis of HER2 positive breast cancer is time consuming with an estimated 20% inaccuracy. Raman spectroscopy is a proven method for pathological diagnosis based on the molecular composition of tissues. This study aimed to determine the feasibility of Raman spectroscopy to differentially identify the amplification of HER2 in cells. Three cell lines including BT474 (HER2 overexpressing breast cancer cell), MCF-10A (human breast epithelial cell), and MCF-10A with overexpressing HER2, were investigated using a bench top confocal Raman system. A diagnostic algorithm based on generalized linear model (GLM) with elastic-net penalties was established to discriminate 318 spectra collected from the cells, and to identify the spectra regions that differentiate the cell lines. The algorithm was able to differentially identify BT474 breast cancer cells with an overall sensitivity of 100% and specificity of 99%. The results demonstrate the capability of Raman spectroscopy to determine HER2 status in cells. Raman spectroscopy shows promise for application in the diagnosis of HER2 positive breast cancer in clinical practice.

  12. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation.

    PubMed

    Wang, Huajing; Sun, William

    2017-01-28

    With the discovery of the CRISPR/Cas9 technology, genome editing could be performed in a rapid, precise and effective manner. Its potential applications in functional interrogation of cancer-causing genes and cancer therapy have been extensively explored. In this study, we demonstrated the use of the CRISPR/Cas9 system to directly target the oncogene HER2. Directing Cas9 to exons of the HER2 gene inhibited cell growth in breast cancer cell lines that harbor amplification of the HER2 locus. The inhibitory effect was potentiated with the addition of PARP inhibitors. Unexpectedly, CRISPR-induced mutations did not significantly affect the level of HER2 protein expression. Instead, CRISPR targeting appeared to exert its effect through a dominant negative mutation. This HER2 mutant interfered with the MAPK/ERK axis of HER2 downstream signaling. Our work provides a novel mechanism underlying the anti-cancer effects of HER2-targeting by CRISPR/Cas9, which is distinct from the clinical drug Herceptin. In addition, it opens up the possibility that incomplete CRISPR targeting of certain oncogenes could still have therapeutic value by generation of dominant negative mutants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Role of HER2/HER3 co-receptor in breast carcinogenesis.

    PubMed

    Way, Tzong-Der; Lin, Jen-Kun

    2005-12-01

    ErbB receptors are essential mediators of cell proliferation and differentiation. Their aberrant activation is associated with the development and severity of many cancers. Homo- and heterodimerization of ErbB receptors result in a wide variety of cellular signal transduction. Dimerization of human epidermal growth-factor receptor (HER)2 and HER3 occurs frequently and is a preferred heterodimer. The HER2/HER3 dimer constitutes a high affinity co-receptor for heregulin, which is capable of potent mitogenic signaling. HER3 is a kinase-defective protein that is phosphorylated by HER2. Tyrosine phosphorylated HER3 is able to directly couple to phosphatidylinositide 3-kinase, a lipid kinase involved in the proliferation, survival, adhesion and motility of tumor cells. The authors' research provides mechanistic evidence that apigenin induces apoptosis by depleting the HER2 protein and, in turn, suppressing the signaling of the HER2/HER3-phosphatidylinositide 3-kinase/Akt pathway. This indicates that inhibition of HER2/HER3 heterodimer function may be an especially effective and unique strategy for blocking the HER2-mediated carcinogenesis of breast cancer cells.

  14. Prevalence of germline TP53 mutations in HER2+ breast cancer patients.

    PubMed

    Rath, Michelle G; Masciari, Serena; Gelman, Rebecca; Miron, Alexander; Miron, Penelope; Foley, Kathleen; Richardson, Andrea L; Krop, Ian E; Verselis, Sigitas J; Dillon, Deborah A; Garber, Judy E

    2013-05-01

    Breast cancer is the most frequent tumor in Li-Fraumeni syndrome (LFS), a rare inherited cancer syndrome associated with germline mutations in the TP53 gene. Recent data show that breast cancer in germline TP53 mutation carriers is commonly HER2+ (63-83 %). We assessed the prevalence of germline TP53 mutations in a cohort of women with HER2+ breast cancer diagnosed age ≤50 years. We identified blood specimens from 213 women with primary invasive HER2+ breast cancer age ≤50 years from a single center. Exon grouping analysis sequencing and multiplex ligation-dependent probe amplification techniques were used to screen for germline TP53 mutations. Among 213 women with HER2+ breast cancer age ≤50 years, 3 (ages at diagnosis 23, 32, 44 years) were found to carry a TP53 mutation (1.4 %, 95 % CI 0.3-4.1 %). ER/PR status was not uniform. Two TP53 carriers met Chompret criteria for LFS; none met classic LFS criteria. Although two-thirds of breast cancers in women with TP53 mutations are HER2+, we observed a low prevalence of germline TP53 mutations among unselected young women with HER2+ breast cancer. Given the potential clinical impact, consideration of germline TP53 testing should be given to young women with HER2+ breast cancer, especially if family cancer history is notable.

  15. [Immunohistochemical assessment of HER2 expression in gastric cancer. A clinicopathologic study of 93 cases].

    PubMed

    Alvarado-Cabrero, Isabel; Gil-Hernández, Sara; Ruelas-Perea, Ana; Villaverde-Rodríguez, Diego; Montes-Ochoa, José Roberto; Medrano-Guzmán, Rafael

    2017-01-06

    Gastric cancer in Mexico is ranked third in both males and females. Most patients present clinically with advanced disease and treatment options are sparse. HER2 overexpression in gastric cancer is related to poor outcome. Immunohistochemical testing for HER2 is becoming the standard of care for guiding adjuvant treatment of gastric cancer with trastuzumab. To determine the frequency of HER2 overexpression in patients with gastric cancer in the Hospital de Oncología del Centro Médico Nacional, Siglo XXI and its association with other histopathological findings. Patients with gastric cancer who underwent surgery between March 12, 2006-August 31, 2011, were enrolled in this retrospective study. Diagnosis was confirmed by review of slides and immunohistochemistry with anti-HER2 antibody was performed. Scoring was done by Hoffman scoring system. Medical records were evaluated. Ninety-three patients were included in the study, with 43 (46.2%) male and 50 (53.7%) female patients. The median age was 64 years. HER2-positive tumours were identified in 6 patients (6.45%) and located most frequently in the proximal stomach. There was no difference in HER2 overexpression in relation to age, gender or histologic type. In our study, about 7% of patients with gastric cancer were HER2-positive on immunohistochemistry. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  16. Novel bright field molecular morphology methods for detection of HER2 gene amplification.

    PubMed

    Tubbs, Raymond; Pettay, James; Hicks, David; Skacel, Marek; Powell, Richard; Grogan, Tom; Hainfeld, James

    2004-08-01

    Profiling the amplification and over-expression of the HER2 gene is a key component for defining the prognosis and management of invasive breast carcinoma. Clinical laboratory testing for HER2 gene amplification and over expression has been complicated by an unacceptably high rate of false positive immunohistochemistry (IHC) results, poor reproducibility for the '2+' category of IHC scoring, and reluctant acceptance of alternative testing by fluorescence in situ hybridization (FISH) by the diagnostic pathology community. Novel chromogenic in situ hybridization (CISH) assays have been developed that utilize bright field microscopy and a conventional light microscope for interpretation, but the analytical sensitivity of first generation CISH systems has been problematic. Novel second generation in situ hybridization detection methods based upon polymerized lg detection chemistry, autometallography or enzyme metallography, have been developed that routinely detect endogenous HER2 signals in normal cells (on slide hybridization control) and HER2 signals in both non-amplified and amplified patterns of HER2 genomic signatures. By combining the strength of polymerized peroxidase-labeled antibodies and metallography for gene amplification, with the detection of expression of HER2 encoded protein by IHC on the same slide, both HER2 gene amplification and protein over-expression can be simultaneously evaluated on a cell-by-cell basis in each microscopic field of carcinoma.

  17. A positive role for PEA3 in HER2-mediated breast tumour progression

    PubMed Central

    Myers, E; Hill, A D K; Kelly, G; McDermott, E W; O'Higgins, N J; Young, L S

    2006-01-01

    Overexpression of HER2 is associated with an adverse prognosis in breast cancer. Despite this, the mechanism of its transcriptional regulation remains poorly understood. PEA3, a MAP kinase (MAPK)-activated member of the Ets transcription factor family has been implicated in the transcriptional regulation of HER2. The direction of its modulation remains controversial. We assessed relative levels of PEA3 expression and DNA binding in primary breast cultures derived from patient tumours (n=18) in the presence of an activated MAPK pathway using Western blotting and shift analysis. Expression of PEA3 in breast tumours from patients of known HER2 status (n=107) was examined by immunohistochemistry. In primary breast cancer cell cultures, growth factors induced interaction between PEA3 and its DNA response element. Upregulation of PEA3 expression in the presence of growth factors associated with HER2 positivity and axillary lymph node metastasis (P=0.034 and 0.049, respectively). PEA3 expression in breast cancer tissue associated with reduced disease-free survival (P<0.001), Grade III tumours (P<0.0001) and axillary lymph node metastasis (P=0.026). Co-expression of PEA3 and HER2 significantly associated with rate of recurrence compared to patients who expressed HER2 alone (P=0.0039). These data support a positive role for PEA3 in HER2-mediated oncogenesis in breast cancer. PMID:17060941

  18. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3.

    PubMed Central

    Wallasch, C; Weiss, F U; Niederfellner, G; Jallal, B; Issing, W; Ullrich, A

    1995-01-01

    Amplification and/or overexpression of HER2/neu and HER3 genes have been implicated in the development of cancer in humans. The fact that these receptor tyrosine kinases (RTKs) are frequently coexpressed in tumor-derived cell lines and that heterodimers form high affinity binding sites for heregulin (HRG) suggests a novel mechanism for signal definition, diversification or amplification. In cells expressing HER2 and HER3, tyrosine phosphorylation of HER3 is markedly increased upon exposure to recombinant HRG. ATP binding site mutants of HER2 and HER3 demonstrate transphosphorylation of HER3 by HER2, but not vice versa. HRG-induced transphosphorylation of HER3 results in a substrate phosphorylation pattern distinct from HER2 cells and enhances association of the receptor with SHC and phosphoinositol 3-kinase in transfected 293 and mammary carcinoma-derived MCF-7 cells. The physiological relevance of HER2/HER3 heterodimerization is demonstrated by HRG-dependent transformation of NIH 3T3 cells coexpressing the two receptors. These findings demonstrate the acquisition of expanded signaling capacities for HER2 by HRG-induced heterodimerization with HER3 and provide a molecular basis for the involvement of receptor heteroactivation in the development of human malignancies. Images PMID:7556068

  19. HER-2/neu raises SHP-2, stops IFN-{gamma} anti-proliferation in bladder cancer

    SciTech Connect

    Su, W.-P.; Tu, I-H.; Hu, S.-W.; Yeh, H.-H.; Shieh, D.-B.; Chen, T.-Y.; Su, W.-C. . E-mail: sunnysu@mail.ncku.edu.tw

    2007-04-27

    Gene amplification or HER-2/neu protein overexpression signals a poor outcome for bladder cancer patients. We investigated the anti-proliferative effect of IFN-{gamma} in HER-2/neu-transfected human bladder cancer cells (TCC-N5 and TCC-N10). The cells continued growing after IFN-{gamma} stimulation but did not activate the Janus kinase (Jak)/Stat pathway. We found Jak/Stat protein phosphatase in TCC-N5 and TCC-N10 cells with upregulated Src homology 2-containing protein tyrosine phosphatase-2 (SHP-2). After the cells had been treated with AG825, a HER-2/neu-specific inhibitor, SHP-2 expression declined, and Jak2/Stat1 reactivated. Similar results were reported in a mouse bladder cancer cell line, MBT2, with constitutive HER-2/neu overexpression. Further, AG825 pretreatment restored the anti-proliferation activity of IFN-{gamma} in TCC-N5 and TCC-N10 cells. Therefore, the suppression of IFN-{gamma} signaling in HER-2/neu-overexpressing bladder cancer cells might be due to SHP-2 upregulation. The regulation of SHP-2 by HER-2/neu provides a new target for blocking the HER-2/neu oncogenic pathwa000.

  20. Primary squamous cell carcinoma of the breast with unusual basal-HER2 phenotype.

    PubMed

    Shui, Ruohong; Li, Anqi; Yang, Fei; Zhou, Xiaoyan; Yu, Baohua; Xu, Xiaoli; Yang, Wentao

    2014-01-01

    To report three cases of primary squamous cell carcinoma of the breast with an unusual "basal-HER2" phenotype. Clinical data were analyzed. Morphological features were observed. Immunohistochemical study for ER, PR, HER2, Ki-67, CK 5/6, CK10/13, CK14, EGFR, P63 and FISH detection of HER2 gene amplification were performed. Three patients were all female with 26, 57 and 66 years old. The tumors were 3 cm, 4 cm and 5 cm in size respectively. Morphologically, all three tumors were pure squamous cell carcinoma and entirely composed metaplastic squamous cells. Two tumors were moderately differentiated and one was poorly differentiated. All three patients were positive for P63 or CK10/13. All three tumors exhibited basal-HER2 phenotype: negative for ER and PR, positive for HER2 protein and HER2 gene amplification, and positive for at least two basal markers. SCC with basal-HER2 phenotype is an extremely rare subset of breast carcinoma. Since it may have worse prognosis than typical basal-like SCC, recognization of this unusual SCC in routine work may have obvious clinical significance.

  1. Measurement of HER2 in saliva of women in risk of breast cancer.

    PubMed

    de Abreu Pereira, Denise; Areias, Vivian Rabello; Franco, Marco Felipe; Benitez, Manuel Carlos Moreira; do Nascimento, Cristina Moreira; de Azevedo, Carolina Maria; Alves, Gilda

    2013-07-01

    HER2 amplification can be present in ductal carcinoma in situ (DCIS). The aim of the present study was to test the feasibility of measuring soluble HER2 in the saliva of patients at risk of breast cancer towards early diagnosis and prognosis. Women with lesions classified as 4 according to BIRADS and women with spontaneous nipple discharge (NAF) were recruited for this study. Quantification of soluble HER2 in saliva was performed using the enzyme immunoassay ELISA. Median values of HER2 were quantified in saliva of the control groups and in the patient groups. The statistical test nonparametric Mann-Whitney was applied for the evaluation of median differences. Although the medians increased with the severity of the clinical status, no significant difference was found in all possibilities (p > 0.05) when comparing the medians among the patients groups. Interestingly, inter-individual HER2 quantity variations in the saliva were detected in this study in some subjects from each group. Considering possible inter-individual variations, research on saliva-based circulating HER2 has to be reinforced to ensure its correct application in diagnosis, treatment and in follow-up of breast cancer patients. Older and current issues surrounding the controversy about the appropriate methods for HER2 evaluation are discussed.

  2. Agreement of Different Methods for Tissue Based Detection of HER2 Signal in Invasive Breast Cancer.

    PubMed

    Thakral, Gaurav; Wey, Andrew; Rahman, Mobeen; Fang, Rui; Lum, Christopher

    2017-01-01

    Breast cancer is the second leading cause of cancer mortality amongst American women. The HER2 gene encodes a cell surface receptor that affects cell proliferation and has been recognized as a diagnostic factor in treatment selection for invasive breast cancer. Examine accuracy in HER2 detection between manual count, computer assisted, and automated tiling algorithm. 42 randomly selected invasive breast cancer specimens were enumerated by fluorescence in situ hybridization (FISH)for HER2 and CEP17 markers using the Vysis HER2 assay (AbbotLaboratory, North Chicago, IL). Specimens were tested using three methods: Manual, computer assisted nuclei selection (Tissue FISH MetaSystems, Newton, MA), and automated enumeration (MetaSystems, Newton, MA). The greatest bias and widest agreement limits for HER2 and CEP17 were seen in Automatic versus Manual, the gold standard. HER2 values greater than 6 possessed the greatest bias and widest agreement limits. CEP17 comparison showed similar bias and agreement limits for each comparison. Kappa values indicated good agreement for all methods although Tissue FISH and Manual possessed better agreement. Higher agreement at lower HER2 & CEP17 count maybe due to fewer chromosomal aberrations, in which selection of field of views has less variation between methods. Alternatively, increased background signals seen in polyploidy may be responsible for the variations in signal count. Manual and Tissue FISH demonstrated good agreement amongst by both Altman Bland and Cohen's Kappa. While the automatic method has good agreement at lower HER2, the sharp increase in variability at higher HER2 counts illustrates a limitation of the automatic method.

  3. HER2 expression is a strong independent predictor of nodal metastasis in breast cancer.

    PubMed

    Ahmed, Ahmed R H

    2016-12-01

    Identification of metastatic potential of breast cancer cells is necessary for proper management of this disease. This work aimed to estimate likelihood of axillary lymph node (ALN) involvement in breast cancer patients based on human epidermal growth factor receptor 2 (HER2) expression. Primary tumors of 317 breast cancer patients were evaluated for estrogen receptor (ER), progesterone receptor (PR) and HER2 expression by immunohistochemistry. The validity of these molecules to predict ALN metastasis was measured statistically and compared to predictive effect of other clinicopathological parameters. ER, PR and HER2 expression was detected in 75.7%, 73.2% and 19.9% of tumors, respectively. Although increased tumor size and grade, ER and PR negativity and HER2 positivity were strong indicators of ALN metastasis on univariate analyses, only tumor size and HER2 expression were independent predictors of ALN involvement on multivariate analysis. ROC curve showed a strong validity of the model using these two parameters to predict ALN status (AUC 0.86; p<0001). HER2-rich, luminal B and triple negative tumors had 6.87, 6.32 and 3.58 times increased risk of metastasis compared to luminal A tumors; respectively. HER2 expression in pT1 and pT2 tumors raised the risk of ALN metastasis by 7.7 and 7.6 times, respectively and grade 1 and 2 tumors that expressed HER2 were 16.0 and 7.8 times more likely to have ALN metastasis, respectively. To conclude, HER2 expression is associated with a significant rise of metastatic potential of breast cancer cells and could be a strong indicator of regional and distant metastasis of breast cancer.

  4. Expression analysis of heat shock protein 90 (HSP90) and Her2 in colon carcinoma.

    PubMed

    Drecoll, Enken; Nitsche, Ulrich; Bauer, Karina; Berezowska, Sabina; Slotta-Huspenina, Julia; Rosenberg, Robert; Langer, Rupert

    2014-06-01

    The molecular chaperone heat shock protein 90 (HSP90) plays an important role in several types of tumors also participating in the modulation of the activity of receptor tyrosine kinases activity such as members of the Her family. We evaluated the significance of HSP90 and Her2 expression in colon cancer. HSP90 and Her2 expression was determined by immunohistochemistry and by fluorescence in situ hybridization (FISH) on 355 primary resected colon carcinomas. Results were correlated with pathologic features (Union for International Cancer Control (UICC) pTNM category, tumor localisation, tumor differentiation), additional molecular genetic characteristics (BRAF, KRAS mutational status, mismatch repair genes (MMR)), and survival. HSP90 immunoreactivity was observed in various degrees. Fifty-one cases (14 %) were positive for Her2 (score 2+ and 3+) with 16/43 cases with Her2 2+ staining pattern showing amplification of Her2 determined by FISH. There was a significant correlation between high HSP90 expression and Her2 overexpression (p = 0.011). High HSP90 expression was associated with earlier tumor stages (p = 0.019), absence of lymph node (p = 0.006), and absence of distant metastases (p = 0.001). Patients with high tumoral HSP90 levels had a better survival (p = 0.032), but this was not independent from other prognostic relevant pathologic parameters. Her2 expression was not associated with any of the investigated histopathological, molecular, or clinical parameters. High HSP90 levels are reflecting lower malignant potential in colon cancer. Her2 positivity can be observed in a small number of cases. Targeting HSP90 and/or Her2 may be an alternative therapeutic approach in colon cancer in a subset of patients.

  5. Frequency of HER2/neu overexpression in adenocarcinoma of the gastrointestinal system

    PubMed Central

    Farzand, Sadaf; Siddique, Tahir; Saba, Kanwal; Bukhari, Mulazim Hussain

    2014-01-01

    AIM: To determine the frequency of HER2/neu protein overexpression in gastric (group A), small intestine (group B), and colorectal (group C) adenocarcinoma. METHODS: A descriptive, cross-sectional study was performed on 50 cases of gastrointestinal adenocarcinoma (stomach, small intestine, and colorectal); 11 from group A, 8 from group B, and 31 from group C. The samples were grossed and processed in the pathology department, and sections were stained with HE (hematoxylin and eosin stain) for histopathological confirmation of malignancy (well-differentiated, moderately-differentiated, and poorly-differentiated). The confirmed samples were processed for immunomarker study of HER2/neu. RESULTS: HER2/neu protein overexpression was found in 33 (66%) patients overall (P = 0.000). Out of 33 HER2/neu positive subjects, 23 (69.6%) were from group C, while the remaining 10 (30%) were from group A. None of the patients from group B had positive HER2/neu protein overexpression. No protein overexpression or membrane staining in < 10% tumor cells was observed in 17 (34%) patients, which were labeled as score “0” and considered negative for HER2/neu protein overexpression. Faint/weak staining (in ≥ 10% of tumors cells) were observed in 8 (16%) patients and given the “1+” score. Similarly 13 (26%) patients reported moderate staining (in ≥ 10% tumor cells) and were thus labeled as “2+”, and strong staining (in ≥ 10% tumors cells), labeled as “3+”, was observed in 12 (24%) patients. Out of 50 patients, 26 (52%) were suffering from grade-II malignancy, 16 (32%) from grade-I, and 8 (16%) from grade-III. There was highly significant association between tumor grades and HER2/neu protein overexpression (P = 0.0000). CONCLUSION: HER2/neu protein is credibly overexpressed in colon and gastric adenocarcinomas in immunohistochemistry. There is significant association between grade of tumor and HER2/neu protein overexpression. PMID:24914350

  6. Near-infrared quantum dots for HER2 localization and imaging of cancer cells

    PubMed Central

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Background Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Conclusion Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery. PMID:24648731

  7. Role of lapatinib alone or in combination in the treatment of HER2-positive breast cancer

    PubMed Central

    Hurvitz, Sara A; Kakkar, Reva

    2012-01-01

    Purpose This review aims to present the preclinical and clinical data regarding efficacy and safety of lapatinib alone and in combination with other agents in the treatment of human epidermal growth factor receptor-2 (HER2)-overexpressing breast cancer. Background HER2-positive (HER2+) breast cancer remains a treatment challenge. It is more aggressive than other breast cancers and it is associated with a poor outcome. Targeted therapy for HER2+ breast cancer has significantly changed the clinical course of the disease. Despite advances in therapy, there remains an unmet need in the treatment of HER2+ breast cancer. Lapatinib is a novel, orally bioavailable epidermal growth factor receptor/HER2+ targeted agent. Many trials have investigated the efficacy and safety of lapatinib alone and in conjunction with other agents in the treatment of HER2+ breast cancer. Methods and results Preclinical and clinical trials of lapatinib have shown that it is effective in the treatment on HER2+ breast cancer. More important, studies show that it is effective in the setting of trastuzumab resistance and in the treatment of central nervous system metastases, both of which are current treatment challenges. Furthermore, lapatinib is effective in conjunction with trastuzumab in the treatment of early breast cancer. Data regarding the safety of lapatinib show that it is generally well tolerated; however, multiple studies have shown significant (grade 3 and 4) diarrhea and rash associated with lapatinib, thereby limiting its use. Carditoxicity has not been a significant adverse event associated with the use of lapatinib. Conclusion Lapatinib is effective alone and in conjunction with other agents in the treatment of HER2+ breast cancer. However, its use is limited by significant diarrhea and rash. PMID:24367193

  8. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    PubMed

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  9. Giacomo Castelvetro's salads. Anti-HER2 oncogene nutraceuticals since the 17th century?

    PubMed

    Colomer, R; Lupu, R; Papadimitropoulou, A; Vellón, L; Vázquez-Martín, A; Brunet, J; Fernández-Gutiérrez, A; Segura-Carretero, A; Menéndez, J A

    2008-01-01

    We are accumulating evidence to suggest that 17(th) century Renaissance foodways -largely based on the old "Mediterranean dietary traditions"- may provide new nutraceutical management strategies against HER2-positive breast cancer disease in the 21st century. Epidemiological and experimental studies begin to support the notion that "The Sacred Law of Salads" (i.e., "raw vegetables... plenty of generous (olive) oil") -originally proposed in 1614 by Giacomo Castelvetro in its book The Fruit, Herbs & Vegetables of Italy- might be considered the first (unintended) example of customised diets for breast cancer prevention based on individual genetic make-up (i.e., nutraceuticals against human breast carcinomas bearing HER2 oncogene amplification/overexpression). First, the so-called salad vegetables dietary pattern (i.e., a high consumption of raw vegetables and olive oil) appears to exert a protective effect mostly confined to the HER2-positive breast cancer subtype, with no significant influence on the occurrence of HER2-negative breast cancers. Second, all the main olive oil constituents (i.e., the omega-9 monounsaturated fatty acid oleic acid and polyphenolic compounds such as the secoiridoid oleuropein or the lignan 1-[+]-acetoxypinoresinol) dramatically reduce HER2 expression and specifically induce apoptotic cell death in cultured HER2- positive breast cancer cells, with marginal effects against HER2-negative cells. Third, an olive oil-rich diet negatively influences experimental mammary tumorigenesis in rats likewise decreasing HER2 expression levels. If early 1600s Castelvetro's salads can be used as dietary protocols capable to protecting women against biologically aggressive HER2-positive breast cancer subtypes is an intriguing prospect that warrants to be evaluated in human pilot studies in the future. Here, at least, we would like to recognise Giacomo Castelvetro as the father of modern nutritional genomics in oncology.

  10. Whole genome DNA methylation signature of HER2-positive breast cancer

    PubMed Central

    Lindqvist, Breezy M; Wingren, Sten; Motlagh, Parviz B; Nilsson, Torbjörn K

    2014-01-01

    In order to obtain a comprehensive DNA methylation signature of HER2-positive breast cancer (HER2+ breast cancer), we performed a genome-wide methylation analysis on 17 HER2+ breast cancer and compared with ten normal breast tissue samples using the Illumina Infinium HumanMethylation450 BeadChip (450K). In HER2+ breast cancer, we found altered DNA methylation in genes involved in multicellular development, differentiation and transcription. Within these genes, we observed an overrepresentation of homeobox family genes, including several genes that have not been previously reported in relation to cancer (DBX1, NKX2–6, SIX6). Other affected genes included several belonging to the PI3K and Wnt signaling pathways. Notably, HER2, AKT3, HK1, and PFKP, genes for which altered methylation has not been previously reported, were also identified in this analysis. In total, we report 69 candidate biomarker genes with maximum differential methylation in HER2+ breast cancer. External validation of gene expression in a selected group of these genes (n = 13) revealed lowered mean gene expression in HER2+ breast cancer. We analyzed DNA methylation in six top candidate genes (AKR1B1, INA, FOXC2, NEUROD1, CDKL2, IRF4) using EpiTect Methyl II Custom PCR Array and confirmed the 450K array findings. Future clinical studies focusing on these genes, as well as on homeobox-containing genes and HER2, AKT3, HK1, and PFKP, are warranted which could provide further insights into the biology of HER2+ breast cancer. PMID:25089541

  11. Role of HER2 mutations in refractory metastatic breast cancers: targeted sequencing results in patients with refractory breast cancer.

    PubMed

    Park, Yeon Hee; Shin, Hyun-Tae; Jung, Hae Hyun; Choi, Yoon-La; Ahn, TaeJin; Park, Kyunghee; Lee, Aeri; Do, In-Gu; Kim, Ji-Yeon; Ahn, Jin Seok; Park, Woong-Yang; Im, Young-Hyuck

    2015-10-13

    In women with metastatic breast cancer (MBC), introduction of the anti-HER2 (human epidermal growth factor receptor-2) directed therapies including trastuzumab, pertuzumab, lapatinib, and/or trastuzumab-DM1 has markedly improved overall survival. However, not all cases of HER2-positive breast tumours derive similar benefit from HER2-directed therapy, and a significant number of patients experience disease progression because of primary or acquired resistance to anti-HER2-directed therapies. We integrated genomic and clinicopathological analyses in a cohort of patients with refractory breast cancer to anti-HER2 therapies to identify the molecular basis for clinical heterogeneity. To study the molecular basis underlying refractory MBC, we obtained 36 MBC tumours tissues and used next-generation sequencing to investigate the mutational and transcriptional profiles of 83 genes. We focused on HER2 mutational sites and HER2 pathways to identify the roles of HER2 mutations and the HER2 pathway in the refractoriness to anti-HER2 therapies. Analysis using massively parallel sequencing platform, CancerSCAN™, revealed that HER2 mutations were found in six of 36 patients (16.7%). One patient was ER (estrogen receptor)-positive and HER2-negative and the other five HER2 mutated patients were HER2-positive and HR (hormone receptor)-negative. Most importantly, four of these five patients did not show any durable clinical response to HER2-directed therapies. The HER2 pathway score obtained through transcriptional analyses identified that Growth Receptor Biding protein 2 (GRB2) was the most significantly down regulated gene in the HER2 mutated samples. Detection of HER2 mutations using higher deep DNA sequencing may identify a predictive biomarker of resistance to HER2-directed therapy. Functional validation is warranted.

  12. Mucolytic Agents Can Enhance HER2 Receptor Accessibility for [(89)Zr]Trastuzumab, Improving HER2 Imaging in a Mucin-Overexpressing Breast Cancer Xenograft Mouse Model.

    PubMed

    Wimana, Zéna; Gebhart, G; Guiot, T; Vanderlinden, B; Morandini, R; Doumont, G; Sherer, F; Van Simaeys, G; Goldman, S; Ghanem, G; Flamen, P

    2015-10-01

    Binding of trastuzumab to HER2 receptors can be impaired by steric hindrance caused by mucin MUC4. As mucolytic drugs can breakdown disulfide bonds of mucoproteins, we checked if this approach could positively affect zirconium-89-labeled trastuzumab ([(89)Zr]T) binding/uptake. The effect of N-acetylcysteine (NAC) and MUC4 knockdown/stimulation on [(89)Zr]T binding/uptake were evaluated in MCF7(HER2-), BT474 and SKBr3(HER2+/MUC4-), and JIMT1(HER2+/MUC4+) cell lines. The results were then validated in SKBR3 and JIMT1 tumor-bearing nude mice with a microPET-CT and ex vivo analysis. Significant increases in [(89)Zr]T binding/uptake were observed in JIMT1 cells following MUC4 knockdown (62.4 ± 6.5%) and exposure to NAC (62.8 ± 19.4%). Compared to controls, mice treated with NAC showed a significant increase in [(89)Zr]T uptake in MUC4 tumors on microPET-CT (SUVmean (18.3 ± 4.7%), SUVmax (41.7 ± 8.4%)) and individual organ counting (37.3 ± 18.3%). In contrast, no significant differences were observed in SKBr3. NAC can enhance [(89)Zr]T accumulation and improve the HER2 imaging of MUC4-overexpressing tumors. The potential positive impact on trastuzumab-based treatment deserves further investigation.

  13. A Phase I Study of LJM716 in Squamous Cell Carcinoma of Head and Neck, or HER2+ Breast Cancer or Gastric Cancer

    ClinicalTrials.gov

    2014-04-21

    HER2 + Breast Cancer, HER2 + Gastric Cancer, Squamous Cell Carcinoma of Head and Neck, Esophageal Squamous Cell Carcinoma; HER2 + Breast Cancer; HER2 + Gastric Cancer; Squamous Cell Carcinoma of Head and Neck; Esophageal Squamous Cell Carcinoma

  14. Expression and mutation analysis of her2 in head and neck squamous cell carcinoma.

    PubMed

    Ali, Mahmoud A L Sheikh; Gunduz, Mehmet; Gunduz, Esra; Tamamura, Ryo; Beder, Levent Bekir; Katase, Naoki; Hatipoglu, Omer Faruk; Fukushima, Kunihiro; Yamanaka, Noboru; Shimizu, Kenji; Nagatsuka, Hitoshi

    2010-06-01

    We analyzed mutation and expression status of human epidermal growth factor receptor 2 (Her2) in head and neck squamous cell carcinoma (HNSCC) using single strand conformation polymorphism (SSCP) mutation analysis and immunohistochemistry (IHC). Mutations were absent in all 85 cases. Out of 57 cases available for IHC, Her2 protein expression was negative (0) in 40 tumors (70%). Seventeen tumors (29.8%) expressed Her2, among these 13 tumors (22.8%) showed a weak (+1) expression and 4 (7%) showed a moderate expression (+2), none showed a strong (+3) expression. There was not a significant association between expression and any of the patients' clinical variables or prognosis. Our results suggest that Her2 may not be useful as a molecular target in HNSCC.

  15. HER2 assessment by silver in situ hybridization: where are we now?

    PubMed

    Sanguedolce, Francesca; Bufo, Pantaleo

    2015-03-01

    HER2 testing in breast and gastric cancer is critical not only as a prognostic tool but also as a predictive marker for response to the humanized monoclonal antibody trastuzumab. Currently, HER2 status is assessed on histological and cytological specimens by conventional validated methods such as immunohistochemistry and FISH, while bright-field in situ hybridization techniques, such as silver in situ hybridization and chromogenic in situ hybridization, may offer performance benefits over FISH. The major points are first, technical issues, advantages and disadvantages relevant to each methods, and their clinical implications and second, the well-known genetic heterogeneity of HER2, and the occurrence of polysomy of chromosome 17. This review aims to summarize the growing body of literature on the accuracy of bright-field in situ techniques, notably silver in situ hybridization, in assessing HER2 status, and to discuss the role of such methods in pathology practice.

  16. Redox Potential Ultrasensitive Nanoparticle for the Targeted Delivery of Camptothecin to HER2-Positive Cancer Cells

    PubMed Central

    2015-01-01

    Ideal “smart” nanoparticles for drug delivery should enhance therapeutic efficacy without introducing side effects. To achieve that, we developed a drug delivery system (HCN) based on a polymer–drug conjugate of poly[2-(pyridin-2-yldisulfanyl)]-graft-poly(ethylene glycol) and camptothecin with an intracellularly cleavable linker and human epidermal growth factor receptor 2 (HER2) targeting ligands. An in vitro drug release study found that HCN was stable in the physiological environment and supersensitive to the stimulus of elevated intracellular redox potential, releasing all payloads in less than 30 min. Furthermore, confocal microscopy revealed that HCN could specifically enter HER2-positive cancer cells. As a consequence, HCN could effectively kill HER2-positive cancer cells while not affecting HER2-negative cells. PMID:24779647

  17. Antibody-Based Imaging of HER-2: Moving into the Clinic

    PubMed Central

    Wang, Rongsheng E.; Zhang, Yin; Tian, Ling; Cai, Weibo; Cai, Jianfeng

    2013-01-01

    Human epidermal growth factor receptor-2 (HER-2) mediates a number of important cellular activities, and is up-regulated in a diverse set of cancer cell lines, especially breast cancer. Accordingly, HER-2 has been regarded as a common drug target in cancer therapy. Antibodies can serve as ideal candidates for targeted tumor imaging and drug delivery, due to their inherent affinity and specificity. Advanced by the development of a wide variety of imaging techniques, antibody-based imaging of HER-2 can allow for early detection and localization of tumors, as well as monitoring of drug delivery and tissue’s response to drug treatment. In this review article, antibody-based imaging of HER-2 are summarized and discussed, with an emphasis on the involved imaging methods. PMID:24206138

  18. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery

    PubMed Central

    Geng, Lingling; Wang, Zihua; Jia, Xiangqian; Han, Qiuju; Xiang, Zhichu; Li, Dan; Yang, Xiaoliang; Zhang, Di; Bu, Xiangli; Wang, Weizhi; Hu, Zhiyuan; Fang, Qiaojun

    2016-01-01

    Herein, computational-aided one-bead-one-compound (OBOC) peptide library design combined with in situ single-bead sequencing microarray methods were successfully applied in screening peptides targeting at human epidermal growth factor receptor-2 (HER2), a biomarker of human breast cancer. As a result, 72 novel peptides clustered into three sequence motifs which are PYL***NP, YYL***NP and PPL***NP were acquired. Particularly one of the peptides, P51, has nanomolar affinity and high specificity for HER2 in ex vivo and in vivo tests. Moreover, doxorubicin (DOX)-loaded liposome nanoparticles were modified with peptide P51 or P25 and demonstrated to improve the targeted delivery against HER2 positive cells. Our study provides an efficient peptide screening method with a combination of techniques and the novel screened peptides with a clear binding site on HER2 can be used as probes for tumor imaging and targeted drug delivery. PMID:27279916

  19. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity

    SciTech Connect

    Reynolds, Joseph G.; Geretti, Elena; Hendriks, Bart S.; Lee, Helen; Leonard, Shannon C.; Klinz, Stephan G.; Noble, Charles O.; Lücker, Petra B.; Zandstra, Peter W.; Drummond, Daryl C.; Olivier, Kenneth J.; Nielsen, Ulrik B.; Niyikiza, Clet; Agresta, Samuel V.; Wickham, Thomas J.

    2012-07-01

    Anthracycline-based regimens are a mainstay of early breast cancer therapy, however their use is limited by cardiac toxicity. The potential for cardiotoxicity is a major consideration in the design and development of combinatorial therapies incorporating anthracyclines and agents that target the HER2-mediated signaling pathway, such as trastuzumab. In this regard, HER2-targeted liposomal doxorubicin was developed to provide clinical benefit by both reducing the cardiotoxicity observed with anthracyclines and enhancing the therapeutic potential of HER2-based therapies that are currently available for HER2-overexpressing cancers. While documenting the enhanced therapeutic potential of HER2-targeted liposomal doxorubicin can be done with existing models, there has been no validated human cardiac cell-based assay system to rigorously assess the cardiotoxicity of anthracyclines. To understand if HER2-targeting of liposomal doxorubicin is possible with a favorable cardiac safety profile, we applied a human stem cell-derived cardiomyocyte platform to evaluate the doxorubicin exposure of human cardiac cells to HER2-targeted liposomal doxorubicin. To the best of our knowledge, this is the first known application of a stem cell-derived system for evaluating preclinical cardiotoxicity of an investigational agent. We demonstrate that HER2-targeted liposomal doxorubicin has little or no uptake into human cardiomyocytes, does not inhibit HER2-mediated signaling, results in little or no evidence of cardiomyocyte cell death or dysfunction, and retains the low penetration into heart tissue of liposomal doxorubicin. Taken together, this data ultimately led to the clinical decision to advance this drug to Phase I clinical testing, which is now ongoing as a single agent in HER2-expressing cancers. -- Highlights: ► Novel approach using stem cell-derived cardiomyocytes to assess preclinical safety. ► HER2-targeted liposomal doxorubicin has improved safety profile vs free doxorubicin

  20. Computer-aided detection of HER2 amplification status using FISH images: a preliminary study

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Wang, Xiao-Hui; Surti, Urvashi; Bhargava, Rohit; Gur, David

    2009-02-01

    The amplification status of human epidermal growth factor receptors 2 (HER2) genes is strongly associated with clinical outcome in patients with breast cancer. The American Society of Clinical Oncology Tumor Marker Guidelines Panel has recommended routine testing of HER2 status on all newly diagnosed metastatic breast cancers since 2001. Although fluorescent in situ hybridization (FISH) technology provides superior accuracy as compared with other approaches, current manual FISH analysis methods are somewhat subjective, tedious, and may introduce interreader variability. The goal of this preliminary study is to develop and test a computer-aided detection (CAD) scheme to assess HER2 status using FISH images. Forty FISH images were selected for this study from our genetic laboratory. The CAD scheme first applies an adaptive, iterative threshold method followed by a labeling algorithm to segment cells of possible interest. A set of classification rules is then used to identify analyzable interphase cells and discard nonanalyzable cells due to cell overlapping and/or other image staining debris (or artifacts). The scheme then maps the detected analyzable cells onto two other gray scale images corresponding to the red and green color of the original image followed by application of a raster scan and labeling algorithms to separately detect the HER-2/neu ("red") and CEP17 ("green") FISH signals. A simple distance based criterion is applied to detect and merge split FISH signals within each cell. The CAD scheme computes the ratio between independent "red" and "green" FISH signals of all analyzable cells identified on an image. If the ratio is >= 2.0, the FISH image is assumed to have been acquired from a HER2+ case; otherwise, the FISH image is assumed to have been acquired from HER2- case. When we applied the CAD scheme to the testing dataset, the average computed HER2 amplification ratios were 1.06+/-0.25 and 2.53+/-0.81 for HER2- and HER2+ samples, respectively. The

  1. Validation of a fully automated HER2 staining kit in breast cancer.

    PubMed

    Moelans, Cathy B; Kibbelaar, Robby E; van den Heuvel, Marius C; Castigliego, Domenico; de Weger, Roel A; van Diest, Paul J

    2010-01-01

    Testing for HER2 amplification and/or overexpression is currently routine practice to guide Herceptin therapy in invasive breast cancer. At present, HER2 status is most commonly assessed by immunohistochemistry (IHC). Standardization of HER2 IHC assays is of utmost clinical and economical importance. At present, HER2 IHC is most commonly performed with the HercepTest which contains a polyclonal antibody and applies a manual staining procedure. Analytical variability in HER2 IHC testing could be diminished by a fully automatic staining system with a monoclonal antibody. 219 invasive breast cancers were fully automatically stained with the monoclonal antibody-based Oracle HER2 Bond IHC kit and manually with the HercepTest. All cases were tested for amplification with chromogenic in situ hybridization (CISH). HercepTest yielded an overall sharper membrane staining, with less cytoplasmic and stromal background than Oracle in 17% of cases. Overall concordance between both IHC techniques was 89% (195/219) with a kappa value of 0.776 (95% CI 0.698-0.854), indicating a substantial agreement. Most (22/24) discrepancies between HercepTest and Oracle showed a weaker staining for Oracle. Thirteen of the 24 discrepant cases were high-level HER2 amplified by CISH, and in 12 of these HercepTest IHC better reflected gene amplification status. All the 13 HER2 amplified discrepant cases were at least 2+ by HercepTest, while 10/13 of these were at least 2+ for Oracle. Considering CISH as gold standard, sensitivity of HercepTest and Oracle was 91% and 83%, and specificity was 94% and 98%, respectively. Positive and negative predictive values for HercepTest and Oracle were 90% and 95% for HercepTest and 96% and 91% for Oracle, respectively. Fully-automated HER2 staining with the monoclonal antibody in the Oracle kit shows a high level of agreement with manual staining by the polyclonal antibody in the HercepTest. Although Oracle shows in general some more cytoplasmic staining and may

  2. Negative estrogen-receptor invasive breast carcinoma: mammographic aspects, correlations with HER2/neu oncoprotein status.

    PubMed

    Enache, Dana Elena; Georgescu, Claudia Valentina; Pătrană, Nicoleta

    2012-01-01

    This study involved 40 ER-negative female patients with invasive breast cancer, aged between 25 and 88 years, diagnosed at Emergency County Hospital of Craiova, Romania, during a two-year interval (2010-2011). All patients that took part in the study were subjected to a preoperative mammography exam, and later to HP and IHC exams, in order to detect the ER, PR and HER2 status. These exams were followed by CISH in ambiguous HER2 cases. The tumor detection method was palpation in 16 cases, whereas in 24 cases the method used was the screening mammography. Histopathologically, the analyzed tumors were infiltrative ductal carcinoma (35 cases), lobular carcinoma (one case), mucinous (two cases) and metaplastic carcinoma (two cases). Depending on the status of the oncoprotein HER2, the 40 ER-negative female patients included in the study formed two groups: the ER-negative, HER2-positive (11 cases, 27.5%) formed the first group and the ER-negative, HER2-negative (29 cases, 72.5%) formed the second group. Depending on the expression of the receptors for progesterone, 60% of cases were classified as triple negative mammary carcinomas (ER-, PR-, HER2-). The comparative study of the ER-negative, HER2-positive and the ER-negative, HER2-negative mammary carcinomas showed that the tumors of the ER-negative, HER2-positive group were mostly high degree cancers (80% vs. 56%), with negative progesterone receptors (81.81% vs. 48.27%), associated with axillary lymph node metastasis (63.63% vs. 48.27%), and were detected at a higher cancer stage (II/III) (81.81% vs. 62.06%). Regarding the mammographic features, the ER-negative HER2-positive breast cancers are more likely to be irregular masses (62.5% vs. 33.33%), with spiculated margins (45.45% vs. 6.9%), frequently associated with dense or heterogeneously dense breast (82% vs. 69%) and pleomorphic calcifications (62.5% vs. 28.57%) comparative with ER-negative HER2-negative cancers that were more frequently round/oval mass, with

  3. Clinical predictors of long-term survival in HER2-positive metastatic breast cancer.

    PubMed

    Murthy, Pooja; Kidwell, Kelley M; Schott, Anne F; Merajver, Sofia D; Griggs, Jennifer J; Smerage, Jeffrey D; Van Poznak, Catherine H; Wicha, Max S; Hayes, Daniel F; Henry, N Lynn

    2016-02-01

    Prior to availability of anti-HER2 therapies, HER2-positive metastatic breast cancer (MBC) was associated with a poor prognosis. Prospective randomized trials have demonstrated survival benefit from anti-HER2 treatments. Anecdotal observations have suggested that a small but meaningful fraction of patients with HER2-positive MBC may be "exceptional responders" with long survival. We hypothesized that demographic and/or clinicopathologic characteristics can be identified to distinguish short-term from long-term survivors. A retrospective, single-institution review of 168 patients with HER2-positive MBC who received treatment with anti-HER2 therapy in the metastatic setting was performed. Cox proportional hazards analysis was used to assess factors associated with long-term survival. Median overall survival from the time of breast cancer recurrence was 3.9 years (95 % CI 3.4-5.2). From the time of diagnosis of MBC, 56 (33 %) survived for 5 or more years and 12 (7 %) survived more than 10 years. Of the 66 patients diagnosed with central nervous system metastases, 9 (14 %) survived more than 5 years following that diagnosis. Younger age at diagnosis, lower stage, hormone receptor positive status, and only having one organ involved at diagnosis were associated with longer survival. Four patients discontinued anti-HER2 therapy and are without evidence of progression of disease after a median 7.4 years (0.2-12.0) since stopping therapy. In a cohort of patients with HER2-positive MBC treated primarily with trastuzumab and lapatinib, 7 % of patients were "exceptional responders." Combining these clinical factors with molecular determinants of prolonged survival may provide insights for individualizing treatment selection.

  4. Reduced risk of breast cancer associated with recreational physical activity varies by HER2 status.

    PubMed

    Ma, Huiyan; Xu, Xinxin; Ursin, Giske; Simon, Michael S; Marchbanks, Polly A; Malone, Kathleen E; Lu, Yani; McDonald, Jill A; Folger, Suzanne G; Weiss, Linda K; Sullivan-Halley, Jane; Deapen, Dennis M; Press, Michael F; Bernstein, Leslie

    2015-07-01

    Convincing epidemiologic evidence indicates that physical activity is inversely associated with breast cancer risk. Whether this association varies by the tumor protein expression status of the estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), or p53 is unclear. We evaluated the effects of recreational physical activity on risk of invasive breast cancer classified by the four biomarkers, fitting multivariable unconditional logistic regression models to data from 1195 case and 2012 control participants in the population-based Women's Contraceptive and Reproductive Experiences Study. Self-reported recreational physical activity at different life periods was measured as average annual metabolic equivalents of energy expenditure [MET]-hours per week. Our biomarker-specific analyses showed that lifetime recreational physical activity was negatively associated with the risks of ER-positive (ER+) and of HER2-negative (HER2-) subtypes (both Ptrend  ≤ 0.04), but not with other subtypes (all Ptrend  > 0.10). Analyses using combinations of biomarkers indicated that risk of invasive breast cancer varied only by HER2 status. Risk of HER2-breast cancer decreased with increasing number of MET-hours of recreational physical activity in each specific life period examined, although some trend tests were only marginally statistically significant (all Ptrend  ≤ 0.06). The test for homogeneity of trends (HER2- vs. HER2+ ) reached statistical significance only when evaluating physical activity during the first 10 years after menarche (Phomogeneity  = 0.03). Our data suggest that physical activity reduces risk of invasive breast cancers that lack HER2 overexpression, increasing our understanding of the biological mechanisms by which physical activity acts.

  5. HER-2/neu overexpression in uterine papillary serous cancers and its possible therapeutic implications.

    PubMed

    Villella, J A; Cohen, S; Smith, D H; Hibshoosh, H; Hershman, D

    2006-01-01

    Uterine papillary serous carcinoma (UPSC) is a highly aggressive variant of endometrial cancer with features similar to high-grade ovarian cancer. Patients tend to be elderly, thin, have a high grade tumor with extensive extrauterine disease at the time of diagnosis. The transmembrane receptor encoded by the HER-2 cellular oncogene is amplified in several types of human carcinomas and provides an attractive therapeutic target. HER-2/neu, the transmembrane receptor encoded by the c-erbB2 gene, is overexpressed by immunohistochemistry in <25% of ovarian cancers and 20-30% of breast cancers, and <10% of endometrial cancer. There are prognostic and therapeutic implications associated with the overexpression of this transmembrane protein. Herceptin, a humanized murine monoclonal antibody directed against the extracellular domain of the HER-2/neu protein, is being used to treat breast cancer that overexpresses HER-2/neu. We reviewed all patients diagnosed with UPSC between 1999-2001. Twenty-six patients were identified, and 19 patients had specimens available for evaluation. We performed immunohistochemical analysis (Herceptest, Dako, Carpinteria, CA) on 19 paraffin embedded blocks of UPSC tumors looking for HER-2/neu over expression. Five out of 19 (26%) stained heavily (3+) for HER-2/neu receptor protein. Four of these five patients had advanced disease at diagnosis. Two of these patients were subsequently treated with Herceptin; one with complete response and one with stable disease based on CT scan and CA-125 findings. Targeting HER-2/neu may be beneficial for a select group of patients with UPSC. We are continuing to evaluate samples for HER-2/neu over expression by fluorescence in situ hybridization (FISH).

  6. HER2 Status in Ovarian Carcinomas: A Multicenter GINECO Study of 320 Patients

    PubMed Central

    Tuefferd, Marianne; Couturier, Jérôme; Penault-Llorca, Frédérique; Vincent-Salomon, Anne; Broët, Philippe; Guastalla, Jean-Paul; Allouache, Djelila; Combe, Martin; Weber, Béatrice; Pujade-Lauraine, Eric; Camilleri-Broët, Sophie

    2007-01-01

    Background Despite a typically good response to first-line combination chemotherapy, the prognosis for patients with advanced ovarian cancer remains poor because of acquired chemoresistance. The use of targeted therapies such as trastuzumab may potentially improve outcomes for patients with ovarian cancer. HER2 overexpression/amplification has been reported in ovarian cancer, but the exact percentage of HER2-positive tumors varies widely in the literature. In this study, HER2 gene status was evaluated in a large, multicentric series of 320 patients with advanced ovarian cancer, including 243 patients enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin-based chemotherapy. Methodology/Principal Findings The HER2 status of primary tumors and metastases was evaluated by both immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) analysis of paraffin-embedded tissue on conventional slides. The prognostic impact of HER2 expression was analyzed. HER2 gene was overexpressed and amplified in 6.6% of analyzed tumors. Despite frequent intratumoral heterogeneity, no statistically significant difference was detected between primary tumors and corresponding metastases. Conclusions/Significance Our results show that the decision algorithm usually used in breast cancer (IHC as a screening test, with equivocal results confirmed by FISH) is appropriate in ovarian cancer. In contrast to previous series, HER2-positive status did not influence outcome in the present study, possibly due to the fact that patients in our study received paclitaxel/carboplatin-based chemotherapy. This raises the question of whether HER2 status and paclitaxel sensitively are linked. PMID:17987122

  7. Probing HER2-PUMA and EGFR-PUMA Crosstalks in Aggressive Breast Cancer

    DTIC Science & Technology

    2012-09-01

    AWARD NUMBER: W81XWH-11-1-0600 TITLE: Probing HER2- PUMA and EGFR- PUMA Crosstalks in Aggressive...COVERED 1 Sep 2011 – 31 Aug 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Probing HER2- PUMA and EGFR- PUMA Crosstalks in Aggressive Breast Cancer 5b...on novel significant findings made from the initial Idea Award. We discovered that proapoptotic PUMA protein is highly expressed in the breast cancer

  8. Reduced risk of breast cancer associated with recreational physical activity varies by HER2 status

    PubMed Central

    Ma, Huiyan; Xu, Xinxin; Ursin, Giske; Simon, Michael S; Marchbanks, Polly A; Malone, Kathleen E; Lu, Yani; McDonald, Jill A; Folger, Suzanne G; Weiss, Linda K; Sullivan-Halley, Jane; Deapen, Dennis M; Press, Michael F; Bernstein, Leslie

    2015-01-01

    Convincing epidemiologic evidence indicates that physical activity is inversely associated with breast cancer risk. Whether this association varies by the tumor protein expression status of the estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), or p53 is unclear. We evaluated the effects of recreational physical activity on risk of invasive breast cancer classified by the four biomarkers, fitting multivariable unconditional logistic regression models to data from 1195 case and 2012 control participants in the population-based Women’s Contraceptive and Reproductive Experiences Study. Self-reported recreational physical activity at different life periods was measured as average annual metabolic equivalents of energy expenditure [MET]-hours per week. Our biomarker-specific analyses showed that lifetime recreational physical activity was negatively associated with the risks of ER-positive (ER+) and of HER2-negative (HER2−) subtypes (both Ptrend ≤ 0.04), but not with other subtypes (all Ptrend > 0.10). Analyses using combinations of biomarkers indicated that risk of invasive breast cancer varied only by HER2 status. Risk of HER2–breast cancer decreased with increasing number of MET-hours of recreational physical activity in each specific life period examined, although some trend tests were only marginally statistically significant (all Ptrend ≤ 0.06). The test for homogeneity of trends (HER2– vs. HER2+ ) reached statistical significance only when evaluating physical activity during the first 10 years after menarche (Phomogeneity = 0.03). Our data suggest that physical activity reduces risk of invasive breast cancers that lack HER2 overexpression, increasing our understanding of the biological mechanisms by which physical activity acts. PMID:25924995

  9. Clinical Predictors of Long-term Survival in HER2-positive Metastatic Breast Cancer

    PubMed Central

    Murthy, Pooja; Kidwell, Kelley M.; Schott, Anne F.; Merajver, Sofia D.; Griggs, Jennifer J.; Smerage, Jeffrey D.; Van Poznak, Catherine H.; Wicha, Max S.; Hayes, Daniel F.; Henry, N. Lynn

    2016-01-01

    Purpose Prior to availability of anti-HER2 therapies, HER2-positive metastatic breast cancer (MBC) was associated with a poor prognosis. Prospective randomized trials have demonstrated survival benefit from anti-HER2 treatments. Anecdotal observations have suggested that a small but meaningful fraction of patients with HER2-positive MBC may be “exceptional responders” with long survival. We hypothesized that demographic and/or clinicopathologic characteristics can be identified to distinguish short-term from long-term survivors. Methods A retrospective, single institution review of 168 patients with HER2-positive MBC who received treatment with anti-HER2 therapy in the metastatic setting was performed. Cox proportional hazards analysis was used to assess factors associated with long-term survival. Results Median overall survival from the time of breast cancer recurrence was 3.9 years (95% CI 3.4–5.2). From the time of diagnosis of MBC, 56 (33%) survived for 5 or more years and 12 (7%) survived more than 10 years. Of the 66 patients diagnosed with central nervous system metastases, 9 (14%) survived more than 5 years following that diagnosis. Younger age at diagnosis, lower stage, hormone receptor positive status, and only having one organ involved at diagnosis were associated with longer survival. Four patients discontinued anti-HER2 therapy and are without evidence of progression of disease after a median 7.4 years (0.2–12.0) since stopping therapy. Conclusions In a cohort of patients with HER2-positive MBC treated primarily with trastuzumab and lapatinib, 7% of patients were “exceptional responders”. Combining these clinical factors associated with molecular determinants of prolonged survival with may provide insights for individualizing treatment selection. PMID:26875184

  10. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    PubMed

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  11. Coexistence of HER2, Ki67, and p53 in Osteosarcoma: A Strong Prognostic Factor

    PubMed Central

    Mardanpour, Keykhosro; Rahbar, Mahtab; Mardanpour, Sourena

    2016-01-01

    Background: Many laboratories are currently evaluating the usefulness of the determination of human epidermal growth factor receptor 2 (HER2), p53, and Ki67 proliferation indices using immunohistochemical techniques in cancer. Although the available studies suggest that these factors might indeed be helpful in making treatment decisions in osteosarcoma patients, their clinical usefulness is still controversial. Aims: We proposed to introduce the value of the coexistence of HER2 overexpression, p53 protein accumulation, and Ki67 in osteosarcoma, which could be a prognostic factor in osteosarcoma. Material and Methods: Expression of HER2, p53, and Ki67 was examined by immunohistochemistry in samples of resected bone tumor tissue from 56 patients with osteosarcoma, obtained between 2009 and 2014 (median follow-up period of 48 months), and their significance for prognosis was analyzed. Results: Of the 56 osteogenic sarcoma tissue samples, 80, 89, and 96.5% were positive for HER2 overexpression, p53 protein accumulation, and Ki67 expression, respectively. Overexpression of HER2 and accumulation of p53 protein significantly correlated with reduced disease-free (P < 0.01) and overall survival (P < 0.003). HER2 and Ki67 co-overexpression significantly correlated with decreased disease-free (P < 0.03) and overall survival (P < 0.02). HER2, accumulation of p53 protein, and Ki67 co-overexpression significantly correlated with reduced disease-free (P < 0.01) and overall survival (P < 0.005) as did patients with larger tumor size, high grade of tumor, positive lymph node, and metastasis status within the specified period of follow up. Conclusions: We found evidence that coexistence of HER2 and Ki67 overexpression and p53 protein accumulation predict the development of lymph node involvement and metastases in patients with high-grade osteosarcoma and were significantly associated with reduced survival. PMID:27298815

  12. HER2/HER3 heterodimers in prostate cancer: Whither HER1/EGFR?

    PubMed

    Freeman, Michael R

    2004-11-01

    In this issue of Cancer Cell, Mellinghoff et al. (2004) demonstrate that a small molecule inhibitor of the EGF receptor (EGFR) and the HER2/ErbB2/c-Neu kinase blocks signaling to the androgen receptor by a mechanism that involves HER2/HER3 heterodimerization. Surprisingly, the EGFR is peripheral to this signaling mechanism. These results have implications for the design of targeted therapy for hormone-refractory prostate cancer.

  13. Probing HER2-PUMA and EGFR-PUMA Crosstalks in Aggressive Breast Cancer

    DTIC Science & Technology

    2014-09-01

    with aggressive tumor subtypes and shortened patient survival. Both receptors are important targets of breast cancer therapy . However, despite the...apparent promise of some of these therapies , EGFR- and HER2-based monotherapy and combination regimens have serious limitations and need improvement...rationales for more effective EGFR- and HER2-based combination therapy for women with breast cancer. Our proposal is built on novel significant findings made

  14. In vivo photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds

    NASA Astrophysics Data System (ADS)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Jo, Janggun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2013-09-01

    Radiation-damaged nanodiamonds (NDs) are ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their good biocompatibility and high optical absorbance in the near-infrared (NIR) range. Acid treated NDs are oxidized to form carboxyl groups on the surface, functionalized with polyethylene glycol (PEG) and human epidermal growth factor receptor 2 (HER2) targeting ligand for breast cancer tumor imaging. Because of the specific binding of the ligand conjugated NDs to the HER2-overexpressing murine breast cancer cells (4T1.2 neu), the tumor tissues are significantly delineated from the surrounding normal tissue at wavelength of 820 nm under the PA imaging modality. Moreover, HER2 targeted NDs (HER2-PEG-NDs) result in higher accumulation in HER2 positive breast tumors as compared to non-targeted NDs after intravenous injection (i.v.). Longer retention time of HER-PEG-NDs is observed in HER2 overexpressing tumor model than that in negative tumor model (4T1.2). This demonstrates that targeting moiety conjugated NDs have great potential for the sensitive detection of cancer tumors and provide an attractive delivery strategy for anti-cancer drugs.

  15. Novel germline mutation in the transmembrane domain of HER2 in familial lung adenocarcinomas.

    PubMed

    Yamamoto, Hiromasa; Higasa, Koichiro; Sakaguchi, Masakiyo; Shien, Kazuhiko; Soh, Junichi; Ichimura, Koichi; Furukawa, Masashi; Hashida, Shinsuke; Tsukuda, Kazunori; Takigawa, Nagio; Matsuo, Keitaro; Kiura, Katsuyuki; Miyoshi, Shinichiro; Matsuda, Fumihiko; Toyooka, Shinichi

    2014-01-01

    We encountered a family of Japanese descent in which multiple members developed lung cancer. Using whole-exome sequencing, we identified a novel germline mutation in the transmembrane domain of the human epidermal growth factor receptor 2 (HER2) gene (G660D). A novel somatic mutation (V659E) was also detected in the transmembrane domain of HER2 in one of 253 sporadic lung adenocarcinomas. Because the transmembrane domain of HER2 is considered to be responsible for the dimerization and subsequent activation of the HER family and downstream signaling pathways, we performed functional analyses of these HER2 mutants. Mutant HER2 G660D and V659E proteins were more stable than wild-type protein. Both the G660D and V659E mutants activated Akt. In addition, they activated p38, which is thought to promote cell proliferation in lung adenocarcinoma. Our findings strongly suggest that mutations in the transmembrane domain of HER2 may be oncogenic, causing hereditary and sporadic lung adenocarcinomas.

  16. Proteomic characterization of Her2/neu-overexpressing breast cancer cells.

    PubMed

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2010-11-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with MS/MS, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in mouse mammary tumor virus-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray data sets revealed a 23-gene signature, which can be used to predict the probability of metastasis-free survival in breast cancer patients.

  17. Proteomic characterization of Her2/neu-overexpressing breast cancer cells

    PubMed Central

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2014-01-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with tandem mass spectrometry, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in MMTV-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin beta 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray datasets revealed a 23-gene signature which can be used to predict the probability of metastasis-free survival in breast cancer patients. PMID:20960451

  18. Expression of HER2/Neu in B-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Rodriguez-Rodriguez, Sergio; Pomerantz, Alan; Demichelis-Gomez, Roberta; Barrera-Lumbreras, Georgina; Barrales-Benitez, Olga; Aguayo-Gonzalez, Alvaro

    2016-01-01

    The expression of HER2/neu in B-cell acute lymphoblastic leukemia has been reported in previous studies. The objective of this research was to study the expression of HER2/neu on the blasts of patients with acute leukemia from the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. From June 2015 to February 2016, a HER2/neu monoclonal antibody was added to the panel of antibodies that we routinely use in patients with acute leukemia. An expression of ≥ 30% was considered positive. We studied 33 patients: 19 had de novo leukemia (57.6%), three (9.1%) were in relapse, and in 11 (33.3%) their status could not be specified. Seventeen patients (51.5%) were classified as B-cell acute lymphoblastic leukemia with a median expression of HER2/neu of 0.3% (range 0-90.2). Three patients with B-cell acute lymphoblastic leukemia were positive for HER2/neu: 89.4%, 90.9%, and 62.4%. The first and third patient had de novo B-cell acute lymphoblastic leukemia. The second patient was in second relapse after allogeneic stem cell transplant. All three patients were categorized as high-risk at the time of diagnosis. In the studied Mexican population, we found a positive expression of HER2/neu in 17% of the B-cell acute lymphoblastic leukemia patients, similar to previous studies in which the expression was found in 15-50%.

  19. Current therapeutic strategies of anti-HER2 treatment in advanced breast cancer patients

    PubMed Central

    Nowara, Elżbieta

    2016-01-01

    The HER2/neu (ERBB2) oncogene is amplified and/or overexpressed in approximately 20% of breast cancers, and is a strong prognostic factor for relapse and poor overall survival, particularly in node-positive patients. It is also an important predictor for response to trastuzumab, which has established efficacy against breast cancer with overexpression or amplification of the HER2 oncogene. Treatment with the anti-HER2 humanized monoclonal antibody – trastuzumab significantly improves progression-free and overall survival among patients with HER2-positive breast cancer. However, in most patients with HER2-positive metastatic breast cancer, the disease progresses occurred, what cause the need for new targeted therapies for advanced disease. In clinical trials, there are tested new drugs to improve the results of treatment for this group of patients. This paper presents new drugs introduced into clinical practice for treatment of advanced breast cancer, whose molecular target are receptors of the HER2 family. In addition, new therapeutic strategies and drugs that are currently in clinical researches are discussed. PMID:27095932

  20. Twenty years of anti-HER2 therapy-associated cardiotoxicity

    PubMed Central

    Pondé, Noam F; Lambertini, Matteo; de Azambuja, Evandro

    2016-01-01

    Over the past 20 years, the prognosis of HER2-positive breast cancer has been transformed by the development of anti-HER2 targeted therapies. In early clinical trials of trastuzumab (ie, the first anti-HER2 agent to be developed) cardiotoxicity became a major concern. In the first published phase 3 trial of trastuzumab, 27% of patients receiving anthracyclines and trastuzumab experienced cardiac events and 16% suffered from severe congestive heart failure. In subsequent trials conducted in advanced and early settings, the incidence of cardiac events was reduced through changes in chemotherapy regimens, more strict patient selection and close cardiac assessment. However, cardiotoxicity remains a significant problem in clinical practice that is likely to increase as new agents are approved and exposure times increase through improved patients' survival. Though numerous trials have led to improved understanding of many aspects of anti-HER2 therapy-related cardiotoxicity, its underlying physiopathology mechanisms are not well understood. The purpose of this article is to provide an in-depth review on anti-HER2 therapy-related cardiotoxicity, including data on both trastuzumab and the recently developed anti-HER2 targeted agents. PMID:27843627

  1. Overcoming Resistance to HER2 Inhibitors Through State-Specific Kinase Binding

    PubMed Central

    Novotny, Chris J.; Pollari, Sirkku; Park, Jin H.; Lemmon, Mark A.; Shen, Weijun; Shokat, Kevan M.

    2016-01-01

    The heterodimeric receptor tyrosine kinase complex formed by HER2 and HER3 can act as an oncogenic driver and is also responsible for rescuing a large number of cancers from a diverse set of targeted therapies. Current inhibitors of these proteins, particularly HER2, have dramatically improved patient outcomes in the clinic but recent studies have demonstrated that stimulation of the heterodimeric complex, either by growth factors or increasing the concentrations of HER2 and HER3 at the membrane, significantly diminishes their activity. In order to find an inhibitor of the active HER2/HER3 oncogenic complex we developed a panel of Ba/F3 cell lines suitable for ultra-high throughput screening. Medicinal chemistry on the hit scaffold resulted in a novel inhibitor that acts through the preferential inhibition of the active state of HER2 and as a result is able to overcome cellular mechanisms of resistance such as growth factors or mutations that stabilize the active form of HER2. PMID:27595329

  2. NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies

    PubMed Central

    Khalil, Hilal S.; Langdon, Simon P.; Kankia, Ibrahim H.; Bown, James; Deeni, Yusuf Y.

    2016-01-01

    NF-E2 related factor-2 (NRF2) is an essential transcription factor for multiple genes encoding antioxidants and detoxification enzymes. NRF2 is implicated in promoting cancer therapeutic resistance by its detoxification function and crosstalk with proproliferative pathways. However, the exact mechanism of this intricate connectivity between NRF2 and growth factor induced proliferative pathway remains elusive. Here, we have demonstrated that pharmacological activation of NRF2 by tert-butylhydroquinone (tBHQ) upregulates the HER family receptors, HER2 and HER3 expression, elevates pAKT levels, and enhances the proliferation of ovarian cancer cells. Preactivation of NRF2 also attenuates the combined growth inhibitory effects of HER2 targeting monoclonal antibodies, Pertuzumab and Trastuzumab. Further, tBHQ caused transcriptional induction of HER2 and HER3, while SiRNA-mediated knockdown of NRF2 prevented this and further caused transcriptional repression and enhanced cytotoxicity of the HER2 inhibitors. Hence, NRF2 regulates both HER2 and HER3 receptors to influence cellular responses to HER2 targeting monoclonal antibodies. This deciphered crosstalk mechanism reinforces the role of NRF2 in drug resistance and as a relevant anticancer target. PMID:26770651

  3. Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor

    PubMed Central

    Wijnant, Kathleen; Crinelli, Rita; Bianchi, Marzia; Magnani, Mauro; Hysi, Albana; Iezzi, Manuela

    2017-01-01

    The phytoestrogen resveratrol has been reported to possess cancer chemo-preventive activity on the basis of its effects on tumor cell lines and xenograft or carcinogen-inducible in vivo models. Here we investigated the effects of resveratrol on spontaneous mammary carcinogenesis using Δ16HER2 mice as HER2+/ERα+ breast cancer model. Instead of inhibiting tumor growth, resveratrol treatment (0.0001% in drinking water; daily intake of 4μg/mouse) shortened tumor latency and enhanced tumor multiplicity in Δ16HER2 mice. This in vivo tumor-promoting effect of resveratrol was associated with up-regulation of Δ16HER2 and down-regulation of ERα protein levels and was recapitulated in vitro by murine (CAM6) and human (BT474) tumor cell lines. Our results demonstrate that resveratrol, acting as a proteasome inhibitor, leads to Δ16HER2 accumulation which favors the formation of Δ16HER2/HER3 heterodimers. The consequential activation of downstream mTORC1/p70S6K/4EBP1 pathway triggers cancer growth and proliferation. This study provides evidence that resveratrol mechanism of action (and hence its effects) depends on the intrinsic molecular properties of the cancer model under investigation, exerting a tumor-promoting effect in luminal B breast cancer subtype models. PMID:28238967

  4. Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis.

    PubMed

    Meng, L; Hunt, C; Yaglom, J A; Gabai, V L; Sherman, M Y

    2011-06-23

    The major heat shock protein Hsp72 is expressed at elevated levels in many human cancers and its expression correlates with tumor progression. Here, we investigated the role of Hsp72 in Her2 oncogene-induced neoplastic transformation and tumorigenesis. Expression of Her2 in untransformed MCF10A mammary epithelial cells caused transformation, as judged by foci formation in culture and tumorigenesis in xenografts. However, expression of Her2 in Hsp72-depleted cells failed to induce transformation. The anti-tumorigenic effects of Hsp72 downregulation were associated with cellular senescence because of accumulation of p21 and depletion of survivin. Accordingly, either knockdown of p21 or expression of survivin reversed this senescence process. Further, we developed an animal model of Hsp72-dependent breast cancer associated with expression of Her2. Knockout (KO) of Hsp72 almost completely suppressed tumorigenesis in the MMTVneu breast cancer mouse model. In young Hsp72 KO mice, expression of Her2 instead of mammary tissue hyperplasia led to suppression of duct development and blocked alveolar budding. These effects were due to massive cell senescence in mammary tissue, which was associated with upregulation of p21 and downregulation of survivin. Therefore, Hsp72 has an essential role in Her2-induced tumorigenesis by regulating oncogene-induced senescence pathways.

  5. NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate Sensitivity to Targeted Immunotherapies.

    PubMed

    Khalil, Hilal S; Langdon, Simon P; Kankia, Ibrahim H; Bown, James; Deeni, Yusuf Y

    2016-01-01

    NF-E2 related factor-2 (NRF2) is an essential transcription factor for multiple genes encoding antioxidants and detoxification enzymes. NRF2 is implicated in promoting cancer therapeutic resistance by its detoxification function and crosstalk with proproliferative pathways. However, the exact mechanism of this intricate connectivity between NRF2 and growth factor induced proliferative pathway remains elusive. Here, we have demonstrated that pharmacological activation of NRF2 by tert-butylhydroquinone (tBHQ) upregulates the HER family receptors, HER2 and HER3 expression, elevates pAKT levels, and enhances the proliferation of ovarian cancer cells. Preactivation of NRF2 also attenuates the combined growth inhibitory effects of HER2 targeting monoclonal antibodies, Pertuzumab and Trastuzumab. Further, tBHQ caused transcriptional induction of HER2 and HER3, while SiRNA-mediated knockdown of NRF2 prevented this and further caused transcriptional repression and enhanced cytotoxicity of the HER2 inhibitors. Hence, NRF2 regulates both HER2 and HER3 receptors to influence cellular responses to HER2 targeting monoclonal antibodies. This deciphered crosstalk mechanism reinforces the role of NRF2 in drug resistance and as a relevant anticancer target.

  6. Pertuzumab in combination with trastuzumab and docetaxel for HER2-positive metastatic breast cancer.

    PubMed

    Kawajiri, Hidemi; Takashima, Tsutomu; Kashiwagi, Shinichiro; Noda, Satoru; Onoda, Naoyoshi; Hirakawa, Kosei

    2015-01-01

    Overexpression of HER2 - found in approximately 15-20% of all breast cancers - is a negative prognostic factor. Although trastuzumab significantly improves the prognosis of HER2-positive breast cancer, half of the patients with metastatic breast cancer experience disease progression within 1 year. Pertuzumab is a novel HER2-targeted humanized monoclonal antibody that binds to the dimerization domain of HER2 and acts synergically with trastuzumab in inhibiting tumor progression. The CLEOPATRA trial demonstrated that adding pertuzumab to trastuzumab plus docetaxel significantly prolonged progression-free survival and overall survival without increasing severe adverse events. Conclusively, pertuzumab was approved by the US FDA in June 2012 for use in combination with trastuzumab and docetaxel for the treatment of patients with HER2-positive metastatic breast cancer. Furthermore, various clinical trials to evaluate the efficacy and safety of pertuzumab combined with other cytotoxic agents are ongoing at present. Thus, pertuzumab has been becoming important for the treatment of patients with HER2-positive metastatic breast cancer.

  7. HER2 activation results in β-catenin-dependent changes in pulmonary epithelial permeability

    PubMed Central

    Vasu, Vihas T.; Thaikoottathil, Jyoti V.; Mishra, Rangnath; Shatat, Mohammad A.; Mason, Robert J.; Kern, Jeffrey A.

    2014-01-01

    The receptor tyrosine kinase human epidermal growth factor receptor-2 (HER2) is known to regulate pulmonary epithelial barrier function; however, the mechanisms behind this effect remain unidentified. We hypothesized that HER2 signaling alters the epithelial barrier through an interaction with the adherens junction (AJ) protein β-catenin, leading to dissolution of the AJ. In quiescent pulmonary epithelial cells, HER2 and β-catenin colocalized along the lateral intercellular junction. HER2 activation by the ligand neuregulin-1 was associated with tyrosine phosphorylation of β-catenin, dissociation of β-catenin from E-cadherin, and decreased E-cadherin-mediated cell adhesion. All effects were blocked with the HER2 inhibitor lapatinib. β-Catenin knockdown using shRNA significantly attenuated neuregulin-1-induced decreases in pulmonary epithelial resistance in vitro. Our data indicate that HER2 interacts with β-catenin, leading to dissolution of the AJ, decreased cell-cell adhesion, and disruption of the pulmonary epithelial barrier. PMID:25326580

  8. MUC4 Mucin Interacts with and Stabilizes the HER2 Oncoprotein in Human Pancreatic Cancer Cells

    PubMed Central

    Chaturvedi, Pallavi; Singh, Ajay P.; Chakraborty, Subhankar; Chauhan, Subhash C.; Bafna, Sangeeta; Meza, Jane L.; Singh, Pankaj K.; Hollingsworth, Michael A.; Mehta, Parmender P.; Batra, Surinder K.

    2010-01-01

    MUC4, a high–molecular weight transmembrane glycoprotein, is overexpressed in pancreatic cancer and is implicated in its pathogenesis. It is a heterodimeric protein containing a large extracellular, heavily glycosylated subunit, MUC4α, and a transmembrane growth factor–like subunit, MUC4β. In the present study, we have shown the interaction of human MUC4 with the receptor tyrosine kinase HER2 in pancreatic adenocarcinoma cells by reciprocal coimmunoprecipitation and cocapping studies. MUC4 colocalized with HER2 at the cell surface and in the cytoplasm. Silencing of MUC4 by transient or stable expression of MUC4-targeted short-interfering RNA led to the down-regulation of HER2 with a concomitant decrease in its phosphorylated form (pY1248-HER2). Further analyses revealed that the MUC4-knockdown–mediated decrease in HER2 expression occurred due to the drop in the stability of the receptor. In MUC4-knockdown pancreatic cancer cells, we also observed a reduced phosphorylation of the focal adhesion kinase and p42/44 mitogen-activated protein kinase, which are downstream effector proteins in HER2 signaling. Our findings add a new dimension to MUC4 function as a modulator of cell signaling and provide mechanistic evidence for its role in pancreatic cancer progression. PMID:18381409

  9. Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer.

    PubMed

    Phelps-Polirer, Kendall; Abt, Melissa A; Smith, Danzell; Yeh, Elizabeth S

    2016-01-01

    Strategies for successful primary treatment of HER2-positive breast cancer include use of the HER2 inhibitors trastuzumab or lapatinib in combination with standard chemotherapy. While successful, many patients develop resistance to these HER2 inhibitors indicating an unmet need. Consequently, current research efforts are geared toward understanding mechanisms of resistance and the signaling modalities that regulate these mechanisms. We have undertaken a study to examine whether signaling molecules downstream of epidermal growth factor receptor, which often act as compensatory signaling outlets to circumvent HER2 inhibition, can be co-targeted to overcome resistance. We identified JNK signaling as a potential area of intervention and now show that inhibiting JNK using the pan-JNK inhibitor, SP600125, is effective in the HER2-positive, resistant JIMT-1 xenograft mammary tumor model. We also investigate potential combination strategies to bolster the effects of JNK inhibition and find that co-targeting of JNK and the protein kinase HUNK can prohibit tumor growth of resistant HER2-positive mammary tumors in vivo.

  10. Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer

    PubMed Central

    Phelps-Polirer, Kendall; Abt, Melissa A.; Smith, Danzell; Yeh, Elizabeth S.

    2016-01-01

    Strategies for successful primary treatment of HER2-positive breast cancer include use of the HER2 inhibitors trastuzumab or lapatinib in combination with standard chemotherapy. While successful, many patients develop resistance to these HER2 inhibitors indicating an unmet need. Consequently, current research efforts are geared toward understanding mechanisms of resistance and the signaling modalities that regulate these mechanisms. We have undertaken a study to examine whether signaling molecules downstream of epidermal growth factor receptor, which often act as compensatory signaling outlets to circumvent HER2 inhibition, can be co-targeted to overcome resistance. We identified JNK signaling as a potential area of intervention and now show that inhibiting JNK using the pan-JNK inhibitor, SP600125, is effective in the HER2-positive, resistant JIMT-1 xenograft mammary tumor model. We also investigate potential combination strategies to bolster the effects of JNK inhibition and find that co-targeting of JNK and the protein kinase HUNK can prohibit tumor growth of resistant HER2-positive mammary tumors in vivo. PMID:27045589

  11. Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells

    PubMed Central

    2010-01-01

    Introduction Overexpression on plasma membrane of human epidermal growth factor receptor 2 (HER2) is reported in 25% to 30% of breast cancers. Heterodimer formation with cognate members of the epidermal growth factor receptor (EGFR) family, such as HER3 and EGFR, activates abnormal cell-signalling cascades responsible for tumorigenesis and further transcriptional HER2 gene upregulation. Targeting the molecular mechanisms controlling HER2 overexpression and recycling may effectively deactivate this feedback-amplification loop. We recently showed that inactivation of phosphatidylcholine-specific phospholipase C (PC-PLC) may exert a pivotal role in selectively modulating the expression on the membrane of specific receptors or proteins relevant to cell function. In the present study, we investigated the capability of PC-PLC inhibition to target the molecular mechanisms controlling HER2 overexpression on the membrane of breast cancer cells by altering the rates of its endocytosis and lysosomal degradation. Methods Localization on the membrane and interaction of PC-PLC with HER2, EGFR, and HER3 were investigated on HER2-overexpressing and HER2-low breast cancer cell lines, by using confocal laser scanning microscopy, flow cytometry, cell-surface biotinylation, isolation of lipid rafts, and immunoprecipitation experiments. The effects of the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609) on HER2 expression on the membrane and on the levels of overall HER2, HER2-HER3, and HER2-EGFR contents were monitored in the HER2-overexpressing SKBr3 cells, after either transient or continuous receptor engagement with anti-HER2 monoclonal antibodies, including trastuzumab. Changes of HER2 expression and cell proliferation were examined in SKBr3, BT-474, and MDA-MB-453 cells continuously exposed to D609 alone or combined with trastuzumab. Results PC-PLC selectively accumulates on the plasma membrane of HER2-overexpressing cells, where it colocalizes and associates with

  12. Clonal Evolutionary Analysis during HER2 Blockade in HER2-Positive Inflammatory Breast Cancer: A Phase II Open-Label Clinical Trial of Afatinib +/- Vinorelbine

    PubMed Central

    Schmid, Ramona; Arpornwirat, Wichit; Chitapanarux, Imjai; Ganju, Vinod; Im, Seock-Ah; Kim, Sung-Bae; Dechaphunkul, Arunee; Maneechavakajorn, Jedzada; Spector, Neil; Yau, Thomas; Afrit, Mehdi; Ahmed, Slim Ben; Johnston, Stephen R.; Gibson, Neil; Herrero, Javier; Swanton, Charles

    2016-01-01

    Background Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer associated with HER2 amplification, with high risk of metastasis and an estimated median survival of 2.9 y. We performed an open-label, single-arm phase II clinical trial (ClinicalTrials.gov NCT01325428) to investigate the efficacy and safety of afatinib, an irreversible ErbB family inhibitor, alone and in combination with vinorelbine in patients with HER2-positive IBC. This trial included prospectively planned exome analysis before and after afatinib monotherapy. Methods and Findings HER2-positive IBC patients received afatinib 40 mg daily until progression, and thereafter afatinib 40 mg daily and intravenous vinorelbine 25 mg/m2 weekly. The primary endpoint was clinical benefit; secondary endpoints were objective response (OR), duration of OR, and progression-free survival (PFS). Of 26 patients treated with afatinib monotherapy, clinical benefit was achieved in 9 patients (35%), 0 of 7 trastuzumab-treated patients and 9 of 19 trastuzumab-naïve patients. Following disease progression, 10 patients received afatinib plus vinorelbine, and clinical benefit was achieved in 2 of 4 trastuzumab-treated and 0 of 6 trastuzumab-naïve patients. All patients had treatment-related adverse events (AEs). Whole-exome sequencing of tumour biopsies taken before treatment and following disease progression on afatinib monotherapy was performed to assess the mutational landscape of IBC and evolutionary trajectories during therapy. Compared to a cohort of The Cancer Genome Atlas (TCGA) patients with HER2-positive non-IBC, HER2-positive IBC patients had significantly higher mutational and neoantigenic burden, more frequent gain-of-function TP53 mutations and a recurrent 11q13.5 amplification overlapping PAK1. Planned exploratory analysis revealed that trastuzumab-naïve patients with tumours harbouring somatic activation of PI3K/Akt signalling had significantly shorter PFS compared to those without

  13. Quantitative measurement of HER2 expression in breast cancers: comparison with 'real-world' routine HER2 testing in a multicenter Collaborative Biomarker Study and correlation with overall survival.

    PubMed

    Yardley, Denise A; Kaufman, Peter A; Huang, Weidong; Krekow, Lea; Savin, Michael; Lawler, William E; Zrada, Stephen; Starr, Alexander; Einhorn, Harvey; Schwartzberg, Lee S; Adams, John W; Lie, Yolanda; Paquet, Agnes C; Sperinde, Jeff; Haddad, Mojgan; Anderson, Steve; Brigino, Marlon; Pesano, Rick; Bates, Michael P; Weidler, Jodi; Bosserman, Linda

    2015-03-18

    Accurate assessment of HER2 status is critical in determining appropriate therapy for breast cancer patients but the best HER2 testing methodology has yet to be defined. In this study, we compared quantitative HER2 expression by the HERmark™ Breast Cancer Assay (HERmark) with routine HER2 testing by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), and correlated HER2 results with overall survival (OS) of breast cancer patients in a multicenter Collaborative Biomarker Study (CBS). Two hundred and thirty-two formalin-fixed, paraffin-embedded breast cancer tissues and local laboratory HER2 testing results were provided by 11 CBS sites. HERmark assay and central laboratory HER2 IHC retesting were retrospectively performed in a blinded fashion. HER2 results by all testing methods were obtained in 192 cases. HERmark yielded a continuum of total HER2 expression (H2T) ranging from 0.3 to 403 RF/mm2 (approximately 3 logs). The distribution of H2T levels correlated significantly (P<0.0001) with all routine HER2 testing results. The concordance of positive and negative values (equivocal cases excluded) between HERmark and routine HER2 testing was 84% for local IHC, 96% for central IHC, 85% for local FISH, and 84% for local HER2 status. OS analysis revealed a significant correlation of shorter OS with HER2 positivity by local IHC (HR=2.6, P=0.016), central IHC (HR=3.2, P=0.015), and HERmark (HR=5.1, P<0.0001) in this cohort of patients most of whom received no HER2-targeted therapy. The OS curve of discordant low (HER2 positive but H2T low, 10% of all cases) was aligned with concordant negative (HER2 negative and H2T low, HR=1.9, P=0.444), but showed a significantly longer OS than concordant positive (HER2 positive and H2T high, HR=0.31, P=0.024). Conversely, the OS curve of discordant high (HER2 negative but H2T high, 9% of all cases) was aligned with concordant positive (HR=0.41, P=0.105), but showed a significantly shorter OS than concordant

  14. Phase 2 Study of a HER-2/neu Intracellular Domain Peptide-Based Vaccine Administered to Stage IV HER2 Positive Breast Cancer Patients Receiving Trastuzumab

    DTIC Science & Technology

    2010-12-01

    Corazon dela Rosa, Kathleen Tietje, John Link, James Waisman, and Lupe G. Salazar. Concurrent Trastuzumab and HER2/neu-Specific Vaccination in Patients...Andrew L. Coveler, Jennifer S. Childs, Doreen M. Higgins, Patricia A. Fintak, Corazon dela Rosa, Kathleen Tietje, John Link, James Waisman, and Lupe G...Patricia A. Fintak, Corazon dela Rosa Data analysis and interpretation: Mary L. Disis, Danelle R. Wallace, Theodore A. Gooley, Yushe Dang, Meredith

  15. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer.

    PubMed

    Janiszewska, Michalina; Liu, Lin; Almendro, Vanessa; Kuang, Yanan; Paweletz, Cloud; Sakr, Rita A; Weigelt, Britta; Hanker, Ariella B; Chandarlapaty, Sarat; King, Tari A; Reis-Filho, Jorge S; Arteaga, Carlos L; Park, So Yeon; Michor, Franziska; Polyak, Kornelia

    2015-10-01

    Detection of minor, genetically distinct subpopulations within tumors is a key challenge in cancer genomics. Here we report STAR-FISH (specific-to-allele PCR-FISH), a novel method for the combined detection of single-nucleotide and copy number alterations in single cells in intact archived tissues. Using this method, we assessed the clinical impact of changes in the frequency and topology of PIK3CA mutation and HER2 (ERBB2) amplification within HER2-positive breast cancer during neoadjuvant therapy. We found that these two genetic events are not always present in the same cells. Chemotherapy selects for PIK3CA-mutant cells, a minor subpopulation in nearly all treatment-naive samples, and modulates genetic diversity within tumors. Treatment-associated changes in the spatial distribution of cellular genetic diversity correlated with poor long-term outcome following adjuvant therapy with trastuzumab. Our findings support the use of in situ single cell-based methods in cancer genomics and imply that chemotherapy before HER2-targeted therapy may promote treatment resistance.

  16. In situ single cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2+ breast cancer

    PubMed Central

    Janiszewska, Michalina; Liu, Lin; Almendro, Vanessa; Kuang, Yanan; Paweletz, Cloud; Sakr, Rita A.; Weigelt, Britta; Hanker, Ariella B.; Chandarlapaty, Sarat; King, Tari A.; Reis-Filho, Jorge S.; Arteaga, Carlos L.; Park, So Yeon; Michor, Franziska; Polyak, Kornelia

    2015-01-01

    Detection of minor genetically distinct subpopulations within tumors is a key challenge in cancer genomics. Here we report STAR-FISH (Specific-To-Allele PCR – FISH), a novel method for the combined detection of single nucleotide and copy number alterations in single cells in intact archived tissues. Using this method, we assessed the clinical impact of changes in the frequency and topology of PIK3CA mutation and HER2/ERBB2 amplification within HER2+ breast cancer during neoadjuvant therapy. We found that the two genetic events are not always present within the same cell. Chemotherapy selects for PIK3CA mutant cells, a minor subpopulation in nearly all treatment-naïve samples, and modulates genetic diversity within tumors. Treatment-associated changes in spatial distribution of cellular genetic diversity correlated with poor long-term outcome following adjuvant trastuzumab therapy. Our findings support the use of in situ single-cell based methods in cancer genomics and imply that chemotherapy before HER2-targeted therapy may promote treatment resistance. PMID:26301495

  17. Quality assessment of HER2 testing by monitoring of positivity rates.

    PubMed

    Choritz, Harald; Büsche, Guntram; Kreipe, Hans

    2011-09-01

    Interlaboratory variation in human epidermal growth factor receptor 2 (HER2) testing provides a challenge for targeted therapy in breast and gastric cancer. Assessment of positivity rates among laboratories could help monitor their performance and define reference values for positivity rates to be expected in a geographic region. Pathologists regularly determined the number of HER2-positive cases (HER2 3+, HER2 2+/amplified or amplified) in their laboratory, and figures were continuously entered into a central website. The overall positivity rate of each participant was calculated and compared with the average rates of all other institutes (n = 42). A total of 18,081 test results on breast cancer and 982 on gastric cancer were entered into the system. Positivity rates for HER2 in breast cancer ranged from 7.6% to 31.6%. Statistically, the results from six institutions qualified as outliers (p < 0.000005). From the remaining institutions encompassing 10,916 assessments, the mean proportion of positive cases was 16.7 ± 3.2% (99% confidence interval 16.6-16.8). The results from six institutions were in between the 95% and 99.5% confidence intervals. For gastric cancer, there was one outlier and the mean positivity rate was 23.2 ± 5.7%. The proportion of HER2-positive breast cancer cases is considerably lower than could have been expected from published studies. By assessing the positivity rates and comparing them with that of all breast or gastric cancers in a given population, pathologists will be alerted to a potential systematic error in their laboratory assay, causative for over- or underestimation of cancer cases suited for anti-HER2 therapy.

  18. Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness.

    PubMed

    Scala, Alessandra; Mirabella, Rossana; Goedhart, Joachim; de Vries, Michel; Haring, Michel A; Schuurink, Robert C

    2017-09-16

    This work adds a new player, HER2, downstream of the perception of E-2-hexenal, a green leaf volatile, and shows that E-2-hexenal specifically changes the redox status of the mitochondria. It is widely accepted that plants produce and respond to green leaf volatiles (GLVs), but the molecular components involved in transducing their perception are largely unknown. The GLV E-2-hexenal inhibits root elongation in seedlings and, using this phenotype, we isolated E-2-hexenal response (her) Arabidopsis thaliana mutants. Using map-based cloning we positioned the her2 mutation to the At5g63620 locus, resulting in a phenylalanine instead of serine on position 223. Knockdown and overexpression lines of HER2 confirmed the role of HER2, which encodes an oxidoreductase, in the responsiveness to E-2-hexenal. Since E-2-hexenal is a reactive electrophile species, which are known to influence the redox status of cells, we utilized redox sensitive GFP2 (roGFP2) to determine the redox status of E-2-hexenal-treated root cells. Since the signal peptide of HER2 directed mCherry to the mitochondria, we targeted the expression of roGFP2 to this organelle besides the cytosol. E-2-hexenal specifically induced a change in the redox status in the mitochondria. We did not see a difference in the redox status in her2 compared to wild-type Arabidopsis. Still, the mitochondrial redox status did not change with Z-3-hexenol, another abundant GLV. These results indicate that HER2 is involved in transducing the perception of E-2-hexenal, which changes the redox status of the mitochondria.

  19. Predicting brain metastases of breast cancer based on serum S100B and serum HER2.

    PubMed

    Bechmann, Troels; Madsen, Jonna Skov; Brandslund, Ivan; Lund, Erik Dalsgaard; Ormstrup, Tina; Jakobsen, Erik Hugger; Jylling, Anne Marie Bak; Steffensen, Karina Dahl; Jakobsen, Anders

    2013-11-01

    Brain metastases are a major cause of morbidity and mortality in breast cancer. The aim of the current study was to evaluate the prediction of brain metastases based on serum S100B and human epidermal growth factor receptor 2 (HER2). A total of 107 breast cancer patients were included in the current study from two prospective cohort studies with either elevated serum HER2 levels >15 ng/ml or brain metastases verified by magnetic resonance imaging (MRI) or computer tomography (CT). Following the exclusion of six patients, the remaining 101 patients were divided into two groups: Group 0 (n=55), patients with normal MRI results; and group 1 (n=46), patients with brain metastases. The levels of serum S100B and HER2 in the two groups were analyzed prior to MRI or CT of the brain, and no significant differences were identified in the serum HER2 (P=0.060) or S100B levels (P=0.623) between the groups. The univariate analysis of prognostic factors for brain metastases showed a significant correlation with systemic disease (P<0.001), axillary lymph node metastases (P=0.001) and serum HER2 >30 ng/ml (P=0.002). Only systemic disease (P<0.001) remained statistically significant in the multivariate analysis. In conclusion, serum levels of S100B and HER2 did not predict the risk of brain metastases. In the multivariate analysis, brain metastases were only found to correlate with systemic disease. However, in the univariate analysis, serum HER2 levels >30 ng/ml were identified to correlate with increased risk of brain metastases, which calls for further investigation.

  20. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape.

    PubMed

    Hegde, Meenakshi; Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A; Wakefield, Amanda; Fousek, Kristen; Bielamowicz, Kevin; Chow, Kevin K H; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S; Baker, Matthew L; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K; Orange, Jordan S; Ahmed, Nabil

    2016-08-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape.

  1. PlncRNA-1 induces apoptosis through the Her-2 pathway in prostate cancer cells.

    PubMed

    Yang, Qing; Cui, Zi-Lian; Wang, Qin; Jin, Xun-Bo; Zhao, Yong; Wang, Mu-Wen; Song, Wei; Qu, Hua-Wei; Kang, Wei-Ting

    2016-05-27

    To determine whether PlncRNA-1 induces apoptosis in prostate cancer cells through the Her-2 pathway. The expression of PlncRNA-1, Her-2, and related cyclin proteins in 23 cases of prostate cancer and adjacent normal tissues was analyzed and compared. LNCaP cells were divided into a control group and an LNCaP-PlncRNA-1-siRNA experimental group. Normal prostate RWPE-1 cells were divided into an RWPE-1 control group and an RWPE-1-PlncRNA-1 experimental group. After PlncRNA-1 silencing and overexpression, changes in Her-2 and cyclinD1 expression levels were detected both in vivo and in vitro. In prostate cancer tissues, Her-2 and PlncRNA-1 were highly expressed and significantly correlated. In LNCaP cells, the expression of Her-2 and cyclinD1 decreased following the downregulation of PlncRNA-1 as assessed by real-time PCR and Western blotting. In RWPE-1 cells, the expression of Her-2 and cyclinD1 increased following PlncRNA-1 overexpression. Flow cytometry revealed that the proportion of LNCaP cells in G2/M phase was significantly increased after PlncRNA-1 silencing and that the proportion of RWPE-1 cells in G2/M phase was significantly decreased after PlncRNA-1 overexpression. Furthermore, animal experiments validated these results. In conclusion, in prostate cancer, PlncRNA-1 regulates the cell cycle and cyclinD1 levels and can also regulate proliferation and apoptosis in prostate cancer cells through the Her-2 pathway.

  2. Suppression of breast cancer cell growth by Her2-reduced AR serine 81 phosphorylation.

    PubMed

    Huang, Pao-Hsuan; Wang, Hsin-Yi; Huang, Chen-Chuan; Lee, Yueh-Tsung; Yue, Chia-Herng; Chen, Mei-Chih; Lin, Ho

    2016-08-31

    Breast cancer is a hormone-related carcinoma and the most commonly diagnosed malignancy in women. Although Her-2, estrogen receptor (ER), and progesterone receptor (PR) are the major diagnostic markers and therapeutic targets to breast cancer, searching for additional molecular targets remains an important issue and one of the candidates is androgen receptor (AR). AR has been shown expressed in 70% breast cancer patients and connects to low recurrence and high survival rate. Our previous study demonstrates that Ser81 phosphorylation of AR in prostate cancer cells is critical for its protein stability modulated by human epidermal growth factor receptor-2 (Her2). The aim of this study is to investigate the influence of Her2 and AR in proliferation of breast cancer cell line, MDA-MB-453. The data show that AR which was activated by synthetic androgen R1881 suppressed the proliferation of MDA-MB-453 cells. Notably, AR activation decreased the protein levels of cell growth-related proteins, including cyclin A, cyclin B, and early growth response protein 1 (Egr1), while cell-cycle inhibitor protein p27 was increased. Besides, Heregulin (HRG)-induced Her2 activation decreased the AR protein levels and its Ser81 phosphorylation. Her2 small molecular inhibitor, Lapatinib, dose-dependently suppressed cell proliferation while the levels of phospho-Ser81 AR and p27 protein were increased. Phospho-Ser81 AR was also increased after Her2 knockdown. Specifically, the influence of phospho-Ser81 AR by Lapatinib was primarily found in the nucleus of MDA-MD-453 cells, where the cell proliferation might directly be interfered. In conclusion, our findings indicate that Her2 might negatively regulate AR phosphorylation/activation and contribute to regulate the proliferation of MDA-MB 453 cells.

  3. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape

    PubMed Central

    Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A.; Wakefield, Amanda; Bielamowicz, Kevin; Chow, Kevin K.H.; Brawley, Vita S.; Byrd, Tiara T.; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S.; Baker, Matthew L.; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K.

    2016-01-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape. PMID:27427982

  4. Palbociclib in Treating Patients With Metastatic HER-2 Positive or Triple-Negative Breast Cancer With Brain Metastasis

    ClinicalTrials.gov

    2016-12-13

    Breast Carcinoma Metastatic in the Brain; Estrogen Receptor Negative; HER2/Neu Negative; HER2/Neu Positive; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  5. Preclinical Evaluation of 18F-Labeled Anti-HER2 Nanobody Conjugates for Imaging HER2 Receptor Expression by ImmunoPET

    PubMed Central

    Vaidyanathan, Ganesan; McDougald, Darryl; Choi, Jaeyeon; Koumarianou, Eftychia; Weitzel, Douglas; Osada, Takuya; Lyerly, H. Kim; Zalutsky, Michael R.

    2016-01-01

    The human growth factor receptor type 2 (HER2) is overexpressed in breast as well as other types of cancer. ImmunoPET, a noninvasive imaging procedure that could assess HER2 status in both primary and metastatic lesions simultaneously, could be a valuable tool for optimizing application of HER2-targeted therapies in individual patients. Herein, we have evaluated the tumor targeting potential of the 5F7 anti-HER2 Nanobody (single-domain antibody fragment; ~13 kDa) after 18F labeling by two methods. Methods The 5F7 Nanobody was labeled with 18F using the novel residualizing label N-succinimidyl 3-((4-(4-18F-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate (18F-SFBTMGMB; 18F-RL-I) and also via the most commonly utilized 18F protein labeling prosthetic agent, N-succinimidyl 3-18F-fluorobenzoate (18F-SFB). For comparison, 5F7 Nanobody was also labeled using the residualizing radioiodination agent N-succinimidyl 4-guanidinomethyl-3-125I-iodobenzoate (125I-SGMIB). Paired label (18F/125I) internalization assays and biodistribution studies were performed on HER2-expressing BT474M1 breast carcinoma cells and in mice with BT474M1 subcutaneous xenografts, respectively. Micro positron emission tomography/computed tomography (microPET/CT) imaging of 5F7 Nanobody labeled using 18F-RL-I also was performed. Results Internalization assays indicated that intracellularly retained radioactivity for 18F-RL-I-5F7 was similar to that for co-incubated 125I-SGMIB-5F7, while that for 18F-SFB-5F7 was lower than co-incubated 125I-SGMIB-5F7 and decreased with time. BT474M1 tumor uptake of 18F-RL-I-5F7 was 28.97 ± 3.88 %ID/g at 1 h and 36.28 ± 14.10 %ID/g at 2 h, reduced by >90% trastuzumab blocking, indicating HER2-specificity of uptake, and also 26–28% higher (P < 0.05) than that of 18F-SFB-5F7. At 2 h, the tumor-to-blood ratio for 18F-RL-I-5F7 (47.4 ± 13.1) was significantly higher (P < 0.05) than for 18F-SFB-5F7 (25.4 ± 10.3); however, kidney uptake was 28–36

  6. Preclinical Evaluation of 18F-Labeled Anti-HER2 Nanobody Conjugates for Imaging HER2 Receptor Expression by Immuno-PET.

    PubMed

    Vaidyanathan, Ganesan; McDougald, Darryl; Choi, Jaeyeon; Koumarianou, Eftychia; Weitzel, Douglas; Osada, Takuya; Lyerly, H Kim; Zalutsky, Michael R

    2016-06-01

    The human growth factor receptor type 2 (HER2) is overexpressed in breast as well as other types of cancer. Immuno-PET, a noninvasive imaging procedure that could assess HER2 status in both primary and metastatic lesions simultaneously, could be a valuable tool for optimizing application of HER2-targeted therapies in individual patients. Herein, we have evaluated the tumor-targeting potential of the 5F7 anti-HER2 Nanobody (single-domain antibody fragment; ∼13 kDa) after (18)F labeling by 2 methods. The 5F7 Nanobody was labeled with (18)F using the novel residualizing label N-succinimidyl 3-((4-(4-(18)F-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ((18)F-SFBTMGMB; (18)F-RL-I) and also via the most commonly used (18)F protein-labeling prosthetic agent N-succinimidyl 3-(18)F-fluorobenzoate ((18)F-SFB). For comparison, 5F7 Nanobody was also labeled using the residualizing radioiodination agent N-succinimidyl 4-guanidinomethyl-3-(125)I-iodobenzoate ((125)I-SGMIB). Paired-label ((18)F/(125)I) internalization assays and biodistribution studies were performed on HER2-expressing BT474M1 breast carcinoma cells and in mice with BT474M1 subcutaneous xenografts, respectively. Small-animal PET/CT imaging of 5F7 Nanobody labeled using (18)F-RL-I also was performed. Internalization assays indicated that intracellularly retained radioactivity for (18)F-RL-I-5F7 was similar to that for coincubated (125)I-SGMIB-5F7, whereas that for (18)F-SFB-5F7 was lower than coincubated (125)I-SGMIB-5F7 and decreased with time. BT474M1 tumor uptake of (18)F-RL-I-5F7 was 28.97 ± 3.88 percentage injected dose per gram of tissue (%ID/g) at 1 h and 36.28 ± 14.10 %ID/g at 2 h, reduced by more than 90% on blocking with trastuzumab, indicating HER2 specificity of uptake, and was also 26%-28% higher (P < 0.05) than that of (18)F-SFB-5F7. At 2 h, the tumor-to-blood ratio for (18)F-RL-I-5F7 (47.4 ± 13.1) was significantly higher (P < 0.05) than for (18)F-SFB-5F7 (25.4 ± 10

  7. A gene-protein assay for human epidermal growth factor receptor 2 (HER2): brightfield tricolor visualization of HER2 protein, the HER2 gene, and chromosome 17 centromere (CEN17) in formalin-fixed, paraffin-embedded breast cancer tissue sections

    PubMed Central

    2012-01-01

    Background The eligibility of breast cancer patients for human epidermal growth factor receptor 2 (HER2)-directed therapies is determined by the HER2 gene amplification and/or HER2 protein overexpression status of the breast tumor as determined by in situ hybridization (ISH) or immunohistochemistry (IHC), respectively. Our objective was to combine the US Food and Drug Administration (FDA)-approved HER2 & chromosome 17 centromere (CEN17) brightfield ISH (BISH) and HER2 IHC assays into a single automated HER2 gene-protein assay allowing simultaneous detection of all three targets in a single tissue section. Methods The HER2 gene-protein assay was optimized using formalin-fixed, paraffin-embedded (FFPE) samples of the xenograft tumors MCF7 [HER2 negative (non-amplified gene, protein negative)] and Calu-3 [HER2 positive (amplified gene, protein positive)]. HER2 IHC was performed using a rabbit monoclonal anti-HER2 antibody (clone 4B5) and a conventional 3,3'-diaminobenzidine IHC detection. The HER2 & CEN17 BISH signals were visualized using horseradish peroxidase-based silver and alkaline phosphatase-based red detection systems, respectively with a cocktail of 2,4-dinitrophenyl-labeled HER2 and digoxigenin-labeled CEN17 probes. The performance of the gene-protein assay on tissue microarray slides containing 189 randomly selected FFPE clinical breast cancer tissue cores was compared to that of the separate HER2 IHC and HER2 & CEN17 BISH assays. Results HER2 protein detection was optimal when the HER2 IHC protocol was used before (rather than after) the BISH protocol. The sequential use of HER2 IHC and HER2 & CEN17 BISH detection steps on FFPE xenograft tumor sections appropriately co-localized the HER2 protein, HER2 gene, and CEN17 signals after mitigating the silver background staining by using a naphthol phosphate-containing hybridization buffer for the hybridization step. The HER2 protein and HER2 gene status obtained using the multiplex HER2 gene-protein assay

  8. Radiation binary targeted therapy for HER-2 positive breast cancers: assumptions, theoretical assessment and future directions

    NASA Astrophysics Data System (ADS)

    Mundy, Daniel W.; Harb, Wael; Jevremovic, Tatjana

    2006-03-01

    A novel radiation targeted therapy is investigated for HER-2 positive breast cancers. The proposed concept combines two known approaches, but never used together for the treatment of advanced, relapsed or metastasized HER-2 positive breast cancers. The proposed radiation binary targeted concept is based on the anti HER-2 monoclonal antibodies (MABs) that would be used as vehicles to transport the nontoxic agent to cancer cells. The anti HER-2 MABs have been successful in targeting HER-2 positive breast cancers with high affinity. The proposed concept would utilize a neutral nontoxic boron-10 predicting that anti HER-2 MABs would assure its selective delivery to cancer cells. MABs against HER-2 have been a widely researched strategy in the clinical setting. The most promising antibody is Trastuzumab (Herceptin®). Targeting HER-2 with the MAB Trastuzumab has been proven to be a successful strategy in inducing tumour regression and improving patient survival. Unfortunately, these tumours become resistant and afflicted women succumb to breast cancer. In the proposed concept, when the tumour region is loaded with boron-10 it is irradiated with neutrons (treatment used for head and neck cancers, melanoma and glioblastoma for over 40 years in Japan and Europe). The irradiation process takes less than an hour producing minimal side effects. This paper summarizes our recent theoretical assessments of radiation binary targeted therapy for HER-2 positive breast cancers on: the effective drug delivery mechanism, the numerical model to evaluate the targeted radiation delivery and the survey study to find the neutron facility in the world that might be capable of producing the radiation effect as needed. A novel method of drug delivery utilizing Trastuzumab is described, followed by the description of a computational Monte Carlo based breast model used to determine radiation dose distributions. The total flux and neutron energy spectra of five currently available neutron

  9. The Cooperation between hMena Overexpression and HER2 Signalling in Breast Cancer

    PubMed Central

    Di Modugno, Francesca; Mottolese, Marcella; DeMonte, Lucia; Trono, Paola; Balsamo, Michele; Conidi, Andrea; Melucci, Elisa; Terrenato, Irene; Belleudi, Francesca; Torrisi, Maria Rosaria; Alessio, Massimo; Santoni, Angela; Nisticò, Paola

    2010-01-01

    hMena and the epithelial specific isoform hMena11a are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena11a expression and phosphorylates hMena11a, suggesting cross-talk between the ErbB receptor family and hMena/hMena11a in breast cancer. The aim of this study was to determine whether the hMena/hMena11a overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena11a expression and hMena11a phosphorylation. On the other hand, hMena/hMena11a knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena11a knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena11a as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients. PMID:21209853

  10. Allelic imbalance at the HER2/TOP2A locus in breast cancer.

    PubMed

    Huijsmans, Cornelis J J; van den Brule, Adriaan J C; Rigter, Henny; Poodt, Jeroen; van der Linden, Johannes C; Savelkoul, Paul H M; Hilbink, Mirrian; Hermans, Mirjam H A

    2015-05-29

    Breast cancer is a heterogeneous disease with various histological features and molecular markers. These are utilized for the prediction of clinical outcome and therapeutic decision making. In addition to well established markers such as HER2 overexpression and estrogen and progesterone receptor (ER and PR) status, chromosomal instability is evolving as an important hallmark of cancers. The HER2/TOP2A locus is of great importance in breast cancer. The copy number variability at this locus has been proposed to be a marker for the degree of chromosomal instability. We therefore developed a Single Nucleotide Polymorphism (SNP) assay to evaluate allelic imbalance at the HER2/TOP2A locus in three different entities of primary breast tumors. Eleven SNPs were carefully selected and detected by real time PCR using DNA extracted from paired (histologically normal and tumor) paraffin-embedded tissues. Primary breast tumors of 44 patients were included, 15 tumors with HER2 overexpression, 16 triple negative tumors, defined by the absence of HER2 overexpression and a negative ER and PR status and 13 ER and PR positive tumors without HER2 overexpression. As controls, histologically normal breast tissues from 10 patients with no breast tumor were included. Allelic imbalance was observed in 13/15 (87 %) HER2 positive tumors, the remaining 2 being inconclusive. Of the 16 triple negative tumors, 12 (75 %) displayed instability, 3 (19 %) displayed no instability, and 1 was inconclusive. Of the 13 hormone receptor positive tumors, 5 (38 %) displayed allelic imbalance, while 8 did not. We conclude that the SNP assay is suitable for rapid testing of allelic (im)balance at the HER2/TOP2A locus using paraffin-embedded tissues. Based on allelic imbalance at this locus, both triple negative and ER and PR positive breast tumors can be subcategorized. The clinical relevance of the allelic (im)balance status at the HER2/TOP2A locus in breast cancer is subject of future study. The virtual

  11. FISH testing of HER2 immunohistochemistry 1+ invasive breast cancer with unfavorable characteristics

    PubMed Central

    Petroni, Stella; Caldarola, Lucia; Scamarcio, Rachele; Giotta, Francesco; Latorre, Agnese; Mangia, Anita; Simone, Giovanni

    2016-01-01

    Diagnostic assays for human epidermal growth factor receptor 2 (HER2) expression have a high predictive value because patients with HER2-positive tumors could benefit from HER2-targeted therapy. The aim of the present study is to analyze the incidence of HER2 gene amplification in selected tumors with adverse features that scored 1+ by immunohistochemistry (IHC). For that purpose, 331 consecutive invasive breast cancers (IBCs) were tested by IHC for HER2 expression between January and December 2013, 102 of which (31%) scored 1+. Of these 102 women with IBC who underwent surgery, 75 entered the study (73.5%). A total of 48 out of 75 (64%) IBC samples (patients' median age, 60.75 years) were selected according to ≥1 unfavorable tumor characteristics, and tested by fluorescence in situ hybridization (FISH). Of these 48 IBC samples scoring 1+ by IHC, 22 (46%) exhibited high histological grade (G3), 23 (48%) had a high proliferative index (Ki-67, >30%), 27 (56%) showed vascular invasion and 32 out of 41 evaluable cases (78%) were node-positive. Regarding hormone receptor expression, 3 (6%) and 10 (21%) cases were negative for estrogen and progesterone receptors expression, respectively. FISH was performed on 48 IBC cases scoring 1+ by IHC, and 7 infiltrating ductal carcinomas (IDCs) (14.6%) demonstrated HER2 amplification with a high proliferative index. In 42 IDC samples, statistical analysis evidenced a significant association between histological grade and high proliferative index (P=0.0200). In addition, in 48 HER2 scoring 1+ IBCs, Fisher's exact test evidenced a significant association between the presence of gene amplification and high proliferative index (P=0.0033). Based on these biopathological parameters, particularly a high proliferative index, the present results indicate that it is possible to of identify tumors scoring 1+ by IHC with HER2 amplification by FISH, thus aiding the selection of patients who are suitable for HER2-targeted therapy according to

  12. Genetic Heterogeneity of HER2 Amplification and Telomere Shortening in Papillary Thyroid Carcinoma

    PubMed Central

    Caria, Paola; Cantara, Silvia; Frau, Daniela Virginia; Pacini, Furio; Vanni, Roberta; Dettori, Tinuccia

    2016-01-01

    Extensive research is dedicated to understanding if sporadic and familial papillary thyroid carcinoma are distinct biological entities. We have previously demonstrated that familial papillary thyroid cancer (fPTC) cells exhibit short relative telomere length (RTL) in both blood and tissues and that these features may be associated with chromosome instability. Here, we investigated the frequency of HER2 (Human Epidermal Growth Factor Receptor 2) amplification, and other recently reported genetic alterations in sporadic PTC (sPTC) and fPTC, and assessed correlations with RTL and BRAF mutational status. We analyzed HER2 gene amplification and the integrity of ALK, ETV6, RET, and BRAF genes by fluorescence in situ hybridization in isolated nuclei and paraffin-embedded formalin-fixed sections of 13 fPTC and 18 sPTC patients. We analyzed BRAFV600E mutation and RTL by qRT-PCR. Significant HER2 amplification (p = 0.0076), which was restricted to scattered groups of cells, was found in fPTC samples. HER2 amplification in fPTCs was invariably associated with BRAFV600E mutation. RTL was shorter in fPTCs than sPTCs (p < 0.001). No rearrangements of other tested genes were observed. These findings suggest that the association of HER2 amplification with BRAFV600E mutation and telomere shortening may represent a marker of tumor aggressiveness, and, in refractory thyroid cancer, may warrant exploration as a site for targeted therapy. PMID:27775641

  13. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models.

    PubMed

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-12

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  14. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    NASA Astrophysics Data System (ADS)

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  15. Detection of HER2 breast cancer biomarker using the optofluidic ring resonator biosensor

    NASA Astrophysics Data System (ADS)

    Gohring, John T.; Dale, Paul S.; Fan, Xudong

    2010-04-01

    In this work, we describe a novel approach for detecting the HER2/neu extra-cellular domain (ECD) protein in human serum samples using the opto-fluidic ring resonator (OFRR). OFRR sensing technology that incorporates microfluidics and optical sensing methods to achieve rapid label free detection in a small and low cost platform. In this study, HER2 proteins were spiked in PBS running buffer and serum at varying concentrations. Concentrations of the HER2 protein were adjusted in serum to levels typical of breast cancer patients that show over-expression of this particular beast cancer biomarker. The OFRR was modified with a biologically functional layer to efficiently capture the HER2 biomarker and produce a sensing signal through interaction with the evanescent field of the optical resonator. Results show effective capture of HER2 at medically relevant concentrations in serum and was achieved for concentrations as low as 13 ng/mL and ranged to above 100 ng/mL. This work will lead to a device that can be used as a tool for monitoring disease progression in a low cost sensing setup.

  16. Why man's best friend, the dog, could also benefit from an anti-HER-2 vaccine

    PubMed Central

    Fazekas, Judit; Fürdös, Irene; Singer, Josef; Jensen-Jarolim, Erika

    2016-01-01

    Human epidermal growth factor receptor-2 (HER-2) is a well-established target for anticancer anticancerprecision medicine in humans. A HER-2 homologue with 92% amino acid identity has been described in canine mammary tumors, which whichis termed here as ‘dog epidermal growth factor receptor-2 (DER-2)’, with similar biological implications as those in human breast cancer. Both antigens can principally be immunologically targeted by anti-HER-2 antibodies, such as trastuzumab; however, the in vivo application applicationof humanized antibodies to other species would lead to specific hypersensitivity reactions. Therefore, HER-2 mimotope vaccines that actively induce autologous trastuzumab-like immunoglobulins represent a novel and economic treatment option to overcome species-specific limitations. Thus, the present review proposes the implementation of clinical trials with HER-2 vaccines in canine cancer model modelpatients with spontaneous DER-2 positive mammary gland carcinomas in order to assess their safety and efficacy. This approach would not only pave the way into the veterinary oncology market, but would also similarly generate robust data for human trials and facilitate the testing of novel combinatorial treatments. PMID:27698788

  17. Trastuzumab-based chemotherapy modulates systemic redox homeostasis in women with HER2-positive breast cancer.

    PubMed

    Lemos, L G T; Victorino, V J; Herrera, A C S A; Aranome, A M F; Cecchini, A L; Simão, A N C; Panis, C; Cecchini, R

    2015-07-01

    Trastuzumab is an immunotargeting therapeutic against breast tumors with amplification of the human epithelial growth factor receptor 2 (HER2). HER2 patients naturally exhibit disruption in the pro-oxidant inflammatory profiling; however, the impact of trastuzumab-based chemotherapy in modulating this process is still unknown. Here we determined the systemic pro-inflammatory profile of women diagnosed with HER2-amplified tumors, undergoing trastuzumab-based chemotherapy (TZ), and compared the results with that of healthy controls (CTR) and untreated patients with HER2-amplified breast cancer (CA). The plasmatic inflammatory profile was assessed by evaluating pro-oxidant parameters such as lipid peroxidation, total antioxidant capacity (TRAP), levels of advanced oxidation protein products (AOPPs), nitric oxide (NO), C-reactive protein (CRP), and total thiol content. Markers of cardiac damage were also assessed. Our findings showed increased NO levels in TZ than that in either CA or CTR groups. Furthermore, TZ augmented TRAP and reduced total thiol than that of the CA group. Our data also revealed that AOPP levels were significantly higher in the TZ than the CA group. AOPP and the MB fraction of creatine-kinase (CKMB) levels were positively correlated in TZ patients. These findings suggest that trastuzumab-associated chemotherapy can modulate the pro-inflammatory markers of HER2-positive breast cancer patients to the levels found in healthy controls. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    PubMed Central

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-01-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity. PMID:27068794

  19. Novel approaches to target HER2-positive breast cancer: trastuzumab emtansine

    PubMed Central

    Recondo, Gonzalo; de la Vega, Maximo; Galanternik, Fernando; Díaz-Cantón, Enrique; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    The human epidermal growth factor receptor 2 (HER2) is overexpressed in 20% of breast carcinomas. Prior to the development of targeted therapies, HER2-positive breast cancer was associated with more aggressive disease and poor prognosis. Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that results from the combination of trastuzumab and DM1, a derivative of the antimicrotubule agent maytansine. This molecule has the ability to enhance cytotoxic drug delivery to specifically targeted cells that overexpress HER2, therefore, maximizing efficacy while sparing toxicity. In recent years, T-DM1 has shown to improve outcomes in metastatic HER2-positive breast cancer that is resistant to trastuzumab. In addition, T-DM1 is currently being tested in the neoadjuvant and adjuvant settings to identify patients who may benefit from this therapy. This review focuses on the mechanism of action, early and late-phase clinical trials, and ongoing studies of T-DM1 in HER2-positive breast cancer. PMID:27274311

  20. Synthesis and chemoselective intramolecular crosslinking of a HER2-binding affibody.

    PubMed

    Ekblad, Torun; Tolmachev, Vladimir; Orlova, Anna; Lendel, Christofer; Abrahmsén, Lars; Karlström, Amelie Eriksson

    2009-01-01

    The human epidermal growth factor receptor HER2 has emerged as an important target for molecular imaging of breast cancer. This article presents the design and synthesis of a HER2-targeting affibody molecule with improved stability and tumor targeting capacity, and with potential use as an imaging agent. The 58 aa three-helix bundle protein was assembled using solid-phase peptide synthesis, and a chemoselective ligation strategy was used to establish an intramolecular thioether bond between the side chain thiol group of a cysteine residue, positioned in the loop between helices I and II, and a chloroacetyl group on the side chain amino group of the C-terminal lysine residue. The tethered protein offered an increased thermal stability, with a melting temperature of 64 degrees C, compared to 54 degrees C for the linear control. The ligation did not have a major influence on the HER2 binding affinity, which was 320 and 380 pM for the crosslinked and linear molecules, respectively. Biodistribution studies were performed both in normal and tumor-bearing mice to evaluate the impact of the crosslinking on the in vivo behavior and on the tumor targeting performance. The distribution pattern was characterized by a low uptake in all organs except kidney, and rapid clearance from blood and normal tissue. Crosslinking of the protein resulted in a significantly increased tumor accumulation, rendering the tethered HER2-binding affibody molecule a valuable lead in the development of superior HER2 imaging agents.

  1. The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy

    PubMed Central

    Mitri, Zahi; Constantine, Tina; O'Regan, Ruth

    2012-01-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in around 20–30% of breast cancer tumors. It is associated with a more aggressive disease, higher recurrence rate, and increased mortality. Trastuzumab is a HER2 receptor blocker that has become the standard of care for the treatment of HER2 positive breast cancer. The effectiveness of Trastuzumab has been well validated in research as well as in clinical practice. The addition of Trastuzumab to standard of care chemotherapy in clinical trials has been shown to improve outcomes for early stage as well as metastatic HER2 positive breast cancer. The most clinically significant side effect of Trastuzumab is the risk of cardiac myocyte injury, leading to the development of congestive heart failure. The emergence of patterns of resistance to Trastuzumab has led to the discovery of new monoclonal antibodies and other targeted agents aimed at overcoming Trastuzumab resistance and improving survival in patients diagnosed with HER2 positive breast cancers. PMID:23320171

  2. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  3. [HER2/neu expression in Venezuelan patients with locally advanced breast cancer].

    PubMed

    Morales, Luisa; Reigosa, Aldo; Caleiras, Eduardo; Mora, Richard; Marrero, Nuria; Payares, Eliécer; Molina, Karla; Sucre, Luis

    2008-03-01

    To know the prognosis of a patient with cancer allows choosing the most appropriate therapeutic. The expression of the oncogen HER2/neu has been related to an unfavourable prognosis in patients with infiltrating breast carcinoma, for this reason, the purpose of this work was to analyze its predictive and prognostic value in patients with locally advanced breast cancer, treated in the Oncological Institute "Dr Miguel Perez Carreño". Information about personal data of 58 patients was compiled, as well as the received treatment, clinical response data of the biopsy report, histological grade, nuclear grade, node status and evolution of the patient. The determination of the HER2/neu expression was made by inmunohistochemistry, using the avidina-estreptavidin-peroxidasa technique. For the interpretation of the HER2/neu, an agreed score from 0 to 3+ was assigned, using the guidelines of interpretation of the Hercep-Test (DAKO). 37.9% of the cases displayed expression of the HER2/neu in the membrane of the tumour cells. The node state and the hormonal receptors state turned out to be significant to predict the disease-free interval. Patients with strong oncoprotein expression seem to have a quimioresistant tendency to the FAC (5-fluorouracil, doxorubicin and cyclophosphamide) regime. The expression of the HER2/neu receptor is related to a reduction of the disease-free interval and global survival in patients with infiltrating ductal breast carcinoma locally advanced, confirming, in this work, to be a good prognostic factor.

  4. Current HER2 Testing Recommendations and Clinical Relevance as a Predictor of Response to Targeted Therapy.

    PubMed

    Ballinger, Tarah J; Sanders, Melinda E; Abramson, Vandana G

    2015-06-01

    Clinical decision-making in the treatment of breast cancer depends on an accurate determination and understanding of human epidermal growth factor receptor 2 (HER2) status. The guidelines for HER2 testing were recently updated in late 2013, but limitations continue to exist in the interpretation and clinical application of results when the tumor specimens do not fall neatly into positive or negative categories with immunohistochemistry and fluorescence in situ hybridization testing. The issues, including discordance between pathologists or laboratories, polysomy, and genetic heterogeneity, present challenging situations that are difficult to translate into clinical significance. The present review discussed the changes in the updated American Society of Clinical Oncology/College of American Pathologists guidelines, the clinical relevance of complex issues in HER2 testing, and the implications of the results on the response to HER2-targeted therapies. Great advances have been made in the treatment of HER2-positive breast cancer; however, the challenge remains to determine the best testing analysis that will identify patients who will benefit the most from these therapies.

  5. A potential pitfall in evaluating HER2 immunohistochemistry for gastric signet ring cell carcinomas.

    PubMed

    Woo, Chang Gok; Ho, Won Jin; Park, Young Soo; Park, Sook Ryun; Ryu, Min-Hee; Jung, Hwoon-Yong; Kang, Yoon-Koo

    2017-01-01

    Signet ring cell carcinoma (SRC) more commonly presents as metastatic disease and renders patients to be considered for chemotherapy. While treatment options are limited overall, trastuzumab has been shown to be effective for HER2 positive SRC cases. The current algorithm for HER2 evaluation heavily relies on positive membrane-specific staining by immunohistochemistry (IHC), but several anecdotal reports have suggested that SRCs may be susceptible to misinterpretation due to non-specific staining in the marginated cytoplasm with/without nucleus. Results of two FDA-approved IHC methods of HER2 evaluation, Pathway and HercepTest, along with silver in situ hybridisation were interpreted retrospectively and compared in 155 primary SRC cases. IHC results were discrepant between the two assays in SRC even at the strongest IHC scores. Discordance indeed occurred due to dark, non-specific staining obscured by the unique SRC morphology. True HER2 positive SRC was identified in three cases (3/155, 1.9%). In this study, we demonstrate the importance of recognising potential discrepancy in interpreting HER2 status depending on the assay used. Understanding this possible pitfall may prevent unnecessary trastuzumab in SRC patients. Copyright © 2016 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  6. HER-2 UPSTREAM OPEN READING FRAME EFFECTS ON THE USE OF DOWNSTREAM INITIATION CODONS

    PubMed Central

    Spevak, Christina C.; Park, Eun-Hee; Geballe, Adam P.; Pelletier, Jerry; Sachs, Matthew S.

    2006-01-01

    The her-2 (neu, erbB-2) oncogene encodes a 185-kDa transmembrane receptor tyrosine kinase. HER2 overexpression occurs in numerous primary human tumors and contributes to 25–30% of breast and ovarian carcinomas. Synthesis of HER2 is controlled in part by an upstream open reading frame (uORF) present in the transcript. We used synthetic capped and polyadenylated mRNAs containing sequences derived from the 5′ region of the her-2 transcript fused to firefly luciferase (LUC) reporter to examine this ORF’s effect on translation in cell-free systems derived from reticulocytes, wheat germ and Neurospora crassa, and in RNA-transfected HeLa cells. The uORF reduced translation of the downstream cistron in all systems. [35S]Met-labeling of in vitro translation products obtained indicated that the uORF also affected downstream start-site selection. Primer extension inhibition (toeprint) assays of ribosomes loaded at initiation codons in reticulocyte lysates indicated that the uORF affected the interaction of ribosomes with the primary her-2 AUG codon. PMID:17045969

  7. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rasaneh, Samira; Rajabi, Hossein; Babaei, Mohammad Hossein; Akhlaghpoor, Shahram

    2011-06-01

    In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 ± 2.5 and 41 ± 15 nm (size range: 15-87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1-3.5. TMNs were non-toxic to the cells below the 30 μg (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.

  8. Stability of the HER2 gene after primary chemotherapy in advanced breast cancer.

    PubMed

    Varga, Zsuzsanna; Caduff, Rosmarie; Pestalozzi, Bernhard

    2005-02-01

    We investigated whether alterations of the Her2 gene could be detected in breast cancer samples following primary chemotherapy in advanced breast cancer. The prospective study involved 23 patients with stage-II, -III or -IV breast cancer. All patients were treated with two to six cycles of fluorouracil-epirubicin and/or cyclophosphamid/epi-docetaxel. The Her2 protein and gene were assessed both on core needle biopsies prior to and on surgical specimens after completing chemotherapy using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) methods. Estrogen and progesterone receptors (ER/PR) were also determined on both samples using IHC. Her2 status was modified in eight patients using IHC (35%) and in three patients using FISH (13%). Changes in ER/PR expression were detected in seven patients (30%). Our data suggest that alterations of the Her2 gene can occur, although not usually after primary or neoadjuvant chemotherapy. However, changes in ER/PR status seem to be a more common event; thus, both can lead to different therapeutic options. Intratumoral heterogeneity as well as sampling variations can contribute to modification of the Her2 status after primary chemotherapy.

  9. Why man's best friend, the dog, could also benefit from an anti-HER-2 vaccine.

    PubMed

    Fazekas, Judit; Fürdös, Irene; Singer, Josef; Jensen-Jarolim, Erika

    2016-10-01

    Human epidermal growth factor receptor-2 (HER-2) is a well-established target for anticancer anticancerprecision medicine in humans. A HER-2 homologue with 92% amino acid identity has been described in canine mammary tumors, which whichis termed here as 'dog epidermal growth factor receptor-2 (DER-2)', with similar biological implications as those in human breast cancer. Both antigens can principally be immunologically targeted by anti-HER-2 antibodies, such as trastuzumab; however, the in vivo application applicationof humanized antibodies to other species would lead to specific hypersensitivity reactions. Therefore, HER-2 mimotope vaccines that actively induce autologous trastuzumab-like immunoglobulins represent a novel and economic treatment option to overcome species-specific limitations. Thus, the present review proposes the implementation of clinical trials with HER-2 vaccines in canine cancer model modelpatients with spontaneous DER-2 positive mammary gland carcinomas in order to assess their safety and efficacy. This approach would not only pave the way into the veterinary oncology market, but would also similarly generate robust data for human trials and facilitate the testing of novel combinatorial treatments.

  10. Generation, characterization, and maintenance of trastuzumab-resistant HER2+ breast cancer cell lines.

    PubMed

    Zazo, Sandra; González-Alonso, Paula; Martín-Aparicio, Ester; Chamizo, Cristina; Cristóbal, Ion; Arpí, Oriol; Rovira, Ana; Albanell, Joan; Eroles, Pilar; Lluch, Ana; Madoz-Gúrpide, Juan; Rojo, Federico

    2016-01-01

    Trastuzumab became the therapy of choice for patients with HER2-positive breast cancer in 1998, and it has provided clinical benefit ever since. However, a significant percentage of patients show primary resistance to trastuzumab at diagnosis, and most patients with metastatic disease that initially respond to trastuzumab eventually progress (acquired resistance). Consequently, there is an urgent need to improve our knowledge of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. We generated new cell lines derived from BCCL through extended exposure to trastuzumab. Drug-conditioned populations were authenticated for their molecular profile and their resistance rate was determined. Heterogeneous HER2 amplification was observed across most of the BCCLs, ranging from cells without HER2 amplification to elevated HER2 gene copy numbers in others. Using a phospho-antibody array we analyzed the status of kinase receptors and effectors from different cellular pathways. This revealed that HER2, AKT, and S6RP presented high phosphorylation levels with specific variations between sensitive and resistant populations. In addition, differences in phosphorylation levels for several of those pathways targets were found between sensitive and resistant lines. Furthermore, a biochemical study characterized patterns of molecular alterations similar to those commonly described in breast cancer. Finally, a subcutaneous xenograft murine model confirmed the resistance to trastuzumab of the established cell line. We conclude that these resistant BCCLs can be a valuable tool to gain insight into the mechanisms of acquisition of trastuzumab resistance.

  11. Generation, characterization, and maintenance of trastuzumab-resistant HER2+ breast cancer cell lines

    PubMed Central

    Zazo, Sandra; González-Alonso, Paula; Martín-Aparicio, Ester; Chamizo, Cristina; Cristóbal, Ion; Arpí, Oriol; Rovira, Ana; Albanell, Joan; Eroles, Pilar; Lluch, Ana; Madoz-Gúrpide, Juan; Rojo, Federico

    2016-01-01

    Trastuzumab became the therapy of choice for patients with HER2-positive breast cancer in 1998, and it has provided clinical benefit ever since. However, a significant percentage of patients show primary resistance to trastuzumab at diagnosis, and most patients with metastatic disease that initially respond to trastuzumab eventually progress (acquired resistance). Consequently, there is an urgent need to improve our knowledge of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. We generated new cell lines derived from BCCL through extended exposure to trastuzumab. Drug-conditioned populations were authenticated for their molecular profile and their resistance rate was determined. Heterogeneous HER2 amplification was observed across most of the BCCLs, ranging from cells without HER2 amplification to elevated HER2 gene copy numbers in others. Using a phospho-antibody array we analyzed the status of kinase receptors and effectors from different cellular pathways. This revealed that HER2, AKT, and S6RP presented high phosphorylation levels with specific variations between sensitive and resistant populations. In addition, differences in phosphorylation levels for several of those pathways targets were found between sensitive and resistant lines. Furthermore, a biochemical study characterized patterns of molecular alterations similar to those commonly described in breast cancer. Finally, a subcutaneous xenograft murine model confirmed the resistance to trastuzumab of the established cell line. We conclude that these resistant BCCLs can be a valuable tool to gain insight into the mechanisms of acquisition of trastuzumab resistance. PMID:27904779

  12. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer

    PubMed Central

    Hergueta-Redondo, Marta; Sarrio, David; Molina-Crespo, Ángela; Vicario, Rocío; Bernadó-Morales, Cristina; Martínez, Lidia; Rojo-Sebastián, Alejandro; Serra-Musach, Jordi; Mota, Alba; Martínez-Ramírez, Ángel; Castilla, Maria Ángeles; González-Martin, Antonio; Pernas, Sonia; Cano, Amparo; Cortes, Javier; Nuciforo, Paolo G.; Peg, Vicente; Palacios, José; Pujana, Miguel Ángel; Arribas, Joaquín; Moreno-Bueno, Gema

    2016-01-01

    Around, 30–40% of HER2-positive breast cancers do not show substantial clinical benefit from the targeted therapy and, thus, the mechanisms underlying resistance remain partially unknown. Interestingly, ERBB2 is frequently co-amplified and co-expressed with neighbour genes that may play a relevant role in this cancer subtype. Here, using an in silico analysis of data from 2,096 breast tumours, we reveal a significant correlation between Gasdermin B (GSDMB) gene (located 175 kilo bases distal from ERBB2) expression and the pathological and clinical parameters of poor prognosis in HER2-positive breast cancer. Next, the analysis of three independent cohorts (totalizing 286 tumours) showed that approximately 65% of the HER2-positive cases have GSDMB gene amplification and protein over-expression. Moreover, GSDMB expression was also linked to poor therapeutic responses in terms of lower relapse free survival and pathologic complete response as well as positive lymph node status and the development of distant metastasis under neoadjuvant and adjuvant treatment settings, respectively. Importantly, GSDMB expression promotes survival to trastuzumab in different HER2-positive breast carcinoma cells, and is associated with trastuzumab resistance phenotype in vivo in Patient Derived Xenografts. In summary, our data identifies the ERBB2 co-amplified and co-expressed gene GSDMB as a critical determinant of poor prognosis and therapeutic response in HER2-positive breast cancer. PMID:27462779

  13. Development of NIST standard reference material 2373: Genomic DNA standards for HER2 measurements.

    PubMed

    He, Hua-Jun; Almeida, Jamie L; Lund, Steve P; Steffen, Carolyn R; Choquette, Steve; Cole, Kenneth D

    2016-06-01

    NIST standard reference material (SRM) 2373 was developed to improve the measurements of the HER2 gene amplification in DNA samples. SRM 2373 consists of genomic DNA extracted from five breast cancer cell lines with different amounts of amplification of the HER2 gene. The five components are derived from the human cell lines SK-BR-3, MDA-MB-231, MDA-MB-361, MDA-MB-453, and BT-474. The certified values are the ratios of the HER2 gene copy numbers to the copy numbers of selected reference genes DCK, EIF5B, RPS27A, and PMM1. The ratios were measured using quantitative polymerase chain reaction and digital PCR, methods that gave similar ratios. The five components of SRM 2373 have certified HER2 amplification ratios that range from 1.3 to 17.7. The stability and homogeneity of the reference materials were shown by repeated measurements over a period of several years. SRM 2373 is a well characterized genomic DNA reference material that can be used to improve the confidence of the measurements of HER2 gene copy number.

  14. Mutations in the Kinase Domain of the HER2<