Sample records for herbicide 4-chloro-2-methylphenoxyacetic acid

  1. 40 CFR 180.339 - MCPA; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; tolerances for residues. (a) General. (1) Tolerances are established for residues of the herbicide MCPA ((4... for residues of the herbicide MCPA ((4-chloro-2-methylphenoxy)acetic acid) resulting from the direct...

  2. 40 CFR 180.339 - MCPA; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; tolerances for residues. (a) General. (1) Tolerances are established for residues of the herbicide MCPA ((4... for residues of the herbicide MCPA ((4-chloro-2-methylphenoxy)acetic acid) resulting from the direct...

  3. 40 CFR 180.339 - MCPA; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; tolerances for residues. (a) General. (1) Tolerances are established for residues of the herbicide MCPA ((4... for residues of the herbicide MCPA ((4-chloro-2-methylphenoxy)acetic acid) resulting from the direct...

  4. Solid-phase extraction of acidic herbicides.

    PubMed

    Wells, M J; Yu, L Z

    2000-07-14

    A discussion of solid-phase extraction method development for acidic herbicides is presented that reviews sample matrix modification, extraction sorbent selection, derivatization procedures for gas chromatographic analysis, and clean-up procedures for high-performance liquid chromatographic analysis. Acidic herbicides are families of compounds that include derivatives of phenol (dinoseb, dinoterb and pentachlorophenol), benzoic acid (acifluorfen, chloramben, dicamba, 3,5-dichlorobenzoic acid and dacthal--a dibenzoic acid derivative), acetic acid [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], propanoic acid [dichlorprop, fluazifop, haloxyfop, 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and silvex], butanoic acid [4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB)], and other miscellaneous acids such as pyridinecarboxylic acid (picloram) and thiadiazine dioxide (bentazon).

  5. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): systems Mg-Al, Mg-Fe and Mg-Al-Fe.

    PubMed

    Bruna, F; Celis, R; Pavlovic, I; Barriga, C; Cornejo, J; Ulibarri, M A

    2009-09-15

    Hydrotalcite-like compounds [Mg(3)Al(OH)(8)]Cl x 4H(2)O; [Mg(3)Fe(OH)(8)]Cl x 4H(2)O; [Mg(3)Al(0.5)Fe(0.5)(OH)(8)]Cl x 4H(2)O (LDHs) and calcined product of [Mg(3)Al(OH)(8)]Cl x 4H(2)O, Mg(3)AlO(4.5) (HT500), were studied as potential adsorbents of the herbicide MCPA [(4-chloro-2-methylphenoxy)acetic acid] as a function of pH, contact time and pesticide concentration, and also as support for the slow release of this pesticide, with the aim to reduce the hazardous effects that it can pose to the environment. The information obtained in the adsorption study was used for the preparation of LDH-MCPA complexes. The results showed high and rapid adsorption of MCPA on the adsorbents as well as that MCPA formulations based on LDHs and HT500 as pesticide supports displayed controlled release properties and reduced herbicide leaching in soil columns compared to a standard commercial MCPA formulation. Thereby, we conclude that the LDHs employed in this study can be used not only as adsorbents to remove MCPA from aqueous solutions, but also as supports for the slow release of this highly mobile herbicide, thus controlling its immediate availability and leaching.

  6. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology.

    PubMed

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-10-30

    A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L(-1) MCPA solutions in 0.05 M Na(2)SO(4) at a liquid flow rate of 180 L h(-1) with an average UV irradiation intensity of about 32 Wm(-2). The optimum variables found for the SPEF process were 5.0 A, 1.0mM Fe(2+) and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 k Wh kg(-1) TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Multiresidue determination of chlorophenoxy acid herbicides in human urine samples by use of solid-phase extraction and capillary LC-UV detection.

    PubMed

    Rosales-Conrado, N; León-González, M E; Pérez-Arribas, L V; Polo-Díez, L M

    2008-01-01

    Chlorophenoxy acid herbicides are intensively applied to get rid of unwanted plants because of their low cost and selectivity. Due to their toxicity, which depends on their chemical form, the European Community has established legal directives to restrict their use and to control their maximum residue levels in several matrices. Determination of chlorophenoxy acids-2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(2,4-dichlorophenoxy)propanoic acid (2,4-DP), 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB) and 2-(2,4,5-trichlorophenoxy)propanoic acid (2,4,5-TP) in spiked human urine samples has been carried out by capillary LC, after solid-phase extraction on a column packed with silica C18 restricted-access material. Chromatographic analysis was performed in gradient-elution mode at 25 degrees C, with injection of 20 microL low-organic-solvent composition herbicide solutions for focusing purposes on the head of the capillary column, and diode array detection at 232 nm. Urine samples collected during 24 h from healthy and unexposed volunteers were spiked in the concentration range 25-150 microg L(-1); recoveries obtained were between 66 and 100% (n = 6 for each spiked level) and RSDs (relative standard deviations) were between 1 and 5%. Detection limits in the urine samples from volunteers were between 3.5 and 6.0 microg L(-1). The developed methodology has allowed the clean-up and preconcentration of low volumes of untreated human urine without previous treatment, showing the effectiveness of the employed SPE sorbent for extracting the target analytes and ultimately resulting in the reduction of the sample-preparation time.

  8. Reverse micelle-mediated dispersive liquid-liquid microextraction of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid.

    PubMed

    Tayyebi, Moslem; Yamini, Yadollah; Moradi, Morteza

    2012-09-01

    A supramolecular solvent consisting of reverse micelles of decanoic acid, dispersed in a continuous phase of tetrahydrofuran:water, was proposed as an efficient microextraction technique for extraction of selected chlorophenoxy acid herbicides from water samples prior to high-performance liquid chromatography UV determination. The disperser solvent (1.0 mL tetrahydrofuran) containing 20 mg decanoic acid was rapidly injected into 10.0 mL of water sample. After centrifugation, the reverse micelle-rich phase (25 ± 0.5 μL) was floated at top of the home-designed centrifuge tube. The solvent was collected and 20 μL of it was injected into high-performance liquid chromatography for analysis. The results showed that the in situ solvent formation and extraction process can be completed in a few seconds. Under the optimal conditions, limits of detection of the method for 4-chloro-2-methylphenoxyacetic acid and 2,4-dichlorophenoxyacetic acid were in the range of 0.5-0.8 μg L(-1) and the repeatability of the proposed method, expressed as relative standard deviation, varied in the range of 2.5-3.2%. Linearity was found to be in the range of 1-200 μg L(-1) and the preconcentration factors were between 148 and 157. The mean percentage recoveries exceeded 92.0% for all the spiking levels in real water samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metabolism of 4-Chloro-2-Methylphenoxyacetic Acid by Soil Bacteria

    PubMed Central

    Bollag, J.-M.; Helling, C. S.; Alexander, M.

    1967-01-01

    A microorganism capable of degrading 4-chloro-2-methylphenoxyacetic acid (MCPA) was isolated from soil and identified as Flavobacterium peregrinum. All of the chlorine of MCPA was released as chloride, and the carboxyl-carbon was converted to volatile products by growing cultures of the bacterium, but a phenol accumulated in the medium. The phenol was identified as 4-chloro-2-methylphenol on the basis of its gas chromatographic and infrared characteristics. Extracts of cells of F. peregrinum and of a phenoxyacetate-metabolizing Arthrobacter sp. dehalogenated MCPA and several catechols but not 4-chloro-2-methylanisole. The Arthrobacter sp. cell extract was fractionated, and an enzyme preparation was obtained which catalyzed the conversion of MCPA to 4-chloro-2-methylphenol. The latter compound was not metabolized unless reduced nicotinamide adenine dinucleotide phosphate was added to the fractionated extract. The phenol in turn was apparently oxidized to a catechol by components of the enzyme preparation. PMID:16349751

  10. [Determination of three phenoxyalkanoic acid herbicides in blood using gas chromatography coupled with solid-phase extraction and derivatization].

    PubMed

    Xin, Guobin; Tan, Jiayi; Yao, Lijuan; Zhu, Yu; Jiang, Zhaolin; Song, Hui

    2008-01-01

    A method for the determination of three phenoxyalkanoic acid herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 2-(2,4-dichlorophenoxy)-propanoic acid (2,4-DP), and 4-chloro-2-methylphenoxy-acetic acid (MCPA), in blood was developed. The blood sample was diluted with 0.1 mol/L hydrochloric acid, and extracted by solid-phase extraction using porous resin GDX401 as adsorbent and ethyl ether as eluent. The extract was esterified with dichloropropanol in the presence of sulfuric acid as catalyst. The derivatives were analysed by gas chromatography with electron-capture detection. The detection limits of 2,4-D, 2,4-DP and MCPA were 20, 8 and 40 ng/mL, respectively. In quantitative analysis, 2,4-dichlorophenylacetic acid was used as an internal standard. The linear relationships and recoveries were satisfactory. The derivatization of the three herbicides with methanol, ethanol, n-propanol, n-butanol, and trifluoroethanol were also studied, and the analytical methods of these derivatization were compared with that of dichloropropanol as esterifying agent. The method is sensitive enough for the examination of the poison samples in actual.

  11. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.).

    PubMed

    Tatarková, Veronika; Hiller, Edgar; Vaculík, Marek

    2013-06-01

    Biochar addition to agricultural soils might increase the sorption of herbicides, and therefore, affect other sorption-related processes such as leaching, dissipation and toxicity for plants. In this study, the impact of wheat straw biochar on the sorption, leaching and dissipation in a soil, and toxicity for sunflower of (4-chloro-2-methylphenoxy)acetic acid (MCPA), a commonly used ionizable herbicide, was investigated. The results showed that MCPA sorption by biochar and biochar-amended soil (1.0wt% biochar) was 82 and 2.53 times higher than that by the non-amended soil, respectively. However, desorption of MCPA from biochar-amended soil was only 1.17 times lower than its desorption in non-amended soil. Biochar addition to soil reduced both MCPA leaching and dissipation. About 35% of the applied MCPA was transported through biochar-amended soil, while up to 56% was recovered in the leachates transported through non-amended soil. The half-life value of MCPA increased from 5.2d in non-amended soil to 21.5 d in biochar-amended soil. Pot experiments with sunflower (Helianthus annuus L.) grown in MCPA-free, but biochar-amended soil showed no positive effect of biochar on the growth of sunflower in comparison to the non-amended soil. However, biochar itself significantly reduced the content of photosynthetic pigments (chlorophyll a, b) in sunflower. There was no significant difference in the phytotoxic effects of MCPA on sunflowers between the biochar-amended soil and the non-amended soil. Furthermore, MCPA had no effect on the photosynthetic pigment contents in sunflower. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging.

    PubMed

    Waldner, Georg; Friesl-Hanl, Wolfgang; Haberhauer, Georg; Gerzabek, Martin H

    The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18 months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy. The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/ n exponents, and K d values, respectively) were given for pH = 3 and the unbuffered pH of ∼7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3 months. Sorption increased at acidic pH values. Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.

  13. 46 CFR Table 2 to Part 153 - Cargoes Not Regulated Under Subchapters D or O of This Chapter When Carried in Bulk on Non...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) (with 52% Chlorine) III 2-Chloro-4-ethylamino-6-isopropylamino-5-triazine solution # Choline chloride...-5-triazine solution # 4-Chloro-2-methylphenoxyacetic acid, dimethylamine salt solution * Y Choline...

  14. Modeling of Phenoxy Acid Herbicide Mineralization and Growth of Microbial Degraders in 15 Soils Monitored by Quantitative Real-Time PCR of the Functional tfdA Gene

    PubMed Central

    Bælum, Jacob; Prestat, Emmanuel; David, Maude M.; Strobel, Bjarne W.

    2012-01-01

    Mineralization potentials, rates, and kinetics of the three phenoxy acid (PA) herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), were investigated and compared in 15 soils collected from five continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event, tfdA genes were quantified using real-time PCR to estimate the genetic potential for degrading PA in the soils. In 25 of the 45 mineralization scenarios, ∼60% mineralization was observed within 118 days. Elevated concentrations of tfdA in the range 1 × 105 to 5 × 107 gene copies g−1 of soil were observed in soils where mineralization could be described by using growth-linked kinetic models. A clear trend was observed that the mineralization rates of the three PAs occurred in the order 2,4-D > MCPA > MCPP, and a correlation was observed between rapid mineralization and soils exposed to PA previously. Finally, for 2,4-D mineralization, all seven mineralization patterns which were best fitted by the exponential model yielded a higher tfdA gene potential after mineralization had occurred than the three mineralization patterns best fitted by the Lin model. PMID:22635998

  15. Distribution and incorporation mode of the herbicide MCPA in soil derived organo-clay complexes.

    PubMed

    Riefer, Patrick; Klausmeyer, Timm; Schmidt, Burkhard; Schäffer, Andreas; Schwarzbauer, Jan

    2017-08-03

    The incorporation of xenobiotics into soil, especially via covalent bonds or sequestration has a major influence on the environmental behavior including toxicity, mobility, and bioavailability. The incorporation mode of 4-chloro-2-methylphenoxyacetic acid (MCPA) into organo-clay complexes has been investigated under a low (8.5 mg MCPA/kg soil) and high (1000 mg MCPA/kg soil) applied concentration, during an incubation period of up to 120 days. Emphasis was laid on the elucidation of distinct covalent linkages between non-extractable MCPA residues and humic sub-fractions (humic acids, fulvic acids, and humin). The cleavage of compounds by a sequential chemical degradation procedure (OH - , BBr 3 , RuO 4 , TMAH thermochemolysis) revealed for both concentration levels ester/amide bonds as the predominate incorporation modes followed by ether linkages. A possible influence of the soil microbial activity on the mode of incorporation could be observed in case of the high level samples. Structure elucidation identified MCPA as the only nonextractable substance, whereas the metabolite 4-chloro-2-methylphenol was additionally found as bioavailable and bioaccessible compound.

  16. Fast determination of phenoxy acid herbicides in carrots and apples using liquid chromatography coupled triple quadrupole mass spectrometry.

    PubMed

    Santilio, Angela; Stefanelli, Patrizia; Dommarco, Roberto

    2009-08-01

    A fast, simple and inexpensive method has been developed for the analysis of phenoxy acid herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (MCPP), 2-(4-aryloxyphenoxy)propionic acid (Fluazifop) and 2-(4-aryloxyphenoxy)propionic acid (Haloxyfop) in carrots and apples by liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS). The compounds were analyzed by QuEChERS (quick, easy, cheap, effective, rugged, safe) methodology without cleanup. The recoveries were performed at two spiked levels (0.05 and 0.5 mg/kg) for both matrices with six replicates for each level. The mean recoveries ranged from 70-92% for both apples and carrots. The precision of the method expressed as relative standard deviation (RSD%) was found to be in the range 3-15%. For all compounds, good linearity (r(2) > 0.99) was obtained over the range of concentration from 0.05 micro g/mL to 0.5 micro g/mL, corresponding to the pesticide concentrations of 0.05 mg/kg and 0.5 mg/kg, respectively. The determination limits (LOQs) ranged from 0.01 ng/mL to 1.3 ng/mL in solvent, whereas, the LOQs calculated in matrix ranged from 0.05 ng/g to 21.0 ng/g for apples and from 0.06 ng/g to 10.2 ng/g for carrots. The developed methodology combines the advantages of both QuEChERS and LC/MS/MS producing a very rapid, sensitive and cheap method useful for the routine analytical laboratories.

  17. Analysis of phenoxyacetic acid herbicides as biomarkers in human urine using liquid chromatography/triple quadrupole mass spectrometry.

    PubMed

    Lindh, Christian H; Littorin, Margareta; Amilon, Asa; Jönsson, Bo A G

    2008-01-01

    Phenoxyacetic acids are widely used herbicides. The toxicity of phenoxyacetic acids is debated, but high-level exposure has been shown to be hepatotoxic as well as nephrotoxic in animal studies. An inter-species difference in toxic effects has been found, with dogs particularly susceptible. In this study a method using liquid chromatography/triple quadrupole mass spectrometry (LC/MS/MS) is described for the analysis of 4-chloro-2-methylphenoxyacetic acid (MCPA), and its metabolite 4-chloro-2-hydroxymethylphenoxyacetic acid (HMCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in human urine. The urine samples were treated by acid hydrolysis to degrade possible conjugations. The sample preparation was performed using solid-phase extraction. Analysis was carried out using selected reaction monitoring (SRM) in the negative ion mode. Quantification of the phenoxyacetic acids was performed using [(2)H(3)]-labeled MCPA and 2,4-D as internal standards. The method was linear in the range 0.05-310 ng/mL urine and has a within-run precision of 2-5%. The between-run precision in lower concentration ranges was between 6-15% and between 2-8% in higher concentration ranges. The limit of detection was determined to 0.05 ng/mL. The metabolites in urine were found to be stable during storage at -20 degrees C. To validate the phenoxyacetic acids as biomarkers of exposure, the method was applied in a human experimental oral exposure to MCPA, 2,4-D and 2,4,5-T. Two healthy volunteers received 200 microg of each phenoxyacetic acid in a single oral dose followed by urine sampling for 72 h post-exposure. After exposure, between 90 and 101% of the dose was recovered in the urine. In the female subject, 23%, and in the male subject 17%, of MCPA was excreted as HMCPA. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Synthesis and dual PPARalpha/delta agonist effects of 1,4-disubstituted 1,2,3-triazole analogues of GW 501516.

    PubMed

    Ciocoiu, Calin C; Nikolić, Natasa; Nguyen, Huyen Hoa; Thoresen, G Hege; Aasen, Arne J; Hansen, Trond Vidar

    2010-07-01

    Ten 1,4-disubstituted 1,2,3-triazoles 2a-2j were prepared and tested for their ability to increase oleic acid oxidation in human myotubes using a high-throughput multiwell assay. Compounds 2e (2-{4-[(1-(3-fluoro-4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methylthio]-2-methylphenoxy}acetic acid) and 2i (2-{4-[(1-(3-chloro-4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-4-yl)methylthio]-2-methylphenoxy}acetic acid) exhibited potent agonist activities. Compounds 2e and 2i also exhibited powerful agonist effects for both PPARalpha and PPARdelta in a luciferase-based assay. Consequently, these triazoles can be categorized as dual PPAR agonists. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  19. Small (13)C/(12)C fractionation contrasts with large enantiomer fractionation in aerobic biodegradation of phenoxy acids.

    PubMed

    Qiu, Shiran; Gözdereliler, Erkin; Weyrauch, Philip; Lopez, Eva C Magana; Kohler, Hans-Peter E; Sørensen, Sebastian R; Meckenstock, Rainer U; Elsner, Martin

    2014-05-20

    Phenoxy acid herbicides are important groundwater contaminants. Stable isotope analysis and enantiomer analysis are well-recognized approaches for assessing in situ biodegradation in the field. In an aerobic degradation survey with six phenoxyacetic acid and three phenoxypropionic acid-degrading bacteria we measured (a) enantiomer-specific carbon isotope fractionation of MCPP ((R,S)-2-(4-chloro-2-methylphenoxy)-propionic acid), DCPP ((R,S)-2-(2,4-dichlorophenoxy)-propionic acid), and 4-CPP ((R,S)-2-(4-chlorophenoxy)-propionic acid); (b) compound-specific isotope fractionation of MCPA (4-chloro-2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid); and (c) enantiomer fractionation of MCPP, DCPP, and 4-CPP. Insignificant or very slight (ε = -1.3‰ to -2.0‰) carbon isotope fractionation was observed. Equally small values in an RdpA enzyme assay (εea = -1.0 ± 0.1‰) and even smaller fractionation in whole cell experiments of the host organism Sphingobium herbicidovorans MH (εwc = -0.3 ± 0.1‰) suggest that (i) enzyme-associated isotope effects were already small, yet (ii) further masked by active transport through the cell membrane. In contrast, enantiomer fractionation in MCPP, DCPP, and 4-CPP was pronounced, with enantioselectivities (ES) of -0.65 to -0.98 with Sphingomonas sp. PM2, -0.63 to -0.89 with Sphingobium herbicidovorans MH, and 0.74 to 0.97 with Delftia acidovorans MC1. To detect aerobic biodegradation of phenoxypropionic acids in the field, enantiomer fractionation seems, therefore, a stronger indicator than carbon isotope fractionation.

  20. The evaluation of different sorbents for the preconcentration of phenoxyacetic acid herbicides and their metabolites from soils.

    PubMed

    Moret, Sònia; Sánchez, Juan M; Salvadó, Victòria; Hidalgo, Manuela

    2005-12-16

    A procedure using alkaline extraction, solid-phase extraction (SPE) and HPLC is developed to analyze the polar herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) together with their main metabolites in soils. An ion-pairing HPLC method is used for the determination as it permits the baseline separation of these highly polar herbicides and their main metabolites. The use of a highly cross-linked polystyrene-divinylbenzene sorbent (PS-DVB) gives the best results for the analysis of these compounds. This sorbent allows the direct preconcentration of the analytes at the high pH values obtained after quantitative alkaline extraction of the herbicides from soil samples. Different parameters are evaluated for the SPE preconcentration step. The high polarity of the main analytes of interest (2,4-D and MCPA) makes it necessary to work at low flow rates (< or =0.5 mL min(-1)) in order for these compounds to be retained by the PS-DVB sorbent. A two stage desorption from the SPE sorbent is required to obtain the analytes in solvents that are appropriate for HPLC determination. A first desorption with a 50:50 methanol:water mixture elutes the most polar analytes (2,4-D, MCPA and 2CP). The second elution step with methanol permits the analysis of the other phenol derivatives. The humic and fulvic substances present in the soil are not efficiently retained by PS-DVB sorbents at alkaline pH's and so do not interfere in the analysis. This method has been successfully applied in the analysis of soil samples from a golf course treated with a commercial product containing esters of 2,4-D and MCPA as the active components.

  1. Pesticides in Surface Drinking-Water Supplies of the Northern Great Plains

    PubMed Central

    Donald, David B.; Cessna, Allan J.; Sverko, Ed; Glozier, Nancy E.

    2007-01-01

    Background Human health anomalies have been associated with pesticide exposure for people living in rural landscapes in the northern Great Plains of North America. Objective The objective of this study was to investigate the occurrence of 45 pesticides in drinking water from reservoirs in this area that received water primarily from snowmelt and rainfall runoff from agricultural crop lands. Methods Water from 15 reservoirs was sampled frequently during the spring pesticide application period (early May to mid-August) and less frequently for the remainder of the year. Drinking water was sampled in early July. Sample extracts were analyzed for pesticide content using mass spectrometric detection. Results We detected two insecticides and 27 herbicides in reservoir water. Consistent detection of a subset of 7 herbicides suggested that atmospheric deposition, either directly or in rain, was the principal pathway from fields to the reservoirs. However, the highest concentrations and number of herbicides in drinking water were associated with runoff from a localized 133-mm rainfall over 15 days toward the end of spring herbicide application. Water treatment removed from 14 to 86% of individual herbicides. Drinking water contained 3–15 herbicides (average, 6.4). Conclusions We estimated the mean annual calculated concentration of herbicides in drinking water to be 75 ng/L (2,4-dichlorophenoxy)acetic acid, 31 ng/L (2-chloro-4-methylphenoxy)acetic acid, 24 ng/L clopyralid, 11 ng/L dichlorprop, 4 ng/L dicamba, 3 ng/L mecoprop, and 1 ng/L bro-moxynil. The maximum total concentration of herbicides in drinking water was 2,423 ng/L. For the seven herbicides with established drinking water guidelines, all concentrations of the individual chemicals were well below their respective guideline. However, guidelines have not been established for the majority of the herbicides found in drinking water or for mixtures of pesticides. PMID:17687445

  2. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...

  3. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...

  4. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...

  5. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...

  6. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...

  7. 40 CFR 180.430 - Fenoxaprop-ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combined residues of the herbicide fenoxaprop-ethyl [(±)-ethyl 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy... herbicide fenoxaprop-ethyl, [(±)-ethyl 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy]propanoic acid], and its...

  8. 40 CFR 180.585 - Pyraflufen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide, pyraflufen-ethyl, ethyl 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-fluorophenoxyacetate, and its acid metabolite, E-1, 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-fluorophenoxyacetic acid, expressed in terms of the parent in or on the...

  9. Uptake of 4-chloro-2-methylphenoxyacetic acid (MCPA) from the apical membrane of Caco-2 cells by the monocarboxylic acid transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Osamu; Tsukagoshi, Kensuke; Endo, Tetsuya

    2008-03-15

    The cellular uptake mechanism of 4-chloro-2-methylphenoxyacetic acid (MCPA), a phenoxyacetic acid derivative, was investigated using Caco-2 epithelial cells. The cells were incubated with 50 {mu}M MCPA at pH 6.0 and 37 deg. C, and the uptake of MCPA from the apical membranes was measured. The uptake of MCPA was significantly decreased by incubation at low temperature (4 {sup o}C) and markedly increased by lowering the extracellular pH. Pretreatment with a protonophore, carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone (25 {mu}M), or metabolic inhibitors, 2,4-dinitrophenol (1 mM) and sodium azide (10 mM), significantly decreased the uptake of MCPA by 53%, 45% and 48%, respectively. Coincubation of MCPAmore » with 10 mM L-lactic acid or {alpha}-cyano-4-hydroxycinnamate, which is a substrate or an inhibitor of the monocarboxylic acid transporters (MCTs), significantly decreased the uptake of MCPA by 31% and 20%, respectively, and coincubation with benzoic acid profoundly decreased the uptake by 68%. In contrast, coincubation with succinic acid (a dicarboxylic acid) did not affect the uptake. Kinetic analysis of initial MCPA uptake suggested that MCPA is taken up via a carrier-mediated process [K{sub m} = 1.37 {+-} 0.15 mM, V{sub max} = 115 {+-} 6 nmol (mg protein){sup -1} (3 min){sup -1}]. Lineweaver-Burk plots show that benzoic acid competitively inhibits the uptake of MCPA with a K{sub i} value of 4.68 {+-} 1.76 mM. A trans-stimulation effect on MCPA uptake was found in cells preloaded with benzoic acid. These results suggest that the uptake of MCPA from the apical membrane of Caco-2 cells is mainly mediated by common MCTs along with benzoic acid but also in part by L-lactic acid.« less

  10. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    PubMed

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPA

  11. The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids.

    PubMed

    Evangelista, S; Cooper, D G; Yargeau, V

    2010-05-01

    Pseudomonas putida, Aspergillus niger, Bacillus subtilis, Pseudomonas fluorescens, Sphingomonas herbicidovorans and Rhodococcus rhodochrous growing on glucose in a medium containing one of three chlorophenoxy acids at a concentration of 0.1 g L(-1) (clofibric acid, (R)-2-(4-chloro-2-methylphenoxy)propionic acid (mecoprop or MCPP) and 4-chloro-2-methylphenoxyacetic acid (MCPA)) degraded these compounds to varying degrees; from nonmeasurable to almost complete removal. These results with the addition of glucose (2.5 g L(-1)) as an easy to use carbon source indicated the formation of metabolites different from results reported in the literature for growth studies in which the chlorophenoxy acid was the sole carbon source. The metabolite, 4-chloro-2-methylphenol, which had been reported previously, was only observed in trace amounts for MCPP and MCPA in the presence of S. herbicidovorans and glucose. In addition, three other compounds (M1, M3 and M4) were observed. It is suggested that these unidentified metabolites resulted from ring opening of the metabolite 4-chloro-2-methylphenol (M2). The rate of biodegradation of the chlorophenoxy acids was influenced by the degree of steric hindrance adjacent to the internal oxygen bond common to all three compounds. The most hindered compound, clofibric acid, was converted to ethyl clofibrate by R. rhodochrous but was not degraded by any microorganisms studied. The more accessible internal oxygen bonds of the other two chlorophenoxy acids, MCPP and MCPA, were readily broken by S. herbicidovorans. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) General. (1) A tolerance is established for the herbicide 4-(2-methyl-4-chlorophenoxy) butyric... established for the combined residues, free and conjugated, of the herbicide MCPB, 4-(4-chloro-2-methylphenoxy...

  13. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) General. (1) A tolerance is established for the herbicide 4-(2-methyl-4-chlorophenoxy) butyric... established for the combined residues, free and conjugated, of the herbicide MCPB, 4-(4-chloro-2-methylphenoxy...

  14. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (a) General. (1) A tolerance is established for the herbicide 4-(2-methyl-4-chlorophenoxy) butyric... established for the combined residues, free and conjugated, of the herbicide MCPB, 4-(4-chloro-2-methylphenoxy...

  15. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) General. (1) A tolerance is established for the herbicide 4-(2-methyl-4-chlorophenoxy) butyric... established for the combined residues, free and conjugated, of the herbicide MCPB, 4-(4-chloro-2-methylphenoxy...

  16. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (a) General. (1) A tolerance is established for the herbicide 4-(2-methyl-4-chlorophenoxy) butyric... established for the combined residues, free and conjugated, of the herbicide MCPB, 4-(4-chloro-2-methylphenoxy...

  17. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.

    PubMed

    Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella

    2016-02-01

    The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible. © 2015 SETAC.

  18. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...

  19. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...

  20. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...

  1. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...

  2. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...

  3. Comparative Inter-Species Pharmacokinetics of Phenoxyacetic Acid Herbicides and Related Organic Acids. Evidence that the Dog is Not a Relevant Species for Evaluation of Human Health Risk.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck

    Phenoxyacetic acids including 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) are widely utilized organic acid herbicides that have undergone extensive toxicity and pharmacokinetic analyses. The dog is particularly susceptible to the toxicity of phenoxyacetic acids and related organic acids relative to other species. Active renal clearance mechanisms for organic acids are ubiquitous in mammalian species, and thus a likely mechanism responsible for the increased sensitivity of the dog to these agents is linked to a lower capacity to secrete organic acids from the kidney. Using published data describing the pharmacokinetics of phenoxyacetic and structurally related organic acids in a varietymore » of species including humans, inter-species comparative pharmacokinetics were evaluated using allometic parameter scaling. For both 2,4-D and MCPA the dog plasma half-life (t1/2) and renal clearance (Clr; ml hr-1) rates did not scale as a function of body weight across species; whereas for all other species evaluated, including humans, these pharmacokinetic parameters reasonably scaled. This exceptional response in the dog is clearly illustrated by comparing the plasma t1/2 at comparable doses of 2,4-D and MCPA, across several species. At a dosage of 5 mg/kg, in dogs the plasma t1/2 for 2,4-D and MCPA were {approx}92 - 106 hr and 63 hr, respectively, which is substantially longer than in the rat ({approx}1 and 6 hr, respectively) or in humans (12 and 11 hr, respectively). This longer t1/2, and slower elimination in the dog, results in substantially higher body burdens of these organic acids, at comparable doses, relative to other species. Although these results indicate the important role of renal transport clearance mechanisms as determinants of the clearance and potential toxicity outcomes of phenoxyacetic acid herbicides across several species, other contributing mechanisms such as reabsorption from the renal tubules is highly likely. These findings suggest that for new structurally similar organic acids, a limited comparative species (rat vs. dog) pharmacokinetic analysis early in the toxicology evaluation process may provide important insight into the relevance of the dog. In summary, the substantial difference between the pharmacokinetics of phenoxyacetic acids and related organic acids in dogs relative to other species, including humans, questions the relevance of using dog toxicity data for the extrapolation of human health risk.« less

  4. A Systematic Review of Carcinogenic Outcomes and Potential Mechanisms from Exposure to 2,4-D and MCPA in the Environment

    PubMed Central

    von Stackelberg, Katherine

    2013-01-01

    Chlorophenoxy compounds, particularly 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxy)acetic acid (MCPA), are amongst the most widely used herbicides in the United States for both agricultural and residential applications. Epidemiologic studies suggest that exposure to 2,4-D and MCPA may be associated with increased risk non-Hodgkins lymphoma (NHL), Hodgkin's disease (HD), leukemia, and soft-tissue sarcoma (STS). Toxicological studies in rodents show no evidence of carcinogenicity, and regulatory agencies worldwide consider chlorophenoxies as not likely to be carcinogenic or unclassifiable as to carcinogenicity. This systematic review assembles the available data to evaluate epidemiologic, toxicological, pharmacokinetic, exposure, and biomonitoring studies with respect to key cellular events noted in disease etiology and how those relate to hypothesized modes of action for these constituents to determine the plausibility of an association between exposure to environmentally relevant concentrations of 2,4-D and MCPA and lymphohematopoietic cancers. The combined evidence does not support a genotoxic mode of action. Although plausible hypotheses for other carcinogenic modes of action exist, a comparison of biomonitoring data to oral equivalent doses calculated from bioassay data shows that environmental exposures are not sufficient to support a causal relationship. Genetic polymorphisms exist that are known to increase the risk of developing NHL. The potential interaction between these polymorphisms and exposures to chlorophenoxy compounds, particularly in occupational settings, is largely unknown. PMID:23533401

  5. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    PubMed Central

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  6. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    PubMed

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  7. [Synchronous extraction and determination of phenoxy acid herbicides in water by on-line monolithic solid phase microextraction-high performance liquid chromatography].

    PubMed

    Wang, Jiabin; Wu, Fangling; Zhao, Qi

    2015-08-01

    A C18 monolithic capillary column was utilized as the solid phase microextraction column to construct an in-tube SPME-HPLC system which was used to simultaneously extract and detect five phenoxy acid herbicides, including 2,4-dichlorophenoxyacetic acid (2,4-D), 2- (2-chloro)-phenoxy propionic acid (2,2-CPPA), 2-(3-chloro)-phenoxy propionic acid (2,3- CPPA), phenoxy propionic acid (PPA) and 2-(2,4-dichlorophenoxy) propionic acid (2,4-DP). The operating parameters of the in-tube SPME-HPLC system, including the length of the monolithic column, the sampling flow rate, the sampling time, the elution flow rate and the elution time, had been investigated in detail. The optimized operating parameters of the in-tube SPME-HPLC system were as follow: the length of the monolithic column was 20 cm, the sampling flow rate was 0. 04 mL/min, sampling time was 13 min; the elution flow rate was 0.02 mL/min, elution time was 5 min. Under the optimized conditions, the detection limits of the five phenoxy acid herbicides were as follows: 9 µg/L for PPA, 4 µg/L for 2,2-CPPA, 4 µg/L for 2,3-CPPA, 5 µg/L for 2,4-D, 5 µg/L for 2,4-DP. Compared with the HPLC method with direct injection, the combined system showed a good enrichment factors to the analytes. The recoveries of the five phenoxy acid herbicides were between 79.0% and 98.0% (RSD ≤ 3.9%). This method was successfully used to detect the five phenoxy acid herbicides in water samples with satisfactory results.

  8. Surface water-ground water interaction: Herbicide transport into municipal collector wells

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Carr, J.D.; Steele, G.V.; Thurman, E.M.; Bastian, K.C.; Dormedy, D.F.

    1999-01-01

    During spring runoff events, herbicides in the Platte River are transported through an alluvial aquifer into collector wells located on an island in the river in 6 to 7 d. During two spring runoff events in 1995 and 1996, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] concentrations in water from these wells reached approximately 7 ??g/L, 70 times more than the background concentration in ground water. Concentrations of herbicides and metabolites in the collector wells generally were one-half to one-fifth the concentrations of herbicides in the river for atrazine, alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)-acetanilide], alachlor ethane-sulfonic acid (ESA) [2-((2,6-diethylphenyl) (methoxymethyl)amino)-2- oxoethane-sulfonic acid], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethyl)acetamide], cyanazine [2-((4-chloro-6-(ethyl-amino)- 1,3,5 triazin-2-yl)-amino)-2-methylpropionitrile], and acetochlor [2-chloro- N-(ethoxymethyl)-N-(2-ethyl-6methyl-phenyl) acetamide], suggesting that 20 to 50% river water could be present in the water from the collector wells, assuming no degradation. The effect of the river on the quality of water from the collector wells can be reduced through selective management of horizontal laterals of the collector wells. The quality of the water from the collector wells is dependent on the (i) selection of the collector well used, (ii) number and selection of laterals used, (iii) chemical characteristics of the contaminant, and (iv) relative mixing of the Platte River and a major upstream tributary.

  9. Influence of dissolved organic matter on sorption and desorption of MCPA in ferralsol.

    PubMed

    Wu, Dongming; Yun, Yonghuan; Jiang, Lei; Wu, Chunyuan

    2018-03-01

    MCPA (4-chloro-2-methylphenoxyacetic acid) is an acidic herbicide, widely used in paddy fields. The presence of dissolved organic matter (DOM) modifies the sorption-desorption of herbicides in soils. In this study, effects of DOM on sorption- desorption of MCPA were tested using three typical ferralsol soil types from China: rhodic ferralsol, haplic ferralsol and paddy soil. DOM preparations were extracted from the paddy soil (DOM P ), from a compost mixture of cassava stems with chicken manure (DOM C ), and from rice straw (DOM R ). Sorption-desorption of MCPA in the tested soil types was shown to follow pseudo first-order kinetics, and the calculated isotherm data fitted well with a Freundlich equilibrium model in the range of the studied concentrations. MCPA was weakly sorbed by the soils, producing low Freundlich coefficient values (K f ) (0.854 to 4.237). The presence of DOM reduced the K f whereby DOM C had the strongest and DOM R the weakest effect. Presence of DOM also promoted MCPA desorption from the soils, again with DOM C having the strongest effect and DOM R the weakest. DOM coating changed the soil particle surface, as demonstrated by electron microscopy, and DOM also directly interacted with MCPA, as shown by Fourier-transform infrared spectroscopy. The experimental data were interpreted to suggest a competing sorption of DOM to ferralsol and an increased solubility of MCPA in the presence of DOM. The results indicate that the environmental risk of MCPA leaching to groundwater and surface flow is increased by presence of DOM, for instance as a result of organic fertilizer use. Copyright © 2017. Published by Elsevier B.V.

  10. 40 CFR 180.381 - Oxyfluorfen; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] in or on... herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] in or on the...

  11. 40 CFR 180.381 - Oxyfluorfen; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] in or on... herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] in or on the...

  12. 40 CFR 180.381 - Oxyfluorfen; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] in or on... herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] in or on the...

  13. 40 CFR 180.316 - Pyrazon; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... herbicide pyrazon (5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone) and its metabolites (calculated as pyrazon.... Tolerances are established for combined residues of the herbicide pyrazon, 5-amino-4-chloro-2-phenyl-3(2H...

  14. 40 CFR 180.316 - Pyrazon; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... herbicide pyrazon (5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone) and its metabolites (calculated as pyrazon.... Tolerances are established for combined residues of the herbicide pyrazon, 5-amino-4-chloro-2-phenyl-3(2H...

  15. 40 CFR 180.316 - Pyrazon; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... herbicide pyrazon (5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone) and its metabolites (calculated as pyrazon.... Tolerances are established for combined residues of the herbicide pyrazon, 5-amino-4-chloro-2-phenyl-3(2H...

  16. 40 CFR 180.316 - Pyrazon; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... herbicide pyrazon (5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone) and its metabolites (calculated as pyrazon.... Tolerances are established for combined residues of the herbicide pyrazon, 5-amino-4-chloro-2-phenyl-3(2H...

  17. 40 CFR 180.316 - Pyrazon; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... herbicide pyrazon (5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone) and its metabolites (calculated as pyrazon.... Tolerances are established for combined residues of the herbicide pyrazon, 5-amino-4-chloro-2-phenyl-3(2H...

  18. Hydrologic and land-use factors associated with herbicides and nitrate in near-surface aquifers

    USGS Publications Warehouse

    Burkart, Michael R.; Kolpin, Dana W.

    1993-01-01

    Selected herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) metabolites, and NO−3 were examined in near-surface unconsolidated and bedrock aquifers in the midcontinental USA to study the hydrogeologic, spatial, and seasonal distribution of these contaminants. Groundwater samples were collected from 303 wells during the spring and late summer of 1991. At least one herbicide or atrazine metabolite was detected in 24% of the samples collected for herbicide analysis (reporting limit 0.05 µg/L). No herbicide concentration exceeded the USEPA's maximum contaminant level (MCL) or health advisory level. The most frequently detected compound was the at razine metabolite deethylatrazine [2-amino-4-chloro-6-(isopropylamino)-s-triazine] followed by atrazine, deisopropylatrazine [2-amino-4-chloro-6-(ethylamino)-s-triazine], prometon (2,4-bis(isopropylamino)-6-methyoxy-s-triazine), metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1methylethyl)acetamide], alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide], metribuzin [4-amino-6-(tert-butyl)-3-methylthio-as-triazine-5(4H)-one], simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], and cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile]. Nitrite plus nitrate, as nitrogen (N), exceeding 3.0 mg/L (excess NO−3), was found in 29% of the samples, and 6% had −3exceeding the MCL of 10 mg/L. Ammonium as N was detected in excess of 0.01 mg/L in 78% of the samples. A nonlinear increase in the frequency of atrazine detection occurred with decreases in reporting limit. The frequency of atrazine residue detection (atrazine + deethylatrazine + deisopropylatrazine) was 25% greater than for atrazine alone. Herbicide detections and excess NO−3 were notably lacking in the eastern part of the study region where it was estimated that herbicide and fertilizer use were among the largest in the region. Prometon, the second most frequently detected herbicide, was associated with non-agricultural land use. Herbicide and excess NO−3 were more frequent in unconsolidated aquifers than in bedrock aquifers. Aquifer depth, as direct measurement of proximity to recharge sources, was inversely related to frequency of herbicide detection and excess NO−3.

  19. Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems.

    PubMed

    Pinna, Maria Vittoria; Pusino, Alba

    2012-02-01

    The photodegradation of two quinolinecarboxylic herbicides, 7-chloro-3-methylquinoline-8-carboxylic acid (QMe) and 3,7-dichloroquinoline-8-carboxylic acid (QCl), was studied in aqueous solution at different irradiation wavelengths. The effect of sunlight irradiation was investigated also in the presence of titanium dioxide (TiO(2)). UV irradiation degraded rapidly QMe affording 7-chloro-3-methylquinoline (MeQ) through a decarboxylation reaction. The reaction rate was lower in the presence of dissolved organic carbon (DOC) because of the adsorption of the herbicide on the organic components. Instead, QCl was stable under both UV light and sunlight irradiation. The irradiation of QMe or QCl solutions with simulated sunlight in the presence of TiO(2) produced the complete mineralization of the two herbicides. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Combination of graphene oxide-based solid phase extraction and electro membrane extraction for the preconcentration of chlorophenoxy acid herbicides in environmental samples.

    PubMed

    Tabani, Hadi; Fakhari, Ali Reza; Shahsavani, Abolfath; Behbahani, Mohammad; Salarian, Mani; Bagheri, Akbar; Nojavan, Saeed

    2013-07-26

    Combination of different extraction methods is an interesting and debatable work in the field of sample preparation. In the current study, for the first time, solid phase extraction combined with electro membrane extraction (SPE-EME) was developed for ultra-preconcentration and determination of chlorophenoxy acid herbicides in environmental samples using capillary electrophoresis (CE). In the mentioned method, first, a 100mL of chlorophenoxy acid herbicides (2-methyl-4-chlorophenoxyacetic acid (MCPA), 2-(2,4-dichlorophenoxy) propanoic acid (2,4-DP) and 2-(4-chloro-2-methylphenoxy) propanoic acid (MCPP)) was passed through a column of graphene oxide as a solid phase, and then the adsorbed herbicides were eluted by 4.0mL of 8% acetic acid (HOAC) in methanol. Then, the elution solvent was evaporated and the herbicides residue was dissolved in 4.0mL of double distilled water (pH 9.0). Afterwards, the herbicides in 4.0mL of the aqueous solution were transferred to an EME glass vial. In the EME step, the herbicides were extracted from the sample solution into the basic acceptor solution (pH 13.0) under electrical potential, which was held inside the lumen of the fiber with 1-octanol as the supported liquid membrane (SLM). Under the optimized conditions, high enrichment factors were obtained in the range of 1950-2000. The limits of quantification (LOQs) and method detection limits (MDLs) were obtained in the range of 1.0-1.5 and 0.3-0.5ngmL(-1), respectively. Finally, the performance of the present method was evaluated for extraction and determination of chlorophenoxy acid herbicides in environmental samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials.

    PubMed

    Doczekalska, Beata; Kuśmierek, Krzysztof; Świątkowski, Andrzej; Bartkowiak, Monika

    2018-05-04

    Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.

  2. 40 CFR 180.479 - Halosulfuron-methyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide halosulfuron-methyl, methyl 3-chloro-5-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl] amino] sulfonyl]-1-methyl-1H-pyrazole-4-carboxylate, and its metabolites and degradates in or on...-sulfamoylpyrazole-4-carboxylic acid, expressed as the stoichiometric equivalent of halosulfuron-methyl, in or on the...

  3. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    PubMed

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling rate. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Major herbicides in ground water: Results from the National Water-Quality Assessment

    USGS Publications Warehouse

    Barbash, J.E.; Thelin, G.P.; Kolpin, D.W.; Gilliom, R.J.

    2001-01-01

    To improve understanding of the factors affecting pesticide occurrence in ground water, patterns of detection were examined for selected herbicides, based primarily on results from the National Water-Quality Assessment (NAWQA) program. The NAWQA data were derived from 2227 sites (wells and springs) sampled in 20 major hydrologic basins across the USA from 1993 to 1995. Results are presented for six high-use herbicides - atrazine (2-chloro-4-ethylamino-6-iso-propylamino-s-triazine), cyanazine (2-[4-chloro-6-ethylamino-l,3,5-triazin-2-yl]amino]-2-methylpropionitrile), simazine (2-chloro-4,6-bis[ethylamino]-s-triazine), alachlor (2-chloro-N-[2,6-diethylphenyl]-N-[methoxymethyl]acetamide), acetochlor (2-chloro-N-[ethoxymethyl]. N-[2-ethyl-6-methylphenyl]acetamide), and metolachlor (2-chloro-N-[2-ethyl-6-methylphenyl]-N-[2-methoxy-l- methylethyl]acetamide) - as well as for prometon (2,4-bis[isopropylamino]-6-methoxy-s-triazine), a nonagricultural herbicide detected frequently during the study. Concentrations were <1 ??g L-1 at 98% of the sites with detections, but exceeded drinking-water criteria (for atrazine) at two sites. In urban areas, frequencies of detection (at or above 0.01 ??g L-1) of atrazine, cyanazine, simazine, alachlor, and metolachlor in shallow ground water were positively correlated with their nonagricultural use nationwide (P < 0.05). Among different agricultural areas, frequencies of detection were positively correlated with nearby agricultural use for atrazine, cyanazine, alachlor, and metolachlor, but not simazine. Multivariate analysis demonstrated that for these five herbicides, frequencies of detection beneath agricultural areas were positively correlated with their agricultural use and persistence in aerobic soil. Acetochlor, an agricultural herbicide first registered in 1994 for use in the USA, was detected in shallow ground water by 1995, consistent with previous field-scale studies indicating that some pesticides may be detected in ground water within 1 yr following application. The NAWQA results agreed closely with those from other multistate studies with similar designs.

  5. Chloromonilinic Acids C and D, Phytotoxic Tetrasubstituted 3-Chromanonacrylic Acids Isolated from Cochliobolus australiensis with Potential Herbicidal Activity against Buffelgrass (Cenchrus ciliaris).

    PubMed

    Masi, Marco; Meyer, Susan; Clement, Suzette; Pescitelli, Gennaro; Cimmino, Alessio; Cristofaro, Massimo; Evidente, Antonio

    2017-10-27

    The fungal pathogen Cochliobolus australiensis isolated from infected leaves of the invasive weed buffelgrass (Pennisetum ciliare) was grown in vitro to evaluate its ability to produce phytotoxic metabolites that could potentially be used as natural herbicides against this weed. Two new tetrasubstituted 3-chromanonacrylic acids, named chloromonilinic acids C (1) and D (2), were isolated from the liquid cultures of C. australiensis, together with the known chloromonilinic acid B. Chloromonilinic acids C and D were characterized by spectroscopic and chemical methods as (E)-3-chloro-3-[(5-hydroxy-3-(1-hydroxy-2-methoxy-2-oxoethyl)-7-methyl-4-oxo-4H-chromen-2-yl)]acrylic acid and (Z)-3-chloro-3-[(5-hydroxy-3-(2-methoxy-2-oxoethyl)-7-methyl-4-oxo-4H-chromen-2-yl)]acrylic acid, respectively. The stereochemistry of chloromonilinic acids C and D was determined using a combination of spectroscopic and computational methods, including electronic circular dichroism. The fungus produced these compounds in two different liquid media together with cochliotoxin, radicinin, radicinol, and their 3-epimers. The radicinin-related compounds were also produced when the fungus was grown in wheat seed solid culture, but chloromonilinic acids were not found in the solid culture organic extract. All three chloromonilinic acids were toxic to buffelgrass in a seedling elongation bioassay, with significantly delayed germination and dramatically reduced radicle growth, especially at a concentration of 5 × 10 -3 M.

  6. Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms

    USGS Publications Warehouse

    Graham, William H.; Graham, D.W.; DeNoyelles, Frank; Smith, Val H.; Larive, C.K.; Thurman, E.M.

    1999-01-01

    The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)- N-(2-methoxy-1-methyl)ethyl)acetamide] and alachlor [2-chloro-N-(2,6- diethylphenyl)-N-methoxymethyl)acetamide] in aquatic systems was investigated using outdoor tank mesocosms. Metolachlor and alachlor levels and their ethane sulfonic acid (ESA) and oxanillic acid breakdown products were monitored over time under five experimental treatments (each in quadruplicate). Background water conditions were identical in all treatments with each treatment differing based on the level and type(s) of herbicide present. Treatments included a noherbicide control, 10 ??g/L metolachlor, 25 ??g/L metolachlor, 25 ??g/L alachlor, and 25 ??g/L alachlor plus 25 ??g/L metolachlor in combination. The experiment was initiated by adding herbicide(s) to the units to the target concentrations; herbicide and breakdown product levels and other chemical parameters were then monitored for 85 days. In general, metolachlor half-lives were longer than alachlor half-lives under all treatments, although the differences were not statistically significant. Metolachlor half-lives (??95% confidence limits) ranged from 33.0 d (??14.1 d) to 46.2 d (??40.0 d), whereas alachlor half- lives ranged from 18.7 d (??3.5 d) to 21.0 d (??6.5 d) for different treatments. Formation patterns of ESA were similar in all treatments, whereas oxanillic acid formation differed for the two herbicides. Alachlor oxanillic acid was produced in larger quantities than metolachlor oxanillic acid and either ESA under equivalent conditions. Our results suggest that the transformation pathways for alachlor and metolachlor in aquatic systems are similar and resemble the acetochlor pathway in soils proposed by Feng (Pestic. Biochem. Physiol. 1991, 34, 136); however, the oxanillic acid branch of the pathway is favored for alachlor as compared with metolachlor.The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethy)acetamide] and alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] in aquatic systems was investigated using outdoor tank mesocosms. Metolachlor and alachlor levels and their ethane sulfonic acid (ESA) and oxanillic acid breakdown products were monitored over time under five experimental treatments (each in quadruplicate). Background water conditions were identical in all treatments with each treatment differing based on the level and type(s) of herbicide present. Treatments included a no-herbicide control, 10 ??g/L metolachlor, 25 ??g/L metolachlor, 25 ??g/L alachlor, and 25 ??g/L alachlor plus 25 ??g/L metolachlor in combination. The experiment was initiated by adding herbicide(s) to the units to the target concentrations; herbicide and breakdown product levels and other chemical parameters were then monitored for 85 days. In general, metolachlor half-lives were longer than alachlor half-lives under all treatments, although the differences were not statistically significant. Metolachlor half-lives (??95% confidence limits) ranged from 33.0 d (??14.1 d) to 46.2 d (??40.0 d), whereas alachlor half-lives ranged from 18.7 d (??3.5 d) to 21.0 d (??6.5 d) for different treatments. Formation patterns of ESA were similar in all treatments, whereas oxanillic acid formation differed for the two herbicides. Alachlor oxanillic acid was produced in larger quantities than metolachlor oxanillic acid and either ESA under equivalent conditions. Our results suggest that the transformation pathways for alachlor and metolachlor in aquatic systems are similar and resemble the acetochlor pathway in soils proposed by Feng; however, the oxanillic acid branch of the pathway is favored for alachlor as compared with metolachlor.

  7. UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation.

    PubMed

    Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L

    2017-05-01

    Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.

  8. 40 CFR 180.458 - Clethodim; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combined residues of the herbicide clethodim ((E)-(±)-2-[1-[[(3-chloro-2-propenyl)oxy]imino]propyl]-5-[2...) Tolerances are established for the combined residues of the herbicide clethodim [(E)-(±)-2-[1-[[(3-chloro-2... residues of the herbicide clethodim ((E)-(±)-2-[1-[[(3-chloro-2-propenyl)oxy]imino]propyl]-5-[2-(ethylthio...

  9. 40 CFR 180.356 - Norflurazon; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide norflurazon (4-chloro-5-(methylamino)-2-(alpha, alpha, alpha-trifluoro-m-tolyl)-3-(2H)-pyridazinone) and its desmethyl metabolite 4-chloro-5-(amino)-2-alpha, alpha, alpha-trifluoro-m...

  10. 40 CFR 180.356 - Norflurazon; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide norflurazon (4-chloro-5-(methylamino)-2-(alpha, alpha, alpha-trifluoro-m-tolyl)-3-(2H)-pyridazinone) and its desmethyl metabolite 4-chloro-5-(amino)-2-alpha, alpha, alpha-trifluoro-m...

  11. 40 CFR 180.356 - Norflurazon; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide norflurazon (4-chloro-5-(methylamino)-2-(alpha, alpha, alpha-trifluoro-m-tolyl)-3-(2H)-pyridazinone) and its desmethyl metabolite 4-chloro-5-(amino)-2-alpha, alpha, alpha-trifluoro-m...

  12. Ultrasound-assisted emulsification microextraction combined with injection-port derivatization for the determination of some chlorophenoxyacetic acids in water samples.

    PubMed

    Yamini, Yadollah; Saleh, Abolfazl

    2013-07-01

    An efficient method based on ultrasound-assisted emulsification microextraction followed by injection-port derivatization GC analysis was developed to determine 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) in natural water samples. In this procedure, 12.5 μL of 1-undecanol was injected slowly into a 12 mL home-designed centrifuge glass vial containing an aqueous sample of the analytes located inside an ultrasonic water bath. The resulting emulsion was centrifuged, and 1 μL of the separated organic solvent together with 1 μL of the derivatization reagent were injected into a GC equipped with a flame ionization detector. Several factors that influence the derivatization and extraction were optimized. Under the optimal conditions, the LODs were 0.33 and 1.7 μg/L for MCPA and 2,4-D, respectively. Preconcentration factors of 670 and 836 were obtained for MCPA and 2,4-D, respectively. The precision of the proposed method was evaluated in terms of repeatability, which was <5.7% (n = 5). The applicability of the proposed method was evaluated by extraction and determination of chlorophenoxyacetic acids from some natural waters, which indicated that the matrices of natural waters have no significant effect on the extraction and derivatization efficiency of this method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preferential dealkylation reactions of s-triazine herbicides in the unsaturated zone

    USGS Publications Warehouse

    Mills, M.S.; Michael, Thurman E.

    1994-01-01

    The preferential dealkylation pathways of the s-triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), propazine [2-chloro-4,6-bis(isopropylamino)-s-triazine], and simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], and two monodealkylated triazine metabolites, deisopropylatrazine (DIA: 2-amino-4-chloro-6-ethylamino-s-triazine) and deethylatrazine (DEA: 2-amino-4-chloro-6-isopropylamino-s-triazine) were investigated on two adjacent Eudora silt-loam plots growing corn (Zea mays L.). Results from the shallow unsaturated zone and surface-water runoff showed preferential removal of an ethyl side chain from atrazine, simazine, and DIA relative to an isopropyl side chain from atrazine, propazine, and DEA. It is hypothesized that deethylation reactions may proceed at 2-3 times the rate of deisopropylation reactions. It is concluded that small concentrations of DIA reportedly associated with the degradation of atrazine may be due to a rapid turnover rate of the metabolite in the unsaturated zone, not to small production levels. Because of continued dealkylation of both monodealkylated metabolites, a strong argument is advanced for the presence of a didealkylated metabolite in the unsaturated zone.

  14. Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms

    USGS Publications Warehouse

    Mazanti, L.; Rice, C.; Bialek, K.; Sparling, D.; Stevenson, C.; Johnson, W.E.; Kangas, P.; Rheinstein, J.

    2003-01-01

    Dissipation processes are described for a combination of commonly used pesticides--atrazine (6-chloro-4--ethylamino-6-isopropylamino-s-triazine), metolachlor (2-chloro-N-[2-ethyl-6-methyl-phenyl]-N-[2-methoxy-l-methylethyl] acetamide), and chlorpyrifos (O-O diethyl O-[3,5,6-trichloro-2-pyridinyl] phosphorothioate)--in a laboratory and outdoor pond systems. Dosing rates and timing were designed to duplicate those common in the mid-Atlantic Coastal Plain, USA. Treatment ranged from 2 and 2.5 mg/L to 0.2 and 0.25 mg/L respectively for atrazine and metolachlor, and chlorpyrifos was added at 1.0 and 0.1 mg/L in the aquaria and at 0.1 mg/L in the outdoor macrocosms. Chlorpyrifos disappearance was rapid in all of the systems and followed a two-phase sequence. Initial half-lives varied from 0.16 da), to 0.38 day and showed similar rates in the aquaria and the outdoor systems. The second phase of the chlorpyrifos loss pattern was slower (18-20 days) in all the treatments except for the low herbicide treatment in the outdoor test, where it was 3.4 days. Compared to the outdoor system, herbicide losses were much slower in the aquaria, e.g., 150 days for atrazine and 55 days for metolachlor, and no appreciable loss of herbicide was apparent in the high-treated aquaria. In the outdoor systems, the half-lives for the low herbicide treatment were 27 days and 12 days, respectively, for atrazine and metolachlor, and 48 and 20 days, respectively for the high herbicide-treated pond. Very low levels of CIAT (6-amino-2-chloro-4-iso-propylamino-s-triazine) and CEAT (2-chloro-4-ethylamino-6-ethylamino-s-triazine), degradation products of atrazine, were observed in the outdoor studies.

  15. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    PubMed Central

    Raina, Renata; Etter, Michele L.

    2010-01-01

    A new liquid chromatography (LC)-negative ion electrospray ionization (ESI−)–tandem mass spectrometry (MS/MS) method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy acetic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxy)butyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy) butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2-methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE) with a polymeric sorbent and analyzed with LC ESI− with selected reaction monitoring (SRM) using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 μm) with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M) was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the degradation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD) were between 1 and 15 ng L−1 and method detection limits (MDL) with strict criteria requiring <25% deviation of peak area from best-fit line for both SRM1 and SRM2 ranged from 5 to 10 ng L−1 for acid ingredients (except dicamba at 30 ng L−1) and from 2 to 30 ng L−1 for degradation products. The SPE-LC-ESI− MS/MS method permitted low nanogram-per-liter determination of pesticides and degradation products for surface water samples. PMID:20212919

  16. Role of CadC and CadD in the 2,4-dichlorophenoxyacetic acid oxygenase system of Sphingomonas agrestis 58-1.

    PubMed

    Kijima, Kumiko; Mita, Hajime; Kawakami, Mitsuyasu; Amada, Kei

    2018-02-02

    In the present study, we confirm that 2,4-dichlorophenoxyacetic acid (2,4-D) oxygenase from Sphingomonas agrestis 58-1 belongs to the family of Rieske non-heme iron aromatic ring-hydroxylating oxygenases, which comprise a core enzyme (oxygenase), ferredoxin, and oxidoreductase. It has previously been shown that cadAB genes are necessary for the conversion of 2,4-D to 2,4-dichlorophenol; however, the respective roles of ferredoxin and oxidoreductase in the 2,4-D oxygenase system from S. agrestis 58-1 remain unknown. Using nucleotide sequence analysis of the plasmid pCADAB1 from Sphingomonas sp. ERG5, which degrades 4-chloro-2-methylphenoxyacetic acid and 2,4-D, Nielsen et al. identified orf95, upstream of cadA, and orf98, downstream of cadB, which were predicted and designated as cadD (oxidoreductase) and cadC (ferredoxin), respectively (Nielsen et al., PLoS One, 8, 1-9, 2013). These designations were the result of sequence analysis; therefore, we constructed an expression system of CadABC and CadABCD in Escherichia coli and assayed their enzyme activities. Our findings indicate that CadC is essential for the activity of 2,4-D oxygenase and CadD promotes CadABC activity in recombinant E. coli cells. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Mode of Action Studies on a Chiral Diphenyl Ether Peroxidizing Herbicide

    PubMed Central

    Hallahan, Beverly J.; Camilleri, Patrick; Smith, Alison; Bowyer, John R.

    1992-01-01

    The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-O-(acetic acid, methyl ester) (DPEI) induced an abnormal accumulation of protoporphyrin IX in darkness in the green alga Chlamydomonas reinhardtii, as determined by high-performance liquid chromatography and spectrofluorimetry. It also inhibited the increase in cell density of the alga in light-grown cultures with an I50 (concentration required to decrease cell density increase to 50% of the noninhibited control value) of 0.16 μm. The relative ability of four peroxidizing diphenyl ether herbicides to cause tetrapyrrole accumulation in C. reinhardtii correlated qualitatively with their ability to inhibit the increase in cell density in light-grown cultures. The purified S(−) enantiomer of the optically active phthalide DPE 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methylphthalide (DPEIII), which has greater herbicidal activity than the R(+) isomer, induces a 4- to 5-fold greater tetrapyrrole accumulation than the R(+) isomer. The I50 for inhibition of increase in cell density in light-grown cultures of C. reinhardtii by the S(−) isomer (0.019 μm) is less than 25% of that for the R(+) isomer. DPEIII inhibits protoporphyrinogen IX oxidase activity in pea (Pisum sativum) etioplast lysates, with the S(−) enantiomer showing considerably greater potency than the R(+) isomer and the racemic mixture showing a potency intermediate between the two. The results indicate that the site at which DPEs inhibit protoporphyrinogen IX oxidase shows chiral discrimination and provide further evidence for the link between inhibition of this enzyme, protoporphyrin IX accumulation, and the phytotoxicity of DPE herbicides. PMID:16653107

  18. Mode of Action Studies on Nitrodiphenyl Ether Herbicides 1

    PubMed Central

    Bowyer, John R.; Hallahan, Beverly J.; Camilleri, Patrick; Howard, Joy

    1989-01-01

    The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI) induces light- and O2-dependent lipid peroxidation and chlorophyll (Chl) bleaching in the green alga Scenedesmus obliquus. Under conditions of O2-limitation, these effects are diminished by prometyne and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), both inhibitors of photosynthetic electron transport. Mutants in which photosynthetic electron transport is blocked are also resistant to DPEI under conditions of O2-limitation. Light- and O2-dependent lipid peroxidation and Chl bleaching are also induced by 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methoxyphthalide (DPEII), a diphenyl ether whose redox properties preclude reduction by photosystem I. However, these effects of DPEII are also inhibited by DCMU. Under conditions of high aeration, DCMU does not protect Scenedesmus cells from Chl bleaching induced by DPEI, but does protect against paraquat. DPEI, but not paraquat, induces tetrapyrrole formation in treated cells in the dark. This is also observed in a mutant lacking photosystem I but is suppressed under conditions likely to lead to O2 limitation. Our results indicate that, in contrast to paraquat, the role of photosynthetic electron transport in diphenyl ether toxicity in Scenedesmus is not to reduce the herbicide to a radical species which initiates lipid peroxidation. Its role is probably to maintain a sufficiently high O2 concentration, through water-splitting, in the algal suspension. PMID:16666600

  19. Mode of Action Studies on Nitrodiphenyl Ether Herbicides

    PubMed Central

    Bowyer, John R.; Smith, Beverly J.; Camilleri, Patrick; Lee, Susan A.

    1987-01-01

    5-[2-Chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI), is a potent nitrodiphenyl ether herbicide which causes rapid leaf wilting, membrane lipid peroxidation, and chlorophyll destruction in a process which is both light- and O2-dependent. These effects resemble those of other nitrodiphenyl ether herbicides. Unlike paraquat, the herbicidal effects of DPEI are only slightly reduced by pretreatment with the photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. DPEI is a weak inhibitor of photosynthetic electron transport (I50 15 micromolar for water to paraquat) in vitro, with at least one site of action at the cytochrome b6f complex. Ultrastructural studies and measurements of ethane formation resulting from lipid peroxidation indicate that mutants of barley lacking photosystem I (PSI) (viridis-zb63) or photosystem II (viridis-zd69) are resistant to paraquat but susceptible to DPEI. The results indicate that electron transfer through both photosystems is not essential for the toxic effects of nitrodiphenyl ether herbicides. Furthermore, the results show that neither cyclic electron transport around PSI, nor the diversion of electrons from PSI to O2 when NADPH consumption is blocked are essential for the phytotoxicity of nitrodiphenyl ether herbicides. Images Fig. 2 Fig. 3 Fig. 4 PMID:16665297

  20. Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water

    USGS Publications Warehouse

    Zimmerman, L.R.; Schneider, R.J.; Thurman, E.M.

    2002-01-01

    Dimethenamid [2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide] and flufenacet [N-(4-fluorophenyl)-N-(1-methylethyl)-2-(5-(trifluoromethyl)-1,3,4- thiadiazol-2-yl)oxy] were isolated by C-18 solid-phase extraction and separated from their ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates during their elution using ethyl acetate for the parent compound, followed by methanol for the polar degradates. The parent compounds were detected using gas chromatography-mass spectrometry in selected-ion mode. The ESA and OXA degradates were detected using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESPMS) in negative-ion mode. The method detection limits for a 123-mL sample ranged from 0.01 to 0.07 μg/L. These methods are compatible with existing methods and thus allow for analysis of 17 commonly used herbicides and 18 of their degradation compounds with one extraction. In a study of herbicide transport near the mouth of the Mississippi River during 1999 and 2000, dimethenamid and its ESA and OXA degradates were detected in surface water samples during the annual spring flushes. For flufenacet, the only detections at the study site were for the ESA degradates in samples collected at the peak of the herbicide spring flush in 2000. The low frequency of detections in surface water likely is due to dimethenamid and flufenacet being relatively new herbicides. In addition, detectable amounts of the stable degradates have not been detected in ground water.

  1. [Breakdown of the herbicide pyramin by micro-organisms of the soil (author's transl)].

    PubMed

    Eberspächer, J; Haug, S; Blobel, F; Sauber, K

    1976-07-01

    The herbicide Pyramin, which is employed in the cultivation of beets to combat broad-leaf weeds, contains the herbicidal substance 5-amino-4-chloro-2-phenyl-3 (2H) pyridazinone, abbreviated pyrazone. The breakdown of pyrazone in the soil was investigated and it was found that this substance disappears relatively quickly and that the dephenylated heterocycle of pyrazone 5-amino-4-chloro-3 (2H) pyridazinone is obtained as transformation product. It was possible to isolate bacteria, which grow on pyrazone as the only carbon source, from soil samples originating from different parts of the world. Four compounds are excreted during the cultivation of pyrazone-degrading bacteria in a pyrazone mineral salt medium. With the aid of the structure of these metabolites and enzymatic tests, a scheme for the bacterial breakdown of pyrazone is proposed.

  2. 40 CFR 180.401 - Thiobencarb; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide thiobencarb (S-[(4-chlorophenyl)methyl]diethyl-carbamothioate) and its... the herbicide thiobencarb (S-[(4-chloro-phenyl)methyl]diethylcarbamothioate) and its chlorobenzyl and...

  3. 40 CFR 180.401 - Thiobencarb; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide thiobencarb (S-[(4-chlorophenyl)methyl]diethyl-carbamothioate) and its... the herbicide thiobencarb (S-[(4-chloro-phenyl)methyl]diethylcarbamothioate) and its chlorobenzyl and...

  4. 40 CFR 180.401 - Thiobencarb; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide thiobencarb (S-[(4-chlorophenyl)methyl]diethyl-carbamothioate) and its... the herbicide thiobencarb (S-[(4-chloro-phenyl)methyl]diethylcarbamothioate) and its chlorobenzyl and...

  5. 40 CFR 180.401 - Thiobencarb; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide thiobencarb (S-[(4-chlorophenyl)methyl]diethyl-carbamothioate) and its... the herbicide thiobencarb (S-[(4-chloro-phenyl)methyl]diethylcarbamothioate) and its chlorobenzyl and...

  6. 40 CFR 180.401 - Thiobencarb; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the herbicide thiobencarb (S-[(4-chlorophenyl)methyl]diethyl-carbamothioate) and its chlorobenzyl... residues of the herbicide thiobencarb (S-[(4-chloro-phenyl)methyl]diethylcarbamothioate) and its...

  7. Occurrence and transport of acetochlor in streams of the Mississippi River Basin

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    1999-01-01

    The herbicide acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6- methylphenyl) acetamide] was first used on corn (Zea mays L.) in the USA during the growing season of 1994. By 1996, it was the third most heavily used corn herbicide in the midwestern USA. During the growing season of 1997, 78% of 375 samples collected at 32 stream sites in the Mississippi River Basin contained detectable concentrations of acetochlor. However, concentrations in only 2% of the samples exceeded 2 ??g/L, the maximum annual average concentration allowable in public water supplies derived primarily from surface water. The largest acetochlor concentrations were detected in streams draining basins in parts of Illinois, Indiana, and Iowa. The median concentration of acetochlor in streams was about 10% that of atrazine (6- chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine), about 25% that of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide], about 50% that of cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5- triazin-2-yl]amino]-2-methylpropionitrile], and about threefold that of alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl) acetanilide]. Load estimates indicate that, during the growing season of 1997, agricultural subbasins draining areas of Illinois, Indiana, and Iowa contributed about 37000 kg, or 74%, of the 50 000 kg of acetochlor measured in streams of the Mississippi River Basin.

  8. Biodegradation of 5-chloro-2-picolinic acid by novel identified co-metabolizing degrader Achromobacter sp. f1.

    PubMed

    Wu, Zhi-Guo; Wang, Fang; Ning, Li-Qun; Stedtfeld, Robert D; Yang, Zong-Zheng; Cao, Jing-Guo; Sheng, Hong-Jie; Jiang, Xin

    2017-06-01

    Several bacteria have been isolated to degrade 4-chloronitrobenzene. Degradation of 4-chloronitrobenzene by Cupriavidus sp. D4 produces 5-chloro-2-picolinic acid as a dead-end by-product, a potential pollutant. To date, no bacterium that degrades 5-chloro-2-picolinic acid has been reported. Strain f1, isolated from a soil polluted by 4-chloronitrobenzene, was able to co-metabolize 5-chloro-2-picolinic acid in the presence of ethanol or other appropriate carbon sources. The strain was identified as Achromobacter sp. based on its physiological, biochemical characteristics, and 16S rRNA gene sequence analysis. The organism completely degraded 50, 100 and 200 mg L -1 of 5-chloro-2-picolinic acid within 48, 60, and 72 h, respectively. During the degradation of 5-chloro-2-picolinic acid, Cl - was released. The initial metabolic product of 5-chloro-2-picolinic acid was identified as 6-hydroxy-5-chloro-2-picolinic acid by LC-MS and NMR. Using a mixed culture of Achromobacter sp. f1 and Cupriavidus sp. D4 for degradation of 4-chloronitrobenzen, 5-chloro-2-picolinic acid did not accumulate. Results infer that Achromobacter sp. f1 can be used for complete biodegradation of 4-chloronitrobenzene in remedial applications.

  9. Yellow nutsedge (Cyperus esculentus L. ) control with herbicides: the role of tuberization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, W.

    1985-01-01

    Trials were carried out under greenhouse, growth chamber, laboratory, outdoor pot, and field conditions to characterize stages of yellow nutsedge tuberization and to investigate the influence of herbicides. The effects of herbicides on tuberization and phytotoxicity at several growth stages, as well as on sprouting, growth characteristics, and survival of new tubers were determined. Tuberization was a continuous process, but was modulated by plant age and environmental conditions. The growth stage that included the time of first tuber initiation was the best for applying glyphosate (N-(phosphonomethyl)glycine) and oxyfluorfen (2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluromethyl)benzene). Plant-age and length of period after spraying influenced glyphosate and oxyfluorfenmore » absorption and translocation. Addition of unlabelled oxyfluorfen as a tank mixture can glyphosate increased absorption of /sup 14/C-glyphosate to 27% after 1 day and 46% after 8 days and increased translocation into other plant parts. Timing of postemergence herbicide applications relative to tuberization is crucial for overall control of yellow nutsedge. When soil applied herbicides were compared in the field, consecutive applications of dichlobenil (2,6-dichlorobenzonitrile) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) for two years provided the best control of nutsedge.« less

  10. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater

    PubMed Central

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens

    2015-01-01

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 105 degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales. PMID:26590282

  11. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed

    USGS Publications Warehouse

    Hively, W. Dean; Hapeman, Cathleen J.; McConnell, Laura L.; Fisher, Thomas R.; Rice, Clifford P.; McCarty, Gregory W.; Sadeghi, Ali M.; Whitall, David R.; Downey, Peter M.; de Guzman, Gabriela T. Nino; Bialek-Kalinski, Krystyna; Lang, Megan W.; Gustafson, Anne B.; Sutton, Adrienne J.; Sefton, Kerry A.; Harman Fetcho, Jennifer A.

    2011-01-01

    Excess nutrients and agrochemicals from non-point sources contribute to water quality impairment in the Chesapeake Bay watershed and their loading rates are related to land use, agricultural practices, hydrology, and pollutant fate and transport processes. In this study, monthly baseflow stream samples from 15 agricultural subwatersheds of the Choptank River in Maryland USA (2005 to 2007) were characterized for nutrients, herbicides, and herbicide transformation products. High-resolution digital maps of land use and forested wetlands were derived from remote sensing imagery. Examination of landscape metrics and water quality data, partitioned according to hydrogeomorphic class, provided insight into the fate, delivery, and transport mechanisms associated with agricultural pollutants. Mean Nitrate-N concentrations (4.9 mg/L) were correlated positively with percent agriculture (R2 = 0.56) and negatively with percent forest (R2 = 0.60). Concentrations were greater (p = 0.0001) in the well-drained upland (WDU) hydrogeomorphic region than in poorly drained upland (PDU), reflecting increased denitrification and reduced agricultural land use intensity in the PDU landscape due to the prevalence of hydric soils. Atrazine and metolachlor concentrations (mean 0.29 μg/L and 0.19 μg/L) were also greater (p = 0.0001) in WDU subwatersheds than in PDU subwatersheds. Springtime herbicide concentrations exhibited a strong, positive correlation (R2 = 0.90) with percent forest in the WDU subwatersheds but not in the PDU subwatersheds. In addition, forested riparian stream buffers in the WDU were more prevalent than in the PDU where forested patches are typically not located near streams, suggesting an alternative delivery mechanism whereby volatilized herbicides are captured by the riparian forest canopy and subsequently washed off during rainfall. Orthophosphate, CIAT (6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine), CEAT (6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine), and MESA (2-[(2-ethyl-6-methylphenyl) (2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid) were also analyzed. These findings will assist efforts in targeting implementation of conservation practices to the most environmentally-critical areas within watersheds to achieve water quality improvements in a cost-effective manner.

  12. Understanding the Effects of Atrazine on Steroidogenesis in rat granulosa and H295R adrenal cortical carcinoma cells

    EPA Science Inventory

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was introduced in the 1950s as a broad spectrum herbicide, and remains one of the most widely used herbicides in the United States. Several studies have suggested that atrazine modifies steroidogenesis and may disrupt r...

  13. Wavelength Effect on the Action of a N-Phenylimide S-23142 and a Diphenylether Acifluorfen-Ethyl in Cotyledons of Cucumber (Cucumis sativus L.) Seedlings 1

    PubMed Central

    Sato, Ryo; Nagano, Eiki; Oshio, Hiromichi; Kamoshita, Katsuzo; Furuya, Masaki

    1987-01-01

    Specific wavelengths of light required for expression of phytotoxic activity of S-23142 (N-[4-chloro-2-fluoro-5-propargyloxy]phenyl-3,4,5,6-tetra- hydrophthalimide) and acifluorfen-ethyl (ethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitro benzoic acid) were determined in cotyledons of cucumber seedlings using the Okazaki Large Spectrograph. Leakage of amino acids from the cotyledons was measured as an indication of the phytotoxic activity. The wavelength effects showed common major peaks of activity at 550 and 650 nanometers and a minor peak at 450 nanometers for both herbicides, indicating a common primary photoreaction. Concomitant application of DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea) with S-23142 had little influence on the effective wavelengths for S-23142 activity. Light of 450 and 650 nanometers was relatively less effective in achlorophyllous tissue grown in far red light than in green tissue. These results strongly suggest that the phytotoxic action of S-23142 and diphenylethers involves multiple photoreactions and that one of the photoreceptor pigments may be chlorophyll or its related pigment, although photosynthesis is not involved. PMID:16665819

  14. Surface retention and photochemical reactivity of the diphenylether herbicide oxyfluorfen.

    PubMed

    Scrano, Laura; Bufo, Sabino A; Cataldi, Tommaso R I; Albanis, Triantafyllos A

    2004-01-01

    The photochemical behavior of oxyfluorfen [2-chloro-1-(3-etoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] on two Greek soils was investigated. Soils were sampled from Nea Malgara and Preveza regions, characterized by a different organic matter content. Soils were spiked with the diphenyl-ether herbicide and irradiation experiments were performed either in the laboratory with a solar simulator (xenon lamp) or outside, under natural sunlight irradiation; other soil samples were kept in the dark to control the retention reaction. Kinetic parameters of both retention and photochemical reactions were calculated using zero-, first- and second- (Langmuir-Hinshelwood) order equations, and best fit was checked through statistical analysis. The soil behaviors were qualitatively similar but quantitatively different, with the soil sampled from the Nea Malgara region much more sorbent as compared with Preveza soil. All studied reactions followed second-order kinetics and photochemical reactions were influenced by retaining capability of the soils. The contributions of the photochemical processes to the global dissipation rates were also calculated. Two main metabolites were identified as 2-chloro-1-(3-ethoxy-4-hydroxyphenoxy)-4-(trifluoromethyl)benzene and 2-chloro-1- (3-hydroxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene.

  15. The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykidis, Athanasios; Perez-Pantoja, Danilo; Ledger, Thomas

    Cupriavidus necator JMP134 (formerly Ralstonia eutropha JMP134) is a Gram-negative {beta}-proteobacterium able to degrade a variety of chloroaromatic compounds and chemically-related pollutants. It was originally isolated based on its ability to use 2,4 dichlorophenoxyacetic acid (2,4-D) as a sole carbon and energy source [1]. In addition to 2,4-D, this strain can also grow on a variety of aromatic substrates, such as 4-chloro-2-methylphenoxyacetate (MCPA), 3-chlorobenzoic acid (3-CB) [2], 2,4,6-trichlorophenol [3], and 4-fluorobenzoate [4]. The genes necessary for 2,4-D utilization have been identified. They are located in two clusters on plasmid pPJ4: tfd{sub I} and tfd{sub II} [5,6,7,8]. The sequence and analysismore » of plasmid pJP4 was reported and a congruent model for bacterial adaptation to chloroaromatic pollutants was proposed [9]. According to this model, catabolic gene clusters assemble in a modular manner into broad-host-range plasmid backbones by means of repeated chromosomal capture events. Cupriavidus and related Burkholderia genomes are typically multipartite, composed of two large replicons (chromosomes) accompanied by classical plasmids. Previous work with Burkholderia xenovorans LB400 revealed a differential gene distribution with core functions preferentially encoded by the larger chromosome and secondary functions by the smaller [10]. It has been proposed that the secondary chromosomes in many bacteria originated from ancestral plasmids which, in turn, had been the recipient of genes transferred earlier from ancestral primary chromosomes [11]. The existence of multiple Cupriavidus and Burkholderia genomes provides the opportunity for comparative studies that will lead to a better understanding of the evolutionary mechanisms for the formation of multipartite genomes and the relation with biodegradation abilities.« less

  16. 40 CFR 180.243 - Propazine; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... the herbicide propazine (2-chloro-4,6-bis(isopropylamino)-s-triazine in or on the following raw...

  17. Comparative cytotoxicity of alachlor, acetochlor, and metolachlor herbicides in isolated rat and cryopreserved human hepatocytes.

    PubMed

    Kale, Vijay M; Miranda, Sonia R; Wilbanks, Mitchell S; Meyer, Sharon A

    2008-02-01

    Noncancerous adverse effects observed at the lowest dose for chloroacetanilide herbicides alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)-acetanilide] and acetochlor [2-chloro-2'-methyl-6'-ethyl-N-(ethoxymethyl)acetanilide], but not metolachlor [2-chloro-2'-ethyl-6'-methyl-N-(1-methyl-2-methoxymethyl)acetanilide], are hepatotoxicity in rats and dogs. Liver microsomal N-dealkylation, a step in the putative activating pathway, of acetochlor exceeds that of alachlor and is negligible for metolachlor. In the present investigation, cytotoxicity of the three chloroacetanilides was ranked using isolated rat and cryopreserved human hepatocytes to correlate this endpoint with CYP3A-dependent metabolism. Chloroacetanilide cytotoxicity in rat hepatocyte suspensions was time dependent (e.g., LC(50 - alachlor/2 h) vs. LC(50 - alachlor/4 h) = 765 vs. 325 muM). Alachlor and acetochlor were more potent than metolachlor after 2 and 4 h, times when N-dealkylated alachlor product 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) formation was readily detectable. Alachlor and acetochlor potencies with cryopreserved human hepatocytes at 2 h were comparable to freshly isolated rat hepatocytes, and alachlor metabolism to CDEPA was likewise detectable. Unlike rat hepatocytes, metolachlor potency was equivalent to acetochlor and alachlor in human hepatocytes. Furthermore, chloroacetanilide cytotoxicity from two sources of human hepatocytes varied inversely with CYP3A4 activity. Collectively, while cytotoxicity in rat hepatocytes was consistent with chloroacetanilide activation by CYP3A, an activating role for CYP3A4 was not supported with human hepatocytes. (c) 2008 Wiley Periodicals, Inc.

  18. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific... established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5-[2-chloro-4...

  19. The acetochlor registration partnership surface water monitoring program for four corn herbicides.

    PubMed

    Hackett, Amy G; Gustafson, David I; Moran, Sharon J; Hendley, Paul; van Wesenbeeck, Ian; Simmons, Nick D; Klein, Andrew J; Kronenberg, Joel M; Fuhrman, John D; Honegger, Joy L; Hanzas, John; Healy, David; Stone, Christopher T

    2005-01-01

    A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.

  20. 40 CFR 180.592 - Butafenacil; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl 2-chloro-5-[3,6-dihydro-3... are established for residues of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl...

  1. 40 CFR 180.592 - Butafenacil; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl 2-chloro-5-[3,6-dihydro-3... are established for residues of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl...

  2. 40 CFR 180.592 - Butafenacil; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl 2-chloro-5-[3,6-dihydro-3... are established for residues of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl...

  3. 40 CFR 180.592 - Butafenacil; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl 2-chloro-5-[3,6-dihydro-3... are established for residues of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl...

  4. 40 CFR 180.592 - Butafenacil; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl 2-chloro-5-[3,6-dihydro-3... are established for residues of the herbicide butafenacil, (1,1-dimethyl-2-oxo-2-(2-propenyloxy)ethyl...

  5. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    PubMed Central

    Brown, Alfred E.; Gilbert, Carl W.; Guy, Rachel; Arntzen, Charles J.

    1984-01-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa QB protein of chloroplast membranes. Images PMID:16593520

  6. 40 CFR 721.5262 - 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identified generically as 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3-[(1-sulfo-2-naphthalenyl)azo...

  7. 40 CFR 721.5262 - 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identified generically as 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2,7-Naphthalenedisulfonic acid, 5-[[4-chloro-6-[substituted] amino]-1,3,5-triazin-2-yl]amino]-4-hydroxy-3-[(1-sulfo-2-naphthalenyl)azo...

  8. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal.

    PubMed

    Das, Amal Chandra; Debnath, Anjan

    2006-11-01

    A field experiment has been conducted with four systemic herbicides viz., butachlor [N-(butoxymethyl)-2-chloro-2',6'-diethyl-acetanilide], fluchloralin [N-(2-chloroethyl)-(2,6-dinitro-N-propyl-4-trifluoromethyl) aniline], oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopro poxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at their recommended field rates (2.0, 1.5, 0.4 and 0.12kga.i.ha(-1), respectively) to investigate their effects on growth and activities of aerobic non-symbiotic N(2)-fixing bacteria and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in the rhizosphere soils as well as yield of the rice crop (Oryza sativa L cv. IR-36). Application of herbicides, in general, highly stimulated the population and activities of the target microorganisms, which resulted in a greater amount of atmospheric nitrogen fixation and phosphate solubilization in the rhizosphere soils of the test crop. The greater microbial activities subsequently augmented the mineralization and availability of nitrogen and phosphorus in the soil solution, which in turn increased the yield of the crop. Among the herbicides, oxyfluorfen was most stimulative followed by fluchloralin and oxadiazon in augmenting the microbial activities in soil. Butachlor also accentuated the mineralization and availability of nitrogen due to higher incitement of non-symbiotic N(2)-fixing bacteria in paddy soil. The grain and straw yields of the crop were also significantly increased due to the application of oxyfluorfen (20.2% and 21%) followed by fluchloralin (13.1% and 15.4%) and butachlor (9.1% and 10.2%), respectively.

  9. Herbicide and nitrate distribution in central Iowa rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatfield, J.L.; Prueger, J.H.; Pfeiffer, R.L.

    Herbicides are detected in rainfall; however, these are a small fraction of the total applied. This study was designed to evaluate monthly and annual variation in atrazine (6-chloro-N-ethyl-N{prime}-(1-methylethyl)-1,3,5-triazine-2,4-diamine), alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide), metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide), and NO{sub 3}-N concentrations in rainfall over Walnut Creek watershed south of Ames, IA. The study began in 1991 and continued through 1994. Within the watershed, two wet/dry precipitation samplers were positioned 4 km apart. Detections varied during the year with >90% of the herbicide detections occurring in April through early July. Concentrations varied among events from nondetectable amounts to concentrations of 154 {mu}g L{sup {minus}1}, which occurredmore » when atrazine was applied during an extremely humid day immediately followed by rainfall of <10 mm that washed spray drift from the atmosphere. This was a local scale phenomenon, because the other collector had a more typical concentration of 1.7 {mu}g L{sup {minus}1} with an 8-mm rainfall. VAriation between the two collectors suggests that local scale meteorological processes affect herbicide movement. Yearly atrazine deposition totals were >100 {mu}g m{sup {minus}2} representing <0.1% of the amount applied. Nitrate-N concentrations in precipitation were uniformly distributed throughout the year and without annual variation in the concentrations. Deposition rates of NO{sub 3}-N were about 1.2 g m{sup {minus}2}. Annual loading onto the watershed was about 25% of the amount applied from all forms of N fertilizers. Movement and rates of deposition provide an understanding of the processes and magnitude of the impact of agriculture on the environment. 7 refs., 5 figs., 3 tabs.« less

  10. Herbicide loading to shallow ground water beneath Nebraska's Management Systems Evaluation Area.

    PubMed

    Spalding, Roy F; Watts, Darrell G; Snow, Daniel D; Cassada, David A; Exner, Mary E; Schepers, James S

    2003-01-01

    Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.

  11. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    USDA-ARS?s Scientific Manuscript database

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  12. Solution-phase parallel syntheses of herbicidal 1-phenyl-2,4,5- imidazolidinetriones and 2-thioxo-4,5-imidazolidinediones.

    PubMed

    Li, Bin; Man, Ying; Bai, Li-Ping; Ji, Hai-Ying; Shi, Xue-Geng; Cui, Dong-Liang

    2013-01-01

    In order to find new herbicidally active compounds, a fifteen-member library, focusing on the variation of 3- position substituents of 2,4,5-imidazolidine-trione or 2-thioxo-4,5-imidazolidinedione, was designed and prepared in parallel by the reaction of various ureas or thioureas with oxalyl chloride using solution-phase technology. An interesting and, to the best of our knowledge, unprecedented finding is that a by-product of 1-phenyl-3-propylcarbodiimide was formed during the addition of oxalyl chloride into the solution of 1-phenyl-3-propylthiourea in the presence of triethylamine in dichloromethane. It has been shown that the herbicidal activity of 2,4,5-imidazolidinetriones is about the same as that of their analogous 2-thioxo-4,5-imidazolidinediones. Compound with propyl or isopropyl group at the 3- position of 2,4,5-imidazolidinetrione ring demonstrated good herbicidal activity. The most active compound, 1-(2-fluoro- 4-chloro-5-propargyloxy)-phenyl-3-propyl-2-thioxo-4,5-imidazolidinedione, gave 95% control of the growth of velvetleaf at 200 g/ha in the post-emergence test.

  13. Crystal structure of fenclorim.

    PubMed

    Kwon, Eunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-10-01

    In the title compound, C10H6Cl2N2 (systematic name: 4,6-di-chloro-2-phenyl-pyrimidine), which is used commercially as the herbicide safener, fenclorim, the dihedral angle between the di-chloro-pyrimidyl and phenyl rings is 9.45 (10)°. In the crystal, C-H⋯N hydrogen bonds link adjacent mol-ecules, forming chains along the c-axis direction. In addition, weak inter-molecular C-Cl⋯π [3.6185 (10) Å] and π-π [3.8796 (11) Å] inter-actions are present, forming a three-dimensional network.

  14. Effect of the herbicides oxadiazon and oxyfluorfen on phosphates solubilizing microorganisms and their persistence in rice fields.

    PubMed

    Das, Amal Chandra; Debnath, Anjan; Mukherjee, Debatosh

    2003-10-01

    A field experiment has been conducted with two herbicides viz. oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at rates of 0.4 and 0.12 kg a.i. ha(-1), respectively, to investigate their effect on the growth and activities of phosphate solubilizing microorganisms in relation to availability of phosphorus as well as persistence of the herbicides in the rhizosphere soil of wetland rice (Oryza sativa L. variety IR-36). Application of herbicides stimulated the population and activities of phosphate solubilizing microorganisms and also the availability of phosphorus in the rhizosphere soil. Oxyfluorfen provided greater microbial stimulation than oxadiazon. Dissipation of oxyfluorfen and oxadiazon followed first order reaction kinetics with half-life (T(1/2)) of 8.8 and 12 days, respectively. Sixty days after application 0.5% and 3% of the applied oxadiazon and oxyfluorfen residues persisted, respectively, in the rhizosphere soil of rice.

  15. 40 CFR 180.487 - Pyrithiobac sodium; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Pyrithiobac sodium; tolerances for... § 180.487 Pyrithiobac sodium; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide, pyrithiobac sodium, (sodium 2-chloro-6-[(4,6-dimethoxypyrimidin-2-yl)thio...

  16. 40 CFR 180.487 - Pyrithiobac sodium; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Pyrithiobac sodium; tolerances for... § 180.487 Pyrithiobac sodium; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide, pyrithiobac sodium, (sodium 2-chloro-6-[(4,6-dimethoxypyrimidin-2-yl)thio...

  17. 40 CFR 180.487 - Pyrithiobac sodium; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Pyrithiobac sodium; tolerances for... § 180.487 Pyrithiobac sodium; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide, pyrithiobac sodium, (sodium 2-chloro-6-[(4,6-dimethoxypyrimidin-2-yl)thio...

  18. 40 CFR 180.487 - Pyrithiobac sodium; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Pyrithiobac sodium; tolerances for... § 180.487 Pyrithiobac sodium; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide, pyrithiobac sodium, (sodium 2-chloro-6-[(4,6-dimethoxypyrimidin-2-yl)thio...

  19. 40 CFR 180.487 - Pyrithiobac sodium; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pyrithiobac sodium; tolerances for... § 180.487 Pyrithiobac sodium; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide, pyrithiobac sodium, (sodium 2-chloro-6-[(4,6-dimethoxypyrimidin-2-yl)thio...

  20. Evaluation of weed control efficacy and crop safety of the new HPPD-inhibiting herbicide-QYR301.

    PubMed

    Wang, Hengzhi; Liu, Weitang; Zhao, Kongping; Yu, Hui; Zhang, Jia; Wang, Jinxin

    2018-05-21

    QYR301, 1,3-Dimethyl-1H-pyrazole-4-carboxylic acid 4-[2-chloro-3-(3,5-dimethyl-pyrazol-1-ylmethyl)-4-methanesulfonyl-benzoyl]-2,5-dimethyl-2H-pyrazol-3-yl ester, is a novel HPPD-inhibiting herbicide and was evaluated to provide a reference for post-emergence (POST) application under greenhouse and field conditions. The crop safety (180 and 360 g active ingredient (a.i.) ha -1 treatments) experiment revealed that wheat, paddy, garlic and corn were the only four crops without injury at both examined herbicide rates. The weed control efficacy (60 and 120 g a.i. ha -1 ) experiment showed that QYR301 exhibited high efficacy against many weeds, especially weeds infesting paddy fields. Furthermore, it is interesting that both susceptible and multiple herbicide resistant Echinochloa crus-galli (L.) Beauv. and Echinochloa phyllopogon (Stapf) Koss, two notorious weed species in paddy field, remained susceptible to QYR301. Further crop tolerance results indicated that 20 tested paddy hybrids displayed different levels of tolerance to QYR301, with the japonica paddy hybrids having more tolerance than indica paddy hybrids under greenhouse conditions. Results obtained from field experiments showed that QYR301 POST at 135 to 180 g a.i. ha -1 was recommended to provide satisfactory full-season control of E. crus-galli and Leptochloa chinensis (L.) Nees and to maximize rice yields. These findings indicate that QYR301 possesses great potential for the management of weeds in paddy fields.

  1. Exposure to pesticides as risk factor for non-Hodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies.

    PubMed

    Hardell, Lennart; Eriksson, Mikael; Nordstrom, Marie

    2002-05-01

    Increased risk for non-Hodgkin's lymphoma (NHL) following exposure to certain pesticides has previously been reported. To further elucidate the importance of phenoxyacetic acids and other pesticides in the etiology of NHL a pooled analysis was performed on two case-control studies, one on NHL and another on hairy cell leukemia (HCL), a rare subtype of NHL. The studies were population based with cases identified from cancer registry and controls from population registry. Data assessment was ascertained by questionnaires supplemented over the telephone by specially trained interviewers. The pooled analysis of NHL and HCL was based on 515 cases and 1141 controls. Increased risks in univariate analysis were found for subjects exposed to herbicides (OR 1.75, CI 95% 1.26-2.42), insecticides (OR 1.43, CI 95% 1.08-1.87), fungicides (OR 3.11, CI 95% 1.56-6.27) and impregnating agents (OR 1.48, CI 95% 1.11-1.96). Among herbicides, significant associations were found for glyphosate (OR 3.04, CI 95% 1.08-8.52) and 4-chloro-2-methyl phenoxyacetic acid (MCPA) (OR 2.62, CI 95% 1.40-4.88). For several categories of pesticides the highest risk was found for exposure during the latest decades before diagnosis. However, in multivariate analyses the only significantly increased risk was for a heterogeneous category of other herbicides than above.

  2. IMPROVING STRUCTURE-LINKED ACCESS TO PUBLICLY AVAILABLE CHEMICAL TOXICITY INFORMATION

    EPA Science Inventory

    Hepatotoxicity of the Herbicide Alachlor Associated with Glutathione Depletion, Oxidative Damage and Protein S-Cysteinyl Adduction.

    Toxicity of the herbicide alachlor (2-chloro-2',6'-diethtl-N-[methoxtmethtl]-acetanilide) has been attributed to cytochrome P450-dependent me...

  3. Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics.

    PubMed

    White, Paul M; Potter, Thomas L; Culbreath, Albert K

    2010-02-15

    Pesticides are typically applied as mixtures and or sequentially to soil and plants during crop production. A common scenario is herbicide application at planting followed by sequential fungicide applications post-emergence. Fungicides depending on their spectrum of activity may alter and impact soil microbial communities. Thus there is a potential to impact soil processes responsible for herbicide degradation. This may change herbicide efficacy and environmental fate characteristics. Our study objective was to determine the effects of 4 peanut fungicides, chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile), tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), flutriafol (alpha-(2-fluorophenyl)-alpha-(4-fluorophenyl)-1H-1,2,4-triazole-1-ethanol), and cyproconazole (alpha-(4-chlorophenyl)-alpha-(1-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol) on the dissipation kinetics of the herbicide, metolachlor (2-chloro-N-(6-ethyl-o-tolyl)-N-[(1RS)-2-methoxy-1-methylethyl]acetamide), and on the soil microbial community. This was done through laboratory incubation of field treated soil. Chlorothalonil significantly reduced metolachlor soil dissipation as compared to the non-treated control or soil treated with the other fungicides. Metolachlor DT(50) was 99 days for chlorothalonil-treated soil and 56, 45, 53, and 46 days for control, tebuconazole, flutriafol, and cyproconazole-treated soils, respectively. Significant reductions in predominant metolachlor metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOA), produced by oxidation of glutathione-metolachlor conjugates were also observed in chlorothalonil-treated soil. This suggested that the fungicide impacted soil glutathione-S-transferase (GST) activity. Fungicide DT(50) was 27-80 days but impacts on the soil microbial community as indicated by lipid biomarker analysis were minimal. Overall study results indicated that chlorothalonil has the potential to substantially increase soil persistence (2-fold) of metolachlor and alter fate and transport processes. GST mediated metabolism is common pesticide detoxification process in soil; thus there are implications for the fate of many active ingredients.

  4. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    PubMed

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome. [Triticum aestivum; Bromus tectorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auge, R.M.; Gealy, D.R.; Ogg, A.G.

    1987-04-01

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with /sup 3/H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and thenmore » either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted.« less

  6. Effect of meteorology and soil condition on metolachlor and atrazine volatilization over a 10 year period

    USDA-ARS?s Scientific Manuscript database

    A 10-year study was conducted to focus on the impact of soil and climatic factors governing herbicide volatilization from an agricultural field. For the first 5 years, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro-N-ethyl-N’-(1-methyl...

  7. Hydrolytic Activation Kinetics of the Herbicide Benzobicyclon in Simulated Aquatic Systems.

    PubMed

    Williams, Katryn L; Tjeerdema, Ronald S

    2016-06-22

    Herbicide resistance is a growing concern for weeds in California rice fields. Benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has proven successful against resistant rice field weeds in Asia. A pro-herbicide, BZB forms the active agent, benzobicyclon hydrolysate (BH), in water; however, the transformation kinetics are not understood for aquatic systems, particularly flooded California rice fields. A quantitative experiment was performed to assess the primary mechanism and kinetics of BZB hydrolysis to BH. Complete conversion to BH was observed for all treatments. Basic conditions (pH 9) enhanced the reaction, with half-lives ranging from 5 to 28 h. Dissolved organic carbon (DOC) hindered transformation, which is consistent with other base-catalyzed hydrolysis reactions. BH was relatively hydrolytically stable, with 18% maximum loss after 5 days. Results indicate BZB is an efficient pro-herbicide under aqueous conditions such as those of a California rice field, although application may be best suited for fields with recirculating tailwater systems.

  8. Synthesis of Substituted Catechols using Nitroarene Dioxygenases

    DTIC Science & Technology

    2006-01-01

    3 -chloro- 2 - methylbenzoic acid by Pseudomonas cepacia through the meta fission pathway. Appl Environ Microbiol 1992;58:2501–4. [29] Riefler RG...Dinitrotoluene 0.03 – 1,3-Dinitrobenzene 0.89a 0.15 2 - Bromo - 3 -nitrotoluene 1.01 – 2 -Chloro- 3 -nitrotoluene 1.09 – 2 -Chloro-4-nitrotoluene 0.61 0.56 2 ...the 3 -chloro- 2 - methylbenzoate degradation pathway [28]. 4. Discussion The nitroarene dioxygenases expand possible synthetic

  9. Development of an analytical scheme for simazine and 2,4-D in soil and water runoff from ornamental plant nursery plots.

    PubMed

    Sutherland, Devon J; Stearman, G Kim; Wells, Martha J M

    2003-01-01

    The transport and fate of pesticides applied to ornamental plant nursery crops are not well documented. Methodology for analysis of soil and water runoff samples concomitantly containing the herbicides simazine (1-chloro-4,6-bis(ethylamino)-s-triazine) and 2,4-D ((2,4-dichlorophenoxy)acetic acid) was developed in this research to investigate the potential for runoff and leaching from ornamental nursery plots. Solid-phase extraction was used prior to analysis by gas chromatography and liquid chromatography. Chromatographic results were compared with determination by enzyme-linked immunoassay analysis. The significant analytical contributions of this research include (1) the development of a scheme using chromatographic mode sequencing for the fractionation of simazine and 2,4-D, (2) optimization of the homogeneous derivatization of 2,4-D using the methylating agent boron trifluoride in methanol as an alternative to in situ generation of diazomethane, and (3) the practical application of these techniques to field samples.

  10. Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria.

    PubMed

    Birchfield, N B; Casida, J E

    1996-01-01

    Protoporphyrinogen oxidase (protox), the last common enzyme in heme and chlorophyll biosynthesis, is the target of several classes of herbicides acting as inhibitors in both plants and mammals. N-(4-Chloro-2-fluoro-5-(propargyloxy)phenyl)-3,4,5,6-tetrahydro phthalimide (a potent protox inhibitor referred to as THP) was synthesized as a candidate radioligand ([3H]-THP) by selective catalytic reduction of 3,6-dihydrophthalic anhydride (DHPA) with tritium gas followed by condensation in 45% yield with 4-chloro-2-fluoro-5-(propargyloxy)aniline. Insertion of tritium at the 3 and 6 carbons of DHPA as well as the expected 4 and 5 carbons resulted in high specific activity [3H]THP (92 Ci/mmol). This radioligand undergoes rapid, specific, saturable, and reversible binding to the inhibitor/herbicide binding site of the protox component of cholate-solubilized mouse liver mitochondria with an apparent Kd of 0.41 nM and Bmax of 0.40 pmol/mg of protein. In the standard assay, mouse preparation (150 micrograms of protein) and [3H]THP (0.5 nM) are incubated in 500 microL of phosphate buffer at pH 7.2 for 15 min at 25 degrees C followed by addition of ammonium sulfate and filtration with glass fiber filters. The potencies of five nitrodiphenyl ethers and two other herbicides as inhibitors of [3H]THP binding correlate well with those for inhibition of protox activity (r2 = 0.97, n = 7), thus validating the binding assay as relevant to enzyme inhibition. It is also suitable to determine in vivo block as illustrated by an approximately 50% decrease in [3H]THP binding in liver mitochondria from mice treated ip with oxyfluorfen at 4 mg/kg. This is the first report of a binding assay for protox in mammals. The high affinity and specific activity of [3H]THP facilitate quantitation of protox and therefore research on a sensitive inhibition site for porphyrin biosynthesis.

  11. Effects of chlorophenoxy herbicides and their main transformation products on DNA damage and acetylcholinesterase activity.

    PubMed

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B; Sottomayor, M J; Borges, Fernanda; Garrido, E Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.

  12. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    PubMed Central

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B.; Sottomayor, M. J.; Borges, Fernanda; Garrido, E. Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode. PMID:24795892

  13. Analysis of chlorophenoxy acid herbicides in water by large-volume on-line derivatization and gas chromatography-mass spectrometry.

    PubMed

    Ding, W H; Liu, C H; Yeh, S P

    2000-10-27

    This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.

  14. Synthetic polymers blend used in the production of high activated carbon for pesticides removals from liquid phase.

    PubMed

    Belo, Cristóvão Ramiro; Cansado, Isabel Pestana da Paixão; Mourão, Paulo Alexandre Mira

    2017-02-01

    For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET-PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m 2  g -1 ) and pore volume (0.46, 0.56 and 0.50 cm 3  g -1 ), respectively, for PET, PAN and PET-PAN precursors. Selected ACs were successfully tested for 4-chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g -1 , respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET-PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.

  15. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  16. UV absorbers for cellulosic apparels: A computational and experimental study

    NASA Astrophysics Data System (ADS)

    Sahar, Anum; Ali, Shaukat; Hussain, Tanveer; Irfan, Muhammad; Eliasson, Bertil; Iqbal, Javed

    2018-01-01

    Two triazine based Ultra Violet (UV) absorbers Sulfuric acid mono-(2-{4-[4-chloro-6-(4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino-phenylamino)-[1,3,5]triazin-2-ylamino]-benzenesulfonyl}-ethyl) ester (1a) and 4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino}-2-[4-chloro-6-(2-sulfooxy-ethanesulfonyl)-[1,3,5]triazin-2-ylamino]-benzenesulfonic acid (2a) with different substituents were designed computationally. The influence of different substituents on the electrochemical properties and UV spectra of the absorbers was investigated. The presence of electron deficient unit in 1a to the molecular core significantly reduces the LUMO levels and energy gap. The designed absorbers were synthesized via condensation reaction and characterized by UV-Vis, FT-IR, MS studies. The performance of synthesized compounds as UV absorbers and their fastness properties were assessed by finishing the cotton fabric through exhaust method at different concentration and results appeared in good range.

  17. 40 CFR 180.473 - Glufosinate ammonium; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide glufosinate-ammonium (butanoic acid, 2-amino-4-(hydroxymethylphosphinyl...-propionic acid, expressed as 2-amino-4-(hydroxymethylphosphinyl)butanoic acid equivalents, in or on the... herbicide glufosinate ammonium, butanoic acid, 2-amino-4-(hydroxymethylphosphinyl)-, monoammonium salt and...

  18. Cinnamic Acid Analogs as Intervention Catalysts for Overcoming Antifungal Tolerance.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Cheng, Luisa W

    2017-10-21

    Disruption of fungal cell wall should be an effective intervention strategy. However, the cell wall-disrupting echinocandin drugs, such as caspofungin (CAS), cannot exterminate filamentous fungal pathogens during treatment. For potency improvement of cell wall-disrupting agents (CAS, octyl gallate (OG)), antifungal efficacy of thirty-three cinnamic acid derivatives was investigated against Saccharomyces cerevisiae slt2 Δ, bck1 Δ, mutants of the mitogen-activated protein kinase (MAPK), and MAPK kinase kinase, respectively, in cell wall integrity system, and glr1 Δ, mutant of CAS-responsive glutathione reductase. Cell wall mutants were highly susceptible to four cinnamic acids (4-chloro-α-methyl-, 4-methoxy-, 4-methyl-, 3-methylcinnamic acids), where 4-chloro-α-methyl- and 4-methylcinnamic acids possessed the highest activity. Structure-activity relationship revealed that 4-methylcinnamic acid, the deoxygenated structure of 4-methoxycinnamic acid, overcame tolerance of glr1 Δ to 4-methoxycinnamic acid, indicating the significance of para substitution of methyl moiety for effective fungal control. The potential of compounds as chemosensitizers (intervention catalysts) to cell wall disruptants (viz., 4-chloro-α-methyl- or 4-methylcinnamic acids + CAS or OG) was assessed according to Clinical Laboratory Standards Institute M38-A. Synergistic chemosensitization greatly lowers minimum inhibitory concentrations of the co-administered drug/agents. 4-Chloro-α-methylcinnamic acid further overcame fludioxonil tolerance of Aspergillus fumigatus antioxidant MAPK mutants ( sakA Δ, mpkC Δ). Collectively, 4-chloro-α-methyl- and 4-methylcinnamic acids possess chemosensitizing capability to augment antifungal efficacy of conventional drug/agents, thus could be developed as target-based (i.e., cell wall disruption) intervention catalysts.

  19. Mechanism of Action of the Diphenyl Ether Herbicide Acifluorfen-Methyl in Excised Cucumber (Cucumis sativus L.) Cotyledons 1

    PubMed Central

    Orr, Gregory L.; Hess, F. Dana

    1982-01-01

    Cucumber (Cucumis sativus L.) cotyledons were sensitive to the diphenyl ether herbicide acifluorfen-methyl (AFM); methyl 5-[2-chloro-4-(trifluoro-methyl)phenoxyl-2-nitrobenzoate. Injury was detected by monitoring the efflux of 86Rb+ from treated tissues after exposure to light (600 micro einsteins per meter2 per second; photosynthetically active radiation). AFM exhibited activity in green and etiolated tissues in the presence of both 1 micromolar 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 1 micromolar 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), inhibitors of photosynthetic electron transport. Protection against injury could be obtained by pretreating the seedlings with a carotenoid biosynthesis inhibitor, 10 micromolar fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4 (H)-pyridinone}. After a 4-hour dark pretreatment with 1 and 10 micromolar AFM, cotyledons were exposed to light (600 micro einsteins per meter2 per second; photosynthetically active radiation). Within 1 to 2 hours after light treatment, significant increases in the level of thiobarbituric acid-reacting materials could be detected. Electron microscopic observations of treated tissues revealed significant structural damage to the chloroplast envelope, tonoplast, and plasma membrane. Etiolated cucumber cotyledons treated with 1 micromolar AFM and exposed to light were less susceptible to injury when maintained in an O2-deficient atmosphere. Protection against injury could be obtained with 50 micromolar α-tocopherol. These results suggest AFM is activated in light by yellow plant pigments and then is involved in the initiation of a free radical chain reaction with polyunsaturated fatty acid moieties of phospholipid molecules making up cellular membranes. The perturbations that follow result in a loss of the membrane's selective permeability characteristics, thereby leading to cellular death. Images PMID:16662237

  20. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid

    NASA Astrophysics Data System (ADS)

    Campos, Sandro X.; Vieira, Eny M.; Cordeiro, Paulo J. M.; Rodrigues-Fo, Edson; Murgu, Michael

    2003-12-01

    In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13×10 -4 mol dm -3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields ( G) were calculated.

  1. Determination of Adsorption Equations for Chloro Derivatives of Aniline on Halloysite Adsorbents Using Inverse Liquid Chromatography.

    PubMed

    Słomkiewicz, Piotr M; Szczepanik, Beata; Garnuszek, Magdalena; Rogala, Paweł; Witkiewicz, Zygfryd

    2017-11-01

    Chloro derivatives of aniline are commonly used in the production of dyes, pharmaceuticals, and agricultural agents. They are toxic compounds with a large accumulation ability and low natural biodegradability. Halloysite is known as an efficient adsorbent of toxic compounds, such as phenols or herbicides, from wastewater. Inverse LC was applied to measure the adsorption of aniline and 2-chloroaniline (2-CA), 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) on halloysite adsorbents. A peak division (PD) method was used to determine a Langmuir equation in accordance with the adsorption measurement results. The values of adsorption equilibrium constants and enthalpy were determined and compared by breakthrough curve and PD methods. The physical sense of the calculated adsorption enthalpy values was checked by applying Boudart's entropy criteria. Of note, adsorption enthalpy values for halloysite adsorbents decreased in the following order: aniline > 4-CA > 2-CA > 3-CA.

  2. Synthesis and molecular crystal of 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one

    NASA Astrophysics Data System (ADS)

    Tittal, Ram Kumar

    2018-03-01

    CuCl/TMEDA-promoted halogen atom transfer radical cyclization (HATRC) of dichloroacetic acid 1-(3-methyl-but-2-enyl)-naphthalen-2-yl ester in refluxing DCE gave chlorine containing 7-member lactone 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one via 7-exo trig radical cyclization reaction. The structure of the Lactone was confirmed by X-ray diffraction data.

  3. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide.

    PubMed

    Song, Yaling

    2014-02-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was the first synthetic herbicide to be commercially developed and has commonly been used as a broadleaf herbicide for over 60 years. It is a selective herbicide that kills dicots without affecting monocots and mimics natural auxin at the molecular level. Physiological responses of dicots sensitive to auxinic herbicides include abnormal growth, senescence, and plant death. The identification of auxin receptors, auxin transport carriers, transcription factors response to auxin, and cross-talk among phytohormones have shed light on the molecular action mode of 2,4-D as a herbicide. Here, the molecular action mode of 2,4-D is highlighted according to the latest findings, emphasizing the physiological process, perception, and signal transduction under herbicide treatment. © 2013 Institute of Botany, Chinese Academy of Sciences.

  4. 40 CFR 180.441 - Quizalofop ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combined residues of the herbicide quizalofop (2-[4-(6-chloroquinoxalin-2-yl oxy)phenoxy]propanoic acid... combined residues of the herbicide quizalofop (2-[4-(6-chloroquinoxalin-2-yl oxy)phenoxy]propanoic acid... byproducts 0.05 (3) Tolerances are established for the combined residues of the herbicide quizalofop-p ethyl...

  5. 40 CFR 180.441 - Quizalofop ethyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combined residues of the herbicide quizalofop (2-[4-(6-chloroquinoxalin-2-yl oxy)phenoxy]propanoic acid... combined residues of the herbicide quizalofop (2-[4-(6-chloroquinoxalin-2-yl oxy)phenoxy]propanoic acid... byproducts 0.05 (3) Tolerances are established for the combined residues of the herbicide quizalofop-p ethyl...

  6. Hepatotoxicity, Nephrotoxicity and Oxidative Stress in Rat Testis Following Exposure to Haloxyfop-p-methyl Ester, an Aryloxyphenoxypropionate Herbicide

    PubMed Central

    Olayinka, Ebenezer Tunde; Ore, Ayokanmi

    2015-01-01

    Haloxyfop-p-methyl ester (HPME) ((R)-2-{4-[3-chloro-5-(trifluoromethyl)-2-pyridyloxy]phenoxy}propionic acid), is a selective aryloxyphenoxypropionate (AOPP) herbicide. It exerts phytotoxicity through inhibition of lipid metabolism and induction of oxidative stress in susceptible plants. This study investigated the toxicological potentials of HPME in rats. Twenty-four male Wistar rats (170–210 g) were randomized into four groups (I–IV). Group I (control) received 1 mL of distilled water, while animals in Groups II, III and IV received 6.75, 13.5 and 27 mg/kg body weight HPME, respectively, for 21 days. There was a significant (p < 0.05) increase in renal and hepatic function biomarkers (urea, creatinine, total bilirubin, ALP, ALT, AST) in the plasma of treated animals compared to control. Levels of testicular antioxidants, ascorbic acid and glutathione, and activities of glutathione-S-transferase, superoxide dismutase and catalase were reduced significantly after 21 days of HPME administration in a dose-dependent manner. The testicular malondialdehyde level increased significantly in the HPME-treated rats relative to the control. A significant decrease in testicular lactate dehydrogenase, acid phosphatase and γ-glutamyl transferase was also observed in HPME-treated animals. Testicular histology revealed severe interstitial edema and sections of seminiferous tubules with necrotic and eroded germinal epithelium in the HPME-treated rats. Overall, data from this study suggest that HPME altered hepatic and renal function and induced oxidative stress and morphological changes in the testis of rats. PMID:29051470

  7. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  8. Development of sampling and analytical methods for concerted determination of commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand-wash, dermal-patch, and air samples.

    PubMed

    Tucker, S P; Reynolds, J M; Wickman, D C; Hines, C J; Perkins, J B

    2001-06-01

    Sampling and analytical methods were developed for commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand washes, on dermal patches, and in air. Eight herbicides selected for study were alachlor, atrazine, cyanazine, 2,4-dichlorophenoxyacetic acid (2,4-D), metolachlor, simazine, and two esters of 2,4-D, the 2-butoxyethyl ester (2,4-D, BE) and the 2-ethylhexyl ester (2,4-D, EH). The hand-wash method consisted of shaking the worker's hand in 150 mL of isopropanol in a polyethylene bag for 30 seconds. The dermal-patch method entailed attaching a 10-cm x 10-cm x 0.6-cm polyurethane foam (PUF) patch to the worker for exposure; recovery of the herbicides was achieved by extraction with 40 mL of isopropanol. The air method involved sampling with an OVS-2 tube (which contained an 11-mm quartz fiber filter and two beds of XAD-2 resin) and recovery with 2 mL of 10:90 methanol:methyl t-butyl ether. Analysis of each of the three sample types was performed by gas chromatography with an electron-capture detector. Diazomethane in solution was employed to convert 2,4-D as the free acid to the methyl ester in each of the three methods for ease of gas chromatography. Silicic acid was added to sample solutions to quench excess diazomethane. Limits of detection for all eight herbicides were matrix-dependent and, generally, less than 1 microgram per sample for each matrix. Sampling and analytical methods met NIOSH evaluation criteria for all herbicides in hand-wash samples, for seven herbicides in air samples (all herbicides except cyanazine), and for six herbicides in dermal-patch samples (all herbicides except cyanazine and 2,4-D). Speciation of 2,4-D esters and simultaneous determination of 2,4-D acid were possible without losses of the esters or of other herbicides (acetanilides and triazines) being determined.

  9. Synthesis and In Vitro Antimicrobial Evaluation of New 1,3,4-Oxadiazoles Bearing 5-Chloro-2-methoxyphenyl Moiety.

    PubMed

    Prasanna Kumar, Basavapatna N; Mohana, Kikkeri N; Mallesha, Lingappa; Harish, Kikkeri P

    2013-01-01

    A series of new 1,3,4-oxadiazole derivatives, 4(a-h), containing 5-chloro-2-methoxy benzohydrazide moiety were synthesized by the reaction of 5-chloro-2-methoxybenzoate with different aromatic carboxylic acids. These newly synthesized compounds were characterized by FT-IR, (1)H NMR, mass spectra, and also by elemental analysis. All the newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial studies revealed that compounds 4c, 4f, and 4g showed significant activity against tested strains.

  10. Chlorofluorocarbon dating of herbicide-containing well waters in Fresno and Tulare counties, California

    USGS Publications Warehouse

    Spurlock, F.; Burow, K.; Dubrovsky, N.

    2000-01-01

    Simazine, diuron, and bromacil are the most frequently detected currently registered pesticides in California groundwater. These herbicides have been used for several decades in Fresno and Tulare counties, California; however, previous data are inadequate to determine whether the detections are a result of recent or historical applications (i.e., within the last decade, or 20-30 yr ago). Chlorofluorocarbon (CFC) groundwater age-dating was used in conjunction with one-dimensional transport modeling to address this question. The estimated times between herbicide application and subsequent detection in groundwater samples from 18 domestic wells ranged from 3 to 33 yr; the aggregate data indicate that more than half of the detections are associated with applications in the last decade. The data also suggest that changes in groundwater quality arising from modified management practices will probably not be discernible for at least a decade. A secondary objective of this study was to evaluate the contribution of simazine degradates deethylsimazine (DES; 2-amino-4-chloro-6-ethylamino-s-triazine) and diaminochlorotriazine (DACT; 2,4-diamino-6-chloro-s-triazine) to total triazine concentrations (defined here as simazine + DES + DACT) in 30 domestic wells. The N-dealkylated s- chlorotriazine degradates DES and DACT substantially contribute to total triazine concentrations in Fresno and Tulare County groundwater, composing 24 to 100% of the total triazines, with a median of 82%. If s-chlorotriazines display a common mode of toxicological action, the prevalence of triazine degradates in water samples found in this and other studies indicate that drinking water standards based on total s-chlorotriazine concentrations may be most appropriate.

  11. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94.

    PubMed

    Hayashi, Shohei; Sano, Tomoki; Suyama, Kousuke; Itoh, Kazuhito

    2016-01-01

    Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Specific Binding of Protoporphyrin IX to a Membrane-Bound 63 Kilodalton Polypeptide in Cucumber Cotyledons Treated with Diphenyl Ether-Type Herbicides.

    PubMed

    Sato, R; Oshio, H; Koike, H; Inoue, Y; Yoshida, S; Takahashi, N

    1991-06-01

    Porphyrin accumulation in excised cucumber cotyledons (Cucumis sativus L.) treated with a N-phenylimide S-23142 (N-[4-chloro-2-fluoro-5-propargyloxyphenyl]-3,4,5,6- tetrahydrophthalimide) and a diphenylether acifluorfen-ethyl (ethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitro benzoic acid) was studied. Most of the accumulated porphyrins were found in the membrane fractions of 6,000g and 30,000g pellets, forming a complex with a membrane polypeptide. The complex was solubilized with 1% n-dodecyl beta-d-maltoside and its molecular mass was estimated to be 63,000 and 66,000 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation high performance liquid chromatography (HPLC), respectively. The polypeptide also existed in untreated cotyledons but had little protoporphyrin IX. The complex was also formed in vitro by mixing the 30,000g pellets from untreated cotyledons and authentic protoporphyrin IX. However, protoporphyrin IX formed the complex specifically with the 63,000 dalton polypeptide and not with the other proteins both in vivo and in vitro. At least four fluorescent porphyrins, including protoporphyrin IX, were found in the acetone extract of the cotyledons by HPLC using a reversed phase column. Protoporphyrin IX was one of the two porphyrins that formed the complex. These results suggest that S-23142 and acifluorfenethyl enhance the accumulation of protoporphyrin IX, which forms the complex with the membrane protein.

  13. Suitability of hardwood treated with phenoxy and pyridine herbicides for firewood use

    Treesearch

    P.B. Bush; D.G. Neary; Charles K. McMahon; J.W. Taylor

    1987-01-01

    Abstract. Potential exposure to pesticide residues resulting from burning wood treated with phenoxyand pyridine herbicides was assessed. Wood samples from trees treated with 2,4-D [2,4-dichlo-rophenoxy acetic acid], dicamba [3,6-dichloro-o-anisic acid], dichlorprop [2-(2,4-dichlorphenoxy) propionic acid], picloram [4-amino-3,5,dtrichloropico-linic...

  14. Determination of phenoxyacid herbicides and their phenolic metabolites in surface and drinking water.

    PubMed

    Marchese, Stefano; Perret, Daniela; Gentili, Alessandra; D'Ascenzo, Guiseppe; Faberi, Angelo

    2002-01-01

    An evaluation was made of the feasibility of using reversed-phase liquid chromatography/tandem mass spectrometry with an electrospray interface (LC/ESI-MS/MS) to measure traces of phenoxyacid herbicides and their metabolites in surface and drinking water samples. The procedure involved passing 0.5 L of river and drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. Recovery was higher than 85% irrespective of the aqueous matrix in which the analytes were dissolved. A conventional 4.6-mm i.d. reversed-phase LC C-18 column operating with a mobile phase flow rate of 1 mL/min was used to chromatograph the analytes. A flow of 200 microL/min of the column effluent was diverted to the ESI source. The limits of detection (signal-to-noise ratio = 3) of the method for the pesticides considered in drinking and surface water samples are less than 0.1 ng/L for phenoxyacid herbicides, and about 5-10 ng/L for their metabolites (2,4-dichlorophenol and 4-chloro-2-methylphenol). Copyright 2001 John Wiley & Sons, Ltd.

  15. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-, 1,1...

  16. 40 CFR 721.10020 - Benzoic acid, 5-amino-2-chloro-, 1,1-dimethyl-2-oxo-2-(2-propenyloxy) ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 5-amino-2-chloro-, 1,1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10020 Benzoic acid, 5-amino-2-chloro... subject to reporting. (1) The chemical substance identified as benzoic acid, 5-amino-2-chloro-, 1,1...

  17. Interactions of Lipoidal Materials and a Pyridazinone Inhibitor of Chloroplast Development

    PubMed Central

    Hilton, J. L.; John, J. B. St.; Christiansen, M. N.; Norris, K. H.

    1971-01-01

    Formation of chloroplast pigments was inhibited, and free fatty acids accumulated in mustard (Brassica juncea [L.] Coss.) cotyledons and in barley (Hordeum vulgare L.) first leaves developed after treatment with 4-chloro-5- (dimethylamino)-2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone. The inhibitor reduced the amount of fatty acids found in polar lipids (galactolipids) of barley chloroplasts and increased the amount in nonpolar lipids while having little effect on total content of bound fatty acids. The inhibition of chlorophyll formation was circumvented by D-α-tocopherol acetate, phytol, farnesol, and squalene, and by unsaturated fatty acids and their methyl esters. The protective action can be explained partially by an interaction external to the plant whereby 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone partitioned out of the aqueous phase and into the lipid phase, thus limiting availability of the inhibitor to plants. However, the amount of inhibitor reaching the cotyledons of tocopherol-protected mustard seedlngs was still in excess of the amount necessary to cause white foliage, but it failed to produce the effect. Tocopherol treatment did not prevent the 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone-induced buildup of fatty acids in mustard cotyledons but did partially circumvent the effect in barley leaves. The amount of linolenic acid relative to linoleic acid was reduced in barley leaves and chloroplasts by 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone action and this effect was circumvented by tocopherol. PMID:16657757

  18. Synthesis and In Vitro Antimicrobial Evaluation of New 1,3,4-Oxadiazoles Bearing 5-Chloro-2-methoxyphenyl Moiety

    PubMed Central

    Prasanna Kumar, Basavapatna N.; Mohana, Kikkeri N.; Mallesha, Lingappa; Harish, Kikkeri P.

    2013-01-01

    A series of new 1,3,4-oxadiazole derivatives, 4(a–h), containing 5-chloro-2-methoxy benzohydrazide moiety were synthesized by the reaction of 5-chloro-2-methoxybenzoate with different aromatic carboxylic acids. These newly synthesized compounds were characterized by FT-IR, 1H NMR, mass spectra, and also by elemental analysis. All the newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial studies revealed that compounds 4c, 4f, and 4g showed significant activity against tested strains. PMID:25374693

  19. Determination of multiresidues of three acid herbicides in tobacco by liquid chromatography/tandem mass spectrometry.

    PubMed

    Liu, Shanshan; Bian, Zhaoyang; Yang, Fei; Li, Zhonghao; Fan, Ziyan; Zhang, Hongfei; Wang, Ying; Zhang, Yange; Tang, Gangling

    2015-01-01

    A method to determine residues of the three acid herbicides, 2,4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, and 3,6-dichloro-2-methoxybenzoic acid (dicamba), in tobacco using LC/MS/MS is presented. Because these herbicide residues in tobacco might exist in different forms (free acid, salt, and ester), tobacco samples were first pretreated by alkaline hydrolysis and then the pH was adjusted in order to convert the residues completely to their free acid forms. Dichloromethane extraction and dispersive SPE using C18 sorbent were carried out before LC/MS/MS analysis, and quantification was performed using the internal standard method. Linearity was good for all analytes (R(2) ≥ 0.999) in the concentration range of 0.02 to 0.5 mg/kg. LODs were below 0.05 mg/kg. Recoveries ranged from 80.4 to 93.5%, and RSD was below 10%. This simple, efficient, and sensitive method can be applied to the determination of residues of the three acid herbicides in tobacco.

  20. Synthesis, characterization and corrosion inhibition properties of benzamide-2-chloro-4-nitrobenzoic acid and anthranilic acid-2-chloro-4-nitrobenzoic acid for mild steel corrosion in acidic medium

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Verma, Chandrabhan; Singh, B.; Ebenso, Eno E.

    2018-03-01

    The present study deals with the synthesis of two new compounds namely, benzamide - 2-chloro-4-nitrobenzoic acid (BENCNBA) and anthranilic acid-2-chloro-4-nitrobenzoic acid (AACNBA) using solid phase reactions. The phase diagram studies revealed that formation of the investigated compounds occurs in 1:1 molar ratio. The synthesized compounds were characterized using several spectral techniques such as FT-IR, 1H and 13C NMR, UV-Vis, powder X-ray diffraction (PXRD). Single crystal XRD (SCXRD) study showed that both BENCNBA and AACNBA compounds crystallize in triclinic crystal system with P-1 space group. Further, the presence of intermolecular hydrogen bonding between the constituent components was also supported by single crystal X-ray diffraction (SCXRD) method. Heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions have also been computed using the enthalpy of fusion values derived from differential scanning calorimeter (DSC) study. The inhibition effect of BENCNBA and AACNBA on the mild steel corrosion in hydrochloric acid solution was tested using electrochemical methods. Electrochemical impedance spectroscopy (EIS) study revealed that both BENCNBA and AACNBA behaved as interface corrosion inhibitors and showed maximum inhibition efficiencies of 95.71% and 96.42%, respectively at 400 ppm (1.23 × 10-3 M) concentration. Potentiodynamic polarization (PDP) measurements suggested that BENCNBA and AACNBA acted as mixed type corrosion inhibitors. EIS and PDP results showed that BENCNBA and AACNBA act as efficient corrosion inhibitors for mild steel and their inhibition efficiencies enhances on increasing their concentrations.

  1. Effects of Acifluorfen on Endogenous Antioxidants and Protective Enzymes in Cucumber (Cucumis sativus L.) Cotyledons

    PubMed Central

    Kenyon, William H.; Duke, Stephen O.

    1985-01-01

    The herbicide acifluorfen (2-chloro-4-(trifluoromethyl)phenoxy-2-nitrobenzoate) causes strong photooxidative destruction of pigments and lipids in sensitive plant species. Antioxidants and oxygen radical scavengers slow the bleaching action of the herbicide. The effect of acifluorfen on glutathione and ascorbate levels in cucumber (Cucumis sativus L.) cotyledon discs was investigated to assess the relationship between herbicide activity and endogenous antioxidants. Acifluorfen decreased the levels of glutathione and ascorbate over 50% in discs exposed to less than 1.5 hours of white light (450 microeinsteins per square meter per second). Coincident increases in dehydroascorbate and glutathione disulfide were not observed. Acifluorfen also caused the rapid depletion of ascorbate in far-red light grown plants which were photosynthetically incompetent. Glutathione reductase, dehydroascorbate reductase, superoxide dismutase, ascorbate oxidase, ascorbate free radical reductase, peroxidase, and catalase activities rapidly decreased in acifluorfen-treated tissue exposed to white light. None of the enzymes were inhibited in vitro by the herbicide. Acifluorfen causes irreversible photooxidative destruction of plant tissue, in part, by depleting endogenous antioxidants and inhibiting the activities of protective enzymes. PMID:16664506

  2. Coupling solid-phase extraction and enzyme-linked immunosorbent assay for ultratrace determination of herbicides in pristine water

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.

    1993-01-01

    Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were coupled for automated trace analysis of pristine water samples containing 2-chloro-4-ethylamino-6-isopropylamine-s-triazine (atrazine) and 2-chloro-2???,6???-diethyl-N-(methoxymethyl)acetanilide (alachlor). The isolation of the two herbicides on a C18-resin involved the selection of an elution solvent that both removes interfering substances and is compatible with ELISA. Ethyl acetate was selected as the elution solvent followed by a solvent exchange with methanol/water (20/80, % v/v). The SPE-ELISA method has a detection limit of 5.0 ng/L (5 ppt), >90% recovery, and a relative standard deviation of ??10%. The performance of a microtiter plate-based ELISA and a magnetic particle-based ELISA coupled to SPE was also evaluated. Although the sensitivity of the two ELISA methods was comparable, the precision using magnetic particles was improved considerably (??10% versus ??20%) because of the faster reaction kinetics provided by the magnetic particles. Finally, SPE-ELISA and isotope dilution gas chromatography/ mass spectrometry correlated well (correlation coefficient of 0.96) for lake-water samples. The SPE-ELISA method is simple and may have broader applications for the inexpensive automated analysis of other contaminants in water at trace levels.

  3. Fate of herbicides in a shallow aerobic aquifer: A continuous field injection experiment (Vejen, Denmark)

    NASA Astrophysics Data System (ADS)

    Broholm, Mette M.; Rügge, Kirsten; Tuxen, Nina; HøJberg, Anker L.; MosbæK, Hans; Bjerg, Poul L.

    2001-12-01

    A continuous, natural gradient, field injection experiment, involving six herbicides and a tracer, was performed in a shallow aerobic aquifer near Vejen, Denmark. Bentazone, (±)-2-(4-chloro-2-methylphenoxy) propanoic acid (MCPP), dichlorprop, isoproturon, and the dichlobenil metabolite 2,6-dichlor-benzamide (BAM) were injected along with 2-methyl-4,6-dinitrophenol (not discussed in this paper) and the tracer bromide. The injection lasted for 216 days and created a continuous plume in the aquifer. The plume was monitored in three dimensions in 96 multilevel samplers of 6-9 points each for 230 days, with selected individual points for a longer period. The bromide plume followed a complex path through the monitoring network downgradient of the injection wells. The plume movement was controlled by spatially varied hydraulic conductivities of the sand deposit and influenced by asynchronous seasonal variation in groundwater potentials. An average flow velocity of 0.5 m/d was observed, as depicted by bromide. Bentazone, BAM, MCPP, and dichlorprop retardation was negligible, and only slight retardation of isoproturon was observed in the continuous injection experiment and a preceding pulse experiment. No degradation of bentazone was observed in the aerobic aquifer during the monitoring period. BAM and isoproturon were not degraded within 5 m downgradient of the injection. The two phenoxy acids MCPP and dichlorprop were both degraded in the aerobic aquifer. Near the source a lag phase was observed followed by fast degradation of the phenoxy acids, indicating growth kinetics. The phenoxy acids were completely degraded within l m downgradient of the injection wells, resulting in the plumes being divided into small plumes at the injection wells and pulses farther downgradient. During the lag phase, phenoxy acids had spread beyond the 25 m long monitoring network. However, the mass of the phenoxy acids passing the 10-25 m fences never matched the corresponding bentazone or bromide masses, and the pulse was observed to shrink in size. This indicates that this pulse of phenoxy acids was being partially degraded at a low rate as it traveled through the aquifer.

  4. Determination of Acid Herbicides Using Modified QuEChERS with Fast Switching ESI(+)/ESI(-) LC-MS/MS.

    PubMed

    Sack, Chris; Vonderbrink, John; Smoker, Michael; Smith, Robert E

    2015-11-04

    A method for the determination of 35 acid herbicides in food matrices was developed, validated, and implemented. It utilizes a modified QuEChERS extraction procedure coupled with quantitation by liquid chromatography tandem mass spectrometry (LC-MS/MS). The acid herbicides analyzed are all organic carboxylic acids, including the older chlorophenoxy acid herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D), dicamba, 4-chlorophenoxyacetic acid (4-CPA), quinclorac, and many of the newer imidazolinone herbicides such as imazethapyr and imazaquin. In the procedure, 10 mL of water is added to 5 g of sample and then extracted with 1% formic acid in acetonitrile for 1 min. The acetonitrile phase is salted out of the extract by adding sodium chloride and magnesium sulfate, followed by centrifugation. The acetonitrile is diluted 1:1 with water to enable quantitation by LC-MS/MS using fast switching between positive and negative electrospray ionization modes. The average recoveries for all the compounds except aminocyclopyrachlor were 95% with a precision of 8%. The method detection limits for all residues were less than 10 ng/g, and the correlation coefficients for the calibration curves was greater than 0.99 for all but two compounds tested. The method was used successfully for the quantitation of acid herbicides in the FDA's total diet study. The procedure proved to be accurate, precise, linear, sensitive, and rugged.

  5. Occurrence of fatty acid chlorohydrins in jellyfish lipids.

    PubMed

    White, R H; Hager, L P

    1977-11-01

    Fatty acid chlorohydrins are characterized as lipid components of an edible jellyfish. The four isomers 9-chloro-10-hydroxypalmitic acid, 10-chloro-9-hydroxypalmitic acid, 9-chloro-10-hydroxystearic acid, and 10-chloro-9-hydroxystearic acid were identified by gas chromatography-mass spectrometry comparison of the methyl esters and their trimethylsilyl derivatives with known synthetic samples. Two additional isomers, 11-chloro-12-hydroxystearic acid and 12-chloro-11-hydroxystearic acid, were also found in the lipid by the identification of the expected mass spectral fragments of the trimethylsilyl (Me3Si) derivative of their methyl esters. These six isomeric compounds represented approximately 1.4% of the total extractable jellyfish lipid and were released from the lipid as methyl esters by boron trifluoride-methanol treatment. These isomers account for only about 30% of the organic chlorine in the lipid. Evidence is given that the remaining organic chlorine is also present as fatty acid chlorohydrins containing more than one hydroxyl group.

  6. Treatment of 2,4-D, mecoprop, and dicamba using membrane bioreactor technology.

    PubMed

    Ghoshdastidar, Avik J; Tong, Anthony Z

    2013-08-01

    Phenoxyacetic and benzoic acid herbicides are widely used agricultural, commercial, and domestic pesticides. As a result of high water solubility, mobility, and persistence, 2,4-dichlorophenoxyacetic acid (2,4-D), methylchlorophenoxypropionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba) have been detected in surface and waste waters across Canada. As current municipal wastewater treatment plants do not specifically address chronic, trace levels of contaminants like pesticides, an urgent need exists for an efficient, environmentally friendly means of breaking down these toxic herbicides. A commercially available herbicide mix, WeedEx, containing 2,4-D, mecoprop, and dicamba, was subjected to treatment using membrane bioreactor (MBR) technology. The three herbicides, in simulated wastewater with a chemical oxygen demand of 745 mg/L, were introduced to the MBR at concentrations ranging from 300 μg/L to 3.5 mg/L. Herbicides and biodegradation products were extracted from MBR effluent using solid-phase extraction followed by detection using high-performance liquid chromatography coupled with mass spectrometry. 2,4-D was reduced by more than 99.0 % within 12 days. Mecoprop and dicamba were more persistent and reduced by 69.0 and 75.4 %, respectively, after 112 days of treatment. Half-lives of 2,4-D, mecoprop and dicamba during the treatment were determined to be 1.9, 10.5, and 28.3 days, respectively. Important water quality parameters of the effluent such as dissolved oxygen, pH, ammonia, chemical oxygen demand, etc. were measured daily. MBR was demonstrated to be an environmentally friendly, compact, and efficient method for the treatment of toxic phenoxyacetic and benzoic acid herbicides.

  7. Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload.

    PubMed

    Liu, Joe; Obando, Daniel; Schipanski, Liam G; Groebler, Ludwig K; Witting, Paul K; Kalinowski, Danuta S; Richardson, Des R; Codd, Rachel

    2010-02-11

    Desferrioxamine B (DFOB) conjugates with adamantane-1-carboxylic acid, 3-hydroxyadamantane-1-carboxylic acid, 3,5-dimethyladamantane-1-carboxylic acid, adamantane-1-acetic acid, 4-methylphenoxyacetic acid, 3-hydroxy-2-methyl-4-oxo-1-pyridineacetic acid (N-acetic acid derivative of deferiprone), or 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (deferasirox) were prepared and the integrity of Fe(III) binding of the compounds was established from electrospray ionization mass spectrometry and RP-HPLC measurements. The extent of intracellular (59)Fe mobilized by the DFOB-3,5-dimethyladamantane-1-carboxylic acid adduct was 3-fold greater than DFOB alone, and the IC(50) value of this adduct was 6- or 15-fold greater than DFOB in two different cell types. The relationship between logP and (59)Fe mobilization for the DFOB conjugates showed that maximal mobilization of intracellular (59)Fe occurred at a logP value approximately 2.3. This parameter, rather than the affinity for Fe(III), appears to influence the extent of intracellular (59)Fe mobilization. The low toxicity-high Fe mobilization efficacy of selected adamantane-based DFOB conjugates underscores the potential of these compounds to treat iron overload disease in patients with transfusional-dependent disorders such as beta-thalassemia.

  8. Removal of herbicidal ionic liquids by electrochemical advanced oxidation processes combined with biological treatment.

    PubMed

    Pęziak-Kowalska, Daria; Fourcade, Florence; Niemczak, Michał; Amrane, Abdeltif; Chrzanowski, Łukasz; Lota, Grzegorz

    2017-05-01

    Recently a new group of ionic liquids (ILs) with herbicidal properties has been proposed for use in agriculture. Owing to the design of specific physicochemical properties, this group, referred to as herbicidal ionic liquids (HILs), allows for reducing herbicide field doses. Several ILs comprising phenoxy herbicides as anions and quaternary ammonium cations have been synthesized and tested under greenhouse and field conditions. However, since they are to be introduced into the environment, appropriate treatment technologies should be developed in order to ensure their proper removal and avoid possible contamination. In this study, didecyldimethylammonium (4-chloro-2-methylphenoxy) acetate was selected as a model HIL to evaluate the efficiency of a hybrid treatment method. Electrochemical oxidation or electro-Fenton was considered as a pretreatment step, whereas biodegradation was selected as the secondary treatment method. Both processes were carried out in current mode, at 10 mA with carbon felt as working electrode. The efficiency of degradation, oxidation and mineralization was evaluated after 6 h. Both processes decreased the total organic carbon and chemical oxygen demand (COD) values and increased the biochemical oxygen demand (BOD 5 ) on the COD ratio to a value close to 0.4, showing that the electrolyzed solutions can be considered as 'readily biodegradable.'

  9. ATRAZINE DISRUPTS THE HYPOTHALAMIC CONTROL OF PITUITARY-OVARIAN FUNCTION

    EPA Science Inventory

    The chloro-S-triazine herbicides (i.e., atrazine, simazine, cyanazine) constitute the largest group of herbicides sold in the United States. Despite their extensive usage, relatively little is known about the possible human-health effects and mechanism(s) of action of these compo...

  10. Cinnamic acid analogs as intervention catalysts for overcoming antifungal tolerance

    USDA-ARS?s Scientific Manuscript database

    Antifungal potency of thirty-three cinnamic acid derivatives was investigated. The efficacy of caspofungin (CAS) or octyl gallate (OG), the cell wall disrupting agents, was augmented by 4-chloro-a-methyl- or 4-methylcinnamic acid screened. Synergistic chemosensitization by 4-chloro-a-methyl- or 4-me...

  11. Determination of phenoxy acid herbicides in water by electron-capture and microcoulometric gas chromatography

    USGS Publications Warehouse

    Goerlitz, D.F.; Lamar, William L.

    1967-01-01

    A sensitive gas chromatographic method using microcoulometric titration and electron-capture detection for the analysis of 2,4-D, silvex, 2,4,5-T, and other phenoxy acid herbicides in water is described. The herbicides are extracted from unfiltered water samples (800-1,000 ml) by use of ethyl ether ; then the herbicides are concentrated and esterilied. To allow the analyst a choice, two esterilication procedures--using either boron trifluoride-methanol or diazomethane--are evaluated. Microcoulometric gas chromatography is specific for the detection of halogenated compounds such as the phenoxy acid herbicides whereas it does not respond to nonhalogenated components. Microcoulometric gas chromatography requires care and patience. It is not convenient for rapid screening of l-liter samples that contain less than 1 microgram of the herbicide. Although electroncapture gas chromatography is less selective and more critically affected by interfering substances, it is, nevertheless, convenient and more sensitive than microcoulometric gas chromatography. Two different liquid phases are used in the gas chromatographic columns--DC-200 silicone in one column and QF-1 silicone in the other. The performance of both columns is improved by the addition of Carbowax 20M. The Gas Chrom Q support is coated with the liquid phases by the 'frontal-analysis' technique. The practical lower limits for measurement of the phenoxy acid herbicides in water primarily depend upon the sample size, interferences present, anal instrumentation used. With l-liter samples of water, the practical lower limits of measurement are 10 ppt (parts per trillion) for 2,4-D and 2 ppt for silvex and 2,4,5-T when electron-capture detection is used, and approximately 20 ppt for each herbicide when analyzed by microcoulometric-titration gas chromatography. Recoveries of the herbicides immediately after addition to unfiltered water samples averaged 92 percent for 2,4-D, 90 percent for silvex, and 98 percent for 2,4,5-T. Studies on the stability of herbicides added to water samples showed that 2,4-D may be rapidly degraded, especially if the samples are obtained from areas which have been repeatedly sprayed with 2,4-D. When degradation was observed, added 2,4-D rapidly decomposed within 10 days. At concentrations of about 200 ppt, however, the degradation rate was diminished. In 20 days the concentration of 2,4-D was reduced to 160-180 ppt.

  12. Anaerobic biodegradation of halogenated and nonhalogenated N-, s-, and o-heterocyclic compounds in aquifer slurries

    USGS Publications Warehouse

    Adrian, Neal R.; Suflita, Joseph M.

    1994-01-01

    The fate of several halogenated and nonhalogenated heterocyclic compounds in anoxic aquifer slurries was investigated Substrate depletion and methane formation were monitored in serum bottle incubations by HPLC and GC, respectively Pyridine, pyrimidine, thiophene, and furan were not mineralized following an 11-month incubation, but the corresponding carboxylated or oxygenated compounds were That is, >74% of the theoretically expected amount of methane was recovered from nicotinic acid, uracil, or 2-furoic acid Chlorinated derivatives, like 2 chloro- or 6-chloronicotinic acid, as well as 4 chloro- and 5-chlorouracil resisted mineralization However, 5-bromouracil was reductively dehalogenated to stoichiometric amounts of uracil, whereas 2-chloropyrimidine was metabolized to a more polar unidentified compound that resisted further anaerobic biodegradation Microorganisms acclimated to 5-bromouracil were unable to transform 4 chloro or 5 chlorouracil These findings illustrate how the structure of heterocyclic contaminants influences their susceptibility to anaerobic decay

  13. Transport of atrazine, 2,4-D, and dicamba through preferential flowpaths in an unsaturated claypan soil near Centralia, Missouri

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Vencill, William K.

    1995-03-01

    The objectives were to determine how atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)- s-triazine), dicamba (3-6-dichloro-2-methoxybenzoic acid), and 2,4-D (2,4-dichlorophenoxy-acetic acid) move through claypan soils (fine montmorillonitic, mesic Udollic Ochraqualf Mollic albaqualf, Mexico silty loam) at the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri, and the role of preferential flowpaths in that movement. Twelve intact soil cores (30 cm diameter by 40 cm height), were excavated sequentially, four from each of the following depths: 0-40 cm, 40-80 cm, and 80-120 cm. These cores were used to study preferential flow characteristics using dye staining experiments and to determine hydraulic properties. Six undisturbed experimental field plots, with a 1 m 2 surface area (two sets of three each), were instrumented at the Missouri MSEA on 11 May 1991: 1 m 2 zero-tension pan lysimeters were installed at 1.35 m depths in Plots 1-3 and at 1.05 m depths in Plots 4-6. Additionally, each plot was planted with soybeans ( Glycine max L.) and instrumented with suction lysimeters and tensiometers at 15 cm depth increments. A neutron probe access tube was installed in each plot to determine soil water content at 15 cm intervals. All plots were enclosed with a raised frame (of 8 cm height) to prevent surface runoff, and were allowed to equilibrate for a year before data collection. During this waiting period, all suction and pan lysimeters were purged monthly and were sampled immediately prior to herbicide application in May 1992 to obtain background concentrations. Atrazine, 2,4-D, and dicamba moved rapidly through the soil, probably owing to the presence of preferential flowpaths. Staining of laboratory cores showed a positive correlation between the per cent area stained by depth and the subsequent breakthrough of Br - in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flowpaths. Concentrations of atrazine, 2,4-D, and dicamba exceeding 0.50, 0.1, and 0.15 μg ml -1 were observed with depth (45-135 cm, 60-125 cm and 60-135 cm) after several months following rainfall events. Preferential flowpaths were a major factor in transport of atrazine, 2,4-D, and dicamba at the site.

  14. Biodegradation of Metolachlor by Soil Bacteria and Yeast

    USDA-ARS?s Scientific Manuscript database

    Metolachlor (2-chloro-6’-ethyl-N-(2-methoxy-1-methylethyl) aceto-o-toluidide) is a pre-emergent chloroacetanilide herbicide used to control broadleaf and annual grassy weeds of corn, soybean, peanuts, sorghum, potatoes, cotton, and woody ornamental plants. It has been estimated that 15-24 and 20-24 ...

  15. Reductive dechlorination of atrazine catalyzed by metalloporphyrins.

    PubMed

    Nelkenbaum, Elza; Dror, Ishai; Berkowitz, Brian

    2009-03-01

    Atrazine (2-chloro-4-(ethylamine)-6-(isopropylamine)-s-triazine) is a widely used herbicide which is considered a persistent groundwater contaminant. Its selective transformation mediated by cobalt or nickel porphyrins was studied in aqueous solutions at room temperature and ambient pressure. Several metalloporphyrins were examined as catalysts for the reaction and all yielded the same reaction, transforming atrazine solely to the seldomly reported form 2,4-bis(ethylamine)-6-methyl-s-triazine. The reaction involves dechlorination and migration of a methyl group to yield a symmetric product. Nickel 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) was activated by nanosized zero-valent iron (nZVI) while cobalt porphyrins (TMPyP, 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine-(TP(OH)P) and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)tetrakis (benzenesulfonic acid)-(TBSP)) were activated by titanium(III) citrate as the electron donor. The effect of pH on atrazine transformation was demonstrated for the catalytic system of TP(OH)P-Co/Ti(III) citrate. Finally, a comparison of the reactivities of cobalt TMPyP and TP(OH)P was given and the differences discussed.

  16. Metabolism of clebopride in vitro. Mass spectrometry and identification of products of amide hydrolysis and N-debenzylation.

    PubMed

    Huizing, G; Beckett, A H; Segura, J; Bakke, O M

    1980-03-01

    1. Electron impact and field desorption mass spectrometry is described and discussed for clebopride, a newly developed benzamide with anti-emetic and anti-dopaminergic properties, and for some related compounds. 2. When clebopride was incubated with liver homogenates of rabbits, 4-amino-5-chloro-2-methoxybenzoic acid and N-(4'-piperidyl)-4-amino-5-chloro-2-methoxybenzamide were identified as metabolites.

  17. Dissipation of the Herbicide Benzobicyclon Hydrolysate in a Model California Rice Field Soil.

    PubMed

    Williams, Katryn L; Gladfelder, Joshua J; Quigley, Lindsay L; Ball, David B; Tjeerdema, Ronald S

    2017-10-25

    The herbicide benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has recently been approved for use on California rice fields by the United States Environmental Protection Agency (U.S. EPA). Hydrolysis of BZB rapidly forms the active compound, benzobicyclon hydrolysate (BH), whose fate is currently not well understood. A model California rice soil was used to determine BH soil dissipation. The pK a and aqueous solubility were also determined, as experimental values are not currently available. Sorption data indicate BH does not bind tightly, or irreversibly, with this soil. Flooding resulted in decreased BH loss, indicating anaerobic microbes are less likely to transform BH compared to aerobic microorganisms. Temperature increased dissipation, while autoclaving decreased BH loss. Overall, dissipation was slow regardless of treatment. Further investigation is needed to elucidate the exact routes of loss in soil, though BH is expected to dissipate slowly in flooded rice field soil.

  18. Assessing eco-toxicological effects of industrial 2,4-D acid iso-octylester herbicide on rat pancreas and liver.

    PubMed

    Kalipci, E; Ozdemir, C; Oztas, H

    2013-05-01

    We studied the eco-toxic and carcinogenic effects of a commonly used 2,4-D acid iso-octylester herbicide on rat liver and pancreas. The rats in Group 1 were fed a standard feed and the rats in Group 2 were fed with standard feed to which was added 200 mg/kg/day 2,4-D acid iso-octylester for 16 weeks. Azaserine, 30 mg/kg/body weight, was injected into rats of Groups 3 and 4 to investigate the effects of 2,4-D acid iso-octylester on the development of neoplasms. After feeding the rats with neoplasms in Group 4 with food including 200 mg/kg/day 2,4-D acid iso-octylester for 16 weeks, an autopsy was carried out on all animals. We found that 2,4-D acid iso-octylester caused the formation of atypical cell foci (ACF) in the pancreata and livers of rats. ACF that were formed experimentally by exposure to azaserine had increased diameter, volume and number of atypical cell foci/mm(2) and mm(3) after exposure to 2,4-D acid iso-octylester. Our observations indicated that this herbicide potentially is a cancer initiator.

  19. Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry.

    PubMed

    Wu, Jingming; Lee, Hian Kee

    2006-10-15

    Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction (LPME) for the trace determination of acidic herbicides (2,4-dichlorobenzoic acid, 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy)propionic acid, 3,5-dichlorobenzoic acid, 2-(2,4,5-trichlorophenoxy)propionic acid) in aqueous samples by gas chromatography/mass spectrometry (GC/MS) was developed. Prior to GC injection port derivatization, acidic herbicides were converted into their ion-pair complexes with tetrabutylammonium chloride in aqueous samples and then extracted by 1-octanol impregnated in the hollow fiber. Upon injection, ion pairs of acidic herbicides were quantitatively derivatized to their butyl esters in the GC injection port. Thus, several parameters related to the derivatization process (i.e., injection temperature, purge-off time) were evaluated, and main parameters affecting the hollow fiber-protected LPME procedure such as extraction organic solvent, ion-pair reagent type, pH of aqueous medium, concentration of ion-pair reagent, sodium chloride concentration added to the aqueous medium, stirring speed, and extraction time profile, optimized. At the selected extraction and derivatization conditions, no matrix effects were observed. This method proved good repeatability (RSDs <12.3%, n = 6) and good linearity (r2 > or = 0.9939) for spiked deionized water samples for five analytes. The limits of detection were in the range of 0.51-13.7 ng x L(-1) (S/N =3) under GC/MS selected ion monitoring mode. The results demonstrated that injection port derivatization following ion-pair hollow fiber-protected LPME was a simple, rapid, and accurate method for the determination of trace acidic herbicides from aqueous samples. In addition, this method proved to be environmentally friendly since it completely avoided open derivatization with potentially hazardous reagents.

  20. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    PubMed

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research. © 2010 SETAC.

  1. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  2. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  3. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  4. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  5. 40 CFR 180.610 - Aminopyralid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide aminopyralid, 4-amino-3,6-dichloro-2-pyridinecarboxylic acid, including its... 4.0 Wheat, straw 0.25 (2) Tolerances are established for residues of the herbicide aminopyralid, 4...

  6. Two enzyme immunoassays to screen for 2,4-dichlorophenoxyacetic acid in water.

    PubMed

    Fleeker, J

    1987-01-01

    Two solid-phase enzyme immunoassays were developed to measure 2,4-dichlorophenoxyacetic acid (2,4-D), using 2 sets of structurally distinct immunogens and enzyme ligands. The 2,4-D analog, 2-methyl-4-chlorophenoxyacetic acid (MCPA), gave a similar response with both methods, whereas other phenoxy herbicides cross-reacted differently. In method A, the aromatic moiety of 2,4-D was distal from the carrier protein and labeled enzyme, whereas in method B, the acetic acid portion of the herbicide was distal. The use of both methods to screen for this herbicide in ground water and municipal and river water reduced the number of false-positive responses. Water sources having a low background response could be monitored with either method alone. When a concentration step, with disposable C18 extraction columns, was used, the limit of sensitivity was 5 micrograms/L. Method A was the more sensitive of the 2 methods with a limit of detection of 10 micrograms/L without the concentration step.

  7. Field and laboratory dissipation of the herbicide fomesafen in the southern Atlantic Coastal Plain (USA)

    USDA-ARS?s Scientific Manuscript database

    To control weeds with evolved resistance to glyphosate, cotton farmers in the Southeastern USA have rapidly increased fomesafen (5-(2-chloro-a, a, a-trifluoro-p-tolyloxy)-N-mesyl-2-nitrobenzamide) use. Its properties suggest potential for soil persistence, runoff, and leaching that may contribute to...

  8. Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii

    USDA-ARS?s Scientific Manuscript database

    Metolachlor (2-chloro-6’-ethyl-N-(2-methoxy-1-methylethyl) aceto-o-toluidide) is a pre-emergent chloroacetanilide herbicide used to control broadleaf and annual grassy weeds in a variety of crops. The S enantiomer of metolachlor, S-metolachlor, is the most effective form for weed control. While the ...

  9. DDT-related compounds as non-extractable residues in submarine sediments of the Palos Verdes Shelf, California, USA.

    PubMed

    Kucher, S; Schwarzbauer, J

    2017-10-01

    The Palos Verdes Shelf (PVS) and the continental slope off the Palos Verdes Peninsula are highly contaminated by degradation products of the pesticide DDT (1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene). Sediment samples from two box cores were analyzed to obtain further information about the fate of DDT and its degradation products within the environment. After solvent extraction, an alkaline hydrolysis procedure was applied. A comprehensive screening for 26 DDT compounds revealed that DDT and its degradates contaminate not only the extractable fraction but also the fraction released by alkaline hydrolysis. A comparison of the quantitative distribution of DDT degradation products in the extractable fraction and released by alkaline hydrolysis showed a distinct difference. DDE (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene), DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene), DDMS (1-chloro-4-[2-chloro-1-(4-chlorophenyl)ethyl]benzene), and DDMU (1-chloro-4-[2-chloro-1-(4-chlorophenyl)ethenyl]benzene) were predominant in the sediment extracts but minor components of the hydrolyzable fraction. The most abundant compounds released by the alkaline hydrolysis were DBP (bis(4-chlorophenyl)methanone), DDNU (1-chloro-4-[1-(4-chlorophenyl)ethenyl]benzene), DDM (1-chloro-4-[(4-chlorophenyl)methyl]benzene) and the water-soluble DDA (2,2-bis(4-chlorophenyl)acetic acid). The release of DDA may point to the presence of an important degradation pathway in marine environments. Concentration levels of DDT-related compounds showed corresponding vertical profiles in both fractions, but were significantly lower in the fraction released by alkaline hydrolysis. In contrast to fluvial sediments contaminated by DDT and its degradates the alkaline hydrolysis products represented a minor portion of the total sedimentary burden in the analyzed marine sediments. These findings show the necessity of a comprehensive screening for all DDT isomers and breakdown products in the extractable and non-extractable fraction to assess the total contamination abundance and potential environmental risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. QUANTITATION OF ABERRANT INTERLOCUS T-CELL RECEPTOR REARRANGEMENTS IN MOUSE THYMOCYTES AND THE EFFECT OF THE HERBICIDE 2,4- DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    Quantitation of aberrant interlocus T-cell receptor rearrangements in mouse thymocytes and the effect of the herbicide 2,4- Dichlorophenoxyacetic acid

    Small studies in human populations have suggested a correlation between the frequency of errors in antigen receptor gene a...

  11. Fatal overdose of 2,4-dichlorophenoxyacetic acid (2,4-D).

    PubMed

    Keller, T; Skopp, G; Wu, M; Aderjan, R

    1994-03-01

    An ingestion of an unknown quantity of U 46 D-Fluid (500 g dichlorophenoxyacetic acid/l) in a suicide is described. Although 2,4-dichlorophenoxyacetic acid (2,4 D) is widely used as a herbicide, intoxications are relatively rare. Quantitation of 2,4-D was performed by diethyl ether extraction from acidified samples (viscera) or by deproteinization (blood, plasma) with methanol before HPLC analysis. Postmortem concentrations of 2,4-D in body fluids and tissues are given. The proposed method resulted in a rapid procedure most useful in cases of deliberate poisoning with phenoxyacetic herbicides.

  12. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling.

    PubMed

    Xu, Tao; Wang, Yanling; Liu, Xin; Gao, Song; Qi, Mingfang; Li, Tianlai

    2015-07-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.

    PubMed

    Wu, Xiangwei; Wang, Wenbo; Liu, Junwei; Pan, Dandan; Tu, Xiaohui; Lv, Pei; Wang, Yi; Cao, Haiqun; Wang, Yawen; Hua, Rimao

    2017-05-10

    Phytotoxicity and environmental pollution of residual herbicides have caused much public concern during the past several decades. An indigenous bacterial strain capable of degrading 2,4-dichlorophenoxyacetic acid (2,4-D), designated T-1, was isolated from soybean field soil and identified as Cupriavidus gilardii. Strain T-1 degraded 2,4-D 3.39 times more rapidly than the model strain Cupriavidus necator JMP134. T-1 could also efficiently degrade 2-methyl-4-chlorophenoxyacetic acid (MCPA), MCPA isooctyl ester, and 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP). Suitable conditions for 2,4-D degradation were pH 7.0-9.0, 37-42 °C, and 4.0 mL of inoculums. Degradation of 2,4-D was concentration-dependent. 2,4-D was degraded to 2,4-dichlorophenol (2,4-DCP) by cleavage of the ether bond and then to 3,5-dichlorocatechol (3,5-DCC) via hydroxylation, followed by ortho-cleavage to cis-2-dichlorodiene lactone (CDL). The metabolites 2,4-DCP or 3,5-DCC at 10 mg L -1 were completely degraded within 16 h. Fast degradation of 2,4-D and its analogues highlights the potential for use of C. gilardii T-1 in bioremediation of phenoxyalkanoic acid herbicides.

  14. Comparison of two screening bioassays, based on the frog sciatic nerve and yeast cells, for the assessment of herbicide toxicity.

    PubMed

    Papaefthimiou, Chrisovalantis; Cabral, Maria de Guadalupe; Mixailidou, Christina; Viegas, Cristina A; Sá-Correia, Isabel; Theophilidis, George

    2004-05-01

    Two different test systems, one based on the isolated sciatic nerve of an amphibian and the other on a microbial eukaryote, were used for the assessment of herbicide toxicity. More specifically, we determined the deleterious effects of increasing concentrations of herbicides of different chemical classes (phenoxyacetic acids, triazines, and acetamides), and of 2,4-dichlorophenol (2,4-DCP), a degradation product of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on electrophysiological parameters and the vitality of the axons of the isolated sciatic nerve of the frog (Rana ridibunda) and on the growth curve of the yeast Saccharomyces cerevisiae based on microtiter plate susceptibility assays. The no-observed-effect-concentration (NOEC), defined as the maximum concentration of the tested compound that has no effect on these biological parameters, was estimated. In spite of the different methodological approaches and biological systems compared, the NOEC values were identical and correlated with the lipophilicity of the tested compounds. The relative toxicity established here, 2,4-DCP > alachlor, metolachlor > metribuzin > 2,4-D, 2-methyl-4-chlorophenoxyacetic acid (MCPA), correlates with the toxicity indexes reported in the literature for freshwater organisms. Based on these results, we suggest that the relatively simple, rapid, and low-cost test systems examined here may be of interest as alternative or complementary tests for toxicological assessment of herbicides.

  15. Intercalation and controlled release of 2,4-dichlorophenoxyacetic acid using rhombohedral [LiAl2(OH)6]Cl·xH2O

    NASA Astrophysics Data System (ADS)

    Ragavan, Anusha; Khan, Aamir I.; O'Hare, Dermot

    2006-05-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) has been fully intercalated into the rhombohedral polymorph of [LiAl2(OH)6]Cl·xH2O ([rhom-Li Al] LDH) by an ion exchange method. The controlled release of 2,4-D from the interlamellar spaces of [rhom-Li Al] LDH has been studied in a phosphate buffer, natural rainwater and deionised water. In buffer solution and rainwater, the intercalated herbicide is exchanged for anions in solution. In contrast, in deionised water the herbicide is released as part of the Li+/herbicide ion pair, leading to the formation of Al(OH)3 and the solvated ions.

  16. Herbicide Orange Site Characterization Study, Eglin AFB

    DTIC Science & Technology

    1987-01-01

    F THIS PAGE Availabilit o this r is sp f o.n" the reverse of fo cove* . - .’.r. 717 CSAT CO ES ’SU JEC TE MS Coninu onrevrseif ece~ar an idntiy b...of Hardstand 7 and Surface Water Drainages ......... 4 3 Hardstand 7 Herbicide Oran&e Storage Locations .............. 5 4 Concentrations (in ppb) of...insoluble in water . The formula contained an approximate 50/50 mixture of the herbicides 2,4-dichlorophenoxyacetic acid (2,4,-D) and 2,4,5

  17. Enantioseparation of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidones on chiral stationary phases based on 3,5-dimethylanilides of N-(4-alkylamino-3,5-dinitro)benzoyl L-alpha-amino acids.

    PubMed

    Kontrec, Darko; Vinković, Vladimir; Sunjić, Vitomir; Schuiki, Birgit; Fabian, Walter M F; Kappe, C Oliver

    2003-06-01

    Three novel chiral packing materials for high-performance liquid chromatography were prepared by covalently binding of (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]propan-amide (7), (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]-4-methylpentanamide (8), and (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonyl-amino]-2-phenylacetamide (9) to aminopropyl silica. The resulting chiral stationary phases (CSPs 1-3) proved effective for the resolution of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidone derivatives (TR 1-14). The mechanism of their enantioselection, supported by the elution order of (S)-TR 13 and (R)-TR 13 and molecular modeling of the complex of the slower running (S)-TR 13 with CSP 1 is discussed. Copyright 2003 Wiley-Liss, Inc.

  18. Occurrence of selected pesticides and their metabolites in near-surface aquifers of the midwestern United States

    USGS Publications Warehouse

    Kolpin, D.W.; Michael, Thurman E.; Goolsby, D.A.

    1996-01-01

    The occurrence and distribution of selected pesticides and their metabolites were investigated through the collection of 837 water-quality samples from 303 wells across the Midwest. Results of this study showed that five of the six most frequently detected compounds were pesticide metabolites. Thus, it was common for a metabolite to be found more frequently in groundwater than its parent compound. The metabolite alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid) was detected almost 10 times as frequently and at much higher concentrations than its parent compound alachlor (2-chloro-2‘,6‘-diethyl-N-(methoxymethyl)acetamide). The median detectable atrazine (2-chloro-4-ethylamino-6- isopropylamino-s-triazine) concentration was almost half that of atrazine residue (atrazine plus the two atrazine metabolites analyzed). Cyanazine amide [2-chloro-4-(1-carbamoyl-1-methylethylamino)-6-ethylamino-s-triazine] was detected almost twice as frequently as cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). Results show that information on pesticide metabolites is necessary to understand the environmental fate of pesticides. Consequently, if pesticide metabolites are not quantified, the effects of chemical use on groundwater quality would be substantially underestimated. Thus, continued research is needed to identify major degradation pathways for all pesticides and to develop analytical methods to determine their concentrations in water and other environmental media.

  19. 40 CFR 721.1025 - Benzenamine, 4-chloro-2-methyl-; benzenamine, 4-chloro-2-methyl-, hydrochloride; and ben-zenamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-; benzenamine, 4-chloro-2-methyl-, hydrochloride; and ben-zenamine, 2-chloro-6-methyl-. 721.1025 Section 721... Benzenamine, 4-chloro-2-methyl-; benzenamine, 4-chloro-2-methyl-, hydrochloride; and ben-zenamine, 2-chloro-6...-, hydrochloride (CAS Number 3165-93-3); and benzenamine, 2-chloro-6-methyl- (CAS Number 87-63-8) are subject to...

  20. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content.

    PubMed

    Cuadrado, Virginia; Merini, Luciano J; Flocco, Cecilia G; Giulietti, Ana M

    2008-01-01

    The dissipation of 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) in high-humic-matter-containing soils from agricultural fields of the Argentinean Humid Pampa region was studied, employing soil microcosms under different experimental conditions. The added herbicide was dissipated almost completely by soils with and without history of herbicide use by day 28. At 500 ppm, both soils showed the same degradation rates; but at 5-ppm concentration, the chronically exposed soil demonstrated a faster degradation of the herbicide. 2,4-DB addition produced increases in herbicide-degrading bacteria of three and 1.5 orders of magnitude in soils with and without history of herbicide use, respectively, in microcosms with 5 ppm. At 500-ppm concentration, the increase in 2,4-DB degraders was five orders of magnitude after 14 days, independent of the history of herbicide use. No differences were observed in either 2,4-DB degradation rates or in degrader bacteria numbers in the presence and absence of alfalfa plants, in spite of some differential characteristics in patterns of 2,4-DB metabolite accumulation. The main factor affecting 2,4-DB degradation rate would be the history of herbicide use, as a consequence of the adaptation of the indigenous microflora to the presence of herbicides in the field.

  1. Unintended effects of the herbicides 2,4-D and dicamba on lady beetles

    USDA-ARS?s Scientific Manuscript database

    Weed resistance to glyphosate and development of new GM crops tolerant to 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba is expected to lead to increased use of these herbicides in cropland. The lady beetle, Coleomegilla maculata is an important beneficial insect in cropland that is commonly use...

  2. Recurrent selection with reduced 2,4-D amine doses results in the rapid evolution of 2,4-D herbicide resistance in wild radish (Raphanus raphanistrum L.).

    PubMed

    Ashworth, Michael B; Walsh, Michael J; Flower, Ken C; Powles, Stephen B

    2016-11-01

    When used at effective doses, weed resistance to auxinic herbicides has been slow to evolve when compared with other modes of action. Here we report the evolutionary response of a herbicide-susceptible population of wild radish (Raphanus raphanistrum L.) and confirm that sublethal doses of 2,4-dichlorophenoxyacetic acid (2,4-D) amine can lead to the rapid evolution of 2,4-D resistance and cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides. Following four generations of 2,4-D selection, the progeny of a herbicide-susceptible wild radish population evolved 2,4-D resistance, increasing the LD 50 from 16 to 138 g ha -1 . Along with 2,4-D resistance, cross-resistance to the ALS-inhibiting herbicides metosulam (4.0-fold) and chlorsulfuron (4.5-fold) was evident. Pretreatment of the 2,4-D-selected population with the cytochrome P450 inhibitor malathion restored chlorsulfuron to full efficacy, indicating that cross-resistance to chlorsulfuron was likely due to P450-catalysed enhanced rates of herbicide metabolism. This study is the first to confirm the rapid evolution of auxinic herbicide resistance through the use of low doses of 2,4-D and serves as a reminder that 2,4-D must always be used at highly effective doses. With the introduction of transgenic auxinic-herbicide-resistant crops in the Americas, there will be a marked increase in auxinic herbicide use and therefore the risk of resistance evolution. Auxinic herbicides should be used only at effective doses and with diversity if resistance is to remain a minimal issue. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB), both free...

  4. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB), both free...

  5. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB), both free...

  6. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB), both free...

  7. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB), both free...

  8. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...

  9. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...

  10. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...

  11. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...

  12. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new uses...

  13. Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon

    PubMed Central

    2014-01-01

    Background Low cost 2,4-Dichlorophenolyxacetic acid (2,4-D) widely used in controlling broad-leafed weeds is frequently detected in water resources. The main objectives of this research were focused on evaluating the feasibility of using granular activated carbon modified with acid to remove 2,4-D from aqueous phase, determining its removal efficiency and assessing the adsorption kinetics. Results The present study was conducted at bench-scale method. The influence of different pH (3–9), the effect of contact time (3–90 min), the amount of adsorbent (0.1-0.4 g), and herbicide initial concentration (0.5-3 ppm) on 2,4-D removal efficiency by the granular activated carbon were investigated. Based on the data obtained in the present study, pH of 3 and contact time of 60 min is optimal for 2,4-D removal. 2,4-D reduction rate increased rapidly by the addition of the adsorbent and decreased by herbicide initial concentration (63%). The percent of 2,4-D reduction were significantly enhanced by decreasing pH and increasing the contact time. The adsorption of 2,4-D onto the granular activated carbon conformed to Langmuir and Freundlich models, but was best fitted to type II Langmuir model (R2 = 0.999). The second order kinetics was the best for the adsorption of 2,4-D by modified granular activated carbon with R2 > 0.99. Regression analysis showed that all of the variables in the process have been statistically significant effect (p < 0.001). Conclusions In conclusion, granular activated carbon modified with acid is an appropriate method for reducing the herbicide in the polluted water resources. PMID:24410737

  14. Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon.

    PubMed

    Dehghani, Mansooreh; Nasseri, Simin; Karamimanesh, Mojtaba

    2014-01-10

    Low cost 2,4-Dichlorophenolyxacetic acid (2,4-D) widely used in controlling broad-leafed weeds is frequently detected in water resources. The main objectives of this research were focused on evaluating the feasibility of using granular activated carbon modified with acid to remove 2,4-D from aqueous phase, determining its removal efficiency and assessing the adsorption kinetics. The present study was conducted at bench-scale method. The influence of different pH (3-9), the effect of contact time (3-90 min), the amount of adsorbent (0.1-0.4 g), and herbicide initial concentration (0.5-3 ppm) on 2,4-D removal efficiency by the granular activated carbon were investigated. Based on the data obtained in the present study, pH of 3 and contact time of 60 min is optimal for 2,4-D removal. 2,4-D reduction rate increased rapidly by the addition of the adsorbent and decreased by herbicide initial concentration (63%). The percent of 2,4-D reduction were significantly enhanced by decreasing pH and increasing the contact time. The adsorption of 2,4-D onto the granular activated carbon conformed to Langmuir and Freundlich models, but was best fitted to type II Langmuir model (R2 = 0.999). The second order kinetics was the best for the adsorption of 2,4-D by modified granular activated carbon with R2 > 0.99. Regression analysis showed that all of the variables in the process have been statistically significant effect (p < 0.001). In conclusion, granular activated carbon modified with acid is an appropriate method for reducing the herbicide in the polluted water resources.

  15. Weed control in conservation agriculture

    USDA-ARS?s Scientific Manuscript database

    Prior to the introduction of the selective herbicide, 2,4-D (2,4-dichlorophenoxyacetic acid), in the 1940’s, weed control in agricultural crops was primarily achieved through mechanical cultivation of the soil. Since that time, an increasing number of highly efficacious herbicide options, paired wi...

  16. [Determination of seven phenoxyacid herbicides in environmental water by high performance liquid chromatography coupled with three phase hollow fiber liquid phase microextraction].

    PubMed

    Peng, Xiaojun; Pang, Jinshan; Deng, Aihua

    2011-12-01

    A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.

  17. Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L.

    PubMed

    Burns, Erin E; Keith, Barbara K; Refai, Mohammed Y; Bothner, Brian; Dyer, William E

    2017-08-01

    Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in U.S. small grain production, and thus pose significant agronomic and economic threats. Resistance to ALS and ACCase inhibitors is not conferred by target site mutations, indicating that non-target site resistance mechanisms are involved. To investigate the potential involvement of glutathione-related enzymes in the MHR phenotype, we used a combination of proteomic, biochemical, and immunological approaches to compare their constitutive activities in herbicide susceptible (HS1 and HS2) and MHR (MHR3 and MHR4) A. fatua plants. Proteomic analysis identified three tau and one phi glutathione S-transferases (GSTs) present at higher levels in MHR compared to HS plants, while immunoassays revealed elevated levels of lambda, phi, and tau GSTs. GST specific activity towards 1-chloro-2,4-dinitrobenzene was 1.2-fold higher in MHR4 than in HS1 plants and 1.3- and 1.2-fold higher in MHR3 than in HS1 and HS2 plants, respectively. However, GST specific activities towards fenoxaprop-P-ethyl and imazamethabenz-methyl were not different between untreated MHR and HS plants. Dehydroascorbate reductase specific activity was 1.4-fold higher in MHR than HS plants. Pretreatment with the GST inhibitor NBD-Cl did not affect MHR sensitivity to fenoxaprop-P-ethyl application, while the herbicide safener and GST inducer mefenpyr reduced the efficacy of low doses of fenoxaprop-P-ethyl on MHR4 but not MHR3 plants. Mefenpyr treatment also partially reduced the efficacy of thiencarbazone-methyl or mesosulfuron-methyl on MHR3 or MHR4 plants, respectively. Overall, the GSTs described here are not directly involved in enhanced rates of fenoxaprop-P-ethyl or imazamethabenz-methyl metabolism in MHR A. fatua. Instead, we propose that the constitutively elevated GST proteins and related enzymes in MHR plants are representative of a larger, more global suite of abiotic stress-related changes. Published by Elsevier Inc.

  18. (2SR,3RS)-Benz­yl[4-chloro-1-(4-chloro­phen­yl)-1-methoxy­carbon­yl-2-but­yl]­ammonium chloride

    PubMed Central

    Kaupang, Åsmund; Bolsønes, Marianne; Gamadeku, Thywill; Hansen, Tore; Hennum, Martin Johanson; Görbitz, Carl Henrik

    2008-01-01

    In the racemic hydro­chloride salt of the title ester, C19H22Cl2NO2 +·Cl−, the penta­noic acid chain shows a mixture of trans and gauche orientations to give an overall helical conformation. The dihedral angle between the two aromatic rings is 26.11 (10)°. The charged secondary amine function participates in two N—H⋯Cl hydrogen bonds. PMID:21201230

  19. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes

    PubMed Central

    Pfister, Klaus; Steinback, Katherine E.; Gardner, Gary; Arntzen, Charles J.

    1981-01-01

    2-Azido-4-ethylamino-6-isopropylamino-s-triazine (azido-atrazine) inhibits photosynthetic electron transport at a site identical to that affected by atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine). The latter is a well-characterized inhibitor of photosystem II reactions. Azido-atrazine was used as a photoaffinity label to identify the herbicide receptor protein; UV irradiation of chloroplast thylakoids in the presence of azido[14C]atrazine resulted in the covalent attachment of radioactive inhibitor to thylakoid membranes isolated from pea seedlings and from a triazine-susceptible biotype of the weed Amaranthus hybridus. No covalent binding of azido-atrazine was observed for thylakoid membranes isolated from a naturally occurring triazine-resistant biotype of A. hybridus. Analysis of thylakoid polypeptides from both the susceptible and resistant A. hybridus biotypes by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, followed by fluorography to locate 14C label, demonstrated specific association of the azido[14C]atrazine with polypeptides of the 34- to 32-kilodalton size class in susceptible but not in resistant membranes. Images PMID:16592984

  20. Summer cover crops reduce atrazine leaching to shallow groundwater in southern Florida.

    PubMed

    Potter, Thomas L; Bosch, David D; Joo, Hyun; Schaffer, Bruce; Muñoz-Carpena, Rafael

    2007-01-01

    At Florida's southeastern tip, sweet corn (Zea Mays) is grown commercially during winter months. Most fields are treated with atrazine (6-chloro-N-ethyl-N'-[1-methylethyl]-1,3,5-triazine-2,4-diamine). Hydrogeologic conditions indicate a potential for shallow groundwater contamination. This was investigated by measuring the parent compound and three degradates--DEA (6-chloro-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine), DIA (6-chloro-N-ethyl)-1,3,5-triazine-2,4-diamine, and HA (6-hydroxy-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine)--in water samples collected beneath sweet corn plots treated annually with the herbicide. During the study, a potential mitigation measure (i.e., the use of a cover crop, Sunn Hemp [Crotalaria juncea L.], during summer fallow periods followed by chopping and turning the crop into soil before planting the next crop) was evaluated. Over 3.5 yr and production of four corn crops, groundwater monitoring indicated leaching of atrazine, DIA, and DEA, with DEA accounting for more than half of all residues in most samples. Predominance of DEA, which increased after the second atrazine application, was interpreted as an indication of rapid and extensive atrazine degradation in soil and indicated that an adapted community of atrazine degrading organisms had developed. A companion laboratory study found a sixfold increase in atrazine degradation rate in soil after three applications. Groundwater data also revealed that atrazine and degradates concentrations were significantly lower in samples collected beneath cover crop plots when compared with concentrations below fallow plots. Together, these findings demonstrated a relatively small although potentially significant risk for leaching of atrazine and its dealkylated degradates to groundwater and that the use of a cover crop like Sunn Hemp during summer months may be an effective mitigation measure.

  1. Degradation of herbicide 2,4-dichlorophenoxybutanoic acid in the photolysis of [FeOH]2+ and [Fe(Ox)3]3- complexes: A mechanistic study.

    PubMed

    Pozdnyakov, Ivan; Sherin, Peter; Grivin, Vjacheslav; Plyusnin, Victor

    2016-03-01

    In the present work the Fe(III)-assisted photodegradation of the herbicide 2,4-dichlorophenoxybutanoic acid (2,4-DB) has been studied by means of stationary (308 nm) and laser flash (355 nm) photolysis. The initial quantum yield of 2,4-DB photodegradation in [FeOH](2+) and [Fe(Ox)3](3-) systems was evaluated to be 0.11 and 0.17 upon 308 nm exposure, respectively. The prolonged photolysis of [FeOH](2+) and [Fe(Ox)3](3-) systems results in the complete degradation of 2,4-DB with almost complete mineralization of herbicide and its aromatic products in the case of [FeOH](2+) photolysis and the accumulation of some persistent aromatic products in the case of [Fe(Ox)3](3-) photolysis. For both systems the main primary products of 2,4-DB photolysis determined by liquid chromatography - mass spectrometry are products of the hydroxylation, the substitution of chlorine atom to OH group, the loss of aliphatic tail and the opening of benzene ring. The obtained results indicate ROS species (mainly OH radical) to be responsible for the herbicide photodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    PubMed

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  3. Degradation of the Herbicide (2,4-Dichlorophenoxyacetic Acid) Using a Photoreactor with Exciplex Lamps

    NASA Astrophysics Data System (ADS)

    Vershinin, N. O.; Sokolova, I. V.; Tchaikovskaya, O. N.

    2013-09-01

    We present the results of tests of a compact flow-through reactor for neutralization of a broad class of persistent toxic compounds. As the toxicant we used the herbicide 2,4-dichlorophenoxyacetic acid, and we used exciplex lamps with different emission wave lengths (λ ~ 222 nm and 172 nm). We show the experimental decrease in the amount of organic compounds vs. irradiation time as obtained from the absorption spectra.

  4. Electromembrane Surrounded Solid Phase Microextraction Followed by Injection Port Derivatization and Gas Chromatography-Flame Ionization Detector Analysis for Determination of Acidic Herbicides in Plant Tissue.

    PubMed

    Rezazadeh, Maryam; Yamini, Yadollah; Seidi, Shahram; Tahmasebi, Elham; Rezaei, Fatemeh

    2014-04-09

    Electromembrane surrounded solid phase microextraction (EM-SPME) of acidic herbicides was studied for the first time. In order to investigate the capability of this new microextraction technique to analyze acidic targets, chlorophenoxy acid (CPA) herbicides were quantified in plant tissue. 1-Octanol, was sustained in the pores of the wall of a hollow fiber and served as supported liquid membrane (SLM). Other EM-SPME related parameters, including extraction time, applied voltage, and pHs of the sample solution and the acceptor phase, were optimized using experimental design. A 20 min time frame was needed to reach the highest extraction efficiency of the analytes from a 24 mL alkaline sample solution across the organic liquid membrane and into the aqueous acceptor phase through a 50 V electrical field, and to their final adsorption on a carbonaceous anode. In addition to high sample cleanup, which made the proposed method appropriate for analysis of acidic compounds in a complicated media (plant tissue), 4.8% of 2-methyl-4-chlorophenoxyacetic acid (MCPA) and 0.6% of 2,4-dichlorophenoxyacetic acid (2,4-D) were adsorbed on the anode, resulting in suitable detection limits (less than 5 ng mL -1 ), and admissible repeatability and reproducibility (intra- and interassay precision were in the ranges of 5.2-8.5% and 8.8-12.0%, respectively). Linearity of the method was scrutinized within the ranges of 1.0-500.0 and 10.0-500.0 ng mL -1 for MCPA and 2,4-D, respectively, and coefficients of determination greater than 0.9958 were obtained. Optimal conditions of EM-SPME of the herbicides were employed for analysis of CPAs in whole wheat tissue.

  5. MODELING THE INTERACTION OF AGROCHEMICALS WITH ENVIRONMENTAL SURFACES

    EPA Science Inventory

    The interactions between agrochemicals and organo-mineral surfaces were studied using molecular mechanical conformational calculations and molecular dynamics simulations. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), 2,4-D (1, 2-dichlorophenoxyacetic acid), and DD...

  6. Metabolism of 4-Chloronitrobenzene by the Yeast Rhodosporidium sp

    PubMed Central

    Corbett, Michael D.; Corbett, Bernadette R.

    1981-01-01

    The yeast Rhodosporidium sp. metabolized 4-chloronitrobenzene by a reductive pathway to give 4-chloroacetanilide and 4-chloro-2-hydroxyacetanilide as the major final metabolites. The intermediate production of 4-chloronitrosobenzene, 4-chlorophenylhydroxylamine, and 4-chloroaniline was demonstrated by high-pressure liquid chromatography. Additional studies with selected metabolites established that the metabolite 4-chloro-2-hydroxyacetanilide was produced by an initial Bamberger rearrangement of the hydroxylamine metabolite, followed by acetylation. Direct C hydroxylation of the aromatic ring was not observed in this species. No hydroxamic acid production was detected, even though significant concentrations of the nitroso and hydroxylamine precursors to this functional group were observed. PMID:16345757

  7. Agricultural chemicals in alluvial aquifers in Missouri after the 1993 flood

    USGS Publications Warehouse

    Heimann, D.C.; Richards, J.M.; Wilkison, D.H.

    1997-01-01

    Intense rains produced flooding during the spring and summer of 1993 over much of the midwestern USA including many agricultural areas of Missouri. Because of potential contamination from floodwater, an investigation was conducted to determine the changes in concentrations of agricultural chemicals in water samples from alluvial wells in Missouri after the flood. Water samples from 80 alluvial wells with historical data were collected in March, July, and November 1994, and analyzed for dissolved herbicides, herbicide metabolites, and nitrate (NO3). There were no statistically significant differences in the distribution of alachlor ((2,chloro-2'-6'-diethyl-N-[methoxymethyl]acetanilide), atrazine (2-chloro- 4-ethylamino-6-isopropylamino-1, 3, 5 triazine), and nitrate concentrations between pre- and postflood samples (?? = 0.05). The detection frequency of alachlor and atrazine in postflood samples was generally lower than the frequency in preflood samples. Analyses of agricultural chemicals in water samples from an intensely sampled well field indicate significant differences between the distribution of dissolved P concentrations in pre- and postflood samples (?? = 0.05). However, no significant differences were detected between the pre- and postflood distributions of NO3 or ammonia concentrations. Because of the numerous sources of temporal variability and the relatively short record of water-quality data for the study wells, a cause-and-effect relation between changes in agricultural chemical concentrations and a single factor of the 1993 flood is difficult to determine. Based on the results of this study, the 1993 flood did not cause widespread or long-term significant changes in concentrations of agricultural chemicals in water from alluvial aquifers in Missouri.

  8. Biotransformation of 4-chloro-2-nitrophenol into 5-chloro-2-methylbenzoxazole by a marine Bacillus sp. strain MW-1.

    PubMed

    Arora, Pankaj Kumar; Jain, Rakesh Kumar

    2012-04-01

    Decolourization, detoxification and biotransformation of 4-chloro-2-nitrophenol (4C2NP) by Bacillus sp. strain MW-1 were studied. This strain decolorized 4C2NP only in the presence of an additional carbon source. On the basis of thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS), 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole were identified as metabolites. Resting cells depleted 4C2NP with stoichiometric formation of 5-chloro-2-methyl benzoxazole. This is the first report of the formation of 5-chloro-2-methylbenzoxazole from 4C2NP by any bacterial strain.

  9. Syntheses of halogen derivatives of L-tryptophan, L-tyrosine and L-phenylalanine labeled with hydrogen isotopes.

    PubMed

    Pająk, Małgorzata; Pałka, Katarzyna; Winnicka, Elżbieta; Kańska, Marianna

    2016-01-01

    Halogenated, labeled with tritium and doubly with deuterium and tritium, derivatives of L-tryptophan, i.e. 5'-bromo-[2-(3)H]-, 5'-bromo-[2-(2)H/(3)H]-, 5'-fluoro-[2-(3)H]-5'-fluoro-[2-(2)H/(3)H]-, 6'-fluoro-[2-(3)H]-, 6'-fluoro-[2-(2)H/(3)H]-L-tryptophan, as well as, L-tyrosine, i.e. 3'-fluoro-[2-(3)H]-, 3'-fluoro-[2-(2)H/(3)H]-, 3'-chloro-[2-(3)H]-, and 3'-chloro-[2-(2)H/(3)H]-L-tyrosine, and also L-phenylalanine, i.e. 2'-fluoro-[(3S)-(3)H]-, 2'-fluoro-[(3S)-(2)H/(3) H]-, 2'-chloro-[(3S)-(3)H]-, 2'-chloro-[(3S)-(2)H/(3)H]-, 4'-chloro-[(3S)-(3)H]-, and 4'-chloro-[(3S)-(2)H/(3)H]-L-phenylalanine were synthesized using enzymatic methods. Isotopomers of L-tryptophan were synthesized by coupling of halogenated indoles with S-methyl-L-cysteine carried out in deuteriated or tritiated incubation media. Labeled halogenated derivatives of L-tyrosine were obtained by the enzymatically supported exchange between halogenated L-tyrosine and isotopic water. Labeled halogenated isotopologues of L-Phe were synthesized by the enzymatic addition of ammonia to halogenated cinnamic acid. As a source of hydrogen tritiated water (HTO) and heavy water (D2O) with addition of HTO were used. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Disposition of the herbicide 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (Atrazine) and its major metabolites in mice: a liquid chromatography/mass spectrometry analysis of urine, plasma, and tissue levels.

    PubMed

    Ross, Matthew K; Jones, Toni L; Filipov, Nikolay M

    2009-04-01

    2-Chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine, ATR) is a toxicologically important and widely used herbicide. Recent studies have shown that it can elicit neurological, immunological, developmental, and biochemical alterations in several model organisms, including in mice. Because disposition data in mice are lacking, we evaluated ATR's metabolism and tissue dosimetry after single oral exposures (5-250 mg/kg) in C57BL/6 mice using liquid chromatography/mass spectrometry (Ross and Filipov, 2006). ATR was metabolized and cleared rapidly; didealkyl ATR (DACT) was the major metabolite detected in urine, plasma, and tissues. Plasma ATR peaked at 1 h postdosing and rapidly declined, whereas DACT peaked at 2 h and slowly declined. Most ATR and metabolite residues were excreted within the first 24 h. However, substantial amounts of DACT were still present in 25- to 48-h and 49- to 72-h urine. ATR reached maximal brain levels (0.06-1.5 microM) at 4 h (5-125 mg/kg) and 1 h (250 mg/kg) after dosing, but levels quickly declined to <0.1 microM by 12 h in all the groups. In contrast, strikingly high concentrations of DACT (1.5-50 microM), which are comparable with liver DACT levels, were detectable in brain at 2 h. Brain DACT levels slowly declined, paralleling the kinetics of plasma DACT. Our findings suggest that in mice ATR is widely distributed and extensively metabolized and that DACT is a major metabolite detected in the brain at high levels and is ultimately excreted in urine. Our study provides a starting point for the establishment of models that link target tissue dose to biological effects caused by ATR and its in vivo metabolites.

  11. Novel Pathway for the Degradation of 2-Chloro-4-Nitrobenzoic Acid by Acinetobacter sp. Strain RKJ12▿†

    PubMed Central

    Prakash, Dhan; Kumar, Ravi; Jain, R. K.; Tiwary, B. N.

    2011-01-01

    The organism Acinetobacter sp. RKJ12 is capable of utilizing 2-chloro-4-nitrobenzoic acid (2C4NBA) as a sole source of carbon, nitrogen, and energy. In the degradation of 2C4NBA by strain RKJ12, various metabolites were isolated and identified by a combination of chromatographic, spectroscopic, and enzymatic activities, revealing a novel assimilation pathway involving both oxidative and reductive catabolic mechanisms. The metabolism of 2C4NBA was initiated by oxidative ortho dehalogenation, leading to the formation of 2-hydroxy-4-nitrobenzoic acid (2H4NBA), which subsequently was metabolized into 2,4-dihydroxybenzoic acid (2,4-DHBA) by a mono-oxygenase with the concomitant release of chloride and nitrite ions. Stoichiometric analysis indicated the consumption of 1 mol O2 per conversion of 2C4NBA to 2,4-DHBA, ruling out the possibility of two oxidative reactions. Experiments with labeled H218O and 18O2 indicated the involvement of mono-oxygenase-catalyzed initial hydrolytic dechlorination and oxidative denitration mechanisms. The further degradation of 2,4-DHBA then proceeds via reductive dehydroxylation involving the formation of salicylic acid. In the lower pathway, the organism transformed salicylic acid into catechol, which was mineralized by the ortho ring cleavage catechol-1,2-dioxygenase to cis, cis-muconic acid, ultimately forming tricarboxylic acid cycle intermediates. Furthermore, the studies carried out on a 2C4NBA− derivative and a 2C4NBA+ transconjugant demonstrated that the catabolic genes for the 2C4NBA degradation pathway possibly reside on the ∼55-kb transmissible plasmid present in RKJ12. PMID:21803909

  12. Distribution of agrochemicals in the lower Mississippi River and its tributaries

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    The Mississippi River and its tributaries drain extensive agricultural regions of the Mid-Continental United States. Millions of pounds of herbicides are applied annually in these areas to improve crop yields. Many of these compounds are transported into the river from point and nonpoint sources, and eventually are discharged into the Gulf of Mexico. Studies being conducted by the U.S. Geological Survey along the lower Mississippi River and its major tributaries, representing a 2000 km river reach, have confirmed that several triazine and acetanilide herbicides and their degradation products are ubiquitous in this riverine system. These compounds include atrazine and its degradation products desethyl and desisopropylatrazine, cyanazine, simazine, metolachlor, and alachlor and its degradation products 2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6-diethylacetanilide and 2,6-diethylaniline. Loads of these compounds were determined at 16 different sampling stations. Stream-load calculations provided information concerning (a) conservative or nonconservative behavior of herbicides; (b) point sources or nonpoint sources; (c) validation of sampling techniques; and (d) transport past each sampling station.

  13. DEGRADATION OF THE CHLORINATED PHENOXYACETATE HERBICIDES 2,4-DICHLOROPHENOXYACETIC ACID AND 2,4,5- TRICHLOROPHENOXYACETIC BY PURE AND MIXED BACTERIAL CULTURES

    EPA Science Inventory

    Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compo...

  14. Stereochemical analysis of the elimination reaction catalyzed by D-amino-acid oxidase.

    PubMed

    Cheung, Y F; Walsh, C

    1976-06-01

    The stereochemistry of the intramolecular proton transfer catalyzed by the flavoenzyme, D-amino-acid oxidase, during the elimination reaction of beta-chloro-alpha-amino acid substrates (Walsh et al. (1973), J. Biol. Chem. 248, 1964) has been established. Both D-erythro- and D-threo-2-amino-3-chloro(2-3H) butyrate have been shown to yield (3R)-2-keto (3-3H)-2- butyrate predominantly. Tritium kinetic isotope effects on the rate of the reaction (4.7 for the D-erythro, and 3.8 for the D-threo compound) and percentages of intramolecular triton transfer (7.2% for the D-erythro- and 2.6% for the D-threo compound) have been measured. Their implications on the mechanism of this unusual elimination reaction are discussed.

  15. Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays.

    PubMed

    Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang

    2012-11-30

    A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Advanced Testing of Safe-Solvent Replacements for CFC-113 for Use in Cleaning Oxygen Systems

    DTIC Science & Technology

    2005-06-01

    2 -(trifluoromethyl)-3,3,3- trifluoropropene 2 Reactions/28 Impacts Failed 4-bromo- 3 - chloro -3,4,4-trifluoro-1-butene 2 ...bromo- 3 - chloro -3,4,4-trifluoro-1-butene, CH2=CH-CFCl-CF2Br § 1- chloro -2,2,2-trifluoroethyl difluoromethyl ether, CHF2-O-CHCl-CF3 § 2 - chloro -1,1,2...3,3,3- trifluoropropene 725°F Recommended 4-bromo- 3 - chloro -3,4,4-trifluoro-1-butene 378°F Caution 1- chloro -2,2,2-trifluoroethyl difluoromethyl ether

  17. Dissipation of the herbicide oxyfluorfen in subtropical soils and its potential to contaminate groundwater.

    PubMed

    Yen, Jui-Hung; Sheu, Wey-Shin; Wang, Yei-Shung

    2003-02-01

    The dissipation and mobility of the herbicide oxyfluorfen (2-chloro-alpha,alpha,alpha-trifluoro-p-tolyl 3-ethoxy-4-nitrophenyl ether) in field soil of Taiwan were investigated in the laboratory with six tea garden soils. The dissipation coefficients of oxyfluorfen in soils of different moisture content (30%, 60%, and 90% of soil field capacity) and soil temperature (10 degrees C, 25 degrees C, and 40 degrees C) were studied. Results indicate that the half-life of oxyfluorfen ranged from 72 to 160 days for six tea garden soils. It was found that if the temperature is high, the dissipation rate is rapid, and there is almost no dissipation at 10 degrees C. Possible contamination of groundwater by the herbicide oxyfluorfen was assessed using the behavior assessment model and the groundwater pollution-potential (GWP) model. The results obtained after evaluating the residue and travel time using the GWP model illustrated that oxyfluorfen is not very mobile in soil and may not contaminate groundwater under normal conditions. But in the case of soil of extremely low organic carbon content and coarse texture, oxyfluorfen has the potential to contaminate groundwater less than 3m deep.

  18. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be <2% of the annual application of each herbicide in the Midwest.

  19. Determination of acidic herbicides in surface water by solid-phase extraction followed by capillary zone electrophoresis.

    PubMed

    Qin, Weidong; Wei, Hongping; Li, Sam Fong Yau

    2002-08-01

    A rapid solid-phase extraction-capillary zone electrophoresis (CZE) method for determining 2,4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy) butyric acid, and 2,4,5-trichlorophenoxyacetic acid in real water samples is described. Factors affecting the recoveries and detection of the targets are investigated. With samples being acidified to pH 2 and salted by sodium sulfate to 2% (w/w), an average recovery of greater than 85% is obtained using ethyl acetate as the eluent on an octadecylsilane-bonded silica cartridge. A running buffer of 5 mM sodium tetraborate in a water-acetonitrile mixture (70:30, v/v) adjusted to pH 9 is employed in the CZE analysis, and the targets can be analyzed within 7 min with good reproducibility and acceptable sensitivity. The method is suitable for detecting herbicide residues of sub-parts-per-billion levels in surface water. A local pond water is analyzed, and the concentrations of 2,4-dichlorophenoxyacetic acid and 4-(2,4-dichlorophenoxy) butyric acid are detected to be 0.27 +/- 0.03 ppb and 0.61 +/- 0.08 ppb, respectively.

  20. Synthesis, structural elucidation, solvatochromism and spectroscopic properties of some azo dyes derived from 6-chloro-4-hydroxyquinoline-2(1H)-one

    NASA Astrophysics Data System (ADS)

    Rufchahi, E. O. Moradi; Gilani, A. Ghanadzadeh; Taghvaei, V.; Karimi, R.; Ramezanzade, N.

    2016-03-01

    Malondianilide (I) derived from p-chloroaniline was cyclized to 6-chloro-4-hydroxyquinoline-2(1H)-one (II) in moderately good yield using polyphosphoric acid as catalyst. This compound was then coupled with some diazotized aromatic amines to give the corresponding azo disperse dyes 1-12. A systematic study of the effect of solvent, acid, base and pH upon the electronic absorption spectra of the dyes 1-12 was carried out. In DMSO, DMF, CH3CN, CHCl3, EtOH and acidic media (CH3COOH, acidified EtOH) these dyes that theoretically may be involved in azo-hydrazone tautomerism have been detected only as hydrazone tautomers T1 and T2. The acidic dissociation constants of the dyes were measured in 80 vol% ethanol-water solution at room temperature and ionic strength of 0.1. The results were correlated by the Hammett-type equation using the substituent constants σx.

  1. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes.

    PubMed Central

    Sanderson, J T; Letcher, R J; Heneweer, M; Giesy, J P; van den Berg, M

    2001-01-01

    We investigated a potential mechanism for the estrogenic properties of three chloro-s-triazine herbicides and six metabolites in vitro in several cell systems. We determined effects on human aromatase (CYP19), the enzyme that converts androgens to estrogens, in H295R (adrenocortical carcinoma), JEG-3 (placental choriocarcinoma), and MCF-7 (breast cancer) cells; we determined effects on estrogen receptor-mediated induction of vitellogenin in primary hepatocyte cultures of adult male carp (Cyprinus carpio). In addition to atrazine, simazine, and propazine, two metabolites--atrazine-desethyl and atrazine-desisopropyl--induced aromatase activity in H295R cells concentration-dependently (0.3-30 microM) and with potencies similar to those of the parent triazines. After a 24-hr exposure to 30 microM of the triazines, an apparent maximum induction of about 2- to 2.5-fold was achieved. The induction responses were confirmed by similar increases in CYP19 mRNA levels, determined by reverse-transcriptase polymerase chain reaction. In JEG-3 cells, where basal aromatase expression is about 15-fold greater than in H295R cells, the induction responses were similar but less pronounced; aromatase expression in MCF-7 cells was neither detectable nor inducible under our culture conditions. The fully dealkylated metabolite atrazine-desethyl-desisopropyl and the three hydroxylated metabolites (2-OH-atrazine-desethyl, -desisopropyl, and -desethyl-desisopropyl) did not induce aromatase activity. None of the triazine herbicides nor their metabolites induced vitellogenin production in male carp hepatocytes; nor did they antagonize the induction of vitellogenin by 100 nM (EC(50) 17beta-estradiol. These findings together with other reports indicate that the estrogenic effects associated with the triazine herbicides in vivo are not estrogen receptor-mediated, but may be explained partly by their ability to induce aromatase in vitro. PMID:11675267

  2. Crystal structures and hydrogen bonding in the anhydrous tryptaminium salts of the isomeric (2,4-di­chloro­phen­oxy)acetic and (3,5-di­chloro­phen­oxy)acetic acids

    PubMed Central

    Smith, Graham; Lynch, Daniel E.

    2015-01-01

    The anhydrous salts of 2-(1H-indol-3-yl)ethanamine (tryptamine) with isomeric (2,4-di­chloro­phen­oxy)acetic acid (2,4-D) and (3,5-di­chloro­phen­oxy)acetic (3,5-D), both C10H13N2 +·C8H5Cl2O3 − [(I) and (II), respectively], have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I), the aminium H atoms are involved in three separate inter-species N—H⋯O hydrogen-bonding inter­actions, two with carboxyl­ate O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl­ate O,O′ chelate [graph set R 1 2(4)]. The indole H atom forms an N—H⋯Ocarboxyl­ate hydrogen bond, extending the chain structure along the b-axis direction. In (II), two of the three aminium H atoms are also involved in N—H⋯Ocarboxyl­ate hydrogen bonds similar to (I) but with the third, a three-centre asymmetric inter­action with carboxyl­ate and phen­oxy O atoms is found [graph set R 1 2(5)]. The chain polymeric extension is also along b. There are no π–π ring inter­actions in either of the structures. The aminium side-chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts. PMID:26090147

  3. Studies on the potent bacterial mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone: aqueous stability, XAD recovery and analytical determination in drinking water and in chlorinated humic acid solutions.

    PubMed

    Meier, J R; Knohl, R B; Coleman, W E; Ringhand, H P; Munch, J W; Kaylor, W H; Streicher, R P; Kopfler, F C

    1987-12-01

    3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was detected by gas chromatography/mass spectrometry in drinking water samples from 3 locations in the U.S.A., and also in a chlorinated humic acid solution. MX appears to account for a significant proportion of the mutagenicity of these samples, as measured in the Ames test using strain TA100 without metabolic activation. Studies on recovery of MX from spiked water samples by XAD-2/8 resin adsorption/acetone elution indicated that sample acidification prior to resin adsorption was essential to the effective recovery of MX. The stability of MX in aqueous solution was pH and temperature dependent. At 23 degrees C the order of stability, based on persistence of mutagenic activity was found to be: pH 2 greater than pH 4 greater than pH 8 greater than pH 6. The half-life at pH 8 and 23 degrees C was 4.6 days. One of the degradation products has been tentatively identified as 2-chloro-3-(dichloromethyl)-4-oxo-2-butenoic acid, an open form of MX which appears to be in the "E" configuration. Overall, these results suggest that MX is formed during water chlorination as a result of reaction of chlorine with humic substances, and that a substantial fraction of the MX formed is likely to persist throughout the distribution system.

  4. 78 FR 44857 - Seventy-Second Report of the TSCA Interagency Testing Committee to the Administrator of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... products with sodium 3-chloro-2- hydroxypropanesulfonate. 72854-27-4 Tannins, reaction products with sodium...-. 590-19-2 1,2-Butadiene. 598-72-1 Propanoic acid, 2-bromo-. 1401-55-4 Tannins. 1738-25-6 Propanenitrile...

  5. Crystal structure of 1-(3-chloro-phen-yl)piperazin-1-ium picrate-picric acid (2/1).

    PubMed

    Kavitha, Channappa N; Jasinski, Jerry P; Kaur, Manpreet; Anderson, Brian J; Yathirajan, H S

    2014-11-01

    The title salt {systematic name: bis-[1-(3-chloro-phen-yl)piperazinium 2,4,6-tri-nitro-phenolate]-picric acid (2/1)}, 2C10H14ClN2 (+)·2C6H5N3O7 (-)·C6H6N3O7, crystallized with two independent 1-(3-chloro-phen-yl)piperazinium cations, two picrate anions and a picric acid mol-ecule in the asymmetric unit. The six-membered piperazine ring in each cation adopts a slightly distorted chair conformation and contains a protonated N atom. In the picric acid mol-ecule, the mean planes of the nitro groups in the ortho-, meta-, and para-positions are twisted from the benzene ring by 31.5 (3), 7.7 (1), and 3.8 (2)°, respectively. In the anions, the dihedral angles between the benzene ring and the ortho-, meta-, and para-nitro groups are 36.7 (1), 5.0 (6), 4.8 (2)°, and 34.4 (9), 15.3 (8), 4.5 (1)°, respectively. The nitro group in one anion is disordered and was modeled with two sites for one O atom with an occupancy ratio of 0.627 (7):0.373 (7). In the crystal, the picric acid mol-ecule inter-acts with the picrate anion through a trifurcated O-H⋯O four-centre hydrogen bond involving an intra-molecular O-H⋯O hydrogen bond and a weak C-H⋯O inter-action. Weak inter-molecular C-H⋯O inter-actions are responsible for the formation of cation-anion-cation trimers resulting in a chain along [010]. In addition, weak C-H⋯Cl and weak π-π inter-actions [centroid-centroid distances of 3.532 (3), 3.756 (4) and 3.705 (3) Å] are observed and contribute to the stability of the crystal packing.

  6. Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

    PubMed

    Cabrito, Tânia R; Teixeira, Miguel C; Duarte, Alexandra A; Duque, Paula; Sá-Correia, Isabel

    2009-10-01

    The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

  7. 40 CFR Appendix - Tables to Part 132

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ether Butyl benzyl phthalate Cadmium Carbon tetrachloride; tetrachloromethane Chlorobenzene p-Chloro-m... Copper Cyanide 2,4-D; 2,4-Dichlorophenoxyacetic acid DEHP; di(2-ethylhexyl) phthalate Diazinon 1,2:5,6-Dibenzanthracene; dibenz[a,h]anthracene Dibutyl phthalate; di-n-butyl phthalate 1,2-Dichlorobenzene 1,3...

  8. Rapid and sensitive detection of the phenoxy acid herbicides in environmental water samples by magnetic solid-phase extraction combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Mao-Min; Han, Ya-Quan; Xia, Hong; Hu, Xi-Zhou; Zhou, You-Xiang; Peng, Li-Jun; Peng, Xi-Tian

    2018-05-01

    Phenoxy acid herbicides are widely used herbicides that play an important role in improving the yield and quality of crops. However, some research has shown that this kind of herbicide is poisonous to human and animals. In this study, a rapid and sensitive method was developed for the detection of seven phenoxy acid herbicides in water samples based on magnetic solid-phase extraction followed by liquid chromatography and tandem mass spectrometry. Magnetic amino-functionalized multiwalled carbon nanotubes were prepared by mixing bare magnetic Fe 3 O 4 nanoparticles with commercial amino-functionalized multiwalled carbon nanotubes in water. Then the amino-functionalized multiwalled carbon nanotubes were used to enrich phenoxy acid herbicides from water samples based on hydrophobic and ionic interactions. The effects of experimental variables on the extraction efficiency have been studied in detail. Under the optimized conditions, the method validation was performed. Good linearities for seven phenoxy acid herbicides were obtained with squared regression coefficients ranging from 0.9971 to 0.9989. The limits of detection ranged from 0.01 to 0.02 μg/L. The method recoveries of seven phenoxy acid herbicides spiked at three concentration levels in a blank sample were from 92.3 to 103.2%, with inter- and intraday relative standard deviations less than 12.6%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Health and environmental effects profile for 4-chloro-2-methylaniline and 4-chloro-2-methylaniline hydrochloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-12-01

    The Health and Environmental Effects Profile for 4-chloro-2-methylaniline and 4-chloro-2-methylaniline hydrochloride was prepared to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human-health, aquatic-life and environmental effects of hazardous-waste constituents. The human carcinogen potency factors (q1*) for 4-chloro-2-methylaniline and 4-chloro-2-methylaniline hydrochloride are 0.58 and 0.46/(mg/kg/day), respectively,more » for oral exposure. The Reportable Quantity (RQ) value for 4-chloro-2-methylaniline and 4-chloro-2-methylaniline hydrochloride is 5000.« less

  10. Simultaneous quantitation of seven pyrethroid metabolites in human urine by capillary gas chromatography-mass spectrometry.

    PubMed

    Tao, Lin; Chen, Mei; Collins, Erin; Lu, Chensheng

    2013-02-01

    Pyrethroid insecticides are applied in the residential environment, as well as in agricultural crops, for insect control purpose. We developed and validated an accurate, sensitive, and reproducible analytical method to simultaneously detect seven pyrethroid metabolites, namely, 3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid, 3-(2,2-dibromovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid, 3-phenoxybenzoic acid, 4-fluoro-3-phenoxybenzoic acid, 2-methyl-3-phenylbenzoic acid, 4-chloro-α-isoproply benzeneacetic acid, and 3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethylcyclopropanecarboxylic acid, in human urine. This method employs deconjugation with enzyme, SPE using Agilent C18 cartridges on a RapidTrace SPE workstation, derivatization using hexafluoro isopropanol and N,N'-diisopropylcarbodiimide, and compounds separation and identification on GC-MS. The detection limits of seven metabolites were 0.02-0.08 ng/mL in urine. The recoveries of seven metabolites were 81-104%, 85-99%, and 83-99% in urine specimens fortified at 0.1, 0.4, and 3.2 ng/mL concentrations, respectively. The overall coefficient of variation was 4.3-10.8% in two quality control specimens which were repeatedly measured during a period of 2 months. This method was applied to urine samples collected from children living in Boston, MA. The median concentrations of six detected pyrethroid metabolites ranged from 0.06 to 0.86 ng/mL in urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: a microcosm study.

    PubMed

    Merini, Luciano J; Cuadrado, Virginia; Flocco, Cecilia G; Giulietti, Ana M

    2007-06-01

    Phenoxy herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practices. Although its half life in soil is 7-14d, the herbicide itself and its first metabolite 2,4-dichlorophenol (2,4-DCP) could remain in the soil for longer periods, as a consequence of its intensive use. Microcosms assays were conducted to study the influence of indigenous microflora and plants (alfalfa) on the dissipation of 2,4-D from soils of the Humid Pampa region, Argentina, with previous history of phenoxy herbicides application. Results showed that 2,4-D was rapidly degraded, and the permanence of 2,4-DCP in soil depended on the presence of plants and soil microorganisms. Regarding soil microbial community, the presence of 2,4-D degrading bacteria was detected even in basal conditions in this soil, possibly due to the adaptation of the microflora to the herbicide. There was an increment of two orders of magnitude in herbicide degraders after 15d from 2,4-D addition, both in planted and unplanted microcosms. Total heterotrophic bacteria numbers were about 1x10(8) CFUg(-1) dry soil and no significant differences were found between different treatments. Overall, the information provided by this work indicates that the soil under study has an important intrinsic degradation capacity, given by a microbial community adapted to the presence of phenoxy herbicides.

  12. The kinetics of the 2π+2π photodimerisation reactions of single-crystalline derivatives of trans-cinnamic acid: A study by infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Jenkins, Samantha L.; Almond, Matthew J.; Atkinson, Samantha D. M.; Drew, Michael G. B.; Hollins, Peter; Mortimore, Joanne L.; Tobin, Mark J.

    2006-04-01

    The kinetics of the photodimerisation reactions of the 2- and 4-β-halogeno-derivatives of trans-cinnamic acid (where the halogen is fluorine, chlorine or bromine) have been investigated by infrared microspectroscopy. It is found that none of the reactions proceed to 100% yield. This is in line with a reaction mechanism developed by Wernick and his co-workers that postulates the formation of isolated monomers within the solid, which cannot react. β-4-Bromo and β-4-chloro- trans-cinnamic acids show approximately first order kinetics, although in both cases the reaction accelerates somewhat as it proceeds. First order kinetics is explained in terms of a reaction between one excited- and one ground-state monomer molecule, while the acceleration of the reaction implies that it is promoted as defects are formed within the crystal. By contrast β-2-chloro- trans-cinnamic acid shows a strongly accelerating reaction which models closely to the contracting cube equation. β-2-Fluoro- and β-4-fluoro- trans-cinnamic acids show a close match to first order kinetics. The 4-fluoro-derivative, however, shows a reaction that proceeds via a structural intermediate. The difference in behaviour between the 2-fluoro- and 4-fluoro-derivative may be due to different C-H⋯F hydrogen bonds observed within these single-crystalline starting materials.

  13. Effect of 2,4-Dichlorophenoxyacetic acid herbicide Escherichia coli growth, chemical, composition, and cellular envelope

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.

    2001-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide widely used in the world and mainly excreted by the renal route in exposed humans and animals. Herbicides can affect other nontarget organisms, such as Escherichia coli. We observed that a single exposure to 1 mM 2,4-D diminished growth and total protein content in all E. coli strains tested in vitro. In addition, successive exposures to 0.01 mM 2,4-D had a toxic effect decreasing growth up to early stationary phase. Uropathogenic E. coli adhere to epithelial cells mediated by fimbriae, adhesins, and hydrophobic properties. 2,4-D exposure of uropathogenic E. coli demonstrated altered hydrophobicity and fimbriation. Hydrophobicity index values obtained by partition in p-xylene/water were 300-420% higher in exposed cells than in control ones. Furthermore, values of hemagglutination titer, protein contents in fimbrial crude extract, and electron microscopy demonstrated a significant diminution of fimbriation in treated cells. Other envelope alterations could be detected, such as lipoperoxidation, evidenced by decreased polyunsaturated fatty acids and increased lipid degradation products (malonaldehyde), and motility diminution. These alterations decreased cell adherence to erythrocytes, indicating a diminished pathogenic capacity of the 2,4-D-exposed E. coli. ?? 2001 by John Wiley & Sons, Inc.

  14. Simultaneous catalytic degradation of 2,4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS)

    NASA Astrophysics Data System (ADS)

    Kermani, Majid; Mohammadi, Farzad; Kakavandi, Babak; Esrafili, Ali; Rostamifasih, Zeinab

    2018-06-01

    Herein, a sulfate radical (SO4rad -)-based oxidation process was utilized for simultaneous degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) herbicides using mesoporous hematite-based natural semi-conductor minerals (HM-NSMs) as efficient activators of persulfate (PS). The features of the catalyst were characterized using field emission scanning electron microscopy (FESEM); Brunauer, Emmett and Teller (BET) analysis; X-ray diffraction (XRD); and energy-dispersive X-ray spectroscopy (EDS). The effect of some operational parameters, including solution pH, catalyst loading, PS dosage and temperature, on the performance system of PS/HM-NSMs was examined. A plausible oxidation mechanism for degradation of both pollutants was also proposed. Increasing the removal efficiency of herbicides follows the order of PS/HM-NSM > HM-NSM > PS. In all experiments, the 2,4-D removal rates were slightly lower than those for MCPA, indicating that 2,4-D has a more recalcitrant nature than MCPA. Under optimized conditions, degradation rates of 68.1% and 74.5% were achieved for 2,4-D and MCPA, respectively, during a 120-min reaction. HM-NSM displays a highly synergistic effect on the degradation of herbicides in the presence of PS. The trapping experiments demonstrated that both OHrad and SO4rad - radicals contribute significantly during the degradation of 2,4-D and MCPA and that sulfate radicals were the dominant species. A mineralization degree of 36% was obtained under optimum conditions. In conclusion, the coupling of PS and HM-NSM is a promising and effective technique to degrade organic matter for the treatment of herbicide-contaminated waters and wastewaters under real conditions.

  15. 40 CFR Appendix J to Part 122 - NPDES Permit Testing Requirements for Publicly Owned Treatment Works (§ 122.21(j))

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,2-trichloroethane Trichloroethylene Vinyl chloride Acid-extractable compounds P-chloro-m-creso 2...-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Base-neutral compounds Acenaphthene Acenaphthylene...

  16. 40 CFR Appendix J to Part 122 - NPDES Permit Testing Requirements for Publicly Owned Treatment Works (§ 122.21(j))

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...,2-trichloroethane Trichloroethylene Vinyl chloride Acid-extractable compounds P-chloro-m-creso 2...-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Base-neutral compounds Acenaphthene Acenaphthylene...

  17. 40 CFR Appendix J to Part 122 - NPDES Permit Testing Requirements for Publicly Owned Treatment Works (§ 122.21(j))

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...,2-trichloroethane Trichloroethylene Vinyl chloride Acid-extractable compounds P-chloro-m-creso 2...-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Base-neutral compounds Acenaphthene Acenaphthylene...

  18. 40 CFR Appendix J to Part 122 - NPDES Permit Testing Requirements for Publicly Owned Treatment Works (§ 122.21(j))

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...,2-trichloroethane Trichloroethylene Vinyl chloride Acid-extractable compounds P-chloro-m-creso 2...-nitrophenol Pentachlorophenol Phenol 2,4,6-trichlorophenol Base-neutral compounds Acenaphthene Acenaphthylene...

  19. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  20. Photoluminescence spectroscopy of YVO4:Eu3+ nanoparticles with aromatic linker molecules: A precursor to biomedical functionalization

    NASA Astrophysics Data System (ADS)

    Senty, T. R.; Yalamanchi, M.; Zhang, Y.; Cushing, S. K.; Seehra, M. S.; Shi, X.; Bristow, A. D.

    2014-04-01

    Photoluminescence spectra of YVO4:Eu3+ nanoparticles are presented, with and without the attachment of organic molecules that are proposed for linking to biomolecules. YVO4:Eu3+ nanoparticles with 5% dopant concentration were synthesized via wet chemical synthesis. X-ray diffraction and transmission electron microscopy show the expected wakefieldite structure of tetragonal particles with an average size of 17 nm. Fourier-transform infrared spectroscopy determines that metal-carboxylate coordination is successful in replacing native metal-hydroxyl bonds with three organic linkers, namely, benzoic acid, 3-nitro 4-chloro-benzoic acid, and 3,4-dihydroxybenzoic acid, in separate treatments. UV-excitation photoluminescence spectra show that the position and intensity of the dominant 5D0 - 7F2 electric-dipole transition at 619 nm are unaffected by the benzoic acid and 3-nitro 4-chloro-benzoic acid treatments. Attachment of 3,4-dihydroxybenzoic acid produces an order-of-magnitude quenching in the photoluminescence, due to the presence of high-frequency vibrational modes in the linker. Ratios of the dominant electric- and magnetic-dipole transitions confirm infrared measurements, which indicate that the bulk crystal of the nanoparticle is unchanged by all three treatments.

  1. Investigations of new lead structures for the design of selective estrogen receptor modulators.

    PubMed

    Gust, R; Keilitz, R; Schmidt, K

    2001-06-07

    Heterocyclic derivatives of (R,S)/(S,R)-1-(2-chloro-4-hydroxyphenyl)-2-(2,6-dichloro-4-hydroxyphenyl)ethylenediamine (L1) were synthesized and tested for estrogen receptor binding. The selection of the heterocycles was based on theoretical consideration. (2R,3S)/(2S,3R)-2-(2-Chloro-4-hydroxyphenyl)-3-(2,6-dichloro-4-hydroxyphenyl)piperazine 2, (4R,5S)/(4S,5R)-4-(2-chloro-4-hydroxyphenyl)-5-(2,6-dichloro-4-hydroxyphenyl)-2-imidazoline 3, and 4-(2-chloro-4-hydroxyphenyl)-5-(2,6-dichloro-4-hydroxyphenyl)imidazole 4 possess a spatial structure with neighboring aromatic rings as is realized in hormonally active [1,2-diphenylethylenediamine]platinum(II) complexes. The 1,2-diphenylethane pharmacophor, however, cannot adapt an antiperiplanar conformation to interact with the estrogen receptor (ER) comparable to synthetic (e.g., diethylstilbestrol (DES)) or steroidal (e.g., estradiol (E2)) estrogens. Due to the different spatial structures, the heterocycles cause only a marginal displacement of E2 from its binding site (relative binding affinity (RBA) < 0.1%). Nevertheless, unequivocally ER mediated gene activation was verified on the MCF-7-2a cell line. Imidazoline 3 as the most active compound reached the maximum effect of E2 (100% activation) in a concentration of 5 x 10(-7) M, while piperazine 2 and imidazole 4 activate luciferase expression only in a small but significant amount of 20% and 27%, respectively. We therefore assigned these heterocyclic compounds to a second class of hormones (type-II-estrogens), which are attached at the ER at different amino acids than DES or E2 (type-I-estrogens).

  2. Separation and quantitation of three acidic herbicide residues in tobacco and soil by dispersive solid-phase extraction and UPLC-MS/MS.

    PubMed

    Xiong, Wei; Tao, Xiaoqiu; Pang, Su; Yang, Xue; Tang, GangLing; Bian, Zhaoyang

    2014-01-01

    A method for the determination of three acidic herbicides, dicamba, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in tobacco and soil has been developed based on the use of liquid-liquid extraction and dispersive solid-phase extraction (dispersive-SPE) followed by UPLC-MS/MS. Two percentage of (v/v) formic acid in acetonitrile as the extraction helped partitioning of analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using primary secondary amine as selective sorbents. Quantitative analysis was done in the multiple-reaction monitoring mode using stable isotope-labeled internal standards for each compound. A separate internal standard for each analyte is required to minimize sample matrix effects on each analyte, which can lead to poor analyte recoveries and decreases in method accuracy and precision. The total analysis time was <4 min. The linear range of the method was from 1 to 100 ng mL(-1) with a limit of detection of each herbicide varied from 0.012 to 0.126 ng g(-1). The proposed method is faster, more sensitive and selective than the traditional methods and more accurate and robust than the published LC-MS/MS methods. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  4. Effect of the calcination temperature on the photocatalytic efficiency of acidic sol-gel synthesized TiO2 nanoparticles in the degradation of alprazolam.

    PubMed

    Romeiro, Andreia; Freitas, Diana; Emília Azenha, M; Canle, Moisés; Burrows, Hugh D

    2017-06-14

    We report a comparative study on the photodegradation of the widely used benzodiazepine psychoactive drug alprazolam (8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine, ALP) using direct photolysis, and titanium dioxide photocatalyzed reaction. Titanium dioxide photocatalysts were prepared as nanoparticles by acidic sol-gel methods, calcined at two different temperatures, and their behavior compared with P25 (Degussa type) TiO 2 . Efficient photodegradation was observed in the photocatalytic process, with over 90% degradation after 90 minutes under optimized conditions. Triazolaminoquinoline, 5-chloro-(5-methyl-4H-1,2,4-triazol-4-yl)benzophenone, triazolbenzophenone, and α-hydroxyalprazolam were identified as the degradation products by fluorescence spectroscopy and HPLC-MS. A comparison with the literature suggests that 8H-alprazolam may also be formed. Good mineralization was observed with TiO 2 photocatalysts. ALP photodegradation with TiO 2 follows pseudo-first order kinetics, with rates depending on the photocatalyst used. The effects of the quantity of the photocatalyst and concentration of alprazolam were studied.

  5. Vibrational spectra, NLO analysis, and HOMO-LUMO studies of 2-chloro-6-fluorobenzoic acid and 3,4-dichlorobenzoic acid by density functional method

    NASA Astrophysics Data System (ADS)

    Senthil kumar, J.; Arivazhagan, M.; Thangaraju, P.

    2015-08-01

    The FTIR and FT-Raman spectra of 2-chloro-6-fluorobenzoic acid and 3,4-dichlorobenzoic acid have been recorded in the region 4000-400 cm-1 and 3500-50 cm-1, respectively. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of fundamental modes of the compounds were carried out. The optimized molecular geometries, vibrational frequencies, thermodynamic properties and atomic charge of the compounds were calculated by using density functional theory (B3LYP) method with 6-311+G and 6-311++G basis sets. The difference between the observed and scaled wave number values of most of fundamentals is very small. Unambiguous vibration assignment of all the fundamentals is made up the total energy distribution (TED). The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules. Besides, molecular electro static potential (MESP), Mulliken's charge analysis, first order hyper polarizability and several thermodynamic properties were performed by the DFT method.

  6. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  7. The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid - Synthesis and structural studies

    NASA Astrophysics Data System (ADS)

    Drzewiecka-Antonik, Aleksandra; Ferenc, Wiesława; Wolska, Anna; Klepka, Marcin T.; Cristóvão, Beata; Sarzyński, Jan; Rejmak, Paweł; Osypiuk, Dariusz

    2017-01-01

    The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were synthesized and structurally characterized. The geometry of metal-ligand interaction was refined using XAFS and DFT studies. The Co(2,4-D)2·6H2O and Ni(2,4-D)2·4H2O complexes have octahedral geometry with two carboxylate groups of 2,4-D anions and four water molecules in the coordination sphere. The square planar geometry around metal cations formed by the carboxylate groups from two monodentate ligands and two water molecules, is observed for Cu(2,4-D)2·4H2O complex. In the recrystallized Ni(II) complex dinuclear 'Chinese lantern' structures with bridging carboxylate groups of 2,4-D were observed.

  8. A 2,4-dichlorophenoxyacetic acid induced fatality.

    PubMed

    Jorens, P G; Heytens, L; De Paep, R J; Bossaert, L; Selala, M I; Schepens, P J

    1995-03-01

    This paper reports on a fatal intoxication by oral ingestion of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). At admission, the victim was unconscious. His condition deteroriated rapidly with blood loss from his mouth and nose. Since the cause of this condition was not known, gastroscopy was performed and haemorrhagic mucosa was observed in the mouth, oesophagus and stomach. Gastric contents (removed by lavage), urine and blood were submitted for toxicological analysis. Unfortunately, within 3 h of admission (about 5 h following ingestion of the toxin) profound cardiogenic shock developed and the patient died. The identity of the toxic xenobiotic was revealed by gas chromatography-mass spectrometry. Analytical quantification of the herbicide was performed by acid extraction prior to gas chromatographic examination using electron capture detection. His blood level of 2,4-D was 192 mg l-1.

  9. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure.

    PubMed

    Dai, Yu; Li, Ningning; Zhao, Qun; Xie, Shuguang

    2015-04-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.

  10. Adaptation of Saccharomyces cerevisiae to the Herbicide 2,4-Dichlorophenoxyacetic Acid, Mediated by Msn2p- and Msn4p-Regulated Genes: Important Role of SPI1

    PubMed Central

    Simões, T.; Teixeira, M. C.; Fernandes, A. R.; Sá-Correia, Isabel

    2003-01-01

    The possible roles of 13 Msn2p- and Msn4p-regulated genes in the adaptation of Saccharomyces cerevisiae to the herbicide 2,4-d-dichlorophenoxyacetic acid (2,4-D) were examined. Single deletion of genes involved in defense against oxidizing agents (CTT1, GRX1, and GRX2/TTR1) or encoding chaperones of the HSP70 family (SSA1, SSA4, and SSE2) showed a slight effect. A more significant role was observed for the heat shock genes HSP78, HSP26, HSP104, HSP12, and HSP42, most of which encode molecular chaperones. However, the SPI1 gene, encoding a member of the glycosylphosphatidylinositol-anchored cell wall protein family, emerged as the major determinant of 2,4-D resistance. SPI1 expression reduced the loss of viability of an unadapted yeast population suddenly exposed to the herbicide, allowing earlier growth resumption. Significantly, yeast adaptation to 2,4-D involves the rapid and transient Msn2p- and Msn4p-mediated activation (fivefold) of SPI1 transcription. SPI1 mRNA levels were reduced to values slightly above those in unstressed cells when the adapted population started duplication in the presence of 2,4-D. Since SPI1 deletion leads to the higher β-1,3-glucanase sensitivity of 2,4-D-stressed cells, it was hypothesized that adaptation may involve an Spi1p-mediated increase in the diffusional restriction of the liposoluble acid form of the herbicide across the cell envelope. Such a cell response would avoid a futile cycle due to acid reentry into the cell counteracting the active export of the anionic form, presumably through an inducible plasma membrane transporter(s). Consistent with this concept, the concentration of 14C-labeled 2,4-D in 2,4-D-energized adapted Δspi1 mutant cells and the consequent intracellular acidification are higher than in wild-type cells. PMID:12839777

  11. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    PubMed

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  12. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  13. Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor.

    PubMed

    Stamper, D M; Tuovinen, O H

    1998-01-01

    Alachlor, metolachlor, and propachlor are detoxified in biological systems by the formation of glutathione-acetanilide conjugates. This conjugation is mediated by glutathione-S-transferase, which is present in microorganisms, plants, and mammals. Other organic sulfides and inorganic sulfide also react through a nucleophilic attack on the 2-chloro group of acetanilide herbicides, but the products are only partially characterized. Sorption in soils and sediments is an important factor controlling the migration and bioavailability of these herbicides, while microbial degradation is the most important factor in determining their overall fate in the environment. The biodegradation of alachlor and metolachlor is proposed to be only partial and primarily cometabolic, and the ring cleavage seems to be slow or insignificant. Propachlor biodegradation has been reported to proceed to substantial (> 50%) mineralization of the ring structure. Reductive dechlorination may be one of the initial breakdown mechanisms under anaerobic conditions. Aerobic and anaerobic transformation products vary in their polarity and therefore in soil binding coefficient. A catabolic pathway for chloroacetanilide herbicides has not been presented in the literature because of the lack of mineralization data under defined cultural conditions.

  14. ENZYMATIC COUPLING OF THE HERBICIDE BENTAZON WITH HUMUS MONOMERS AND CHARACTERIZATION OF REACTION PRODUCTS (R823847)

    EPA Science Inventory

    To elucidate the binding mechanism of the herbicide bentazon
    (3-isopropyl-1H-2,1,3-benzothiadiazine-4(3H)-one 2,2-dioxide) with
    humic monomers in the presence of an oxidative enzyme, the reaction of bentazon
    with catechol, caffeic acid, protocatechuic...

  15. A new member of the 4-methylideneimidazole-5-one–containing aminomutase family from the enediyne kedarcidin biosynthetic pathway

    PubMed Central

    Huang, Sheng-Xiong; Lohman, Jeremy R.; Huang, Tingting; Shen, Ben

    2013-01-01

    4-Methylideneimidazole-5-one (MIO)-containing aminomutases catalyze the conversion of l-α-amino acids to β-amino acids with either an (R) or an (S) configuration. l-Phenylalanine and l-tyrosine are the only two natural substrates identified to date. The enediyne chromophore of the chromoprotein antitumor antibiotic kedarcidin (KED) harbors an (R)-2-aza-3-chloro-β-tyrosine moiety reminiscent of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, the biosynthesis of which uncovered the first known MIO-containing aminomutase, SgcC4. Comparative analysis of the KED and C-1027 biosynthetic gene clusters inspired the proposal for (R)-2-aza-3-chloro-β-tyrosine biosynthesis starting from 2-aza-l-tyrosine, featuring KedY4 as a putative MIO-containing aminomutase. Here we report the biochemical characterization of KedY4, confirming its proposed role in KED biosynthesis. KedY4 is an MIO-containing aminomutase that stereospecifically catalyzes the conversion of 2-aza-l-tyrosine to (R)-2-aza-β-tyrosine, exhibiting no detectable activity toward 2-aza-l-phenylalanine or l-tyrosine as an alternative substrate. In contrast, SgcC4, which stereospecifically catalyzes the conversion of l-tyrosine to (S)-β-tyrosine in C-1027 biosynthesis, exhibits minimal activity with 2-aza-l-tyrosine as an alternative substrate but generating (S)-2-aza-β-tyrosine, a product with the opposite stereochemistry of KedY4. This report of KedY4 broadens the scope of known substrates for the MIO-containing aminomutase family, and comparative studies of KedY4 and SgcC4 provide an outstanding opportunity to examine how MIO-containing aminomutases control substrate specificity and product enantioselectivity. PMID:23633564

  16. A new member of the 4-methylideneimidazole-5-one-containing aminomutase family from the enediyne kedarcidin biosynthetic pathway.

    PubMed

    Huang, Sheng-Xiong; Lohman, Jeremy R; Huang, Tingting; Shen, Ben

    2013-05-14

    4-Methylideneimidazole-5-one (MIO)-containing aminomutases catalyze the conversion of L-α-amino acids to β-amino acids with either an (R) or an (S) configuration. L-phenylalanine and L-tyrosine are the only two natural substrates identified to date. The enediyne chromophore of the chromoprotein antitumor antibiotic kedarcidin (KED) harbors an (R)-2-aza-3-chloro-β-tyrosine moiety reminiscent of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, the biosynthesis of which uncovered the first known MIO-containing aminomutase, SgcC4. Comparative analysis of the KED and C-1027 biosynthetic gene clusters inspired the proposal for (R)-2-aza-3-chloro-β-tyrosine biosynthesis starting from 2-aza-L-tyrosine, featuring KedY4 as a putative MIO-containing aminomutase. Here we report the biochemical characterization of KedY4, confirming its proposed role in KED biosynthesis. KedY4 is an MIO-containing aminomutase that stereospecifically catalyzes the conversion of 2-aza-L-tyrosine to (R)-2-aza-β-tyrosine, exhibiting no detectable activity toward 2-aza-L-phenylalanine or L-tyrosine as an alternative substrate. In contrast, SgcC4, which stereospecifically catalyzes the conversion of L-tyrosine to (S)-β-tyrosine in C-1027 biosynthesis, exhibits minimal activity with 2-aza-L-tyrosine as an alternative substrate but generating (S)-2-aza-β-tyrosine, a product with the opposite stereochemistry of KedY4. This report of KedY4 broadens the scope of known substrates for the MIO-containing aminomutase family, and comparative studies of KedY4 and SgcC4 provide an outstanding opportunity to examine how MIO-containing aminomutases control substrate specificity and product enantioselectivity.

  17. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals.

    PubMed

    Ndikuryayo, Ferdinand; Moosavi, Behrooz; Yang, Wen-Chao; Yang, Guang-Fu

    2017-10-04

    The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.

  18. Enantiomeric separation of some demethylated analogues of clofibric acid by capillary zone electrophoresis and nano-liquid chromatography.

    PubMed

    Fantacuzzi, Marialuigia; Bettoni, Giancarlo; D'Orazio, Giovanni; Fanali, Salvatore

    2006-03-01

    The enantiomeric separation of some demethylated analogues of clofibric acid, namely 2-(6-chloro-benzothiazol-2-ylsulfanyl)-, 2-(6-methoxy-benzothiazol-2-ylsulfanyl)-, 2-(quinolin-2-yloxy)-, 2-(6-chloro-quinolin-2-yloxy)-, 2-(7-chloro-quinolin-4-yloxy)-propionic acid (compounds A-E, respectively), has been studied by CZE and nano-LC using for the first technique two beta-CD derivatives and vancomycin added to the BGE and vancomycin-modified silica particles for the second one, with the aim to find the optimum experimental conditions for the baseline resolution. The type and the concentration of the chiral selector added to the BGE, the buffer pH, the type of organic modifier and its concentration, the capillary temperature and the applied voltage played a very important role in the enantioresolution of the analysed compounds. The use of 6-monodeoxy-6-monoamino-beta-CD allowed to achieve baseline resolution of four of five clofibric acid derivatives in less than 10 min while heptakis-(2,3,6-tri-O-methyl)-beta-CD partially resolved the same compounds in their enantiomers. Employing vancomycin as the chiral selector in CZE, the counter-current partial filling method was chosen achieving baseline resolution of four analytes. All the studied compounds were enantioresolved employing a capillary column packed with vancomycin stationary phase by nano-LC, and the resolution was strongly influenced by the concentration of the organic modifier and by the pH of the mobile phase. The best results were achieved at pH 4.5 in presence of 60% of methanol (MeOH). However, longer analysis times were observed in the experiments carried out by nano-LC.

  19. Alkyl(C16, C18, C22)trimethylammonium-Based Herbicidal Ionic Liquids.

    PubMed

    Pernak, Juliusz; Giszter, Rafał; Biedziak, Agnieszka; Niemczak, Michał; Olszewski, Radosław; Marcinkowska, Katarzyna; Praczyk, Tadeusz

    2017-01-18

    In the framework of this study a synthesis methodology and characterization of long alkyl herbicidal ionic liquids (HILs) based on four commonly used herbicides (2,4-D, MCPA, MCPP, and dicamba) are presented. New HILs were obtained with high efficiency (>95%) using an acid-base reaction between herbicidal acids and hexadecyltrimethylammonium, octadecyltrimethylammonium, and behenyltrimethylammonium hydroxides in alcoholic medium. Among all synthesized salts, only three compounds comprising the MCPP anion were liquids at room temperature. Subsequently, the influence of both the alkyl chain length and the anion structure on their physicochemical properties (thermal decomposition profiles, solubility in 10 representative solvents, surface activity, density, viscosity, and refractive index) was determined. All HILs exhibited high thermal stability as well as surface activity; however, their solubility notably depended on both the length of the carbon chain and the structure of the anion. The herbicidal efficacy of the obtained salts was tested in greenhouse and field experiments. Greenhouse testing performed on common lambsquarters (Chenopodium album L.) and flixweed (Descurainia sophia L.) as test plants indicated that HILs were characterized by similar or higher efficacy compared to commercial herbicides. The results of field trials confirmed the high activity of HILs, particularly those containing phenoxyacids as anions (MCPA, 2,4-D, and MCPP).

  20. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  1. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch.

    PubMed

    Njoku, V O; Islam, Md Azharul; Asif, M; Hameed, B H

    2015-05-01

    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption capacity increased with temperature. The adsorption data was well described by Langmuir isotherm followed by removal capacity of 261.2 mg/g at 30 °C. The results from this work showed that LEFBAC can be used as outstanding material for anionic herbicide uptake from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Laboratory degradation studies of 14C-atrazine and -isoproturon in soil from sugarcane cultivated fields under Kenyan tropical conditions.

    PubMed

    Getenga, Z M; Dörfler, U; Schroll, R

    2009-06-01

    A study to compare the degradation rates of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diammine) and isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] in soils from sugarcane fields with different practices of herbicides application was carried out. (14)C-atrazine was poorly mineralized to (14)CO(2) (1.10% +/- 0.22%) after 139 days of incubation in soil without previous exposure to atrazine. In the same soil also with no previous isoproturon exposure isoproturon was mineralized to (14)CO(2) by 7.70% +/- 0.94%. Atrazine mineralization after 98 days was 13.4% +/- 0.30% in soil which discontinued the use of atrazine in 1997 while it was 89.9% +/- 1.23% in soil in which atrazine is currently being used. The isoproturon mineralization values were 7.24% +/- 0.85% and 22.97% +/- 0.96% in soil which discontinued atrazine and soil currently using atrazine, respectively.

  3. Photoluminescence spectroscopy of YVO{sub 4}:Eu{sup 3+} nanoparticles with aromatic linker molecules: A precursor to biomedical functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senty, T. R.; Yalamanchi, M.; Cushing, S. K.

    2014-04-28

    Photoluminescence spectra of YVO{sub 4}:Eu{sup 3+} nanoparticles are presented, with and without the attachment of organic molecules that are proposed for linking to biomolecules. YVO{sub 4}:Eu{sup 3+} nanoparticles with 5% dopant concentration were synthesized via wet chemical synthesis. X-ray diffraction and transmission electron microscopy show the expected wakefieldite structure of tetragonal particles with an average size of 17 nm. Fourier-transform infrared spectroscopy determines that metal-carboxylate coordination is successful in replacing native metal-hydroxyl bonds with three organic linkers, namely, benzoic acid, 3-nitro 4-chloro-benzoic acid, and 3,4-dihydroxybenzoic acid, in separate treatments. UV-excitation photoluminescence spectra show that the position and intensity of the dominantmore » {sup 5}D{sub 0} – {sup 7}F{sub 2} electric-dipole transition at 619 nm are unaffected by the benzoic acid and 3-nitro 4-chloro-benzoic acid treatments. Attachment of 3,4-dihydroxybenzoic acid produces an order-of-magnitude quenching in the photoluminescence, due to the presence of high-frequency vibrational modes in the linker. Ratios of the dominant electric- and magnetic-dipole transitions confirm infrared measurements, which indicate that the bulk crystal of the nanoparticle is unchanged by all three treatments.« less

  4. Crystal structure of 1-(3-chloro­phen­yl)piperazin-1-ium picrate–picric acid (2/1)

    PubMed Central

    Kavitha, Channappa N.; Jasinski, Jerry P.; Kaur, Manpreet; Anderson, Brian J.; Yathirajan, H. S.

    2014-01-01

    The title salt {systematic name: bis­[1-(3-chloro­phen­yl)piperazinium 2,4,6-tri­nitro­phenolate]–picric acid (2/1)}, 2C10H14ClN2 +·2C6H5N3O7 −·C6H6N3O7, crystallized with two independent 1-(3-chloro­phen­yl)piperazinium cations, two picrate anions and a picric acid mol­ecule in the asymmetric unit. The six-membered piperazine ring in each cation adopts a slightly distorted chair conformation and contains a protonated N atom. In the picric acid mol­ecule, the mean planes of the nitro groups in the ortho-, meta-, and para-positions are twisted from the benzene ring by 31.5 (3), 7.7 (1), and 3.8 (2)°, respectively. In the anions, the dihedral angles between the benzene ring and the ortho-, meta-, and para-nitro groups are 36.7 (1), 5.0 (6), 4.8 (2)°, and 34.4 (9), 15.3 (8), 4.5 (1)°, respectively. The nitro group in one anion is disordered and was modeled with two sites for one O atom with an occupancy ratio of 0.627 (7):0.373 (7). In the crystal, the picric acid mol­ecule inter­acts with the picrate anion through a trifurcated O—H⋯O four-centre hydrogen bond involving an intra­molecular O—H⋯O hydrogen bond and a weak C—H⋯O inter­action. Weak inter­molecular C—H⋯O inter­actions are responsible for the formation of cation–anion–cation trimers resulting in a chain along [010]. In addition, weak C—H⋯Cl and weak π–π inter­actions [centroid–centroid distances of 3.532 (3), 3.756 (4) and 3.705 (3) Å] are observed and contribute to the stability of the crystal packing. PMID:25484834

  5. Herbicide Transformation

    PubMed Central

    Lanzilotta, R. P.; Pramer, David

    1970-01-01

    Replacement cultures liberated 3,4-dichloroaniline (DCA) from 3,4-dichloropropionanilide (propanil). The kinetics of the conversion suggest a requirement for de novo enzyme synthesis, but the system was not influenced by chloramphenicol or puromycin. Enzyme activity was detected when acetanilide (Km = 0.195 mm) was used to replace propanil as substrate. Fungal acylamidase (E.C. 3.5.1., an aryl acylamine amidohydrolase) was concentrated by salt precipitation and characterized. The Fusarium solani acylamidase exhibited an optimum at pH 7.5 to 9.0 and was inactivated in 10 min at 50 C. The enzyme was not sensitive to methyl-carbamate or organophosphate insecticides, but the herbicide, Ramrod (N-isopropyl-2-chloroacetanilide), acted as a competitive inhibitor of acetanilide hydrolysis (Ki = 0.167 mm). Hydrolysis rates were decreased by various para substitutions of acetanilide. Chloro substitution in the acyl moiety of acetanilide also reduced the rate of hydrolysis. 3,4-Dichloroacetanilide was less susceptible to enzyme action than acetanilide, but 3,4-dichloropropionanilide was hydrolyzed much more rapidly than propionanilide. The fungal acylamidase was highly specific for N-acetylarylamines. It did not catalyze hydrolysis of formanilide, butyranilide, dicryl, Karsil, fenuron, monuron, or isopropyl-N-phenylcarbamate. It appears to differ from acylamidases that have been isolated from rice, rat liver, chick kidney, and Neurospora. PMID:5437306

  6. Determination of 2,4-dichlorophenoxyacetic acid and its major transformation product in soil samples by liquid chromatographic analysis.

    PubMed

    de Amarante, O P; Brito, N M; Dos Santos, T C R; Nunes, G S; Ribeiro, M L

    2003-05-28

    The 2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applied herbicides around the world to control broad leave herbs in many crops. In this study, a method was developed for simultaneous extraction and determination of 2,4-D and its major transformation product, i.e., the 2,4-dichlorophenol (2,4-DCP), in soil samples. The herbicide and its degradation product were extracted twice from soil samples, after acidification, by dichloromethane on ultrasound system for 1 h. Both extracts were combined and filtrated in qualitative filter paper and Celite((R)). The total extract was concentrated in rotatory evaporator, dried under N(2) and finally dissolved in 1 ml of methanol. High Performance Liquid Chromatography with UV detection at 230 nm was used for analysis. Recoveries were obtained from soil samples fortified at 0.1, 1.0, 2.0, 3.0 and 4.0 mgkg(-1) levels and the results varied from 85 to 111% (for 2,4-D) and from 95 to 98% (for 2,4-DCP). For both compounds, the limits of quantification were 0.1 mgkg(-1), which were the loss level at which the accuracy and the precision were studied. Nevertheless, the limits of detection, calculated by considering the blank standard deviation and the minimum concentration level, were 0.03 and 0.02 mgkg(-1), for 2,4-D and 2,4-DCP, respectively. This proposed method was applied to soil samples of eucalyptus crops, which was previously treated with the herbicide. Despite that, neither 2,4-D nor its degradation product were detected 30 days after the herbicide application.

  7. 2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport

    PubMed Central

    Goggin, Danica E.; Cawthray, Gregory R.; Powles, Stephen B.

    2016-01-01

    Resistance to auxinic herbicides is increasing in a range of dicotyledonous weed species, but in most cases the biochemical mechanism of resistance is unknown. Using 14C-labelled herbicide, the mechanism of resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) in two wild radish (Raphanus raphanistrum L.) populations was identified as an inability to translocate 2,4-D out of the treated leaf. Although 2,4-D was metabolized in wild radish, and in a different manner to the well-characterized crop species wheat and bean, there was no difference in metabolism between the susceptible and resistant populations. Reduced translocation of 2,4-D in the latter was also not due to sequestration of the herbicide, or to reduced uptake by the leaf epidermis or mesophyll cells. Application of auxin efflux or ABCB transporter inhibitors to 2,4-D-susceptible plants caused a mimicking of the reduced-translocation resistance phenotype, suggesting that 2,4-D resistance in the populations under investigation could be due to an alteration in the activity of a plasma membrane ABCB-type auxin transporter responsible for facilitating long-distance transport of 2,4-D. PMID:26994475

  8. BOREAS TGB-7 Rainwater Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Conrad, Sara K. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TGB-7 team measured the concentration and flux of several agricultural pesticides in air and rainwater samples in order to determine the associated yearly deposition rates. This data set contains information on the rainwater concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files.

  9. Isolation from Agricultural Soil and Characterization of a Sphingomonas sp. Able To Mineralize the Phenylurea Herbicide Isoproturon

    PubMed Central

    Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

    2001-01-01

    A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the α-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU. PMID:11722885

  10. Pesticides in groundwater in the Anacostia River and Rock Creek watersheds in Washington, D.C., 2005 and 2008

    USGS Publications Warehouse

    Koterba, Michael T.; Dieter, Cheryl A.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the District Department of the Environment, conducted a groundwater-quality investigation to (a) determine the presence, concentrations, and distribution of selected pesticides in groundwater, and (b) assess the presence of pesticides in groundwater in relation to selected landscape, hydrogeologic, and groundwater-quality characteristics in the shallow groundwater underlying the Anacostia River and Rock Creek watersheds in Washington, D.C. With one exception, well depths were 100 feet or less below land surface. The USGS obtained or compiled ancillary data and information on land use (2001), subsurface sediments, and groundwater samples from 17 wells in the lower Anacostia River watershed from September through December 2005, and from 14 wells in the lower Anacostia River and lower Rock Creek watersheds from August through September 2008. Twenty-seven pesticide compounds, reflecting at least 19 different types of pesticides, were detected in the groundwater samples obtained in 2005 and 2008. No fungicides were detected. In relation to the pesticides detected, degradate compounds were as or more likely to be detected than applied (parent) compounds. The detected pesticides chiefly reflected herbicides commonly used in urban settings for non-specific weed control or insecticides used for nonspecific haustellate insects (insects with specialized mouthparts for sucking liquid) or termite-specific control. Detected pesticides included a combination of pesticides currently (2008) in use, banned or under highly restricted use, and some that had replaced the banned or restricted-use pesticides. The presence of banned and restricted-use pesticides illustrates their continued persistence and resistance to complete degradation in the environment. The presence of the replacement pesticides indicates the susceptibility of the surficial aquifer to contamination irrespective of the changes in the pesticides used. A preliminary review of the data collected in 2005 and 2008 indicated that differences in the surficial geology, land use (as a surrogate for pesticide use), and above-average precipitation for most of 2004 through 2008, as well as differences in the number and performance of USGS laboratory methods used, could have led to more pesticides detected in groundwater samples collected in 2008 than in groundwater samples collected in 2005. Thus, although data from both years of collection were used for interpretive analysis, emphasis was placed on the analysis of the data obtained in 2008. The presence of pesticides in shallow groundwater (less than approximately 100 ft (feet), or 30 m (meters), below land surface) indicated at least the upper surficial aquifer in Washington, D.C. was susceptible to contamination. One or more herbicides or insecticides were detected in groundwater samples collected from 50 percent of the shallow wells sampled in 2005, and from 62 percent of the shallow wells sampled in 2008. Differences among types of pesticides in shallow groundwater were apparent. The most frequently detected class of herbicides was the s-triazine compounds-atrazine, simazine, or prometon, or the atrazine-degradate compounds-2-chloro-4-ethylamino-6-amino-s-triazine (desethylatrazine or CIAT) and 2-chloro-4-isopropylamino-6-amino-s-triazine (hydroxyatrazine or OIET). The next most frequently detected classes of herbicides were the chloroacetanilides, including metolachlor and acetochlor, and the ureic herbicides, including diuron (and degradate, 3,4-dichloroaniline), fluometuron, metsulfuron methyl, sulfameturon, bromacil, and tebuthiuron. Insecticides also were detected, but less frequently than herbicides, with one or more insecticides present in groundwater samples from 38 percent of shallow wells sampled in 2008. Detected insecticides included parent or degradate compounds commonly used for either nonspecific or haustellate (sucking) insects, including chlorpyri

  11. A follow-up study of cancer incidence among workers in manufacture of phenoxy herbicides in Denmark.

    PubMed Central

    Lynge, E.

    1985-01-01

    The purpose of this cohort study is to shed further light on the potential carcinogenic effect indicated by a Swedish case control study of the 2,4-dichlorophenol and 4-chloro-ortho-cresol based phenoxy herbicides, unlikely to be contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). In the present study it was the intention to include all persons employed in manufacture of phenoxy herbicides in Denmark before 1982. The predominant product was MCPA and only a very limited amount of 2,4,5-T was processed in one of the two factories included in the study. Registration of the cohort was based on company records, supplemented with data from a public pension scheme from 1964 onwards. Ninety-nine percent of registered employees could be followed up. Cancer cases were identified by linkage with the National Cancer Register. Totals of 3,390 males and 1,069 females were included in the study. In the analysis special attention was given to soft tissue sarcomas (STS) and malignant lymphomas (ML) which are the diagnostic groups indicated to be associated with exposure to phenoxy herbicides in the Swedish studies. Five cases of STS were observed among male employees in contrast to 1.84 expected cases. This result supports the Swedish observation of an increased risk of STS following exposure to phenoxy herbicides unlikely to be contaminated with 2,3,7,8-TCDD. However, several potential biases have to be taken into account in interpretation of this observation and these are discussed. Seven cases of ML were observed among male employees in contrast to 5.37 expected which does not support the Swedish observation of an excess risk. The total cancer risk among persons employed in manufacture and packaging of phenoxy herbicides was equivalent to the cancer risk in the Danish population. Among males thus employed 11 lung cancer cases were observed in contrast to 5.33 expected. Attention should be given to exposure to spray dried MCPA-sodium salt in the plants, but other work place exposures and tobacco consumption may have contributed to the increased risk. The tabulation of data by many diagnostic groups may explain the excesses observed for rectum cancer among males and cervical cancer among females. The study has revealed that several potential biases have to be taken into account when the Swedish observations are tested in other settings. PMID:4027168

  12. Determination of trace levels of herbicides and their degradation products in surface and ground waters by gas chromatography/ion-trap mass spectrometry

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    A rapid, specific and highly sensitive method is described for the determination of several commonly used herbicides and their degradation products in surface and ground waters by using gas chromatography/ion-trap mass spectrometry. The compounds included atrazine, and its degradation products desethylatrazine and desisopropylatrazine; Simazine; Cyanazine; Metolachlor; and alachlor and its degradation products, 2-chloro-2', 6'-diethylacetanilide, 2-hydroxy-2', 6'-diethylacetanilide and 2,6-diethylaniline. The method was applied to surface-water samples collected from 16 different stations along the lower Mississippi River and its major tributaries, and ground-water samples beneath a cornfield in central Nebraska. Average recovery of a surrogate herbicide, terbuthylazine, was greater than 99%. Recoveries of the compounds of interest from river water spiked at environmental levels are also presented. Full-scan mass spectra of these compounds were obtained on 1 ng or less of analyte. Data were collected in the full-scan acquisition mode. Quantitation was based on a single characteristic ion for each compound. The detection limit was 60 pg with a signal-to-noise ratio of greater than 10:1.

  13. Preparation of Chemicals and Bulk Drug Substances for the U.S. Army Drug Development Program.

    DTIC Science & Technology

    1997-12-01

    4(R)-rio (,) -dihydroartemisininoxy]-; artemisinin ; dihydroartemisinin; artelinic acid, methyl ester; artelinic acid. -I- TABLE OF CONTENTS I...acid, 4-(4-chloro- phenyl) -4(R) -[10(P) -dihydro- artemisininoxy]-......................... 49 10. Artemisinin ................................. 58 11...dihydroartemisininoxy]-; artemisinin ; dihydroartemisinin; artelinic acid, methyl ester; artelinic acid. -V- II FOREWORD opinions, interpretations, conclusions and

  14. Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action

    PubMed Central

    Dayan, Franck E.; Owens, Daniel K.; Watson, Susan B.; Asolkar, Ratnakar N.; Boddy, Louis G.

    2015-01-01

    Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated from the fruits of Piper species. The compound has a number of interesting biological properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial studies highlighted a similarity in response between plants treated with sarmentine and herbicidal soaps such as pelargonic acid (nonanoic acid). However, little was known about the mechanism of action leading to the rapid desiccation of foliage treated by sarmentine. In cucumber cotyledon disc-assays, sarmentine induced rapid light-independent loss of membrane integrity at 100 μM or higher concentration, whereas 3 mM pelargonic acid was required for a similar effect. Sarmentine was between 10 and 30 times more active than pelargonic acid on wild mustard, velvetleaf, redroot pigweed and crabgrass. Additionally, the potency of 30 μM sarmentine was greatly stimulated by light, suggesting that this natural product may also interfere with photosynthetic processes. This was confirmed by observing a complete inhibition of photosynthetic electron transport at that concentration. Sarmentine also acted as an inhibitor of photosystem II (PSII) on isolated thylakoid membranes by competing for the binding site of plastoquinone. This can be attributed in part to structural similarities between herbicides like sarmentine and diuron. While this mechanism of action accounts for the light stimulation of the activity of sarmentine, it does not account for its ability to destabilize membranes in darkness. In this respect, sarmentine has some structural similarity to crotonoyl-CoA, the substrate of enoyl-ACP reductase, a key enzyme in the early steps of fatty acid synthesis. Inhibitors of this enzyme, such as triclosan, cause rapid loss of membrane integrity in the dark. Sarmentine inhibited the activity of enoyl-ACP reductase, with an I50app of 18.3 μM. Therefore, the herbicidal activity of sarmentine appears to be a complex process associated with multiple mechanisms of action. PMID:25904929

  15. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    PubMed

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Modification of Herbicide Binding to Photosystem II in Two Biotypes of Senecio vulgaris L

    PubMed Central

    Pfister, Klaus; Radosevich, Steven R.; Arntzen, Charles J.

    1979-01-01

    The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts. We conclude that triazine resistance of both intact plants and isolated chloroplasts of Senecio vulgaris L. is based upon a minor modification of the protein in the photosystem II complex which is responsible for herbicide binding. This change results in a specific loss of atrazine (triazine)-binding capacity. PMID:16661120

  17. Discovery of 4-((3'R,4'S,5'R)-6″-Chloro-4'-(3-chloro-2-fluorophenyl)-1'-ethyl-2″-oxodispiro[cyclohexane-1,2'-pyrrolidine-3',3″-indoline]-5'-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development.

    PubMed

    Aguilar, Angelo; Lu, Jianfeng; Liu, Liu; Du, Ding; Bernard, Denzil; McEachern, Donna; Przybranowski, Sally; Li, Xiaoqin; Luo, Ruijuan; Wen, Bo; Sun, Duxin; Wang, Hengbang; Wen, Jianfeng; Wang, Guangfeng; Zhai, Yifan; Guo, Ming; Yang, Dajun; Wang, Shaomeng

    2017-04-13

    We previously reported the design of spirooxindoles with two identical substituents at the carbon-2 of the pyrrolidine core as potent MDM2 inhibitors. In this paper we describe an extensive structure-activity relationship study of this class of MDM2 inhibitors, which led to the discovery of 60 (AA-115/APG-115). Compound 60 has a very high affinity to MDM2 (K i < 1 nM), potent cellular activity, and an excellent oral pharmacokinetic profile. Compound 60 is capable of achieving complete and long-lasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment.

  18. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid

    PubMed Central

    Loh, Kee-Shyuan; Lee, Yook Heng; Musa, Ahmad; Salmah, Abdul Aziz; Zamri, Ishak

    2008-01-01

    Magnetic nanoparticles of Fe3O4 were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe3O4 nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe3O4 nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe3O4 nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe3O4 nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method. PMID:27873839

  19. Characterization of Two Novel Propachlor Degradation Pathways in Two Species of Soil Bacteria

    PubMed Central

    Martin, Margarita; Mengs, Gerardo; Allende, Jose Luis; Fernandez, Javier; Alonso, Ramon; Ferrer, Estrella

    1999-01-01

    Propachlor (2-chloro-N-isopropylacetanilide) is an acetamide herbicide used in preemergence. In this study, we isolated and characterized a soil bacterium, Acinetobacter strain BEM2, that was able to utilize this herbicide as the sole and limiting carbon source. Identification of the intermediates of propachlor degradation by this strain and characterization of new metabolites in the degradation of propachlor by a previously reported strain of Pseudomonas (PEM1) support two different propachlor degradation pathways. Washed-cell suspensions of strain PEM1 with propachlor accumulated N-isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain PEM1 grew on propachlor with a generation time of 3.4 h and a Ks of 0.17 ± 0.04 mM. Acinetobacter strain BEM2 grew on propachlor with a generation time of 3.1 h and a Ks of 0.3 ± 0.07 mM. Incubations with strain BEM2 resulted in accumulation of N-isopropylacetanilide, N-isopropylaniline, isopropylamine, and catechol. Both degradative pathways were inducible, and the principal product of the carbon atoms in the propachlor ring was carbon dioxide. These results and biodegradation experiments with the identified metabolites indicate that metabolism of propachlor by Pseudomonas sp. strain PEM1 proceeds through a different pathway from metabolism by Acinetobacter sp. strain BEM2. PMID:9925619

  20. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid.

    PubMed

    Wang, Yijia; Zeinhom, Mohamed M A; Yang, Mingming; Sun, Rongrong; Wang, Shengfu; Smith, Jordan N; Timchalk, Charles; Li, Lei; Lin, Yuehe; Du, Dan

    2017-09-05

    Onsite rapid detection of herbicides and herbicide residuals in environmental and biological specimens are important for agriculture, environmental concerns, food safety, and health care. The traditional method for herbicide detection requires expensive laboratory equipment and a long turnaround time. In this work, we developed a single-stripe microliter plate smartphone-based colorimetric device for rapid and low-cost in-field tests. This portable smartphone platform is capable of screening eight samples in a single-stripe microplate. The device combined the advantages of small size (50 × 100 × 160 mm 3 ) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and rhodamine B, for the red and green channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for detection of the herbicide 2,4-dichlorophenoxyacetic acid in the range of 1 to 80 ppb. Spiked samples of tap water, rat serum, plasma, and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all of the spiked samples using the microplate reader and from 93.7% to 106.9% for all of the samples using the smartphone device. This work validated that the smartphone optical-sensing platform is comparable to the commercial microplate reader; it is eligible for onsite, rapid, and low-cost detection of herbicides for environmental evaluation and biological monitoring.

  1. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yijia; Zeinhom, Mohamed M. A.; Yang, Mingming

    Onsite rapid detection of herbicide and herbicide residuals in environmental and biological specimens is important for agriculture, environment, food safety, and health care. Traditional method for herbicide detection requires expensive laboratory equipment and a long turn-round time. In this work, we developed a single-stripe microliter plate smartphone colorimetric device for rapid and low-cost in-field test. This portable smartphone platform is capable of screening 8 samples in a microplate single-stripe. The device combined the advantages of small size (50×100×160 mm3) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and Rhodamine B,more » for green and red channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for an herbicide, 2,4-Dichlorophenoxyacetic acid detection in the range of 1 ppb to 80 ppb. Spiked samples of tap water, rat serum, plasma and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all spiked samples using the microplate reader and from 93.7% to 106.9% using the smartphone device. This work validated that the smartphone optical sensing platform is comparable to the commercial microplate reader, it is eligible for onsite rapid and low-cost detection of herbicide for environmental evaluation and biological monitoring.« less

  2. The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure.

    PubMed

    Dong, Weiliang; Liu, Kuan; Wang, Fei; Xin, Fengxue; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-06-01

    Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0-10.0) or temperature (20-42 °C). HPLC-MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.

  3. 46 CFR Table 2 to Part 153 - Cargoes Not Regulated Under Subchapters D or O of This Chapter When Carried in Bulk on Non...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) (with 52% Chlorine) III 2-Chloro-4-ethylamino-6-isopropylamino-5-triazine solution # Choline chloride... Ethylenediaminetetraacetic acid, tetrasodium salt solution Titanium dioxide slurry III 1,1,1-Trichloroethane C 1,1,2...

  4. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10300 Benzeneacetic acid, .alpha.-chloro-.alpha...

  5. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10300 Benzeneacetic acid, .alpha.-chloro-.alpha...

  6. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10300 Benzeneacetic acid, .alpha.-chloro-.alpha...

  7. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus.

    PubMed

    Zhu, Xuexia; Sun, Yunfei; Zhang, Xingxing; Heng, Hailu; Nan, Haihong; Zhang, Lu; Huang, Yuan; Yang, Zhou

    2016-11-01

    The extensive application of herbicides has led to a serious threat of herbicide contamination to aquatic ecosystem. Herbicide exposure affects aquatic communities not only by exerting toxicity on single species but also by changing interspecific interactions. This study investigated the antigrazer defenses of the common green alga Scenedesmus obliquus against different herbicides [glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine] at various concentrations (0-2.0 mg L(-1)). In the presence of grazer (Daphnia)-derived cues, S. obliquus populations without herbicides formed high proportions of multicelled (e.g., four- and eight-celled) colonies. This result confirms that S. obliquus exhibits a morphological defense against grazing risk. At the low concentration range of 0.002-0.02 mg L(-1), the three herbicides exerted no influence on the growth and photosynthetic efficiency of S. obliquus, and multicelled colonies showed constant proportions. At the high concentration range of 0.20-2.0 mg L(-1), atrazine significantly inhibited the algal growth and photosynthesis whereas glyphosate or 2,4-D did not. Nonetheless, these levels of glyphosate or 2,4-D remarkably decreased the proportion of multicelled colonies, with reduced numbers of cells per particle in Daphnia filtrate-treated population. No eight-celled colony was formed after treatment with atrazine at 0.20-2.0 mg L(-1) despite the addition of Daphnia filtrate. These results suggest that herbicide exposure impairs antigrazer colonial morphs in phytoplankton although it is not sufficient to hamper algal growth. This phenomenon can increase the risk of predation by herbivores, thereby disrupting the inducible phytoplankton community. Furthermore, the predator-prey interactions between herbivores and phytoplankton can be potentially changed more seriously than previously considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Discovery of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442): a temperature-neutral transient receptor potential vanilloid-1 (TRPV1) antagonist with analgesic efficacy.

    PubMed

    Voight, Eric A; Gomtsyan, Arthur R; Daanen, Jerome F; Perner, Richard J; Schmidt, Robert G; Bayburt, Erol K; DiDomenico, Stanley; McDonald, Heath A; Puttfarcken, Pamela S; Chen, Jun; Neelands, Torben R; Bianchi, Bruce R; Han, Ping; Reilly, Regina M; Franklin, Pamela H; Segreti, Jason A; Nelson, Richard A; Su, Zhi; King, Andrew J; Polakowski, James S; Baker, Scott J; Gauvin, Donna M; Lewis, LaGeisha R; Mikusa, Joseph P; Joshi, Shailen K; Faltynek, Connie R; Kym, Philip R; Kort, Michael E

    2014-09-11

    The synthesis and characterization of a series of selective, orally bioavailable 1-(chroman-4-yl)urea TRPV1 antagonists is described. Whereas first-generation antagonists that inhibit all modes of TRPV1 activation can elicit hyperthermia, the compounds disclosed herein do not elevate core body temperature in preclinical models and only partially block acid activation of TRPV1. Advancing the SAR of this series led to the eventual identification of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442, 52), an analogue that possesses excellent pharmacological selectivity, has a favorable pharmacokinetic profile, and demonstrates good efficacy against osteoarthritis pain in rodents.

  9. Environmental Statement. Disposition of Orange Herbicide by Incineration

    DTIC Science & Technology

    1974-11-01

    and will follow all applicable maritime regulations. The vessel has operated for about two years without encountering a situation which required... hypochlorous acid , chlorous acid , chloric acid , perchloric acid , chlorine hydrate, and phosgene. All of these compounds are highly corrosive and toxic...effluent gas stack were operated isokinetically. The system used to sample for TCDD and the butyl esters and acids (of 2,4-D and 2,4,5-T) was not

  10. The effects of sublethal levels of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) on feeding behaviors of the crayfish O. rusticus.

    PubMed

    Browne, Amanda M; Moore, Paul A

    2014-08-01

    The widespread use of herbicides across the globe has increased the probability of synthetic chemicals entering freshwater habitats. On entering aquatic habitats, these chemicals target and disrupt both physiological and behavioral functioning in various aquatic organisms. Herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D), can have negative impacts on chemoreception because these receptor cells are in direct contact with water-soluble chemicals in the environment. Studies focusing on lethal concentration (LC50) levels may understate the impact of herbicides within aquatic habitats because damage to the chemoreceptors can result in modified behaviors or lack of appropriate responses to environmental or social cues. The purpose of this experiment was to determine whether exposure to sublethal levels of 2,4-D alters the foraging behaviors of crayfish Orconectes rusticus. We hypothesized that crayfish exposed to greater concentrations of 2,4-D would be less successful in locating food or on locating food would consume smaller amounts possibly due to an inability to recognize the food odors in the contaminated waters. Crayfish were exposed to three sublethal levels of 2,4-D for 96 h and placed into a Y-maze system with a fish gelatin food source placed randomly in the right or left arm. Average walking speed, average time spent in the correct arm, and percent consumption were analyzed. Our data show that crayfish were impaired in their ability to forage effectively. These inabilities to locate and consume adequate amounts of food could result in lower body weights and decreased fitness in populations of crayfish exposed to 2,4-D in natural habitats.

  11. 40 CFR 180.601 - Cyazofamid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of cyazofamid, 4-chloro-2-cyano-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazole-1-sulfonamide, and its metabolite CCIM, 4-chloro-5-(4-methylphenyl)-1H-imidazole-2-carbonitrile, expressed as cyazofamid... established for the combined residues of cyazofamid, 4-chloro-2-cyano- N,N-dimethyl-5-(4-methylphenyl)-1H...

  12. Mixed-mode isolation of triazine metabolites from soil and aquifer sediments using automated solid-phase extraction

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.

    1992-01-01

    Reversed-phase isolation and ion-exchange purification were combined in the automated solid-phase extraction of two polar s-triazine metabolites, 2-amino-4-chloro-6-(isopropylamino)-s-triazine (deethylatrazine) and 2-amino-4-chloro-6-(ethylamino)-s-triazine (deisopropylatrazine) from clay-loam and slit-loam soils and sandy aquifer sediments. First, methanol/ water (4/1, v/v) soil extracts were transferred to an automated workstation following evaporation of the methanol phase for the rapid reversed-phase isolation of the metabolites on an octadecylresin (C18). The retention of the triazine metabolites on C18 decreased substantially when trace methanol concentrations (1%) remained. Furthermore, the retention on C18 increased with decreasing aqueous solubility and increasing alkyl-chain length of the metabolites and parent herbicides, indicating a reversed-phase interaction. The analytes were eluted with ethyl acetate, which left much of the soil organic-matter impurities on the resin. Second, the small-volume organic eluate was purified on an anion-exchange resin (0.5 mL/min) to extract the remaining soil pigments that could foul the ion source of the GC/MS system. Recoveries of the analytes were 75%, using deuterated atrazine as a surrogate, and were comparable to recoveries by soxhlet extraction. The detection limit was 0.1 ??g/kg with a coefficient of variation of 15%. The ease and efficiency of this automated method makes it viable, practical technique for studying triazine metabolites in the environment.

  13. Metabolic Pathway Involved in 6-Chloro-2-Benzoxazolinone Degradation by Pigmentiphaga sp. Strain DL-8 and Identification of the Novel Metal-Dependent Hydrolase CbaA

    PubMed Central

    Dong, Weiliang; Wang, Fei; Huang, Fei; Wang, Yicheng; Zhou, Jie; Ye, Xianfeng; Li, Zhoukun; Hou, Ying; Huang, Yan; Ma, Jiangfeng; Jiang, Min

    2016-01-01

    ABSTRACT 6-Chloro-2-benzoxazolinone (CDHB) is a precursor of herbicide, insecticide, and fungicide synthesis and has a broad spectrum of biological activity. Pigmentiphaga sp. strain DL-8 can transform CDHB into 2-amino-5-chlorophenol (2A5CP), which it then utilizes as a carbon source for growth. The CDHB hydrolase (CbaA) was purified from strain DL-8, which can also hydrolyze 2-benzoxazolinone (BOA), 5-chloro-2-BOA, and benzamide. The specific activity of purified CbaA was 5,900 U · mg protein−1 for CDHB, with Km and kcat values of 0.29 mM and 8,500 s−1, respectively. The optimal pH for purified CbaA was 9.0, the highest activity was observed at 55°C, and the inactive metal-free enzyme could be reactivated by Mg2+, Ni2+, Ca2+, or Zn2+. Based on the results obtained for the CbaA peptide mass fingerprinting and draft genome sequence of strain DL-8, cbaA (encoding 339 amino acids) was cloned and expressed in Escherichia coli BL21(DE3). CbaA shared 18 to 21% identity with some metal-dependent hydrolases of the PF01499 family and contained the signature metal-binding motif Q127XXXQ131XD133XXXH137. The conserved amino acid residues His288 and Glu301 served as the proton donor and acceptor. E. coli BL21(DE3-pET-cbaA) resting cells could transform 0.2 mM CDHB into 2A5CP. The mutant strain DL-8ΔcbaA lost the ability to degrade CDHB but retained the ability to degrade 2A5CP, consistent with strain DL-8. These results indicated that cbaA was the key gene responsible for CDHB degradation by strain DL-8. IMPORTANCE 2-Benzoxazolinone (BOA) derivatives are widely used as synthetic intermediates and are also an important group of allelochemicals acting in response to tissue damage or pathogen attack in gramineous plants. However, the degradation mechanism of BOA derivatives by microorganisms is not clear. In the present study, we reported the identification of CbaA and metabolic pathway responsible for the degradation of CDHB in Pigmentiphaga sp. DL-8. This will provide microorganism and gene resources for the bioremediation of the environmental pollution caused by BOA derivatives. PMID:27208123

  14. Dachtal Isomers and Acidic Herbicides and Pesticides in Eggs of Osprey (Pandion haliaetus) from the Seattle and Everett Areas, Washington, U.S.A

    USGS Publications Warehouse

    Chu, S.; Henny, Charles J.; Kaiser, James L.; Drouillard, K.G.; Haffner, G.D.; Letcher, R.J.

    2007-01-01

    Current-use chlorophenoxy herbicides including 2,4-dichlorophenoxyacetic acid, dicamba, triclopyr, dicamba, dimethyl tetrachloroterephthalate (DCPA or dacthal), and the metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and the fungicide, chlorothalonil, were investigated in the eggs of osprey (Pandion haliaetus) that were collected from 15 sites from five study areas Puget Sound/Seattle area of Washington State, USA. DCPA differs from acidic chlorophenoxy herbicides, and is not readily hydrolyzed to free acid or acid metabolites, and thus we developed a new method. Of the 12 chlorophenoxy herbicides and chlorothalonil analyzed only DCPA could be quantified at six of these sites (2.0 to 10.3 pg/g fresh weight). However, higher levels (6.9 to 85.5 pg/g fresh weight) of the unexpected DCPA structural isomer, dimethyl tetrachlorophthalate (diMe-TCP) were quantified in eggs from all sites. diMe-TCP concentrations tended to be higher in eggs from the Everett Harbor area. As diMe-TCP is not an industrial product, and not commercially available, the source of diMe-TCP is unclear. Regardless, these findings indicate that DCPA and diMe-TCP can be accumulated in the food chain of fish-eating osprey, and transferred in ovo to eggs, and thus may be of concern to the health of the developing chick and the general reproductive health of this osprey population.

  15. Microscale Synthesis of 1-Bromo-3-Chloro-5-Iodobenzene: An Improved Deamination of 4-Bromo-2-Chloro-6-Iodoaniline

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Pelter, Libbie S. W.; Colovic, Dusanka; Strug, Regina

    2004-01-01

    The sequence of microscale mixing of 1-bromo-3-chloro-5-iodobenzene along with reductive deamination of 4-bromo-2-chloro-6-iodoaniline is described. This novel deamination approach is beneficial in final product separation and higher product output.

  16. Photosynthesis Is Not Involved in the Mechanism of Action of Acifluorfen in Cucumber (Cucumis sativus L.)

    PubMed Central

    Duke, Stephen O.; Kenyon, William H.

    1986-01-01

    The possible role of photosynthesis in the mechanism of action of the herbicide acifluorfen (2-chloro-4-(trifluoromethyl)phenoxy-2-nitrobenzoate; AF) was examined. The sensitivity to AF of cotyledons of cucumber (Cucumis sativus L.) which had been grown under far red light (FR) and white light were compared. FR grown tissues which were photosynthetically imcompetent were hypersensitive to AF under white light and had approximately the same relative response to AF under blue and red light as green, white-light-grown tissues. Ultrastructural damage was apparent in FR-grown, AF-treated tissues within an hour after exposure to white light, with cytoplasmic and plastidic disorganization occurring simultaneously. In cucumber cotyledon tissue which had been greening for various time periods, there was no correlation between photosynthetic capacity and herbicidal efficacy of AF. PSII inhibitors (atrazine and DCMU) and the photophosphorylation inhibitor, tentoxin, had no effect on AF activity. Atrazine did not reduce AF activity at any concentration or light intensity tested, indicating that there is no second, photosynthetic-dependent mechanism of action operating at low AF concentrations or low fluence rates. Carbon dioxide-dependent O2 evolution of intact chloroplasts of spinach (Spinacia oleracea L.) had an AF I50 of 125 micromolar compared to 1000 micromolar for cucumber, whereas AF was much more herbicidally active in tissues of cucumber than of spinach. Differences in activity could not be accounted for by differences in uptake of AF. Our results indicate that there is no photosynthetic involvement in the mechanism of action of AF in cucumber. Images Fig. 2 PMID:16664919

  17. Auxin Chemical and Molecular Biology

    USDA-ARS?s Scientific Manuscript database

    Auxins function as key regulators at the intersection between developmental and environmental events and the response pathways that they trigger. Naturally occurring members of this hormone group include indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 4-chloro-indole-3-acetic acid (4-Cl...

  18. BOREAS TGB-7 Dry Deposition Herbicide and Organochlorine Flux Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Conrad, Sara K. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TGB-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the dry deposition flux of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files.

  19. Sublethal Exposure to Commercial Formulations of the Herbicides Dicamba, 2,4-Dichlorophenoxyacetic Acid, and Glyphosate Cause Changes in Antibiotic Susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium

    PubMed Central

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F.; Ferguson, Gayle C.; Godsoe, William; Gibson, Paddy

    2015-01-01

    ABSTRACT Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides—dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)—were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. PMID:25805724

  20. EVALUATION OF THE SYNTHESIS AND STRUCTURE OF NEW AZETIDIN-2-ONES OF FERULIC ACID.

    PubMed

    Stan, Cătălina Daniela; Drăgan, Maria; Pânzariu, Andreea; Profire, Lenuţa

    2016-01-01

    To synthesize some new azetidin-2-ones of ferulic acid and to evaluate them from physicochemical and spectral point of view. The synthesis was carried out in several steps: (i) obtaining the ferulic acid chloride; (ii) obtaining the ferulic acid hydrazide with hydrazine hydrate (98%); (iii) condensation of ferulic acid hydrazide with different benzaldehydes (2-hydroxy-/2-nitro-/4-chloro-/4- fluoro-/4-bromo-benzaldehyde) in order to obtain the corresponding hydrazones; (iv) cy- clization of ferulic acid hydrazones with chloroacethyl chloride in freshly distilled toluene medium and in the presence of triethylamine, resulting in the corresponding azetidin-2-ones. Six new azetidin-2-ones of ferulic acid were synthesized. They were characterized in terms of their physicochemical properties and their structure was confirmed by IR and 1H-NMR spectroscopy. Six new azetidin-2-ones of ferulic acid were synthesized, physicochemically characterized and validated spectrally. A

  1. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean

    PubMed Central

    Walter, Kay L; Strachan, Stephen D; Ferry, Nancy M; Albert, Henrik H; Castle, Linda A; Sebastian, Scott A

    2014-01-01

    BACKGROUND Sulfonylurea (SU) herbicides are effective because they inhibit acetolactate synthase (ALS), a key enzyme in branched-chain amino acid synthesis required for plant growth. A soybean line known as W4-4 was developed through rounds of seed mutagenesis and was demonstrated to have a high degree of ALS-based resistance to both post-emergence and pre-emergence applications of a variety of SU herbicides. This report describes the molecular and phenotypic characterization of the Als1 and Als2 mutations that confer herbicide resistance to SUs and other ALS inhibitors. RESULTS The mutations are shown to occur in two different ALS genes that reside on different chromosomes: Als1 (P178S) on chromosome 4 and Als2 (W560L) on chromosome 6 (P197S and W574L in Arabidopsis thaliana). CONCLUSION Although the Als1 and Als2 genes are unlinked, the combination of these two mutations is synergistic for improved tolerance of soybeans to ALS-inhibiting herbicides. © 2014 DuPont Pioneer. Pest Management Science published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24425499

  2. Adsorption of imidazolinone herbicides on smectite-humic acid and smectite-ferrihydrite associations.

    PubMed

    Leone, P; Nègre, M; Gennari, M; Boero, V; Celis, R; Cornejo, J

    2002-01-16

    Adsorption of imazapyr (IMZ), imazethapyr (IMZT), and imazaquin (IMZQ) was studied on two smectite-humic acid and two smectite-ferrihydrite binary systems prepared by treating a Wyoming smectite with a humic acid extracted from soil (4 and 8% w/w of the smectite) and with just-precipitated synthetic ferrihydrite (8 and 16% w/w of the smectite). Adsorption of the three herbicides on the smectite was not measurable at pH >4.5, presumably because of negative charges on the surface of the smectite. Adsorption on the smectite-humic acid systems was also not measurable, presumably because of negative charges on the surface, despite the high affinity of the three herbicides for humic acid, the adsorption order of which was IMZ < IMZT < IMZQ. Adsorption decreased in the order IMZ < IMZT < IMZQ on the smectite-ferrihydrite systems and IMZQ < IMZT < IMZ on ferrihydrite, although here the differences were small. These results show that even though pure smectite cannot adsorb herbicides, it modifies the adsorption capacity of ferrihydrite. The mutual interaction of active phases such as humic acid, ferrihydrite, and smectite alters the characteristics of the resulting surface and hence the adsorption process. Investigations of herbicide adsorption have been seen to produce more reliable results if conducted on polyphasic systems rather than on single soil components.

  3. Decolourization of 4-Chloro-2-Nitrophenol by a Soil Bacterium, Bacillus subtilis RKJ 700

    PubMed Central

    Arora, Pankaj Kumar

    2012-01-01

    A 4-Chloro-2-nitrophenol (4C2NP) decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ) were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i) the degradation of 4C2NP at high concentration (1.5 mM) and, (ii) the formation of 5C2MBZ by a soil bacterium. PMID:23251673

  4. Decolourization of 4-chloro-2-nitrophenol by a soil bacterium, Bacillus subtilis RKJ 700.

    PubMed

    Arora, Pankaj Kumar

    2012-01-01

    A 4-Chloro-2-nitrophenol (4C2NP) decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ) were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i) the degradation of 4C2NP at high concentration (1.5 mM) and, (ii) the formation of 5C2MBZ by a soil bacterium.

  5. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. 721.304 Section 721.304 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1...

  6. Combining ALS-Inhibiting Herbicides with the Fungal Pathogen Mycoleptodiscus terrestris for Control of Hydrilla

    DTIC Science & Technology

    2009-07-01

    pyridinecarboxylic acid), have undergone registration and a third, bispyribac- sodium ( sodium 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy] benzoate ) is...evaluate the effectiveness of three ALS-inhibiting herbicides (penoxsulam, imazamox, and bispyribac- sodium ) and a fungal pathogen applied alone and in...and weights were recorded. Study 3 - Bispyribac- sodium + Mt. A concentrated stock solution of bispyribac- sodium was prepared by dissolving a

  7. Using accelerated life testing procedures to compare the relative sensitivity of rainbow trout and the federally listed threatened bull trout to three commonly used rangeland herbicides (picloram, 2,4-D, and clopyralid).

    PubMed

    Fairchild, James F; Allert, Ann; Sappington, Linda S; Nelson, Karen J; Valle, Janet

    2008-03-01

    We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration:time data matrix.

  8. Using accelerated life testing procedures to compare the relative sensitivity of rainbow trout and the federally listed threatened bull trout to three commonly used rangeland herbicides (picloram, 2,4-D, and clopyralid)

    USGS Publications Warehouse

    Fairchild, J.F.; Allert, A.; Sappington, L.S.; Nelson, K.J.; Valle, J.

    2008-01-01

    We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration: time data matrix. ?? 2008 SETAC.

  9. 1,2-Dithiole-3-Ones as Potent Inhibitors of the Bacterial 3-Ketoacyl Acyl Carrier Protein Synthase III (FabH)

    PubMed Central

    He, Xin; Reeve, Anne McElwee; Desai, Umesh R.; Kellogg, Glen E.; Reynolds, Kevin A.

    2004-01-01

    The enzyme FabH catalyzes the initial step of fatty acid biosynthesis via a type II dissociated fatty acid synthase. The pivotal role of this essential enzyme, combined with its unique structural features and ubiquitous occurrence in bacteria, has made it an attractive new target for the development of antibacterial and antiparasitic compounds. We have searched the National Cancer Institute database for compounds bearing structural similarities to thiolactomycin, a natural product which exhibits a weak activity against FabH. This search has yielded several substituted 1,2-dithiole-3-ones that are potent inhibitors of FabH from both Escherichia coli (ecFabH) and Staphylococcus aureus (saFabH). The most potent inhibitor was 4,5-dichloro-1,2-dithiole-3-one, which had 50% inhibitory concentration (IC50) values of 2 μM (ecFabH) and 0.16 μM (saFabH). The corresponding 3-thione analog exhibited comparable activities. Analogs in which the 4-chloro substituent was replaced with a phenyl group were also potent inhibitors, albeit somewhat less effectively (IC50 values of 5.7 and 0.98 μM for ecFabH and saFabH, respectively). All of the 5-chlorinated inhibitors were most effective when they were preincubated with FabH in the absence of substrates. The resulting enzyme-inhibitor complex did not readily regain activity after excess inhibitor was removed, suggesting that a slow dissociation occurs. In stark contrast, a series of inhibitors in which the 5-chloro substituent was replaced with the isosteric and isoelectronic trifluoromethyl group were poorer inhibitors (IC50 values typically ranging from 25 to >100 μM for both ecFabH and saFabH), did not require a preincubation period for maximal activity, and generated an enzyme-inhibitor complex which readily dissociated. Possible modes of binding of 5-chloro-1,2-dithiole-3-ones and 5-chloro-1,2-dithiole-3-thiones with FabH which account for the role of the 5-chloro substituent were considered. PMID:15273125

  10. Determination of chlorinated acid herbicides in vegetation and soil by liquid chromatography/electrospray-tandem mass spectrometry.

    PubMed

    Schaner, Angela; Konecny, Jaclyn; Luckey, Laura; Hickes, Heidi

    2007-01-01

    The method presented uses reversed-phase liquid chromatography with negative electrospray ionization and tandem mass spectrometry to analyze 9 chlorinated acid herbicides in soil and vegetation matrixes: clopyralid, dicamba, MCPP, MCPA, 2,4-DP, 2,4-D, triclopyr, 2,4-DB, and picloram. A 20 g portion is extracted with a basic solution and an aliquot acidified and micropartitioned with 3 mL chloroform. Vegetation samples are subjected to an additional cleanup with a mixed-mode anion exchange solid-phase extraction cartridge. Two precursor product ion transitions per analyte are measured and evaluated to provide the maximum degree of confidence in results. Average recoveries for 3 different soil types tested ranged from 72 to 107% for all compounds with the exception of 2,4-DB at 56-99%. Average recoveries for the 3 different vegetation types studied were lower and ranged from 53 to 80% for all compounds.

  11. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  12. THE EFFECTS OF ATRAZINE AND ITS METABOLITE DACT ON HYPOTHALAMIC-PITUITARY-ADRENAL AXIS ACTIVATION IN ADULT MALE WISTAR RATS

    EPA Science Inventory

    Previous work in our laboratory has shown that a single administration of atrazine (ATR), a chloro-s-triazine herbicide that is used extensively throughout the USA and world, is able to induce a dose-dependent increase in plasma ACTH, with maximal concentrations observed at 15 mi...

  13. Herbicide treatments of Japanese honeysuckle for releasing desirable reproduction or for site preparation

    Treesearch

    Silas Little; Horace A. Somes

    1968-01-01

    Various herbicides were used to release pine or hardwood seedlings from competition of Japanese honeysuckle, or to eliminate honeysuckle in areas being prepared for regeneration. Considering both the degree of honeysuckle control and the amount of damage to desired trees, we recommend 2,4-D emulsifiable acid with application in late fall for release of hardwoods and in...

  14. Multistep divergent synthesis of benzimidazole linked benzoxazole/benzothiazole via copper catalyzed domino annulation.

    PubMed

    Liao, Jen-Yu; Selvaraju, Manikandan; Chen, Chih-Hau; Sun, Chung-Ming

    2013-04-21

    An efficient, facile synthesis of structurally diverse benzimidazole integrated benzoxazole and benzothiazoles has been developed. In a multi-step synthetic sequence, 4-fluoro-3-nitrobenzoic acid was converted into benzimidazole bis-heterocycles, via the intermediacy of benzimidazole linked ortho-chloro amines. The amphiphilic reactivity of this intermediate was designed to achieve the title compounds by the reaction of various acid chlorides and isothiocyanates in a single step through the in situ formation of ortho-chloro anilides and thioureas under microwave irradiation. A versatile one pot domino annulation reaction was developed to involve the reaction of benzimidazole linked ortho-chloro amines with acid chlorides and isothiocyanates. The initial acylation and urea formation followed by copper catalyzed intramolecular C-O and C-S cross coupling reactions furnished the angularly oriented bis-heterocycles which bear a close resemblance to the streptomyces antibiotic UK-1.

  15. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    PubMed

    Bhat, Supriya V; Booth, Sean C; McGrath, Seamus G K; Dahms, Tanya E S

    2014-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  16. A rare 3D chloro-laced Mn(II) metal-organic framework to show sensitive probing effect to Hg2+

    NASA Astrophysics Data System (ADS)

    Ming, Mei; Bai, Na

    2017-10-01

    Two 3D Mn(II) metal-organic frameworks (MOFs), [Mn(L-Cl)(DMA)](H2O) (1) and Mn(L-CH3)(DMA) (2) (H2L-Cl = 2,2'-dichloro-4,4'-azodibenzoic acid, H2L-CH3 = 2,2'-dimethyl-4,4'-azodibenzoic acid) were synthesized under similar solvothermal condition. Both MOFs crystallize in the orthorhombic system and show the 3D rod-packing networks in 2-fold interpenetrated pattern with sra topology. Due to the different substituent laces of MOFs (-Cl vs -CH3), only MOF 1 shows highly selective and sensitive fluorescence sensing effect for detecting Hg2+ ion.

  17. Phase transition and intramolecular hydrogen bonding in nitro derivatives of ortho-hydroxy acetophenones

    NASA Astrophysics Data System (ADS)

    Filarowski, A.; Kochel, A.; Koll, A.; Bator, G.; Mukherjee, S.

    2006-03-01

    The crystal structures of two ortho-hydroxy aryl ketones (5-chloro-3-nitro-2-hydroxyacetophenone, 5-methyl-3-nitro-2-hydroxyacetophenone and the complex 5-chloro-3-nitro-2-hydroxyacetophenone with 2-aminobenzoic acid (anthranilic acid)) were determined by X-ray diffraction. The existence of an intramolecular hydrogen bond of enol character between the hydroxyl and acetyl groups was found by the X-ray method. The enol character was also confirmed by DFT (B3LYP/6-31+G(d,p)) calculations. A phase transition was found at 138 K in 5-chloro-3-nitro-2-hydroxyacetophenone. This phase transition was investigated by differential scanning calorimetry (DSC), dilatometry, and the dielectric method. A study of the nitro-group dynamics in the ortho-hydroxy acetophenones was carried out with DFT (B3LYP/6-31+G(d,p)) calculations.

  18. Mineralisation and degradation of 2,4-dichlorophenoxyacetic acid dimethylamine salt in a biobed matrix and in topsoil.

    PubMed

    Knight, J Diane; Cessna, Allan J; Ngombe, Dean; Wolfe, Tom M

    2016-10-01

    Biobeds are used for on-farm bioremediation of pesticides in sprayer rinsate and from spills during sprayer filling. Using locally sourced materials from Saskatchewan, Canada, a biobed matrix was evaluated for its effectiveness for mineralising and degrading 2,4-dichlorophenoxyacetic acid dimethylamine salt (2,4-D DMA) compared with the topsoil used in the biobed matrix. Applying 2,4-D DMA to the biobed matrix caused a 2-3 day lag in CO2 production not observed when the herbicide was applied to topsoil. Despite the initial lag, less residual 2,4-D was measured in the biobed (0%) matrix than in the topsoil (57%) after a 28 day incubation. When the herbicide was applied 5 times to the biobed matrix, net CO2 increased immediately after each 2,4-D DMA application. Mineralisation of 2,4-D DMA was 61.9% and residual 2,4-D in the biobed matrix was 0.3% after 60 days, compared with corresponding values of 32.9 and 70.9% in topsoil. The biobed matrix enhanced the mineralisation and degradation of 2,4-D DMA, indicating the potential for successful implementation of biobeds under Canadian conditions. The biobed matrix was more effective for mineralising and degrading the herbicide compared with the topsoil used in the biobed matrix. By correcting for biobed matrix and formulation blank, CO2 evolution was a reliable indicator of 2,4-D DMA mineralisation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Discovery of 4-((3′R,4′S,5′R)-6″-Chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2″-oxodispiro[cyclohexane-1,2′-pyrrolidine-3′,3″-indoline]-5′-carboxamido)bicyclo[2.2.2]octane-1-carboxylic Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development

    PubMed Central

    2017-01-01

    We previously reported the design of spirooxindoles with two identical substituents at the carbon-2 of the pyrrolidine core as potent MDM2 inhibitors. In this paper we describe an extensive structure–activity relationship study of this class of MDM2 inhibitors, which led to the discovery of 60 (AA-115/APG-115). Compound 60 has a very high affinity to MDM2 (Ki < 1 nM), potent cellular activity, and an excellent oral pharmacokinetic profile. Compound 60 is capable of achieving complete and long-lasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment. PMID:28339198

  20. Metabolism of 4-chlorobenzotrichloride in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quistad, G.B.; Mulholland, K.M.; Skiles, G.

    Special analytical methodology was developed for purification of 4-chloro(/sup 14/C)benzotrichloride, which is both volatile and hydrolytically unstable at milligram mass levels. When rats were given a single oral dose of 4-chloro(/sup 14/C)benzotrichloride at 1.5 mg/kg, within 4-6 days 87 and 9% of the applied /sup 14/C were excreted in urine and feces, respectively. The major urinary metabolite was identified as 4-chlorohippuric acid, representing 78% of the applied dose. While about two-thirds of the fecal /sup 14/C residues were unextractable with organic solvents, free 4-chlorobenzoic acid and ..cap alpha..,..cap alpha..,4,4'-tetrachlorostilbene contributed 10 and 8% of the fecal /sup 14/C. The metabolicmore » production of ..cap alpha..,..cap alpha..,4,4'-tetrachlorostilbene appears to occur by a novel metabolic pathway.« less

  1. ADULT AND CHILDREN'S EXPOSURE TO 2,4-D FROM MULTIPLE SOURCES AND PATHWAYS

    EPA Science Inventory

    In this study, we investigated the 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide exposures of 135 preschool-aged children and their adult caregivers at 135 homes in North Carolina (NC) and Ohio (OH). Participants were randomly recruited from six NC and six OH counties. Monito...

  2. Conversion of 2-chloro-cis,cis-muconate and its metabolites 2-chloro- and 5-chloromuconolactone by chloromuconate cycloisomerases of pJP4 and pAC27.

    PubMed Central

    Vollmer, M D; Schlömann, M

    1995-01-01

    2-Chloro-cis,cis-muconate, the product of ortho-cleavage of 3-chlorocatechol, was converted by purified preparations of the pJP4- and pAC27-encoded chloromuconate cycloisomerases (EC 5.5.1.7) to trans-dienelactone (trans-4-carboxymethylenebut-2-en-4-olide). The same compound was also formed when (+)-2-chloro- and (+)-5-chloromuconolactone were substrates of these enzyme preparations. Thus, the pJP4- and pAC27-encoded chloromuconate cycloisomerases are able to catalyze chloride elimination from (+)-5-chloromuconolactone. The ability to convert (+)-2-chloromuconolactone differentiates these enzymes from other groups of cycloisomerases. PMID:7751312

  3. 40 CFR 180.227 - Dicamba; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... herbicide dicamba, 3,6-dichloro-o-anisic acid, including its metabolites and degradates, in or on the... Wheat, straw 30.0 (2) Tolerances are established for residues of the herbicide dicamba, 3,6-dichloro-o... residues of the herbicide dicamba, 3,6-dichloro-o-anisic acid, including its metabolites and degradates, in...

  4. A COMPUTATIONAL CHEMISTRY STUDY OF THE ENVIRONMENTALLY IMPORTANT ACID-CATALYZED HYDROLYSIS OF ATRAZINE AND RELATED 2-CHLORO-S-TRIAZINES

    EPA Science Inventory

    Many chlorine-containing pesticides, for example 2-chloro-s-triazines, are of great concern both environmentally and toxicologically. As a result, ascertaining or predicting the fate and transport of these compounds in soils and water is of current interest. Transformation pathwa...

  5. BOREAS TGB-7 Ambient Air Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the ambient air concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  6. 2-(4-Chloro-3-nitro­phen­yl)-4-(4-chloro­phen­yl)-1,3-thia­zole

    PubMed Central

    Nayak, Susanta K.; Venugopala, K. N.; Chopra, Deepak; Govender, Thavendran; Kruger, Hendrik G.; Maguire, Glenn E. M.; Guru Row, T. N.

    2009-01-01

    The title compound, C15H8Cl2N2O2S, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the 4-chloro-3-nitro­phenyl ring and the thia­zole ring are 0.5 (1) and 7.1 (1)° and those between the 4-chloro­phenyl ring and the thia­zole ring are 7.1 (1) and 7.4 (1)° in the two mol­ecules. The crystal structure is stabilized by inter­molecular C—H⋯Cl and C—H⋯O hydrogen bonds. PMID:21578228

  7. On-line monitoring of the photocatalytic degradation of 2,4-D and dicamba using a solid-phase extraction-multisyringe flow injection system.

    PubMed

    Chávez-Moreno, Carmín; Ferrer, Laura; Hinojosa-Reyes, Laura; Hernández-Ramírez, Aracely; Cerdà, Víctor; Guzmán-Mar, Jorge

    2013-11-15

    A fully automated on-line system for monitoring the photocatalytic degradation of herbicides was developed using multisyringe flow injection analysis (MSFIA) coupled to a solid phase extraction (SPE) unit with UV detection. The calibration curves were linear in the concentration range of 100-1000 μg L(-1) for 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 500-3000 μg L(-1) for 2,4-dichlorophenoxyacetic acid (2,4-D), while the detection limits were 30 and 135 μg L(-1) for dicamba and 2,4-D, respectively. The monitoring of the photocatalytic degradation (TiO2 anatase/UV 254 nm) of these two herbicides was performed by MSFIA-SPE system using a small sample volume (2 mL) in a fully automated approach. The degradation was assessed in ultrapure and drinking water with initial concentrations of 1000 and 2000 μg L(-1) for dicamba and 2,4-D, respectively. Degradation percentages of approximately 85% were obtained for both herbicides in ultrapure water after 45 min of photocatalytic treatment. A similar degradation efficiency in drinking water was observed for 2,4-D, whereas dicamba exhibited a lower degradation percentage (75%), which could be attributed to the presence of inorganic species in this kind of water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. An ecological risk assessment of the exposure and effects of 2,4-D acid to rainbow trout (Onchorhyncus mykiss)

    USGS Publications Warehouse

    Fairchild, J.F.; Feltz, K.P.; Allert, A.L.; Sappington, L.C.; Nelson, K.J.; Valle, J.A.

    2009-01-01

    Numerous state and federal agencies are increasingly concerned with the rapid expansion of invasive, noxious weeds across the United States. Herbicides are frequently applied as weed control measures in forest and rangeland ecosystems that frequently overlap with critical habitats of threatened and endangered fish species. However, there is little published chronic toxicity data for herbicides and fish that can be used to assess ecological risk of herbicides in aquatic environments. We conducted 96-h flowthrough acute and 30-day chronic toxicity studies with swim-up larvae and juvenile rainbow trout (Onchorhyncus mykiss) exposed to the free acid form of 2,4-D. Juvenile rainbow trout were acutely sensitive to 2,4-D acid equivalent at 494 mg/L (95% confidence interval [CI] 334-668 mg/L; 96-h ALC50). Accelerated life-testing procedures, used to estimate chronic mortality from acute data, predicted that a 30-day exposure of juvenile rainbow trout to 2,4-D would result in 1% and 10% mortality at 260 and 343 mg/L, respectively. Swim-up larvae were chronically more sensitive than juveniles using growth as the measurement end point. The 30-day lowest observable effect concentration (LOEC) of 2,4-D on growth of swim-up larvae was 108 mg/L, whereas the 30-day no observable effect concentration (NOEC) was 54 mg/L. The 30-day maximum acceptable toxicant concentration (MATC) of 2,4-D for rainbow trout, determined as the geometric mean of the NOEC and the LOEC, was 76 mg/L. The acute:chronic ratio was 6.5 (i.e., 494/76). We observed no chronic effects on growth of juvenile rainbow trout at the highest concentration tested (108 mg/L). Worst-case aquatic exposures to 2,4-D (4 mg/L) occur when the herbicide is directly applied to aquatic ecosystems for aquatic weed control and resulted in a 30-day safety factor of 19 based on the MATC for growth (i.e., 76/4). Highest nontarget aquatic exposures to 2,4-D applied following terrestrial use is calculated at 0.136 mg/L and resulted in a 30-day safety factor of 559 (e.g., 76/0.163). Assessment of the exposure and response data presented herein indicates that use of 2,4-D acid for invasive weed control in aquatic and terrestrial habitats poses no substantial risk to growth or survival of rainbow trout or other salmonids, including the threatened bull trout (Salvelinus confluentus). ?? 2009 US Government.

  9. Behaviour of mesotrione in maize and soil system and its influence on soil dehydrogenase activity.

    PubMed

    Kaczynski, Piotr; Lozowicka, Bozena; Hrynko, Izabela; Wolejko, Elzbieta

    2016-11-15

    The aim of this study was to investigate the dissipation of mesotrione and effect on dehydrogenase activity (DHA) in maize and soil system. The paper for the first time describes behaviour of this herbicide applied at various doses (separately or in mixture with other herbicide) in acidic and alkaline environment. The experiments were conducted using the method randomized blocks in four repetition cycles. Chemical application in seven variants at recommended doses of herbicide were performed. The sample preparation was performed by a modified QuEChERS method and the concentrations of mesotrione in maize and soil were determined by the liquid chromatography with tandem mass spectrometry (LC-MS/MS). The limit of detection was 0.0005mgkg(-1) and quantification 0.001mgkg(-1). The dissipation of mesotrione were described according to first-order (FO) kinetics equation with R(2) were between 0.8794 and 0.9934. The initial deposit of herbicide in soil and maize was higher in an acidic environment (0.06-0.18mgkg(-1)). A positive correlation between an alkaline pH and the rate of dissipation in soil was observed. The results showed that the time after which 50% (DT50) of substance has been degraded was different for both plant and soil. DT50 for soil was within the range 3.2-6.0days and 2.9-4.4days, for the maize 3.9-4.8days and 3.4-4.5days in an alkaline and an acidic environment, respectively. Concentration of mesotrione at applicable MRL level of 0.05mgkg(-1) in maize was achieved at 0.5-5.9days and at proposed MRL of 0.01mgkg(-1) at 8.8-15.8days. The results indicate that the application of mesotrione affected on DHA in the soil. One day after application this herbicide, concentration of DHA in soil was lower than in control plots, but after 21days was observed trend of increasing DHA. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparative toxicity of 20 herbicides to 5 periphytic algae and the relationship with mode of action.

    PubMed

    Nagai, Takashi; Taya, Kiyoshi; Yoda, Ikuko

    2016-02-01

    The authors used 5 species of periphytic algae to conduct toxicity assays of 20 herbicides. The 5 tested species represent riverine primary producers most likely to be affected by herbicides. A fluorescence microplate toxicity assay was used as an efficient and economical high-throughput assay. Toxicity characteristics were analyzed, focusing on their relationship to herbicide mode of action. The relative differences between 50% and 10% effect concentrations depended on herbicide mode of action, rather than tested species. Moreover, a clear relationship between sensitive species and herbicide mode of action was also observed. Green alga was most sensitive to herbicides of 2 mode of action groups: inhibitors of protoporphyrinogen oxidase and very long-chain fatty acid synthesis. Diatoms were most sensitive to herbicides of 1 mode of action group: 4-hydroxyphenyl-pyruvate-dioxygenase inhibitors. Cyanobacterium was most sensitive to herbicides of 1 mode of action group: inhibitors of acetolactate synthase. The species sensitivity distribution based on obtained data was also analyzed. The slopes of the species sensitivity distribution significantly differed among modes of action, suggesting that difference in species sensitivity is specific to the mode of action. In particular, differences in species sensitivity were markedly large for inhibitors of acetolactate synthase, protoporphyrinogen oxidase, and very long-chain fatty acid synthesis. The results clearly showed that a single algal species cannot represent the sensitivity of an algal assemblage. Therefore, multispecies algal toxicity data are essential for substances with specific modes of action. © 2015 SETAC.

  11. Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87.

    PubMed

    Sultan, Zakir; Park, Kyungseok; Lee, Sang Yeob; Park, Jung Kon; Varughese, Titto; Moon, Surk-Sik

    2008-07-01

    The screening of antifungal active compounds from the fermentation extracts of soil-borne bacterium Burkholderia cepacia K87 afforded pyrrolnitrin (1) and two new pyrrolnitrin analogs, 3-chloro-4-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (2) and 4-chloro-3-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (3). Pyrrolnitrin showed strong antifungal activity against Rhizoctonia solani but the analogs (2 and 3) were found to be marginally active. The isolates, 2 and 3, are believed to be biodegraded derivatives of pyrrolnitrin.

  12. Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield

    NASA Astrophysics Data System (ADS)

    Suarez, L. A.; Apan, A.; Werth, J.

    2016-10-01

    Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.

  13. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    PubMed

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  14. Crystal structures of three 3-chloro-3-methyl-2,6-di­aryl­piperidin-4-ones

    PubMed Central

    Arulraj, R.; Sivakumar, S.; Kaur, Manpreet; Jasinski, Jerry P.

    2017-01-01

    The syntheses and crystal structure of 3-chloro-3-methyl-r-2,c-6-di­phenyl­piperidin-4-one, C18H18ClNO, (I), 3-chloro-3-methyl-r-2,c-6-di-p-tolyl­piperidin-4-one, C20H22ClNO, (II), and 3-chloro-3-methyl-r-2,c-6-bis­(4-chloro­phen­yl)piperidin-4-one, C18H16Cl3NO, (III), are described. In each structure, the piperidine ring adopts a chair conformation and dihedral angles between the mean planes of the phenyl rings are 58.4 (2), 73.5 (5) and 78.6 (2)° in (I), (II) and (III), respectively. In the crystals, mol­ecules are linked into C(6) chains by weak N—H⋯O hydrogen bonds and C—H⋯π inter­actions are also observed. PMID:28217321

  15. Urinary Concentrations of Insecticide and Herbicide Metabolites among Pregnant Women in Rural Ghana: A Pilot Study.

    PubMed

    Wylie, Blair J; Ae-Ngibise, Kenneth A; Boamah, Ellen A; Mujtaba, Mohammed; Messerlian, Carmen; Hauser, Russ; Coull, Brent; Calafat, Antonia M; Jack, Darby; Kinney, Patrick L; Whyatt, Robin; Owusu-Agyei, Seth; Asante, Kwaku P

    2017-03-29

    Use of pesticides by households in rural Ghana is common for residential pest control, agricultural use, and for the reduction of vectors carrying disease. However, few data are available about exposure to pesticides among this population. Our objective was to quantify urinary concentrations of metabolites of organophosphate (OP), pyrethroid, and select herbicides during pregnancy, and to explore exposure determinants. In 2014, 17 pregnant women from rural Ghana were surveyed about household pesticide use and provided weekly first morning urine voids during three visits ( n = 51 samples). A total of 90.1% (46/51) of samples had detectable OP metabolites [geometric mean, GM (95% CI): 3,5,6-trichloro-2-pyridinol 0.54 µg/L (0.36-0.81), para-nitrophenol 0.71 µg/L (0.51-1.00)], 75.5% (37/49) had detectable pyrethroid metabolites [GM: 3-phenoxybenzoic acid 0.23 µg/L (0.17, 0.32)], and 70.5% (36/51) had detectable 2,4-dichlorophenoxyacetic acid levels, a herbicide [GM: 0.46 µg/L (0.29-0.73)]. Concentrations of para-nitrophenol and 2,4-dichlorophenoxyacetic acid in Ghanaian pregnant women appear higher when compared to nonpregnant reproductive-aged women in a reference U.S. Larger studies are necessary to more fully explore predictors of exposure in this population.

  16. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with “Auxin-Like” Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways

    PubMed Central

    Bhat, Supriya V.; Booth, Sean C.; McGrath, Seamus G. K.; Dahms, Tanya E. S.

    2015-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria. PMID:25919284

  17. 40 CFR 180.293 - Endothall; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... established for residues of the herbicide endothall (7 - oxabicyclo[2.2.1] heptane-2,3-dicarboxylic acid) in...,-dimethylalkylamine salts as algicides or herbicides to control aquatic plants in canals, lakes, ponds, and other... indirect or inadvertent combined residues of the herbicide, endothall (7 - oxabicyclo[2.2.1] heptane-2,3...

  18. Transport of atrazine and dicamba through silt and loam soils

    USGS Publications Warehouse

    Tindall, James A.; Friedel, Michael J.

    2016-01-01

    The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flow paths. Concentrations of atrazine and dicamba exceeding 0.30 and 0.05µg m1-1 were observed at depths of 10-30cm and 50-70cm after two months following heavy rainfall events. It appears from the laboratory experiment that preferential flow paths were a significant factor in transport of atrazine and dicamba.

  19. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  20. Dacthal and chlorophenoxy herbicides and chlorothalonil fungicide in eggs of osprey (Pandion haliaetus) from the Duwamish-Lake Washington-Puget Sound area of Washington state, USA

    USGS Publications Warehouse

    Chu, S.; Henny, C.J.; Kaiser, J.L.; Drouillard, K.G.; Haffner, G.D.; Letcher, R.J.

    2007-01-01

    Current-use chlorophenoxy herbicides including 2,4-dichlorophenoxyacetic acid, dicamba, triclopyr, dicamba, dimethyl tetrachloroterephthalate (DCPA or dacthal), and the metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and the fungicide, chlorothalonil, were investigated in the eggs of osprey (Pandion haliaetus) that were collected from 15 sites from five study areas Puget Sound/Seattle area of Washington State, USA. DCPA differs from acidic chlorophenoxy herbicides, and is not readily hydrolyzed to free acid or acid metabolites, and thus we developed a new method. Of the 12 chlorophenoxy herbicides and chlorothalonil analyzed only DCPA could be quantified at six of these sites (2.0 to 10.3 pg/g fresh weight). However, higher levels (6.9 to 85.5 pg/g fresh weight) of the unexpected DCPA structural isomer, dimethyl tetrachlorophthalate (diMe-TCP) were quantified in eggs from all sites. diMe-TCP concentrations tended to be higher in eggs from the Everett Harbor area. As diMe-TCP is not an industrial product, and not commercially available, the source of diMe-TCP is unclear. Regardless, these findings indicate that DCPA and diMe-TCP can be accumulated in the food chain of fish-eating osprey, and transferred in ovo to eggs, and thus may be of concern to the health of the developing chick and the general reproductive health of this osprey population. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2,4-dichlorophenoxyacetic herbicide in rat liver.

    PubMed

    Tayeb, Wafa; Nakbi, Amel; Cheraief, Imed; Miled, Abdelhedi; Hammami, Mohamed

    2013-07-01

    This study aims to investigate the effects of the 2,4-dichlorophenoxyacetic herbicide (2,4-D) on plasma lipids, lipoproteins concentrations, hepatic lipid peroxidation, fatty acid composition and antioxidant enzyme activities in rats. Animals were randomly divided into four groups of 10 each: control group and three 2,4-D-treated groups G1, G2 and G3 were administered 15, 75 and 150 mg/kg/BW/d 2,4-D by gavage for 28 d, respectively. Results showed that 2,4-D caused significant negative changes in the biochemical parameters investigated. The malondialdehyde level was significantly increased in 2,4-D-treated groups. Fatty acid composition of the liver was also significantly changed with 2,4-D exposure. Furthermore, the hepatic antioxidant enzyme activities were significantly affected. Finally, 2,4-D at the studied doses modifies lipidic status, disrupt lipid metabolism and induce hepatic oxidative stress. In conclusion, at higher doses, 2,4-D may play an important role in the development of vascular disease via metabolic disorder of lipoproteins, lipid peroxidation and oxidative stress.

  2. Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate.

    PubMed

    Cai, Jingju; Zhou, Minghua; Liu, Ye; Savall, André; Groenen Serrano, Karine

    2018-08-01

    This research investigated persulfate electrosynthesis using a boron-doped diamond anode and a chemical reaction of persulfate in its activated form with an herbicide, 2,4-Dichlorophenoxyacetic acid (2,4-D). The first part of this research is dedicated to the influence of the applied current density on the electrosynthesis of persulfate. The first part shows that for a 2 M sulfuric acid, the current efficiency reached 96% for 5 mA/cm 2 and dropped to 52% for a higher current density (100 mA cm -2 ). This fall cannot be explained by mass transfer limitations: an increase in temperature (from 9 to 30 °C) during electrolysis leads to the decomposition of 23% of the persulfate. The second part of this research shows that a quasi-complete degradation of the target herbicide can be reached under controlled operating conditions: (i) a high ratio of initial concentrations [Persulfate]/[2,4-D], (ii) a minimum temperature of 60 °C that produces sulfate radicals by heat decomposition of persulfate, and (iii) a sufficient contact time between reactants is required under dynamic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries--Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2′,6′-diethylacetanilide 2-hydroxy-2′,6′-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987–1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.

  4. Features of the Photodegradation of 2,4-Dichlorophenoxyacetic Acid Under the Influence of Radiation from KrCl Excilamps

    NASA Astrophysics Data System (ADS)

    Vershinin, N. O.; Sokolova, I. V.; Tchaikovskaya, O. N.; Nevolina, K. A.

    2015-11-01

    The herbicide 2,4-dichlorophenoxyacetic acid was investigated in aqueous solution. A KrCl excilamp with an emission wavelength of 222 nm was used as radiation source. The direction of variation in the concentration of the toxicant during UV irradiation is discussed. The photodegradation constants are calculated. A chromatographic-mass spectrometric analysis of the photoproducts was undertaken.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Keiko; Fukura, Takanobu; Nakase, Kohichi

    The authors cloned and sequenced the gene encoding and NADPH-dependent aldehyde reductase (ARII) in Sporobolomyces salmonicolor AKU4429, which reduces ethyl 4-chloro-3-oxobutanoate (4-COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate. The ARII gene is 1,032 bp long, is interrupted by four introns, and encodes a 37,315-Da polypeptide. The deduced amino acid sequence exhibited significant levels of similarity to the amino acid sequences of members of the mammalian 3{Beta}-hydroxysteroid dehydrogenase-plant dihydroglavonol 4-reductase superfamily but not to the amino acid sequences of members of the aldo-keto reductase superfamily or to the amino acid sequence of an aldehyde reductase previously isolated from the same organism. The ARII proteinmore » was overproduced in Escherichia coli about 2,000-fold compared to the production in the original y east cells. The enzyme expressed in E. coli was purified to homogeneity and had the same catalytic properties as ARII purified from S. Salmonicolor. To examine the contribution of the dinucleotide-binding motif G{sub 19}-X-X-G{sub 22}-X-X-A{sub 25}, which is located in the N-terminal region, during ARII catalysis, they replaced three amino acid residues in the motif and purified the resulting mutant enzymes. Substrate inhibition of the G{sub 19}{r{underscore}arrow}A and G{sub 22}{r{underscore}arrow}A mutant enzymes by 4-COBE die not occur. The A{sub 25}{r{underscore}arrow}G mutant enzyme could reduce 4-COBE when NADPH was replaced by an equimolar concentration of NADH.« less

  6. 40 CFR 180.509 - Mefenpyr-diethyl; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the herbicide safener, mefenpyr-diethyl, 1-(2,4-dichlorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylic acid, diethyl ester and its 2,4-dichlorophenyl-pyrazoline metabolites, when applied... agricultural commodities: Commodity Parts per million Barley, grain 0.05 Barley, hay 0.2 Barley, straw 0.5...

  7. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris R.; Scieble, Wolf

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS genemore » can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.« less

  8. Metabolism and pharmacokinetics of selected halon replacement candidates.

    PubMed

    Dodd, D E; Brashear, W T; Vinegar, A

    1993-05-01

    Metabolism studies were conducted using Fischer 344 and Sprague-Dawley rats following inhalation exposure to 1.0% (v/v) air atmospheres of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124), 1-chloro-1,1-difluoroethane (HCFC-142b), bromochlorodifluoromethane (Halon 1211), and perfluorohexane (PFH) for 2 h. There were no remarkable differences in results between the two strains of rats. Animals exposed to HCFC-123 or HCFC-124 excreted trifluoroacetic acid in their urine. Urinary fluoride concentrations were increased in rats exposed to HCFC-124, and urinary bromide levels were increased in rats exposed to Halon 1211. Small quantities of volatile metabolites 2-chloro-1,1,1-trifluoroethane (HCFC-133a) and 2-chloro-1,1-difluoroethylene were observed in the livers of rats exposed to HCFC-123. Rats exposed to HCFC-142b excreted chlorodifluoroacetic acid in their urine; no volatile metabolites were detected in tissue samples. For PFH studies, no metabolites were detected in the urine or tissues of exposed animals. These results are consistent with proposed oxidative and reductive pathways of metabolism for these chemicals. Pharmacokinetic studies were carried out in rats exposed by inhalation to 1.0%, 0.1%, or 0.01% of HCFC-123. Following exposure, blood concentrations of HCFC-123 fell sharply, whereas trifluoroacetic acid levels rose for approx. 5 h and then declined gradually. Using a physiologically based pharmacokinetic model, saturation of HCFC-123 metabolism was estimated to occur at approx. 0.2% (2000 ppm) HCFC-123.

  9. Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment.

    PubMed

    Chong, Ganggang; Di, Junhua; Ma, Cuiluan; Wang, Dajing; Wang, Chu; Wang, Lingling; Zhang, Pengqi; Zhu, Jun; He, Yucai

    2018-08-01

    In this study, biomass-hydrolysate was used for enhancing the bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE). Firstly, dilute alkalic salt pretreatment was attempted to pretreat bamboo shoot shell (BSS). It was found that enzymatic in situ hydrolysis of 20-50 g/L BSS pretreated with dilute alkalic salts (0.4% Na 2 CO 3 , 0.032% Na 2 S) at 7.5% sulfidity by autoclaving at 110 °C for 40 min gave sugar yields at 59.9%-73.5%. Moreover, linear relationships were corrected on solid recovery-total delignification-sugar yield. In BSS-hydrolysates, xylose and glucose could promote the reductase activity of recombinant E. coli CCZU-A13. Compared with glucose, hydrolysate could increase the reductase activity by 1.35-folds. Furthermore, the cyclohexane-hydrolysate (10:90, v/v) biphasic media containing ethylene diamine tetraacetic acid (EDTA, 40 mM) and l-glutamine (150 mM) was built for the effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (94.6% yield) from 500 mM COBE. In conclusion, this strategy has high potential for the effective biosynthesis of (R)-CHBE (>99% e.e.). Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Stimulation of aryl metabolite production in the basidiomycete Bjerkandera sp. strain BOS55 with biosynthetic precursors and lignin degradation products.

    PubMed Central

    Mester, T; Swarts, H J; Romero i Sole, S; de Bont, J A; Field, J A

    1997-01-01

    Aryl metabolites are known to have an important role in the ligninolytic system of white rot fungi. The addition of known precursors and aromatic acids representing lignin degradation products stimulated the production of aryl metabolites (veratryl alcohol, veratraldehyde, p-anisaldehyde, and 3-chloro-p-anisaldehyde) in the white rot fungus Bjerkandera sp. strain BOS55. The presence of manganese (Mn) is known to inhibit the biosynthesis of veratryl alcohol (T. Mester, E. de Jong, and J.A. Field, Appl. Environ. Microbiol. 61:1881-1887, 1995). A new finding of this study was that the production of the other aryl metabolites, p-anisaldehyde and 3-chloro-p-anisaldehyde, was also inhibited by Mn. We attempted to bypass the Mn-inhibited step in the biosynthesis of aryl metabolites by the addition of known and suspected precursors. Most of these compounds were not able to bypass the inhibiting effect of Mn. Only the fully methylated precursors (veratrate, p-anisate, and 3-chloro-p-anisate) provided similar concentrations of aryl metabolites in the presence and absence of Mn, indicating that Mn does not influence the reduction of the benzylic acid group. The addition of deuterated benzoate and 4-hydroxybenzoate resulted in the formation of deuterated aryl metabolites, indicating that these aromatic acids entered into the biosynthetic pathway and were common intermediates to all aryl metabolites. Only deuterated chlorinated anisyl metabolites were produced when the cultures were supplemented with deuterated 3-chloro-4-hydroxybenzoate. This observation combined with the fact that 3-chloro-4-hydroxybenzoate is a natural product of Bjerkandera spp. (H. J. Swarts, F. J. M. Verhagen, J. A. Field, and J. B. P. A. Wijnberg, Phytochemistry 42:1699-1701, 1996) suggest that it is a possible intermediate in chlorinated anisyl metabolite biosynthesis. PMID:9143129

  11. Synthesis, spectroscopic characterization, crystal structure, DNA interaction study and invitro biological screenings of 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Nooruddin; Ali, Saqib; McKee, Vickie; Khan, Shahan Zeb; Malook, Khan

    2015-01-01

    The titled compound, 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid was synthesized and characterized by various techniques like elemental analyses, FT-IR, NMR (1H, and 13C) and single crystal X-ray structural analysis. The appearance of the OH peak of the carboxylic acid in the FT-IR and NMR spectra conform the formation of the compound. A good agreement was found between the calculated values of C, H, N and found values in elemental analysis that show the purity of the compound. Protons H2 and H3 are in cis conformation with each other as conformed both from 1H NMR as well as from single crystal X-ray analysis. The molecular structure of the title compound, C10H10NO3Cl, is stabilized by short intramolecular Osbnd H- - -O hydrogen bonds within the molecule. In the crystal structure, intermolecular Nsbnd H- - -O hydrogen bonds link molecules into zigzag chains resulting in a dendrimer like structure. The title compound was screened for biological activities like interaction with DNA, cytotoxicity, antitumor and antioxidant activities. DNA interaction study reveals that the binding mode of interaction of the compound with SS-DNA is intercalative as it results in hypochromism along with significant red shift of 5 nm. It was also found to be effective antioxidant of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and show almost comparable antioxidant activity to that of the standard and known antioxidant, ascorbic acid, at higher concentration. The antitumor activity data of the compound shows that it can be used as potent antitumor agent.

  12. Low-impact chemical weed control techniques in UNESCO World Heritage Sites of Cuba.

    PubMed

    Hernandez-Enriquez, O; Alvarez, R; Morelli, F; Bastida, F; Camacho, D; Menendez, J

    2012-01-01

    Dichrostachys cinerea is a thorny, acacia-like, fast-growing woody bush which invades fields, wasteland, road sides and other disturbed areas. This gregarious species has become a very aggressive invasive weed in Cuba, where no native predators or pathogens are found. It often encroaches in fallows, overgrazed areas and mismanaged veld. D. cinerea is a very difficult weed to eliminate because of its active suckering, and is liable to produce dense thickets which are quite impenetrable on account of the density and abundance of its long, stiff, sharp thorns. In the Valle de los Ingenios area (Cuba Central), the tree is unchecked and forms veritable forests in areas on which cane growing has been discontinued. Physical management by cutting and burning the plants is not a very efficient control method, since the seeds survive in the soil, and they grow very fast. Therefore, chemical methods via the use of herbicides are often necessary to eradicate this weed. A preliminary study using glyphosate and auxin-like herbicides (2,4-D + picloram, MCPA, and MCPA + 2,4-D) plus adjuvants has been carried out in order to elucidate the best mixtures rendering maximum weed control with minimum herbicide rate and environmental stress. None of the herbicides used except glyphosate and 2,4-D + picloram showed acceptable mortality rates (75-80%) at the recommended doses tested. In the failed herbicide treatments, only the use of double herbicide rates succeeded in controlling marabou. The herbicide mixture of 2,4-D + picloram formulated with either a non-ionic surfactant or a mixture of fatty acid esters was the best option to control D. cinerea in terms of maximum effectiveness and minimum environmental stress, as the reduction in active ingredients applied to the environment was x3 in these two adjuvant-amended formulations compared to 2,4-D + picloram alone.

  13. The combined effects of UV-B radiation and herbicides on photosynthesis, antioxidant enzymes and DNA damage in two bloom-forming cyanobacteria.

    PubMed

    Chen, Lanzhou; Xie, Mu; Bi, Yonghong; Wang, Gaohong; Deng, Songqiang; Liu, Yongding

    2012-06-01

    In this study, we investigated the combined effects of UV-B irradiation and herbicides (glyphosate, GPS; 2-Methyl-4-chlorophenoxyacetic acid, MCPA-Na; 3-(3,4-dichlorophenyl)-1,1-dimethylurea, DCMU) and the antioxidant (ascorbic acid, ASC) on photosynthesis, antioxidant enzymes and DNA damage in two bloom-forming cyanobacteria, Anabaena sp. and Microcystis viridis. UV-B irradiance increased reactive oxygen species (ROS) production, which decreased chlorophyll a fluorescence yield, pigment content and superoxide dismutase (SOD) activity, and increased malondialdehyde (MDA) content and caused serious DNA damage. The degree of these damages was aggravated by the addition of DCMU, GPS and MCPA, and was partially mitigated by the addition of ASC. During the recovery process, the degree and mechanism in restoring DNA damage and photosynthesis inhibition were different by the removal of UV-B and herbicides (DCMU, GPS and MCPA) in both cyanobacteria. These results suggest that the combination of UV-B and exogenous herbicides have detrimental effects on cyanobacterial metabolism through either a ROS-mediated process or by affecting the electron transport chain, and may cause the shifts in the phytoplankton community. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The Influence of Carbon-Carbon Multiple Bonds on the Solvolyses of Tertiary Alkyl Halides: a Grunwald-Winstein Analysis

    PubMed Central

    Reis, Marina C.; Elvas-Leitão, Ruben; Martins, Filomena

    2008-01-01

    The influence of carbon-carbon multiple bonds on the solvolyses of 3-chloro-3-methylbutyne (1), 2-chloro-2-phenylpropane (2), 2-bromo-2-methyl-1-phenylpropane (3), 4-chloro-4-methyl-2-pentyne (4) and 2-chloro-2-methylbutane (5) is critically evaluated through the extended Grunwald-Winstein equation. Substrates 1, 3 and 5 lead to correlations with unexpected negative sensitivity, h, to changes in the aromatic ring parameter, I. It is claimed that I is not a pure parameter, reflecting also some solvent nucleophilicity, NOTs, character. In substrates 2 and 4 the possibility of rearside solvation is reduced due to steric hindrance and/or cation stabilization and the best found correlations involve only the solvent ionizing power, Y, and I. PMID:19325827

  15. 40 CFR 180.319 - Interim tolerances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-oxabicyclo-(2,2,1) heptane 2,3-dicarboxylic acid Herbicide 0.2 Beet, sugar None. Isopropyl carbanilate (IPC) Herbicide 5.0 Alfalfa, hay; clover, hay; and grass, hay None. 2.0 Alfalfa, forage; clover, forage; and grass...; poultry, meat; and poultry, meat byproducts None. Methyl parathion Herbicide 0.5 Rye 12/31/13. (b) Section...

  16. MULTISPECTRAL IDENTIFICATION OF POTENTIALLY HAZARDOUS BYPRODUCTS OF OZONATION AND CHLORINATION - PART I: STUDIES OF CHROMATOGRAPHIC AND SPECTROSCOPIC PROPERTIES OF MX

    EPA Science Inventory

    The gas chromatographic (GC) and Fourier transform infrared and mass spectroscopic (FT-IR and MS, respectively) properties of (Z)-2-chloro-3-(dichloromethyl)4-oxobutenoic acid (MX) (a highly mutagenic byproduct of drinking water chlorination) and several related compounds were st...

  17. Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology.

    PubMed

    Burns, Carol J; Swaen, Gerard M H

    2012-10-01

    A qualitative review of the epidemiological literature on the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and health after 2001 is presented. In order to compare the exposure of the general population, bystanders and occupational groups, their urinary levels were also reviewed. In the general population, 2,4-D exposure is at or near the level of detection (LOD). Among individuals with indirect exposure, i.e. bystanders, the urinary 2,4-D levels were also very low except in individuals with opportunity for direct contact with the herbicide. Occupational exposure, where exposure was highest, was positively correlated with behaviors related to the mixing, loading and applying process and use of personal protection. Information from biomonitoring studies increases our understanding of the validity of the exposure estimates used in epidemiology studies. The 2,4-D epidemiology literature after 2001 is broad and includes studies of cancer, reproductive toxicity, genotoxicity, and neurotoxicity. In general, a few publications have reported statistically significant associations. However, most lack precision and the results are not replicated in other independent studies. In the context of biomonitoring, the epidemiology data give no convincing or consistent evidence for any chronic adverse effect of 2,4-D in humans.

  18. Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology

    PubMed Central

    Burns, Carol J.; Swaen, Gerard M. H.

    2012-01-01

    A qualitative review of the epidemiological literature on the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and health after 2001 is presented. In order to compare the exposure of the general population, bystanders and occupational groups, their urinary levels were also reviewed. In the general population, 2,4-D exposure is at or near the level of detection (LOD). Among individuals with indirect exposure, i.e. bystanders, the urinary 2,4-D levels were also very low except in individuals with opportunity for direct contact with the herbicide. Occupational exposure, where exposure was highest, was positively correlated with behaviors related to the mixing, loading and applying process and use of personal protection. Information from biomonitoring studies increases our understanding of the validity of the exposure estimates used in epidemiology studies. The 2,4-D epidemiology literature after 2001 is broad and includes studies of cancer, reproductive toxicity, genotoxicity, and neurotoxicity. In general, a few publications have reported statistically significant associations. However, most lack precision and the results are not replicated in other independent studies. In the context of biomonitoring, the epidemiology data give no convincing or consistent evidence for any chronic adverse effect of 2,4-D in humans. PMID:22876750

  19. Metabolism of clebopride in vitro. Identification of N-oxidized products.

    PubMed

    Huizing, G; Beckett, A H

    1980-01-01

    1. N-(1'-Benzyl-4'-piperidyl-N-oxide)-4-amino-5-chloro-2-methoxybenzamide, N-(4'-(N-hydroxylpiperidyl)-4-amino-5-chloro-2-methoxybenzamide and N-(4'-(delta 1'-piperidyl-N-oxide))-4-amino-5-chloro-2-methoxybenzamide were obtained from chloroform extracts of incubation mixtures of clebopride or desbenzyl clebopride with 9000 g supernatant of liver homogenates of male NZW rabbits. 2. These metabolites were identified using electron impact (low and high resolution) and field desorption mass spectrometry, and computer averaged time proton magnetic resonance spectroscopy.

  20. Cupriavidus pampae sp. nov., a novel herbicide-degrading bacterium isolated from agricultural soil.

    PubMed

    Cuadrado, Virginia; Gomila, Margarita; Merini, Luciano; Giulietti, Ana M; Moore, Edward R B

    2010-11-01

    A bacterial consortium able to degrade the herbicide 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) was obtained from an agricultural soil of the Argentinean Humid Pampa region which has a history of long-term herbicide use. Four bacterial strains were isolated from the consortium and identified as members of the genera Cupriavidus, Labrys and Pseudomonas. A polyphasic systematic analysis was carried out on strain CPDB6(T), the member of the 2,4-DB-degrading consortium able to degrade 2,4-DB as a sole carbon and energy source. The Gram-negative, rod-shaped, motile, non-sporulating, non-fermenting bacterium was shown to belong to the genus Cupriavidus on the basis of 16S rRNA gene sequence analyses. Strain CPDB6(T) did not reduce nitrate, which differentiated it from the type species of the genus, Cupriavidus necator; it did not grow in 0.5-4.5 % NaCl, although most species of Cupriavidus are able to grow at NaCl concentrations as high as 1.5 %; and it was able to deamidate acetamide, which differentiated it from all other species of Cupriavidus. DNA-DNA hybridization data revealed low levels of genomic DNA similarity (less than 30 %) between strain CPDB6(T) and the type strains of Cupriavidus species with validly published names. The major cellular fatty acids detected were cis-9-hexadecenoic (16 : 1ω7c) and hexadecanoic (16 : 0) acids. On the basis of phenotypic and genotypic characterizations, strain CPDB6(T) was recognized as a representative of a novel species within the genus Cupriavidus. The name Cupriavidus pampae sp. nov. is proposed, with strain CPDB6(T) (=CCUG 55948(T)=CCM-A-29:1289(T)) as the type strain.

  1. Identification of α-Chloro-2,2',4,4',6,6'-Hexanitrobibenzyl as an Impurity in Hexanitrostilbene

    NASA Astrophysics Data System (ADS)

    Bellamy, A. J.

    2010-01-01

    The final intermediate in the Shipp synthesis of 2,2‧,4,4‧,6,6‧-hexanitrostilbene (HNS) from TNT, α-chloro-2,2‧,4,4‧,6,6‧-hexanitrobibenzyl, has been extracted and characterized by nuclear magnetic resonance (NMR) spectroscopy, chlorine elemental analysis, and high-performance liquid chromatography (HPLC). It has also been shown that digestion in NMP of HNS containing α-chlorohexanitrobibenzyl generates another chlorine-containing by-product, 2-chloro-2‧,4,4‧,6,6‧-pentanitrostilbene. This too has been characterized by NMR spectroscopy, chlorine elemental analysis, and HPLC.

  2. Degradation of various chlorophenols under alkaline conditions by gram-negative bacteria closely related to Ochrobactrum anthropi.

    PubMed

    Müller, R H; Jorks, S; Kleinsteuber, S; Babel, W

    1998-01-01

    From concrete debris of a demolished herbicide production plant several Gram-negative bacterial strains were isolated, which exhibit metabolic capabilities for the degradation of 2,4-dichlorophenol (DCP)l), 4-chloro-2-methylphenol (MCP) and 4-chlorophenol (4-CP), while 2-chlorophenol (2-CP) was degraded at a slower rate. Degradative activity was inducible and was impeded by adding of 100 mg/l of chloramphenicol to growing cultures. The strains displayed alkaliphilic properties with optimum DCP/MCP degradation at pH values around 8.5-9.5; activity was observed up to pH values of 11. Degradation was most likely complete according to chlorine balances; formation of intermediary products was observed with MCP some time. Specific activity of up to 380 mumol/h.g dry mass was found within the concentration range of 10-20 mg/l DCP; higher concentrations retarded the activity with complete inhibition at 200-400 mg/l. Some of the strains carry plasmids whose presence was not unambiguously correlated to the degradative properties. Ribotyping revealed a high degree of relationship between the strains. Preliminary taxonomic investigations showed close relationship to Ochrobactrum anthropi.

  3. Impacts of 2,4-dichlorophenoxyacetic acid aquatic herbicide formulations on reproduction and development of the fathead minnow (Pimephales promelas).

    PubMed

    DeQuattro, Zachary A; Karasov, William H

    2016-06-01

    The authors studied the effects of 2 formulations of 2,4-dichlorophenoxyacetic acid, dimethylamine salt (2,4-D) herbicide on fathead minnow reproduction, embryonic development, and larval survival. Groups of reproductively mature fathead minnows were exposed for 28 d to 0.00 ppm, 0.05 ppm, 0.50 ppm, and 2.00 ppm 2,4-D (target) in a flow-through system. Weedestroy® AM40 significantly (p ≤ 0.05) depressed male tubercle presence and significantly increased female gonadosomatic index, and there were statistical trends (0.05 ≤ p ≤ 0.10) for effects on fecundity and hepatic vitellogenin mRNA expression in females and males. The herbicide DMA® 4 IVM also significantly depressed male tubercle presence. Gonads of females exposed to DMA 4 IVM exhibited significantly depressed stage of oocyte maturation, significantly increased severity of oocyte atresia, and a significant presence of an unidentified tissue type. Also, DMA 4 IVM significantly decreased larval survival. It had no impact on hepatic vitellogenin mRNA expression or gonadosomatic index. No significant effects on fertilization, hatchability, or embryonic development were observed in either trial. The formulations tested exhibited different toxicological profiles from pure 2,4-D. These data suggest that the formulations have the potential for endocrine disruption and can exert some degree of chronic toxicity. The present use of 2,4-D formulations in lake management practices and their permitting based on the toxicological profile of 2,4-D pure compound should be reconsidered. Environ Toxicol Chem 2016;35:1478-1488. © 2015 SETAC. © 2015 SETAC.

  4. Modulation of physiological responses with TiO2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity.

    PubMed

    De, Arnab Kumar; Ghosh, Arijit; Debnath, Subhas Chandra; Sarkar, Bipul; Saha, Indraneel; Adak, Malay Kumar

    2018-06-05

    The present work is emphasised with the herbicidal tolerance of Azolla pinnata R.Br. and its modulation with TiO 2 nano-particle. Both carbohydrate and nitrogen metabolism were effected with 2,4-D as herbicide and in few cases TiO 2 -NP had recovered few detrimental effects. From the nutrient status in Azolla it recorded the recovery of nitrogen as well as potassium by TiO 2 -NP but not in case of phosphorus. However, a conversion of nitrate to ammonium was more induced by TiO 2 -NP under herbicidal toxicity. Similar results were obtained for inter-conversion of amino acid-nitrate pool, but no changes with glutamine synthase activity with TiO 2 -NP. Initially, the effects of 2,4-D was monitored with changes of chlorophyll content but had not been recovered with nanoparticle. Photosynthetic reserves expressed as both total and reducing sugar were insensitive to TiO 2 -NP interference but activity of soluble and wall bound invertase was in reverse trend as compared to control. The 2,4-D mediated changes of redox and its oxidative stress was ameliorated in plants with over expressed ADH activity. As a whole the Azolla bio system with TiO 2 supplementation may be useful in sustenance against 2,4-D toxicity through recovery of nitrogen metabolism. Thus, Azolla-TiO 2 -NP bio system would be realised to monitor the herbicidal toxicity in soil and its possible bioremediation.

  5. Understanding mechanisms to predict and optimize biochar for agrochemical sorption

    NASA Astrophysics Data System (ADS)

    Hall, Kathleen; Gámiz, Beatriz; Cox, Lucia; Spokas, Kurt; Koskinen, William

    2017-04-01

    The ability of biochars to bind various organic compounds has been widely studied due to the potential effects on pesticide fate in soil and interest in the adoption of biochar as a "low-cost" filter material. However, the sorptive behaviors of biochars are extremely variable and much of the reported data is limited to specific biochar-chemical interactions. The lack of knowledge regarding biochar sorption mechanisms limits our current ability to predict and optimize biochar's use. This work unveils mechanistic drivers of organic pesticide sorption on biochars through targeted alteration of biochar surface chemistry. Changes in the quantity and type of functional groups on biochars and other black carbon materials were achieved through treatments with H2O2, and CO2, and characterized using Fourier transform infrared spectroscopy and scanning electron microscope (SEM/EDX). The sorption capacities of these treated biochars were subsequently measured to evaluate the effects of different surface moieties on the binding of target herbicides cyhalofop acid ((R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionic acid) and clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-1,2-oxazolidin-3-one). Sorption of both herbicides on the studied biochars increased following H2O2 activation; however, the influence of the H2O2 activation on sorption was more pronounced for cyhalofop acid (pKa = 3.9) than clomazone, which is non-ionizable. Increased cyhalofop acid sorption on H2O2 treated biochars can be attributed to the increase in oxygen containing functional groups as well as the decrease in biochar pH. In contrast, CO2 activation reduced the sorption of cyhalofop acid compared to untreated biochar. FTIR data suggest the reduced sorption on CO2 -treated biochar was due to the removal of surface carboxyl groups, further supporting the role of specific functionality in the sorption of ionizable herbicides. Results from this work offer insight into the mechanisms of sorption and provide the basis to simultaneously evaluate the overall effectiveness of surface activation treatments. In addition, we are currently examining the influence of specific biochar alterations via activation on nitrate sorption and uptake; forthcoming results will also be presented.

  6. 40 CFR 721.1000 - Benzenamine, 3-chloro-2,6-dinitro-N,N-dipropyl-4-(tri-fluoro-methyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenamine, 3-chloro-2,6-dinitro-N,N-dipropyl-4-(tri-fluoro-methyl)-. 721.1000 Section 721.1000 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.1000 Benzenamine, 3-chloro-2,6-dinitro-N,N...

  7. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics.

    PubMed

    Rodríguez-Serrano, M; Pazmiño, D M; Sparkes, I; Rochetti, A; Hawes, C; Romero-Puertas, M C; Sandalio, L M

    2014-09-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23 mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·(-), whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics

    PubMed Central

    Rodríguez-Serrano, M.; Pazmiño, D. M.; Sparkes, I.; Rochetti, A.; Hawes, C.; Romero-Puertas, M. C.; Sandalio, L. M.

    2014-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·–, whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. PMID:24913628

  9. Bioconcentration of haloxyfop-methyl in bluegill (Lepomis macrochirus Rafinesque)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, P.G.; Lutenske, N.E.

    1990-01-01

    Bluegill (Lepomis macrochirus Rafinesque) were exposed to a {sup 14}C haloxyfop-methyl (methyl 2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoate) concentration averaging 0.29 {mu}g/L under flow-through conditions for 28 days. At the end of 28 days, the fish were transferred to clean water for a 4-day flow-through clearance period. Bluegill were found to rapidly absorb the ester from water which was then biotransformed at an extremely fast rate within the fish, such that essentially no haloxyfop-methyl was detected in the fish. The estimated bioconcentration factor for haloxyfop-methyl in whole fish was <17, based upon the detection limit for the ester in fish (0.005 {mu}g/g) and the averagemore » concentration of haloxyfop-methyl in exposure water (0.29 {mu}g/L). The principal component of the {sup 14}C residue within whole fish was haloxyfop acid (2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoic acid) which accounted for an average of about 60% of the total radioactivity. The high rate of biotransformation of the parent compound within the fish demonstrates the importance of basing the bioconcentration factor upon the actual concentration of parent material within the organism rather than the total radioactive residue levels for bioconcentration studies with radiolabeled compounds.« less

  10. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds.

    PubMed

    Cummins, Ian; Wortley, David J; Sabbadin, Federico; He, Zhesi; Coxon, Christopher R; Straker, Hannah E; Sellars, Jonathan D; Knight, Kathryn; Edwards, Lesley; Hughes, David; Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Steel, Patrick G; Edwards, Robert

    2013-04-09

    Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management.

  11. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds

    PubMed Central

    Cummins, Ian; Wortley, David J.; Sabbadin, Federico; He, Zhesi; Coxon, Christopher R.; Straker, Hannah E.; Sellars, Jonathan D.; Knight, Kathryn; Hughes, David; Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Steel, Patrick G.; Edwards, Robert

    2013-01-01

    Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management. PMID:23530204

  12. Application of electrokinetic soil flushing to four herbicides: A comparison.

    PubMed

    dos Santos, E Vieira; Souza, F; Saez, C; Cañizares, P; Lanza, M R V; Martinez-Huitle, C A; Rodrigo, M A

    2016-06-01

    In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Stereoselective analysis of acid herbicides in natural waters by capillary electrophoresis.

    PubMed

    Polcaro, C M; Marra, C; Desiderio, C; Fanali, S

    1999-09-01

    A capillary electrophoretic method for the stereoselective analysis of aryloxypropionic and aryloxyphenoxypropionic acidic herbicides in ground water and river water was performed. Vancomycin and gamma-cyclodextrin were added to the background electrolyte (BGE) as chiral selectors. Water sample preconcentration was accomplished by solid-phase extraction on styrene-divinylbenzene packed cartridges (2 L of ground water and 1 L of river water). The analytical method allowed for the resolution of mecoprop, fenoprop, fluazifop and haloxyfop racemic mixtures in natural water samples spiked with enantiomer concentration levels in the range 0.1-0.13 ppb for ground water and 0.4-0.54 ppb for river water.

  14. Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Bhat, Supriya V; Booth, Sean C; Vantomme, Erik A N; Afroj, Shirin; Yost, Christopher K; Dahms, Tanya E S

    2015-09-01

    The chlorophenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used extensively worldwide despite its known toxicity and our limited understanding of how it affects non-target organisms. Escherichia coli is a suitable model organism to investigate toxicity and adaptation mechanisms in bacteria exposed to xenobiotic chemicals. We developed a methodical platform that uses atomic force microscopy, metabolomics and biochemical assays to quantify the response of E. coli exposed to sublethal levels of 2,4-D. This herbicide induced a filamentous phenotype in E. coli BL21 and a similar phenotype was observed in a selection of genotypically diverse E. coli strains (A0, A1, B1, and D) isolated from the environment. The filamentous phenotype was observed at concentrations 1000 times below field levels and was reversible upon supplementation with polyamines. Cells treated with 2,4-D had more compliant envelopes, significantly remodeled surfaces that were rougher and altered vital metabolic pathways including oxidative phosphorylation, the ABC transport system, peptidoglycan biosynthesis, amino acid, nucleotide and sugar metabolism. Most of the observed effects could be attributed to oxidative stress, consistent with increases in reactive oxygen species as a function of 2,4-D exposure. This study provides direct evidence that 2,4-D at sublethal levels induces oxidative stress and identifies the associated metabolic changes in E. coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells.

    PubMed

    Buhrke, Thorsten; Frenzel, Falko; Kuhlmann, Jan; Lampen, Alfonso

    2015-12-01

    The food contaminants 3-chloro-1,2-propanediol (3-MCPD) and 3-MCPD fatty acid esters have attracted considerable attention in the past few years due to their toxic properties and their occurrence in numerous foods. Recently, significant amounts of the isomeric compounds 2-chloro-1,3-propanediol (2-MCPD) fatty acid esters have been detected in refined oils. Beside the interrogation which toxic effects might be related to the core compound 2-MCPD, the key question from the risk assessment perspective is again-as it was discussed for 3-MCPD fatty acid esters before-to which degree these esters are hydrolyzed in the gut, thereby releasing free 2-MCPD. Here, we show that free 2-MCPD but not 2-MCPD fatty acid esters were able to cross a monolayer of differentiated Caco-2 cells as an in vitro model for the human intestinal barrier. Instead, the esters were hydrolyzed by the cells, thereby releasing free 2-MCPD which was neither absorbed nor metabolized by the cells. Cytotoxicity assays revealed that free 2-MCPD as well as free 3-MCPD was not toxic to Caco-2 cells up to a level of 1 mM, whereas cellular viability was slightly decreased in the presence of a few 2-MCPD and 3-MCPD fatty acid esters at concentrations above 10 µM. The observed cytotoxic effects correlated well with the induction of caspase activity and might be attributed to the induction of apoptosis by free fatty acids which were released from the esters in the presence of Caco-2 cells.

  16. Alternative Training Agents Phase 4. Large-Scale Tests

    DTIC Science & Technology

    1992-02-01

    20 BLEND BY MOLES OF 2,2-DICHLORO-1,1,1-TRIFLUOROETHANE AND 1-CHLORO-1,1- DIFLUOROETHANE , BOTH TECHNICAL GRADES)** 1.0 SCOPE 1.1 This specification...pure 1-chloro- 1,1- difluoroethane , suitable as a fire extinguishing fluid for firefighter training and shall conform to the requirements of Table B-1...percent by moles 1-Chloro-1,l- difluoroethane 20.0 ± 1 4.4.1 percent by moles Boiling Point, degrees Celsius -10 to +28 4.4.2 at 760 mm Hg (14 to 82 ’F

  17. Biodegradation of simazine in olive fields.

    PubMed

    Santiago, R; De Prado, R; Franco, A R

    2003-01-01

    Simazine (2-chloro-4, bis ethylamino-1,3,5-triazine) is a herbicide of the s-triazine group used mainly to control broad-leaved weeds in different crops. Several papers report about simazine and other s-triazine derivates as being actual polluting agents. In fact, simazine has been detected in groundwater and soil. Since this herbicide has been extensively used in Andalusia (south of Spain), we are analyzing the levels of simazine residues found in the soil of olive fields. We are also simazine could be detected isolating live micro organisms able to degrade this compound, and are characterizing the metabolic pathways leading to this degradation and the fate of this compound in nature. With all these data in mind, we will try to develop a strategy for the bioremediation of contaminated soils. We have taken samples of soil from many olive orchards of Andalusia that have been treated with simazine. These samples were located with the help of a handheld GPS. The presence of simazine of these samples was detected by HPLC. In most of the samples taken no, and those where it could be, contained very low levels of this herbicide (lower than 0.5 ppm). Soil samples are being characterized to determine their physicochemical characteristics [pH, organic matter, texture, etc), and we are attempting to correlate all these parameters with the presence or absence of simazine. From some of the soils, we have isolated a group of micro organisms that can grow using simazine as the sole carbon and nitrogen sources. We are analyzing how the addition of carbon or nitrogen can influence the rate of the simazine degradation.

  18. Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1.

    PubMed

    Pan, Xiong; Wang, Saige; Shi, Nan; Fang, Hua; Yu, Yunlong

    2018-04-15

    The application of the herbicide chlorimuron-ethyl has a lasting toxic effect on some succession crops. Here, a bacterium capable of utilizing chlorimuron-ethyl as the sole source of nitrogen was isolated from the contaminated soil and was identified as Enterobacter ludwigii sp. CE-1, and its detoxification and degradation of the herbicide were then examined. The biodegradation of chlorimuron-ethyl by the isolate CE-1 was significantly accelerated with increasing concentration (1-10mg/l) and temperature (20-40°C). The optimal pH for the degradation of chlorimuron-ethyl by the isolate CE-1 was pH 7.0. A pathway for the biodegradation of chlorimuron-ethyl by the isolate CE-1 was proposed, in which it could be first converted into 2-amino-4-chloro-6-methoxypyrimidine and an intermediate product by the cleavage of the sulfonylurea bridge and then transformed into saccharin via hydrolysis and amidation. The plant height and fresh weight of corn that had been incubated in nutrient solution containing 0.2mg/l of chlorimuron-ethyl significantly recovered to 83.9% and 83.1% compared with those in the uninoculated control, although the root growth inhibition of chlorimuron-ethyl could not be alleviated after inoculation for 14 d. The results indicate that the isolate CE-1 is a promising bacterial resource for the biodegradation and detoxification of chlorimuron-ethyl. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Estimation of the Potential for Atrazine Transport in a Silt Loam Soil

    USGS Publications Warehouse

    Eckhardt, D.A.V.; Wagenet, R.J.

    1996-01-01

    The transport potential of the herbicide atrazine (2-chloro-4-ethyl-6-isopropyl-s-triazine) through a 1-meter-thick root zone of corn (Zea mays L.) in a silty-loam soil in Kansas was estimated for a 22-year period (1972-93) using the one-dimensional water-flow and solute-transport model LEACHM. Results demonstrate that, for this soil, atrazine transport is directly related to the amount and timing of rain that follows spring applications of atrazine. Two other critical transport factors were important in wet years - [1] variability in atrazine application rate, and [2] atrazine degradation rates below the root zone. Results demonstrate that the coincidence of heavy rain soon after atrazine application can cause herbicide to move below the rooting zone into depths at which biodegradation rates are assumed to be low but are often unknown. Atrazine that reaches below the rooting zone and persists in the underlying soil can subsequently be transported into ground water as soil water drains, typically after the growing season. A frequency analysis of atrazine concentrations in subsurface drainage, combined with field data, demonstrates the relative importance of critical transport factors and confirms a need for definitive estimates of atrazine-degradation rates below the root zone. The analysis indicates that periodic leaching of atrazine can be expected for this soil when rainfall that exceeds 20 cm/mo coincides with atrazine presence in soil.

  20. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization.

    PubMed

    Caracciolo, Anna Barra; Grenni, Paola; Ciccoli, Roberto; Di Landa, Giuseppe; Cremisini, Carlo

    2005-09-01

    Pesticide and nitrate contamination of soil and groundwater from agriculture is an environmental and public health concern worldwide. Simazine, 6-chloro-N2,N4-diethyl-1,3,5-triazine-2,4-diamine, is a triazine herbicide used in agriculture for selective weed control with several types of crops and it is frequently applied to soils receiving N-fertilizers. Degradation experiments were performed in the laboratory to assess whether the biodegradation of simazine in soil may be influenced by the presence of urea. Simazine degradation rates under different experimental conditions (presence/absence of urea, microbiologically active/sterilized soil) were assessed together with the formation, degradation and transformation of its main metabolites in soil. Simazine degradation was affected by the presence of urea, in terms both of a smaller half-life (t(1/2)) and of a higher amount of desethyl-simazine formed. The soil bacterial community was also studied. Microbial abundances were determined by epifluorescence direct counting. Moreover in situ hybridization with rRNA-targeted fluorescent oligonucleotide probes was used to analyze the bacterial community structure. Fluorescent in situ hybridization (FISH) was used to detect specific groups of bacteria such as the alpha,beta,gamma-subdivisions of Proteobacteria, Gram-positive bacteria with a high G + C DNA content, Planctomycetes, Betaproteobacterial ammonia-oxidizing bacteria and nitrifying bacteria. The presence of the herbicide and/or urea affected the bacterial community structure, showing that FISH is a valuable tool for determining the response of bacterial populations to different environmental conditions. Copyright 2005 Society of Chemical Industry

  2. Leaching and persistence of herbicides for kudzu (Pueraria montana) control on pine regeneration sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berisford, Yvette, C.; Bush, Parshall, B.; Taylor, John, W.

    Kudzu is an exotic vine that threatens forests in the southeastern United States. It can climb, overtop, and subsequently kill new seedlings or mature trees. Herbicides are commonly used to control kudzu; however, eradication might require retreatment for 3 to 10 yr in young stands and 7 to 10 yr for mature stands. Clopyralid, picloram, triclopyr, metsulfuron, and tebuthiuron exert various degrees of control, depending on soil type, meteorological conditions, herbicide formulation, seasonal application, characteristics of the kudzu stand, and frequency and number of herbicide. Field residue data for soil or leachate are lacking for all of these herbicides whenmore » they are used in actual forest regeneration programs in the Coastal Plain. These data are needed to assess the relative potential for the herbicides to leach into groundwater or to move off-site into sensitive ecological areas of the Coastal Plain in which sandy soils predominate and the groundwater tends to be shallow. As part of an integrated pest management program to control kudzu on forest regeneration areas at the Savannah River Site near New Ellenton, SC, five herbicides were evaluated from the standpoints of herbicide leaching, kudzu control, and plant community development. Three herbicide chemical families were represented. This included pyridinecarboxylic acid herbicides (clopyralid, picloram 1 2,4-D, and triclopyr), a sulfonylurea herbicide (metsulfuron), and a substituted urea herbicide (tebuthiuron).« less

  3. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA-deficient tomato mutants (notabilis, flacca, and sitiens), and quantification of xanthophylls indicate that ABA biosynthesis is influenced, probably through stimulated cleavage of xanthophylls to xanthoxal in shoot tissue. PMID:11080318

  4. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition.

    PubMed

    Hansen, H; Grossmann, K

    2000-11-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6, 6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mM IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [(3)H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA-deficient tomato mutants (notabilis, flacca, and sitiens), and quantification of xanthophylls indicate that ABA biosynthesis is influenced, probably through stimulated cleavage of xanthophylls to xanthoxal in shoot tissue.

  5. New hydrazones of ferulic acid: synthesis, characterization and biological activity.

    PubMed

    Wolszleger, Maria; Stan, Cătălina Daniela; Apotrosoaei, Maria; Vasincu, Ioana; Pânzariu, Andreea; Profire, Lenuţa

    2014-01-01

    The ferulic acid (4-hydroxy-3-methoxy-cinnamic acid) is a phenolic compound with important antioxidant effects and which nowadays is being extensively studied for his potential indications in inflammatory and neurodegenerative diseases, hypertension, atherosclerosis, etc. The synthesis of new ferulic acid compounds with potential antioxidant activity. The synthesis of the designed compounds was performed in several steps: (i) the obtaining of ferulic acid chloride by reacting of ferulic acid with thionyl chloride; (ii) the reaction between the ferulic acid chloride and hydrazine hydrate 98% to obtain the ferulic acid hydrazide; (iii) the condensation of ferrulic acid hydrazide with various benzaldehydes (2-hydroxy/3-hydroxy/4-hydroxy/2-nitro/3-nitro/4-nitro/2-methoxi/ 4-chloro/4-fluoro/4-bromo-benzaldehyde) resulting the correspond- ing hydrazones. The structure of the synthesized compounds was confirmed by FT-IR spectroscopy and the evaluation of antioxidant potential was achieved by determining the total antioxidant capacity and reducing power. In this study new hydrazones of ferulic acid have been synthesized, physic-chemical and spectral characterized. The evaluation of antioxidant potential using in vitro methods showed the favorable influence of the structural modulation on the antioxidant effects of ferulic acid.

  6. Comparative assessment of herbicide and fungicide runoff risk: a case study for peanut production in the Southern Atlantic Coastal Plain (USA).

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2014-08-15

    Peanut (Arachis hypogaea) is produced intensively in the southern Atlantic Coastal Plain of the eastern USA. To effectively protect the region's water quality data are needed which quantify runoff of pesticides used to protect these crops. Fungicides are used intensively yet there is little published data which describe their potential for loss in surface runoff. This study compared runoff of a fungicide, tebuconazole (α-[2-(4-chlorophenyl)ethyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), and an herbicide, metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) from 0.2 ha fields in strip (ST), a commonly used conservation-tillage practice, and conventional tillage (CT) near Tifton, GA (USA). Following their first application, metolachlor and tebuconazole were detected at high frequency in runoff. Concentrations and their annual losses increased with application frequency and runoff event timing and frequency with respect to applications, and when fields were positioned at the top of the slope and CT was practiced. Runoff one day after treatment (DAT) contributed to high tebuconazole runoff loss, up to 9.8% of the amount applied on an annual basis. In all cases, metolachlor loss was more than 10 times less even though total application was 45% higher. This was linked to the fact that the one metolachlor application to each crop was in May, one of the region's driest months. In sum, studies showed that fungicide runoff rates may be relatively high and emphasize the need to focus on these products in future studies on peanut and other crops. The study also showed that peanut farmers should be encouraged to use conservation tillage practices like ST which can substantially reduce pesticide runoff. Published by Elsevier B.V.

  7. Two Co(II) compound constructed by phthalic acid and 3-Cl-phthalic acid: Synthesis, structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Meng, Jun-Rong; Yao, Peng-Fei; Cui, Lian-Sheng; Gan, Yong-Le; Li, Hai-Ye; Liu, Han-Fu; Huang, Fu-Ping

    2018-03-01

    In this paper, we obtained two novel 2D layered cobalt coordination polymers, namely [(Co(o-BDC)]n (1) and (Co(3-Cl-o-BDC)]n (2), through solvothermal method with acetone as solvent based on phthalic acid (o-H2BDC) and 3-chloro-phthalic acid (3-Cl-o-H2BDC) respectively. Due to the steric hindrance effect of chloric substituent, the two ligands revealed different coordination modes. And cobalt centers of 1 and 2 showed CoO6 octahedral and CoO4 tetrahedral configurations respectively. As a result, 1 and 2 revealed different layered constructions: a 5-connected topology with 48.62 Schläfli symbol for 1, and a 4-connected topology with 44.62 Schläfli symbol for 2, respectively. Besides, Compound 1 and 2 reveal ferromagnetic and antiferromagnetic behaviors, respectively.

  8. Effectiveness of 2,4-D and Picloram as Forestry Herbicides

    Treesearch

    Daniel G. Neary; Parshall B. Bush; Jerry L. Michael; John W. Taylor

    1986-01-01

    Foresters use 2,4-D, alone or in combination with picloram, as often as any herbcide in the South. An active analog of the plant growth hormone indole acetic acid, 2,4-D is used as a In most forest soils in the South where organic matter, moisture, and temperature are adequate, 2,4-D degrades rapidly. Amine and salt tomulations most commonly used in forestry do not...

  9. The “Gate Keeper” Role of Trp222 Determines the Enantiopreference of Diketoreductase toward 2-Chloro-1-Phenylethanone

    PubMed Central

    Lu, Zhuo; Liu, Nan; Chen, Yijun

    2014-01-01

    Trp222 of diketoreductase (DKR), an enzyme responsible for reducing a variety of ketones to chiral alcohols, is located at the hydrophobic dimeric interface of the C-terminus. Single substitutions at DKR Trp222 with either canonical (Val, Leu, Met, Phe and Tyr) or unnatural amino acids (UAAs) (4-cyano-L-phenylalanine, 4-methoxy-L-phenylalanine, 4-phenyl-L-phenyalanine, O-tert-butyl-L-tyrosine) inverts the enantiotope preference of the enzyme toward 2-chloro-1-phenylethanone with close side chain correlation. Analyses of enzyme activity, substrate affinity and ternary structure of the mutants revealed that substitution at Trp222 causes a notable change in the overall enzyme structure, and specifically in the entrance tunnel to the active center. The size of residue 222 in DKR is vital to its enantiotope preference. Trp222 serves as a “gate keeper” to control the direction of substrate entry into the active center. Consequently, opposite substrate-binding orientations produce respective alcohol enantiomers. PMID:25072248

  10. Diastereoselective formation of metallamacrocyclic (arene)Ru(II) and CpRh(III) complexes.

    PubMed

    Lehaire, Marie-Line; Scopelliti, Rosario; Herdeis, Lorenz; Polborn, Kurt; Mayer, Peter; Severin, Kay

    2004-03-08

    The reaction of [(arene)RuCl(2)](2) (arene = cymene, 1,3,5-C(6)H(3)Me(3)) and [CpRhCl(2)](2) half-sandwich complexes with tridentate heterocyclic ligands in the presence of base has been investigated. In all cases, the chloro-ligands were substituted to give metallacyclic products with ring sizes between 4 and 18 atoms. The cyclization occurs in a highly diastereoselective fashion with chiral recognition between the different metal fragments. The complexes were comprehensively characterized by elemental analysis, NMR spectroscopy, and single crystal X-ray crystallography. For 2-hydroxy-nicotinic acid and 2-amino-nicotinic acid, dinuclear structures were obtained (15-17) whereas for 2,3-dihydroxyquinoline, 2,3-dihydroxyquinoxaline, and 6-methyl-2,3-phenazinediol, trimeric assemblies were found (19-22), and for 4-imidazolecarboxylic acid, a tetrameric assembly (18) was found.

  11. Taking the Next Step with Halogenated Olefins: Microwave Spectroscopy and Molecular Structures of - and Chloro-Trifluoro Propenes and Their Complexes with the Argon Atom

    NASA Astrophysics Data System (ADS)

    Marshall, Mark D.; Leung, Helen O.; Wronkovich, Miles A.; Tracy, Megan E.; Hoque, Laboni; Randy-Cofie, Allison M.; Dao, Alina K.

    2017-06-01

    The determination of the structures of heterodimers of haloethylenes with protic acids has provided a wealth of information and a few surprises concerning intermolecular forces and the sometimes cooperative and sometimes competing effects of electrostatic, steric, and dispersion forces. In seeking to apply this knowledge to larger systems with a wider variety of possible interactions and binding sites, we extend the carbon chain by one atom via the addition of a trifluoromethyl moeity. As a first step the microwave rotational spectra of the halopropene monomers, 2,3,3,3-tetrafluoropropene, 2-chloro-3,3,3-trifluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, and (Z)-1-chloro-3,3,3-trifluoropropene, and their complexes with the argon atom are obtained and analyzed to obtain molecular structures.

  12. Initial Reactions in the Biodegradation of 1-Chloro-4-Nitrobenzene by a Newly Isolated Bacterium, Strain LW1

    PubMed Central

    Katsivela, Eleftheria; Wray, Victor; Pieper, Dietmar H.; Wittich, Rolf-Michael

    1999-01-01

    Bacterial strain LW1, which belongs to the family Comamonadaceae, utilizes 1-chloro-4-nitrobenzene (1C4NB) as a sole source of carbon, nitrogen, and energy. Suspensions of 1C4NB-grown cells removed 1C4NB from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions LW1 transformed 1C4NB into a product which was identified as 2-amino-5-chlorophenol by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This transformation indicated that there was partial reduction of the nitro group to the hydroxylamino substituent, followed by Bamberger rearrangement. In the presence of oxygen but in the absence of NAD, fast transformation of 2-amino-5-chlorophenol into a transiently stable yellow product was observed with resting cells and cell extracts. This compound exhibited an absorption maximum at 395 nm and was further converted to a dead-end product with maxima at 226 and 272 nm. The compound formed was subsequently identified by 1H and 13C NMR spectroscopy and mass spectrometry as 5-chloropicolinic acid. In contrast, when NAD was added in the presence of oxygen, only minor amounts of 5-chloropicolinic acid were formed, and a new product, which exhibited an absorption maximum at 306 nm, accumulated. PMID:10103229

  13. Adsorption and transport of imazapyr through intact soils columns taken from two soils under two tillage systems

    USDA-ARS?s Scientific Manuscript database

    Imazapyr (2-(4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl)-3- pyridinecarboxylic acid) is an imidazolinone herbicide used to control a wide spectrum of weed species. It's use has increased since the creation of a new type of nontransgenic imidazolinone resistant sunflower. This herb...

  14. Spectroscopy and photochemistry of humic acids

    NASA Astrophysics Data System (ADS)

    Sokolova, I. V.; Vershinin, N. O.; Skobczova, K. A.; Tchaikovskaya, O. N.; Mayer, G. V.

    2018-04-01

    Spectroscopy and photochemistry of humic acids are discussed. The samples of HAs fractions were obtained from Fluka Chemical Co and prepared from peat of Western Siberia region. The comparative analysis of these acids with the sample of humic acids allocated from brown coal is carried out. A specific feature of the reactor is the use of barrier discharge excilamp (KrCl) with radiation wavelength λ = 222 nm. Influence of the received humic acids on process of photodegradation of herbicide - 2.4-dichlorophenoxyacetic acid is considered.

  15. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.

    PubMed

    Southwick, Lloyd M; Appelboom, Timothy W; Fouss, James L

    2009-02-25

    The movement of the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] via runoff and leaching from 0.21 ha plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a 6-year period, 1995-2000. The first three years received normal rainfall (30 year average); the second three years experienced reduced rainfall. The 4-month periods prior to application plus the following 4 months after application were characterized by 1039 +/- 148 mm of rainfall for 1995-1997 and by 674 +/- 108 mm for 1998-2000. During the normal rainfall years 216 +/- 150 mm of runoff occurred during the study seasons (4 months following herbicide application), accompanied by 76.9 +/- 38.9 mm of leachate. For the low-rainfall years these amounts were 16.2 +/- 18.2 mm of runoff (92% less than the normal years) and 45.1 +/- 25.5 mm of leachate (41% less than the normal seasons). Runoff of metolachlor during the normal-rainfall seasons was 4.5-6.1% of application, whereas leaching was 0.10-0.18%. For the below-normal periods, these losses were 0.07-0.37% of application in runoff and 0.22-0.27% in leachate. When averages over the three normal and the three less-than-normal seasons were taken, a 35% reduction in rainfall was characterized by a 97% reduction in runoff loss and a 71% increase in leachate loss of metolachlor on a percent of application basis. The data indicate an increase in preferential flow in the leaching movement of metolachlor from the surface soil layer during the reduced rainfall periods. Even with increased preferential flow through the soil during the below-average rainfall seasons, leachate loss (percent of application) of the herbicide remained below 0.3%. Compared to the average rainfall seasons of 1995-1997, the below-normal seasons of 1998-2000 were characterized by a 79% reduction in total runoff and leachate flow and by a 93% reduction in corresponding metolachlor movement via these routes. An added observation in the study was that neither runoff of rainfall nor runoff loss of metolachlor was influenced by the presence of subsurface drains, compared to the results from plots without such drains that were described in an earlier paper.

  16. Photocatalytic removal of 2,4-dichlorophenoxyacetic acid herbicide on copper oxide/titanium dioxide prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Lee, Shu Chin; Hasan, Norhasnita; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    In this work, suppression of the charge recombination on the titanium dioxide (TiO2) was reported by the addition of copper oxide (CuO), which led to a higher activity of TiO2 for removal of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide. A series of CuO/TiO2 with CuO loadings of 0.1-1 wt% was prepared through a co-precipitation method. X-ray diffraction patterns revealed that the presence of CuO could not be detected as the low loading amount of CuO might have good dispersion on the surface of TiO2. Diffuse reflectance UV-visible spectra suggested that low loading amount of CuO did not influence the optical property of TiO2. Fluorescence spectroscopy revealed that TiO2 possessed a dominant emission peak of 407 nm at an excitation wavelength of 218 nm. The increasing loading amount of CuO decreased the emission intensity of TiO2, suggesting the successful reduction of charge recombination. After irradiation under UV light for 1 h, CuO(0.1 wt%)/TiO2 gave the highest percentage removal of the herbicide among the samples. The optimum loading amount of CuOmight improve the charge separation and reduce the electron-hole recombination on TiO2 without blocking the active sites, thus leading to the improved photocatalytic activity. This work showed that CuO/TiO2 is a potential photocatalyst for environmental remediation.

  17. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples.

    PubMed

    Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C

    2001-12-14

    A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.

  18. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium.

    PubMed

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F; Ferguson, Gayle C; Godsoe, William; Gibson, Paddy; Heinemann, Jack A

    2015-03-24

    Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides-dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)-were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. Increasingly common chemicals used in agriculture, domestic gardens, and public places can induce a multiple-antibiotic resistance phenotype in potential pathogens. The effect occurs upon simultaneous exposure to antibiotics and is faster than the lethal effect of antibiotics. The magnitude of the induced response may undermine antibiotic therapy and substantially increase the probability of spontaneous mutation to higher levels of resistance. The combination of high use of both herbicides and antibiotics in proximity to farm animals and important insects, such as honeybees, might also compromise their therapeutic effects and drive greater use of antibiotics. To address the crisis of antibiotic resistance requires broadening our view of environmental contributors to the evolution of resistance. Copyright © 2015 Kurenbach et al.

  19. The phytoremediation potential of Plectranthus neochilus on 2,4-dichlorophenoxyacetic acid and the role of antioxidant capacity in herbicide tolerance.

    PubMed

    Ramborger, Bruna Piaia; Ortis Gularte, Claudia Alves; Rodrigues, Daniela Teixeira; Gayer, Mateus Cristofari; Sigal Carriço, Murilo Ricardo; Bianchini, Matheus Chimelo; Puntel, Robson Luiz; Denardin, Elton Luis Gasparotto; Roehrs, Rafael

    2017-12-01

    The possible phytoremediation capacity of Plectranthus neochilus (boldo) exposed to the commercial pesticide (Aminol) in soil and water through consecutive extractions (days interval) was evaluated. After the exposure period, tea leaves from the plant were analyzed in terms of the presence of 2,4-D, total antioxidant capacity (DPPH), concentration of total polyphenols and flavonoids for plants exposed to soil and water. In water, 2,4-D remained up to 67% in the 60 days of experiment in the control group, which provided the use of two treatment groups with the plant (one group of plants for 30 days and another group in the remaining 30 days in the same system), thus, a decontamination up to 49% of the 2,4-D was obtained in this system with water. In both experiments (soil and water) the 2,4-D was not detected in tea leaves, the reduction of the antioxidant activity, polyphenols and flavonoids of plants exposed to the herbicide was also observed when compared to the non-exposed plants. In tea - plants in water - it was also possible to quantify the phenolic compounds and it was observed that in the group of plants of the first 30 days there was a decrease in caffeic acid and an increase in coumaric and ferulic acids, compared to the group of plants that were not exposed to 2,4-D. In the remaining 30 days with the new seedlings there was a decrease of the coumaric acid and an increase of the caffeic and ferulic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Photooxidation of the cytochrome b-559 in the presence of various substituted 2-anilinothiophenes and of some other compounds, in Chlamydomonas reinhardtii.

    PubMed

    Maroc, J; Garnier, J

    1979-11-08

    Five substituted 2-anilinothiophenes and two substituted carbonylcyanide-phenylhydrazones were comparatively studied with respect to their capacities for inducing photooxidation of the cytochrome b-559 in chloroplast fragments and in whole cells of Chlamydomonas reinhardtii (wild type and P-700-lacking mutant Fl 5). In addition, some other compounds: antimycin A, picric acid, tetraphenylboron and NH4Cl were also tested. Cytochrome b-559 photooxidations were clearly observed in the presence of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), 2-(3,4,5-trichloro)anilino-3,5-dinitrothiophene (ANT 2s), 2-(4-chloro)anilino-3,5-dinitrothiophene and, with greater amplitudes, in the presence of carbonylcyanide-p-trifluoromethoxyphenylhydrazone and carbonylcyanide-m-chlorophenylhydrazone, both in whole cells and in chloroplast fragments. Picric acid, antimycin A and tetraphenylboron were also able to induce cytochrome b-559 photooxidation in chloroplast fragments, but not in whole cells. In the wild type, the highest photoinduced redox changes were 1.1 (carbonylcyanide-p-trifluoromethoxyphenylhydrazone, carbonylcyanide-m-chlorophenyl-hydrazone) and 0.6 (ANT 2p, ANT 2s) mumol of oxidized cytochrome b-559/1 mmol of chlorophyll, corresponding to 40% and 23% of the redox changes which could be induced chemically. All these cytochrome b-559 photooxidations, the greater part of which was inhibited by 3-(3,4-dichloropheny)-1,1-dimethylurea and occurred in the mutant Fl 5, appeared to be mainly Photosystem II-dependent reactions. But 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive Photosystem I-dependent photooxidations of cytochrome b-559 occurred also in the wild type. On the other hand, 2-(4-dimethylamine)-anilino-3,5-dinitrothiophene, 2-N-methyl-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene and NH4Cl did not induce any cytochrome b-559 photooxidation. These results were discussed taking in consideration the nature of the molecular substitutions of the various tested substances and their respective acceleration of the deactivation reactions of the water-splitting enzyme system Y of photosynthesis capacities which had been defined elsewhere by Renger (Renger, G. (1972) Biochim. Biophys. Acta 256, 428-439) for spinach chloroplasts. Like the acceleration of the deactivation reactions of the water-splitting enzyme system Y effect, the capacity for inducing the cytochrome b-559 photooxidation appeared dependent on the acidity of the NH group and on the number of halogenous substituents in the aromatic ring of the molecule. The greatest action towards cytochrome b-559 photooxidation was obtained with the most active acceleration of the deactivation reactions of the water-splitting enzyme system Y agents: carbonylcyanide-p-trifluoromethoxyphenylhydrazone, ANT 2p and ANT 2s.

  1. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli.

    PubMed

    Bhat, Supriya V; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E S

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro , and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force - laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage.

  2. Photolysis of the herbicide bispyribac sodium in aqueous medium under the influence of UV and sunlight in presence or absence of sensitizers.

    PubMed

    Kanrar, Bappaditya; Bhattacharyya, Anjan

    2009-11-01

    The photolysis of a rice herbicide Bispyribac sodium (Sodium 2, 6-bis [(4, 6-dimethoxypyrimidin-2-yl) oxy] benzoate) has been studied in different aqueous medium (distilled water, pond water and Irrigation water) under the influence of UV (lambda max > or = 250 nm) and sunlight in presence or absence of sensitizers (TiO(2) and KNO(3)). The study was conducted under laboratory simulated condition which made it possible to evaluate the contribution of different factors viz. source of irradiation, solvent and sensitizers towards the photolysis of bispyribac sodium. The photodegradation proceeds via first order reaction Kinetics in all the cases. Five photo metabolites (M(1)-M(5)) were isolated in pure form by column chromatographic method from the irradiation system under UV influenced and TiO(2) as sensitizer. From the different spectral data (IR, NMR, UV-VIS, Mass) the structure of these five metabolites were assigned as M(1) (Phenol), M(2) [2, 6-Dihydroxy benzoic acid], M(3) [2, 6-bis [(4, 6 dimethoxypyrimidin-2yl) oxy] benzoic acid], M(4) [2-(3-Hydroxy-phenoxy)-pyrimidine-4, 6-diol] and M(5) as [2,4-Dihydroxy-3, 5-dimethoxy-6-(4-methoxy pyrimidine-2-yloxy)-benzoic acid]. Moreover, another six photometabolites (M(6)-M(11)) were identified from the different irradiation system on the basis of Micromass analysis. On the basis of MS/MS data analysis, the structure of these six photometabolites were assigned as M(6) [2-(4, 6-Dimethoxy-pyrimidin-2-yloxy)-6-hydroxy-benzoic acid], M(7) [2-Hydroxy-6-(4-hydroxy-6-methoxy-pyrimidin-2-yloxy)-benzoic acid], M(8) [4, 6-Dimethoxy-pyrimidin-2-ol], M(9) [6-Methoxy-pyrimidine-2, 4-diol], M(10) [2-Hydroxy-6-(pyrimidin-2-yloxy)-benzoic acid] and M(11) [2, 4, 6-Trimethoxy-pyrimidine]. The plausible Photodegradation pathways of bispyribac sodium in the present investigation were portrayed which proceeds via hydrolysis, hydrolytic cleavage, O-dealkylation, decarboxylation, dehydroxylation, O-alkylation and hydroxylation.

  3. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies.

    PubMed

    Pandiarajan, Aarthi; Kamaraj, Ramakrishnan; Vasudevan, Sudharshan; Vasudevan, Subramanyan

    2018-08-01

    This study presents the orange peel activated carbon (OPAC), derived from biowaste precursor (orange peel) by single step pyrolysis method and its application for the adsorption of chlorophenoxyacetic acid herbicides from the water. The OPAC exhibited the surface area of 592.471 m 2  g -1 , pore volume and pore diameter of 0.242 cc g -1 and 1.301 nm respectively. The adsorption kinetics and thermodynamic equilibrium modelling for all chlorophenoxyacetic acid herbicides were investigated. The various parametric effects such as pH and temperature were evaluated. A pseudo-second-order kinetic model was well fitted for all the herbicides. The Langmuir isotherm was obeyed for all the herbicides and the maximum Langmuir capacity of 574.71 mg g -1 was achieved. The thermodynamic studies revealed that the adsorption increases with increase in temperature. The results shows that the orange peel derived carbon (OPAC) as effective and efficient adsorbent material for the removal of chlorophenoxyacid herbicides from the water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A new synthesis of certain 7-(beta-D-ribofuranosyl) and 7-(2-deoxy-beta-D-ribofuranosyl) derivatives of 3-deazaguanine via the sodium salt glycosylation procedure.

    PubMed Central

    Gupta, P K; Robins, R K; Revankar, G R

    1985-01-01

    A facile synthesis of 7-beta-D-ribofuranosyl-3-deazaguanine (1) and certain 8-substituted derivatives of 1 via the sodium salt glycosylation method has been developed. Glycosylation of the sodium salt of methyl 2-chloro(or methylthio)-4(5)-cyanomethylimidazole-5(4)-carboxylate (5 and 13b) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide (6) gave exclusively methyl 2-chloro(or methylthio)-4-cyanomethyl-1-(2,3, 5-tri-O-benzoyl-beta-D-ribofuranosyl)imidazole-5-carboxylate (7 and 14a), respectively. Ammonolysis of 7 and 14a provided 6-amino-2-chloro(or methylthio)-3-beta-D-ribofuranosylimidazo-[4,5-c]pyridin-4(5H)-one (11 and 17), which on subsequent dehalogenation (or dethiation) gave 1. Similarly, reaction of the sodium salt of 5 and 13b with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranose (8), and ammonolysis of the glycosylated imidazole precursors (9 and 16) gave 6-amino-2-chloro(or methylthio)-3-(2-deoxy-beta-D-erythro-pentofuranosyl) imidazo[4,5-c]-pyridin-4(5H)-one (10a and 15), respectively. Dehalogenation of 10a or dethiation of 15 gave 2'-deoxy-7-beta-D-ribofuranosyl-3-deazaguanine (10b). This procedure provided a direct method of obtaining 10b without the contaminating 9-glycosyl isomer 4. PMID:4022783

  5. Evaluation of the potential carcinogenicity of 4-chloro-o-toluidine hydrochloride (3165-93-3). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-06-01

    4-Chloro-o-toluidine hydrochloride is a probable human carcinogen, classified as weight-of-evidence Group B2 under the EPA Guidelines for Carcinogen Risk Assessment. Evidence on potential carcinogenicity from animal studies is Sufficient, and the evidence from human studies is No Data. The potency factor (F) for 4-chloro-o-toluidine hydrochloride is estimated to be 0.40 (mg/kg/day)(-1), placing it in potency group 3 according to the CAG's methodology for evaluating potential carcinogens. Combining the weight-of-evidence group and the potency group, 4-chloro-o-toluidine hydrochloride is assigned a LOW hazard ranking.

  6. The direct and indirect effects of a glyphosate-based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands.

    PubMed

    Baker, Leanne F; Mudge, Joseph F; Houlahan, Jeff E; Thompson, Dean G; Kidd, Karen A

    2014-09-01

    Laboratory and mesocosm experiments have demonstrated that some glyphosate-based herbicides can have negative effects on benthic invertebrate species. Although these herbicides are among the most widely used in agriculture, there have been few multiple-stressor, natural system-based investigations of the impacts of glyphosate-based herbicides in combination with fertilizers on the emergence patterns of chironomids from wetlands. Using a replicated, split-wetland experiment, the authors examined the effects of 2 nominal concentrations (2.88 mg acid equivalents/L and 0.21 mg acid equivalents/L) of the glyphosate herbicide Roundup WeatherMax, alone or in combination with nutrient additions, on the emergence of Chironomidae (Diptera) before and after herbicide-induced damage to macrophytes. There were no direct effects of treatment on the structure of the Chironomidae community or on the overall emergence rates. However, after macrophyte cover declined as a result of herbicide application, there were statistically significant increases in emergence in all but the highest herbicide treatment, which had also received no nutrients. There was a negative relationship between chironomid abundance and macrophyte cover on the treated sides of wetlands. Fertilizer application did not appear to compound the effects of the herbicide treatments. Although direct toxicity of Roundup WeatherMax was not apparent, the authors observed longer-term impacts, suggesting that the indirect effects of this herbicide deserve more consideration when assessing the ecological risk of using herbicides in proximity to wetlands. © 2014 SETAC.

  7. The Effect of Vicinal Versus Geminal Substitution of Hydrogen by Chlorine: Microwave Spectra and Molecular Structures of the Complexes of 1-CHLORO-1-FLUOROETHYLENE and (E)-1-CHLORO-2-FLUOROETHYLENE with Hydrogen Fluoride

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.; Lee, Alex J.; Bozzi, Aaron T.; Cohen, Paul M.; Lam, Mable

    2010-06-01

    Previous work in our laboratory has demonstrated that increasing the degree of fluorine substitution in complexes of fluoroethylenes with protic acids results in a weaker primary hydrogen-bonding interaction. This has been interpreted as arising from a decrease in the nucleophilicity of the hydrogen bond-accepting fluorine atom as a consequence of the inductive, electron-withdrawing nature of the additional fluorine atoms. We have recently extended these studies to investigate the effects of substitution with the less electronegative, but more polarizable chlorine atom. Through analysis of their 6-21 GHz Fourier transform microwave spectra, molecular structures are obtained for the complexes of 1-chloro-1-fluoroethylene and the (E) isomer of 1-chloro-2-fluoroethylene with hydrogen fluoride. The structures are compared with each other and with their difluoroethylene counterparts.

  8. Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2.

    PubMed

    Sørensen, Sebastian R; Ronen, Zeev; Aamand, Jens

    2002-07-01

    Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the beta-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of (14)C-labeled isoproturon to (14)CO(2) and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.

  9. Growth in Coculture Stimulates Metabolism of the Phenylurea Herbicide Isoproturon by Sphingomonas sp. Strain SRS2

    PubMed Central

    Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

    2002-01-01

    Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent. PMID:12089031

  10. Overall Quality Assurance Project Plan, Remedial Investigation/Feasibility Study, Fort Sheridan, Illinois. Volume 2.

    DTIC Science & Technology

    1995-03-15

    10 200 1-Chloro-2,3-epoxypropene NA Acetonitrile NA Ethylene oxide NA Methyl methacrylate NA NA = Information not available. A library search can be...05-4 Vinyl Chloride C2H3CL 75-01-4 Xylene, total TXYLEN - 1-Chloro-2,3-epoxypropene Acetonitrile CH3CN Ethylene oxide ETOX Methyl methacrylate PLEXI...0.010 10 200 Vinyl Chloride 0.010 10 200 Xylene, total 0.010 10 200 1-Chloro-2,3-epoxypropene NA Acetonitrile NA Ethylene oxide NA Methyl methacrylate

  11. Bacterial Anabaena variabilis phenylalanine ammonia lyase: a biocatalyst with broad substrate specificity.

    PubMed

    Lovelock, Sarah L; Turner, Nicholas J

    2014-10-15

    Phenylalanine ammonia lyases (PALs) catalyse the regio- and stereoselective hydroamination of cinnamic acid analogues to yield optically enriched α-amino acids. Herein, we demonstrate that a bacterial PAL from Anabaena variabilis (AvPAL) displays significantly higher activity towards a series of non-natural substrates than previously described eukaryotic PALs. Biotransformations performed on a preparative scale led to the synthesis of the 2-chloro- and 4-trifluoromethyl-phenylalanine derivatives in excellent ee, highlighting the enormous potential of bacterial PALs as biocatalysts for the synthesis of high value, non-natural amino acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Kinetic study and mechanism of Niclosamide degradation.

    PubMed

    Zaazaa, Hala E; Abdelrahman, Maha M; Ali, Nouruddin W; Magdy, Maimana A; Abdelkawy, M

    2014-11-11

    A spectrophotometric kinetic study of Niclosamide alkaline degradation as a function of drug concentration, alkaline concentration and temperature has been established utilizing double divisor-ratio spectra spectrophotometric method. The developed method allowed determination of Niclosamide in presence of its alkaline degradation products; namely; 2-chloro-4-nitro aniline (DEG I) and 5-chloro salicylic acid (DEG II) with characterization of its degradation mechanism. It was found that degradation kinetic of Niclosamide followed pseudo-first order under the established experimental conditions with a degradation rate constant (k) of 0.0829 mol/h and half life (t1/2) of 8.35 h. The overall degradation rate constant as a function of the temperature under the given conditions obeyed Arrhenius equation where the activation energy was calculated to be 3.41 kcal/mol. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones.

    PubMed

    Jing, Yuanyuan; Daniliuc, Constantin G; Studer, Armido

    2014-09-19

    Direct conversion of primary and secondary alcohols into the corresponding α-chloro aldehydes and α-chloro ketones using trichloroisocyanuric acid, serving both as stoichiometric oxidant and α-halogenating reagent, is reported. For primary alcohols, TEMPO has to be added as an oxidation catalyst, and for the transformation of secondary alcohols (TEMPO-free protocol), MeOH as an additive is essential to promote chlorination of the intermediary ketones.

  14. Supra­molecular inter­actions in 2,6-di­amino-4-chloro­pyrimidin-1-ium 5-chloro­salicylate and bis­(2,6-di­amino-4-chloro­pyrimidin-1-ium) naphthalene-1,5-di­sulfonate

    PubMed Central

    Swinton Darious, Robert; Thomas Muthiah, Packianathan

    2018-01-01

    The crystals of two new salts, 2,6-di­amino-4-chloro­pyrimidin-1-ium 5-chloro­salicylate, C4H6ClN4 +·C7H4ClO3 −, (I), and bis­(2,6-di­amino-4-chloro­pyrimidin-1-ium) naphthalene-1,5-di-sulfonate, 2C4H6ClN4 +·C10H6O6S2 2−, (II), have been synthesized and characterized by single-crystal X-ray diffraction. In both compounds, the N atom of the pyrimidine group in between the amino substituents is protonated and the pyrimidinium cation forms a pair of N—H⋯O hydrogen bonds with the carboxyl­ate/sulfonate ion, leading to a robust R 2 2(8) motif (supra­molecular heterosynthon). In compound (I), a self-complementary base pairing involving the other pyrimidinium ring nitro­gen atom and one of the amino groups via a pair of N—H⋯N hydrogen bonds [R 2 2(8) homosynthon] is also present. In compound (II), the crystallographic inversion centre coincides with the inversion centre of the naphthalene-1,5-di­sulfonate ion and all the sulfonate O atoms are hydrogen-bond acceptors, generating fused-ring motifs and a quadruple DDAA array. A halogen-bond (Cl⋯Cl) inter­action is present in (I) with a distance and angle of 3.3505 (12) Å and 151.37 (10)°, respectively. In addition, a C—Cl⋯π inter­action and a π–π inter­action in (I) and a π–π inter­action in (II) further stabilize these crystal structures. PMID:29850062

  15. Efficient callus formation and plant regeneration of goosegrass [Eleusine indica (L.) Gaertn.].

    PubMed

    Yemets, A I; Klimkina, L A; Tarassenko, L V; Blume, Y B

    2003-02-01

    Efficient methods in totipotent callus formation, cell suspension culture establishment and whole-plant regeneration have been developed for the goosegrass [ Eleusine indica (L.) Gaertn.] and its dinitroaniline-resistant biotypes. The optimum medium for inducing morphogenic calli consisted of N6 basal salts and B5 vitamins supplemented with 1-2 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), 2 mg l(-1) glycine, 100 mg l(-1) asparagine, 100 mg l(-1) casein hydrolysate, 30 g l(-1) sucrose and 0.6% agar, pH 5.7. The presence of organogenic and embryogenic structures in these calli was histologically documented. Cell suspension cultures derived from young calli were established in a liquid medium with the same composition. Morphogenic structures of direct shoots and somatic embryos were grown into rooted plantlets on medium containing MS basal salts, B5 vitamins, 1 mg l(-1) kinetin (Kn) and 0.1 mg l(-1) indole-3-acetic acid (IAA), 3% sucrose, 0.6% agar, pH 5.7. Calli derived from the R-biotype of E. indica possessed a high resistance to trifluralin (dinitroaniline herbicide) and cross-resistance to a structurally non-related herbicide, amiprophosmethyl (phosphorothioamidate herbicide), as did the original resistant plants. Embryogenic cell suspension culture was a better source of E. indica protoplasts than callus or mesophyll tissue. The enzyme solution containing 1.5% cellulase Onozuka R-10, 0.5% driselase, 1% pectolyase Y-23, 0.5% hemicellulase and N(6) mineral salts with an additional 0.2 M KCl and 0.1 M CaCl(2) (pH 5.4-5.5) was used for protoplast isolation. The purified protoplasts were cultivated in KM8p liquid medium supplemented with 2 mg l(-1) 2,4-D and 0.2 mg l(-1) Kn.

  16. Characterization of a newly synthesized carbonyl reductase and construction of a biocatalytic process for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with high space-time yield.

    PubMed

    You, Zhong-Yu; Liu, Zhi-Qiang; Zheng, Yu-Guo

    2014-02-01

    A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg(-1). The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min(-1) mg(-1), respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous-organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3% and e.e. of 99% was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP(+) to (S)-CHBE were 26.5 mmol L(-1) h(-1) g(-1) DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.

  17. Novel chiral tool, (R)-2-octanol dehydrogenase, from Pichia finlandica: purification, gene cloning, and application for optically active α-haloalcohols.

    PubMed

    Yamamoto, Hiroaki; Kudoh, Masatake

    2013-09-01

    A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD(+)-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.

  18. 77 FR 10472 - Dow AgroScience LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the... phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the...

  19. N-(2-Chloro­eth­yl)morpholine-4-carbox­amide

    PubMed Central

    Ujam, Oguejiofo T.; Asegbeloyin, Jonnie N.; Nicholson, Brian K.; Ukoha, Pius O.; Ukwueze, Nkechi N.

    2014-01-01

    The title compound, C7H13ClN2O2, synthesized by the reaction of 2-chloro­ethyl iso­cyanate and morpholine, crystallizes with four molecules in the asymmetric unit, which have similar conformations and comprise two pairs each related by approximate non-crystallographic inversion centres. Two of them have a modest orientational disorder of the 2-chloro­ethyl fragments [occupancy ratio of 0.778 (4):0.222 (4)]. In the crystal, mol­ecules are linked by N—H⋯O=C hydrogen bonds, forming three crystallographically different kinds of infinite hydrogen-bonded chains extending along [001]. PMID:24826162

  20. 2,4-dichlorophenoxyacetic acid (2,4-D) and risk of non-Hodgkin lymphoma: a meta-analysis accounting for exposure levels.

    PubMed

    Smith, Adam M; Smith, Martyn T; La Merrill, Michele A; Liaw, Jane; Steinmaus, Craig

    2017-04-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used selective herbicides in the world. A number of epidemiology studies have found an association between 2,4-D exposure and non-Hodgkin lymphoma (NHL) but these results are inconsistent and controversial. A previous meta-analysis found no clear association overall but did not specifically examine high-exposure groups. We conducted a systematic review and meta-analysis of the peer-reviewed epidemiologic studies of the associations between 2,4-D and NHL, with a particular focus on high-exposure groups, and evaluations of heterogeneity, dose-response, and bias. A total of 12 observational studies, 11 case-control studies, and one cohort study, were included. The summary relative risk for NHL using study results comparing subjects who were ever versus never exposed to 2,4-D was 1.38 (95% confidence interval (CI), 1.07-1.77). However, in analyses focusing on results from highly exposed groups, the summary relative risk for NHL was 1.73 (95% CI, 1.10-2.72). No clear bias based on study design, exposure assessment methodology, or outcome misclassification was seen. Overall, these findings provide new evidence for an association between NHL and exposure to the herbicide 2,4-D. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Three-phase hollow-fiber liquid-phase microextraction combined with HPLC-UV for the determination of isothiazolinone biocides in adhesives used for food packaging materials.

    PubMed

    Rosero-Moreano, Milton; Canellas, Elena; Nerín, Cristina

    2014-02-01

    The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one in adhesives. The procedure involves a three-phase hollow-fiber liquid-phase microextraction using a semipermeable polypropylene membrane, which contained 1-octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF-MS, where the identification of the compounds and the quantification values were confirmed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of some chlorophenoxy acids and carbamate herbicides in water and soil as amide derivatives using gas chromatography-mass spectrometry.

    PubMed

    Salem, A A

    2007-03-01

    A newly developed method for determining three phenoxy acids and one carbamate herbicide in water and soil samples using gas chromatography with mass spectrometric detection is developed. Phenoxy acids are derivatized through a condensation reaction with a suitable aromatic amine. 1,1-Carbonyldiimidazole is used as a condensation reagent. Derivatization conditions are optimized with respect to the amount of analyte, amine, solvent, and derivatization reagent. The optimum derivatization yield is accomplished in acetonitrile. 4-Methoxy aniline is used as a derivatizing agent. Obtained derivatives are stable indefinitely. Enhancement in sensitivity is achieved by using the single-ion monitoring mass spectrometric mode. The effectiveness of the developed method is tested by determining investigated compounds in water and soil samples. Analytes are concentrated from water samples using liquid-phase extraction and solid-phase extraction. Soil samples are extracted using methanol. Detection limits of 1.00, 50.00, 100.00, and 1.00 ng/mL are obtained for 2-(1-methylethoxy)phenyl methylcarbamate (Baygon), 2-(3-chlorophenoxy)-propionic acid (Cloprop), 2,4,5-trichlorophenoxyacetic acid, and 4-(2,4-dichlorophenoxy)butyric acid, respectively. LPE for spiked water samples yields recoveries in the range of 60.6-95.7%, with relative standard deviation (RSD) values of 1.07-7.85% using single component calibration curves. Recoveries of 44.8-275.5%, with RSD values ranging from 1.43% to 8.61% were obtained using a mixed component calibration curves. SPE from water samples and soil samples showed low recoveries. The reason is attributed to the weak sorption capabilities of soil and Al(2)O(3).

  3. 21 CFR 189.280 - 4,4′-Methylenebis (2-chloro-analine).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true 4,4â²-Methylenebis (2-chloro-analine). 189.280 Section 189.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES PROHIBITED FROM USE IN HUMAN FOOD Substances...

  4. DISTRIBUTION OF 2,4-DICHLOROPHENOXYACETIC ACID IN FLOOR DUST THROUGHOUT HOMES FOLLOWING HOMEOWNER AND COMMERICAL LAWN APPLICATIONS: QUANTITATIVE EFFECTS OF CHILDREN, PETS, AND SHOES

    EPA Science Inventory

    Transport of lawn-applied 2,4-D into 13 actual homes was measured following both homeowner and commercial application of this herbicide to residential lawns. Collection of floor dust in five rooms of each house, corresponding to an entryway, living room, dining room, kitchen, a...

  5. Simultaneous metabolism of chloro- and methyl-aromatic compounds by selected bacterial strains. Final report, 20 August 1991-19 August 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Focht, D.D.

    Microorganisms are frequently able to degrade anthropogenic materials using pathways that evolved for the assimilation of related naturally-occurring compounds. Complications can arise, however, during the metabolism of mixtures when incompatible intermediates are formed from different components. The breakdown of chloro- and methyl-aromatics, for example, produces catechols which are oxidized differently: chlorocatechols are normally cleaved by ortho fission and methylcatechols by meta fission. If both systems act simultaneously, suicide substrates or dead-end metabolites are usually formed. Nevertheless, bacteria differ in their, ability to cope with such mixtures. A unique bacterium, Pseudomonas cepacia MB2 was isolated by selective enrichment on 2-methylbenzoate, yetmore » was also able to fortuitously utilize 3-chloro-2-methylbenzoate as a sole carbon source. This strain is unique in its ability to utilize an aromatic acid containing both a methyl and chloro substituent via the metafission pathway without the production of suicidal products.« less

  6. Synthesis of dibenzodioxazocines and their effects on cholinesterases and muscarinic cholinergic receptors.

    PubMed

    Gaál, J; Batke, J; Borsodi, A; Rózsa, L; Somogyi, G

    1989-01-01

    A new family of tricyclic compounds, the dibenzodioxazocines were synthesized. These compounds were the following: 2-chloro-12-(2-piperidino-ethyl)-dibenzo d,g 1,3,6 dioxazocine hydrochloride: EGYT-2347, 2-chloro-12-(3-dimethylamino-2-methyl-propyl)-dibenzo [d,g] [1,3,6]-dibenzodioxazocine hydrochloride: EGYT-2509, 2-chloro-12-(3-dimethylamino-propyl)-dibenzo [d,g] [1,3,6] dioxazocine-maleate: EGYT-2474 and 2-chloro-12-2-(4-methyl-piperazino)-ethyl-dibenzo [d,g] [1,3,6]-dioxazocine-dihydrochloride: EGYT-2541. These compounds are inhibitors of both butyryl- and acetylcholinesterase to and they exhibited relatively good anticholinergic properties in receptor binding experiments. The most selective inhibitor of butyrylcholinesterase is the compound EGYT-2347 (Ki = 1.5 x 10(-7) M) which strongly binds to rat brain muscarinic cholinergic receptor (KD = 4.1 x 10(-8) M).

  7. Aromatic hydrazones derived from nicotinic acid hydrazide as fluorimetric pH sensing molecules: Structural analysis by computational and spectroscopic methods in solid phase and in solution

    NASA Astrophysics Data System (ADS)

    Benković, T.; Kenđel, A.; Parlov-Vuković, J.; Kontrec, D.; Chiş, V.; Miljanić, S.; Galić, N.

    2018-02-01

    Structural analyses of aroylhydrazones were performed by computational and spectroscopic methods (solid state NMR, 1 and 2D NMR spectroscopy, FT-IR (ATR) spectroscopy, Raman spectroscopy, UV-Vis spectrometry and spectrofluorimetry) in solid state and in solution. The studied compounds were N‧-(2,3-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (1), N‧-(2,5-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (2), N‧-(3-chloro-2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (3), and N‧-(2-hydroxy-4-methoxyphenyl-methylidene)-3-pyridinecarbohydrazide (4). Both in solid state and in solution, all compounds were in ketoamine form (form I, sbnd COsbnd NHsbnd Ndbnd Csbnd), stabilized by intramolecular H-bond between hydroxyl proton and nitrogen atom of the Cdbnd N group. In solid state, the Cdbnd O group of 1-4 were involved in additional intermolecular H-bond between closely packed molecules. Among hydrazones studied, the chloro- and methoxy-derivatives have shown pH dependent and reversible fluorescence emission connected to deprotonation/protonation of salicylidene part of the molecules. All findings acquired by experimental methods (NMR, IR, Raman, and UV-Vis spectra) were in excellent agreement with those obtained by computational methods.

  8. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    USDA-ARS?s Scientific Manuscript database

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  9. Effect of herbicide concentration and organic and inorganic nutrient amendment on the mineralization of mecoprop, 2,4-D and 2,4,5-T in soil and aquifer samples.

    PubMed

    de Lipthay, Julia R; Sørensen, Sebastian R; Aamand, Jens

    2007-07-01

    The impact of the herbicide concentration (0.10-10,000 microg kg(-1)) and addition of organic and inorganic nutrients on mecoprop, 2,4-D and 2,4,5-T mineralization in aquifer and soil samples was studied in laboratory experiments. Generally, 2,4-D was most rapidly mineralized followed by mecoprop and 2,4,5-T. A shift from non-growth to growth-linked mineralization kinetics was observed in aquifer sediment with 2,4-D concentrations >0.10 microg kg(-1) and mecoprop concentrations >10.0 microg kg(-1). The shift was apparent at higher herbicide concentrations in soil coinciding with a lower bioavailable fraction and a higher herbicide sorption to soil. Herbicide addition did not affect the bacterial density, although 2,4-D and mecoprop applied at 10,000 microg kg(-1) stimulated growth of specific degraders. Generally, nutrient amendments did not stimulate mineralization at the lowest herbicide concentrations. In contrast, the mineralization rate of higher herbicide concentrations was significantly stimulated by the amendment of inorganic nutrients.

  10. Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71

    PubMed Central

    Han, Lizhen; Zhao, Degang; Li, Cuicui

    2015-01-01

    An indigenous bacterial strain capable of utilizing 2,4-dichlorophenoxyacetic acid as the sole carbon and energy source was isolated from a soil used for grown wheat with a long-term history of herbicide use in Beijing, China. The strain BJ71 was identified as Cupriavidus campinensis based on its 16S rRNA sequence analysis and morphological, physiological, and biochemical characteristics. The degradation characteristics of strain BJ71 were evaluated. The optimal conditions for 2,4-D degradation were as follows: pH 7.0, 30 °C, 3% (v/v) inoculum size, and an initial 2,4-D concentration of 350 mg L−1. Up to 99.57% of the 2,4-D was degraded under optimal conditions after 6 days of incubation. Strain BJ71 was also able to degrade quizalofop and fluroxypyr. This is the first report of a 2,4-D-degrader containing tfdA gene that can utilize these two herbicides. In a biodegradation experiment, 87.13% and 42.53% of 2,4-D (initial concentration, 350 mg kg−1) was degraded in non-sterile and sterilized soil inoculated with BJ71, respectively, after 14 days. The 2,4-D degradation was more rapid in a soil microcosm including BJ71 than in a soil microcosm without BJ71. These results indicate that strain BJ71 is a potential candidate for the bioremediation of soil contaminated with the herbicide 2,4-D. PMID:26273258

  11. Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71.

    PubMed

    Han, Lizhen; Zhao, Degang; Li, Cuicui

    2015-06-01

    An indigenous bacterial strain capable of utilizing 2,4-dichlorophenoxyacetic acid as the sole carbon and energy source was isolated from a soil used for grown wheat with a long-term history of herbicide use in Beijing, China. The strain BJ71 was identified as Cupriavidus campinensis based on its 16S rRNA sequence analysis and morphological, physiological, and biochemical characteristics. The degradation characteristics of strain BJ71 were evaluated. The optimal conditions for 2,4-D degradation were as follows: pH 7.0, 30 °C, 3% (v/v) inoculum size, and an initial 2,4-D concentration of 350 mg L(-1). Up to 99.57% of the 2,4-D was degraded under optimal conditions after 6 days of incubation. Strain BJ71 was also able to degrade quizalofop and fluroxypyr. This is the first report of a 2,4-D-degrader containing tfdA gene that can utilize these two herbicides. In a biodegradation experiment, 87.13% and 42.53% of 2,4-D (initial concentration, 350 mg kg(-1)) was degraded in non-sterile and sterilized soil inoculated with BJ71, respectively, after 14 days. The 2,4-D degradation was more rapid in a soil microcosm including BJ71 than in a soil microcosm without BJ71. These results indicate that strain BJ71 is a potential candidate for the bioremediation of soil contaminated with the herbicide 2,4-D.

  12. Effects of herbicide usage on water quality of selected streams in Wyoming

    USGS Publications Warehouse

    Butler, David L.

    1980-01-01

    During 1977 and 1978 the Wyoming Department of Agriculture, in conjunction with county weed and pest control districts, conducted a noxious-weed-control program in Wyoming. The herbicides primarily used were picloram, 2,4-D, and dicamba. The U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, sampled and analyzed water from selected streams for these herbicides plus silvex; 2,4,5-T; and 2,4-DP.This report contains data for samples collected during 1977 and 1978. The most commonly detected herbicides in water samples were 2,4-D with 41-percent nonzero values and picloram with 34.5-percent nonzero values. Herbicide occurrence in bottom-material samples was uncommon; dicamba was found with 9-percent nonzero values. The maximum herbicide concentration in water was 1.1 micrograms per liter of 2,4-D, and the maximum herbicide concentration in bottom material was 8.0 micrograms per kilogram of 2,4-D. Based on available toxicity data and water-quality criteria, these herbicide concentrations do not constitute dangerous or harmful concentrations to humans or to the environment.

  13. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    NASA Astrophysics Data System (ADS)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  14. Application of the Novel 5-chloro-2,2,3,3,4,4,5,5-octafluoro-1-pentyl Chloroformate Derivatizing Agent for the Direct Determination of Highly Polar Water Disinfection Byproducts

    EPA Science Inventory

    A novel derivatizing agent, 5-chloro-2,2,3,3,4,4,5,5-octafluoropentyl chloroformate (ClOFPCF), was synthesized and tested as a reagent for direct water derivatization of highly polar and hydrophilic analytes. Its analytical performance satisfactorily compared to a perfluorinated ...

  15. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, protein kinase C-α, and ERK1/2.

    PubMed

    Kunduri, Swati S; Mustafa, S Jamal; Ponnoth, Dovenia S; Dick, Gregory M; Nayeem, Mohammed A

    2013-07-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms are not thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). The 20-HETE can activate protein kinase C-α (PKC-α), which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist 2-chloro-N cyclopentyladenosine (CCPA) was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished 2-chloro-N cyclopentyladenosine-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway.

  16. Fixed Bed Column Study for Adsolubilization of 2,4-D Herbicide on Surfactant Modified Silica Gel Waste

    NASA Astrophysics Data System (ADS)

    Koner, S.; Adak, A.

    2012-09-01

    The fixed bed column study was conducted for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide from synthetically prepared wastewater using surfactant modified silica gel waste (SMSGW) as an adsorbing media. The adsorbing media was prepared by treating silica gel waste (SGW) with cationic surfactant. The removal was due to adsolubilization of 2,4-D molecules within the admicelles formed on the surface of SGW. The column having 2.5 cm diameter, with different bed heights such as 20, 30 and 40 cm were used in the study. The different column design parameters like depth of exchange zone, time required for exchange zone to move its own height, adsorption rate constant, adsorption capacity constant were calculated using BDST model. The SMSGW was found to be a very efficient media for the removal of 2,4-D from wastewater. Column design parameters were modeled for different field conditions to predict the duration of column run for practical application.

  17. Determination of aliphatic amines in mineral flotation liquors and reagents by high-performance liquid chromatography after derivatization with 4-chloro-7-nitrobenzofurazan.

    PubMed

    Hao, F; Lwin, T; Bruckard, W J; Woodcock, J T

    2004-11-05

    The method described here fulfils the need for a suitable analytical method to determine the concentrations of single and mixed aliphatic amines in the range from hexylamine (C6) to octadecylamine (C18) in flotation test solutions and in commercial flotation collectors. Amines do not have a UV-vis spectrum in aqueous solution but by reacting an amine-containing solution with 4-chloro-7-nitrobenzofurazan solution (chloro-NBD), derivatized products (amino-NBDs) are formed which have absorbance maxima at 470nm. Excess chloro-NBD and the amino-NBDs can be separated from each other by high-performance liquid chromatography (HPLC) and their concentrations measured with a UV-vis detector. Important variables in the derivatization stage are pH, temperature, chloro-NBD concentration, and reaction time, all of which interact with each other. A three-stage statistical procedure was used to determine the optimum conditions. In each stage, an 8-test design was used in which a high and low limit was set for each variable, and the chromatogram peak area of the derived amino-NBD was measured. The optimum derivatization conditions established were pH 8.9, chloro-NBD concentration 0.20% (w/v), temperature 70 degrees C, and reaction time 60 min. Optimum elution conditions for chromatography were an eluent containing 80% (v/v) acetonitrile in aqueous solution containing 40mM acetic acid at pH 4.5. With a flow rate of 2.0 ml/min, dodecylamine had a retention time of about 3 min, whereas octadecylamine had a retention time of 44 min. Straight-line calibration curves were obtained up to at least 200 ppm of amine in solution. The lower limit of detection was estimated to be 0.05 microM (10ppb) with a signal to noise ratio of 3. No interfering substances were found. The method was successfully applied to the analysis of solutions from an actual flotation test and to a solid commercial amine.

  18. Exposure to 2,4-dichlorophenoxyacetic acid induced PPARβ-dependent disruption of glucose metabolism in HepG2 cells.

    PubMed

    Sun, Haidong; Shao, Wentao; Liu, Hui; Jiang, Zhaoyan

    2018-04-09

    2,4-Dichlorophenoxyacetic acid is one of the most widely used herbicides. Its impact on health is increasingly attracting great attentions. This study aimed to investigate the effect of 2,4-dichlorophenoxyacetic acid on glucose metabolism in HepG2 cells and the underlying mechanism. After 24 h exposure to 2,4-dichlorophenoxyacetic acid, glycogen was measured by PAS staining and glucose by ELISA in HepG2 cells. The expression of genes involved in glucose metabolism was measured by real-time PCR, Western blotting, and immunofluorescence. HepG2 cells presented more extracellular glucose consumption and glycogen content after exposed to 2,4-dichlorophenoxyacetic acid. Expression of gluconeogenesis-related genes, FoxO1, and CREB is significantly elevated. Moreover, PPARβ was up-regulated dose-dependently. SiRNA knockdown of PPARβ completely rescued the increase of glycogen accumulation and glucose uptake, and the up-regulation of FOXO1 and CREB expression. Our findings propose novel mechanisms that 2,4-dichlorophenoxyacetic acid causes glucose metabolism dysfunction through PPARβ in HepG2 cells.

  19. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  20. A comparative study on vibrational, conformational and electronic structure of 2-chloro-4-methyl-3-nitropyridine and 2-chloro-6-methylpyridine

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Saravanan, I.; Marchewka, Mariusz K.; Mohan, S.

    Experimental FTIR and FT-Raman spectroscopic analysis of 2-chloro-4-methyl-3-nitropyridine (2C4M3NP) and 2-chloro-6-methylpyridine (2C6MP) have been performed. A detailed quantum chemical calculations have been carried out using B3LYP and B3PW91 methods with 6-311++G** and cc-pVTZ basis sets. Conformation analysis was carried for 2C4M3NP and 2C6MP. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach.

  1. 21 CFR 189.280 - 4,4′-Methylenebis (2-chloro-analine).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... component of food packaging adhesives and polyurethane resins. (b) Food containing any added or detectable... 21 Food and Drugs 3 2011-04-01 2011-04-01 false 4,4â²-Methylenebis (2-chloro-analine). 189.280 Section 189.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  2. 21 CFR 189.280 - 4,4′-Methylenebis (2-chloro-analine).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... natural products and has been used as a polyurethane curing agent and as a component of food packaging... 21 Food and Drugs 3 2014-04-01 2014-04-01 false 4,4â²-Methylenebis (2-chloro-analine). 189.280 Section 189.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  3. 21 CFR 189.280 - 4,4′-Methylenebis (2-chloro-analine).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... component of food packaging adhesives and polyurethane resins. (b) Food containing any added or detectable... 21 Food and Drugs 3 2013-04-01 2013-04-01 false 4,4â²-Methylenebis (2-chloro-analine). 189.280 Section 189.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  4. 21 CFR 189.280 - 4,4′-Methylenebis (2-chloro-analine).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... component of food packaging adhesives and polyurethane resins. (b) Food containing any added or detectable... 21 Food and Drugs 3 2012-04-01 2012-04-01 false 4,4â²-Methylenebis (2-chloro-analine). 189.280 Section 189.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  5. Discovery of 4-chloro-3-(5-(pyridin-3-yl)-1,2,4-oxadiazole-3-yl)benzamides as novel RET kinase inhibitors.

    PubMed

    Han, Mei; Li, Shan; Ai, Jing; Sheng, Rong; Hu, Yongzhou; Hu, Youhong; Geng, Meiyu

    2016-12-01

    A series of novel 4-chloro-benzamides derivatives containing substituted five-membered heteroaryl ring were designed, synthesized and evaluated as RET kinase inhibitors for cancer therapy. Most of compounds exhibited moderate to high potency in ELISA-based kinase assay. In particular, compound I-8 containing 1,2,4-oxadiazole strongly inhibited RET kinase activity both in molecular and cellular level. In turn, I-8 inhibited cell proliferation driven by RET wildtype and gatekeeper mutation. The results implied that 4-chloro-3-(5-(pyridin-3-yl)-1,2,4-oxadiazole-3-yl)benzamides are promising lead compounds as novel RET kinase inhibitor for further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...

  7. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil.

    PubMed

    Dechene, Annika; Rosendahl, Ingrid; Laabs, Volker; Amelung, Wulf

    2014-08-01

    Biochar-amended soil has been proven to possess superior sorption capacities for several environmental pollutants compared with pure soil. However, the role of biochar in the immobilization of polar pesticides and their metabolites has hardly been tested. The aim of this study was therefore to investigate the effect of a soil amendment with biochar on the sorption of selected polar herbicides and herbicide metabolites (log Kow 0.3-<2). To simulate worst-case sorption, a sandy soil (1.7% organic matter) was amended with 1.5% biochar (fresh or composted) to determine sorption/desorption isotherms of the test compounds. One herbicide (imazamox) and three herbicide metabolites (methyl-desphenyl-chloridazon, metazachlor oxalic acid, metazachlor sulfonic acid) were tested, i.e. three anionic and one neutral polar compound. The results showed that the presence of biochar increased the sorption capacity of the soil only in the case of the uncharged compound methyl-desphenyl-chloridazon, for which the average distribution coefficients in biochar-amended soils were higher than in pure soil by a factor of 2.1-2.5. However, this effect rather seemed to reflect the increased soil organic carbon content after the addition of biochar than a preferred sorption of methyl-desphenyl-chloridazon to biochar. In the case of the three anionic compounds imazamox, metazachlor oxalic acid and metazachlor sulfonic acid, biochar amendment did not increase the sorption capacity of the soil for these compounds, presumably as a result of its negative net charge. Similarly, desorption experiments did not show any significant effect of the biochar amendment on desorption. This suggests that the potential of using biochar to mitigate the leaching of the tested polar pesticides or metabolites is limited. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Controlled Release Formulations of Auxinic Herbicides

    NASA Astrophysics Data System (ADS)

    Kowalski, Witold J.; Siłowiecki, Andrzej.; Romanowska, Iwona; Glazek, Mariola; Bajor, Justyna; Cieciwa, Katarzyna; Rychter, Piotr

    2013-04-01

    Controlled release formulations are applied extensively for the release of active ingredients such as plant protection agents and fertilizers in response to growing concern for ecological problems associated with increased use of plant protection chemicals required for intensive agricultural practices [1]. We synthesized oligomeric mixtures of (R,S)-3-hydroxy butyric acid chemically bonded with 2,4-D, Dicamba and MCPA herbicides (HBA) respectively, and determined their molecular structure and molecular weight dispersion by the size exclusion chromatography, proton magnetic resonance spectrometry and electro-spray ionization mass spectrometry. Further we carried out bioassays of herbicidal effectiveness of the HBA herbicides vs. series of dicotyledonous weeds and crop injury tests [2, 3, 4]. Field bioassays were accomplished according to the EPPO standards [5]. Groups of representative weeds (the development stages in the BCCH scale: 10 - 30) were selected as targets. Statistical variabilities were assessed by the Fisher LSD test for plants treated with the studied herbicides in form of HBA oligomers, the reference herbicides in form of dimethyl ammonium salts (DMA), and untreated plants. No statistically significant differences in the crop injuries caused by the HBA vs. the DMA reference formulation were observed. The effectiveness of the HBA herbicides was lower through the initial period (ca. 2 weeks) relative to the DMA salts, but a significant increase in the effectiveness of the HBA systems followed during the remaining fraction of each assay. After 6 weeks all observed efficiencies approached 100%. The death of weeds treated with the HBA herbicides was delayed when compared with the DMA reference herbicides. The delayed uptake observed for the HBA oligomers relative to the DMA salts was due to controlled release phenomena. In case of the DMA salts the total amount of active ingredients was available at the target site. By contrast, the amount of an active ingredient in the HBA oligomers was chemically bound to the oligomer matrix and a controlled release followed in concert with the hydrolysis of ester bonds in the oligomer systems. Due to the high volatility and high water solubility of the DMA salts, significant amounts of active ingredients were predisposed to be dispersed in the environment. On the other hand, the HBA oligomers exhibit low volatility and low solubility in water, so they tend to exhibit lover migrating rates from the target site. The obtained plots suggested that in the case of the HBA oligomers the effectiveness were delayed in time when compared with the DMA salts. The integral effectiveness of the studied HBA oligomers was practically equivalent to the conventional DMA salts, but the release of the HBA herbicides was delayed in time vs. DMA salts. The mixtures of oligo (R,S)-3-hydroxybutyric acid containing chemically bonded 2,4-D, Dicamba and MCPA (HBA) were proposed as carriers of active ingredients that could be released to control the sensitive weeds. The synthesized HBA oligomers could be particularly useful in a number of practical applications, because they release the herbicide to plants at a controlled rate and in amounts required over a specified period of time, their degradation products are identical to metabolites formed in plant cells, the physicochemical and operational parameters of the carrier oligomers might be optimized by fine-tuning of synthesis conditions. The decreased vapor pressure and increased lipophilicity of the studied materials could reduce the risk exposure of the operational personnel, as well as, a decrease the environmental pollution. Acknowledgments The authors would like to thank the Polish Ministry of Science and Higher Education for supporting this work through the grant No. NN 310 303039. References [1] S. Dubey, V. Jhelum, P.K. Patanjali, Controlled release agrochemical formulations: A review, J. Scientific &Industrial Research (India) 70 (2011) 105-112. [2] W. J. Kowalski, I. Romanowska, M. Smol, A. Silowiecki, M. Głazek, Synthesis and evaluation of effectiveness of a controlled release preparation 2,4-D: a reduction of risk of pollution and exposure of workers, Archiv. Environm. Protect., 38 (2012) 119. [3 ] W. J. Kowalski, M.Glazek, A. Silowiecki, M. M, Kowalczuk I. Romanowska, D. Wloka, Controlled Release of 2,4-D and Dicamba 3-Hydroxybutyric Acid Oligomers, 32 nd ASTM Symposium on Pesticide Formulations and Delivery Systems, 01-03 Nov 2011, Tampa FL USA. Sponsored by ASTM Committee E-35.22. [4] European and Mediterranean Plant Protection Organization, EPPO Standards on plant protection products, Efficacy Evaluation of Plant Protection Products (PP1).

  9. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli

    PubMed Central

    Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899

  10. Spiking solvent, humidity and their impact on 2,4-D and 2,4-DCP extractability from high humic matter content soils.

    PubMed

    Merini, Luciano Jose; Cuadrado, Virginia; Giulietti, Ana María

    2008-05-01

    The 2,4-dichlorophenoxyacetic acid (2,4-D) is a hormone-like herbicide widely used in agriculture. Although its half life in soil is approximately two weeks, the thousands of tons introduced in the environment every year represent a risk for human health and the environment. Considering the toxic properties of this compound and its degradation products, it is important to assess and monitor the 2,4-D residues in agricultural soils. Furthermore, experiments of phyto/bioremediation are carried out to find economic and environmental friendly tools to restore the polluted soils. Accordingly, it is essential to accurately measure the amount of 2,4-D and its metabolites in soils. There is evidence that 2,4-D extraction from soil samples seriously depends on the physical and chemical properties of the soil, especially in those soils with high content of humic acids. The aim of this work was to assess the variables that influence the recovery and subsequent analysis of 2,4-D and its main metabolite (2,4-dichlorophenol) from those soils samples. The results showed that the recovery efficiency depends on the solvent and method used for the extraction, the amount and kind of solvent used for dissolving the herbicide and the soil water content at the moment of spiking. An optimized protocol for the extraction and quantification of 2,4-D and its main metabolite from soil samples is presented.

  11. Mechanism of inhibition of cyclo-oxygenase in human blood platelets by carbamate insecticides.

    PubMed Central

    Krug, H F; Hamm, U; Berndt, J

    1988-01-01

    Carbamates are a widely used class of insecticides and herbicides. They were tested for their ability to affect human blood platelet aggregation and arachidonic acid metabolism in platelets. (1) The herbicides of the carbamate type have no, or only little, influence up to a concentration of 100 microM; the carbamate insecticides, however, inhibit both aggregation and arachidonic acid metabolism in a dose- and time-dependent manner. (2) Carbaryl, the most effective compound, inhibits platelet aggregation and cyclo-oxygenase activity completely at 10 microM. The liberation of arachidonic acid from phospholipids and the lipoxygenase pathway are not affected, whereas the products of the cyclo-oxygenase pathway are drastically decreased. (3) By using [14C]carbaryl labelled in the carbamyl or in the ring moiety, it could be proved that the carbamyl residue binds covalently to platelet proteins. In contrast with acetylsalicylic acid, which acetylates only one protein, carbaryl carbamylates a multitude of platelet proteins. (4) One of the carbamylated proteins was found to be the platelet cyclo-oxygenase, indicating that carbaryl resembles in this respect acetylsalicylic acid, which is known to inhibit this enzyme specifically by acetylation. Images Fig. 4. PMID:3128272

  12. 40 CFR 180.447 - Imazethapyr; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5... established for the sum of the residues of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5...

  13. 40 CFR 180.447 - Imazethapyr; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5... established for the sum of the residues of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5...

  14. 40 CFR 180.447 - Imazethapyr; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5... established for the sum of the residues of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5...

  15. 40 CFR 180.447 - Imazethapyr; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5... established for the sum of the residues of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5...

  16. 40 CFR 180.447 - Imazethapyr; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5... established for the sum of the residues of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl... of the herbicide imazethapyr, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo- 1H-imidazol-2-yl]-5...

  17. Highly enantioselective production of (R)-halohydrins with whole cells of Rhodotorula rubra KCh 82 culture.

    PubMed

    Janeczko, Tomasz; Dymarska, Monika; Kostrzewa-Susłow, Edyta

    2014-12-04

    Biotransformation of ten α-haloacetophenones in the growing culture of the strain Rhodotorula rubra KCh 82 has been carried out. Nine of the substrates underwent an effective enantioselective reduction to the respective (R)-alcohols according to Prelog's rule, with the exception of 2-chloro-1,2-diphenylethan-1-one that was not transformed by this strain. The expected reduction proceeded without dehalogenation, leading to the respective (R)-halohydrins in high yields. The use of this biocatalyst yielded (R)-2-bromo-1-phenyl-ethan-1-ol (enantiomeric excess (ee) = 97%) and its derivatives: 4'-Bromo- (ee = 99%); 4'-Chloro- (ee > 99%); 4'-Methoxy- (ee = 96%); 3'-Methoxy- (ee = 93%); 2'-Methoxy- (ee = 98%). There were also obtained and characterized 2,4'-dichloro-, 2,2',4'-trichloro- and 2-chloro-4'-fluoro-phenyetan-1-ol with >99% of enantiomeric excesses.

  18. Highly Enantioselective Production of (R)-Halohydrins with Whole Cells of Rhodotorula rubra KCh 82 Culture

    PubMed Central

    Janeczko, Tomasz; Dymarska, Monika; Kostrzewa-Susłow, Edyta

    2014-01-01

    Biotransformation of ten α-haloacetophenones in the growing culture of the strain Rhodotorula rubra KCh 82 has been carried out. Nine of the substrates underwent an effective enantioselective reduction to the respective (R)-alcohols according to Prelog’s rule, with the exception of 2-chloro-1,2-diphenylethan-1-one that was not transformed by this strain. The expected reduction proceeded without dehalogenation, leading to the respective (R)-halohydrins in high yields. The use of this biocatalyst yielded (R)-2-bromo-1-phenyl-ethan-1-ol (enantiomeric excess (ee) = 97%) and its derivatives: 4'-Bromo- (ee = 99%); 4'-Chloro- (ee > 99%); 4'-Methoxy- (ee = 96%); 3'-Methoxy- (ee = 93%); 2'-Methoxy- (ee = 98%). There were also obtained and characterized 2,4'-dichloro-, 2,2',4'-trichloro- and 2-chloro-4'-fluoro-phenyetan-1-ol with >99% of enantiomeric excesses. PMID:25486054

  19. Design, synthesis, and characterization of 2,2-bis(2,4-dinitrophenyl)-2-(phosphonatomethylamino)acetate as a herbicidal and biological active agent.

    PubMed

    Kumar, Vijay; Singh, Simranjeet; Singh, Rohit; Upadhyay, Niraj; Singh, Joginder

    2017-10-01

    The present study was designed to synthesize the bioactive molecule 2,2-bis(2,4-dinitrophenyl)-2-(phosphonatomethylamino)acetate ( 1 ), having excellent applications in the field of plant protection as a herbicide. Structure of newly synthesized molecule 1 was confirmed by using the elemental analysis, mass spectrometric, NMR, UV-visible, and FTIR spectroscopic techniques. To obtain better structural insights of molecule 1 , 3D molecular modeling was performed using the GAMESS programme. Microbial activities of 1 were checked against the pathogenic strains Aspergillus fumigatus (NCIM 902) and Salmonella typhimurium (NCIM 2501). Molecule 1 has shown excellent activities against fungal strain A. fumigates (35 μg/l) and bacterial strain S. typhimurium (25 μg/l). To check the medicinal significance of molecule 1 , interactions with bovine serum albumin (BSA) protein were checked. The calculated value of binding constant of molecule 1 -BSA complex was 1.4 × 10 6  M -1 , which were similar to most effective drugs like salicylic acid. More significantly, as compared to herbicide glyphosate, molecule 1 has exhibited excellent herbicidal activities, in pre- and post-experiments on three weeds; barnyard grass ( Echinochloa Crus ), red spranglitop ( Leptochloa filiformis ), and yellow nuts ( Cyperus Esculenfus ). Further, effects of molecule 1 on plant growth-promoting rhizobacterial (PGPR) strains were checked. More interestingly, as compared to glyphosate, molecule 1 has shown least adverse effects on soil PGPR strains including the Rhizobium leguminosarum (NCIM 2749), Pseudomonas fluorescens (NCIM 5096), and Pseudomonas putida (NCIM 2847).

  20. Insect cell expression of recombinant imidazoleglycerolphosphate dehydratase of Arabidopsis and wheat and inhibition by triazole herbicides.

    PubMed Central

    Tada, S; Hatano, M; Nakayama, Y; Volrath, S; Guyer, D; Ward, E; Ohta, D

    1995-01-01

    Imidazoleglycerolphosphate dehydratase (IGPD; EC 4.2.1.19), which is involved in the histidine biosynthetic pathway of Arabidopsis thaliana and wheat (Triticum aestivum), has been expressed in insect cells using the baculovirus expression vector system. N-terminal amino acid sequencing indicated that recombinant IGPDs (rIGPDs) were produced as mature forms via nonspecific proteolytic cleavages in the putative transit peptide region. The wheat rIGPD contained one Mn atom per subunit, and the Mn was involved in the assembly of the subunits to form active IGPDs. Protein-blotting analysis, using antibodies raised against the wheat rIGPD, indicated that IGPD was located in the chloroplasts of wheat. The rIGPDs of Arabidopsis and wheat, which were 86% identical in their primary structures deduced from the cDNAs, exhibited similar properties in terms of the molecular mass, pH optimum, and the Km for the substrate, imidazoleglycerolphosphate. However, the nonselective herbicides 3-amino-1,2,4-triazole and a newly synthesized triazole [(1R*, 3R*)-[3-hydroxy-3-(2H-[1,2,4]triazole-3-yl)-cyclohexyl]- phosphonic acid], inhibited Arabidopsis and wheat IGPDs in a mixed-type and a competitive manner, respectively. PMID:7480319

  1. Transcriptional expression levels and biochemical markers of oxidative stress in the earthworm Eisenia andrei after exposure to 2,4-dichlorophenoxyacetic acid (2,4-D).

    PubMed

    Hattab, Sabrine; Boughattas, Iteb; Boussetta, Hamadi; Viarengo, Aldo; Banni, Mohamed; Sforzini, Susanna

    2015-12-01

    This study investigated the stress response of earthworms (Eisenia andrei) to exposure to a commonly used herbicide, 2,4 dichloro-phenoxy-acetic acid (2,4-D). We evaluated both stress biomarkers and the transcriptional expression levels and activity of three enzymes involved in oxidative stress responses. Earthworms were exposed to three sublethal concentration of 2,4-D (3.5, 7, and 14 mg kg(-1)) for 7 and 14 days. Exposure to 7 and 14 mg kg(-1) 2,4-D significantly reduced both worm body weight and lysosomal membrane stability (LMS); the latter is a sensitive stress biomarker in coelomocytes. Exposure to 2,4-D caused a pronounced increase in the accumulation of malonedialdehyde (MDA), a marker of oxidative stress, and significantly increased the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD),and glutathione-S-transferase (GST). Compared to expression in controls, the expression levels of the sod, cat, and gst genes increased in worms exposed to all three 2,4-D doses for 7 days. However, after 14 days of exposure, only the expression of the gst gene remained higher than controls. These data provide new insights into the cytotoxicity of 2,4-D in the earthworm E. andrei and should be carefully considered in view of the biological effects of herbicides in soils organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  3. Occurrence of pesticides in groundwater and sediments and mineralogy of sediments and grain coatings underlying the Rutgers Agricultural Research and Extension Center, Upper Deerfield, New Jersey, 2007

    USGS Publications Warehouse

    Reilly, Timothy J.; Smalling, Kelly L.; Meyer, Michael T.; Sandstrom, Mark W.; Hladik, Michelle; Boehlke, Adam R.; Fishman, Neil S.; Battaglin, William A.; Kuivila, Kathryn

    2014-01-01

    Water and sediment samples were collected from June through October 2007 from seven plots at the Rutgers Agricultural Research and Extension Center in Upper Deerfield, New Jersey, and analyzed for a suite of pesticides (including fungicides) and other physical and chemical parameters (including sediment mineralogy) by the U.S. Geological Survey. Plots were selected for inclusion in this study on the basis of the crops grown and the pesticides used. Forty-one pesticides were detected in 14 water samples; these include 5 fungicides, 13 herbicides, 1 insecticide, and 22 pesticide degradates. The following pesticides and pesticide degradates were detected in 50 percent or more of the groundwater samples: 1-amide-4-hydroxy-chorothalonil, alachlor sulfonic acid, metolachlor oxanilic acid, metolachlor sulfonic acid, metalaxyl, and simazine. Dissolved-pesticide concentrations ranged from below their instrumental limit of detection to 36 micrograms per liter (for metolachlor sulfonic acid, a degradate of the herbicide metolachlor). The total number of pesticides found in groundwater samples ranged from 0 to 29. Fourteen pesticides were detected in sediment samples from continuous cores collected within each of the seven sampled plots; these include 4 fungicides, 2 herbicides, and 7 pesticide degradates. Pesticide concentrations in sediment samples ranged from below their instrumental limit of detection to 34.2 nanograms per gram (for azoxystrobin). The total number of pesticides found in sediment samples ranged from 0 to 8. Quantitative whole-rock and grain-coating mineralogy of sediment samples were determined by x-ray diffraction. Whole-rock analysis indicated that sediments were predominantly composed of quartz. The materials coating the quartz grains were removed to allow quantification of the trace mineral phases present.

  4. Draft Genome Sequence of the 2-Chloro-4-Nitrophenol-Degrading Bacterium Arthrobacter sp. Strain SJCon

    PubMed Central

    Vikram, Surendra; Kumar, Shailesh; Vaidya, Bhumika; Pinnaka, Anil Kumar

    2013-01-01

    We report the 4.39-Mb draft genome sequence of the 2-chloro-4-nitrophenol-degrading bacterium Arthrobacter sp. strain SJCon, isolated from a pesticide-contaminated site. The draft genome sequence of strain SJCon will be helpful in studying the genetic pathways involved in the degradation of several aromatic compounds. PMID:23516196

  5. Effects of an herbicide on physiology, morphology, and fitness of the dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae).

    PubMed

    González-Tokman, Daniel; Martínez-Morales, Imelda; Farrera, Arodi; Del Rosario Ortiz-Zayas, María; Lumaret, Jean-Pierre

    2017-01-01

    Some agrochemical compounds threaten nontarget organisms and their functions in the ecosystem. The authors experimentally evaluated the effects of one of the most common herbicide mixtures used worldwide, containing 2,4-dichlorophenoxyacetic acid and picloram, on dung beetles, which play fundamental roles in the function of natural and managed ecosystems. The present study employed techniques of physiology and geometric morphometrics, besides including fitness measurements, to assess the effects of the herbicide in the introduced beetle Euoniticellus intermedius. Because herbicide components promote oxidative stress and affect survival in certain insects, the authors predicted negative effects on the beetles. Unexpectedly, no effect of herbicide concentration was found on clutch size, sex ratio, and fluctuating asymmetry, and it even increased physiological condition and body size in exposed beetles. Because the studied species presents 2 male morphs, the authors, for the first time, evaluated the effect of a pollutant on the ratio of these morphs. Contrary to the prediction, the herbicide mixture increased the proportion of major males. Thus, the herbicide does not threaten populations of the studied beetles. The present study discusses how both negative and positive effects of pollutants on wild animals modify natural and sexual selection processes occurring in nature, which ultimately impact population dynamics. The authors recommend the use of physiological and geometric morphometrics techniques to assess the impact of pollutants on nontarget animals. Environ Toxicol Chem 2017;36:96-102. © 2016 SETAC. © 2016 SETAC.

  6. Fluorine bearing sydnones with styryl ketone group: synthesis and their possible analgesic and anti-inflammatory activities.

    PubMed

    Deshpande, Shreenivas Ramachandrarao; Pai, Karkala Vasantakumar

    2012-04-01

    In continuation of structure activity relationship studies, a panel of fluorine containing sydnones with styryl ketone group 4-[1-oxo-3-(substituted aryl)-2-propenyl]-3-(3-chloro-4-fluorophenyl)sydnones 2a-i, was synthesized as better analgesic and anti-inflammatory agents. The title compounds were formed by condensing 4-acetyl-3-(3-chloro-4-fluorophenyl)sydnone with various substituted aryl aldehydes, characterized by spectral studies and evaluated at 100 mg\\kg b.w., p.o. for analgesic, anti-inflammatory and ulcerogenic activities. Compounds 2c and 2e showed good analgesic effect in acetic acid-induced writhing while none showed significant activity in hot plate assay in mice. In carrageenan-induced rat paw oedema test, compound 2c and 2f exhibited good anti-inflammatory effect at 3rd h, whereas compounds 2c, 2e, 2d, 2g and 2h showed activity in croton oil induced ear oedema assay in mice. Compounds 2c and 2e were less ulcerogenic than ibuprofen in rats, when tested by ulcer index method. Compounds with electron attracting substituents such as 2c and 2e were found to be promising in terms of the ratio of efficacy and adverse effect. These compounds generally exhibited better activity than those of earlier series signifying fluorine substitution.

  7. Determination of 3-chloro-1,2-propanediol in polyamideamine epichlorohydrin resin solution by reaction-based headspace gas chromatography.

    PubMed

    Yan, Ning; Wan, Xiao-Fang; Chai, Xin-Sheng; Chen, Run-Quan

    2018-04-01

    We report on a headspace gas chromatographic method for determining the content of 3-chloro-1,2-propanediol in polyamideamine epichlorohydrin resin solution. It was based on quantitatively converting 3-chloro-1,2-propanediol to formaldehyde by periodate oxidation in a closed headspace sample vial at a room temperature for 10 min, and then to methanol by borohydride reduction at 90°C for 40 min followed by the headspace gas chromatographic measurement. The results showed that the present method has an excellent measurement precision (relative standard deviation < 2.60%) and accuracy (recoveries from 96.4-102%) in 3-chloro-1,2-propanediol analysis. The limit of quantitation was 0.031 mg/mL. It is simple and suitable for determining the 3-chloro-1,2-propanediol content in polyamideamine epichlorohydrin resin solution. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco.

    PubMed

    Shimizu, Masanori; Goto, Maki; Hanai, Moeko; Shimizu, Tsutomu; Izawa, Norihiko; Kanamoto, Hirosuke; Tomizawa, Ken-Ichi; Yokota, Akiho; Kobayashi, Hirokazu

    2008-08-01

    Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.

  9. A urinary metabonomics analysis of long-term effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry.

    PubMed

    Li, Longxue; Wang, Maoqing; Chen, Shuhong; Zhao, Wei; Zhao, Yue; Wang, Xu; Zhang, Yang

    2016-03-01

    The study was to assess the long-term toxic effects of acetochlor on rats. Two different doses (42.96 and 107.4 mg/kg body weight/day) of acetochlor were administered to Wistar rats through their food for over 24 weeks. Rat urine samples were collected at two time-points for the measurements of the metabonomics profiles with ultra-performance liquid chromatography-mass spectrometry (UPLC-MSMS). The results of clinical chemistry and histopathology suggested that long-term use of acetochlor in rats caused liver and kidney damage, and dysfunction of antioxidant system. The urinary metabonomics analysis indicated that the high and low-dose exposure of acetochlor could cause alterations of these metabonomics in urine in the rat. Significant changes of the levels of hippuric acid (0.403-fold decrease), citric acid (0.430-fold decrease), pantothenic acid (0.486-fold decrease), uracil (0.419-fold decrease), β-Alanine (0.325-fold decrease), nonanedioic acid (0.445-fold decrease), L-tyrosine (0.410-fold decrease), D-glucuronic acid (8.389-fold increase) and 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide in urine were observed. In addition, it may interfere with the fatty acid synthesis, the pyrimidine degradation and pantothenate biosynthesis. The level of 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide is detected in all treated groups which is not found in the control groups, indicating which can be used as an early, sensitive marker of acetochlor exposure in rat. This study illustrates the important utility of metabonomics approaches to understand the toxicity of long-term exposure of acetochlor. Copyright © 2015. Published by Elsevier Inc.

  10. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  11. A new, direct analytical method using LC-MS/MS for fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD esters) in edible oils.

    PubMed

    Yamazaki, K; Ogiso, M; Isagawa, S; Urushiyama, T; Ukena, T; Kibune, N

    2013-01-01

    A new, direct analytical method for the determination of 3-chloro-1,2-propanediol fatty acid esters (3-MCPD esters) was developed. The targeted 3-MCPD esters included five types of monoester and 25 [corrected] types of diester. Samples (oils and fats) were dissolved in a mixture of tert-butyl methyl ether and ethyl acetate (4:1), purified using two solid-phase extraction (SPE) cartridges (C(18) and silica), then analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Five monoesters and five diesters with the same fatty acid group could be separated and quantified. Pairs of 3-MCPD diesters carrying the same two different fatty acid groups, but at reversed positions (sn-1 and sn-2), could not be separated and so were expressed as a sum of both compounds. The limits of quantification (LOQs) were estimated to be between 0.02 to 0.08 mg kg(-1), depending on the types of 3-MCPD ester. Repeatability expressed as relative standard deviation (RSD(r)%) varied from 5.5% to 25.5%. The new method was shown to be applicable to various commercial edible oils and showed levels of 3-MCPD esters varying from 0.58 to 25.35 mg kg(-1). The levels of mono- and diesters ranged from 0.10 to 0.69 mg kg(-1) and from 0.06 to 16 mg kg(-1), respectively.

  12. C–C Cross-Coupling Reactions of O6-Alkyl-2-Haloinosine Derivatives and a One-Pot Cross-Coupling/O6-Deprotection Procedure

    PubMed Central

    Gurram, Venkateshwarlu; Pottabathini, Narender; Garlapati, Ramesh; Chaudhary, Avinash B.; Patro, Balaram; Lakshman, Mahesh K.

    2012-01-01

    Reaction conditions for the C–C cross-coupling of O6-alkyl-2-bromo- and 2-chloroinosine derivatives with aryl-, hetaryl-, and alkylboronic acids were studied. Optimization experiments with silyl-protected 2-bromo-O6-methylinosine led to the identification of [PdCl2(dcpf)]/K3PO4 in 1,4-dioxane as the best condition for these reactions (dcpf = 1,1’-bis(dicyclohexylphosphino)ferrocene). Attempted O6-demethylation, as well as the replacement of the C-6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd-cleavable groups such that C–C cross-coupling and O6-deprotection could be accomplished in a single step. Thus, inosine 2-chloro-O6-allylinosine was chosen as the substrate and, after re-evaluation of the cross-coupling conditions with 2-chloro-O6-methylinosine as a model substrate, one-step C–C cross-coupling/deprotection reactions were performed with the O6-allyl analogue. These reactions are the first such examples of a one-pot procedure for the modification and deprotection of purine nucleosides under C–C cross-coupling conditions. PMID:22570232

  13. (E)-3-[2-(4-Chloro­phenyl­sulfon­yl)vin­yl]-6-methyl-4H-chromen-4-one

    PubMed Central

    Ravi Kumar, R.; Krishnaiah, M.; Oo, Thanzaw; Kaung, Pho; Jagadeesh Kumar, N.

    2009-01-01

    In the title compound, C18H13ClO4S, the mean planes of the chloro­phenyl ring and the S—C=C—C chain are oriented at angles of 52.7 (2) and 51.3 (2)°, respectively, with respect to the sulfonyl (O=S=O) plane. The dihedral angle between the mean planes of the chloro­phenyl group and the benzopyran ring is 80.7 (1)°. The crystal structure is stabilized by two inter­molecular C—H⋯O inter­actions, forming centrosymmetrc dimers, which are linked via a second C—H⋯O inter­action into a chain structure. PMID:21578354

  14. Additive free preparative chiral SFC separations of 2,2-dimethyl-3-aryl-propanoic acids.

    PubMed

    Wu, Dauh-Rurng; Yip, Shiuhang Henry; Li, Peng; Sun, Dawn; Kempson, James; Mathur, Arvind

    2016-11-30

    A series of racemic 2,2-dimethyl-3-aryl-propanoic acids were resolved by chiral supercritical fluid chromatography (SFC) without the use of an acidic additive, trifluoroacetic acid (TFA). The use of additive-free protic methanol as co-solvent in CO 2 was expanded to successfully resolve other series of carboxylic acid containing racemates. Large-scale SFC of racemic acid 4, 3-(1-(4-fluorophenyl)-1H-indazol-5-yl)-2,2-dimethyl-3-phenylpropanoic acid, in methanol without TFA as additive on both Chiralpak AD-H and Chiralcel OJ-H will be discussed, along with impact on throughput and solvent consumption. Investigation of co-solvent effect on peak sharpening of acid racemate 20, 2-(2-chloro-9-fluoro-5H-chromeno[2,3-b]pyridin-5-yl)-2-methylpropanoic acid, without TFA further indicated that methanol in CO 2 provided improved peak shape compared with isopropanol (IPA) and acetonitrile. Finally, we discuss the resolution of basic aromatic chiral amines without the addition of basic additives such as diethylamine (DEA) and application of this protocol for the large-scale SFC separation of weakly basic indazole-containing racemate 14, methyl 3-(1H-indazol-5-yl)-2,2-dimethyl-3-phenylpropanoate, in methanol without DEA. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Simple synthesis of P(Cbz-alt-TBT) and PCDTBT by combining direct arylation with suzuki polycondensation of heteroaryl chlorides.

    PubMed

    Lombeck, Florian; Matsidik, Rukiya; Komber, Hartmut; Sommer, Michael

    2015-01-01

    Direct arylation (DA) of 2-chlorothiophene and 2-chloro-3-hexylthiophene with 4,7-dibromo-2,1,3-benzothiadiazole is used to synthesize 4,7-bis(5-chloro-2-thienyl)-2,1,3-benzothiadiazole (TBTCl2) and 4,7-bis(5-chloro-4-hexyl-2-thienyl)-2,1,3-benzothiadiazole (DH-TBTCl2) in one step. Suitable conditions of the Suzuki polycondensations (SPC) of TBTCl2 and DH-TBTCl2 with the carbazole comonomer CbzPBE2 are established, furnishing PCDTBT and P(Cbz-alt-TBT) with high molecular weight and yield. Compared with control samples made from the corresponding dibromides, high-temperature NMR and UV-vis spectroscopy indicate similar properties for PCDTBT but an increased content of Cbz-Cbz homocouplings for P(Cbz-alt-TBT). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Differentiating nonpoint sources of deisopropylatrazine in surface water using discrimination diagrams

    USGS Publications Warehouse

    Meyer, M.T.; Thurman, E.M.; Goolsby, D.A.

    2001-01-01

    Pesticide degradates account for a significant portion of the pesticide load in surface water. Because pesticides with similar structures may degrade to the same degradate, it is important to distinguish between different sources of parent compounds that have different regulatory and environmental implications. A discrimination diagram, which is a sample plot of chemical data that differentiates between different parent compounds, was used for the first time to distinguish whether sources other than atrazine (6-chloro-N2-ethyl-N4-isopropyl-1, 3,5-triazine-2,4-diamine) contributed the chlorinated degradate, deisopropylatrazine (DIA; 6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine) to the Iroquois and Delaware Rivers. The concentration ratio of deisopropylatrazine to deethylatrazine [6-chloro-N-(1-methylethyl)-1, 3,5-triazine-2,4-diamine], called the D2R, was used to discriminate atrazine as a source of DIA from other parent sources, such as cyanazine (2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile) and simazine (6-chloro-N,N???-diethyl-1,3,5-triazine-2,4-diamine). The ratio of atrazine to cyanazine (ACR) used in conjunction with the D2R showed that after atrazine, cyanazine was the main contributor of DIA in surface water. The D2R also showed that cyanazine, and to a much lesser extent simazine, contributed a considerable amount (???40%) of the DIA that was transported during the flood of the Mississippi River in 1993. The D2R may continue to be a useful discriminator in determining changes in the nonpoint sources of DIA in surface water as cyanazine is currently being removed from the market.

  17. Cyclization of 5-hexynoic acid to 3-alkoxy-2-cyclohexenones

    PubMed Central

    Hylden, Anne T; Uzelac, Eric J; Ostojic, Zeljko; Wu, Ting-Ting; Sacry, Keely L; Sacry, Krista L; Xi, Lin

    2011-01-01

    Summary The one-pot cyclization of 5-hexynoic acid to produce 3-alkoxy-2-cyclohexenones proceeds in good yields (58–90%). 3-Hexynoic acid was converted to its acyl chloride with the aid of oxalyl chloride and was cyclized to 3-chloro-2-cyclohexenone upon addition of indium(III) chloride. Subsequent addition of alcohol nucleophiles led to the desired 3-alkoxy-2-cyclohexenones. PMID:22043242

  18. High Energy Halogen Chemistry.

    DTIC Science & Technology

    1978-01-01

    underwent addition of triflic acid and of hydrochloric acid . The oxetane was polymerized ~zith phosphorous pentaflucride to ~lve a polymer stable to 2900...in aqueous dioxane . The oxetane was not affected by boron trifluoride etherate In chloroform, or by methanolic solutions of sulfuric or triflic acids ...concentrated hydrochloric acid to give 3-chloro-2-fluoro-2-nitro-l-propanol. NO • i 2 NO2OH CF I + CF SOH— 3 CF SO OCH CCH OH O OH ~ 3 3 2 2~ 2 F NO NO

  19. Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Nguyen, T T K; Nguyen, T N; Anquetin, G; Reisberg, S; Noël, V; Mattana, G; Touzeau, J; Barbault, F; Pham, M C; Piro, B

    2018-08-15

    We investigated an Electrolyte-Gated Organic Field-Effect transistor based on poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-b]thiophene) as organic semiconductor whose gate electrode was functionalized by electrografting a functional diazonium salt capable to bind an antibody specific to 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide well-known to be a soil and water pollutant. Molecular docking computations were performed to design the functional diazonium salt to rationalize the antibody capture on the gate surface. Sensing of 2,4-D was performed through a displacement immunoassay. The limit of detection was estimated at around 2.5 fM. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole as a reactivity probe for the investigation of the thiol proteinases. evidence that ficin and bromelain may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain.

    PubMed Central

    Shipton, M; Stuchbury, T; Brocklehurst, K

    1976-01-01

    1. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride) was used as a reactivity probe to characterize the active centres of papin (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). 2. In the pH range 0-8 Nbd chloride probably exists mainly as a monocation, possibly with the proton located on N-1 of the oxadiazole ring. 3. Spectroscopic evidence is presented for the intermediacy of Meisenheimer-type adducts in the reaction of Nbd chloride with nucleophiles. 4. The pH-dependence of the second-order rate constants (k) of the reactions of the three enzymes with Nbd chloride was determined at 25 degrees C, I = 0.1 mol/litre in 6.7% (v/v) ethanol in the pH range 2.5-5, where, at least for papain and ficin, the reactions occur specifically with their active-centre thiol groups. The pH-k profile for the papain reaction is bell-shaped (pKaI = 3.24, pKaII = 3.44 and k = 86M(-1)-s(-1), whereas that for ficin is sigmoidal (pKa = 3.6, k = 0.36M(-1)-s(-1), the rate increasing with increasing pH. The profile for the bromelain reaction appears to resemble that for the ficin reaction, but is complicated by amino-group labelling. 5. The bell-shaped profile of the papain reaction is considered to arise from the reaction of the thiolate ion of cysteine-25, maintained in acidic media by interaction with the side chain of histidine-159, with the Nbd chloride monocation hydrogen-bonded at its nitro group to the un-ionized form of the carboxyl group of aspartic acid-158. The lack of acid catalysis in the corresponding reactions of ficin and probably of bromelain suggests that these enzymes may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain. The possible consequences of this for the catalytic sites of these enzymes is discussed. PMID:11778

Top