Sample records for herbicide metolachlor comparative

  1. Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms

    USGS Publications Warehouse

    Graham, William H.; Graham, D.W.; DeNoyelles, Frank; Smith, Val H.; Larive, C.K.; Thurman, E.M.

    1999-01-01

    The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)- N-(2-methoxy-1-methyl)ethyl)acetamide] and alachlor [2-chloro-N-(2,6- diethylphenyl)-N-methoxymethyl)acetamide] in aquatic systems was investigated using outdoor tank mesocosms. Metolachlor and alachlor levels and their ethane sulfonic acid (ESA) and oxanillic acid breakdown products were monitored over time under five experimental treatments (each in quadruplicate). Background water conditions were identical in all treatments with each treatment differing based on the level and type(s) of herbicide present. Treatments included a noherbicide control, 10 ??g/L metolachlor, 25 ??g/L metolachlor, 25 ??g/L alachlor, and 25 ??g/L alachlor plus 25 ??g/L metolachlor in combination. The experiment was initiated by adding herbicide(s) to the units to the target concentrations; herbicide and breakdown product levels and other chemical parameters were then monitored for 85 days. In general, metolachlor half-lives were longer than alachlor half-lives under all treatments, although the differences were not statistically significant. Metolachlor half-lives (??95% confidence limits) ranged from 33.0 d (??14.1 d) to 46.2 d (??40.0 d), whereas alachlor half- lives ranged from 18.7 d (??3.5 d) to 21.0 d (??6.5 d) for different treatments. Formation patterns of ESA were similar in all treatments, whereas oxanillic acid formation differed for the two herbicides. Alachlor oxanillic acid was produced in larger quantities than metolachlor oxanillic acid and either ESA under equivalent conditions. Our results suggest that the transformation pathways for alachlor and metolachlor in aquatic systems are similar and resemble the acetochlor pathway in soils proposed by Feng (Pestic. Biochem. Physiol. 1991, 34, 136); however, the oxanillic acid branch of the pathway is favored for alachlor as compared with metolachlor.The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethy)acetamide] and alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] in aquatic systems was investigated using outdoor tank mesocosms. Metolachlor and alachlor levels and their ethane sulfonic acid (ESA) and oxanillic acid breakdown products were monitored over time under five experimental treatments (each in quadruplicate). Background water conditions were identical in all treatments with each treatment differing based on the level and type(s) of herbicide present. Treatments included a no-herbicide control, 10 ??g/L metolachlor, 25 ??g/L metolachlor, 25 ??g/L alachlor, and 25 ??g/L alachlor plus 25 ??g/L metolachlor in combination. The experiment was initiated by adding herbicide(s) to the units to the target concentrations; herbicide and breakdown product levels and other chemical parameters were then monitored for 85 days. In general, metolachlor half-lives were longer than alachlor half-lives under all treatments, although the differences were not statistically significant. Metolachlor half-lives (??95% confidence limits) ranged from 33.0 d (??14.1 d) to 46.2 d (??40.0 d), whereas alachlor half-lives ranged from 18.7 d (??3.5 d) to 21.0 d (??6.5 d) for different treatments. Formation patterns of ESA were similar in all treatments, whereas oxanillic acid formation differed for the two herbicides. Alachlor oxanillic acid was produced in larger quantities than metolachlor oxanillic acid and either ESA under equivalent conditions. Our results suggest that the transformation pathways for alachlor and metolachlor in aquatic systems are similar and resemble the acetochlor pathway in soils proposed by Feng; however, the oxanillic acid branch of the pathway is favored for alachlor as compared with metolachlor.

  2. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  3. Synergistic effects of a combined exposure to herbicides and an insecticide in Hyla versicolor

    USGS Publications Warehouse

    Mazanti, L.; Sparling, D.W.; Rice, C.; Bialek, K.; Stevenson, C.; Teels, B.; ,

    2003-01-01

    Combinations of the herbicides atrazine and metolachlor and the insecticide chlorpyrifos were tested under both laboratory and field conditions to determine their individual and combined effects on amphibian populations. In the lab Hyla versicolor tadpoles experienced 100% mortality when exposed to a high combination of the pesticides (2.0 mg/L atrazine, 2.54 mg/L metolachlor, 1.0 mg/L chlorpyrifos) whereas low concentrations of the pesticides (0.2 mg/L atrazine, 0.25 mg/L metolachlor, 0.1 mg/L chlorpyrifos) or high concentrations of either herbicides or insecticide alone caused lethargy, reduced growth and delayed metamorphosis but no significant mortality. In the field high herbicide, low insecticide and low herbicide, low insecticide mixtures significantly reduced amphibian populations compared to controls but in the low herbicide, low insecticide wetlands amphibian populations were able to recover through recruitment by the end of the season.

  4. Spatial variability of atrazine and metolachlor dissipation on dryland no-tillage crop fields in Colorado.

    PubMed

    Bridges, Melissa; Henry, W Brien; Shaner, Dale L; Khosla, R; Westra, Phil; Reich, Robin

    2008-01-01

    An area of interest in precision farming is variable-rate application of herbicides to optimize herbicide use efficiency and minimize negative off-site and non-target effects. Site-specific weed management based on field scale management zones derived from soil characteristics known to affect soil-applied herbicide efficacy could alleviate challenges posed by post-emergence precision weed management. Two commonly used soil-applied herbicides in dryland corn (Zea mays L.) production are atrazine and metolachlor. Accelerated dissipation of atrazine has been discovered recently in irrigated corn fields in eastern Colorado. The objectives of this study were (i) to compare the rates of dissipation of atrazine and metolachlor across different soil zones from three dryland no-tillage fields under laboratory incubation conditions and (ii) to determine if rapid dissipation of atrazine and/or metolachlor occurred in dryland soils. Herbicide dissipation was evaluated at time points between 0 and 35 d after soil treatment using a toluene extraction procedure with GC/MS analysis. Differential rates of atrazine and metolachlor dissipation occurred between two soil zones on two of three fields evaluated. Accelerated atrazine dissipation occurred in soil from all fields of this study, with half-lives ranging from 1.8 to 3.2 d in the laboratory. The rapid atrazine dissipation rates were likely attributed to the history of atrazine use on all fields investigated in this study. Metolachlor dissipation was not considered accelerated and exhibited half-lives ranging from 9.0 to 10.7 d in the laboratory.

  5. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    PubMed

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  6. Metolachlor and its metabolites in tile drain and stream runoff in the canajoharie creek watershed

    USGS Publications Warehouse

    Phillips, P.J.; Wall, G.R.; Thurman, E.M.; Eckhardt, D.A.; Vanhoesen, J.

    1999-01-01

    Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid) can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200 1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2 45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid)-can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200-1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2-45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.

  7. Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics.

    PubMed

    White, Paul M; Potter, Thomas L; Culbreath, Albert K

    2010-02-15

    Pesticides are typically applied as mixtures and or sequentially to soil and plants during crop production. A common scenario is herbicide application at planting followed by sequential fungicide applications post-emergence. Fungicides depending on their spectrum of activity may alter and impact soil microbial communities. Thus there is a potential to impact soil processes responsible for herbicide degradation. This may change herbicide efficacy and environmental fate characteristics. Our study objective was to determine the effects of 4 peanut fungicides, chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile), tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), flutriafol (alpha-(2-fluorophenyl)-alpha-(4-fluorophenyl)-1H-1,2,4-triazole-1-ethanol), and cyproconazole (alpha-(4-chlorophenyl)-alpha-(1-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol) on the dissipation kinetics of the herbicide, metolachlor (2-chloro-N-(6-ethyl-o-tolyl)-N-[(1RS)-2-methoxy-1-methylethyl]acetamide), and on the soil microbial community. This was done through laboratory incubation of field treated soil. Chlorothalonil significantly reduced metolachlor soil dissipation as compared to the non-treated control or soil treated with the other fungicides. Metolachlor DT(50) was 99 days for chlorothalonil-treated soil and 56, 45, 53, and 46 days for control, tebuconazole, flutriafol, and cyproconazole-treated soils, respectively. Significant reductions in predominant metolachlor metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOA), produced by oxidation of glutathione-metolachlor conjugates were also observed in chlorothalonil-treated soil. This suggested that the fungicide impacted soil glutathione-S-transferase (GST) activity. Fungicide DT(50) was 27-80 days but impacts on the soil microbial community as indicated by lipid biomarker analysis were minimal. Overall study results indicated that chlorothalonil has the potential to substantially increase soil persistence (2-fold) of metolachlor and alter fate and transport processes. GST mediated metabolism is common pesticide detoxification process in soil; thus there are implications for the fate of many active ingredients.

  8. Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms

    USGS Publications Warehouse

    Mazanti, L.; Rice, C.; Bialek, K.; Sparling, D.; Stevenson, C.; Johnson, W.E.; Kangas, P.; Rheinstein, J.

    2003-01-01

    Dissipation processes are described for a combination of commonly used pesticides--atrazine (6-chloro-4--ethylamino-6-isopropylamino-s-triazine), metolachlor (2-chloro-N-[2-ethyl-6-methyl-phenyl]-N-[2-methoxy-l-methylethyl] acetamide), and chlorpyrifos (O-O diethyl O-[3,5,6-trichloro-2-pyridinyl] phosphorothioate)--in a laboratory and outdoor pond systems. Dosing rates and timing were designed to duplicate those common in the mid-Atlantic Coastal Plain, USA. Treatment ranged from 2 and 2.5 mg/L to 0.2 and 0.25 mg/L respectively for atrazine and metolachlor, and chlorpyrifos was added at 1.0 and 0.1 mg/L in the aquaria and at 0.1 mg/L in the outdoor macrocosms. Chlorpyrifos disappearance was rapid in all of the systems and followed a two-phase sequence. Initial half-lives varied from 0.16 da), to 0.38 day and showed similar rates in the aquaria and the outdoor systems. The second phase of the chlorpyrifos loss pattern was slower (18-20 days) in all the treatments except for the low herbicide treatment in the outdoor test, where it was 3.4 days. Compared to the outdoor system, herbicide losses were much slower in the aquaria, e.g., 150 days for atrazine and 55 days for metolachlor, and no appreciable loss of herbicide was apparent in the high-treated aquaria. In the outdoor systems, the half-lives for the low herbicide treatment were 27 days and 12 days, respectively, for atrazine and metolachlor, and 48 and 20 days, respectively for the high herbicide-treated pond. Very low levels of CIAT (6-amino-2-chloro-4-iso-propylamino-s-triazine) and CEAT (2-chloro-4-ethylamino-6-ethylamino-s-triazine), degradation products of atrazine, were observed in the outdoor studies.

  9. Degradation of the Herbicide Metolachlor in Drummer Soil Under Different Redox Conditions

    USDA-ARS?s Scientific Manuscript database

    Understanding the role of microorganisms and effect of soil environmental conditions on herbicide fate is critical for stewardship of herbicide use in cropping systems. As compared to the modernized perceptions of soil redox status, diminutive progress has been made in characterizing the impact of a...

  10. Identification of a new sulfonic acid metabolite of metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.; Yockel, M.E.; Zimmerman, L.R.; Williams, T.D.

    1996-01-01

    An ethanesulfonic acid metabolite of metolachlor (metolachlor ESA) was identified in soil-sample extracts by negative-ion, fast-atom bombardment mass spectrometry (FAB-MS) and FAB tandem mass spectrometry (FAB-MS/MS). Production fragments from MS/MS analysis of the deprotonated molecular ion of metolachlor ESA in the soil extract can be reconciled with the structure of the synthesized standard. The elemental compositions of the (M - H)- ions of the metolachlor ESA standard and the soil-sample extracts were confirmed by high-resolution mass spectrometry. A dissipation study revealed that metolachlor ESA is formed in soil under field conditions corresponding to a decrease in the concentration of the parent herbicide, metolachlor. The identification of the sulfonated metabolite of metolachlor suggests that the glutathione conjugation pathway is a common detoxification pathway shared by chloroacetanilide herbicides.

  11. Effects of relative humidity on chloroacetanilide and dinitroaniline herbicide desorption from agricultural PM2.5 on quartz fiber filters.

    PubMed

    Yang, Wenli; Holmén, Britt A

    2007-06-01

    This study quantified the release of seven relatively polar preemergence herbicides to the gas phase from soil-generated PM2.5-loaded quartz fiber filters (QFFs) and bare QFF as a function of relative humidity (RH). A 48-hour desorption fraction, F48, was defined to evaluate the relative desorption behavior of herbicides from two families, chloroacetanilide (alachlor, butachlor, metolachlor, and propachlor) and dinitroaniline (pendimethalin, prodiamine, and trifluralin) using temperature- (8 degrees C) and humidity- (10-64% RH) controlled air at a flow rate of 4 L/min. With increasing RH, an increase in F48 by a factor of 2-8 was observed for all herbicides, except metolachlor and butachlor, which showed significantly strong sorption to both sorbents. The conjugate carbonyl oxygen and amide nitrogen in the chloroacetanilide structure enables stronger specific interactions with the sorbents, leading to lower desorption compared to the dinitroaniline herbicides. Desorption of chloroacetanilides decreased in the order propachlor > alachlor > metolachlor approximately butachlor, and desorption of dinitroanilines decreased in the order trifluralin > pendimethalin > prodiamine. These orders are consistent with the different substituents in the herbicide molecules for each family and their relative tendencies to coordinate with surface moieties as indicated by electron-donating capacity. Henry's law constant and Abraham's H-acceptor parameter were found to be useful empirical parameters for describing the F48 desorption behavior for all seven herbicides.

  12. Transport and attenuation of chloroacetanilides in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Imfeld, Gwenaël; Millet, Maurice; Payraudeau, Sylvain

    2015-04-01

    Chloroacetanilides (e.g., S-metolachlor and acetochlor) are pre-emergent herbicides used on corn and sugar beet and are applied to bare soil, which is prone to runoff and erosion. Some of these herbicides are chiral and the commercial products can be isomerically enriched in the enantiomer-S compared to the enantiomer-R as an example S-metolachlor 80/20% S to R . Determination of the transport of these herbicides in the dissolved and particulate phases of runoff water and degradation in agricultural catchments is currently lacking. The objectives of this study were i) to quantify over an corn growing season the export of chloroacetanilides and their main degradation products (ethane sulfonic (ESA) and oxanilic acid (OXA) degradates of metolachlor (MESA and MOXA) and acetochlor (AcESA and AcOXA)) in an 47 ha agricultural head-catchment in the dissolved and particulate phases, and ii) to evaluate S-metolachlor biodegradation from its application on the field to its export from the catchment using enantiomer analysis. Runoff, erosion, hydrochemistry and chloroacetanilide transport were evaluated at both the plot and catchment scales. Our results showed that an important amount of the pesticide load is missed when only the dissolved concentration of the parent compound is analysed. The total export coefficients for S-metolachlor and acetochlor and their degradation products were 11.4 and 11.8%, respectively, which includes both the dissolved and particulate loads. The partitioning of S-metolachlor and acetochlor between the dissolved and particulate phases varied widely over time and was linked to the suspended solid concentrations. Detection of S-metolachlor degradation products in runoff water was more frequent compared to that of acetochlor degradation products. Enrichment up to 37% of R-metolachlor was observed during the corn growing season, supporting enantioselective degradation of S-metolachlor. Our field study indicates the potential of enantiomer analyses for assessing chloroacetanilide biodegradation and could be complemented with laboratory benchmark studies on enantiomeric fractionation during chloroacetanilide degradation combined with an analysis of the degradation products to evaluate the extent of biodegradation in agro-ecosystems. We anticipate that our results will be a starting point for better understanding and predicting transport and degradation of chloroacetanilides at the agricultural catchment scale.

  13. Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum.

    PubMed

    Busi, Roberto; Powles, Stephen B

    2016-09-01

    Weeds can be a greater constraint to crop production than animal pests and pathogens. Pre-emergence herbicides are crucial in many cropping systems to control weeds that have evolved resistance to selective post-emergence herbicides. In this study we assessed the potential to evolve resistance to the pre-emergence herbicides prosulfocarb + S-metolachlor or pyroxasulfone in 50 individual field Lolium rigidum populations collected in a random survey in Western Australia prior to commercialisation of these pre-emergence herbicides. This study shows for the first time that in randomly collected L. rigidum field populations the selection with either prosulfocarb + S-metolachlor or pyroxasulfone can result in concomitant evolution of resistance to both prosulfocarb + S-metolachlor and pyroxasulfone after three generations. In the major weed L. rigidum, traits conferring resistance to new herbicides can be present before herbicide commercialisation. Proactive and multidisciplinary research (evolutionary ecology, modelling and molecular biology) is required to detect and analyse resistant populations before they can appear in the field. Several studies show that evolved cross-resistance in weeds is complex and often unpredictable. Thus, long-term management of cross-resistant weeds must be achieved through heterogeneity of selection by effective chemical, cultural and physical weed control strategies that can delay herbicide resistance evolution. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Herbicide concentrations in the Mississippi River Basin - The importance of chloroacetanilide herbicide degradates

    USGS Publications Warehouse

    Rebich, R.A.; Coupe, R.H.; Thurman, E.M.

    2004-01-01

    The proportion of chloroacetanilide herbicide degradates, specifically the ethane sulfonic (ESA) and oxanilic (OA) acids, averaged 70% of the total herbicide concentration in samples from the Upper Mississippi River. In samples from the Missouri River and the Ohio River, the proportion of chloroacetanilide degradates in the total herbicide concentration was much less, 24% and 41%, respectively. The amount of tile drainage throughout the Mississippi River Basin appeared to be related to the occurrence and distribution of chloroacetanilide degradates in water samples. Pesticide concentrations in streams of the Mississippi River Basin have been well characterized. However, recent research demonstrates that in order to more fully understand the fate and transport of pesticides, the major pesticide degradates need to be included in the analysis. From March 1999 through May 2001, water samples from four major junctures of the Mississippi River Basin were collected and analyzed for a suite of herbicides and their degradate compounds. Each sampling site was selected to represent a major part of the Mississippi River: upper and lower Mississippi, Missouri and Ohio Rivers. Each basin has unique landscape variables, geology, hydrology, precipitation, and land use, which is reflected in the pesticide content at the most downstream sample site near the mouth of the Mississippi River. Atrazine was the most frequently detected herbicide (detected in 97% of the samples), followed by metolachlor (60%), and acetochlor (31%). The most frequently detected degradates were metolachlor ESA (69%), followed by deethylatrazine (62%), metolachlor OA (37%), and alachlor ESA (37%). Metolachlor ESA was detected more frequently than its parent compound (69 vs. 60%), as was alachlor ESA (37 vs. 9%). After an improvement was made in the analytical method, metolachlor ESA was detected in every sample, metolachlor OA in 89% of the samples, alachlor ESA in 84%, acetochlor ESA in 71%, and acetochlor OA in 66%. ?? 2003 Elsevier B.V. All rights reserved.

  15. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  16. Pesticides and their metabolites in wells of Suffolk County, New York, 1998

    USGS Publications Warehouse

    Phillips, Patrick J.; Eckhardt, D.A.; Terracciano, S.A.; Rosenmann, Larry

    1999-01-01

    Five insecticide residues and 20 herbicide residues were detected in water samples collected from 50 shallow wells screened in the surficial sand and gravel aquifer in Suffolk County, Long Island in areas with known or suspected residues. Laboratory analytical methods with extremely low detection limits - from 0.001 to 0.2 ?g/L (micrograms per liter) - were used to analyze the samples for 60 pesticide residues. Forty-four of the samples contained at least one pesticide residue, and some samples contained as many as 11 different pesticides or pesticide metabolites. Only four water- quality standards were exceeded in the samples collected in this study. Dieldrin exceeded the New York State Class GA standard (0.004 ?g/L) in samples from eight wells. The Federal and New York State Maximum Contaminant Level for simazine (4 ?g/L) was exceeded in samples from two wells, and the State Class GA standard for simazine (0.5 ?g/L) was exceeded in samples from six wells. Federal water-quality standards have not been established for many of the compounds detected in this study, including herbicide metabolites. Maximum concentrations of four herbicide metabolites -metolachlor ESA (ethanesulfonic acid), metolachlor OA (oxanilic acid), and the alachlor metabolites alachlor ESA and alachlor OA -exceeded 20 ?g/L. The maximum concentration of one herbicide (tebuthiuron) exceeded 10 ?g/L, and the maximum concentration of three herbicides (simazine, metolachlor, and atrazine) and one herbicide metabolite (deisopropylatrazine) ranged from 1 to 10 ?g/L. The herbicide metolachlor, which is used on potato fields in Suffolk County, and its metabolites (metolachlor ESA and metolachlor OA) were most frequently detected in samples from agricultural areas. The herbicides simazine and tebuthiuron, which were used in utility rights-of-way, and the simazine metabolite deisopropylatrazine were detected at concentrations greater than 0.05 ?g/L most frequently in samples from residential and mixed land-use areas. The results of this investigation are not necessarily representative of conditions throughout the remainder of Long Island, because these samples were collected in areas of known or suspected residues.

  17. Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.

    2001-01-01

    Alachlor and metolachlor are dechlorinated and transformed into their corresponding ethane sulfonic acid (ESA) metabolites in soil. In a field-disappearance study, it was shown that alachlor ESA was formed at a faster rate and at concentrations 2-4 times higher than metolachlor ESA, conforming with the observed longer disappearance half-life of metolachlor (15.5 d) in the field as compared to alachlor (8 d). Runoff data also showed higher concentrations of alachlor ESA as compared to metolachlor ESA, even though they were applied at the same levels. Data from soil cores showed transport of the ESA compounds in soil to as far down as 75-90 cm below the surface, at concentrations ranging from less than 0.5 ??g/L to about 50 ??g/L. In contrast, no parent herbicide was detected at these depths. This observation correlates with the higher log KOC values for alachlor (3.33) and metolachlor (3.01) relative to their corresponding ESA metabolites, alachlor ESA (2.26), and metolachlor ESA (2.29).

  18. Evaluating the Influence of Drainage, Application, and Tillage Practices on the Dissipation of Chloroacetanilide Herbicides in Minnesota Soils

    USDA-ARS?s Scientific Manuscript database

    Acetochlor and metolachlor are herbicides used in Minnesota and the United States for the control of broadleaf and annual weeds in corn, soybean and other crops. Water monitoring studies have reported the occurrences of acetochlor, metolachlor and their breakdown products in both ground and surface ...

  19. Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii

    USDA-ARS?s Scientific Manuscript database

    Metolachlor (2-chloro-6’-ethyl-N-(2-methoxy-1-methylethyl) aceto-o-toluidide) is a pre-emergent chloroacetanilide herbicide used to control broadleaf and annual grassy weeds in a variety of crops. The S enantiomer of metolachlor, S-metolachlor, is the most effective form for weed control. While the ...

  20. Herbicide sorption to fine particulate matter suspended downwind of agricultural operations: field and laboratory investigations.

    PubMed

    Clymo, Amelia S; Shin, Jin Young; Holmen, Britt A

    2005-01-15

    Tillage-induced erosion of herbicides bound to airborne soil particles has not been quantified as a mechanism for offsite herbicide transport. This study quantifies the release of two preemergent herbicides, metolachlor and pendimethalin, to the atmosphere as gas- and particle-phase species during soil incorporation operations. Fine particulate matter (PM2.5) and gas-phase samples were collected at three sampling heights during herbicide disking into the soil in Davis, CA, in May 2000 and May 2001 using filter/PUF sampling. Quartz fiber filters (QFFs) were used in May 2000, and Teflon membrane filters (TMFs) were used in May 2001. The field data were combined with laboratory filter/PUF partitioning experiments to account for adsorption to the filter surfaces and quantify the mass of PM2.5-bound herbicides in the field samples. Laboratory results indicate a significant adsorption of metolachlor, but not pendimethalin, to the quartz filter surfaces. Metolachlor partitioning to PM2.5 collected on TMF filters resulted in corrected PM2.5 field partition coefficient values, Kp,corr = Cp/Cg, of approximately 10(-3.5) m3/microg, indicating its preference for the gas phase. Pendimethalin exhibited more semivolatile behavior,with Kp,corr values that ranged from 10(-3) to 10(-1) m3/ microg and increased with sampling height and distance downwind of the operation. An increase in pendimethalin enrichment at a height of 5 m suggests winnowing of finer, more sorptive soil components with corresponding higher transport potential. Pendimethalin was enriched in the PM2.5 samples by up to a factor of 250 compared to the field soil, indicating thatfurther research on the processes controlling the generation of PM-bound herbicides during agricultural operations is warranted to enable prediction of off-site mass fluxes by this mechanism.

  1. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  2. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.

    PubMed

    Southwick, Lloyd M; Appelboom, Timothy W; Fouss, James L

    2009-02-25

    The movement of the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] via runoff and leaching from 0.21 ha plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a 6-year period, 1995-2000. The first three years received normal rainfall (30 year average); the second three years experienced reduced rainfall. The 4-month periods prior to application plus the following 4 months after application were characterized by 1039 +/- 148 mm of rainfall for 1995-1997 and by 674 +/- 108 mm for 1998-2000. During the normal rainfall years 216 +/- 150 mm of runoff occurred during the study seasons (4 months following herbicide application), accompanied by 76.9 +/- 38.9 mm of leachate. For the low-rainfall years these amounts were 16.2 +/- 18.2 mm of runoff (92% less than the normal years) and 45.1 +/- 25.5 mm of leachate (41% less than the normal seasons). Runoff of metolachlor during the normal-rainfall seasons was 4.5-6.1% of application, whereas leaching was 0.10-0.18%. For the below-normal periods, these losses were 0.07-0.37% of application in runoff and 0.22-0.27% in leachate. When averages over the three normal and the three less-than-normal seasons were taken, a 35% reduction in rainfall was characterized by a 97% reduction in runoff loss and a 71% increase in leachate loss of metolachlor on a percent of application basis. The data indicate an increase in preferential flow in the leaching movement of metolachlor from the surface soil layer during the reduced rainfall periods. Even with increased preferential flow through the soil during the below-average rainfall seasons, leachate loss (percent of application) of the herbicide remained below 0.3%. Compared to the average rainfall seasons of 1995-1997, the below-normal seasons of 1998-2000 were characterized by a 79% reduction in total runoff and leachate flow and by a 93% reduction in corresponding metolachlor movement via these routes. An added observation in the study was that neither runoff of rainfall nor runoff loss of metolachlor was influenced by the presence of subsurface drains, compared to the results from plots without such drains that were described in an earlier paper.

  3. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides

    USGS Publications Warehouse

    Fairchild, J.F.; Ruessler, D.S.; Haverland, P.S.; Carlson, A.R.

    1997-01-01

    Aquatic plant toxicity tests are frequently conducted in environmental risk assessments to determine the potential impacts of contaminants on primary producers. An examination of published plant toxicity data demonstrates that wide differences in sensitivity can occur across phylogenetic groups of plants. Yet relatively few studies have been conducted with the specific intent to compare the relative sensitivity of various aquatic plant species to contaminants. We compared the relative sensitivity of the algae Selenestrum capricornutum and the floating vascular plant Lemna minor to 16 herbicides (atrazine, metribuzin, simazine, cyanazine, alachlor, metolachlor, chlorsulfuron, metsulfuron, triallate, EPTC, trifluralin, diquat, paraquat, dicamba, bromoxynil, and 2,4-D). The herbicides studied represented nine chemical classes and several modes of action and were chosen to represent major current uses in the United States. Both plant species were generally sensitive to the triazines (atrazine, metribuzin, simazine, and cyanazine), sulfonureas (metsulfuron and chlorsulfuron), pyridines (diquat and paraquat), dinitroaniline (trifluralin), and acetanilide (alachlor and metolachlor) herbicides. Neither plant species was uniformly more sensitive than the other across the broad range of herbicides tested. Lemna was more sensitive to the sulfonureas (metsulfuron and chlorsulfuron) and the pyridines (diquat and parequat) than Selenastrum. However Selenastrum was more sensitive than Lemna to one of two thiocarbamates (triallate) and one of the triazines (cyanazine). Neither species was sensitive to selective broadleaf herbicides including bromoxynil, EPTC, dicamba, or 2,4-D. Results were not always predictable in spite of obvious differences in herbicide modes of action and plant phylogeny. Major departures in sensitivity of Selenastrum occurred between chemicals within individual classes of the triazine, acetanilide, and thiocarbamate herbicides. Results indicate that neither species is predictively most sensitive, and that a number of species including a dicot speciessuch as Myriophyllum are needed to perform accurate risk assessments of herbicides.

  4. Effects of the herbicides linuron and S-metolachlor on Perez's frog embryos.

    PubMed

    Quintaneiro, Carla; Soares, Amadeu M V M; Monteiro, Marta S

    2018-03-01

    Presence of pesticides in the environment and their possible effects on aquatic organisms are of great concern worldwide. The extensive use of herbicides in agricultural areas are one of the factors contributing to the known decline of amphibian populations. Thus, as non-target species, amphibians can be exposed in early life stages to herbicides in aquatic systems. In this context, this study aims to evaluate effects of increasing concentrations of two maize herbicides, linuron and S-metolachlor on embryos of the Perez' frog (Pelophylax perezi) during 192 h. Apical endpoints were determined for each herbicide: mortality, hatching rate, malformations and length. Frog embryos presented a LC 50 of 21 mg/l linuron and 37.5 mg/l S-metolachlor. Furthermore, sub-lethal concentrations of both herbicides affected normal embryonic development, delaying hatching, decreasing larvae length and causing several malformations. Length of larvae decreased with increasing concentrations of each herbicide, even at the lower concentrations tested. Malformations observed in larvae exposed to both herbicides were oedemas, spinal curvature and deformation, blistering and microphtalmia. Overall, these results highlight the need to assess adverse effects of xenobiotics to early life stages of amphibians regarding beside mortality the embryonic development, which could result in impairments at later stages. However, to unravel mechanisms involved in toxicity of these herbicides further studies regarding lower levels of biological organisation such as biochemical and genomic level should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Developmental disorders in embryos of the frog Xenopus laevis induced by chloroacetanilide herbicides and their degradation products.

    PubMed

    Osano, Odipo; Admiraal, Wim; Otieno, Dismas

    2002-02-01

    Pesticides are known to transform in the environment, but so far the study of their effects in the environment has concentrated on the parent compounds, thereby neglecting the effects of the degradation products. The embryotoxic, developmental, and teratogenic effects of chloroacetanilide herbicides and their environmentally stable aniline degradation products were investigated in this study in view of the massive application of alachlor and metolachlor. Embryos at midblastula to early gastrula stages of a locally abundant African clawed frog Xenopus laevis were used as test organisms. The embryos were exposed to the test chemicals for 96 h in each experiment. Alachlor is more embryotoxic (the concentration causing 50% embryo lethality, 96-h LC50 = 23 microM [6.1 mg/L]) and teratogenic (teratogenic index [TI] = 1.7) than metolachlor (96-h LC50 = 48 microM [13.6 mg/L], TI = 0.2). The degradation products of alachlor and metolachlor, respectively, 2,6-diethylaniline (96-h LC50 = 13 microM [19.4 mg/L], TI = 2.1) and 2-ethyl-6-methyaniline (96-h LC50 = 509 microM [68.8 mg/L], TI = 2.7), are less embryotoxic but more teratogenic than their parent compounds. The most common teratogenic effects observed were edema for alachlor as opposed to axial flexures and eye abnormalities for 2,6-diethylaniline and 2-ethyl-6-methylaniline. Metolachlor is found to be an example of a nonteratogenic herbicide that upon degradation loses toxicity but gains teratogenicity, and both the herbicides, metolachlor and alachlor, are potential sources of teratogenic transformation products.

  6. Comparative cytotoxicity of alachlor, acetochlor, and metolachlor herbicides in isolated rat and cryopreserved human hepatocytes.

    PubMed

    Kale, Vijay M; Miranda, Sonia R; Wilbanks, Mitchell S; Meyer, Sharon A

    2008-02-01

    Noncancerous adverse effects observed at the lowest dose for chloroacetanilide herbicides alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)-acetanilide] and acetochlor [2-chloro-2'-methyl-6'-ethyl-N-(ethoxymethyl)acetanilide], but not metolachlor [2-chloro-2'-ethyl-6'-methyl-N-(1-methyl-2-methoxymethyl)acetanilide], are hepatotoxicity in rats and dogs. Liver microsomal N-dealkylation, a step in the putative activating pathway, of acetochlor exceeds that of alachlor and is negligible for metolachlor. In the present investigation, cytotoxicity of the three chloroacetanilides was ranked using isolated rat and cryopreserved human hepatocytes to correlate this endpoint with CYP3A-dependent metabolism. Chloroacetanilide cytotoxicity in rat hepatocyte suspensions was time dependent (e.g., LC(50 - alachlor/2 h) vs. LC(50 - alachlor/4 h) = 765 vs. 325 muM). Alachlor and acetochlor were more potent than metolachlor after 2 and 4 h, times when N-dealkylated alachlor product 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) formation was readily detectable. Alachlor and acetochlor potencies with cryopreserved human hepatocytes at 2 h were comparable to freshly isolated rat hepatocytes, and alachlor metabolism to CDEPA was likewise detectable. Unlike rat hepatocytes, metolachlor potency was equivalent to acetochlor and alachlor in human hepatocytes. Furthermore, chloroacetanilide cytotoxicity from two sources of human hepatocytes varied inversely with CYP3A4 activity. Collectively, while cytotoxicity in rat hepatocytes was consistent with chloroacetanilide activation by CYP3A, an activating role for CYP3A4 was not supported with human hepatocytes. (c) 2008 Wiley Periodicals, Inc.

  7. Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor.

    PubMed

    Stamper, D M; Tuovinen, O H

    1998-01-01

    Alachlor, metolachlor, and propachlor are detoxified in biological systems by the formation of glutathione-acetanilide conjugates. This conjugation is mediated by glutathione-S-transferase, which is present in microorganisms, plants, and mammals. Other organic sulfides and inorganic sulfide also react through a nucleophilic attack on the 2-chloro group of acetanilide herbicides, but the products are only partially characterized. Sorption in soils and sediments is an important factor controlling the migration and bioavailability of these herbicides, while microbial degradation is the most important factor in determining their overall fate in the environment. The biodegradation of alachlor and metolachlor is proposed to be only partial and primarily cometabolic, and the ring cleavage seems to be slow or insignificant. Propachlor biodegradation has been reported to proceed to substantial (> 50%) mineralization of the ring structure. Reductive dechlorination may be one of the initial breakdown mechanisms under anaerobic conditions. Aerobic and anaerobic transformation products vary in their polarity and therefore in soil binding coefficient. A catabolic pathway for chloroacetanilide herbicides has not been presented in the literature because of the lack of mineralization data under defined cultural conditions.

  8. ACETANILIDE HERBICIDE DEGRADATION PRODUCTS BY LC/MS

    EPA Science Inventory

    Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propachlor, flufen...

  9. Are shifts in herbicide use reflected in concentration changes in Midwestern rivers?

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1999-01-01

    In many Midwestern rivers, elevated concentrations of herbicides occur during runoff events for 1-3 months following application. The highest or 'peak' herbicide concentration often occurs during one of these runoff events. Herbicide concentrations in rivers are affected by a number of factors, including herbicide use patterns within the associated basin. Changing agricultural practices, reductions in recommended and permitted herbicide applications, shifts to new herbicides, and greater environmental awareness in the agricultural community have resulted in changes to herbicide use patterns. In the Midwestern United States, alachlor use was much larger in 1989 than in 1995, while acetochlor was not used in 1989, and commonly used in 1995. Use of atrazine, cyanazine, and metolachlor was about the same in 1989 and 1995. Herbicide concentrations were measured in samples from 53 Midwestern rivers during the first major runoff event that occurred after herbicide application (postapplication) in 1989, 1990, 1994, and 1995. The median concentrations of atrazine, alachlor, cyanazine, metribuzin, metolachlor, propazine, and simazine all were significantly higher in 1989/90 than in 1994/95. The median acetochlor concentration was higher in 1995 than in 1994. Estimated daily yields for all herbicides and degradation products measured, with the exception of acetochlor, were higher in 1989/90 than in 1994/95. The differences in concentration and yield do not always parallel changes in herbicide use, suggesting that other changes in herbicide or crop management are affecting concentrations in Midwestern rivers during runoff events.In many Midwestern rivers, elevated concentrations of herbicides occur during runoff events for 1-3 months following application. The highest or `peak' herbicide concentration often occurs during one of these runoff events. Herbicide concentrations in rivers are affected by a number of factors, including herbicide use patterns within the associated basin. Changing agricultural practices, reductions in recommended and permitted herbicide applications, shifts to new herbicides, and greater environmental awareness in the agricultural community have resulted in changes to herbicide use patterns. In the Midwestern United States, alachlor use was much larger in 1989 than in 1995, while acetochlor was not used in 1989, and commonly used in 1995. Use of atrazine, cyanazine, and metolachlor was about the same in 1989 and 1995. Herbicide concentrations were measured in samples from 53 Midwestern rivers during the first major runoff event that occurred after herbicide application (postapplication) in 1989, 1990, 1994, and 1995. The median concentrations of atrazine, alachlor, cyanazine, metribuzin, metolachlor, propazine, and simazine all were significantly higher in 1989/90 than in 1994/95. The median acetochlor concentration was higher in 1995 than in 1994. Estimated daily yields for all herbicides and degradation products measured, with the exception of acetochlor, were higher in 1989/90 than in 1994/95. The differences in concentration and yield do not always parallel changes in herbicide use, suggesting that other changes in herbicide or crop management are affecting concentrations in Midwestern rivers during runoff events.

  10. METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACENTANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    Introduction: Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propa...

  11. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    USGS Publications Warehouse

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  12. Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method.

    PubMed

    Williams, D Bradley G; George, Mosotho J; Marjanovic, Ljiljana

    2014-08-06

    Tracking of metolachlor and atrazine herbicides in agricultural soils, from spraying through to harvest, was conducted using our recently reported "bubble-in-drop single-drop microextraction" method. The method showed good linearity (R(2) = 0.999 and 0.999) in the concentration range of 0.01-1.0 ng/mL with LOD values of 0.01 and 0.02 ng/mL for atrazine and metolachlor, respectively. Sonication methods were poor at releasing these herbicides from the soil matrixes, while hot water extraction readily liberated them, providing an efficient accessible alternative to sonication techniques. Good recoveries of 97% and 105% were shown for atrazine and metolachlor, respectively, from the soil. The spiking protocol was also investigated, resulting in a traceless spiking method. We demonstrate a very sensitive technique by which to assess, for example, the length of residence of pesticides in given soils and thus risk of exposure.

  13. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    2000-01-01

    Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico. Copyright (C) 2000 Elsevier Science B.V.

  14. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River

    USGS Publications Warehouse

    Clark, Gregory M.; Goolsby, Donald A.

    2000-01-01

    Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991–1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1–2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico.

  15. Biodegradation of Metolachlor by Soil Bacteria and Yeast

    USDA-ARS?s Scientific Manuscript database

    Metolachlor (2-chloro-6’-ethyl-N-(2-methoxy-1-methylethyl) aceto-o-toluidide) is a pre-emergent chloroacetanilide herbicide used to control broadleaf and annual grassy weeds of corn, soybean, peanuts, sorghum, potatoes, cotton, and woody ornamental plants. It has been estimated that 15-24 and 20-24 ...

  16. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil.

    PubMed

    Wang, Yei-Shung; Liu, Jian-Chang; Chen, Wen-Ching; Yen, Jui-Hung

    2008-04-01

    Three different green manures were added to the tea garden soils separately and incubated for 40 days. After, incubation, acetanilide herbicides alachlor and metolachlor were spiked into the soils, separately, followed by the isolation of bacteria in each soil at designed intervals. Several bacterial strains were isolated from the soils and identified as Bacillus silvestris, B. niacini, B. pseudomycoides, B. cereus, B. thuringiensis, B. simplex, B. megaterium, and two other Bacillus sp. (Met1 and Met2). Three unique strains with different morphologies were chosen for further investigation. They were B. megaterium, B. niacini, and B. silvestris. The isolated herbicide-degrading bacteria showed optimal performance among three incubation temperatures of 30 degrees C and the best activity in the 10 to 50 microg/ml concentration of the herbicide. Each bacterial strain was able to degrade more than one kind of test herbicides. After incubation for 119 days, B. cereus showed the highest activity to degrade alachlor and propachlor, and B. thuringiensis to degrade metolachlor.

  17. Control of Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifolia L.) in Glufosinate-Resistant Soybean [Glycine max (L.) Merr

    PubMed Central

    Barnes, Ethann R.; Knezevic, Stevan Z.; Sikkema, Peter H.; Lindquist, John L.; Jhala, Amit J.

    2017-01-01

    Common ragweed emerges early in the season in Nebraska, USA and is competitive with soybean; therefore, preplant herbicides are important for effective control. Glyphosate has been used as a preplant control option; however, confirmation of glyphosate-resistant (GR) common ragweed in Nebraska necessitates evaluating other herbicide options. The objectives of this study were to (1) evaluate the efficacy of preplant (PP) herbicides followed by (fb) glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor applied post-emergence (POST) for control of GR common ragweed in glufosinate-resistant soybean; (2) their effect on common ragweed density, biomass, and soybean yield; and (3) the partial economics of herbicide programs. A field experiment was conducted in a grower's field infested with GR common ragweed in Gage County, Nebraska, USA in 2015 and 2016. Preplant herbicide programs containing glufosinate, paraquat, 2,4-D, dimethenamid-P, cloransulam-methyl, or high rates of flumioxazin plus chlorimuron-ethyl provided 90–99% control of common ragweed at 21 d after treatment (DAT). The aforementioned PP herbicides fb a POST application of glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor controlled GR common ragweed 84–98% at soybean harvest, reduced common ragweed density (≤20 plants m−2) and biomass by ≥93%, and secured soybean yield 1,819–2,158 kg ha−1. The PP fb POST herbicide programs resulted in the highest gross profit margins (US$373–US$506) compared to PP alone (US$91) or PRE fb POST programs (US$158). The results of this study conclude that effective and economical control of GR common ragweed in glufosinate-resistant soybean is achievable with PP fb POST herbicide programs. PMID:28868065

  18. Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil.

    PubMed

    Jaikaew, Piyanuch; Boulange, Julien; Thuyet, Dang Quoc; Malhat, Farag; Ishihara, Satoru; Watanabe, Hirozumi

    2015-12-01

    To estimate the potential effect of seasonal variation on the fate of herbicides in andisol soil, atrazine and metolachlor residues were investigated through the summer and winter seasons during 2013 and 2014 under field condition. The computed half-lives of atrazine and metolachlor in soil changed significantly through the two seasons of the trial. The half-lives were shorter in summer season with 16.0 and 23.5 days for atrazine and metolachlor, respectively. In contrast, the half-lives were longer during the winter season with 32.7 and 51.8 days for atrazine and metolachlor, respectively. The analysis of soil water balance suggested that more pesticide was lost in deeper soil layers through infiltration in summer than in winter. In addition, during the summer season, metolachlor was more likely to leach into deeper soil layer than atrazine possibly due to high water solubility of metolachlor.

  19. The Metolachlor Herbicide: An Exercise in Today's Stereochemistry

    ERIC Educational Resources Information Center

    Mannschreck, Albrecht; von Angerer, Erwin

    2009-01-01

    Metolachlor is one of the most widely used agents registered for the protection of many cultivated plants against weeds. Because of axial and central chirality, this molecule forms four stereoisomers, the investigation of which by [superscript 1]H NMR and chromatography is described. It is shown that the isomers do not interconvert at room…

  20. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants.

    PubMed

    Benekos, Kostantinos; Kissoudis, Christos; Nianiou-Obeidat, Irini; Labrou, Nikolaos; Madesis, Panagiotis; Kalamaki, Mary; Makris, Antonis; Tsaftaris, Athanasios

    2010-10-01

    Plant glutathione transferases (GSTs) superfamily consists of multifunctional enzymes and forms a major part of the plants herbicide detoxification enzyme network. The tau class GST isoenzyme GmGSTU4 from soybean, exhibits catalytic activity towards the diphenyl ether herbicide fluorodifen and is active as glutathione-dependent peroxidase (GPOX). Transgenic tobacco plants of Basmas cultivar were generated via Agrobacterium transformation. The aim was to evaluate in planta, GmGSTU4's role in detoxifying the diphenyl ether herbicides fluorodifen and oxyfluorfen and the chloroacetanilides alachlor and metolachlor. Transgenic tobacco plants were verified by PCR and Southern blot hybridization and expression of GmGSTU4 was determined by RT-PCR. Leaf extracts from transgenic plants showed moderate increase in GST activity towards CDNB and a significant increase towards fluorodifen and alachlor, and at the same time an increased GPOX activity towards cumene hydroperoxide. GmGSTU4 overexpressing plants when treated with 200 μM fluorodifen or oxyfluorfen exhibited reduced relative electrolyte leakage compared to wild type plants. Moreover all GmGSTU4 overexpressing lines exhibited significantly increased tolerance towards alachlor when grown in vitro at 7.5 mg/L alachlor compared to wild type plants. No significant increased tolerance was observed to metolachlor. These results confirm the contribution of this particular GmGSTU4 isoenzyme from soybean in the detoxification of fluorodifen and alachlor, and provide the basis towards the development of transgenic plants with improved phytoremediation capabilities for future use in environmental cleanup of herbicides. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    PubMed

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. HERBICIDE SENSITIVITY OF ECHINOCHLOA CRUS-GALLI POPULATIONS: A COMPARISON BETWEEN CROPPING SYSTEMS.

    PubMed

    Claerhout, S; De Cauwer, B; Reheul, D

    2014-01-01

    Echinochloa crus-galli populations exhibit high morphological variability and their response to herbicides varies from field to field. Differential response to herbicides could reflect differences in selection pressure, caused by years of cropping system related herbicide usage. This study investigates the relation between herbicide sensitivity of Echinochloa crus-galli populations and the cropping system to which they were subjected. The herbicide sensitivity of Echinochloa crus-galli was evaluated for populations collected on 18 fields, representing three cropping systems, namely (1) a long-term organic cropping system, (2) a conventional cropping system with corn in crop rotation or (3) a conventional cropping system with long-term monoculture of corn. Each cropping system was represented by 6 E. crus-galli populations. All fields were located on sandy soils. Dose-response pot experiments were conducted in the greenhouse to assess the effectiveness of three foliar-applied corn herbicides: nicosulfuron (ALS-inhibitor), cycloxydim (ACCase-inhibitor) and topramezone (HPPD-inhibitor), and two soil-applied corn herbicides: S-metolachlor and dimethenamid-P (both VLCFA-inhibitors). Foliar-applied herbicides were tested at a quarter, half and full recommended doses. Soil-applied herbicides were tested within a dose range of 0-22.5 g a.i. ha(-1) for S-metolachlor and 0-45 g a.i. ha(-1) for dimethenamid-P. Foliar-applied herbicides were applied at the three true leaves stage. Soil-applied herbicides were treated immediately after sowing the radicle-emerged seeds. All experiments were performed twice. The foliage dry weight per pot was determined four weeks after treatment. Plant responses to herbicides were expressed as biomass reduction (%, relative to the untreated control). Sensitivity to foliar-applied herbicides varied among cropping systems. Compared to populations from monoculture corn fields, populations originating from organic fields were significantly more sensitive to cycloxydim, topramezone and nicosulfuron (resp. 5.3%, 5.9% and 12.3%). Populations from the conventional crop rotation system showed intermediate sensitivity levels. Contrary to foliar-applied herbicides, the effectiveness of soil-applied herbicides was not affected by cropping system. Integrated weed management may be necessary to preserve herbicide efficacy on the long term.

  3. Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA

    USGS Publications Warehouse

    Hancock, T.C.; Sandstrom, M.W.; Vogel, J.R.; Webb, R.M.T.; Bayless, E.R.; Barbash, J.E.

    2008-01-01

    Pesticide transport through the unsaturated zone is a function of chemical and soil characteristics, application, and water recharge rate. The fate and transport of 82 pesticides and degradates were investigated at five different agricultural sites. Atrazine and metolachlor, as well as several of the degradates of atrazine, metolachlor, acetochlor, and alachlor, were frequently detected in soil water during the 2004 growing season, and degradates were generally more abundant than parent compounds. Metolachlor and atrazine were applied at a Nebraska site the same year as sampling, and focused recharge coupled with the short time since application resulted in their movement in the unsaturated zone 9 m below the surface. At other sites where the herbicides were applied 1 to 2 yr before sampling, only degradates were found in soil water. Transformations of herbicides were evident with depth and during the 4-mo sampling time and reflected the faster degradation of metolachlor oxanilic acid and persistence of metolachor ethanesulfonic acid. The fraction of metolachlor ethanesulfonic acid relative to metolachlor and metolachlor oxanilic acid increased from 0.3 to > 0.9 at a site in Maryland where the unsaturated zone was 5 m deep and from 0.3 to 0.5 at the shallowest depth. The flux of pesticide degradates from the deepest sites to the shallow ground water was greatest (3.0–4.9 μmol m−2 yr−1) where upland recharge or focused flow moved the most water through the unsaturated zone. Flux estimates based on estimated recharge rates and measured concentrations were in agreement with fluxes estimated using an unsaturated-zone computer model (LEACHM).

  4. Hydrologic data for a study of pre-Illinoian glacial till in Linn County, Iowa, water year 1991

    USGS Publications Warehouse

    Bowman, P.R.

    1992-01-01

    Herbicide concentrations in rainfall ranged from 0.05 to 1.3 micrograms per liter. Herbicides detected in the largest concentrations included alachlor, atrazine, and metolachlor. Metribuzin was the only herbicide detected in ground-water samples at a concentration of 0.10 micrograms per liter in water from one observation well.

  5. Chloroacetanilide herbicide metabolites in Wisconsin groundwater: 2001 survey results.

    PubMed

    Postle, Jeffrey K; Rheineck, Bruce D; Allen, Paula E; Baldock, Jon O; Cook, Cody J; Zogbaum, Randy; Vandenbrook, James P

    2004-10-15

    A survey of agricultural chemicals in Wisconsin groundwater was conducted between October 2000 and April 2001 to obtain a current picture of agricultural chemicals in groundwater used for private drinking water. A stratified, random sampling procedure was used to select 336 sampling locations. Water from private drinking water wells randomly selected from within the 336 sampling locations was analyzed for 18 compounds including herbicides, herbicide metabolites, and nitrate. This report focuses on the frequency and concentration of chloroacetanilide herbicides and their metabolites. Analysis of data resulted in an estimated proportion of 38+/-5.0% of wells that contained detectable levels of a herbicide or herbicide metabolite. The most commonly detected compound was alachlor ESA with a proportion estimate of 28+/-4.6%. Other detected compounds in order of prevalence were metolachlor ESA, metolachlor OA, alachlor OA, acetochlor ESA, and parent alachlor. Estimates of the mean concentration for the detects ranged from 0.15+/-0.082 microg/L for acetochlor ESA to 1.8+/-0.60 microg/L for alachlor OA. Water quality standards have not been developed for these chloroacetanilide herbicide metabolites. The results of this survey emphasize the need for toxicological assessments of herbicide metabolite compounds and establishment of water quality standards at the state and federal levels.

  6. Comparative assessment of herbicide and fungicide runoff risk: a case study for peanut production in the Southern Atlantic Coastal Plain (USA).

    PubMed

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C

    2014-08-15

    Peanut (Arachis hypogaea) is produced intensively in the southern Atlantic Coastal Plain of the eastern USA. To effectively protect the region's water quality data are needed which quantify runoff of pesticides used to protect these crops. Fungicides are used intensively yet there is little published data which describe their potential for loss in surface runoff. This study compared runoff of a fungicide, tebuconazole (α-[2-(4-chlorophenyl)ethyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), and an herbicide, metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) from 0.2 ha fields in strip (ST), a commonly used conservation-tillage practice, and conventional tillage (CT) near Tifton, GA (USA). Following their first application, metolachlor and tebuconazole were detected at high frequency in runoff. Concentrations and their annual losses increased with application frequency and runoff event timing and frequency with respect to applications, and when fields were positioned at the top of the slope and CT was practiced. Runoff one day after treatment (DAT) contributed to high tebuconazole runoff loss, up to 9.8% of the amount applied on an annual basis. In all cases, metolachlor loss was more than 10 times less even though total application was 45% higher. This was linked to the fact that the one metolachlor application to each crop was in May, one of the region's driest months. In sum, studies showed that fungicide runoff rates may be relatively high and emphasize the need to focus on these products in future studies on peanut and other crops. The study also showed that peanut farmers should be encouraged to use conservation tillage practices like ST which can substantially reduce pesticide runoff. Published by Elsevier B.V.

  7. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia.

    PubMed

    Fingler, Sanja; Mendaš, G; Dvoršćak, M; Stipičević, S; Vasilić, Ž; Drevenkar, V

    2017-04-01

    The frequency and mass concentrations of 13 herbicide micropollutants (triazines, phenylureas, chloroacetanilides and trifluralin) were investigated during 2014 in surface, ground and drinking waters in the area of the city of Zagreb and its suburbs. Herbicide compounds were accumulated from water by solid-phase extraction using either octadecylsilica or styrene-divinylbenzene sorbent cartridges and analysed either by high-performance liquid chromatography with UV-diode array detector or gas chromatography with mass spectrometric detection. Atrazine was the most frequently detected herbicide in drinking (84 % of samples) and ground (61 % of samples) waters in mass concentrations of 5 to 68 ng L -1 . It was followed by metolachlor and terbuthylazine, the former being detected in 54 % of drinking (up to 15 ng L -1 ) and 23 % of ground (up to 100 ng L -1 ) waters, and the latter in 45 % of drinking (up to 20 ng L -1 ) and 26 % of ground (up to 25 ng L -1 ) water samples. Acetochlor was the fourth most abundant herbicide in drinking waters, detected in 32 % of samples. Its mass concentrations of 107 to 117 ng L -1 in three tap water samples were the highest of all herbicides measured in the drinking waters. The most frequently (62 % of samples) and highly (up to 887 ng L -1 ) detected herbicide in surface waters was metolachlor, followed by terbuthylazine detected in 49 % of samples in mass concentrations of up to 690 ng L -1 , and atrazine detected in 30 % of samples in mass concentrations of up to 18 ng L -1 . The seasonal variations in herbicide concentrations in surface waters were observed for terbuthylazine, metolachlor, acetochlor, chlortoluron and isoproturon with the highest concentrations measured from April to August.

  8. Effect of meteorology and soil condition on metolachlor and atrazine volatilization over a 10 year period

    USDA-ARS?s Scientific Manuscript database

    A 10-year study was conducted to focus on the impact of soil and climatic factors governing herbicide volatilization from an agricultural field. For the first 5 years, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro-N-ethyl-N’-(1-methyl...

  9. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group?Determination of acetamide herbicides and their degradation products in water using online solid-phase extraction and liquid chromatography/mass spectrometry

    USGS Publications Warehouse

    Lee, E.A.; Strahan, A.P.

    2003-01-01

    An analytical method for the determination of 6 acetamide herbicides (acetochlor, alachlor, dimethenamid, flufenacet, metolachlor, and propachlor) and 16 of their degradation products in natural water samples using solid-phase extraction and liquid chromatography/mass spectrometry is described in this report. Special consideration was given during the development of the method to prevent the formation of degradation products during the analysis. Filtered water samples were analyzed using octadecylsilane as the solid-phase extraction media on online automated equipment followed by liquid chromatography/mass spectrometry. The method uses only 10 milliliters of sample per injection. Three different water-sample matrices, a reagent-water, a ground-water, and a surface-water sample spiked at 0.10 and 1.0 microgram per liter, were analyzed to determine method performance. Method detection limits ranged from 0.004 to 0.051 microgram per liter for the parent acetamide herbicides and their degradation products. Mean recoveries for the acetamide compounds in the ground- and surface-water samples ranged from 62.3 to 117.4 percent. The secondary amide of acetochlor/metolachlor ethanesulfonic acid (ESA) was recovered at an average rate of 43.5 percent. The mean recoveries for propachlor and propachlor oxanilic acid (OXA) were next lowest, ranging from 62.3 to 95.5 percent. Mean recoveries from reagent-water samples ranged from 90.3 to 118.3 percent for all compounds. Overall the mean of the mean recoveries of all compounds in the three matrices spiked at 0.10 and 1.0 microgram per liter ranged from 89.9 to 100.7 percent, including the secondary amide of acetochlor/metolachlor ESA and the propachlor compounds. The acetamide herbicides and their degradation products are reported in concentrations ranging from 0.05 to 2.0 micrograms per liter. The upper concentration limit is 2.0 micrograms per liter for all compounds without dilution. With the exception of the secondary amide of acetochlor/metolachlor ESA, good precision and accuracy for the chloroacetanalide herbicides and their degradation compounds were demonstrated for the method in buffered reagent water, ground water, and surface water. The extraction method as used did not optimize the recovery of the secondary amide of acetochlor/metolachlor ESA.

  10. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE PESTICIDE TRANSFORMATION PRODUCTS

    EPA Science Inventory

    Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide herbicides currently registered for use in the U.S. are: alachlor, acetochlor, metolachlor, propachlor, dimethenamid and fluf...

  11. Herbicides and nitrates in the Iowa River alluvial aquifer prior to changing land use, Iowa County, Iowa, 1996

    USGS Publications Warehouse

    Savoca, Mark E.; Tobias, Jennifer L.; Sadorf, Eric M.; Birkenholtz, Trevor L.

    1997-01-01

    Four herbicides (alachlor, atrazine, cyanazine, and metolachlor) and one nutrient (nitrate) were selected for study on the basis of frequent usage in Iowa and high detection rates in ground water (Detroy and Kuzniar, 1988). Alachlor was not detected at concentrations greater than the method detection limit (MDL). Atrazine was detected at concentrations greater than the MDL in samples from 48 percent of the 23 wells, cyanazine from 13 percent, metolachlor from 26 percent, and nitrate from 91 percent. None of the four herbicides were detected at concentrations greater than the respective U.S. Environmental Protection Agency's (USEPA) Maximum Contaminant Level (MCL) for drinking water. Thirteen percent of the samples had nitrate concentrations above the USEPA's MCL of 10 mg/L (milligrams per liter). Relations between constituent concentration and well depth were observed for specific constituents at individual well nests.

  12. Sorption of metolachlor and atrazine in fly ash amended soils: comparison of optimized isotherm models.

    PubMed

    Ghosh, Rakesh K; Singh, Neera

    2012-01-01

    Adsorption of metolachlor and atrazine was studied in the fly ash (Inderprastha and Badarpur)- amended Inceptisol and Alfisol soils using batch method. Results indicated that sorption of both the herbicides in soil+fly ash mixtures was highly nonlinear and sorption decreased with a higher herbicide concentration in the solution. Also, nonlinearity increased with an increase in the level of fly ash amendment from 0-5%. Three two-parameter monolayer isotherms viz. Langmuir, Temkin, Jovanovic and one imperical Freundlich models were used to fit the experimental data. Data analysis and comparison revealed that the Temkin and the Freundlich isotherms were best-suited to explain the sorption results and the observed and the calculated adsorption coefficient values showed less variability. The study suggested that sorption mechanism of metolachlor and atrazine involved the physical association at the sorbate surface and the nonlinearity in the sorption at higher pesticide or fly ash concentration was due to a decrease in the heat of adsorption and higher binding energy.

  13. Analytical Confirmation of Various Herbicides in Drinking Water Resources in Sugarcane Production Regions of Guangxi, China.

    PubMed

    Li, Honghong; Feng, Yujie; Li, Xuesheng; Zeng, Dongqiang

    2018-06-01

    This work investigated drinking water contamination by 11 commonly used herbicides in sugarcane production areas in Guangxi, China. The work developed an analytical method for determination of these herbicides in environmental waters. This work studied herbicide residues in drinking water in Guangxi, China. The maximum residues and percent of detects were: (0.091 µg/L, 29.2%, atrazine), (0.018 µg/L, 8.3%, ametryne), (0.188 µg/L, 8.3%, aetolaehlor), (0.139 µg/L, 4%, simazine), (0.585 µg/L, 62.5%, atrazine), (0.311 µg/L, 33.3%, acetochlor), (0.341 µg/L, 58.3%, ametryne), (1.312 µg/L, 29.2%, metolachlor), (0.088 µg/L, 4.2%, alachlor), (0.127 µg/L, 14.3%, atrazine), and (0.453 µg/L, 7.1%, metolachlor), respectively. The results demonstrated that agricultural herbicides were detected in all water samples, including tap, surface and groundwater samples. Since the residues are generally below the safe limits established by the government authorities, the monitored 11 herbicides do not significantly affect the quality of the human environment. This work will provide scientific understanding of pesticide residues in drinking water standards in terms of its consistency with precautionary human health and environmental safety.

  14. Fate and efficacy of metolachlor granular and emulsifiable concentrate formulations in a conservation tillage system.

    PubMed

    Potter, Thomas L; Gerstl, Zev; White, Paul W; Cutts, George S; Webster, Theodore M; Truman, Clint C; Strickland, Timothy C; Bosch, David D

    2010-10-13

    Use of genetically modified cultivars resistant to the herbicide glyphosate (N-phosphonomethylglycine) is strongly associated with conservation-tillage (CsT) management for maize ( Zea mays L.), soybean ( Glycine max L.), and cotton ( Gossypium hirsutum L.) cultivation. Due to the emergence of glyphosate-resistant weed biotypes, alternate weed management practices are needed to sustain CsT use. This work focused on metolachlor use (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) in a CsT system. The fate and efficacy of granular and emulsifiable concentrate (EC) formulations or an EC surrogate were compared for CsT cotton production in the Atlantic Coastal Plain region of southern Georgia (USA). The granular formulation, a clay-alginate polymer, was produced in the authors' laboratory; EC was a commercial product. In field and laboratory dissipations the granular metolachlor exhibited 8-fold greater soil persistence. Rainfall simulation runoff assessments indicated that use of the granular formulation in a common CsT system, strip-tillage (ST), may reduce metolachlor runoff loss when compared to conventional tillage (CT) management or when EC formulations are used in the ST system. Metolachlor leaching assessments using field-deployed lysimeters showed some tillage (ST > CT) and formulation (EC > granular) differences. Overall leaching was generally small when compared to runoff loss. Finally, greenhouse bioassays showed control of two weed species with the granular was greater than or equal to that of the EC formulation; however, the granular formulation suppressed cotton growth to a greater extent. In sum, this metolachlor granular formulation has advantages for CsT cotton production; however, additional research is needed to assess impacts on crop injury.

  15. Herbicides and nitrates in groundwater of Maryland and childhood cancers: a geographic information systems approach.

    PubMed

    Thorpe, Nancy; Shirmohammadi, Adel

    2005-01-01

    This hypothesis-generating study explores spatial patterns of childhood cancers in Maryland and investigates their potential associations with herbicides and nitrates in groundwater. The Maryland Cancer Registry (MCR) provided data for bone and brain cancers, leukemia, and lymphoma, for ages 0-17, during the years 1992-1998. Cancer clusters and relative risks generated in the study indicate higher relative risk areas and potential clusters in several counties. Contingency table analysis indicates a potential association with several herbicides and nitrates. Cancer rates for the four types have a crude odds ratio (OR) = 1.10 (0.78-1.56) in relationship to atrazine, and an OR = 1.54 (1.14-2.07) for metolachlor. Potential association to mixtures of three compounds give an OR = 7.56 (4.16-13.73). A potential association is indicated between leukemia and nitrates, OR = 1.81 (1.35-2.42), and bone cancer with metolachlor, OR = 2.26 (0.97-5.24). These results give insight to generate a hypothesis of the potential association between exposure to these herbicides and nitrates and specific types of childhood cancer.

  16. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  17. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor.

    PubMed

    Wei, Lan; Huang, Yufen; Li, Yanliang; Huang, Lianxi; Mar, Nyo Nyo; Huang, Qing; Liu, Zhongzhen

    2017-02-01

    Rice husk biochar (RHBC) was prepared for use as adsorbents for the herbicide metolachlor. The characteristics and sorption properties of metolachlor adsorbed by the RHBC prepared at different pyrolysis temperatures were determined by analysis of physico-chemical characteristics, Fourier transform infrared spectroscopy (FTIR), Boehm titration, scanning electron microscopy (SEM), and thermodynamics and kinetics adsorption. With increasing pyrolysis temperature, the RHBC surface area greatly increased (from 2.57 to 53.08 m 2  g -1 ). RHBC produced at the highest temperature (750 °C) had the greatest surface area; SEM also showed the formation of a porous surface on RH-750 biochar. The sorption capacity of RHBC also increased significantly with increasing pyrolysis temperature and was characterized by the Freundlich constant K f for the adsorption capacity increasing from 125.17-269.46 (pyrolysis at 300 °C) to 339.94-765.24 (pyrolysis at 750 °C). The results indicated that the surface area and pore diameter of RHBC produced with high pyrolysis temperature (i.e., 750 °C) had the greatest impact on the adsorption of metolachlor. The FTIR, Boehm titration, and SEM analysis showed that the greatest number of surface groups were on RHBC produced at the lowest temperature (300 °C). The biochars produced at different pyrolysis temperatures had different mechanisms of adsorbing metolachlor, which exhibited a transition from hydrogen bonds dominant at low pyrolytic temperature to pore-filling dominant at higher pyrolytic temperature.

  18. The Reaction Mechanism and Kinetics for the Reaction of OH Radicals with Atmospheric Metolachlor

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhou, Qin; Zheng, Jian; Jin, Xinhui; Ma, Wanyong; Zhou, Jianhua

    2018-07-01

    Metolachlor [2-chloro- N-(2-ethyl-6-methylphenyl)- N-(2-methoxy-1-methylethyl)acetamide], has been used as a chloroacetanilide herbicide to control annual grass weeds and broadleaf weeds in corn, cotton, peanuts, soybeans and beans. In this paper, aRS-metolachlor has been used as a model to investigate the reaction of OH radicals with atmospheric metolachlor. The reaction mechanism was obtained at the MPWB1K/6-311 + g(3 df,2 p)//MPWB1K/6-31 + g( d, p) level of theory and the rate constants were deduced over the temperature range of 180-370 K using canonical variational transition state (CVT) theory with the small curvature tunneling (SCT) method. The atmospheric lifetime of aRS-metolachlor determined by OH radicals is about 3.97 h, which indicates that it can be degradaded in the gas phase easily and doesn't have the potential for long-range transport.

  19. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera).

    PubMed

    Helmer, Stephanie Hedrei; Kerbaol, Anahi; Aras, Philippe; Jumarie, Catherine; Boily, Monique

    2015-06-01

    The decline in the population of pollinators is a worrying phenomenon worldwide. In North America, the extensive use of herbicides in maize and soya crops may affect the health of nontarget organisms like the honey bee. In this study, caged honey bees were exposed to realistic doses of atrazine, metolachlor, and glyphosate for 10 days via contaminated syrup. Peroxidation of lipids was evaluated using the thiobarbituric acid reactive substance (TBARS) test, and diet-derived antioxidants-carotenoids, all-trans-retinol (at-ROH) and α-tocopherol-were detected and quantified using reversed-phase HPLC techniques. Significant increases in syrup consumption were observed in honey bees exposed to metolachlor, and a lower TBARS value was recorded for the highest dose. No relationship was observed between the peroxidation of lipids and the levels of antioxidants. However, β-carotene, which was found to be the most abundant carotenoid, and at-ROH (derived from β-carotene) both decreased with increasing doses of atrazine and glyphosate. In contrast, metolachlor increased levels of at-ROH without any effects on β-carotene. These results show that the honey bee carotenoid-retinoid system may be altered by sublethal field-realistic doses of herbicides.

  20. Major herbicides in ground water: Results from the National Water-Quality Assessment

    USGS Publications Warehouse

    Barbash, J.E.; Thelin, G.P.; Kolpin, D.W.; Gilliom, R.J.

    2001-01-01

    To improve understanding of the factors affecting pesticide occurrence in ground water, patterns of detection were examined for selected herbicides, based primarily on results from the National Water-Quality Assessment (NAWQA) program. The NAWQA data were derived from 2227 sites (wells and springs) sampled in 20 major hydrologic basins across the USA from 1993 to 1995. Results are presented for six high-use herbicides - atrazine (2-chloro-4-ethylamino-6-iso-propylamino-s-triazine), cyanazine (2-[4-chloro-6-ethylamino-l,3,5-triazin-2-yl]amino]-2-methylpropionitrile), simazine (2-chloro-4,6-bis[ethylamino]-s-triazine), alachlor (2-chloro-N-[2,6-diethylphenyl]-N-[methoxymethyl]acetamide), acetochlor (2-chloro-N-[ethoxymethyl]. N-[2-ethyl-6-methylphenyl]acetamide), and metolachlor (2-chloro-N-[2-ethyl-6-methylphenyl]-N-[2-methoxy-l- methylethyl]acetamide) - as well as for prometon (2,4-bis[isopropylamino]-6-methoxy-s-triazine), a nonagricultural herbicide detected frequently during the study. Concentrations were <1 ??g L-1 at 98% of the sites with detections, but exceeded drinking-water criteria (for atrazine) at two sites. In urban areas, frequencies of detection (at or above 0.01 ??g L-1) of atrazine, cyanazine, simazine, alachlor, and metolachlor in shallow ground water were positively correlated with their nonagricultural use nationwide (P < 0.05). Among different agricultural areas, frequencies of detection were positively correlated with nearby agricultural use for atrazine, cyanazine, alachlor, and metolachlor, but not simazine. Multivariate analysis demonstrated that for these five herbicides, frequencies of detection beneath agricultural areas were positively correlated with their agricultural use and persistence in aerobic soil. Acetochlor, an agricultural herbicide first registered in 1994 for use in the USA, was detected in shallow ground water by 1995, consistent with previous field-scale studies indicating that some pesticides may be detected in ground water within 1 yr following application. The NAWQA results agreed closely with those from other multistate studies with similar designs.

  1. Leaching of S-metolachlor, terbuthylazine, desethyl-terbuthylazine, mesotrione, flufenacet, isoxaflutole, and diketonitrile in field lysimeters as affected by the time elapsed between spraying and first leaching event.

    PubMed

    Milan, Marco; Ferrero, Aldo; Fogliatto, Silvia; Piano, Serenella; Vidotto, Francesco

    2015-01-01

    The effect of elapsed time between spraying and first leaching event on the leaching behavior of five herbicides (terbuthylazine, S-metolachlor, mesotrione, flufenacet, and isoxaflutole) and two metabolites (desethyl-terbuthylazine and diketonitrile) was evaluated in a 2011-2012 study in northwest Italy. A battery of 12 lysimeters (8.4 m(2) long with a depth of 1.8 m) were used in the study, each filled with silty-loam soil and treated during pre-emergence with the selected herbicides by applying a mixture of commercial products Lumax (4 L ha(-1)) and Merlin Gold (1 L ha(-1)). During treatment periods, no gravity water was present in lysimeters. Irrigation events capable of producing leaching (40 mm) were conducted on independent groups of three lysimeters on 1 day after treatment (1 DAT), 7 DAT, 14 DAT, and 28 DAT. The series was then repeated 14 days later. Leachate samples were collected a few days after irrigation; compounds were extracted by solid phase extraction and analyzed by high-performance liquid chromatography and gas chromatography-mass spectrometry. Under study conditions, terbuthylazine and S-metolachlor showed the highest leaching potentials. Specifically, S-metolachlor concentrations were always found above 0.25 µg L(-1). Desethyl-terbuthylazine was often detected in leached waters, in most cases at concentrations above 0.1 µg L(-1). Flufenacet leached only when irrigation occurred close to the time of herbicide spraying. Isoxaflutole and mesotrione were not measured (<0.1 µg L(-1)), while diketonitrile was detected in concentrations above 0.1 µg L(-1) on 1 DAT in 2011 only.

  2. Occurrence of pesticides in groundwater and sediments and mineralogy of sediments and grain coatings underlying the Rutgers Agricultural Research and Extension Center, Upper Deerfield, New Jersey, 2007

    USGS Publications Warehouse

    Reilly, Timothy J.; Smalling, Kelly L.; Meyer, Michael T.; Sandstrom, Mark W.; Hladik, Michelle; Boehlke, Adam R.; Fishman, Neil S.; Battaglin, William A.; Kuivila, Kathryn

    2014-01-01

    Water and sediment samples were collected from June through October 2007 from seven plots at the Rutgers Agricultural Research and Extension Center in Upper Deerfield, New Jersey, and analyzed for a suite of pesticides (including fungicides) and other physical and chemical parameters (including sediment mineralogy) by the U.S. Geological Survey. Plots were selected for inclusion in this study on the basis of the crops grown and the pesticides used. Forty-one pesticides were detected in 14 water samples; these include 5 fungicides, 13 herbicides, 1 insecticide, and 22 pesticide degradates. The following pesticides and pesticide degradates were detected in 50 percent or more of the groundwater samples: 1-amide-4-hydroxy-chorothalonil, alachlor sulfonic acid, metolachlor oxanilic acid, metolachlor sulfonic acid, metalaxyl, and simazine. Dissolved-pesticide concentrations ranged from below their instrumental limit of detection to 36 micrograms per liter (for metolachlor sulfonic acid, a degradate of the herbicide metolachlor). The total number of pesticides found in groundwater samples ranged from 0 to 29. Fourteen pesticides were detected in sediment samples from continuous cores collected within each of the seven sampled plots; these include 4 fungicides, 2 herbicides, and 7 pesticide degradates. Pesticide concentrations in sediment samples ranged from below their instrumental limit of detection to 34.2 nanograms per gram (for azoxystrobin). The total number of pesticides found in sediment samples ranged from 0 to 8. Quantitative whole-rock and grain-coating mineralogy of sediment samples were determined by x-ray diffraction. Whole-rock analysis indicated that sediments were predominantly composed of quartz. The materials coating the quartz grains were removed to allow quantification of the trace mineral phases present.

  3. Enantioselective oxidative stress and oxidative damage caused by Rac- and S-metolachlor to Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Xia, YiLu; Cai, Weidan; Zhang, Yina; Zhang, Xiaoqiang; Du, Shaoting

    2017-04-01

    The rational use and environmental security of chiral pesticides has gained the interest of many researchers. The enantioselective effects of Rac- and S-metolachlor on oxidative stress in Scenedesmus obliquus were determined in this study. Stronger green fluorescence was observed in response to S-metolachlor treatment than to Rac-metolachlor treatment, suggesting that more reactive oxygen species (ROS) were stimulated by S-metolachlor. ROS levels following S-metolachlor treatment were 1.92-, 8.31-, and 1.08-times higher than those observed following Rac-metolachlor treatment at 0.1, 0.2, and 0.3 mg/L, respectively. Superoxide dismutase (SOD) and catalase (CAT) were stimulated with increasing herbicide concentrations, with S-metolachlor exhibiting a greater effect. Oxidative damage in terms of chlorophyll (Chl) content, cellular membrane permeability, and cellular ultrastructures of S. obliquus were investigated. Chla and Chlb contents in algae treated with Rac-metolachlor were 2-6-fold higher than those in algae treated with S-metolachlor at 0.1, 0.2, and 0.3 mg/L. The cellular membrane permeability of algae exposed to 0.3 mg/L Rac- and S-metolachlor was 6.19- and 42.5-times that of the control. Correlation analysis implied that ROS are the major factor responsible for the oxidative damage caused by Rac- and S-metolachlor. Damage to the chloroplasts and cell membrane of S. obliquus, low production of starch granules, and an increased number of vacuoles were observed upon ultrastructural morphology analysis by transmission electron microscope. These results indicate that S-metolachlor has a greater effect on S. obliquus than Rac-metolachlor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of the herbicides prosulfuron and metolachlor on fluxes of CO2, N2O, and CH4 in a fertilized Colorado grassland soil

    USGS Publications Warehouse

    Kinney, C.A.; Mosier, A.R.; Ferrer, I.; Furlong, E.T.; Mandernack, K.W.

    2004-01-01

    The effect that pesticides have on trace gas production and consumption in agricultural soils is often overlooked. Independent field and laboratory experiments were used to measure the effects that the commonly used herbicides prosulfuron and metolachlor have on trace gas fluxes (CO2, N2O, and CH4) from fertilized soil of the Colorado shortgrass steppe. Separate sample plots (1 m2) on tilled and no-till soil at the sites included the following treatments: 1) a control without fertilizer or herbicide, 2) a fertilized (NH4NO3 equivalent to 244 kg ha-1) control without herbicide, 3) and fertilized plots amended with an herbicide (prosulfuron equivalent to 0.46 kg ha-1 57% by weight active ingredient or metolachlor equivalent to 5.7 L ha-1, 82.4% by weight active ingredient). During an initial study of one year duration, measurement of gas exchange revealed that prosulfuron-amendment stimulated N2O emissions and CH4 consumption by as much as 1600% and 1300% during a single measurement, respectively. During a second set of flux measurements beginning in August 2001, more frequent weekly measurements were made during a twelve week period. From this second study an increased N2O efflux and CH4 uptake occurred after a 7-week lag period that persisted for about 5 weeks. These changes in gas flux amounted to an overall increase of 41% and 30% for N2O emission and CH4 consumption, respectively. The co-occurrence of stimulated N2O and CH4 fluxes suggests a similar cause that is related to prosulfuron degradation. Evidence suggested that prosulfuron degradation stimulated microbial activity responsible for trace gas flux. Ultimately, prosulfuron-amendment led to an ???50% reduction in the global warming potential from N2O and CH4 fluxes at this field site, which is equivalent to a reduction of the global warming potential of 0.18 mols CO2 m-2 d-1 from these gases. Metolachlor application did not significantly affect the trace gas fluxes measured. These results demonstrate the potential impact that pesticides have on trace gas fluxes from agricultural soils, which could mean that the effects of other agricultural practices have been over or under estimated. Copyright 2004 by the American Geophysical Union.

  5. Biodegradation and toxicity of a maize herbicide mixture: mesotrione, nicosulfuron and S-metolachlor.

    PubMed

    Carles, Louis; Joly, Muriel; Bonnemoy, Frédérique; Leremboure, Martin; Donnadieu, Florence; Batisson, Isabelle; Besse-Hoggan, Pascale

    2018-04-21

    The prediction of chemical mixture toxicity is a major concern regarding unintentional mixture of pesticides from agricultural lands treated with various such compounds. We focused our work on a mixture of three herbicides commonly applied on maize crops within a fortnight, namely mesotrione (β-triketone), nicosulfuron (sulfonylurea) and S-metolachlor (chloroacetanilide). The metabolic pathways of mesotrione and nicosulfuron were qualitatively and quantitatively determined with a bacterial strain (Bacillus megaterium Mes11). This strain was isolated from an agricultural soil and able to biotransform both these herbicides. Although these pathways were unaffected in the case of binary or ternary herbicide mixtures, kinetics of nicosulfuron disappearance and also of mesotrione and nicosulfuron metabolite formation was strongly modulated. The toxicity of the parent compounds and metabolites was evaluated for individual compounds and mixtures with the standardized Microtox® test. Synergistic interactions were evidenced for all the parent compound mixtures. Synergistic, antagonistic or additive toxicity was obtained depending on the metabolite mixture. Overall, these results emphasize the need to take into account the active ingredient and metabolites all together for the determination of environmental fate and toxicity of pesticide mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be <2% of the annual application of each herbicide in the Midwest.

  7. Screening for the Pesticides Atrazine, Chlorpyrifos, Diazinon, Metolachlor, and Simazine in Selected Michigan Streams, March-November 2005

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.

    2007-01-01

    From March through November 2005, the U.S. Geological Survey, in cooperation with the Michigan Department of Environmental Quality (MDEQ), did a statewide screening to aid in understanding the occurrence and distribution of selected pesticides in Michigan streams. Stream-water samples were collected from 23 sites throughout Michigan. In all, 320 water samples were analyzed by use of rapid immunoassay methods for the herbicides atrazine, metolachlor, and simazine and the insecticides chlorpyrifos and diazinon. On one occasion (June, 2005), atrazine concentrations exceeded the Michigan water-quality value (7.3 micrograms per liter) at the Black River in St. Clair County. Neither chlorpyrifos nor diazinon was detected during April through September. MDEQ detected chlorpyrifos in streams throughout the state in November. Herbicide concentrations were highest in samples influenced by intensive agriculture; however, median herbicide concentrations were similar among agricultural and urban sites. Concentrations of herbicides were very low to undetected in undeveloped areas. Seasonal patterns were also evident during the sampling period. Increased concentrations generally occurred in late spring to early summer. At 11 sites, daily sampling was done every day for 5 days following a rainfall after herbicide application in the area. Substantial changes in concentrations of herbicides - greater than tenfold from the previous day - were observed during the daily sampling. No consistent relation was found between concentration and streamflow. Results of this study may be used to aid in the development of a more comprehensive pesticide monitoring study for the State of Michigan.

  8. Laboratory and quality assurance protocols for the analysis of herbicides in ground water from the Management Systems Evaluation Area, Princeton, Minnesota

    USGS Publications Warehouse

    Larson, S.J.; Capel, P.D.; VanderLoop, A.G.

    1996-01-01

    Laboratory and quality assurance procedures for the analysis of ground-water samples for herbicides at the Management Systems Evaluation Area near Princeton, Minnesota are described. The target herbicides include atrazine, de-ethylatrazine, de-isopropylatrazine, metribuzin, alachlor, 2,6-diethylaniline, and metolachlor. The analytical techniques used are solid-phase extraction, and analysis by gas chromatography with mass-selective detection. Descriptions of cleaning procedures, preparation of standard solutions, isolation of analytes from water, sample transfer methods, instrumental analysis, and data analysis are included.

  9. Nonpoint source contamination of the Mississippi river and its tributaries by herbicides

    USGS Publications Warehouse

    Pereira, W.E.; Hostettler, F.D.

    1993-01-01

    A study of the Mississippi River and its tributaries during July-August 1991, October-November 1991, and April-May 1992 has indicated that the entire navigable reach of the river is contaminated with a complex mixture of agrochemicals and their transformation products derived from nonpoint sources. Twenty-three compounds were identified, including triazine, chloroacetanilide, thiocarbamate, phenylurea, pyridazine, and organophosphorus pesticides. The upper and middle Mississippi River Basin farm lands are major sources of herbicides applied to corn, soybeans, and sorghum. Farm lands in the lower Mississippi River Basin are a major source of rice and cotton herbicides. Inputs of the five major herbicides atrazine, cyanazine, metolachlor, alachlor, and simazine to the Mississippi River are mainly from the Minnesota, Des Moines, Missouri, and Ohio Rivers. Ratios of desethylatrazine/atrazine potentially are useful indicators of groundwater and surface water interactions in the Mississippi River. These ratios suggested that during baseflow conditions, there is a significant groundwater contribution to the river. The Mississippi River thus serves as a drainage channel for pesticide-contaminated surface and groundwater from the midwestern United States. Conservative estimates of annual mass transport indicated that about 160 t of atrazine, 71 t of cyanazine, 56 t of metolachlor, and 18 t of alachlor were discharged into the Gulf of Mexico in 1991.

  10. Effects of aging herbicide mixtures on soil respiration and plant survival in soils from a pesticide-contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, E.L.; Anhalt, J.C.; Anderson, T.A.

    Three herbicides, atrazine, metolachlor, and pendimethalin, were applied individually and in all possible combinations to soil taken from a pesticide-contaminated site in Iowa. The rate of application for each chemical was 50 {mu}g/g, representative of contamination problems at mixing and loading areas of agrochemical dealer sites. Treated soils were incubated at 24{degrees}C in the dark for 0, 21, and 63 d, and soil moisture tension was maintained at -33 kPa. Soil respiration was measured daily by using an infrared gas analyzer for 10 d at the end of each incubation period. Subsamples of treated soils were used in plant germinationmore » and survival studies. Concentrations of each herbicide were determined by gas chromatography at day 0, 21, and 63. Soil respiration was elevated for the first 6 d immediately following treatment, and then declined to very low levels. At the end of day 21 and 63, soil respiration remained at very low levels. The half-lives for atrazine, metolachlor, and pendimethalin individually in soil or in combination with one and/or the other herbicide will be reported. The results of germination and survival studies with kochia, giant foxtail, birdsfoot trefoil, crown vetch, and soybean will also be reported.« less

  11. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 1. Concentrations of pesticides and their degradates in stream baseflow, 2000-2001

    USGS Publications Warehouse

    Phillips, Patrick J.; Heisig, Paul M.

    2004-01-01

    Baseflow samples were collected from 20 small streams in the Pepacton Reservoir watershed in Delaware County, N.Y., from December 2000 through November 2001 as part of an investigation to define the occurrence of pesticides in shallow ground water in watersheds containing either a recent (2001) corn crop, a previous (1993-94) corn crop, or no history of row-crop cultivation. Baseflow water quality was assumed to represent the chemical quality of shallow ground water within the drainage area above each sampling site.Baseflow samples were analyzed for 57 pesticides and pesticide degradates. Three herbicides (atrazine, metolachlor and simazine) and three herbicide degradates (alachlor ESA [ethanesulfonic acid], deethylatrazine, and metolachlor ESA) were detected, but no concentrations exceeded any Federal or State water-quality criteria, and the maximum concentrations of all compounds except metolachlor ESA were less than 0.10 microgram per liter. The most frequently detected compounds (atrazine, metolachlor, deethylatrazine and metolachlor ESA) are either those typically used on corn crops, or those whose parent compounds are commonly used on corn crops and have been detected in streams that drain row-crop settings elsewhere in New York State. The pesticide and pesticide-degradate concentrations in baseflow samples collected in December 2000 and July 2001 samples generally corresponded to the amount of cornfield acreage in each watershed in 2001.The types of pesticides detected, and their median concentrations, were similar to those noted in two previous ground-water studies in row-crop areas elsewhere in upstate New York. Also the SAM ratios (ratio of metolachlor ESA concentration to metolachlor concentration) for the Pepacton samples were similar to those for ground-water samples from other agricultural settings in upstate New York, but were significantly higher than that for stormflow and baseflow samples collected in 1997-98 from Canajoharie Creek, an upstate stream that drains row-crop farmland. These comparisons confirm that the baseflow samples were derived from, and were representative of, ground water in their respective watersheds. Late-summer decreases in atrazine and deethylatrazine concentrations at a site where corn was grown in 2001 may have resulted from the seasonally dry conditions and the accompanying decrease in ground-water discharge from the upper-most part of the surficial aquifer system to streams. The lack of a similar decrease in metolachlor ESA concentrations during this period may reflect the transport of metolachlor ESA to deeper parts of the surficial aquifer that continued to discharge to streams during the dry period.

  12. Corn stover harvest increases herbicide movement to subsurface drains: RZWQM simulations

    USGS Publications Warehouse

    Shipitalo, Martin J.; Malone, Robert W.; Ma, Liwang; Nolan, Bernard T.; Kanwar, Rameshwar S.; Shaner, Dale L.; Pederson, Carl H.

    2016-01-01

    BACKGROUND Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor, and metolachlor oxanilic acid (OXA). RESULTS The model accurately simulated field-measured metolachlor transport in drainage. A 3-yr simulation indicated that 50% residue removal decreased subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4 to 5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, ~ 2-fold reductions in OXA losses were simulated with residue removal. CONCLUSION RZWQM indicated that if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase due to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease due to the more rapid movement of the parent compound into the soil.

  13. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration and CSIA data and advocates the use of travel-time distributions for assessing pesticide fate and transport on catchment scale.

  14. Methods of analysis by the U.S. Geological Survey Organic Geochemistry Research Group; determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry

    USGS Publications Warehouse

    Zimmerman, L.R.; Hostetler, K.A.; Thurman, E.M.

    2000-01-01

    Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid (OXA), alachlor ESA, alachlor OXA, metolachlor ESA, and metolachlor OXA. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The mean HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.50, and 2.0 mg/L (micrograms per liter) ranged from 84 to 112 percent, with relative standard deviations of 18 percent or less. The mean HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.20, and 2.0 mg/L ranged from 81 to 125 percent, with relative standard deviations of 20 percent or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 mg/L, whereas the LOQ using the HPLC/MS method was 0.05 mg/L. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water.

  15. Determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry

    USGS Publications Warehouse

    Hostetler, K.A.; Thurman, E.M.

    2000-01-01

    Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: alachlor ethanesulfonic acid (ESA); alachlor oxanilic acid; acetochlor ESA; acetochlor oxanilic acid; metolachlor ESA; and metolachlor oxanilic acid. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The average HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.5 and 2.0 ??g/l ranged from 84 to 112%, with relative standard deviations of 18% or less. The average HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.2 and 2.0 ??g/l ranged from 81 to 118%, with relative standard deviations of 20% or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 ??g/l, whereas the LOQ using the HPLC/MS method was at 0.05 ??g/l. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water. Copyright (C) 2000 Elsevier Science B.V.

  16. Preemergence herbicides influence sprig establishment of 'TifEagle' bermudagrass

    USDA-ARS?s Scientific Manuscript database

    The presence of weeds during bermudagrass (Cynodon dactylon x C. transvaalensis Burtt-Davy) putting green establishment can reduce growth and turf quality. Three field experiments were conducted in Georgia to investigate efficacy of dimethenamid, S-metolachlor, and oxadiazon on the establishment of...

  17. Comparison of fate and transport of isoxaflutole to atrazine and metolachlor in 10 Iowa rivers

    USGS Publications Warehouse

    Meyer, M.T.; Scribner, E.A.; Kalkhoff, S.J.

    2007-01-01

    Isoxaflutole (IXF), a newer low application rate herbicide, was introduced for weed control in corn (Zea mays) to use as an alternative to widely applied herbicides such as atrazine. The transport of IXF in streamwater has not been well-studied. The fate and transport of IXF and two of its degradation products was studied in 10 Iowa rivers during 2004. IXF rapidly degrades to the herbicidally active diketonitrile (DKN), which degrades to a biologically inactive benzoic acid (BA) analogue. IXF was detected in only four, DKN in 56, and BA in 43 of 75 samples. The concentrations of DKN and BA were approximately 2 orders of magnitude less than those of the commonly detected triazine and acetamide herbicides and their degradation products. Concentrations of IXF, DKN, and BA were highest during the May through June postplanting period. The concentration ratio of BA/DKN was similar to the deethylatrazine/atrazine ratio with smaller ratios occurring during May and June. The relative temporal variation of DKN and BA was similar to that observed for atrazine and deethylatrazine. This study shows that low application rate herbicides can have similar temporal transport patterns in streamwater as compared to more widely applied herbicides but at lower concentrations.

  18. Eleven-year trend in acetanilide pesticide degradates in the Iowa River, Iowa

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Vecchia, Aldo V.; Capel, Paul D.; Meyer, Michael T.

    2012-01-01

    Trends in concentration and loads of acetochlor, alachlor, and metolachlor and their ethanasulfonic (ESA) and oxanilic (OXA) acid degradates were studied from 1996 through 2006 in the main stem of the Iowa River, Iowa and in the South Fork Iowa River, a small tributary near the headwaters of the Iowa River. Concentration trends were determined using the parametric regression model SEAWAVE-Q, which accounts for seasonal and flow-related variability. Daily estimated concentrations generated from the model were used with daily streamflow to calculate daily and yearly loads. Acetochlor, alachlor, metolachlor, and their ESA and OXA degradates were generally present in >50% of the samples collected from both sites throughout the study. Their concentrations generally decreased from 1996 through 2006, although the rate of decrease was slower after 2001. Concentrations of the ESA and OXA degradates decreased from 3 to about 23% yr-1. The concentration trend was related to the decreasing use of these compounds during the study period. Decreasing concentrations and constant runoff resulted in an average reduction of 10 to >3000 kg per year of alachlor and metolachlor ESA and OXA degradates being transported out of the Iowa River watershed. Transport of acetochlor and metolachlor parent compounds and their degradates from the Iowa River watershed ranged from <1% to about 6% of the annual application. These trends were related to the decreasing use of these compounds during the study period, but the year-to-year variability cannot explain changes in loads based on herbicide use alone. The trends were also affected by the timing and amount of precipitation. As expected, increased amounts of water moving through the watershed moved a greater percentage of the applied herbicides, especially the relatively soluble degradates, from the soils into the rivers through surface runoff, shallow groundwater inflow, and subsurface drainage.

  19. Occurrence of active and inactive herbicide ingredients at selected sites in Iowa

    USGS Publications Warehouse

    Wang, W.; Liszewski, M.; Buchmiller, R.; Cherryholmes, K.

    1995-01-01

    Herbicides were detected in 50% of water samples, ranging from 78% of water samples from the Ames site to 25% from the Walnut Creek site. Among herbicides detected, listed in decreasing order of frequency, were atrazine > alachlor > cyanazine > metolachlor > metribuzin. Volatile organic compounds were detected in 11% of water samples. Among the compounds detected, listed in decreasing order of frequency, were xylene > toluene > acetone. One sample contained a detectable amount of aliphatic compound(s), with the empirical formula of C8H18. Results from the Deer Creek site showed that herbicides were detected primarily in the top layer (1.2 m), whereas xylene and other alkylbenzenes were detected at 2.1 m or deeper. Apparently, physico-chemical and other factors are separating herbicides and volatile organic compounds in the shallow unsaturated zone.

  20. Analysis of pesticides in surface water, stemflow, and throughfall in an agricultural area in South Georgia, USA.

    PubMed

    Glinski, Donna A; Purucker, S Thomas; Van Meter, Robin J; Black, Marsha C; Henderson, W Matthew

    2018-06-18

    To study spray drift contributions to non-targeted habitats, pesticide concentrations in stemflow (water flowing down the trunk of a tree during a rain event), throughfall (water from tree canopy only), and surface water in an agriculturally impacted wetland area near Tifton, Georgia, USA were measured (2015-2016). Agricultural fields and sampling locations were on the University of Georgia's Gibbs Research Farm, Tifton, GA. Samples were screened for more than 160 pesticides, and cumulatively, 32 different pesticides were detected across matrices. Data indicate that herbicides and fungicides were present in all types of environmental samples analyzed while insecticides were only detected in surface water samples. The highest pesticide concentration observed was 10.50 μg/L of metolachlor in an August 2015 surface water sample. Metolachlor, tebuconazole, and fipronil were the most frequently detected herbicide, fungicide, and insecticide, respectively, regardless of sample origin. The most frequently detected pesticide in surface water and stemflow samples was metolachlor (0.09-10.5 μg/L), however, the most commonly detected pesticide in throughfall samples was biphenyl (0.02-0.07 μg/L). These data help determine the importance of indirect chemical exposures to non-targeted habitats by assessing inputs from stemflow and throughfall into surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Degradation of chloroacetanilide herbicides by anodic fenton treatment.

    PubMed

    Friedman, Carey L; Lemley, Ann T; Hay, Anthony

    2006-04-05

    Anodic Fenton treatment (AFT) is an electrochemical treatment employing the Fenton reaction for the generation of hydroxyl radicals, strong oxidants that can degrade organic compounds via hydrogen abstraction. AFT has potential use for the remediation of aqueous pesticide waste. The degradation rates of chloroacetanilides by AFT were investigated in this work, which demonstrates that AFT can be used to rapidly and completely remove chloroacetanilide herbicides from aqueous solutions. Acetochlor, alachlor, butachlor, metolachlor, and propachlor were treated by AFT, and parent compound concentrations were analyzed over the course of the treatment time. Degradation curves were plotted and fitted by the AFT kinetic model for each herbicide, and AFT model kinetic parameters were used to calculate degradation rate constants. The reactivity order of these five active ingredients toward hydroxyl radical was acetochlor approximately metolachlor > butachlor approximately alachlor > propachlor. Treatment of the chloroacetanilides by AFT removed the parent compounds but did not completely mineralize them. However, AFT did result in an increase in the biodegradability of chloroacetanilide aqueous solutions, as evidenced by an increase in the 5-day biochemical oxygen demand to chemical oxygen demand ratio (BOD5/COD) to >0.3, indicating completely biodegradable solutions. Several degradation products were formed and subsequently degraded, although not always completely. Some of these were identified by mass spectral analyses. Among the products, isomers of phenolic and carbonyl derivatives of parent compounds were common to each of the herbicides analyzed. More extensively oxidized products were not detected. Degradation pathways are proposed for each of the parent compounds and identified products.

  2. Dissolved pesticide concentrations in the Sacramento-San Joaquin Delta and Grizzly Bay, California, 2011-12

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2013-01-01

    Surface-water samples were collected from sites within the Sacramento-San Joaquin Delta and Grizzly Bay, California, during the spring in 2011 and 2012, and they were analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected and analyzed as part of a collaborative project studying the occurrence and characteristics of phytoplankton in the San Francisco Estuary. Samples were analyzed by two separate laboratory methods employing gas chromatography/mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). Eighteen pesticides were detected in samples collected during 2011, and the most frequently detected compounds were the herbicides clomazone, diuron, hexazinone and metolachlor, and the diuron degradates 3,4-dichloroaniline and N-(3,4-dichlorophenyl)-N’-methylurea (DCPMU). Concentrations for all compounds were less than 75 ng/L, except for the rice herbicide clomazone and the fungicide tetraconazole, which had maximum concentrations of 535 and 511 ng/L, respectively. In samples collected in 2012, a total of 16 pesticides were detected. The most frequently detected compounds were the fungicides azoxystrobin and boscalid and the herbicides diuron, hexazinone, metolachlor, and simazine. Maximum concentrations for all compounds detected in 2012 were less than 75 ng/L, except for the fungicide azoxystrobin and the herbicides hexazinone and simazine, which were detected at up to 188, 134, and 140 ng/L, respectively.

  3. Evaluation of non-fumigant pesticides as methyl bromide alternatives for managing weeds in vegetables

    USDA-ARS?s Scientific Manuscript database

    The phase out of methyl bromide challenged vegetable growers’ abilities to control weeds in low-density polyethylene (LDPE) mulch production systems. The herbicides halosulfuron, fomesafen, s-metolachlor, and clomazone are needed as part of the pesticide program in LDP vegetable production to contr...

  4. Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones.

    PubMed

    Dollinger, Jeanne; Dagès, Cécile; Voltz, Marc

    2017-04-01

    The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.

  5. Corn stover harvest increases herbicide movement to subsurface drains - Root Zone Water Quality Model simulations.

    PubMed

    Shipitalo, Martin J; Malone, Robert W; Ma, Liwang; Nolan, Bernard T; Kanwar, Rameshwar S; Shaner, Dale L; Pederson, Carl H

    2016-06-01

    Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor and metolachlor oxanilic acid (OXA). The model accurately simulated field-measured metolachlor transport in drainage. A 3 year simulation indicated that 50% residue removal reduced subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4-5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, approximately twofold reductions in OXA losses were simulated with residue removal. The RZWQM indicated that, if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase owing to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease as a result of the more rapid movement of the parent compound into the soil. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  6. Regional patterns of pesticide concentrations in surface waters of New York in 1997

    USGS Publications Warehouse

    Phillips, P.J.; Eckhardt, D.A.; Freehafer, D.A.; Wall, G.R.; Ingleston, H.H.

    2002-01-01

    The predominant mixtures of pesticides found in New York surface waters consist of five principal components. First, herbicides commonly used on corn (atrazine, metolachlor, alachlor, cyanazine) and a herbicide degradate (deethylatrazine) were positively correlated to a corn-herbicide component, and watersheds with the highest corn-herbicide component scores were those in which large amounts of row crops are grown. Second, two insecticides (diazinon and carbaryl) and one herbicide (prometon) widely used in urban and residential settings were positively correlated to an urban/residential component. Watersheds with the highest urban/residential component scores were those with large amounts of urban and residential land use. A third component was related to two herbicides (EPTC and cyanazine) used on dry beans and corn, the fourth to an herbicide (simazine) and an insecticide (carbaryl) commonly used in orchards and vineyards, and the fifth to an herbicide (DCPA). Results of this study indicate that this approach can be used to: (1) identify common mixtures of pesticides in surface waters, (2) relate these mixtures to land use and pesticide applications, and (3) indicate regions where these mixtures of pesticides are commonly found.

  7. Yellow nutsedge (Cyperus esculentus L. ) control with herbicides: the role of tuberization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, W.

    1985-01-01

    Trials were carried out under greenhouse, growth chamber, laboratory, outdoor pot, and field conditions to characterize stages of yellow nutsedge tuberization and to investigate the influence of herbicides. The effects of herbicides on tuberization and phytotoxicity at several growth stages, as well as on sprouting, growth characteristics, and survival of new tubers were determined. Tuberization was a continuous process, but was modulated by plant age and environmental conditions. The growth stage that included the time of first tuber initiation was the best for applying glyphosate (N-(phosphonomethyl)glycine) and oxyfluorfen (2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluromethyl)benzene). Plant-age and length of period after spraying influenced glyphosate and oxyfluorfenmore » absorption and translocation. Addition of unlabelled oxyfluorfen as a tank mixture can glyphosate increased absorption of /sup 14/C-glyphosate to 27% after 1 day and 46% after 8 days and increased translocation into other plant parts. Timing of postemergence herbicide applications relative to tuberization is crucial for overall control of yellow nutsedge. When soil applied herbicides were compared in the field, consecutive applications of dichlobenil (2,6-dichlorobenzonitrile) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) for two years provided the best control of nutsedge.« less

  8. Effect of meteorology and soil condition on metolachlor and atrazine volatilization over a 10 year period

    USDA-ARS?s Scientific Manuscript database

    Volatilization of pesticides can detrimentally affect the environment by contaminating soil and surface waters far away from where the pesticides were applied. A 10-year study was conducted to focus on the impact of soil and climatic factors governing herbicide volatilization from an agricultural f...

  9. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries--Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2′,6′-diethylacetanilide 2-hydroxy-2′,6′-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987–1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.

  10. Simulation of stream discharge and transport of nitrate and selected herbicides in the Mississippi River Basin

    USGS Publications Warehouse

    Broshears, R.E.; Clark, G.M.; Jobson, H.E.

    2001-01-01

    Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO: Ohio River at Grand Chain, IL: And Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico.

  11. Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains.

    PubMed

    Wettstein, Felix E; Kasteel, Roy; Garcia Delgado, Maria F; Hanke, Irene; Huntscha, Sebastian; Balmer, Marianne E; Poiger, Thomas; Bucheli, Thomas D

    2016-08-24

    Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.

  12. Herbicide concentrations in and loads transported by the Conestoga River and Pequea Creek, Lancaster County, Pennsylvania, 1992-95

    USGS Publications Warehouse

    Reed, Lloyd A.; Koerkle, Edward H.; Takita, Charles S.

    1997-01-01

    Water samples were collected from four streams in Lancaster County from 1992 through 1995 and analyzed for selected herbicides. Samples were collected from the Little Conestoga Creek near Churchtown, Mill Creek (a tributary to the Conestoga River) at Elshelman Mill Road near Lyndon, the Conestoga River at Conestoga, and Pequea Creek at Martic Forge. Most samples were collected from stormflow that occurred during the growing season. Samples were analyzed for alachlor, aldrin, atrazine, chlordane, cyanazine, dieldrin, malathion, metolachlor, propazine, simazine, and toxaphene. Most samples had detectable concentrations of alachlor, atrazine, metolachlor, and simazine, and the loads of these constituents that were transported during each of the 4 years were computed.Of the samples collected from each of the streams—Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—10, 12, 15, and 18 percent, respectively, had atrazine concentrations greater than 3.0 micrograms per liter, the U.S. Environmental Protection Agency maximum contaminant level. Loads of atrazine, metolochlor, and simazine were greater than loads of any other herbicides. The largest loads were transported during 1994. Loads of atrazine transported by the four streams during periods of storm- flow from May to September 1994 totaled 3.46, 28.3, 263, and 46.8 pounds, respectively. The total loads of atrazine transported by the four streams?Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek—during calendar year 1994 were 6.48, 54.1, 498, and 102 pounds, respectively. A little less than half the atrazine load transported by each stream—45, 39, 42, and 42 percent, respectively—was transported during storms that occurred from May through September.Average annual yields of atrazine for the period 1992-95 were 0.59, 0.64, 0.68, and 0.51 pounds per square mile from the Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek, respectively. Average annual yields of simazine were 0.36, 1.2, 0.54, and 0.48 pounds per square mile, respectively, and average annual yields of metolachlor were 0.46, 0.49, 0.54, and 0.31 pounds per square mile, respectively. Less than 1 percent of both the atrazine and metolachlor that was applied to all basins was transported by streamflow.

  13. Incident thyroid disease in female spouses of private pesticide applicators.

    PubMed

    Shrestha, Srishti; Parks, Christine G; Goldner, Whitney S; Kamel, Freya; Umbach, David M; Ward, Mary H; Lerro, Catherine C; Koutros, Stella; Hofmann, Jonathan N; Beane Freeman, Laura E; Sandler, Dale P

    2018-06-13

    Little is known about modifiable risk factors for thyroid disease. Several pesticides have been implicated in thyroid disruption, but clinical implications are not clear. We assessed associations between pesticide use and other farm exposures and incident hypothyroidism and hyperthyroidism in female spouses of farmers in the Agricultural Health Study (AHS). We used Cox proportional hazards models to estimate hazard ratios (HR) and 95% confidence intervals for risk of thyroid disease in 24,092 spouses who completed at least one follow-up questionnaire. We identified 1627 hypothyroid and 531 hyperthyroid cases over 20 years of follow-up. The fungicides benomyl, maneb/mancozeb, and metalaxyl, the herbicide pendimethalin, and among those over 60 years of age the insecticides parathion and permethrin (applied to crops) were associated with elevated hypothyroidism risk, with HR ranging from 1.56-2.44. Conversely, the insecticide phorate, and the herbicides imazethapyr and metolachlor were associated with decreased risk (HR ranging 0.63-0.73), as were long-term farm residence and other farm-related activities (HR ranging 0.69-0.84). For hyperthyroidism, the insecticide diazinon, the fungicides maneb/mancozeb, and the herbicide metolachlor were associated with increased risk (HR ranging 1.35-2.01) and the herbicide trifluralin with decreased risk (HR: 0.57). Several individual pesticides were associated with increased risk of hypothyroidism and hyperthyroidism, although some pesticides were associated with decreased risk. Some of the findings, specifically associations with fungicides, are consistent with results from an earlier analysis of prevalent diseases in AHS spouses. Published by Elsevier Ltd.

  14. Trends in concentrations and use of agricultural herbicides for Corn Belt rivers, 1996-2006

    USGS Publications Warehouse

    Vecchia, Aldo V.; Gilliom, Robert J.; Sullivan, Daniel J.; Lorenz, David L.; Martin, Jeffrey D.

    2009-01-01

    Trends in the concentrations and agricultural use of four herbicides (atrazine, acetochlor, metolachlor, and alachlor) were evaluated for major rivers of the Corn Belt for two partially overlapping time periods: 1996-2002 and 2000-2006. Trends were analyzed for 11 sites on the mainstems and selected tributaries in the Ohio, Upper Mississippi, and Missouri River Basins. Concentration trends were determined using a parametric regression model designed for analyzing seasonal variability, flow-related variability, and trends in pesticide concentrations(SEAWAVE-Q).TheSEAWAVE-Qmodel accounts for the effect of changing flow conditions in order to separate changes caused by hydrologic conditions from changes caused by other factors, such as pesticide use. Most of the trends in atrazine and acetochlor concentrations for both time periods were relatively small and nonsignificant, but metolachlor and alachlor were dominated by varying magnitudes of concentration downtrends. Overall, with trends expressed as a percent change per year, trends in herbicide concentrations were consistent with trends in agricultural use; 84 of 88 comparisons for different sites, herbicides, and time periods showed no significant difference between concentration trends and agricultural use trends. Results indicate that decreasing use appears to have been the primary cause for the concentration downtrends during 1996-2006 and that, while there is some evidence that nonuse management factors may have reduced concentrations in some rivers, reliably evaluating the influence of these factors on pesticides in large streams and rivers will require improved, basin-specific information on both management practices and use over time. ?? 2009 American Chemical Society.

  15. Modeling pesticide fate in a small tidal estuary

    USGS Publications Warehouse

    McCarthy, A.M.; Bales, J.D.; Cope, W.G.; Shea, D.

    2007-01-01

    The exposure analysis modeling system (EXAMS), a pesticide fate model developed by the U.S. Environmental Protection Agency, was modified to model the fate of the herbicides atrazine and metolachlor in a small tidally dominated estuary (Bath Creek) in North Carolina, USA where freshwater inflow accounts for only 3% of the total flow. The modifications simulated the changes that occur during the tidal cycle in the estuary, scenarios that are not possible with the original EXAMS model. Two models were created within EXAMS, a steady-state model and a time-variant tidally driven model. The steady-state model accounted for tidal flushing by simply altering freshwater input to yield an estuary residence time equal to that measured in Bath Creek. The tidal EXAMS model explicitly incorporated tidal flushing by modifying the EXAMS code to allow for temporal changes in estuary physical attributes (e.g., volume). The models were validated with empirical measurements of atrazine and metolachlor concentrations in the estuary shortly after herbicide application in nearby fields and immediately following a rain event. Both models provided excellent agreement with measured concentrations. The steady-state EXAMS model accurately predicted atrazine concentrations in the middle of the estuary over the first 3 days and under-predicted metolachlor by a factor of 2-3. The time-variant, tidally driven EXAMS model accurately predicted the rise and plateau of both herbicides over the 6-day measurement period. We have demonstrated the ability of these modified EXAMS models to be useful in predicting pesticide fate and exposure in small tidal estuaries. This is a significant improvement and expansion of the application of EXAMS, and given the wide use of EXAMS for surface water quality modeling by both researchers and regulators and the ability of EXAMS to interface with terrestrial models (e.g., pesticide root zone model) and bioaccumulation models, we now have an easily-accessible and widely accepted means of modeling chemical fate in estuaries. ?? 2006 Elsevier B.V. All rights reserved.

  16. Atrazine and metolachlor occurrence in shallow ground water of the United States, 1993 to 1995: Relations to explanatory factors

    USGS Publications Warehouse

    Kolpin, D.W.; Barbash, J.E.; Gilliom, R.J.

    2002-01-01

    Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground-water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground-water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land-use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and accuracy of the data employed for the factors examined, may help explain more of the remaining variance in the frequencies of atrazine and metolachlor detection.

  17. Eleven-year trend in acetanilide pesticide degradates in the Iowa River, Iowa.

    PubMed

    Kalkhoff, Stephen J; Vecchia, Aldo V; Capel, Paul D; Meyer, Michael T

    2012-01-01

    Trends in concentration and loads of acetochlor, alachlor, and metolachlor and their ethanasulfonic (ESA) and oxanilic (OXA) acid degradates were studied from 1996 through 2006 in the main stem of the Iowa River, Iowa and in the South Fork Iowa River, a small tributary near the headwaters of the Iowa River. Concentration trends were determined using the parametric regression model SEAWAVE-Q, which accounts for seasonal and flow-related variability. Daily estimated concentrations generated from the model were used with daily streamflow to calculate daily and yearly loads. Acetochlor, alachlor, metolachlor, and their ESA and OXA degradates were generally present in >50% of the samples collected from both sites throughout the study. Their concentrations generally decreased from 1996 through 2006, although the rate of decrease was slower after 2001. Concentrations of the ESA and OXA degradates decreased from 3 to about 23% yr. The concentration trend was related to the decreasing use of these compounds during the study period. Decreasing concentrations and constant runoff resulted in an average reduction of 10 to >3000 kg per year of alachlor and metolachlor ESA and OXA degradates being transported out of the Iowa River watershed. Transport of acetochlor and metolachlor parent compounds and their degradates from the Iowa River watershed ranged from <1% to about 6% of the annual application. These trends were related to the decreasing use of these compounds during the study period, but the year-to-year variability cannot explain changes in loads based on herbicide use alone. The trends were also affected by the timing and amount of precipitation. As expected, increased amounts of water moving through the watershed moved a greater percentage of the applied herbicides, especially the relatively soluble degradates, from the soils into the rivers through surface runoff, shallow groundwater inflow, and subsurface drainage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    USGS Publications Warehouse

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    Surface-water samples were collected from the Sacramento and San Joaquin Rivers where they enter the Sacramento–San Joaquin Delta, and analyzed by the U.S. Geological Survey for a suite of 99 current-use pesticides and pesticide degradates. Samples were collected twice per month from May 2012 through July 2013 and from May 2012 through April 2013 at the Sacramento River at Freeport, and the San Joaquin River near Vernalis, respectively. Samples were analyzed by two separate laboratory methods by using gas chromatography with mass spectrometry or liquid chromatography with tandem mass spectrometry. Method detection limits ranged from 0.9 to 10.5 nanograms per liter (ng/L). A total of 37 pesticides and degradates were detected in water samples collected during the study (18 herbicides, 11 fungicides, 7 insecticides, and 1 synergist). The most frequently detected pesticides overall were the herbicide hexazinone (detected in 100 percent of the samples); 3,4-dichloroaniline (97 percent), which is a degradate of the herbicides diuron and propanil; the fungicide azoxystrobin (83 percent); and the herbicides diuron (72 percent), simazine (66 percent), and metolachlor (64 percent). Insecticides were rarely detected during the study. Pesticide concentrations varied from below the method detection limits to 984 ng/L (hexazinone). Twenty seven pesticides and (or) degradates were detected in Sacramento River samples, and the average number of pesticides per sample was six. The most frequently detected compounds in these samples were hexazinone (detected in 100 percent of samples), 3,4-dichloroaniline (97 percent), azoxystrobin (88 percent), diuron (56 percent), and simazine (50 percent). Pesticides with the highest detected maximum concentrations in Sacramento River samples included the herbicide clomazone (670 ng/L), azoxystrobin (368 ng/L), 3,4-dichloroaniline (364 ng/L), hexazinone (130 ng/L), and propanil (110 ng/L), and all but hexazinone are primarily associated with rice agriculture. In addition to the twice monthly sampling, surface-water samples were collected from the Sacramento River on 5 consecutive days following a rainfall event in the Sacramento urban area. Samples collected following this event contained an average of 11 pesticides. The insecticides carbaryl, fipronil, and imidacloprid; the herbicide DCPA; and the fungicide imazalil were only detected in the Sacramento River during this storm-runoff event, and two detections of fipronil during this period exceeded the U.S. Environmental Protection Agency Aquatic Life Benchmark (11 ng/L) for chronic toxicity to invertebrates in freshwater. In San Joaquin River samples, 26 pesticides and (or) degradates were detected, and the average number detected per sample was 9. The most frequently detected compounds in these samples were hexazinone and metolachlor (detected in 100 percent of samples); diuron (96 percent); the fungicide boscalid (96 percent); the degradates 3,4-dicloroaniline (92 percent) and NN-(3,4-Dichlorophenyl)-N’-methylurea (DCPMU; 83 percent); simazine (83 percent); and azoxystrobin (75 percent). The pesticides with the highest detected maximum concentrations were hexazinone (984 ng/L), diuron (695 ng/L), simazine (524 ng/L), the herbicide prometryn (155 ng/L), metolachlor (127 ng/L), boscalid (112 ng/L), DCPMU (111 ng/L), and the herbicide pendimethalin (108 ng/L).

  19. Comparison of two screening bioassays, based on the frog sciatic nerve and yeast cells, for the assessment of herbicide toxicity.

    PubMed

    Papaefthimiou, Chrisovalantis; Cabral, Maria de Guadalupe; Mixailidou, Christina; Viegas, Cristina A; Sá-Correia, Isabel; Theophilidis, George

    2004-05-01

    Two different test systems, one based on the isolated sciatic nerve of an amphibian and the other on a microbial eukaryote, were used for the assessment of herbicide toxicity. More specifically, we determined the deleterious effects of increasing concentrations of herbicides of different chemical classes (phenoxyacetic acids, triazines, and acetamides), and of 2,4-dichlorophenol (2,4-DCP), a degradation product of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on electrophysiological parameters and the vitality of the axons of the isolated sciatic nerve of the frog (Rana ridibunda) and on the growth curve of the yeast Saccharomyces cerevisiae based on microtiter plate susceptibility assays. The no-observed-effect-concentration (NOEC), defined as the maximum concentration of the tested compound that has no effect on these biological parameters, was estimated. In spite of the different methodological approaches and biological systems compared, the NOEC values were identical and correlated with the lipophilicity of the tested compounds. The relative toxicity established here, 2,4-DCP > alachlor, metolachlor > metribuzin > 2,4-D, 2-methyl-4-chlorophenoxyacetic acid (MCPA), correlates with the toxicity indexes reported in the literature for freshwater organisms. Based on these results, we suggest that the relatively simple, rapid, and low-cost test systems examined here may be of interest as alternative or complementary tests for toxicological assessment of herbicides.

  20. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    PubMed

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  1. Development of a new ecotoxicological assay using the testate amoeba Euglypha rotunda (Rhizaria; Euglyphida) and assessment of the impact of the herbicide S-metolachlor.

    PubMed

    Amacker, Nathalie; Mitchell, Edward A D; Ferrari, Benoît J D; Chèvre, Nathalie

    2018-06-01

    An ever-increasing diversity of potentially toxic chemical compounds are being developed and released into the environment as a result of human activities (e.g. agriculture, drugs, and cosmetics). Among these, pesticides have been shown to affect non-targeted wildlife since the 1960s. A range of ecotoxicological tests are used to assess the toxicity of pesticides on various model organisms. However most model organisms are metazoans, while the majority of Eukaryotes are unicellular microorganisms known as protists. Protists are ubiquitous organisms of key functional roles in all ecosystems but are so far little studied with respect to pesticide impact. To fill this gap, we developed a new ecotoxicological test based on Euglypha rotunda, a common soil amoeba, grown in culture flask with Escherichia coli as sole food source. We tested this assay with the herbicide S-metolachlor, which is known to affect cell division in seedling shoots and roots of weeds. Reproducible growth conditions were obtained for E. rotunda. The growth of E. coli was not affected by the herbicide. The growth of E. rotunda was affected by the herbicide in a non-linear way, growth being significantly reduced at ca. 15 μg/L, but not at 150 μg/L. Our results show the potential for using soil protists in ecotoxicology and adds to the growing body of evidence for non-linear impacts of pesticides on non-target organisms. With the acquisition of additional data, the protocol should be suitable for standard ecotoxicological tests. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Simulation of stream discharge and transport of nitrate and selected herbicides in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Broshears, Robert E.; Clark, Gregory M.; Jobson, Harvey E.

    2001-05-01

    Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO; Ohio River at Grand Chain, IL; and Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico. Published in 2001 by John Wiley & Sons, Ltd.

  3. Net photosynthesis and respiration of sago pondweed (Potamogeton pectinatus) exposed to herbicides

    USGS Publications Warehouse

    Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Hughes, Jane S.; Biddinger, Gregory R.; Mones, Eugene

    1995-01-01

    We determined net photosynthesis and respiration rates for sago pondweed (potamogeton pectinatus) exposed to various concentrations of 11 herbicides widely used in Maryland during the past decade. Net photosynthesis and respiration were determined by measuring changes in the. oxygen content of solutions containing dilutions of technical grade herbicides. At 20-22? C and 58 umol/m2/sec of photosynthetically active radiation (PAR), oxygen production of undosed plants averaged 0.72-2.03 mg/g fresh wt/h. Respiration rates of undosed plants averaged 0.46-0.60 mg O2/g fresh wt/h. Nominal herbicide concentrations (ng/L) that reduced net photosynthesis by 5O percent (IC5O) were: metribuzin, 8; atrazine, 29; cyanazine, 32; linuron, 70; simazine, 164; and paraquat, 240. IC5O values for 2,4-D, acifluorfen, glyphosate and metolachlor exceeded the maximum test concentration of 10,000 ng/L. The IC5O value for alachlor was estimated to be between 1,000 and 10,000 ng/L. None of the herbicides tested had a significant effect on dark respiration.

  4. Comparison of three pesticide fate models based on lysimeter data of chloridazon and s-metolachlor from the Wagna test site, Austria

    NASA Astrophysics Data System (ADS)

    Brückner, Lisa; Klammler, Gernot; Schuhmann, Andrea; Kupfersberger, Hans; Fank, Johann

    2017-04-01

    A lysimeter experiment was conducted at the agricultural test site in Wagna, Austria, where clayey-sandy cambisol are predominant. The pesticides chloridazon and s-metolachlor were applied between 2010 and 2014 and the concentration of the active ingredients and their metabolites were measured regularly in the soil and the leachate in different depths (Schuhmann et al. 2016). During the lysimeter experiment maize, pumpkin and triticale were cultivated, which are the main field crops in that region. Beside this data, precise measurements of the soil hydrology parameters as well as meteorological data are available. Average annual precipitation at this site is 972 mm, mean annual groundwater recharge is 358 mm (2005-2014). Based on this data and the different breakthrough curves a comparison of the three different pesticide fate models PEARL, PELMO and MACRO is carried out for the pesticides s-metolachlor and chloridazon and their metabolites metolachlor oxanilic acid, metolachlor ethane sulfonic acid, desphenyl-chloridazon and methyl-desphenyl-chloridazon. The results of the modeling of the water movement and pesticide fate are evaluated and discussed. This work will contribute to a better understanding of the performance of this pesticide fate models for the above mentioned soil and hydrologic conditions. Schuhmann, A; Gans, O; Weiss, S; Fank, J; Klammler, G; Haberhauer, G; Gerzabek, MH (2016): A long-term lysimeter experiment to investigate the environmental dispersion of the herbicide chloridazon and its metabolites - comparison of lysimeter types. J SOIL SEDIMENT. 2016; 16(3): 1032-1045

  5. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group-Update and Additions to the Determination of Chloroacetanilide Herbicide Degradation Compounds in Water Using High-Performance Liquid Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Lee, E.A.; Kish, J.L.; Zimmerman, L.R.; Thurman, E.

    2001-01-01

    An analytical method using high-performance liquid chromatography/mass spectrometry (HPLC/MS) was developed by the U.S. Geological Survey in 1999 for the analysis of selected chloroacetanilide herbicide degradation compounds in water. These compounds were acetochlor ethane sulfonic acid (ESA), acetochlor oxanilic acid (OXA), alachlor ESA, alachlor OXA, metolachlor ESA, and metolachlor OXA. The HPLC/MS method was updated in 2000, and the method detection limits were modified accordingly. Four other degradation compounds also were added to the list of compounds that can be analyzed using HPLC/MS; these compounds were dimethenamid ESA, dimethenamid OXA, flufenacet ESA, and flufenacet OXA. Except for flufenacet OXA, good precision and accuracy were demonstrated for the updated HPLC/MS method in buffered reagent water, surface water, and ground water. The mean HPLC/MS recoveries of the degradation compounds from water samples spiked at 0.20 and 1.0 ?g/L (microgram per liter) ranged from 75 to 114 percent, with relative standard deviations of 15.8 percent or less for all compounds except flufenacet OXA, which had relative standard deviations ranging from 11.3 to 48.9 percent. Method detection levels (MDL's) using the updated HPLC/MS method varied from 0.009 to 0.045 ?g/L, with the flufenacet OXA MDL at 0.072 ?g/L. The updated HPLC/MS method is valuable for acquiring information about the fate and transport of the parent chloroacetanilide herbicides in water.

  6. Intrauterine growth retardation in Iowa communities with herbicide-contaminated drinking water supplies

    USGS Publications Warehouse

    Munger, R.; Isacson, P.; Hu, S.; Burns, T.; Hanson, J.; Lynch, C.F.; Cherryholmes, K.; Van Dorpe, P.; Hausler, W.J.

    1997-01-01

    In a statewide survey of 856 Iowa municipal drinking water supplies in 1986-1987 the Rathbun rural water system was found to contain elevated levels of triazine herbicides. Rates of low birth weight, prematurity, and intrauterine growth retardation (IUGR) in live singleton births during the period 1984-1990 by women living in 13 communities served by the Rathbun water system were compared to other communities of similar size in the same Iowa counties. The Rathbun communities had a greater risk of IUGR than southern Iowa communities with other surface sources of drinking water (relative risk = 1.8; 95% CI = 1.3, 2.7). Multiple linear regression analyses revealed that levels of the herbicides atrazine, metolachlor, and cyanazine were each significant predictors of community IUGR rates in southern Iowa after controlling for several potentially confounding factors including maternal smoking and socioeconomic variables. The association with IUGR was strongest for atrazine, but all three herbicides were intercorrelated and the independent contributions of each to IUGR risk could not be determined. We conclude that communities in southern Iowa with drinking water supplies contaminated with herbicides have elevated rates of IUGR compared to neighboring communities with different water supplies. Because of the limitations of the ecologic design of this study, including aggregate rather than individual measures of exposure and limited ability to control for confounding factors related to source of drinking water and risk of IUGR, a strong causal relationship between any specific water contaminant and risk of IUGR cannot yet be inferred. The association between the water supplied to the Rathbun communities and the increased risk of IUGR should be considered a preliminary finding that needs to be verified by more detailed epidemiologic studies.

  7. S-metolachlor promotes oxidative stress in green microalga Parachlorella kessleri - A potential environmental and health risk for higher organisms.

    PubMed

    Špoljarić Maronić, Dubravka; Štolfa Čamagajevac, Ivna; Horvatić, Janja; Žuna Pfeiffer, Tanja; Stević, Filip; Žarković, Neven; Waeg, Georg; Jaganjac, Morana

    2018-05-08

    The estimation of the toxic influences of herbicide products on non-target aquatic organisms is essential for evaluation of environmental contamination. We assessed the effects of the herbicide S-metolachlor (S-MET) on unicellular green microalga Parachlorella kessleri during 4-72 in vitro exposure to concentrations in the range 2-200μg/L. The results have shown that S-MET had a significant effect on algae, even in doses 10 and 20 times lower than the EC50 values obtained for P. kessleri (EC50-72h=1090μg/L). It generates reactive oxygen species in algae, decreases their growth and photosynthetic pigment concentration, changes their ultrastructure and alters the cellular antioxidant defence capacities. The levels of protein adducts with the reactive aldehyde 4-hydroxy-2-nonenal (HNE), the end-product of lipid peroxidation, were significantly elevated in S-MET treated cells revealing the insufficient effectiveness of P. kessleri antioxidant mechanisms and persistent lipid peroxidation. Since algae are fundamental aquatic food component, the damaged algal cells, still capable of dividing while having persistently increased content of HNE upon S-MET contamination could represent an important environmental toxic factor that might further affect higher organisms in the food chain. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The acetochlor registration partnership surface water monitoring program for four corn herbicides.

    PubMed

    Hackett, Amy G; Gustafson, David I; Moran, Sharon J; Hendley, Paul; van Wesenbeeck, Ian; Simmons, Nick D; Klein, Andrew J; Kronenberg, Joel M; Fuhrman, John D; Honegger, Joy L; Hanzas, John; Healy, David; Stone, Christopher T

    2005-01-01

    A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.

  9. Dissipation of terbuthylazine, metolachlor and mesotrione in soils with contrasting texture

    NASA Astrophysics Data System (ADS)

    Carretta, Laura; Cardinali, Alessandra; Zanin, Giuseppe; Masin, Roberta

    2017-04-01

    Herbicides play an important role in the crops production, but their use may result in residues with undesirable effects on the environment. The determination of the herbicide dissipation rate in agricultural soil is an important issue for monitoring their environmental fate. As soil composition is one of the factors affecting herbicide persistence, this study aimed to evaluate the dissipation of three herbicides, terbuthylazine (TERB), metolachlor (METO) and mesotrione (MESO) in soils with contrasting texture. The field trial was conducted at the Padua University Experimental Farm (45.3° N, 12.0° E) in the Po Valley, north-east Italy in 2012. The persistence of three herbicides has been studied in three diverse soil textures (clay, sand and loam soil) at two different depths (0-5 and 5-15 cm). A randomized complete block design was used for this experiment with six plots (2 m × 2 m) for each of 3 treatments. TERB, METO and MESO were applied in May on maize as a formulated product (Lumax®) with hand-held field plot sprayer at a dose of 3.5 L/ha. Soil organic carbon content was the highest in clay texture (1.10%) followed by loam soil (0.67%) and sandy soil (0.24%). The soil was sampled with a soil auger before herbicides treatment, and soon after treatment soil samples were taken to assess initial concentration, then at increasing times from spraying to evaluate field dissipation kinetics (t50). The dissipation of the herbicides in the treated plots was followed for nearly 2 months after their application. The herbicides were analysed by liquid chromatography-mass spectrometry. The dissipation of TERB, METO and MESO could be described by a pseudo first order kinetics. Within the herbicides, TERB showed the highest t50, followed by METO and MESO. Considering the tested soil, the highest t50 value was found for clay soil texture for TERB and METO, whereas for MESO there was no difference among different soils. Significant differences were found within the 2 soil depths for TERB and MESO only in sandy soil, for METO only in loam soil. In detail, considering the average of both depths, TERB and METO degraded slowly in clay soil (22 days and 16 days respectively) followed by loam soil (14 days and 7 days) and sandy soil (12 days and 5 days). On the other hand, MESO did not show significant differences (ranging from about 4 days in clay soil to 5 days in loam soil). These results suggest that soil texture have a large influence on the dissipation of TERB and METO, whereas no influence was observed on MESO.

  10. Comparative toxic responses of male and female lizards (Eremias argus) exposed to (S)-metolachlor-contaminated soil.

    PubMed

    Chen, Li; Wang, Dezhen; Tian, Zhongnan; Di, Shanshan; Zhang, Wenjun; Wang, Fang; Zhou, Zhiqiang; Diao, Jinling

    2017-08-01

    Soil contamination caused by the widespread use of pesticides is one of the main environmental problems facing conservation organizations. (S)-metolachlor (SM) is a selective pre-emergent herbicide that poses potential risks to soil-related organisms such as reptiles. The present study elucidated the toxic effects of SM (3 and 30 mg/kg soil weight) in Eremias argus. The results showed that growth pattern was similar between the sexes in breeding season. For males, both kidney coefficient (KC) and testis coefficient in the exposure group were significantly different from those in the control group, while only KC in the high-dose group was significantly higher for females. Based on histopathological analysis, the livers of female lizards were more vulnerable than those of males in the exposure group. A reduction in total egg output was observed in SM exposed lizards. Accumulation studies indicated that skin exposure may be an important route for SM uptake in E. argus, and that the liver and lung have strong detoxification abilities. In addition, the body burdens of the lizards increased with increasing SM concentration in the soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Water supply implications of herbicide sampling: Hydrologic conditions may affect concentrations of organonitrogen herbicides and may be important considerations in complying with drinking water regulations

    USGS Publications Warehouse

    Stamer, J.K.

    1996-01-01

    The temporal distribution of the herbicides alachlor, atrazine, cyanazine, and metolachlor was documented from September 1991 through August 1992 in the Platte River at Louisville, Neb., the drainage of the Central Nebraska Basins. Lincoln, Ornaha, and other municipalities withdraw groundwater for public supplies from the adjacent alluvium, which is hydraulically connected to the Platte River. Data were collected, in part, to provide information to managers, planners, and public utilities on the likelihood of water supplies being adversely affected by these herbicides. Three computational procedures - monthly means, monthly subsampling, and quarterly subsampling - were used to calculate annual mean herbicide concentrations. When the sampling was conducted quarterly rather than monthly, alachlor and atrazine concentrations were more likely to exceed their respective maximum contaminant levels (MCLs) of 2.0 μg/L and 3.0 μg/L, and cyanazine concentrations were more likely to exceed the health advisory level of 1.0 μg/L. The US Environmental Protection Agency has established a tentative MCL of 1.0 μg/L for cyanazine; data indicate that cyanazine is likely to exceed this level under most hydrologic conditions.

  12. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    PubMed

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  13. Comparison of pesticides in eight U.S. urban streams

    USGS Publications Warehouse

    Hoffman, R.S.; Capel, P.D.; Larson, S.J.

    2000-01-01

    Little is known of the occurrence of pesticides in urban streams compared to streams draining agricultural areas. Water samples from eight urban streams from across the United States were analyzed for 75 pesticides and seven transformation products. For six of the eight urban streams, paired agricultural streams were used for comparisons. The herbicides detected most frequently in the urban streams were prometon, simazine, atrazine, tebuthiuron, and metolachlor, and the insecticides detected most frequently were diazinon, carbaryl, chlorpyrifos, and malathion. In contrast to similar-sized agricultural streams, total insecticide concentrations commonly exceeded total herbicide concentrations in these urban streams. In general, the temporal concentration patterns in the urban streams were consistent with the characteristics of the local growing season. The insecticides carbaryl and diazinon exceeded criteria for the protection of aquatic life in many of the urban streams in the spring and summer. When the country as a whole is considered, the estimated mass of herbicides contributed by urban areas to streams is dwarfed by the estimated contribution from agricultural areas, but for insecticides, contributions from urban and agricultural areas may be similar. The results of this study suggest that urban areas should not be overlooked when assessing sources and monitoring the occurrence of pesticides in surface waters.

  14. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment.

    PubMed

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.

  15. Degradation of Herbicides in the Tropical Marine Environment: Influence of Light and Sediment

    PubMed Central

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; O'Brien, Jake; Flores, Florita; Negri, Andrew P.

    2016-01-01

    Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2–10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments. PMID:27806103

  16. Determination of acetanilide herbicides in cereal crops using accelerated solvent extraction, solid-phase extraction and gas chromatography-electron capture detector.

    PubMed

    Zhang, Yaping; Yang, Jun; Shi, Ronghua; Su, Qingde; Yao, Li; Li, Panpan

    2011-07-01

    A method was developed to determine eight acetanilide herbicides from cereal crops based on accelerated solvent extraction (ASE) and solid-phase extraction (SPE) followed by gas chromatography-electron capture detector (GC-ECD) analysis. During the ASE process, the effect of four parameters (temperature, static time, static cycles and solvent) on the extraction efficiency was considered and compared with shake-flask extraction method. After extraction with ASE, four SPE tubes (graphitic carbon black/primary secondary amine (GCB/PSA), GCB, Florisil and alumina-N) were assayed for comparison to obtain the best clean-up efficiency. The results show that GCB/PSA cartridge gave the best recoveries and cleanest chromatograms. The analytical process was validated by the analysis of spiked blank samples. Performance characteristics such as linearity, limit of detection (LOD), limit of quantitation (LOQ), precision and recovery were studied. At 0.05 mg/kg spiked level, recoveries and precision values for rice, wheat and maize were 82.3-115.8 and 1.1-13.6%, respectively. For all the herbicides, LOD and LOQ ranged from 0.8 to 1.7 μg/kg and from 2.4 to 5.3 μg/kg, respectively. The proposed analytical methodology was applied for the analysis of the targets in samples; only three herbicides, propyzamid, metolachlor and diflufenican, were detected in two samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The influence of natural dissolved organic matter on herbicide toxicity to marine microalgae is species-dependent.

    PubMed

    Coquillé, Nathalie; Ménard, Dominique; Rouxel, Julien; Dupraz, Valentin; Éon, Mélissa; Pardon, Patrick; Budzinski, Hélène; Morin, Soizic; Parlanti, Édith; Stachowski-Haberkorn, Sabine

    2018-05-01

    Microalgae, which are the foundation of aquatic food webs, may be the indirect target of herbicides used for agricultural and urban applications. Microalgae also interact with other compounds from their environment, such as natural dissolved organic matter (DOM), which can itself interact with herbicides. This study aimed to evaluate the influence of natural DOM on the toxicity of three herbicides (diuron, irgarol and S-metolachlor), singly and in ternary mixtures, to two marine microalgae, Chaetoceros calcitrans and Tetraselmis suecica, in monospecific, non-axenic cultures. Effects on growth, photosynthetic efficiency (Ф' M ) and relative lipid content were evaluated. The chemical environment (herbicide and nutrient concentrations, dissolved organic carbon and DOM optical properties) was also monitored to assess any changes during the experiments. The results show that, without DOM, the highest irgarol concentration (I0.5: 0.5 mg.L -1 ) and the strongest mixture (M2: irgarol 0.5 μg.L -1  + diuron 0.5 μg.L -1  + S-metolachlor 5.0 μg.L -1 ) significantly decreased all parameters for both species. Similar impacts were induced by I0.5 and M2 in C. calcitrans (around -56% for growth, -50% for relative lipid content and -28% for Ф' M ), but a significantly higher toxicity of M2 was observed in T. suecica (-56% and -62% with I0.5 and M2 for growth, respectively), suggesting a possible interaction between molecules. With DOM added to the culture media, a significant inhibition of these three parameters was also observed with I0.5 and M2 for both species. Furthermore, DOM modulated herbicide toxicity, which was decreased for C. calcitrans (-51% growth at I0.5 and M2) and increased for T. suecica (-64% and -75% growth at I0.5 and M2, respectively). In addition to the direct and/or indirect (via their associated bacteria) use of molecules present in natural DOM, the characterization of the chemical environment showed that the toxic effects observed on microalgae were accompanied by modifications of DOM composition and the quantity of dissolved organic carbon excreted and/or secreted by microorganisms. This toxicity modulation in presence of DOM could be explained by (i) the modification of herbicide bioavailability, (ii) a difference in cell wall composition between the two species, and/or (iii) a higher detoxification capacity of C. calcitrans by the use of molecules contained in DOM. This study therefore demonstrated, for the first time, the major modulating role of natural DOM on the toxicity of herbicides to marine microalgae. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Distribution of agrochemicals in the lower Mississippi River and its tributaries

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    The Mississippi River and its tributaries drain extensive agricultural regions of the Mid-Continental United States. Millions of pounds of herbicides are applied annually in these areas to improve crop yields. Many of these compounds are transported into the river from point and nonpoint sources, and eventually are discharged into the Gulf of Mexico. Studies being conducted by the U.S. Geological Survey along the lower Mississippi River and its major tributaries, representing a 2000 km river reach, have confirmed that several triazine and acetanilide herbicides and their degradation products are ubiquitous in this riverine system. These compounds include atrazine and its degradation products desethyl and desisopropylatrazine, cyanazine, simazine, metolachlor, and alachlor and its degradation products 2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6-diethylacetanilide and 2,6-diethylaniline. Loads of these compounds were determined at 16 different sampling stations. Stream-load calculations provided information concerning (a) conservative or nonconservative behavior of herbicides; (b) point sources or nonpoint sources; (c) validation of sampling techniques; and (d) transport past each sampling station.

  19. BOREAS TGB-7 Rainwater Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Conrad, Sara K. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TGB-7 team measured the concentration and flux of several agricultural pesticides in air and rainwater samples in order to determine the associated yearly deposition rates. This data set contains information on the rainwater concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files.

  20. Distribution of major herbicides in ground water of the United States

    USGS Publications Warehouse

    Barbash, Jack E.; Thelin, Gail P.; Kolpin, Dana W.; Gilliom, Robert J.

    1999-01-01

    Frequencies of detection at or above 0.01 microgram per liter in shallow ground water beneath agricultural areas during the NAWQA study were significantly correlated with agricultural use in those areas for atrazine, cyanazine, alachlor, and metolachlor (P<0.05; Spearman rank correlations), but not for simazine (P>0.05). In urban areas, overall frequencies of detection of these five herbicides in shallow ground water were positively correlated with their total nonagricultural use nationwide (P=0.026; simple linear correlation). Multivariate statistical analysis indicated that frequencies of detection in shallow ground water beneath agricultural areas were positively correlated with half-lives for transformation in aerobic soil and agricultural use of the compounds (P≤0.0001 for both parameters). Although frequencies of detection were not significantly correlated with their subsurface mobility (Koc; P=0.19) or the median well depths of the sampled networks (P=0.72), the range of Koc values among the five herbicides and the range of well depths were limited.

  1. Agricultural chemicals in near-surface aquifers in the mid-continental United States, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolpin, D.W.; Burkart, M.R.

    The occurrence and distribution of selected herbicides, atrazine metabolites, and nitrate were determined for unconsolidated and bedrock aquifers within 50 feet of land surface (near-surface) in the corn and soybean producing region of the mid-continental US. At least one herbicide or atrazine metabolite was detected (reporting limit, 0.05 micrograms per liter) in 24 percent of 579 water samples collected during the spring and summer of 1991. No herbicide exceeded maximum contaminant levels or health advisories. Most frequently detected was desethylatrazine (18.1 percent) followed by atrazine (17.4 percent), deisopropylatrazine (5.7 percent) and prometon (5.0 percent). Metolachlor, alachlor, metribuzin, simazine, and cyanazinemore » were found in fewer than 3 percent of the samples. Excess nitrate (more than 3.0 mg/L) was found in 29 percent of the samples; 6 percent exceeded 10 mg/L. Few herbicide detections or excess nitrate concentrations occurred in the eastern part of the study region even though this area had an intense use of herbicides and nitrogen-fertilizer. The source of prometon, the second most frequently detected herbicide, may be associated with nonagricultural land use such as golf courses and residential areas. Significant seasonal differences between the spring and summer sampling periods were found in herbicide detections, but not in excess nitrate. The frequency of herbicide detections and excess nitrate were greater in near-surface unconsolidated aquifers than found in near-surface bedrock aquifers. Depth to the top of the aquifer was inversely related to the frequency of both herbicide detection and excess nitrate. The proximity of sampling sites to streams affected the frequency of herbicide detection.« less

  2. The occurrence and transport of agricultural pesticides in the Tuttle Creek lake-stream system, Kansas and Nebraska

    USGS Publications Warehouse

    Bevans, Hugh E.; Fromm, Carla Hyde; Watkins, Sharon A.

    1995-01-01

    Median monthly atrazine concentrations detected in surface-water samples from the Big Blue River basin (1977-86) exceeded the U.S. Environmental Protection Agency health-advisory level (3.0 micrograms per liter) during May through September. Herbicide loads transported from the basin in 1986, expressed in tons and in percentage of amount applied, were alachlor (1.2 tons, 0.23 percent), atrazine (19 tons, 2.2 percent), and metolachlor (2.2 tons, 2.7 percent).

  3. Occurrence and distribution of pesticides in streams of the Eastern Iowa Basins, 1996-98

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; Kalkhoff, Stephen J.; Becher, Kent D.

    2001-01-01

    Occurrence of pesticide compounds varied by landform region. The triazine herbicides, atrazine and cyanazine and their degradates were present in significantly greater concentrations in the Southern Iowa Drift Plain (predominantly loess soils) than either the Des Moines Lobe or the Iowan Surface (predominantly till soils). Less atrazine and cyanazine are applied to till soils because of pH and organic carbon content. Alachlor, metolachlor, and acetochlor have often been used to offset triazine pesticide reductions in area with till soils.

  4. Herbicide Persistence in Seawater Simulation Experiments

    PubMed Central

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon. PMID:26313296

  5. Herbicide Persistence in Seawater Simulation Experiments.

    PubMed

    Mercurio, Philip; Mueller, Jochen F; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon.

  6. Predicting herbicide and biocide concentrations in rivers across Switzerland

    NASA Astrophysics Data System (ADS)

    Wemyss, Devon; Honti, Mark; Stamm, Christian

    2014-05-01

    Pesticide concentrations vary strongly in space and time. Accordingly, intensive sampling is required to achieve a reliable quantification of pesticide pollution. As this requires substantial resources, loads and concentration ranges in many small and medium streams remain unknown. Here, we propose partially filling the information gap for herbicides and biocides by using a modelling approach that predicts stream concentrations without site-specific calibration simply based on generally available data like land use, discharge and nation-wide consumption data. The simple, conceptual model distinguishes herbicide losses from agricultural fields, private gardens and biocide losses from buildings (facades, roofs). The herbicide model is driven by river discharge and the applied herbicide mass; the biocide model requires precipitation and the footprint area of urban areas containing the biocide. The model approach allows for modelling concentrations across multiple catchments at the daily, or shorter, time scale and for small to medium-sized catchments (1 - 100 km2). Four high resolution sampling campaigns in the Swiss Plateau were used to calibrate the model parameters for six model compounds: atrazine, metolachlor, terbuthylazine, terbutryn, diuron and mecoprop. Five additional sampled catchments across Switzerland were used to directly compare the predicted to the measured concentrations. Analysis of the first results reveals a reasonable simulation of the concentration dynamics for specific rainfall events and across the seasons. Predicted concentration ranges are reasonable even without site-specific calibration. This indicates the transferability of the calibrated model directly to other areas. However, the results also demonstrate systematic biases in that the highest measured peaks were not attained by the model. Probable causes for these deviations are conceptual model limitations and input uncertainty (pesticide use intensity, local precipitation, etc.). Accordingly, the model will be conceptually improved. This presentation will present the model simulations and compare the performance of the original and the modified model versions. Finally, the model will be applied across approximately 50% of the catchments in the Swiss Plateau, where necessary input data is available and where the model concept can be reasonably applied.

  7. Agricultural Spray Drift Concentrations in Rainwater, Stemflow ...

    EPA Pesticide Factsheets

    In order to study spray drift contribution to non-targeted habitats, pesticide concentrations were measured in stemflow (water flowing down the trunk of a tree during a rain event), rainfall, and amphibians in an agriculturally impacted wetland area near Tifton, Georgia, USA. Agricultural fields and sampling locations were located on the University of Georgia's Gibbs research farm. Samples were analyzed for >150 pesticides and over 20 different pesticides were detected in these matrices. Data indicated that herbicides (metolachlor and atrazine) and fungicides (tebuconazole) were present with the highest concentrations in stemflow, followed by those in rainfall and amphibian tissue samples. Metolachlor had the highest frequency of detection and highest concentration in rainfall and stemflow samples. Higher concentrations of pesticides were observed in stemflow for a longer period than rainfall. Furthermore, rainfall and stemflow concentrations were compared against aquatic life benchmarks and environmental water screening values to determine if adverse effects would potentially occur for non-targeted organisms. Of the pesticides detected, several had concentrations that exceeded the aquatic life benchmark value. The majority of the time mixtures were present in the different matrices, making it difficult to determine the potential adverse effects that these compounds will have on non-target species, due to unknown potentiating effects. These data help assess the

  8. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002

    USGS Publications Warehouse

    Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples

  9. Glyphasate, other herbicides, and transformation products in midwestern streams, 2002

    USGS Publications Warehouse

    Battaglin, William A.; Koplin, Dana W.; Scribner, Elizabeth A.; Kuivila, Kathryn; Sandstrom, Mark W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples.

  10. Ground water contamination and costs of pesticide restrictions in the southeastern coastal plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danielson, L.E.; Carlson, G.A.; Liu, S.

    The project developed new methodology for estimating: (1) groundwater contamination potential (GWCP) in the Southeast Coastal Plain, and (2) the potential economic impacts of selected policies that restrict pesticide use. The potential for ground water contamination was estimated by use of a simple matrix for combining ratings for both soil leaching potential and pesticide leaching potential. Key soil variables included soil texture, soil acidity and organic matter content. Key pesticide characteristics included Koc, pesticide half-life, the rate of application and the fraction of the pesticide hitting the soil. Comparisons of pesticide use from various farmer and expert opinion surveys weremore » made for pesticide groups and for individual pesticide products. Methodology for merging the GWCP changes and lost benefits from selected herbicide cancellations was developed using corn production in the North Carolina Coastal Plain. Economic evaluations of pesticide cancellations for corn included national and Coastal Plain estimates for atrazine; metolachlor; dicamba; dicamba and atrazine; and dicamba, atrazine and metolachlor.« less

  11. In situ assessment of pesticide genotoxicity in an integrated pest management program: II. Maize waxy mutation assay.

    PubMed

    Rodrigues, G S; Pimentel, D; Weinstein, L H

    1998-02-13

    The mutagenicity induced by pesticides applied in an integrated pest management (IPM) program was evaluated in situ with the maize forward waxy mutation bioassay. Three pesticide application rates were prescribed as follows: (1) Low--no field pesticide spray; (2) Medium--IPM test rate: banded cyanazine plus metolachlor (2.7 kg a.i. and 2.3 l a.i./ha of herbicides, respectively); and (3) High--a preventative pesticide application program: broadcast cyanazine plus metolachlor (same application rates as above) plus chlorpyrifos (1 kg a.i./ha of insecticide). In general, there was no significant reduction in the genotoxic effects from the high to the medium treatment levels of the IPM program. This suggests that the reduction in pesticide application rates attained with the implementation of the proposed IPM program was not sufficient to abate the genotoxicity of the pesticides. The results indicate that replacing genotoxic compounds may be the only effective remediation measure if concern about environmental mutagenesis were to result in changes in agricultural management.

  12. Pesticides in surface water in the lower Illinois River basin, 1996-98

    USGS Publications Warehouse

    King, Robin B.

    2003-01-01

    Surface-water quality samples were collected from April 1996 to September 1998 from eight locations in the Lower Illinois River Basin, a study unit of the U.S. Geological Survey?s National Water-Quality Assessment program. The study area is approximately 15,600 square miles and encompasses most of central and western Illinois. The dominant land use is agricultural and most land is used for the production of corn and soybeans. About 6.9 million acres of corn and soybeans are planted annually in the lower Illinois River Basin. Conservation tillage, defined as mulch-till and no-till, is used on about 40 percent of the cropland in the study area, similar to the statewide average. Nearly 90 percent of the samples for pesticide analyses were collected at four sites: the Illinois River at Ottawa, the Illinois River at Valley City, the La Moine River at Colmar, and the Sangamon River at Monticello. Two hundred fifty-eight samples were collected and analyzed for various herbicides, insecticides, and herbicide transformation products (also referred to as degradates). Thirty-one pesticides were detected at concentrations above their respective method detection limit: 23 herbicides and 8 insecticides. An additional set of 34 samples was collected in the summer of 1998 for the analysis of herbicide transformation products. Nine herbicide transformation products were detected, all belonging to the chloroacetanilide or the triazine chemical class. Two herbicides, atrazine and cyanazine, exceeded the associated human health drinking-water criteria and the aquatic health-criteria. Atrazine was detected in all samples. Sixty percent of the samples (48 of 80) collected in the months of May and June had atrazine concentrations that exceeded the clean drinking- water standard of 3 micrograms per liter (mg/L). The average atrazine concentration in the May to June samples was about 7.0 mg/L. The maximum atrazine concentrations were 110 mg/L in the La Moine River at Colmar and 32 mg/L in the Sangamon River at Monticello. The maximum atrazine concentration in the lower Illinois River was 20 mg/L, measured at Valley City, although most of the relatively elevated concentrations in the Illinois River sites were in the range from 5 to 8 mg/L. The concentrations of the herbicide cyanazine exceeded the health advisory guideline of 1 mg/L in about 19 percent (15 of 80) of the May to June samples. The pesticides chlorpyrifos, diazinon, metolachlor, and 2,4-D exceeded aquatic health guidelines at various times from May to August. Three dominant factors that affect the presence of pesticides in streams are identified: the pesticide usage, the time-of-year (or season), and the flow condition. The pesticides with the highest usage--atrazine, metolachlor, cyanazine, and acetochlor--generally were the pesticides detected most frequently and at the highest concentrations. Notable exceptions to this general observation are alachlor and simazine, which did not have high usage but were detected frequently. The elevated pesticide concentrations were most affected by seasonality--most of these elevated concentrations were observed across all flow conditions during May to June. Flow conditions also affect pesticide concentrations, but not as much as seasonality. The maximum pesticide loads were observed between March and July on the Illinois River. The net contribution of pesticides applied in the study area to net increases in load indicates that only about 1-2 percent of the pesticides applied exit the basin through the Illinois River at Valley City. The chloroacetanilide-class transformation products observed in samples collected in summer 1998 persistently contained elevated concentrations relative to the associated parent pesticide compound at all locations and for all streamflow conditions. The concentration of the transformation product metolachlor ethane sulfonic acid (ESA) usually was about 10 times higher than the parent compound in the mainstem of the lower

  13. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  14. Herbicides in the Pecatonica, Trempealeau, and Yahara Rivers in Wisconsin, May 1997-July 1998

    USGS Publications Warehouse

    Graczyk, David J.; Vanden Brook, James P.; Rheineck, Bruce D.

    1999-01-01

    In 1997, Wisconsin farmers applied 8.7 million pounds of herbicides on corn. The five most commonly applied herbicides (in lb (pounds) of active ingredient per acre) on corn in 1997 were atrazine, metolachlor, acetochlor, alachlor and cyanazine. A 1996 study by the U.S. Geological Survey (USGS) and the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) found that the most heavily applied agricultural herbicides were detected more frequently and at higher concentrations in the Pecatonica and Yahara Rivers in southern Wisconsin than the less heavily applied herbicides (Graczyk and Vanden Brook, 1997). The calculated herbicide loads a from May 15 to July 15, 1996 at the Pecatonica River ranged from 47.2 lb of alachlor to 484 lb of atrazine. For the Yahara River, loads ranged from 36.1 lb of alachlor to 289 lb of atrazine. The yields b (load per square mile) for atrazine were similar in the two water- sheds. This result was unexpected because the use of atrazine is prohibited on 94 percent of the Yahara River Watershed, but on only 4 percent of the Pecatonica River watershed. The unexpected atrazine result led to a continuation of the study in 1997 and 1998, when samples were collected again at the two sites sampled in 1996, and at a site in the upper third of the Yahara River Watershed that is entirely under atrazine use prohibition. For comparison purposes, a site in west-central Wisconsin also was sampled to determine herbicide loads and yields in another geographic area in the state

  15. Modelling the dissipation and leaching of two herbicides in decomposing mulch of crop residues

    NASA Astrophysics Data System (ADS)

    Aslam, Sohaib; Iqbal, Akhtar; Lafolie, François; Recous, Sylvie; Benoit, Pierre; Garnier, Patricia

    2013-04-01

    Conservation agricultural practices are increasingly adopted because of ecosystem services such as conservation of soil and water resources. These farming systems are characterized mainly by the presence of mulch made of residues of harvested or cover crops on soil surface. The mulch can intercept and retain applied pesticides depending on pesticide molecule and rainfall timing. The pesticide wash-off from mulch is considered a key process in pesticide fate and can have effects on degradation and transport processes. This work highlights a modelling approach to study the pesticide wash-off from mulch residues and their further transport in soil under two rainfall regimes. Transformation and leaching of two herbicides, s-metolachlor and glyphosate, was studied and simulated by Pastis-mulch model. A pesticide module describing pesticide degradation in mulch and soil was coupled to a transport model including a mulch module. The model was tested to simulate the pesticide dissipation, wash-off from mulch and further leaching in soil. Pesticide degradation parameters in mulch were estimated from incubation experiments with 14C-labelled molecules in small cylinders. The model was then tested using the data obtained through a soil column experiment (reconstructed soil cores :15 cm diameter x 35 cm depth), a mulch of Zea mais + Doliquos lablab and with two treatments varied by water regimes: i) frequent rain (temperate, twice a week) with week intensity (6 mm/hr); and ii) occasional rain (tropical, twice a month) with stronger intensity (20 mm/hr). Columns were incubated at 20 °C for 84 days to monitor soil water, C, N and pesticide dynamics. Model successfully simulated the experimental data of pesticide dissipation in mulch residues. Results showed that the rain regime affected more S-metolachlor than glyphosate behavior. The simulated results indicated also that the dynamics in mulch of the two molecules differed according to the rain treatment. Glyphosate showed a greater leaching from mulch than S-metolachlor because of its lower adsorption coefficients to organic mulch. Moreover, simulated results showed a much faster degradation of glyphosate but greater non-extractable residue formation for S-metolachlor. Keywords: Mulch; Pesticides; Transport; Degradation; Modeling; Pastis-mulch References Findeling, A., Garnier, P., Coppens, F., Lafolie, F., Recous, S., 2007. Modelling water, carbon and nitrogen dynamics in soil covered with decomposing mulch. European Journal of Soil Science 58, 196-206. Lashermes, G., Zhang, Y., Houot, S., Barriuso, E., Steyer, J.P., Patureau, D., Garnier, P., 2013. A model coupling organic carbon and organic pollutant dynamics during composting. Journal of Environmental Quality. In Press.

  16. Concentration of selected sulfonylurea, sulfonamide, and imidazolinone herbicides, other pesticides, and nutrients in 71 streams, 5 reservoir outflows, and 25 wells in the Midwestern United States, 1998

    USGS Publications Warehouse

    Battaglin, William A.; Furlong, Edward T.; Burkhardt, Mark R.

    2001-01-01

    Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are recently developed herbicides that function by inhibiting the action of a key plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but crop and non-crop plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs, with over a 10,000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the United States. To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 214 water samples were collected from 76 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA, and IMI herbicides by using highperformance liquid chromatography/mass spectrometry. Samples also were analyzed for 46 pesticides and pesticide degradation products and 13 herbicides and 10 herbicide degradates. At least 1 of the 16 SUs, SAs, or IMIs was detected at or above the method reporting limit of 0.010 microgram per liter (ug/L) in 83 percent of 133 stream samples. Imazethapyr was detected most frequently (69 percent of samples), followed by flumetsulam (65 percent of samples) and nicosulfuron (53 percent of samples). At least one SU, SA, or IMI herbicide was detected at or above the method reporting limit in 6 of 8 reservoir samples and 5 of 25 ground-water samples. SU, SA, and IMI herbicides occurred less frequently and at a fraction (often 1/50th or less) of the concentrations of other herbicides such as atrazine. Acetochlor, atrazine, cyanazine, and metolachlor were all detected in 95 percent or more of 136 stream samples.

  17. Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms

    PubMed Central

    Larras, Floriane; Bouchez, Agnès; Rimet, Frédéric; Montuelle, Bernard

    2012-01-01

    Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC5) and the Effective Concentration 50 (EC50) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC5) and 50 (HC50). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and “motile” guild species were more tolerant of PSII inhibitors, while N-autotroph and “low profile” guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron. PMID:22952981

  18. Pesticides in Streams in Central Nebraska

    USGS Publications Warehouse

    Stamer, J.K.; Wieczorek, Michael

    1995-01-01

    Contamination of surface and ground water from non-point sources is a national issue. Examples of nonpoint-source contaminants from agricultural activities are pesticides, which include fungicides, herbicides, and insecticides; sediment; nutrients (nitrogen and phosphorus); and fecal bacteria. Of these contaminants, pesticides receive the most attention because of the potential toxicity to aquatic life and to humans. Most farmers use pesticides to increase crop yields and values. Herbicides prevent or inhibit the growth of weeds that compete for nutrients and moisture needed by the crops. Herbicides are applied before, during, or following planting. In addition to agricultural use, herbicides are used in urban areas, often in larger rates of application, for weed control such as among rights-of-way. Alachlor, atrazine, cyanazine, and metolachlor, which are referred to as organonitrogen herbicides, were the four most commonly applied herbicides (1991) in the Central Nebraska Basins (CNB). These herbicides are used for corn, sorghum, and soybean production. Atrazine was the most extensively applied pesticide (1991) in central Nebraska. Insecticides are used to protect the crop seeds in storage prior to planting and also to protect the plants from destruction once the seeds have germinated. Like herbicides, insecticides are also used in urban areas to protect lawns, trees, and ornamentals. Many of the 46 pesticides shown in the table have either a Maximum Contaminant Level (MCL) of Health Advisory Level (HAL) established by the U.S. Environmental Protection Agency (USEPA) for public water supplies. The purposes of this Fact Sheet are to (1) to provide water-utility managers, water-resources planners and managers, and State regulators an improved understanding of the distributions of concentrations of pesticides in streams and their relation to respective drinking-water regulations or criteria, and (2) to describe concentrations of pesticides in streams draining a selected small agricultural basin and a large agricultural area.

  19. BOREAS TGB-7 Dry Deposition Herbicide and Organochlorine Flux Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Conrad, Sara K. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TGB-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the dry deposition flux of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files.

  20. The influence of a season of extreme wet weather events on exposure of the World Heritage Area Great Barrier Reef to pesticides.

    PubMed

    Kennedy, Karen; Devlin, Michelle; Bentley, Christie; Lee-Chue, Kristie; Paxman, Chris; Carter, Steve; Lewis, Stephen E; Brodie, Jon; Guy, Ellia; Vardy, Suzanne; Martin, Katherine C; Jones, Alison; Packett, Robert; Mueller, Jochen F

    2012-07-01

    The 2010-2011 wet season was one of extreme weather for the State of Queensland, Australia. Major rivers adjacent to the Great Barrier Reef (GBR) were discharging at rates 1.5 to >3 times higher than their long term median. Exposure to photosystem II herbicides has been routinely monitored over a period of up to 5 years at 12 inshore GBR sites. The influence of this wet season on exposure to photosystem II herbicides was examined in the context of this long-term monitoring record and during flood plume events in specific regions. Median exposures expressed as diuron equivalent concentration were an average factor of 2.3 times higher but mostly not significantly different (p<0.05) to the median for the long-term monitoring record. The herbicides metolachlor and tebuthiuron were frequently detected in flood plume waters at concentrations that reached or exceeded relevant water quality guidelines (by up to 4.5 times). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Interference of three herbicides on iron acquisition in maize plants.

    PubMed

    Bartucca, Maria Luce; Di Michele, Alessandro; Del Buono, Daniele

    2018-05-07

    The use of herbicides to control weed species could lead to environmental threats due to their persistence and accumulation in the ecosystems and cultivated fields. Nonetheless, the effect of these compounds on plant mineral nutrition in crops has been barely investigated. This study aimed at ascertaining the effect of three herbicides (S-metolachlor, metribuzin and terbuthylazine) on the capacity of maize to acquire iron (Fe). Interferences on plant growth and reductions on the Fe contents were found in the plants treated. Furthermore, root cell viability and functionality losses were ascertained following the treatments, which, in turn, decreased the amount of phytosiderophores (PSs) released by the roots. An investigation carried out in greater depth on root apices of treated plants using an FE-SEM (Scanning Electron Microscope) coupled with EDX (Energy Dispersive X-ray) indicated that the reductions on Fe content started in this part of the roots. Lastly, decreases were found also in copper (Cu +2 ), zinc (Zn +2 ) and manganese (Mn +2 ) content in root apices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Vegetated Ditches for the Mitigation of Pesticides Runoff in the Po Valley.

    PubMed

    Otto, Stefan; Pappalardo, Salvatore E; Cardinali, Alessandra; Masin, Roberta; Zanin, Giuseppe; Borin, Maurizio

    2016-01-01

    In intensive agricultural systems runoff is one of the major potential diffuse pollution pathways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effectiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model) can allows recognition of the mitigation main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 μg L(-1). No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemical parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are present in the landscape, and their environmental role can be exploited by proper management.

  3. Vegetated Ditches for the Mitigation of Pesticides Runoff in the Po Valley

    PubMed Central

    Pappalardo, Salvatore E.; Cardinali, Alessandra; Masin, Roberta; Zanin, Giuseppe; Borin, Maurizio

    2016-01-01

    In intensive agricultural systems runoff is one of the major potential diffuse pollution pathways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effectiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model) can allows recognition of the mitigation main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 μg L-1. No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemical parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are present in the landscape, and their environmental role can be exploited by proper management. PMID:27070781

  4. Pesticides in the Lower Clackamas River Basin, Oregon, 2000-01

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2004-01-01

    In 2000-01, the U. S. Geological Survey sampled the Clackamas River and its major lower-basin tributaries during storm runoff conditions for 86 dissolved pesticides and selected breakdown products. Twenty-seven compounds, including 18 herbicides, 7 insecticides, and 2 pesticide breakdown products, were detected in 18 stream samples. The most commonly detected pesticides, in decreasing frequency, included atrazine, simazine, diazinon, metolachlor, and diuron, which variously occurred in 46-92% of samples collected from the tributaries. Of these, atrazine, simazine, and metolachlor, plus six other compounds, also were detected in the main-stem Clackamas River. Pesticides were detected more frequently and at higher concentrations in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks). In these streams, 12 to 18 pesticides were detected per stream in samples collected during spring and fall. Pesticides always occurred with at least one other pesticide, and about half of the samples, including one sample from the Clackamas River in October 2000, contained six or more pesticides. Nine pesticides, including the insecticide diazinon and the herbicides 2,4-D, atrazine, dichlobenil, diuron, imazaquin, metolachlor, simazine, and trifluralin, were detected in five water samples of Clackamas River water. No pesticides were detected in three samples of treated Clackamas River water used for drinking-water supply. Concentrations of six compounds--carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and the breakdown product of DDT (p,p'-DDE)--exceeded established or recommended criteria for the protection of aquatic life in some of the tributaries, sometimes for multiple pesticides in one sample. Identifying the sources of pesticides detected in the Clackamas River Basin is difficult because of the diverse land use in the basin and the multiple-use nature of many of the pesticides detected. Of the 25 parent compounds detected, 22 have agricultural uses, 23 have urban uses, 16 are applied to golf courses, 11 are applied along roads and other right-of-ways, and 5 have or had forestry applications. Because only a small fraction of the thousands of pesticide products registered for use in Oregon were tested for in this study, future monitoring could benefit from knowledge of what pesticides are applied so that potential problems can be identified and managed.

  5. Compound-specific isotope analysis (CSIA) for assessing pesticide dynamics in soil and vadose zone

    NASA Astrophysics Data System (ADS)

    Torrentó, Clara; Bakkour, Rani; Melsbach, Aileen; Ponsin, Violaine; Lihl, Christina; Prasuhn, Volker; Hofstetter, Thomas B.; Elsner, Martin; Hunkeler, Daniel

    2017-04-01

    A lysimeter facility was used to study long-term pesticide fate and transport through two different soils. The present investigation focuses on some commonly and worldwide used herbicides for weed control on corn (atrazine, acetochlor and metolachlor) and sugar beet (chloridazon), together with their main degradation products. Since some degradation products are found more frequently and at higher concentrations that their parent compounds, there is growing environmental concern. The fate of these metabolites is, however, not well-understood. Twelve weighing lysimeters filled with two typical arable soils in Switzerland (a well-drained sandy loam cambisol developed from a stony alluvium-"gravel soil"- and a poorly-drained loam cambisol developed from moraine deposits -"moraine soil"-) were cropped with corn in the first and third seasons, and sugar beet in the second one. Three types of experiments were performed: (1) herbicides application at the surface simulating the common application scenario, (2) herbicides injection at a depth of 40 cm for simulating high preferential transport through the topsoil and assessing the dynamics below the root zone, and (3) metabolites (2,6-dichlorobenzamide, desphenylchloridazon and desethylatrazine) application at the surface to simulate rapid generation of transformation products from the parent compounds. Leachate was collected and the concentration of the applied substances and main degradation products was determined. Since assessing transport and fate of micropollutants in the environment is extremely difficult because transformation processes are slow and may not become evident from analysis of concentrations, multi-element (C, N, Cl) compound-specific isotope analysis (CSIA) is also being used. With both surface application and depth injection, compound breakthrough by preferential as well as matrix flow was observed. A few days after their application, significant infiltration of the herbicides took place by preferential flow, bypassing the sorption and degradation capacity of the soil matrix. Thereafter, the main movement was through the soil matrix and thus, the longer residence time of the herbicides in the soil zone enhanced degradation and due to the high mobility of the metabolites, they were detected in the leachates. Breakthrough of the applied metabolites was also observed. For most of the cases, concentrations were higher in the leachates of the gravel soil than in the moraine soil. Preliminary results of C and N isotope signatures of the target compound in the leachates show significant isotope enrichment trends in acetochlor and metolachlor and less evident in atrazine, confirming the occurrence of degradation processes.

  6. Does S-Metolachlor Affect the Performance of Pseudomonas sp. Strain ADP as Bioaugmentation Bacterium for Atrazine-Contaminated Soils?

    PubMed Central

    Viegas, Cristina A.; Costa, Catarina; André, Sandra; Viana, Paula; Ribeiro, Rui; Moreira-Santos, Matilde

    2012-01-01

    Atrazine (ATZ) and S-metolachlor (S-MET) are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g−1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD)), the presence of pure S-MET significantly affected neither bacteria survival (∼107 initial viable cells g−1 of soil) nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50×RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days) and extensively (>96%) removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil. PMID:22615921

  7. Occurrence, distribution, loads, and yields of selected pesticides in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Water resources in the Little River Basin are potentially vulnerable to applications of pesticides associated with both agricultural and nonagricultural activities, because much of the basin is characterized by karst topography. Concerns about water quality resulting from pesticide use in karst areas and lack of data on concentrations of pesticides in surface water led to further investigation of water quality in the Little River Basin, which includes about 600 square miles in Christian and Trigg Counties and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin, Kentucky during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. The objectives of the study were to assess the occurrence and distribution of pesticides, to evaluate the spatial and seasonal variability of pesticides, and to evaluate loads and yields of selected pesticides in the basin. A total of 91 water samples was collected at 4 fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at 5 synoptic-network sites within the same period. Twenty-four pesticides were detected of the 127 pesticides analyzed in the stream samples. Of the 24 detected pesticides, 15 were herbicides, 7 were insecticides, and 2 were fungicides. The most commonly detected pesticides-atrazine, simazine, metolachlor, and acetochlor-were those most heavily used on crops during the study. Atrazine and simazine were detected in 100 percent of all surface-water samples, and metolachlor and acetochlor were detected in more than 45 percent. The pesticide degradate, deethylatrazine, was detected in 100 percent of the samples. Only one nonagricultural herbicide, prometon, was detected in more than 50 percent of the samples. Diazinon, the most commonly detected insecticide, was found in 25 percent of all samples and was found at all sites except Casey Creek. Metalaxyl was the most commonly detected fungicide (14 percent); most detections were in samples from the Sinking Fork subbasin. Concentrations of herbicides were highest following application in the spring (March-May). In contrast, insecticides typically were present during the summer (June-August). The most commonly detected pesticides in the Little River Basin were found at low concentrations in streams year-round. Atrazine and simazine (row-crop herbicides) had the highest measured concentrations (22 and 6.1 micrograms per liter (?g/L), respectively) and were the most heavily applied herbicides in the basin. Metolachlor also was heavily applied in the basin, but measured concentrations did not exceed 0.32 ?g/L. The insecticide, Malathion, was only detected in 4 percent of the samples, although it was heavily applied in the basin during 2003-04. Most detections of pesticides were at low concentrations in relation to drinking-water standards and guidelines established for the protection of aquatic life. Only two pesticide compounds--atrazine and simazine--exceeded the U.S. Environmental Protection Agency (USEPA) standards for drinking water. Atrazine exceeded the USEPA's maximum contaminant level (MCL) 19 times in 111 detections; simazine exceeded the established MCL 2 times in 111 detections. These exceedences occurred in the spring. Concentrations of atrazine also exceeded the established aquatic-life criterion (1.8 ?g/L) in 32 samples collected from all sites. Concentrations of deethylatrazine, an herbicide-transformation compound, tended to follow the same monthly concentration pattern as its parent compound (atrazine), but concentrations of deethylatrazine were lower than those of atrazine. Atrazine may have been present in the soil much longer at these sites, which might have allowed microbial populations to transform atrazine into deethylatrazine. A statistical comparison of concentrations of selected pesticides among four fixed-network sites

  8. Development of sampling and analytical methods for concerted determination of commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand-wash, dermal-patch, and air samples.

    PubMed

    Tucker, S P; Reynolds, J M; Wickman, D C; Hines, C J; Perkins, J B

    2001-06-01

    Sampling and analytical methods were developed for commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand washes, on dermal patches, and in air. Eight herbicides selected for study were alachlor, atrazine, cyanazine, 2,4-dichlorophenoxyacetic acid (2,4-D), metolachlor, simazine, and two esters of 2,4-D, the 2-butoxyethyl ester (2,4-D, BE) and the 2-ethylhexyl ester (2,4-D, EH). The hand-wash method consisted of shaking the worker's hand in 150 mL of isopropanol in a polyethylene bag for 30 seconds. The dermal-patch method entailed attaching a 10-cm x 10-cm x 0.6-cm polyurethane foam (PUF) patch to the worker for exposure; recovery of the herbicides was achieved by extraction with 40 mL of isopropanol. The air method involved sampling with an OVS-2 tube (which contained an 11-mm quartz fiber filter and two beds of XAD-2 resin) and recovery with 2 mL of 10:90 methanol:methyl t-butyl ether. Analysis of each of the three sample types was performed by gas chromatography with an electron-capture detector. Diazomethane in solution was employed to convert 2,4-D as the free acid to the methyl ester in each of the three methods for ease of gas chromatography. Silicic acid was added to sample solutions to quench excess diazomethane. Limits of detection for all eight herbicides were matrix-dependent and, generally, less than 1 microgram per sample for each matrix. Sampling and analytical methods met NIOSH evaluation criteria for all herbicides in hand-wash samples, for seven herbicides in air samples (all herbicides except cyanazine), and for six herbicides in dermal-patch samples (all herbicides except cyanazine and 2,4-D). Speciation of 2,4-D esters and simultaneous determination of 2,4-D acid were possible without losses of the esters or of other herbicides (acetanilides and triazines) being determined.

  9. BOREAS TGB-7 Ambient Air Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the ambient air concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  10. Determination of trace levels of herbicides and their degradation products in surface and ground waters by gas chromatography/ion-trap mass spectrometry

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    A rapid, specific and highly sensitive method is described for the determination of several commonly used herbicides and their degradation products in surface and ground waters by using gas chromatography/ion-trap mass spectrometry. The compounds included atrazine, and its degradation products desethylatrazine and desisopropylatrazine; Simazine; Cyanazine; Metolachlor; and alachlor and its degradation products, 2-chloro-2', 6'-diethylacetanilide, 2-hydroxy-2', 6'-diethylacetanilide and 2,6-diethylaniline. The method was applied to surface-water samples collected from 16 different stations along the lower Mississippi River and its major tributaries, and ground-water samples beneath a cornfield in central Nebraska. Average recovery of a surrogate herbicide, terbuthylazine, was greater than 99%. Recoveries of the compounds of interest from river water spiked at environmental levels are also presented. Full-scan mass spectra of these compounds were obtained on 1 ng or less of analyte. Data were collected in the full-scan acquisition mode. Quantitation was based on a single characteristic ion for each compound. The detection limit was 60 pg with a signal-to-noise ratio of greater than 10:1.

  11. Impacts of Rac- and S-metolachlor on cyanobacterial cell integrity and release of microcystins at different nitrogen levels.

    PubMed

    Wang, Jia; Zhang, Lijuan; Fan, Jiajia; Wen, Yuezhong

    2017-08-01

    Pesticide residues and nitrogen overload (which caused cyanobacteria blooms) have been two serious environmental concerns. In particular, chiral pesticides with different structures may have various impacts on cyanobacteria. Nitrogen may affect the behavior between pesticides and cyanobacteria (e.g., increase the adverse effects of pesticides on cyanobacteria). This study evaluated the impacts of Rac- and S-metolachlor on the cell integrity and toxin release of Microcystis aeruginosa cells at different nitrogen levels. The results showed that (both of the configurations: Rac-, S-) metolachlor could inhibit M. aeruginosa cell growth under most conditions, and the inhibition rates were increased with the growing concentrations of nitrogen and metolachlor. However, cyanobacterial growth was promoted in 48 h under environmental relevant condition (1 mg/L metolachlor and 0.15 mg/L nitrogen). Therefore, the water authorities should adjust the treatment parameters to remove possible larger numbers of cyaonbacteria under that condition. On the other hand, the inhibition degree of M. aeruginosa cell growth by S-metolachlor treatments was obviously larger than Rac-metolachlor treatments. S-metolachlor also had a stronger ability in compromising M. aeruginosa cells than Rac-metolachlor treatments. Compared to control samples, more extracellular toxins (12%-86% increases) were detected after 5 mg/L S-metolachlor treatment for 72 h at different nitrogen levels, but the variations of extracellular toxins caused by 5 mg/L Rac-metolachlor addition could be neglected. Consequently, higher concentrations of metolachlor in source waters are harmful to humans, but it may prevent cyanobacterial blooms. However, the potential risks (e.g. build-up of extracellular toxins) should be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Simulated ground-water flow and water quality of the Mississippi River alluvium near Burlington, Iowa, 1999

    USGS Publications Warehouse

    Boyd, Robert A.

    2001-01-01

    Water samples collected from the alluvium indicated ground water can be classified as a calcium-magnesium-bicarbonate type. Reducing conditions likely occur in some localized areas of the alluvium, as suggested by relatively large concentrations of dissolved iron (4,390 micrograms per liter) and manganese (2, 430 micrograms per liter) in some ground-water samples. Nitrite plus nitrate was detected at concentrations greater than or equal to 8 milligrams per liter in three samples collected from observation wells completed in close proximity to cropland; the nitrite plus nitrate concentration in one groundwater sample exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for nitrate in drinking water (10 milligrams per liter as N). Triazine herbicides (atrazine, cyanazine, propazine, simazine, and selected degradation products) and chloroacetanilide herbicides (acetochlor, alachlor, and metolachlor) were detected in some water samples. A greater number of herbicide compounds were detected in surface-water samples than in ground-water samples. Herbicide concentrations typically were at least an order of magnitude greater in surfacewater samples than in ground-water samples. The Maximum Contaminant Level for alachlor (2 micrograms per liter) was exceeded in a sample from Dry Branch Creek at Tama Road and for atrazine (3 micrograms per liter) was exceeded in samples collected from Dry Branch Creek at Tama Road and the county drainage ditch at Tama Road.

  13. Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa

    USGS Publications Warehouse

    Boyd, R.A.

    2000-01-01

    Water samples were collected near a Cedar Rapids, Iowa municipal well field from June 1998 to August 1998 and analyzed for selected triazine and acetanilide herbicides and degradates. The purpose of the study was to evaluate the occurrence of herbicides and herbicide degradates in the well field during a period following springtime application of herbicides to upstream cropland. The well field is in an alluvial aquifer adjacent to the Cedar River. Parent herbicide concentrations generally were greatest in June, and decreased in July and August. Atrazine was most frequently detected and occurred at the greatest concentrations; acetochlor, cyanazine and metolachlor also were detected, but at lesser concentrations than atrazine. Triazine degradate concentrations were relatively small (<0.50 ??g/l) and generally decreased from June to August. Although the rate of groundwater movement is relatively fast (approx. 1 m per day) in the alluvial aquifer near the Cedar River, deethylatrazine (DEA) to atrazine ratios in groundwater samples collected near the Cedar River indicate that atrazine and DEA probably are gradually transported into the alluvial aquifer from the Cedar River. Deisopropylatrazine (DIA) to DEA ratios in water samples indicate most DIA in the Cedar River and alluvial aquifer is produced by atrazine degradation, although some could be from cyanazine degradation. Acetanilide degradates were detected more frequently and at greater concentrations than their corresponding parent herbicides. Ethanesulfonic-acid (ESA) degradates comprised at least 80% of the total acetanilide-degradate concentrations in samples collected from the Cedar River and alluvial aquifer in June, July and August; oxanilic acid degradates comprised less than 20% of the total concentrations. ESA-degradate concentrations generally were smallest in June and greater in July and August. Acetanilide degradate concentrations in groundwater adjacent to the Cedar River indicate acetanilide degradates are transported into the alluvial aquifer in a manner similar to that indicated for atrazine and DEA. Copyright (C) 2000 Elsevier Science B.V.

  14. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils.

    PubMed

    Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël

    2018-03-01

    The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (P<0.01). During the first rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    NASA Astrophysics Data System (ADS)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto fluvio-glacial deposits, retention of S-metolachlor and its ionic metabolites is low in column tests and high mobility was observed meaning these molecules are prone to reach groundwater.

  16. Endogenous 4-hydroxy-2-nonenal in microalga Chlorella kessleri acts as a bioactive indicator of pollution with common herbicides and growth regulating factor of hormesis.

    PubMed

    Spoljaric, Dubravka; Cipak, Ana; Horvatic, Janja; Andrisic, Luka; Waeg, Georg; Zarkovic, Neven; Jaganjac, Morana

    2011-10-01

    Oxidative stress, i.e. excessive production of reactive oxygen species (ROS), leads to lipid peroxidation and to formation of reactive aldehydes (e.g. 4-hydroxy-2-nonenal; HNE), which act as second messengers of free radicals. It was previously shown that herbicides can induce ROS production in algal cells. In the current paper, the unicellular green microalga Chlorella kessleri was used to study the effect of two herbicides (S-metolachlor and terbuthylazine) and hydrogen peroxide (H(2)O(2)) on oxidative stress induction, HNE formation, chlorophyll content and the cell growth. Production of HNE was detected in this study for the first time in the cells of unicellular green algae using the antibody specific for the HNE-histidine adducts revealing the HNE-histidine adducts even in untreated, control C. kessleri. Exposure of algal cells to herbicides and H(2)O(2) increased the ROS production, modifying production of HNE. Namely, 4h upon treatment the levels of HNE-histidine conjugates were below controls. However, their amount increased afterwards. The increase of HNE levels in algae was followed by their increased growth rate, as was previously described for human carcinoma cells. Hence, changes in the cellular HNE content upon herbicide treatment inducing lipid oxidative stress and alterations in cellular growth rate of C. kessleri resemble adaptation of malignant cells to the HNE treatment. Therefore, as an addition to the standard toxicity tests, the evaluation of HNE-protein adducts in C. kessleri might indicate environmental pollution with lipid peroxidation-inducing herbicides. Finally, C. kessleri might be a convenient experimental model to further study cellular hormetic adaptation to oxidative stress-derived aldehydes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Pesticides in streams of the United States : initial results from the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Larson, Steven J.; Gilliom, Robert J.; Capel, Paul D.

    1999-01-01

    Water samples from 58 rivers and streams across the United States were analyzed for pesticides as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. The sampling sites represent 37 diverse agricultural basins, 11 urban basins, and 10 basins with mixed land use. Forty-six pesticides and pesticide degradation products were analyzed in approximately 2,200 samples collected from 1992 to 1995. The target compounds account for approximately 70 percent of national agricultural use in terms of the mass of pesticides applied annually. All the target compounds were detected in one or more samples. Herbicides generally were detected more frequently and at higher concentrations than insecticides. Nationally, 11 herbicides, 1 herbicide degradation product, and 3 insecticides were detected in more than 10 percent of samples. The number of target compounds detected at each site ranged from 7 to 37. The herbicides atrazine, metolachlor, prometon, and simazine were detected most frequently; among the insecticides, carbaryl, chlorpyrifos, and diazinon were detected the most frequently. Distinct differences in pesticide occurrence were observed in streams draining the various agricultural settings. Relatively high levels of several herbicides occurred as seasonal pulses in corn-growing areas. Several insecticides were frequently detected in areas where the dominant crops consist of orchards and vegetables. The number of pesticides detected and their concentrations were lower in wheat-growing areas than in most other agricultural areas. In most urban areas, the herbicides prometon and simazine and the insecticides carbaryl, chlorpyrifos, diazinon, and malathion were commonly detected. Concentrations of pesticides rarely exceeded standards and criteria established for drinking water, but some pesticides commonly exceeded criteria established for the protection of aquatic life.

  18. Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells.

    PubMed

    Li, Yue; Li, Xiaojing; Sun, Yang; Zhao, Xiaodong; Li, Yongtao

    2018-04-05

    The microbial fuel cell (MFC) that uses a solid electrode as the inexhaustible electron acceptor is an innovative remediation technology that simultaneously generates bioelectricity. Chlorinated pollutants are better metabolized by reductive dechlorination in proximity to the cathode. Here, the removal efficiency of the herbicide metolachlor (ML) increased by 262 and 176% in soil MFCs that were spiked with 10 (C10) and 20 mg/kg (C20) of ML, respectively, relative to the non-electrode controls. The bioelectricity output of the C10 and C20 increased by over two- and eightfold, respectively, compared to that of the non-ML control, with maximum current densities of 49.6 ± 2.5 (C10) and 78.9 ± 0.6 mA/m 2 (C20). Based on correlations between ML concentrations and species abundances in the MFCs, it was inferred that Azohydromonas sp., Sphingomonas sp., and Pontibacter sp. play a major role in ML removal around the cathode, with peak removal efficiencies of 56 ± 1% (C10) and 58 ± 1% (C20). Moreover, Clostridium sp., Geobacter sp., Bacillus sp., Romboutsia sp., and Terrisporobacter sp. may be electricigens or closely related microbes due to the significant positive correlation between the bioelectricity generation levels and their abundances around the anode. This study suggests that a directional adaptation of the microbial community has taken place to increase both the removal of chlorinated herbicides around the cathode and the generation of bioelectricity around the anode in bioelectrochemical remediation systems.

  19. Seasonal changes in concentrations of dissolved pesticides and organic carbon in the Sacramento-San Joaquin delta, California, 1994-1996

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn

    2006-01-01

    The Sacramento-San Joaquin Delta (Delta) of California is an ecologically rich and hydrologically complex region that receives runoff from nearly one-quarter of the state. Water-quality studies of surface water in the region have found dissolved pesticides in winter storm runoff at concentrations toxic to some aquatic invertebrates. However, scientists have little information on pesticide concentrations in the Delta on a seasonal timescale or the importance of pesticide contributions from within-Delta sources. Consequently, the U.S. Geological Survey conducted a study from 1994 to 1996 during which water samples were collected seasonally from 31 sites located within the Delta and on major tributaries to the Delta. Water samples were analyzed for 20 current-use pesticides and dissolved organic carbon. During the study, 11 current-use pesticides were detected; maximum concentrations ranging from 17 ng/L (for trifluralin) to 1,160 ng/L (for metolachlor). The highest concentrations of five pesticides (carbaryl, carbofuran, metolachlor, molinate, and simazine) were greater than 900 ng/L. The greatest number of pesticides was detected in the summer of 1994, whereas the least number were detected in the winter of 1994. The herbicides metolachlor and simazine were the most frequently detected pesticides and were detected in five of the six sampling seasons. The herbicides molinate and EPTC were detected only during the three summer sampling seasons. A comparison of pesticides detected during the spring and summer of 1995 showed some seasonal variability. Comparison of the three summer seasons sampled showed that a larger number of pesticides were detected, and with generally higher maximum concentrations, in 1994 than in 1995 or 1996. Dissolved organic carbon (DOC) concentrations ranged, over the course of the study, from 1.4 mg/L to 10.4 mg/L, and had a median concentration of 3.8 mg/L. On a seasonal basis, the lowest maximum DOC concentrations occurred during the summer and winter of 1994. The highest median DOC concentration on a seasonal basis occurred in the spring of 1995. This previously unreported data is being published now to provide historical information on pesticide concentrations in the Delta to water managers and the scientific community.

  20. Herbicide and degradate flux in the Yazoo River Basin

    USGS Publications Warehouse

    Coupe, R.H.; Welch, H.L.; Pell, A.B.; Thurman, E.M.

    2005-01-01

    During 1996-1997, water samples were collected from five sites in the Yazoo River Basin and analysed for 14 herbicides and nine degradates. These included acetochlor, alachlor, atrazine, cyanazine, fluometuron, metolachlor, metribuzin, molinate, norflurazon, prometryn, propanil, propazine, simazine, trifluralin, three degradates of fluometuron, two degradates of atrazine, one degradate of cyanazine, norflurazon, prometryn, and propanil. Fluxes generally were higher in 1997 than in 1996 due to a greater rainfall in 1997 than 1996. Fluxes were much larger from streams in the alluvial plain (an area of very productive farmland) than from the Skuna River in the bluff hills (an area of small farms, pasture, and forest). Adding the flux of the atrazine degradates to the atrazine flux increased the total atrazine flux by an average of 14.5%. The fluometuron degradates added about 10% to the total fluometuron flux, and adding the norflurazon degradate flux to the norflurazon flux increased the flux by 82% in 1996 and by 171% in 1997. ?? 2005 Taylor & Francis.

  1. Nitrapyrin in streams: The first study documenting off-field transport of a nitrogen stabilizer compound

    USGS Publications Warehouse

    Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.

    2016-01-01

    Nitrapyrin is a bactericide that is co-applied with fertilizer to prevent nitrification and enhance corn yields. While there have been studies of the environmental fate of nitrapyrin, there is no documentation of its off-field transport to streams. In 2016, 59 water samples from 11 streams across Iowa were analyzed for nitrapyrin and its degradate, 6-chloropicolinic acid (6-CPA), along with three widely used herbicides, acetochlor, atrazine, and metolachlor. Nitrapyrin was detected in seven streams (39% of water samples) with concentrations ranging from 12 to 240 ng/L; 6-CPA was never detected. The herbicides were ubiquitously detected (100% of samples, 28–16000 ng/L). Higher nitrapyrin concentrations in streams were associated with rainfall events following spring fertilizer applications. Nitrapyrin persisted in streams for up to 5 weeks. These results highlight the need for more research focused on the environmental fate and transport of nitrapyrin and the potential toxicity this compound could have on nontarget organisms.

  2. Comparison of enzyme-linked immunosorbent assay and gas chromatography procedures for the detection of cyanazine and metolachlor in surface water samples

    USGS Publications Warehouse

    Schraer, S.M.; Shaw, D.R.; Boyette, M.; Coupe, R.H.; Thurman, E.M.

    2000-01-01

    Enzyme-linked immunosorbent assay (ELISA) data from surface water reconnaissance were compared to data from samples analyzed by gas chromatography for the pesticide residues cyanazine (2-[[4-chloro-6-(ethylamino)-l,3,5-triazin-2-yl]amino]-2-methylpropanenitrile ) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide). When ELISA analyses were duplicated, cyanazine and metolachlor detection was found to have highly reproducible results; adjusted R2s were 0.97 and 0.94, respectively. When ELISA results for cyanazine were regressed against gas chromatography results, the models effectively predicted cyanazine concentrations from ELISA analyses (adjusted R2s ranging from 0.76 to 0.81). The intercepts and slopes for these models were not different from 0 and 1, respectively. This indicates that cyanazine analysis by ELISA is expected to give the same results as analysis by gas chromatography. However, regressing ELISA analyses for metolachlor against gas chromatography data provided more variable results (adjusted R2s ranged from 0.67 to 0.94). Regression models for metolachlor analyses had two of three intercepts that were not different from 0. Slopes for all metolachlor regression models were significantly different from 1. This indicates that as metolachlor concentrations increase, ELISA will over- or under-estimate metolachlor concentration, depending on the method of comparison. ELISA can be effectively used to detect cyanazine and metolachlor in surface water samples. However, when detections of metolachlor have significant consequences or implications it may be necessary to use other analytical methods.

  3. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998

    USGS Publications Warehouse

    Battaglin, W.A.; Furlong, E.T.; Burkhardt, M.R.; Peter, C.J.

    2000-01-01

    Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are relatively new classes of chemical compounds that function by inhibiting the action of a plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs with over a 10000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the USA. To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 212 water samples were collected from 75 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA and IMI herbicides by USGS Methods Research and Development Program staff using high-performance liquid chromatography/mass spectrometry. Samples were also analyzed for 47 pesticides or pesticide degradation products. At least one of the 16 SUs, SAs or IMIs was detected above the method reporting limit (MRL) of 0.01 ??g/l in 83% of 130 stream samples. Imazethapyr was detected most frequently (71% of samples) followed by flumetsulam (63% of samples) and nicosulfuron (52% of samples). The sum of SU, SA and IMI concentrations exceeded 0.5 ??g/l in less than 10% of stream samples. Acetochlor, alachlor, atrazine, cyanazine and metolachlor were all detected in 90% or more of 129 stream samples. The sum of the concentration of these five herbicides exceeded 50 ??g/l in approximately 10% of stream samples. At least one SU, SA, or IMI herbicide was detected above the MRL in 24% of 25 ground-water samples and 86% of seven reservoir samples. Copyright (C) 2000 Elsevier Science B.V.

  4. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants.

    PubMed

    Tong, Yujia; Wu, Yan; Zhao, Caiyan; Xu, Yong; Lu, Jianqing; Xiang, Sheng; Zong, Fulin; Wu, Xuemin

    2017-08-30

    Pesticide formulation is highly desirable for effective utilization of pesticide and environmental pollution reduction. Studies of pesticide delivery system such as microcapsules are developing prosperously. In this work, we chose polymeric nanoparticles as a pesticide delivery system and metolachlor was used as a hydrophobic pesticide model to study water-based mPEG-PLGA nanoparticle formulation. Preparation, characterization results showed that the resulting nanoparticles enhanced "water solubility" of hydrophobic metolachlor and contained no organic solvent or surfactant, which represent one of the most important sources of pesticide pollution. After the release study, absorption of Cy5-labeled nanoparticles into rice roots suggested a possible transmitting pathway of this metolachlor formulation and increased utilization of metolachlor. Furthermore, the bioassay test demonstrated that this nanoparticle showed higher effect than non-nano forms under relatively low concentrations on Oryza sativa, Digitaria sanguinalis. In addition, a simple cytotoxicity test involving metolachlor and metolachlor-loaded nanoparticles was performed, indicating toxicity reduction of the latter to the preosteoblast cell line. All of these results showed that those polymeric nanoparticles could serve as a pesticide carrier with lower environmental impact, comparable effect, and effective delivery.

  5. Pollutant fate and spatio-temporal variability in the choptank river estuary: Factors influencing water quality

    USGS Publications Warehouse

    Whitall, D.; Hively, W.D.; Leight, A.K.; Hapeman, C.J.; McConnell, L.L.; Fisher, T.; Rice, C.P.; Codling, E.; McCarty, G.W.; Sadeghi, A.M.; Gustafson, A.; Bialek, K.

    2010-01-01

    Restoration of the Chesapeake Bay, the largest estuary in the United States, is a national priority. Documentation of progress of this restoration effort is needed. A study was conducted to examine water quality in the Choptank River estuary, a tributary of the Chesapeake Bay that since 1998 has been classified as impaired waters under the Federal Clean Water Act. Multiple water quality parameters (salinity, temperature, dissolved oxygen, chlorophyll a) and analyte concentrations (nutrients, herbicide and herbicide degradation products, arsenic, and copper) were measured at seven sampling stations in the Choptank River estuary. Samples were collected under base flow conditions in the basin on thirteen dates between March 2005 and April 2008. As commonly observed, results indicate that agriculture is a primary source of nitrate in the estuary and that both agriculture and wastewater treatment plants are important sources of phosphorus. Concentrations of copper in the lower estuary consistently exceeded both chronic and acute water quality criteria, possibly due to use of copper in antifouling boat paint. Concentrations of copper in the upstream watersheds were low, indicating that agriculture is not a significant source of copper loading to the estuary. Concentrations of herbicides (atrazine, simazine, and metolachlor) peaked during early-summer, indicating a rapid surface-transport delivery pathway from agricultural areas, while their degradation products (CIAT, CEAT, MESA, and MOA) appeared to be delivered via groundwater transport. Some in-river processing of CEAT occurred, whereas MESA was conservative. Observed concentrations of herbicide residues did not approach established levels of concern for aquatic organisms. Results of this study highlight the importance of continued implementation of best management practices to improve water quality in the estuary. This work provides a baseline against which to compare future changes in water quality and may be used to design future monitoring programs needed to assess restoration strategy efficacy.

  6. Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei.

    PubMed

    Diepens, Noël J; Buffan-Dubau, Evelyne; Budzinski, Hélène; Kallerhoff, Jean; Merlina, Georges; Silvestre, Jérome; Auby, Isabelle; Nathalie Tapie; Elger, Arnaud

    2017-03-01

    Worldwide seagrass declines have been observed due to multiple stressors. One of them is the mixture of pesticides used in intensive agriculture and boat antifouling paints in coastal areas. Effects of mixture toxicity are complex and poorly understood. However, consideration of mixture toxicity is more realistic and ecologically relevant for environmental risk assessment (ERA). The first aim of this study was to determine short-term effects of realistic herbicide mixture exposure on physiological endpoints of Zostera noltei. The second aim was to assess the environmental risks of this mixture, by comparing the results to previously published data. Z. noltei was exposed to a mixture of four herbicides: atrazine, diuron, irgarol and S-metolachlor, simulating the composition of typical cocktail of contaminants in the Arcachon bay (Atlantic coast, France). Three stress biomarkers were measured: enzymatic activity of glutathione reductase, effective quantum yield (EQY) and photosynthetic pigment composition after 6, 24 and 96 h. Short term exposure to realistic herbicide mixtures affected EQY, with almost 100% inhibition for the two highest concentrations, and photosynthetic pigments. Effect on pigment composition was detected after 6 h with a no observed effect concentration (NOEC) of 1 μg/L total mixture concentration. The lowest EQY effect concentration at 10% (EC 10 ) (2 μg/L) and pigment composition NOEC with an assessment factor of 10 were above the maximal field concentrations along the French Atlantic coast, suggesting that there are no potential short term adverse effects of this particular mixture on Z. noltei. However, chronic effects on photosynthesis may lead to reduced energy reserves, which could thus lead to effects at whole plant and population level. Understanding the consequences of chemical mixtures could help to improve ERA and enhance management strategies to prevent further declines of seagrass meadows worldwide. Copyright © 2016. Published by Elsevier Ltd.

  7. Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray

    USGS Publications Warehouse

    Ferrer, I.; Thurman, E.M.; Barcelo, D.

    1997-01-01

    Solid-phase extraction (SPE) was combined with high-performance liquid chromatography/high-flow pneumatically assisted electrospray mass spectrometry (HPLC/ESP/MS) for the trace analysis of oxanilic and sulfonic acids of acetochlor, alachlor, and metolachlor. The isolation procedure separated the chloroacetanilide metabolites from the parent herbicides during the elution from C18 cartridges using ethyl acetate for parent compounds, followed by methanol for the anionic metabolites. The metabolites were separated chromatographically using reversed-phase HPLC and analyzed by negative-ion MS using electrospray ionization in selected ion mode. Quantitation limits were 0.01 ??g/L for both the oxanilic and sulfonic acids based on a 100-mL water sample. This combination of methods represents an important advance in environmental analysis of chloroacetanilide-herbicide metabolites in surface water and groundwater for two reasons. First, anionic chloroacetanilide metabolites are a major class of degradation products that are readily leached to groundwater in agricultural areas. Second, anionic metabolites, which are not able to be analyzed by conventional methods such as liquid extraction and gas chromatography/mass spectrometry, are effectively analyzed by SPE and high-flow pneumatically assisted electrospray mass spectrometry. This paper reports the first HPLC/MS identification of these metabolites in surface water and groundwater.

  8. Skeletonema marinoi (Bacillariophyceae) sensitivity to herbicides and effects of temperature increase on cellular responses to terbuthylazine exposure.

    PubMed

    Fiori, Emanuela; Pistocchi, Rossella

    2014-02-01

    The North East area of Italy is an intensively farmed area, where the use of herbicides has increased dramatically during the last years. Some of the most detected herbicides are triazine compounds, such as: simazine (SIM), terbuthylazine (TBA), its degradation product desethyl-terbuthylazine (D-TBA) and other herbicides, such as metolachlor (MET). In this paper, the sensitivity of the diatom Skeletonema marinoi to the most detected herbicides (TBA, D-TBA, SIM and MET) was preliminarily studied. All the pollutants tested significantly inhibited the diatom growth and photosynthetic efficiency (from the concentration of 15 μg L(-1)) with the exception of TBA which had the strongest effects on S. marinoi starting from the concentration of 5 μg L(-1). Consequently, cellular physiological responses to TBA exposure (1, 5, 10, 20 and 30 μg L(-1)) were further studied at increasing temperature conditions (15, 20 and 25°C). Inhibition of growth rate and photosynthetic efficiency was observed earlier and determined by lower TBA levels than those affecting cell growth. These responses were significantly enhanced at increasing temperature conditions when growth rates were higher than those measured at 15°C. Carbon cell content increased in the cultures exposed to high concentrations of TBA (from 20 μg L(-1)) compared to the controls, especially at high temperatures. Cell chlorophyll significantly increased from the added concentration of 10 μg L(-1) of TBA at all the temperatures and, as a consequence, also the Chl:C ratio significantly increased. The C:N ratio followed the pattern of nitrate uptake and was characterized, at all the temperatures, by low values during the lag phase in cultures with 20 and 30 μg L(-1) of TBA; in these conditions, in fact, the nutrient in the medium was exhausted later then in the controls. Only cultures exposed to 30 μg L(-1) of TBA at 25°C, which stopped to take up nutrients earlier and could not increase chlorophyll levels, did not display any growth capacity. This study shows that S. marinoi is affected by TBA concentrations lower than those affecting some harmful flagellate species frequently observed in the Adriatic Sea. Thus, it raises the question of the combined effects of herbicides pollution and high temperature pressures on phytoplankton composition. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Herbicide Transport and Transformations in the Unsaturated Zone of Three Small Agricultural Basins with Corn and Soybean Row Crops

    NASA Astrophysics Data System (ADS)

    Hancock, T. C.; Vogel, J. R.; Sandstrom, M. W.; Capel, P. D.; Bayless, R. E.; Webb, R. M.

    2006-05-01

    In the United States, herbicides are among the most significant nonpoint-source pollutants and were applied to 95% of all fields in corn production and 97% of all fields in soybean production in 2003 and 2004. The United States Geological Survey (USGS) has conducted a study on select herbicides in the unsaturated zone under corn and soybean fields in three predominantly agricultural basins: Morgan Creek (Maryland), Leary Weber Ditch within Sugar Creek (Indiana), and Maple Creek (Nebraska). In 2004, the Morgan Creek and Leary Weber Ditch fields were in soybeans and the Maple Creek fields were in corn. The Maple Creek fields were irrigated, whereas those in Morgan Creek and Leary Weber Ditch were not. Similarities and differences in agricultural management practices, climatic conditions, and natural features, such as soil types and geology, were evaluated as part of the study. In general, the amounts of herbicides entering the unsaturated zone from rain in these basins were minor (1%) compared to amounts commonly applied to the land surface during agricultural practices. Few herbicides were detected on solid core samples from the unsaturated zones of these basins. An exception was found at a Morgan Creek site in an upland recharge area with sandier soils. Here, atrazine concentrations were highest in the near surface solids and decreased with depth. In the unsaturated-zone porewater of the Morgan Creek Basin, parent triazine and acetanilide herbicides were detected and only at the site in the upland recharge area at relatively low concentrations at depths greater than 4 meters, probably because these compounds had not been applied for several years. At the Morgan Creek and Leary Weber Ditch sites, acetanilide metabolites were frequently detected in the unsaturated-zone porewater. In general, the fraction of metolachlor ethane sulfonic acid (ESA) relative to the total mass of parent and metabolites increased with depth overall and at several individual sampling locations this fraction increased over time. At the Maple Creek sites, atrazine, metalochlor, acetochlor, and alachlor were detected, typically at concentrations higher than their metabolites. The Maple Creek site is influenced by focused recharge, macropore flow, and variable soil-moisture retention properties in soils that transition from loess to sand.

  10. Pesticide residue concentration in soil following conventional and Low-Input Crop Management in a Mediterranean agro-ecosystem, in Central Greece.

    PubMed

    Karasali, Helen; Marousopoulou, Anna; Machera, Kyriaki

    2016-01-15

    The present study was focused on the comparative evaluation of pesticide residues, determined in soil samples from Kopaida region, Greece before and after the implementation of Low-Input Crop Management (LCM) protocols. LCM has been suggested as an environmental friendly plant protection approach to be applied on crops growing in vulnerable to pollution ecosystems, with special focus on the site specific problems. In the case of the specific pilot area, the vulnerability was mainly related to the pollution of water bodies from agrochemicals attributed to diffuse pollution primarily from herbicides and secondarily from insecticides. A total of sixty-six soil samples, were collected and analyzed during a three-year monitoring study and the results of the determined pesticide residues were considered for the impact evaluation of applied plant protection methodology. The LCM was developed and applied in the main crops growing in the pilot area i.e. cotton, maize and industrial tomato. Herbicides active ingredients such as ethalfluralin, trifluralin, pendimethalin, S-metolachlor and fluometuron were detected in most samples at various concentrations. Ethalfluralin, which was the active ingredient present in the majority of the samples ranged from 0.01 μg g(-1) to 0.26 μg g(-1) soil dry weight. However, the amount of herbicides measured after the implementation of LCM for two cropping periods, was reduced by more than 75% in all cases. The method of analysis was based on the simultaneous extraction of the target compounds by mechanical shaking, followed by liquid chromatography mass spectrometric and gas chromatography electron capture (LC-MS/MS and GC-ECD) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities.

    PubMed

    Bradman, Asa; Quirós-Alcalá, Lesliam; Castorina, Rosemary; Aguilar Schall, Raul; Camacho, Jose; Holland, Nina T; Barr, Dana Boyd; Eskenazi, Brenda

    2015-10-01

    Recent organic diet intervention studies suggest that diet is a significant source of pesticide exposure in young children. These studies have focused on children living in suburban communities. We aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3-6 years of age, living in California urban and agricultural communities. In 2006, we collected urine samples over 16 consecutive days from children who consumed conventionally grown food for 4 days, organic food for 7 days, and then conventionally grown food for 5 days. We measured 23 metabolites, reflecting potential exposure to organophosphorous (OP), pyrethroid, and other pesticides used in homes and agriculture. We used linear mixed-effects models to evaluate the effects of diet on urinary metabolite concentrations. For six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01). Chemical-specific metabolite concentrations for several OP pesticides, pyrethroids, and herbicides were either infrequently detected and/or not significantly affected by diet. Concentrations for most of the frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively). An organic diet was significantly associated with reduced urinary concentrations of nonspecific dimethyl OP insecticide metabolites and the herbicide 2,4-D in children. Additional research is needed to clarify the relative importance of dietary and non-dietary sources of pesticide exposures to young children.

  12. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels.

    PubMed

    Konstantinou, Ioannis K; Hela, Dimitra G; Albanis, Triantafyllos A

    2006-06-01

    This review evaluates and summarizes the results of long-term research projects, monitoring programs and published papers concerning the pollution of surface waters (rivers and lakes) of Greece by pesticides. Pesticide classes mostly detected involve herbicides used extensively in corn, cotton and rice production, organophosphorus insecticides as well as the banned organochlorines insecticides due to their persistence in the aquatic environment. The compounds most frequently detected were atrazine, simazine, alachlor, metolachlor and trifluralin of the herbicides, diazinon, parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlorine pesticides. Rivers were found to be more polluted than lakes. The detected concentrations of most pesticides follow a seasonal variation, with maximum values occurring during the late spring and summer period followed by a decrease during winter. Nationwide, in many cases the reported concentrations ranged in low ppb levels. However, elevated concentrations were recorded in areas of high pesticide use and intense agricultural practices. Generally, similar trends and levels of pesticides were found in Greek rivers compared to pesticide contamination in other European rivers. Monitoring of the Greek water resources for pesticide residues must continue, especially in agricultural regions, because the nationwide patterns of pesticide use are constantly changing. Moreover, emphasis should be placed on degradation products not sufficiently studied so far.

  13. Hydrologic and land-use factors associated with herbicides and nitrate in near-surface aquifers

    USGS Publications Warehouse

    Burkart, Michael R.; Kolpin, Dana W.

    1993-01-01

    Selected herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) metabolites, and NO−3 were examined in near-surface unconsolidated and bedrock aquifers in the midcontinental USA to study the hydrogeologic, spatial, and seasonal distribution of these contaminants. Groundwater samples were collected from 303 wells during the spring and late summer of 1991. At least one herbicide or atrazine metabolite was detected in 24% of the samples collected for herbicide analysis (reporting limit 0.05 µg/L). No herbicide concentration exceeded the USEPA's maximum contaminant level (MCL) or health advisory level. The most frequently detected compound was the at razine metabolite deethylatrazine [2-amino-4-chloro-6-(isopropylamino)-s-triazine] followed by atrazine, deisopropylatrazine [2-amino-4-chloro-6-(ethylamino)-s-triazine], prometon (2,4-bis(isopropylamino)-6-methyoxy-s-triazine), metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1methylethyl)acetamide], alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide], metribuzin [4-amino-6-(tert-butyl)-3-methylthio-as-triazine-5(4H)-one], simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], and cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile]. Nitrite plus nitrate, as nitrogen (N), exceeding 3.0 mg/L (excess NO−3), was found in 29% of the samples, and 6% had −3exceeding the MCL of 10 mg/L. Ammonium as N was detected in excess of 0.01 mg/L in 78% of the samples. A nonlinear increase in the frequency of atrazine detection occurred with decreases in reporting limit. The frequency of atrazine residue detection (atrazine + deethylatrazine + deisopropylatrazine) was 25% greater than for atrazine alone. Herbicide detections and excess NO−3 were notably lacking in the eastern part of the study region where it was estimated that herbicide and fertilizer use were among the largest in the region. Prometon, the second most frequently detected herbicide, was associated with non-agricultural land use. Herbicide and excess NO−3 were more frequent in unconsolidated aquifers than in bedrock aquifers. Aquifer depth, as direct measurement of proximity to recharge sources, was inversely related to frequency of herbicide detection and excess NO−3.

  14. Surface water-ground water interaction: Herbicide transport into municipal collector wells

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Carr, J.D.; Steele, G.V.; Thurman, E.M.; Bastian, K.C.; Dormedy, D.F.

    1999-01-01

    During spring runoff events, herbicides in the Platte River are transported through an alluvial aquifer into collector wells located on an island in the river in 6 to 7 d. During two spring runoff events in 1995 and 1996, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] concentrations in water from these wells reached approximately 7 ??g/L, 70 times more than the background concentration in ground water. Concentrations of herbicides and metabolites in the collector wells generally were one-half to one-fifth the concentrations of herbicides in the river for atrazine, alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)-acetanilide], alachlor ethane-sulfonic acid (ESA) [2-((2,6-diethylphenyl) (methoxymethyl)amino)-2- oxoethane-sulfonic acid], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethyl)acetamide], cyanazine [2-((4-chloro-6-(ethyl-amino)- 1,3,5 triazin-2-yl)-amino)-2-methylpropionitrile], and acetochlor [2-chloro- N-(ethoxymethyl)-N-(2-ethyl-6methyl-phenyl) acetamide], suggesting that 20 to 50% river water could be present in the water from the collector wells, assuming no degradation. The effect of the river on the quality of water from the collector wells can be reduced through selective management of horizontal laterals of the collector wells. The quality of the water from the collector wells is dependent on the (i) selection of the collector well used, (ii) number and selection of laterals used, (iii) chemical characteristics of the contaminant, and (iv) relative mixing of the Platte River and a major upstream tributary.

  15. Pesticides in rain in four agricultural watersheds in the United States

    USGS Publications Warehouse

    Vogel, J.R.; Majewski, M.S.; Capel, P.D.

    2008-01-01

    Rainfall samples were collected during the 2003 and 2004 growing seasons at four agricultural locales across the USA in Maryland, Indiana, Nebraska, and California. The samples were analyzed for 21 insecticides, 18 herbicides, three fungicides, and 40 pesticide degradates. Data from all sites combined show that 7 of the 10 most frequently detected pesticides were herbicides, with atrazine (70%) and metolachlor (83%) detected at every site. Dacthal, acetochlor, simazine, alachlor, and pendimethalin were detected in more than 50% of the samples. Chlorpyrifos, carbaryl, and diazinon were the only insecticides among the 10 most frequently detected compounds. Of the remaining pesticide parent compounds, 18 were detected in fewer than 30% of the samples, and 13 were not detected. The most frequently detected degradates were deethylatrazine; the oxygen analogs (OAs) of the organophosphorus insecticides chlorpyrifos, diazinon, and malathion; and 1-napthol (degradate of carbaryl). Deethylatrazine was detected in nearly 70% of the samples collected in Maryland, Indiana, and Nebraska but was detected only once in California. The OAs of chlorpyrifos and diazinon were detected primarily in California. Degradates of the acetanilide herbicides were rarely detected in rain, indicating that they are not formed in the atmosphere or readily volatilized from soils. Herbicides accounted for 91 to 98% of the total pesticide mass deposited by rain except in California, where insecticides accounted for 61% in 2004. The mass of pesticides deposited by rainfall was estimated to be less than 2% of the total applied in these agricultural areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  16. New method for the determination of metolachlor and buprofezin in natural water using orthophthalaldehyde by thermochemically-induced fluorescence derivatization (TIFD).

    PubMed

    Mendy, Alphonse; Thiaré, Diène Diégane; Sambou, Souleymane; Khonté, Abdourahmane; Coly, Atanasse; Gaye-Seye, Mame Diabou; Delattre, François; Tine, Alphonse

    2016-05-01

    Herbicide metolachlor (MET) and insecticide buprofezin (BUP) were determined in natural waters by means of a newly-developed, simple and sensitive thermochemically-induced fluorescence derivatization (TIFD) method. The TIFD approach is based on the thermolysis transformation of naturally non-fluorescent pesticides into fluorescent complex O-phthalaldehyde-thermoproduct(s) in water at 70°C for MET and at 80°C for BUP. The TIFD method was optimized with respect to the temperature, pH, complex formation kinetic and pesticides concentrations. The limit of detection (LOD=0.8ngmL(-1) for MET and 3.0ngmL(-1) for BUP) and quantification (LOQ=2.6ngmL(-1) for MET and 9.5 ngmL(-1) for BUP) values were low, and the relative standard deviation (RSD) values were small (between 1.2% and 1.8%), which indicates a good analytical sensitivity and a great repeatability of TIFD method. Recovery studies were performed on spiked well, sea and draining waters samples collected in the Niayes area by using the solid phase extraction (SPE) procedure. Satisfactory recovery results (84-118%) were obtained for the determination of MET and BUP in these natural waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Lethal effects of selected novel pesticides on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae).

    PubMed

    Khan, Muhammad Ashraf; Ruberson, John R

    2017-12-01

    Trichogramma pretiosum Riley is an important egg parasitoid and biological control agent of caterpillar pests. We studied the acute toxicity of 20 pesticides (14 insecticides/miticides, three fungicides and three herbicides) exposed to recommended field rates. Egg, larval, and pupal stages of the parasitoid in their hosts were dipped in formulated solutions of the pesticides and evaluated 10 days later for percentage of host eggs with holes, number of parasitoids emerged per egg with holes, and stage-specific mortality of immature as well as adult wasps within the host eggs. Seven insecticides (buprofezin, chlorantraniliprole, spirotetramat, flonicamid, flubendiamide) and miticides (spiromesifen, cyflumetofen), one herbicide (nicosulfuron), and three fungicides (myclobutanil, pyraclostrobin, trifloxystrobin + tebuconazole) caused no significant mortality to immature stages or pre-emergent adult parasitoids relative to controls. By contrast, seven insecticides/miticides (abamectin, acetamiprid, dinotefuran, fipronil, novaluron, spinetoram, tolfenpyrad) adversely affected immature and pre-emergent adult T. pretiosum, with tolfenpyrad being particularly lethal. Two herbicides had moderate (glufosinate ammonium) to severe (s-metolachlor) acute lethal effects on the immature parasitoids. This study corroborates earlier findings with adult T. pretiosum. Over half of the pesticides - and all the fungicides - tested in the current study would appear to be compatible with the use of T. pretiosum in integrated pest management programs, with respect to acute parasitoid mortality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Dissipation and leaching of pyroxasulfone and s-metolachlor

    USDA-ARS?s Scientific Manuscript database

    Pyroxasulfone dissipation and mobility in the soil was evaluated and compared to S-metolachlor in 2009 and 2010 at two field sites in northern Colorado, on a Nunn fine clay loam, and Olney fine sandy loam soil. Pyroxasulfone dissipation half-life (DT50) values varied from 47 to 134 d, and those of S...

  19. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    PubMed

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  20. Occurrence and distribution of nutrients, suspended sediment, and pesticides in the Mobile River Basin, Alabama, Georgia, Mississippi, and Tennessee, 1999-2001

    USGS Publications Warehouse

    McPherson, Ann K.; Moreland, Richard S.; Atkins, J. Brian

    2003-01-01

    The Mobile River Basin is one of more than 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States and the fourth largest in terms of streamflow. The Mobile River Basin encompasses parts of Alabama, Georgia, Mississippi, and Tennessee, and almost two-thirds of the 44,0000-square-mile basin is located in Alabama. The extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors, which impart unique and variable qualities to the streams, rivers, and aquifers and provide abundant habitat to sustain the diverse aquatic life in the basin. From January 1999 to December 2001, a study was conducted of the occurrence and distribution of nutrients, suspended sediment, and pesticides in surface water of the Mobile River Basin. Nine sampling sites were selected on the basis of land use. The nine sites included two streams draining agricultural areas, two urban streams, and five large rivers with mixed land use. Surface-water samples were collected from one to four times each month to characterize the spatial and temporal variation in nutrient and pesticide concentrations. Nutrient and suspended-sediment concentrations were highest in watersheds dominated by urban or agricultural land uses. Forty-two percent of the total phosphorus concentrations at all nine sites exceeded the U.S. Environmental Protection Agency's recommended maximum concentration of 0.1 milligram per liter. Flow-weighted mean concentrations at the Mobile River Basin sites generally were in the lower to middle percentile ranges compared with data from other NAWQA studies across the Nation. However, flow-weighted mean concentrations of ammonia, total nitrogen, orthophosphate, and total phosphorus at Bogue Chitto Creek, an agricultural watershed, ranked in the upper 20th percentile of agricultural sites sampled across the Nation as part of the NAWQA Program. Nutrient loads in the Tombigbee River were nearly twice as high compared with nutrient loads in the Alabama River. Nutrient yields were highest in Bogue Chitto Creek, Cahaba Valley Creek, and Threemile Branch because of agricultural and urban land uses in these watersheds. Of the 104 pesticides and degradation products analyzed in the stream samples, 69 were detected in one or more samples. Of the 69 detected pesticides, 51 were herbicides, 15 were insecticides, and 3 were fungicides. A relatively small number of heavily used herbicides accounted for most of the detections, including atrazine and its metabolites (deethylatrazine, 2-hydroxyatrazine, deisopropylatrazine, and deethyldeisopropylatrazine), simazine, metolachlor, tebuthiuron, prometon, diuron, and 2,4-D. Diazinon, chlorpyrifos, and carbaryl were the most frequently detected insecticides; metalaxyl was the most frequently detected fungicide in the Mobile River Basin. Concentrations of pesticides detected in surface water of the Mobile River Basin were among the highest concentrations recorded nationally by the NAWQA Program during 1991 to 2001. The three highest concentrations of atrazine detected at sites across the country were recorded at Bogue Chitto Creek; the highest concentrations of 2,4-D, imazaquin, and malathion recorded nationally were detected at Threemile Branch. Aquatic-life criteria were exceeded by concentrations of five herbicides (2,4-D, atrazine, cyanazine, diuron, and metolachlor), six insecticides (carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and p,p'-DDE), and one fungicide (chlorothalonil). Drinking-water standards were exceeded by concentrations of four herbicides (2,4-D, atrazine, cyanazine, and simazine), three insecticides (alpha- HCH, diazinon, and dieldrin), and one fungicide (chlorothalonil). The types and concentrations of pesticides found in surface water are linked to land use and to the types of pesti

  1. Decadal-scale changes of pesticides in ground water of the United States, 1993-2003.

    PubMed

    Bexfield, Laura M

    2008-01-01

    Pesticide data for ground water sampled across the United States between 1993-1995 and 2001-2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in detection frequency and concentration. The data analysis evaluated samples collected from a total of 362 wells located in 12 local well networks characterizing shallow ground water in agricultural areas and six local well networks characterizing the drinking water resource in areas of variable land use. Each well network was sampled once during 1993-1995 and once during 2001-2003. The networks provide an overview of conditions across a wide range of hydrogeologic settings and in major agricultural areas that vary in dominant crop type and pesticide use. Of about 80 pesticide compounds analyzed, only six compounds were detected in ground water from at least 10 wells during both sampling events. These compounds were the triazine herbicides atrazine, simazine, and prometon; the acetanilide herbicide metolachlor; the urea herbicide tebuthiuron; and an atrazine degradate, deethylatrazine (DEA). Observed concentrations of these compounds generally were < 0.12 microg L(-1). At individual wells, changes in concentrations typically were < 0.02 microg L(-1). Data analysis incorporated adjustments for changes in laboratory recovery as assessed through laboratory spikes. In wells yielding detectable concentrations of atrazine, DEA, and prometon, concentrations were significantly lower (alpha = 0.1) in 2001-2003 than in 1993-1995, whereas detection frequency of these compounds did not change significantly. Trends in atrazine concentrations at shallow wells in agricultural areas were found to be consistent overall with recent atrazine use data.

  2. Pesticides in streams in the Tar-Pamlico drainage basin, North Carolina, 1992-94

    USGS Publications Warehouse

    Woodside, Michael D.; Ruhl, Kelly E.

    2001-01-01

    From 1992 to 1994, 147 water samples were collected at 5 sites in the Tar-Pamlico drainage basin in North Carolina and analyzed for 46 herbicides, insecticides, and pesticide metabolites as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Based on a common adjusted detection limit of 0.01 microgram per liter, the most frequently detected herbicides were metolachlor (84 percent), atrazine (78 percent), alachlor (72 percent), and prometon (57 percent). The insecticides detected most frequently were carbaryl (12 percent), carbofuran (7 percent), and diazinon (4 percent). Although the pesticides with the highest estimated uses generally were the compounds detected most frequently, there was not a strong correlation between estimated use and detection frequency. The development of statistical correlations between pesticide use and detection frequency was limited by the lack of information on pesticides commonly applied in urban and agricultural areas, such as prometon, chlorpyrifos, and diazinon, and the small number of basins included in this study. For example, prometon had the fourth highest detection frequency, but use information was not available. Nevertheless, the high detection frequency of prometon indicates that nonagricultural uses also contribute to pesticide levels in streams in the Tar-Pamlico drainage basin.Concentrations of the herbicides atrazine, alachlor, and trifluralin varied seasonally, with elevated concentrations generally occurring in the spring, during and immediately following application periods, and in the summer. Seasonal concentration patterns were less evident for prometon, diazinon, and chlorpyrifos. Alachlor is the only pesticide detected in concentrations that exceeded current (2000) drinking-water standards.

  3. Hydrologic data for the Big Spring basin, Clayton County, Iowa, water year 1991

    USGS Publications Warehouse

    Kalkhoff, S.J.; Kuzniar, R.L.

    1994-01-01

    Stream discharge, specific conductance, pH, and water temperature were monitored continuously, and monthly water-quality samples were collected at a site on Roberts Creek and at Big Spring. Nitrite plus nitrate as nitrogen concentrations in 27 samples from Roberts Creek at the point where it leaves the study area ranged from 1.8 to 22 mg/L. Herbicide concentrations in 26 samples from the Roberts Creek site ranged from less than 0.10 μg/L (micrograms per liter) to 43 μg/L. Alachlor was detected in 42 percent of the samples; atrazine in 92 percent; and cyanazine and metolachlor in 35 percent of the samples. The total suspended-sediment load discharged in Roberts Creek was about 160,000 tons. At Big Spring, the ground-water discharge point, the daily mean specific conductance ranged from 414 to 788 microsiemens per centimeter at 25 degrees Celsius, the daily median pH ranged from 6.7 to 7.1, and the daily mean water temperature ranged from 8.5 to 13.0 degrees Celsius. Concentrations of nitrite plus nitrate as nitrogen in 23 samples ranged from 4.2 to 17 mg/L. The total measured suspended-sediment discharged from Big Spring was about 17,000 tons. Alachlor was detected in 26 percent; atrazine in 100 percent; cyanazine in 26 percent, and metolachlor in 9 percent of the samples. The maximum atrazine concentration was 16 μg/L.

  4. Simultaneous quantification of acetanilide herbicides and their oxanilic and sulfonic acid metabolites in natural waters.

    PubMed

    Heberle, S A; Aga, D S; Hany, R; Müller, S R

    2000-02-15

    This paper describes a procedure for simultaneous enrichment, separation, and quantification of acetanilide herbicides and their major ionic oxanilic acid (OXA) and ethanesulfonic acid (ESA) metabolites in groundwater and surface water using Carbopack B as a solid-phase extraction (SPE) material. The analytes adsorbed on Carbopack B were eluted selectively from the solid phase in three fractions containing the parent compounds (PCs), their OXA metabolites, and their ESA metabolites, respectively. The complete separation of the three compound classes allowed the analysis of the neutral PCs (acetochlor, alachlor, and metolachlor) and their methylated OXA metabolites by gas chromatography/mass spectrometry. The ESA compounds were analyzed by high-performance liquid chromatography with UV detection. The use of Carbopack B resulted in good recoveries of the polar metabolites even from large sample volumes (1 L). Absolute recoveries from spiked surface and groundwater samples ranged between 76 and 100% for the PCs, between 41 and 91% for the OXAs, and between 47 and 96% for the ESAs. The maximum standard deviation of the absolute recoveries was 12%. The method detection limits are between 1 and 8 ng/L for the PCs, between 1 and 7 ng/L for the OXAs, and between 10 and 90 ng/L for the ESAs.

  5. Trends in pesticide concentrations in streams of the western United States, 1993-2005

    USGS Publications Warehouse

    Johnson, H.M.; Domagalski, Joseph L.; Saleh, D.K.

    2011-01-01

    Trends in pesticide concentrations for 15 streams in California, Oregon, Washington, and Idaho were determined for the organophosphate insecticides chlorpyrifos and diazinon and the herbicides atrazine, s-ethyl diproplythiocarbamate (EPTC), metolachlor, simazine, and trifluralin. A parametric regression model was used to account for flow, seasonality, and antecedent hydrologic conditions and thereby estimate trends in pesticide concentrations in streams arising from changes in use amount and application method in their associated catchments. Decreasing trends most often were observed for diazinon, and reflect the shift to alternative pesticides by farmers, commercial applicators, and homeowners because of use restrictions and product cancelation. Consistent trends were observed for several herbicides, including upward trends in simazine at urban-influenced sites from 2000 to 2005, and downward trends in atrazine and EPTC at agricultural sites from the mid-1990s to 2005. The model provided additional information about pesticide occurrence and transport in the modeled streams. Two examples are presented and briefly discussed: (1) timing of peak concentrations for individual compounds varied greatly across this geographic gradient because of different application periods and the effects of local rain patterns, irrigation, and soil drainage and (2) reconstructions of continuous diazinon concentrations at sites in California are used to evaluate compliance with total maximum daily load targets.

  6. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    USDA-ARS?s Scientific Manuscript database

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  7. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed

    USGS Publications Warehouse

    Hively, W. Dean; Hapeman, Cathleen J.; McConnell, Laura L.; Fisher, Thomas R.; Rice, Clifford P.; McCarty, Gregory W.; Sadeghi, Ali M.; Whitall, David R.; Downey, Peter M.; de Guzman, Gabriela T. Nino; Bialek-Kalinski, Krystyna; Lang, Megan W.; Gustafson, Anne B.; Sutton, Adrienne J.; Sefton, Kerry A.; Harman Fetcho, Jennifer A.

    2011-01-01

    Excess nutrients and agrochemicals from non-point sources contribute to water quality impairment in the Chesapeake Bay watershed and their loading rates are related to land use, agricultural practices, hydrology, and pollutant fate and transport processes. In this study, monthly baseflow stream samples from 15 agricultural subwatersheds of the Choptank River in Maryland USA (2005 to 2007) were characterized for nutrients, herbicides, and herbicide transformation products. High-resolution digital maps of land use and forested wetlands were derived from remote sensing imagery. Examination of landscape metrics and water quality data, partitioned according to hydrogeomorphic class, provided insight into the fate, delivery, and transport mechanisms associated with agricultural pollutants. Mean Nitrate-N concentrations (4.9 mg/L) were correlated positively with percent agriculture (R2 = 0.56) and negatively with percent forest (R2 = 0.60). Concentrations were greater (p = 0.0001) in the well-drained upland (WDU) hydrogeomorphic region than in poorly drained upland (PDU), reflecting increased denitrification and reduced agricultural land use intensity in the PDU landscape due to the prevalence of hydric soils. Atrazine and metolachlor concentrations (mean 0.29 μg/L and 0.19 μg/L) were also greater (p = 0.0001) in WDU subwatersheds than in PDU subwatersheds. Springtime herbicide concentrations exhibited a strong, positive correlation (R2 = 0.90) with percent forest in the WDU subwatersheds but not in the PDU subwatersheds. In addition, forested riparian stream buffers in the WDU were more prevalent than in the PDU where forested patches are typically not located near streams, suggesting an alternative delivery mechanism whereby volatilized herbicides are captured by the riparian forest canopy and subsequently washed off during rainfall. Orthophosphate, CIAT (6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine), CEAT (6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine), and MESA (2-[(2-ethyl-6-methylphenyl) (2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid) were also analyzed. These findings will assist efforts in targeting implementation of conservation practices to the most environmentally-critical areas within watersheds to achieve water quality improvements in a cost-effective manner.

  8. Holistic assessment of occurrence and fate of metolachlor within environmental compartments of agricultural watersheds

    USGS Publications Warehouse

    Rose, Claire E.; Coupe, Richard H.; Capel, Paul D.; Webb, Richard M.

    2017-01-01

    Background: Metolachlor [(RS)-2-Chloro-N-(2-ethyl-6-methyl-phenyl)-N-(1-methoxypropan-2-yl)acetamide] and two degradates (metolachlor ethane-sulfonic acid and metolachlor oxanilic acid) are commonly observed in surface and groundwater. The behavior and fate of these compounds were examined over a 12-year period in seven agricultural watersheds in the United States. They were quantified in air, rain, streams, overland flow, groundwater, soil water, subsurface drain water, and water at the stream/groundwater interface. The compounds were frequently detected in surface and groundwater associated with agricultural areas. A mass budget approach, based on all available data from the study and literature, was used to determine a percentage-wise generalized distribution and fate of applied parent metolachlor in typical agricultural environments.Results: In these watersheds, about 90% of applied metolachlor was taken up by plants or degraded, 10% volatilized, and 0.3% returned as rainfall. One percent was transported to surface water, while an equal amount infiltrated into the unsaturated zone soil water. < 0.02% reached the groundwater. Subsurface flow paths resulted in greater degradation of metolachlor because degradation reactions had more time to proceed.Conclusions: An understanding of the residence times of water in the different environmental compartments, and the important processes affecting metolachlor as it is transported along flowpaths among the environmental compartments allows for a degree of predictability of metolachlor's fate. Degradates with long half-lives can be used (in a limited capacity) as tracers of metolachlor, because of their persistence and widespread occurrence in the environment.

  9. Herbicide and nitrate distribution in central Iowa rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatfield, J.L.; Prueger, J.H.; Pfeiffer, R.L.

    Herbicides are detected in rainfall; however, these are a small fraction of the total applied. This study was designed to evaluate monthly and annual variation in atrazine (6-chloro-N-ethyl-N{prime}-(1-methylethyl)-1,3,5-triazine-2,4-diamine), alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide), metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide), and NO{sub 3}-N concentrations in rainfall over Walnut Creek watershed south of Ames, IA. The study began in 1991 and continued through 1994. Within the watershed, two wet/dry precipitation samplers were positioned 4 km apart. Detections varied during the year with >90% of the herbicide detections occurring in April through early July. Concentrations varied among events from nondetectable amounts to concentrations of 154 {mu}g L{sup {minus}1}, which occurredmore » when atrazine was applied during an extremely humid day immediately followed by rainfall of <10 mm that washed spray drift from the atmosphere. This was a local scale phenomenon, because the other collector had a more typical concentration of 1.7 {mu}g L{sup {minus}1} with an 8-mm rainfall. VAriation between the two collectors suggests that local scale meteorological processes affect herbicide movement. Yearly atrazine deposition totals were >100 {mu}g m{sup {minus}2} representing <0.1% of the amount applied. Nitrate-N concentrations in precipitation were uniformly distributed throughout the year and without annual variation in the concentrations. Deposition rates of NO{sub 3}-N were about 1.2 g m{sup {minus}2}. Annual loading onto the watershed was about 25% of the amount applied from all forms of N fertilizers. Movement and rates of deposition provide an understanding of the processes and magnitude of the impact of agriculture on the environment. 7 refs., 5 figs., 3 tabs.« less

  10. Assessment of exposure to pesticides during mixing/loading and spraying of tomatoes in the open field.

    PubMed

    Aprea, Maria Cristina; Bosi, Anna; Manara, Michele; Mazzocchi, Barbara; Pompini, Alessandra; Sormani, Francesca; Lunghini, Liana; Sciarra, Gianfranco

    2016-01-01

    Some evidence of exposure-response of metolachlor and pendimethalin for lung cancer and an association of metribuzin with risk of glioma have been reported. The primary objectives in this study were to evaluate exposure and occupational risk during mixing/loading of pesticides and during their application to tomatoes cultivated in open fields. Sixteen farmers were sampled. Respiratory exposure was estimated by personal air sampling using fiberglass filters in a IOM device. Dermal exposure was assessed using skin pads and hand washing. Absorbed doses were estimated assuming 100% lung retention, and 50% or 10% skin absorption for metribuzin, and pendimethalin and metolachlor, respectively. The three pesticides were quantified by gas chromatography tandem mass spectrometry in all matrices. Metolachlor was used as a tracer of contamination of clothes and tractors unrelated to the exposure monitored. Respiratory exposure to metribuzin, used in granular form, was on average more than one order of magnitude higher than exposure to pendimethalin, used in the form of microencapsulated liquid. The actual doses were 0.067-8.08 µg/kg bw, 0.420-12.6 µg/kg bw, and 0.003-0.877 µg/kg bw for pendimethalin, metribuzin, and metolachlor, respectively. Dermal exposure was about 88% of the actual dose for metribuzin and more than 95%, for pendimethalin and metolachlor. For risk assessment, the total absorbed doses (sum of respiratory and skin absorbed doses) were compared with the AOEL for each compound. The actual and absorbed doses of the three pesticides were always lower than the acceptable operator exposure level (AOEL), which are reported to be 234 µg/kg bw, 20 µg/kg bw, and 150 µg/kg bw for pendimethalin, metribuzin, and metolachlor, respectively. In any case, personal protective equipment and spraying devices should be chosen with care to minimize exposure.

  11. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field.

    PubMed

    Chrétien, François; Giroux, Isabelle; Thériault, Georges; Gagnon, Patrick; Corriveau, Julie

    2017-05-01

    With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after application but rapidly resumed below these limits. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Decadal-scale changes of pesticides in ground water of the United States, 1993-2003

    USGS Publications Warehouse

    Bexfield, L.M.

    2008-01-01

    Pesticide data for ground water sampled across the United States between 1993-1995 and 2001-2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in detection frequency and concentration. The data analysis evaluated samples collected from a total of 362 wells located in 12 local well networks characterizing shallow ground water in agricultural areas and six local well networks characterizing the drinking water resource in areas of variable land use. Each well network was sampled once during 1993-1995 and once during 2001-2003. The networks provide an overview of conditions across a wide range of hydrogeologic settings and in major agricultural areas that vary in dominant crop type and pesticide use. Of about 80 pesticide compounds analyzed, only six compounds were detected in ground water from at least 10 wells during both sampling events. These compounds were the triazine herbicides atrazine, simazine, and prometon; the acetanilide herbicide metolachlor; the urea herbicide tebuthiuron; and an atrazine degradate, deethylatrazine (DEA). Observed concentrations of these compounds generally were <0.12 ??g L-1. At individual wells, changes in concentrations typically were <0.02 ??g L-1. Data analysis incorporated adjustments for changes in laboratory recovery as assessed through laboratory spikes. In wells yielding detectable concentrations of atrazine, DEA, and prometon, concentrations were significantly lower (?? = 0.1) in 2001-2003 than in 1993-1995, whereas detection frequency of these compounds did not change significantly. Trends in atrazine concentrations at shallow wells in agricultural areas were found to be consistent overall with recent atrazine use data. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  13. Herbicide loading to shallow ground water beneath Nebraska's Management Systems Evaluation Area.

    PubMed

    Spalding, Roy F; Watts, Darrell G; Snow, Daniel D; Cassada, David A; Exner, Mary E; Schepers, James S

    2003-01-01

    Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.

  14. Organic contaminants in Great Lakes tributaries: Prevalence and potential aquatic toxicity

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; De Cicco, Laura A.; Lenaker, Peter L.; Lutz, Michelle A; Sullivan, Daniel J.; Richards, Kevin D.

    2016-01-01

    Organic compounds used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewer overflows, among other sources. Concentrations of these organic waste compounds (OWCs) in some Great Lakes tributaries indicate a high potential for adverse impacts on aquatic organisms. During 2010–13, 709 water samples were collected at 57 tributaries, together representing approximately 41% of the total inflow to the lakes. Samples were collected during runoff and low-flow conditions and analyzed for 69 OWCs, including herbicides, insecticides, polycyclic aromatic hydrocarbons, plasticizers, antioxidants, detergent metabolites, fire retardants, non-prescription human drugs, flavors/fragrances, and dyes. Urban-related land cover characteristics were the most important explanatory variables of concentrations of many OWCs. Compared to samples from nonurban watersheds (< 15% urban land cover) samples from urban watersheds (> 15% urban land cover) had nearly four times the number of detected compounds and four times the total sample concentration, on average. Concentration differences between runoff and low-flow conditions were not observed, but seasonal differences were observed in atrazine, metolachlor, DEET, and HHCB concentrations. Water quality benchmarks for individual OWCs were exceeded at 20 sites, and at 7 sites benchmarks were exceeded by a factor of 10 or more. The compounds with the most frequent water quality benchmark exceedances were the PAHs benzo[a]pyrene, pyrene, fluoranthene, and anthracene, the detergent metabolite 4-nonylphenol, and the herbicide atrazine. Computed estradiol equivalency quotients (EEQs) using only nonsteroidal endocrine-active compounds indicated medium to high risk of estrogenic effects (intersex or vitellogenin induction) at 10 sites. EEQs at 3 sites were comparable to values reported in effluent. This multifaceted study is the largest, most comprehensive assessment of the occurrence and potential effects of OWCs in the Great Lakes Basin to date.

  15. Trends in pesticide concentrations in corn-belt streams, 1996-2006

    USGS Publications Warehouse

    Sullivan, Daniel J.; Vecchia, Aldo V.; Lorenz, David L.; Gilliom, Robert J.; Martin, Jeffrey D.

    2009-01-01

    Trends in the concentrations of commonly occurring pesticides in the Corn Belt of the United States were assessed, and the performance and application of several statistical methods for trend analysis were evaluated. Trends in the concentrations of 11 pesticides with sufficient data for trend assessment were assessed at up to 31 stream sites for two time periods: 1996–2002 and 2000–2006. Pesticides included in the trend analyses were atrazine, acetochlor, metolachlor, alachlor, cyanazine, EPTC, simazine, metribuzin, prometon, chlorpyrifos, and diazinon.The statistical methods applied and compared were (1) a modified version of the nonparametric seasonal Kendall test (SEAKEN), (2) a modified version of the Regional Kendall test, (3) a parametric regression model with seasonal wave (SEAWAVE), and (4) a version of SEAWAVE with adjustment for streamflow (SEAWAVE-Q). The SEAKEN test is a statistical hypothesis test for detecting monotonic trends in seasonal time-series data such as pesticide concentrations at a particular site. Trends across a region, represented by multiple sites, were evaluated using the regional seasonal Kendall test, which computes a test for an overall trend within a region by computing a score for each season at each site and adding the scores to compute the total for the region. The SEAWAVE model is a parametric regression model specifically designed for analyzing seasonal variability and trends in pesticide concentrations. The SEAWAVE-Q model accounts for the effect of changing flow conditions in order to separate changes caused by hydrologic trends from changes caused by other factors, such as pesticide use.There was broad, general agreement between unadjusted trends (no adjustment for streamflow effects) identified by the SEAKEN and SEAWAVE methods, including the regional seasonal Kendall test. Only about 10 percent of the paired comparisons between SEAKEN and SEAWAVE indicated a difference in the direction of trend, and none of these had differences significant at the 10-percent significance level. This consistency of results supports the validity and robustness of all three approaches as trend analysis tools. The SEAWAVE method is favored, however, because it has less restrictive data requirements, enabling analysis for more site/pesticide combinations, and can incorporate adjustment for streamflow (SEAWAVE-Q) with substantially fewer measurements than the flow-adjustment procedure used with SEAKEN.Analysis of flow-adjusted trends is preferable to analysis of non-adjusted trends for evaluating potential effects of changes in pesticide use or management practices because flow-adjusted trends account for the influence of flow-related variability.Analysis of flow-adjusted trends by SEAWAVE-Q showed that all of the pesticides assessed, except simazine and acetochlor, were dominated by varying degrees of concentration downtrends in one or both analysis periods. Atrazine, metolachlor, alachlor, cyanazine, EPTC, and metribuzin—all major corn herbicides, as well as prometon and chlorpyrifos, showed more prevalent concentration downtrends during 1996–2002 compared to 2000–2006. Diazinon had no clear trends during 1996–2002, but had predominantly downward trends during 2000–2006. Acetochlor trends were mixed during 1996–2002 and slightly upward during 2000–2006, but most of the trends were not statistically significant. Simazine concentrations trended upward at most sites during both 1996–2002 and 2000–2006.Comparison of concentration trends to agricultural-use trends indicated similarity in direction and magnitude for acetochlor, metolachlor, alachlor, cyanazine, EPTC, and metribuzin. Concentration downtrends for atrazine, chlorpyrifos, and diazinon were steeper than agricultural-use downtrends at some sites, indicating the possibility that agricultural management practices may have increasingly reduced transport to streams (particularly atrazine) or, for chlorpyrifos and diazinon, that nonagricultural uses declined substantially. Concentration uptrends for simazine generally were steeper than agricultural-use uptrends, indicating the possibility that nonagricultural uses of this herbicide increased during the study period.

  16. Individual and joint toxicity of the herbicide S-metolachlor and a metabolite, deethylatrazine on aquatic crustaceans: Difference between ecological groups.

    PubMed

    Maazouzi, C; Coureau, C; Piscart, C; Saplairoles, M; Baran, N; Marmonier, P

    2016-12-01

    We studied the individual and joint acute toxicity of S-metolachlor (SMOC) and deethylatrazine (DEA - a metabolite of atrazine) on different non-target freshwater crustaceans. We used animals from different ecological groups: two amphipods from surface running water (Gammarus pulex and Gammarus cf. orinos), an isopod from surface stagnant water (Asellus aquaticus) and an amphipod living in groundwater (Niphargus rhenorhodanensis). Organisms were exposed to different levels of SMOC and DEA, alone or in binary mixture. Temperature effect on SMOC toxicity was assessed by exposing G. pulex and N. rhenorhodanensis to SMOC at 11 °C and 15 °C. Studying mortality as the biological endpoint, N. rhenorhodanensis was more resistant than surface water species towards SMOC and DEA. Among surface water species, G. pulex was the most sensitive while Gammarus cf. orinos and A. aquaticus showed similar responses to both compounds. Temperature increase did not change SMOC toxicity but modify the shape and steepness of the dose-response curve. We used a Model Deviation Ratio (MDR) approach to evaluate the predictability of Concentration Addition (CA) and Independent Action (IA) models to mixture toxicity. Results indicated either an additive or an antagonistic or a synergistic interaction depending on the concentrations combination and the test species. Our finding conclusively show the suitability of CA and IA in predicting mixture toxicities but results should be interpreted with caution according to ecological group of exposed species in risk assessment procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Airborne pesticide residues along the Mississippi River

    USGS Publications Warehouse

    Majewski, M.S.; Foreman, W.T.; Goolsbys, D.A.; Nakagaki, N.

    1998-01-01

    The occurrence, concentration, and geographical distribution of agricultural pesticides were determined in air over the Mississippi River from New Orleans, LA, to St. Paul, MN, during the first 10 days of June 1994. Air samples were collected from a research vessel by pulling air through polyurethane foam plugs at about 100 L/min for up to 24 h. Each sample was analyzed for 42 pesticides and 3 pesticide transformation products. Twenty- five compounds-15 herbicides, 7 insecticides, and 3 pesticide transformation products-were detected in one or more samples with concentrations ranging from 0.05 to 80 ng/m3. Alachlor, chlorpyrifos, diazinon, fonofos, malathion, methyl parathion, metolachlor, metribuzin, pendimethalin, and trifluralin were detected in 80% or more of the samples. The highest concentrations for chlorpyrifos (1.6 ng/m3), diazinon (0.36 ng/m3), and malathion (4.6 ng/m3) all occurred near major metropolitan areas. These samples represent a 'snapshot in time', a spatial and temporal integration of which pesticides were present in the air during each sampling period. The occurrence and atmospheric concentrations of the observed pesticides were most closely related to their use on cropland within 40 km of the river.The occurrence, concentration, and geographical distribution of agricultural pesticides were determined in air over the Mississippi River from New Orleans, LA, to St. Paul, MN, during the first 10 days of June 1994. Air samples were collected from a research vessel by pulling air through polyurethane foam plugs at about 100 L/min for up to 24 h. Each sample was analyzed for 42 pesticides and 3 pesticide transformation products. Twenty-five compounds-15 herbicides, 7 insecticides, and 3 pesticide transformation products-were detected in one or more samples with concentrations ranging from 0.05 to 80 ng/m3. Alachlor, chlorpyrifos, diazinon, fonofos, malathion, methyl parathion, metolachlor, metribuzin, pendimethalin, and trifluralin were detected in 80% or more of the samples. The highest concentrations for chlorpyrifos (1.6 ng/m3), diazinon (0.36 ng/m3), and malathion (4.6 ng/m3) all occurred near major metropolitan areas. These samples represent a 'snapshot in time', a spatial and temporal integration of which pesticides were present in the air during each sampling period. The occurrence and atmospheric concentrations of the observed pesticides were most closely related to their use on cropland within 40 km of the river.

  18. Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerance.

    PubMed

    Remy, Estelle; Niño-González, María; Godinho, Cláudia P; Cabrito, Tânia R; Teixeira, Miguel C; Sá-Correia, Isabel; Duque, Paula

    2017-07-03

    Soil contamination is a major hindrance for plant growth and development. The lack of effective strategies to remove chemicals released into the environment has raised the need to increase plant resilience to soil pollutants. Here, we investigated the ability of two Saccharomyces cerevisiae plasma-membrane transporters, the Major Facilitator Superfamily (MFS) member Tpo1p and the ATP-Binding Cassette (ABC) protein Pdr5p, to confer Multiple Drug Resistance (MDR) in Arabidopsis thaliana. Transgenic plants expressing either of the yeast transporters were undistinguishable from the wild type under control conditions, but displayed tolerance when challenged with the herbicides 2,4-D and barban. Plants expressing ScTPO1 were also more resistant to the herbicides alachlor and metolachlor as well as to the fungicide mancozeb and the Co 2+ , Cu 2+ , Ni 2+ , Al 3+ and Cd 2+ cations, while ScPDR5-expressing plants exhibited tolerance to cycloheximide. Yeast mutants lacking Tpo1p or Pdr5p showed increased sensitivity to most of the agents tested in plants. Our results demonstrate that the S. cerevisiae Tpo1p and Pdr5p transporters are able to mediate resistance to a broad range of compounds of agricultural interest in yeast as well as in Arabidopsis, underscoring their potential in future biotechnological applications.

  19. Occurrence and transport of acetochlor in streams of the Mississippi River Basin

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    1999-01-01

    The herbicide acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6- methylphenyl) acetamide] was first used on corn (Zea mays L.) in the USA during the growing season of 1994. By 1996, it was the third most heavily used corn herbicide in the midwestern USA. During the growing season of 1997, 78% of 375 samples collected at 32 stream sites in the Mississippi River Basin contained detectable concentrations of acetochlor. However, concentrations in only 2% of the samples exceeded 2 ??g/L, the maximum annual average concentration allowable in public water supplies derived primarily from surface water. The largest acetochlor concentrations were detected in streams draining basins in parts of Illinois, Indiana, and Iowa. The median concentration of acetochlor in streams was about 10% that of atrazine (6- chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine), about 25% that of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide], about 50% that of cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5- triazin-2-yl]amino]-2-methylpropionitrile], and about threefold that of alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl) acetanilide]. Load estimates indicate that, during the growing season of 1997, agricultural subbasins draining areas of Illinois, Indiana, and Iowa contributed about 37000 kg, or 74%, of the 50 000 kg of acetochlor measured in streams of the Mississippi River Basin.

  20. Pesticides analysed in rainwater in Alsace region (Eastern France): Comparison between urban and rural sites

    NASA Astrophysics Data System (ADS)

    Scheyer, Anne; Morville, Stéphane; Mirabel, Philippe; Millet, Maurice

    Current-used pesticides commonly applied in Alsace region (Eastern France) on diverse crops (maize, vineyard, vegetables, etc.) were analysed, together with Lindane, in rainwater between January 2002 and June 2003 simultaneously on two sites situated in a typical rural (Erstein, France) and urban area (Strasbourg, France). Rainwater samples were collected on a weekly basis by using two automatic wet only collectors associated with an open collector for the measurement of rainwater height. Pesticides were analysed by GC-MSMS and extracted from rainwater by SPME. Two runs were performed. The first one was performed by using a PDMS (100 μm) fibre for pesticides where direct injection into GC is possible (alachlor, atrazine, azinphos-ethyl, azinphos-methyl, captan, chlorfenvinphos, dichlorvos, diflufenican, α- and β-endosulfan, iprodione, lindane, metolachlor, mevinphos, parathion-methyl, phosalone, phosmet, tebuconazole, triadimefon and trifluralin). The second run was performed by using PDMS/DVB fibre and this run concerns pesticides where a preliminary derivatisation step with pentafluorobenzylbromide (PFBBr) is required for very low volatiles (bromoxynil,2,4-MCPA, MCPP and 2,4-D) or thermo labiles (chlorotoluron, diuron and isoproturon) pesticides. Results showed that the more concentrated pesticides detected were those used as herbicides in large quantities in Alsace region for maize crops (alachlor, metolachlor and atrazine). Maximum concentrations for these herbicides have been measured during intensive applications periods on maize crops following by rapid decrease immediately after use. For Alachlor, most important peaks have been observed between 21 and 28 April 2003 (3327 ng L -1 at Erstein and 5590 ng L -1 at Strasbourg). This is also the case for Metolachlor where most important peak was observed during the same week. Concentrations of pesticides measured out of application periods were very low for many pesticides and some others where never detected during this period. This is the case for diflufenican which was detected only during application. Two important peaks of concentrations were observed; a first one (101 ng L -1) in Erstein in November 2002 (4-11 November) and a second one (762 ng L -1) also in Erstein (28 April-15 May). The same behaviour can be seen for chlorfenvinphos and phosalone which have been detected, respectively, 2 and 4 times in Erstein and Strasbourg at high concentrations (28 April 2003-15 May 2003, 187 ng L -1 of phosalone and 157 ng L -1 of chlorfenvinphos in Erstein). MCPP, 2,4 MCPA and 2,4-D have been detected at high concentrations in rainwater but for the other pesticides very episodically and mainly during their use in agriculture. Maximal concentrations of MCPP and 2,4 MCPA have been measured in Erstein between 28 April and 15 May (904 and 746 ng L -1, respectively). Comparison between rural and urban sites showed that concentrations in rural areas are generally higher except for pesticides commonly applied in urban areas like Diuron. No seasonal phenomenon was observed for Diuron. This herbicide has been detected in practically all of the rainwater samples in Strasbourg (40/41) with a maximum of 1025 ng L -1 (16-23 September 2002) in 38 samples on 41 in Erstein with a maximum of 317 ng L -1 (15-23 October 2002). The total concentration of Diuron measured between 4 March 2002 and 20 July 2003 is of 4721 ng L -1 in Strasbourg and 5025 ng L -1 in Erstein. This result shows that wet deposition of Diuron in urban and rural sites was equivalent and can be explained by the "urban use" of this molecule together with its potential persistence.

  1. Distribution of dissolved pesticides and other water quality constituents in small streams, and their relation to land use, in the Willamette River Basin, Oregon, 1996

    USGS Publications Warehouse

    Anderson, Chauncey W.; Wood, Tamara M.; Morace, Jennifer L.

    1997-01-01

    Water quality samples were collected at sites in 16 randomly selected agricultural and 4 urban subbasins as part of Phase III of the Willamette River Basin Water Quality Study in Oregon during 1996. Ninety-five samples were collected and analyzed for suspended sediment, conventional constituents (temperature, dissolved oxygen, pH, specific conductance, nutrients, biochemical oxygen demand, and bacteria) and a suite of 86 dissolved pesticides. The data were collected to characterize the distribution of dissolved pesticide concentrations in small streams (drainage areas 2.6? 13 square miles) throughout the basin, to document exceedances of water quality standards and guidelines, and to identify the relative importance of several upstream land use categories (urban, agricultural, percent agricultural land, percent of land in grass seed crops, crop diversity) and seasonality in affecting these distributions. A total of 36 pesticides (29 herbicides and 7 insecticides) were detected basinwide. The five most frequently detected compounds were the herbicides atrazine (99% of samples), desethylatrazine (93%), simazine (85%), metolachlor (85%), and diuron (73%). Fifteen compounds were detected in 12?35% of samples, and 16 compounds were detected in 1?9% of samples. Water quality standards or criteria were exceeded more frequently for conventional constituents than for pesticides. State of Oregon water quality standards were exceeded at all but one site for the indicator bacteria E. coli, 3 sites for nitrate, 10 sites for water temperature, 4 sites for dissolved oxygen, and 1 site for pH. Pesticide concentrations, which were usually less than 1 part per billion, exceeded State of Oregon or U.S. Environmental Protection Agency aquatic life toxicity criteria only for chlorpyrifos, in three samples from one site; such criteria have been established for only two other detected pesticides. However, a large number of unusually high concentrations (1?90 parts per billion) were detected, indicating that pesticides in the runoff sampled in these small streams were more highly concentrated than in the larger streams sampled in previous studies. These pulses could have had short term toxicological implications for the affected streams; however, additional toxicological assessment of the detected pesticides was limited because of a lack of available information on the response of aquatic life to the observed pesticide concentrations. Six pesticides, including atrazine, diuron, and metolachlor, had significantly higher (p<0.08 for metolachlor, p<0.05 for the other five) median concentrations at agricultural sites than at urban sites. Five other compounds ?carbaryl, diazinon, dichlobenil, prometon, and tebuthiuron?had significantly higher (p<0.05) concentrations at the urban sites than at the agricultural sites. Atrazine, metolachlor, and diuron also had significantly higher median concentrations at southern agricultural sites (dominated by grass seed crops) than northern agricultural sites. Other compounds that had higher median concentrations in the south included 2,4-D and metribuzin, which are both used on grass seed crops, and triclopyr, bromacil, and pronamide. A cluster analysis of the data grouped sites according to their pesticide detections in a manner that was almost identical to a grouping made solely on the basis of their upstream land use patterns (urban, agricultural, crop diversity, percentage of basin in agricultural production). In this way inferences about pesticide associations with different land uses could be drawn, illustrating the strength of these broad land use categories in determining the types of pesticides that can be expected to occur. Among the associations observed were pesticides that occurred at a group of agricultural sites, but which have primarily noncropland uses such as vegetation control along rights-of-way. Also, the amount of forested land in a basin was negatively associated with pesticide occurrence, sugges

  2. Leaching of Br-, metolachlor, alachlor, atrazine, deethylatrazine and deisopropylatrazine in clayey vadoze zone: a field scale experiment in north-east Greece.

    PubMed

    Vryzas, Zisis; Papadakis, Emmanuel Nikolaos; Papadopoulou-Mourkidou, E

    2012-04-15

    An extensive four-year research program has been carried out to explore and acquire knowledge about the fundamental agricultural practices and processes affecting the mobility and bioavailability of pesticides in soils under semi-arid Mediterranean conditions. Pesticide leaching was studied under field conditions at five different depths using suction cups. Monitoring of metolachlor, alachlor, atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and bromide ions in soil water, as well as dye patterns made apparent the significant role of preferential flow to the mobility of the studied compounds. Irrespective to their adsorption capacities and degradation rates, atrazine, metolachlor and bromide ions were simultaneously detected to 160 cm depth. Following 40 mm irrigation, just after their application, both alachlor and atrazine were leached to 160 cm depth within 18 h, giving maximum concentrations of 211 and 199 μg L(-1), respectively. Metolachlor was also detected in all depth when its application was followed by a rainfall event (50 mm) two weeks after its application. The greatest concentrations of atrazine, alachlor and metolachlor in soil water were 1795, 1166 and 845 μg L(-1), respectively. The greatest concentrations of atrazine's degradation products (both DEA and DIA) appeared later in the season compared to the parent compound. Metolachlor exhibited the greatest persistence with concentrations up to 10 μg L(-1) appearing in soil water 18 months after its application. Brilliant blue application followed by 40 mm irrigation clearly depict multi-branching network of preferential flow paths allowing the fast flow of the dye down to 150 cm within 24 h. This network was created by soil cracks caused by shrinking of dry soils, earthworms and plant roots. Chromatographic flow of the stained soil solution was evident only in the upper 10-15 cm of soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Interaction of flumioxazin with dimethenamid or metolachlor in peanut (Arachis hypogaea L.)

    USDA-ARS?s Scientific Manuscript database

    Field studies were conducted in various peanut growing regions of Texas and Georgia to study peanut response to flumioxazin alone or in combination with dimethenamid or metolachlor. In southern Texas during 1997, flumioxazin plus metolachlor resulted in greater than 45% peanut stunt, while flumioxaz...

  4. Trends in pesticide concentrations in urban streams in the United States, 1992-2008

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.; Martin, Jeffrey D.; Gilliom, Robert J.

    2010-01-01

    Pesticide concentration trends in streams dominated by urban land use were assessed using data from 27 urban streams sampled as part of the U.S. Geological Survey National Water-Quality Assessment Program. The sites were divided into four regions, Northeast, South, Midwest, and West, to examine possible regional patterns. Three partially overlapping 9-year periods (1992-2000, 1996-2004, and 2000-2008) were examined for eight herbicides and one degradation product (simazine, prometon, atrazine, deethylatrazine, metolachlor, trifluralin, pendimethalin, tebuthiuron, and Dacthal), and five insecticides and two degradation products (chlorpyrifos, malathion, diazinon, fipronil, fipronil sulfide, desulfinylfipronil, and carbaryl). The data were analyzed for trends in concentration using a parametric regression model with seasonality, flow-related variability, and trend, called SEAWAVE-Q. The SEAWAVE-Q model also was used to generate estimated daily concentration percentiles for each analysis period to provide a summary of concentration magnitudes. For herbicides, the largest 90th percentiles of estimated concentrations for simazine were in the South, prometon at some sites in all of the regions, atrazine and deethylatrazine in the South and Midwest, metolachlor in the Midwest and a few sites in the South, pendimethalin at scattered sites in all of the regions, and tebuthiuron in the South and a few sites in the Midwest and West. For insecticides, the largest 90th percentiles of estimated concentrations for diazinon and carbaryl were distributed among various sites in all regions (especially during 1996-2004), and fipronil at isolated sites in all of the regions during 2000-2008. Trend analysis results for the herbicides indicated many significant trends, both upward and downward, with varying patterns depending on period, region, and herbicide. Overall, deethylatrazine showed the most consistent pattern of upward trends, especially in the Northeast (2000-2008), South (1996-2004 and 2000-2008), and Midwest (1996-2004 and 2000-2008). Other herbicides showed less consistent upward trends, including simazine in the South (1996-2004), prometon in the Midwest (2000-2008), and atrazine in the South (1996-2004). The most consistent downward trends were for simazine in the Northeast and Midwest (1996-2004), prometon in the Northeast and Midwest (1996-2004) and West (1996-2004 and 2000-2008), and tebuthiuron in the South (1996-2004 and 2000-2008) and West (2000-2008). Strong similarity existed between the trends for atrazine and deethylatrazine during 1996-2004. During 2000-2008, however, there were mixed upward and downward trends in atrazine and predominantly upward trends in deethylatrazine. Ten sites with a downward trend in atrazine were paired with an upward trend in deethylatrazine and for three of these sites (1 in the South and 2 in the Midwest) both opposing trends were significant. Opposing trends showing a decrease in atrazine and an increase in deethylatrazine may indicate that decreases in atrazine from surface runoff are being offset in some cases by increases in deethylatrazine from groundwater for the latter analysis period. Trend results for insecticides indicated widespread significant downward trends for chlorpyrifos (especially 1996-2004), diazinon (1996-2004 and 2000-2008), and malathion (especially 1996-2004); widespread significant upward trends for fipronil and its degradation products (2000-2008); and mostly nonsignificant trends for carbaryl (1996-2004 and 2000-2008). The downward trends for chlorpyrifos and diazinon were consistent with the regulatory phaseout of residential uses of these insecticides and the upward trends for fipronil and its degradation products were consistent with its introduction in 1996 and subsequent increasing use as a possible substitute for chlorpyrifos and diazinon. The downward trends in malathion may be caused by voluntary substitution of pyrethroids or fipronil for malathio

  5. Water Quality Conditions Monitored at the Corps’ Fort Randall Project in South Dakota during the 3-Year Period 2006 through 2008

    DTIC Science & Technology

    2009-02-01

    dimethenamid, diuron, EPTC, ethalfluralin, fonofos, hexazinone, isophenphos, isopropalin, metolachlor, metribuzin, molinate, oxiadiazon, oxyfluorfen , pebulate...metolachlor, metribuzin, molinate, oxiadiazon, oxyfluorfen , pebulate, pendimethalin, phorate, profluralin, prometon, prometryn, propachlor, propazine...dimethenamid, diuron, EPTC, ethalfluralin, fonofos, hexazinone, isophenphos, isopropalin, metolachlor, metribuzin, molinate, oxiadiazon, oxyfluorfen

  6. In situ assessment of pesticide genotoxicity in an integrated pest management program I--Tradescantia micronucleus assay.

    PubMed

    Rodrigues, G S; Pimentel, D; Weinstein, L H

    1998-02-13

    The genotoxicity induced by pesticides applied in an integrated pest management (IPM) program was evaluated with the Tradescantia micronucleus assay (Trad-MCN). Three pesticide application rates were prescribed as follows: (a) Low, no field pesticide spray; (b) Medium, IPM test rate: banded cyanazine plus metolachlor (2.7 kg a.i. and 2.3 l a.i./ha of herbicides, respectively); and (c) High, a preventative pesticide application program: broadcast cyanazine plus metolachlor (same application rates as above) plus chlorpyrifos (1 kg a.i./ha of insecticide). The Trad-MCN was employed for the assessment of (a) the formulated compounds, singly and in combinations; (b) pesticide residues extracted from soils sampled before and after application, and (c) in situ exposures (14-h exposure to pesticide-sprayed field). All pesticides showed clastogenic potency at doses between 10 and 50 ppm. Aqueous extracts of the two pesticide-sprayed soils were clastogenic, but the unsprayed soil extracts were not. Plants exposed in situ to pesticide-sprayed soils (inside a chamber receiving vapors from the soil) also showed significant increases in micronuclei frequency in relation to controls exposed to unsprayed soil. In general, there was no significant reduction in the genotoxic effects from the High to the Medium treatment levels of the IPM program. This suggests that the reduction in pesticide application rates attained with the implementation of the proposed IPM program was not sufficient to abate the genotoxicity of the pesticides, as perceived with the sensitive assays employed. The results indicate that replacing genotoxic compounds may be the only effective remediation measure to eliminate the risks imposed by mutagenic compounds in the agricultural environment.

  7. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system.

    PubMed

    Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick

    2006-06-01

    Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.

  8. Dissipation of S-metolachlor in plant and soil and effect on enzymatic activities.

    PubMed

    Wołejko, Elżbieta; Kaczyński, Piotr; Łozowicka, Bożena; Wydro, Urszula; Borusiewicz, Andrzej; Hrynko, Izabela; Konecki, Rafał; Snarska, Krystyna; Dec, Dorota; Malinowski, Paweł

    2017-07-01

    The present study aimed at evaluating the dissipation of S-metolachlor (S-MET) at three doses in maize growing on diverse physico-chemical properties of soil. The effect of herbicide on dehydrogenase (DHA) and acid phosphatase (ACP) activity was estimated. A modified QuEChERS method using LC-MS/MS has been developed. The limit of quantification (0.001 mg kg -1 ) and detection (0.0005 mg kg -1 ) were very low for soil and maize samples. The mean recoveries and RSDs for the six spiked levels (0.001-0.5 mg kg -1 ) were 91.3 and 5.8%. The biggest differences in concentration of S-MET in maize were observed between the 28th and 63rd days. The dissipation of S-MET in the alkaline soil was the slowest between the 2nd and 7th days, and in the acidic soil between the 5th and 11th days. DT 50 of S-MET calculated according to the first-order kinetics model was 11.1-14.7 days (soil) and 9.6-13.9 days (maize). The enzymatic activity of soil was higher in the acidic environment. One observed the significant positive correlation of ACP with pH of soil and contents of potassium and magnesium and negative with contents of phosphorus and organic carbon. The results indicated that at harvest time, the residues of S-MET in maize were well below the safety limit for maize. The findings of this study will foster the research on main parameters influencing the dissipation in maize ecosystems.

  9. Water-Quality Data for Pharmaceuticals and Other Organic Wastewater Contaminants in Ground Water and in Untreated Drinking Water Sources in the United States, 2000-01

    USGS Publications Warehouse

    Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael

    2008-01-01

    The five most frequently detected compounds in samples collected from ambient ground-water sites are N,N-diethyltoluamide (35 percent, insect repellant), bisphenol A (30 percent, plasticizer), tri(2-chloroethy) phosphate (30 percent, fire retardant), sulfamethoxazole (23 percent, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19 percent, detergent metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from surface-water sources are cholesterol (59 percent, natural sterol), metolachlor (53 percent, herbicide), cotinine (51 percent, nicotine metabolite), β-sitosterol (37 percent, natural plant sterol), and 1,7-dimethylxanthine (27 percent, caffeine metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from ground-water sources are tetrachloroethylene (24 percent, solvent), carbamazepine (20 percent, pharmaceutical), bisphenol A (20 percent, plasticizer), 1,7-dimethylxanthine (16 percent, caffeine metabolite), and tri(2-chloroethyl) phosphate (12 percent, fire retardant).

  10. Occurrence of alachlor and its sulfonated metabolite in rivers and reservoirs of the midwestern United States: The importance of sulfonation in the transport of chloroacetanilide herbicides

    USGS Publications Warehouse

    Thurman, E.M.; Goolsby, D.A.; Aga, D.S.; Pomes, M.L.; Meyer, M.T.

    1996-01-01

    Alachlor and its metabolite, 2-[(2',6'-diethylphenyl)- (methoxymethyl)amino]-2-oxoethanesulfonate (ESA), were identified in 76 reservoirs in the midwestern United States using immunoassay, liquid chromatography, and gas chromatography/mass spectrometry. The median concentration of ESA (0.48 ??g/L) exceeded the median concentration of alachlor (<0.05 ??g/L), with highest values in the upper Midwest. ESA also was detected in the Mississippi River from the mouth to the headwaters at concentrations of 0.2-1.5 ??g/L, exceeding the concentration of alachlor. In a field runoff study, alachlor rapidly formed ESA. It is hypothesized that a glutathione conjugate forms, which later oxidizes in soil to ESA. The removal of the chlorine atom lessens the toxicity of the parent compound and increases runoff potential. It is hypothesized further that sulfonic acid metabolites of other chloroacetanilides, including acetochlor, butachlor, metolachlor, and propachlor, also occur in surface water.

  11. Pesticide transport in the San Joaquin River Basin

    USGS Publications Warehouse

    Dubrovsky, N.M.; Kratzer, C.R.; Panshin, S.Y.; Gronberg, J.A.M.; Kuivila, K.M.

    2000-01-01

    Pesticide occurrence and concentrations were evaluated in the San Joaquin River Basin to determine potential sources and mode of transport. Land use in the basin is mainly agricultural. Spatial variations in pesticide occurrence were evaluated in relation to pesticide application and cropping patterns in three contrasting subbasins and at the mouth of the basin. Temporal variability in pesticide occurrence was evaluated by fixed interval sampling and by sampling across the Hydrograph during winter storms. Four herbicides (simazine, metolachlor, dacthal, and EPTC) and two insecticides (diazinon and chlorpyrifos) were detected in more than 50 percent of the samples. Temporal, and to a lesser extent spatial, variation in pesticide occurrence is usually consistent with pesticide application and cropping patterns. Diazinon concentrations changed rapidly during winter storms, and both eastern and western tributaries contributed diazinon to the San Joaquin River at concentrations toxic to the water flea Ceriodaphnia dubia at different times during the hydrograph. During these storms, toxic concentrations resulted from the transport of only a very small portion of the applied diazinon.

  12. Examining impacts of current-use pesticides in Southern Ontario using in situ exposures of the amphipod Hyalella azteca.

    PubMed

    Bartlett, Adrienne J; Struger, John; Grapentine, Lee C; Palace, Vince P

    2016-05-01

    In situ exposures with Hyalella azteca were used to assess impacts of current-use pesticides in Southern Ontario, Canada. Exposures were conducted over 2 growing seasons within areas of high pesticide use: 1 site on Prudhomme Creek and 3 sites on Twenty Mile Creek. Three sites on Spencer Creek, an area of low pesticide use, were added in the second season. Surface water samples were collected every 2 wk to 3 wk and analyzed for a suite of pesticides. Hyalella were exposed in situ for 1 wk every 4 wk to 6 wk, and survival and acetylcholinesterase (AChE) activity were measured. Pesticides in surface waters reflected seasonal use patterns: lower concentrations in spring and fall and higher concentrations during summer months. Organophosphate insecticides (chlorpyrifos, azinphos methyl, diazinon) and acid herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], mecoprop) were routinely detected in Prudhomme Creek, whereas neutral herbicides (atrazine, metolachlor) dominated the pesticide signature of Twenty Mile Creek. Spencer Creek contained fewer pesticides, which were measured at lower concentrations. In situ effects also followed seasonal patterns: higher survival and AChE activity in spring and fall, and lower survival and AChE activity during summer months. The highest toxicity was observed at Prudhomme Creek and was primarily associated with organophosphates. The present study demonstrated that current-use pesticides in Southern Ontario were linked to in situ effects and identified sites of concern requiring further investigation. © 2015 Crown in the Right of Canada.

  13. Metolachlor Sorption and Degradation in Soil Amended with Fresh and Aged Biochars.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Hall, Kathleen E; Cox, Lucia; Koskinen, William C

    2016-04-27

    Addition of organic amendments such as biochar to soils can influence pesticide sorption-desorption processes and, in turn, the amount of pesticide readily availability for transport and biodegradation. Sorption-desorption processes are affected by both the physical and chemical properties of soils and pesticides, as well as soil-pesticide contact time, or aging. Changes in sorption-desorption of metolachlor with aging in soil amended with three macadamia nut shell biochars aged 0 (BCmac-fr), 1 year (BCmac-1yr), and 2 years (BCmac-2yr) and two wood biochars aged 0 (BCwood-fr) and 5 years (BCwood-5yr) were determined. Apparent sorption coefficient (Kd-app) values increased with incubation time to a greater extent in amended soil as compared to unamended soils; Kd-app increased by 1.2-fold for the unamended soil, 2.0-fold for BCwood-fr, 1.4-fold for BCwood-5yr, 2.4-fold for BCmac-fr, 2.5-fold for BCmac-1yr, and 1.9-fold for BCmac-4yr. The increase in calculated Kd-app value was the result of a 15% decrease in the metolachlor solution concentration extractable with CaCl2 solution with incubation time in soil as compared to a 50% decrease in amended soil with very little change in the sorbed concentration. Differences could possibly be due to diffusion to less accessible or stronger binding sites with time, a faster rate of degradation (in solution and on labile sites) than desorption, or a combination of the two in the amended soils. These data show that transport models would overpredict the depth of movement of metolachlor in soil if effects of aging or biochar amendments are not considered.

  14. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract

    PubMed Central

    Reigosa, Manuel J.; Valentão, Patrícia; Andrade, Paula B.

    2018-01-01

    In the worldwide search for new strategies in sustainable weed management, the use of plant species able to produce and release phytotoxic compounds into the environment could be an effective alternative to synthetic herbicides. Eucalyptus globulus Labill. is known to be a source of biologically active compounds responsible for its phytotoxic and allelopathic properties. Our previous results demonstrated the bioherbicide potential of eucalyptus leaves incorporated into the soil as a green manure, probably through the release of phytotoxins into the soil solution. Thus, the aims of this study were to understand the phytotoxicity of the eucalyptus leaves aqueous extract applied in pre- and post-emergence, and to identify and quantify its potentially phytotoxic water-soluble compounds. The effects were tested on the germination and early growth of the model target species Lactuca sativa and Agrostis stolonifera, and on physiological parameters of L. sativa adult plants after watering or spraying application. Dose-response curves and ED50 and ED80 values for eucalyptus aqueous extracts revealed pre-emergence inhibitory effects on both target species, effects being comparable to the herbicide metolachlor. While spraying treatment reduced the aerial and root biomass and increased the dry weight/fresh weight ratio of lettuce adult plants, watering application reduced protein contents and chlorophyll concentrations with respect to control, reflecting different modes of action depending on the site of phytotoxin entry. Via HPLC analyses, a total of 8 phenolic compounds (chlorogenic, two ρ-coumaric derivatives, ellagic, hyperoside, rutin, quercitrin, and kaempferol 3-O-glucoside) and other 5 low weight organic acids (citric, malic, shikimic, succinic and fumaric acids) were obtained from aqueous extract, the latter being identified for the first time in E. globulus. Despite some phytotoxic effects were found on lettuce adult plants, the use of eucalyptus aqueous extract would be discarded in post-emergence, whereas it was promising as a pre-emergence bioherbicide. PMID:29438430

  15. Agricultural Chemical Concentrations and Loads in Rivers Draining the Central Valley, California, to the San Francisco Bay-Delta Estuary: Before and During an Extended Drought

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.

    2016-12-01

    Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to toxicity to zooplankton, non-vascular plants, or fish at these two locations where most of the fresh water inputs to this estuary occurs.

  16. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; characterization of suspended sediment, nutrients, and pesticides

    USGS Publications Warehouse

    Harned, Douglas; McMahon, Gerard; Spruill, T.B.; Woodside, M.D.

    1995-01-01

    The 28,000-square-mile Albemarle-Pamlico drainage basin includes the Roanoke, Dan, Chowan Tar, and Neuse Rivers. The basin extends through four physiographic provinces in North Carolina and Virginia-Valley and Ridge, Blue Ridge, Piedmont and Coastal Plain. The spatial and temporal trends in ground-water and riverine water quality in the study area were characterized by using readily available data sources The primary data sources that were used included the U.S. Geological Survey's National Water Data Storage and Retrieval System (WATSTORE) database, the U.S. Environmental Protection Agency's Storage and Retrieval System (STORET) database, and results of a few investigations of pesticide occurrence. The principal water-quality constituents examined were suspended sediment, nutrients, and pesticides. The data examined generally spanned the period from 1950 to 1993. The only significant trends in suspended sediment were detected at three Chowan River tributary sites which showed long-term decreases. Suspended- and total-solids concentrations have decreased throughout the Albemarle-Pamlico drainage basin. The decreases are probably a result of (1) construction of new lakes and ponds in the basin, which trap solids, (2) improved agricultural soil management, and (3) improved wastewater treatment. Nutrient point sources are much less than nonpoint nutrient sources at the eight NASQAN basins examined for nutrient loads. The greatest nitrogen inputs are associated with crop fertilizer and biological nitrogen fixation by soybeans and peanuts, whereas atmospheric and animal-related nitrogen inputs are comparable in magnitude. The largest phosphorus inputs are associated with animal wastes. The most commonly detected pesticides in surface water in the STORET database were atrazine and aldrin.Intensive organonitrogen herbicide sampling of Chicod Creek in 1992 showed seasonal variations in pesticide concentration. The most commonly detected herbicides were atrazine, alachlor, metolachlor, prometon, and metribuzin. No relation between streamflow and pesticide concentration was evident.

  17. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract.

    PubMed

    Puig, Carolina G; Reigosa, Manuel J; Valentão, Patrícia; Andrade, Paula B; Pedrol, Nuria

    2018-01-01

    In the worldwide search for new strategies in sustainable weed management, the use of plant species able to produce and release phytotoxic compounds into the environment could be an effective alternative to synthetic herbicides. Eucalyptus globulus Labill. is known to be a source of biologically active compounds responsible for its phytotoxic and allelopathic properties. Our previous results demonstrated the bioherbicide potential of eucalyptus leaves incorporated into the soil as a green manure, probably through the release of phytotoxins into the soil solution. Thus, the aims of this study were to understand the phytotoxicity of the eucalyptus leaves aqueous extract applied in pre- and post-emergence, and to identify and quantify its potentially phytotoxic water-soluble compounds. The effects were tested on the germination and early growth of the model target species Lactuca sativa and Agrostis stolonifera, and on physiological parameters of L. sativa adult plants after watering or spraying application. Dose-response curves and ED50 and ED80 values for eucalyptus aqueous extracts revealed pre-emergence inhibitory effects on both target species, effects being comparable to the herbicide metolachlor. While spraying treatment reduced the aerial and root biomass and increased the dry weight/fresh weight ratio of lettuce adult plants, watering application reduced protein contents and chlorophyll concentrations with respect to control, reflecting different modes of action depending on the site of phytotoxin entry. Via HPLC analyses, a total of 8 phenolic compounds (chlorogenic, two ρ-coumaric derivatives, ellagic, hyperoside, rutin, quercitrin, and kaempferol 3-O-glucoside) and other 5 low weight organic acids (citric, malic, shikimic, succinic and fumaric acids) were obtained from aqueous extract, the latter being identified for the first time in E. globulus. Despite some phytotoxic effects were found on lettuce adult plants, the use of eucalyptus aqueous extract would be discarded in post-emergence, whereas it was promising as a pre-emergence bioherbicide.

  18. Effects of Atrazine, Metolachlor, Carbaryl and Chlorothalonil on Benthic Microbes and Their Nutrient Dynamics

    PubMed Central

    Elias, Daniel; Bernot, Melody J.

    2014-01-01

    Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization, relative to mean concentrations of metolachlor and chlorothalonil. Our regression equations can complement models of nitrogen and phosphorus availability in streams to predict potential changes in nutrient dynamics in response to pesticides in freshwaters. PMID:25275369

  19. Exposure of small water bodies to pesticides and their transformation products in a lowland catchment

    NASA Astrophysics Data System (ADS)

    Ulrich, Uta; Fohrer, Nicola

    2016-04-01

    INTRODUCTION Based on the European Directive 2009/128/EC (2009), all member states were obliged to set up National Action Plans for the sustainable use of pesticides. In the German National Action Plan (GNAP), the status of small water bodies (swb) defined as water bodies with a catchment <10km² was stressed among other issues. Since the GNAP stated that knowledge and data base of pesticide contamination of swbs is insufficient, a monitoring of 10 swbs in the catchment of the lowland river Kielstau was carried out in summer and autumn 2015 for selected herbicides and their transformation products (TP). METHODS Grab samples of the water phase were collected once at the end of the spring/summer application period and a screening was carried out for 102 pesticides and 6 TPs. During autumn application, the rape herbicide metazachlor and the winter grain herbicide flufenacet as well as their TPs oxalic acid (OA) and sulfonic acid (ESA) were in the focus of the study. The sampling was carried out event based after the first and second relevant rainfall events after application. The third sample was collected four weeks after the second sampling to observe the occurrence of the TPs. The target compounds were quantified by LC-MSMSMS. RESULTS For all swbs, the pesticide screening after the spring application showed pesticide/TP concentrations below the quantification limits (0.01-0.05 μg L-1) except of the corn herbicdes metolachlor, terbuthylazine and its TP desethylterbuthylazine. These findings were independent from the time elapsed since the last application of these compounds took place which was partly 4 years ago. After autumn application, the samples were analyzed for the herbicides metazachlor, flufenacet and their TPs which were sprayed on the fields where the swb are located in. These results showed that TPs of both herbicides remained from the year before and reached concentrations up to 1.9 μg L-1 for metazachlor ESA, 0.55 μg L-1 for metazachlor OA, 0.16 μg L-1 for flufenacet OA and 0.04 μg L-1 for flufenacet ESA. After autumn application, maximum concentrations of the mother compounds were 0.62 μg L-1 for metazachlor after the second and 0.5 μg L-1 for flufenacet after the first relevant rainfall event. The TP concentrations after autumn application were up to 200 times higher than the mother compound (metazachlor and -ESA). Key words: small water bodies, transformation products, metazachlor, flufenacet, -OA, -ESA

  20. Dissolved Pesticide and Organic Carbon Concentrations Detected in Surface Waters, Northern Central Valley, California, 2001-2002

    DTIC Science & Technology

    2004-01-01

    Date (mm/dd/yy) Time Metolachlor Molinate Napro- pamide Oxyfluorfen Pendi- methalin Piperonyl butoxide Simazine Thiobencarb Trifluralin 01/04/01 0910...Metolachlor Molinate Napro- pamide Oxyfluorfen Pendi- methalin Piperonyl butoxide Simazine Thiobencarb Trifluralin 01/04/01 1015 7.8 14.8 nd nd nd 22.2 nd 8.6...Metolachlor Molinate Napropamide Oxyfluorfen Pendimethalin Piperonyl butoxide Simazine Trifluralin 01/04/01 1200 nd 16.2 nd nd nd nd 43.2 nd 01/09/01

  1. Metolachlor

    Integrated Risk Information System (IRIS)

    Metolachlor ; CASRN 51218 - 45 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Dissolved pesticides, dissolved organic carbon, and water-quality characteristics in selected Idaho streams, April--December 2010

    USGS Publications Warehouse

    Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.

    2012-01-01

    Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.

  3. Storm flow export of metolachlor from a coastal plain watershed.

    PubMed

    Watts, D W; Novak, J M; Johnson, M H; Stone, K C

    2000-03-01

    During an 18-month (1994-1995) survey of the surface water in an Atlantic Coastal Plain watershed, metolachlor was most frequently detected during storm flow events. Therefore, a sampling procedure, focused on storm flow, was implemented in June of 1996. During 1996, three tropical cyclones made landfall within 150 km of the watershed. These storms, as well as several summer thunderstorms, produced six distinct storm flow events within the watershed. Metolachlor was detected leaving the watershed during each event. In early September, Hurricane Fran produced the largest storm flow event and accounted for the majority of the metolachlor exports. During the storm event triggered by Hurricane Fran, the highest daily average flow (7.5 m2 s-1) and highest concentration (5.1 micrograms L-1) ever measured at the watershed outlet were recorded. Storm flow exports leaving the watershed represented 0.1 g ha-1 or about 0.04% of active ingredient applied.

  4. Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados.

    PubMed

    Laabs, V; Amelung, W; Pinto, A; Altstaedt, A; Zech, W

    2000-11-01

    Pesticide pollution of ground and surface water is of growing concern in tropical countries. The objective of this pilot study was to evaluate the leaching potential of eight pesticides in a Brazilian Oxisol. In a field experiment near Cuiabá, Mato Grosso, atrazine, chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, metolachlor, monocrotofos, simazine, and trifluraline were applied onto a Typic Haplustox. Dissipation in the topsoil, mobility within the soil profile and leaching of pesticides were studied for a period of 28 days after application. The dissipation half-life of pesticides in the topsoil ranged from 0.9 to 14 d for trifluraline and metolachlor, respectively. Dissipation curves were described by exponential functions for polar pesticides (atrazine, metolachlor, monocrotofos, simazine) and bi-exponential ones for apolar substances (chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, trifluraline). Atrazine, simazine and metolachlor were moderately leached beyond 15 cm soil depth, whereas all other compounds remained within the top 15 cm of the soil. In lysimeter percolates (at 35 cm soil depth), 0.8-2.0% of the applied amounts of atrazine, simazine, and metolachlor were measured within 28 days after application. Of the other compounds less than 0.03% of the applied amounts was detected in the soil water percolates. The relative contamination potentials of pesticides, according to the lysimeter study, were ranked as follows: metolachlor > atrazine = simazine > monocrotofos > endsulfane alpha > chlorpyrifos > trifluraline > lambda-cyhalothrin. This order of the pesticides was also achieved by ranking them according to their effective sorption coefficient Ke, which is the ratio of Koc to field-dissipation half-life.

  5. Simulated fate and transport of metolachlor in the unsaturated zone, Maryland, USA

    USGS Publications Warehouse

    Bayless, E.R.; Capel, P.D.; Barbash, J.E.; Webb, R.M.T.; Hancock, T.L.C.; Lampe, D.C.

    2008-01-01

    An unsaturated-zone transport model was used to examine the transport and fate of metolachlor applied to an agricultural site in Maryland, USA. The study site was instrumented to collect data on soil-water content, soil-water potential, ground water levels, major ions, pesticides, and nutrients from the unsaturated zone during 2002-2004. The data set was enhanced with site-specific information describing weather, soils, and agricultural practices. The Root Zone Water Quality Model was used to simulate physical, chemical, and biological processes occurring in the unsaturated zone. Model calibration to bromide tracer concentrations indicated flow occurred through the soil matix. Simulated recharge rates were within the measured range of values. The pesticide transport model was calibrated to the intensive data collection period (2002-2004), and the calibrated model was then used to simulate the period 1984 through 2004 to examine the impact of sustained agricultural management practices on the concentrations of metolachlor and its degradates at the study site. Simulation results indicated that metolachlor degrades rapidly in the root zone but that the degradates are transported to depth in measurable quantities. Simulations indicated that degradate transport is strongly related to the duration of sustained use of metolachlor and the extent of biodegradation. 

  6. Risk assessment of herbicides and booster biocides along estuarine continuums in the Bay of Vilaine area (Brittany, France).

    PubMed

    Caquet, Th; Roucaute, M; Mazzella, N; Delmas, F; Madigou, C; Farcy, E; Burgeot, Th; Allenou, J-P; Gabellec, R

    2013-02-01

    A 2-year study was implemented to characterize the contamination of estuarine continuums in the Bay of Vilaine area (NW Atlantic Coast, Southern Brittany, France) by 30 pesticide and biocide active substances and metabolites. Among these, 11 triazines (ametryn, atrazine, desethylatrazine, desethylterbuthylazine, desisopropyl atrazine, Irgarol 1051, prometryn, propazine, simazine, terbuthylazine, and terbutryn), 10 phenylureas (chlortoluron, diuron, 1-(3,4-dichlorophenyl)-3-methylurea, fenuron, isoproturon, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl)-urea, linuron, metoxuron, and monuron), and 4 chloroacetanilides (acetochlor, alachlor, metolachlor, and metazachlor) were detected at least once. The objectives were to assess the corresponding risk for aquatic primary producers and to provide exposure information for connected studies on the responses of biological parameters in invertebrate sentinel species. The risk associated with contaminants was assessed using risk quotients based on the comparison of measured concentrations with original species sensitivity distribution-derived hazardous concentration values. For EU Water Framework Directive priority substances, results of monitoring were also compared with regulatory Environmental Quality Standards. The highest residue concentrations and risks for primary producers were recorded for diuron and Irgarol 1051 in Arzal reservoir, close to a marina. Diuron was present during almost the all survey periods, whereas Irgarol 1051 exhibited a clear seasonal pattern, with highest concentrations recorded in June and July. These results suggest that the use of antifouling biocides is responsible for a major part of the contamination of the lower part of the Vilaine River course for Irgarol 1051. For diuron, agricultural sources may also be involved. The presence of isoproturon and chloroacetanilide herbicides on some dates indicated a significant contribution of the use of plant protection products in agriculture to the contamination of Vilaine River. Concentration levels and associated risk were always lower in estuarine sites than in the reservoir, suggesting that Arzal dam reduces downstream transfer of contaminants and favors their degradation in the freshwater part of the estuary. Results of the additional monitoring of two tidal streams located downstream of Arzal dam suggested that, although some compounds may be transferred to the estuary, their impact was probably very low. Dilution by marine water associated with tidal current was also a major factor of concentration reduction. It is concluded that the highest risks associated to herbicides and booster biocides concerned the freshwater part of the estuary and that its brackish/saltwater part was exposed to a moderate risk, although some substances may sometimes exhibit high concentration but mainly at low tide and on an irregular basis.

  7. Concentrations of nutrients, pesticides, and suspended sediment in the karst terrane of the Sinking Creek basin, Kentucky, 2004

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Water samples were collected in streams and springs in the karst terrane of the Sinking Creek Basin in 2004 as part of study in cooperation with the Kentucky Department of Agriculture. A total of 48 water samples were collected at 7 sites (4 springs, 2 streams, and 1 karst window) from April through November 2004. The karst terrane of the Sinking Creek Basin (also known as Boiling Spring Basin) encompasses about 125 square miles in Breckinridge County and portions of Meade and Hardin Counties in Kentucky. Fourteen pesticides were detected of the 52 pesticides analyzed in the stream and spring samples. Of the 14 detected pesticides, 12 were herbicides and 2 were insecticides. The most commonly detected pesticides?atrazine, simazine, metolachlor, and acetochlor?were those most heavily used on crops during the study. Atrazine was detected in 100 percent of all samples; simazine, metolachlor, and acetochlor were detected in more than 35 percent of all samples. The pesticide-transformation compound, deethylatrazine, was detected in 98 percent of the samples. Only one nonagricultural herbicide, prometon, was detected in more than 30 percent of the samples. Malathion, the most commonly detected insecticide, was found in 4 percent of the samples, which was followed by carbofuran (2 percent). Most of the pesticides were present in low concentrations; however, atrazine was found in springs exceeding the U.S. Environmental Protection Agency?s (USEPA) standards for drinking water. Atrazine exceeded the USEPA?s maximum contaminant level 2 times in 48 detections. Concentrations of nitrate greater than 10 milligrams per liter (mg/L) were not found in water samples from any of the sites. Concentrations of nitrite plus nitrate ranged from 0.21 to 3.9 mg/L at the seven sites. The median concentration of nitrite plus nitrate for all sites sampled was 1.5 mg/L. Concentrations of nitrite plus nitrate generally were higher in the springs than in the main stem of Sinking Creek. Forty-two percent of the concentrations of total phosphorus at all seven sites exceeded the USEPA?s recommended maximum concentration of 0.1 mg/L. The median concentration of total phosphorus for all sites sampled was 0.09 mg/L. The highest median concentrations of total phosphorus were found in the springs. Median concentrations of orthophosphate followed the same pattern as concentrations of total phosphorus in the springs. Concentrations of orthophosphate ranged from <0.006 to 0.192 mg/L. Concentrations of suspended sediment generally were low throughout the basin; the median concentration of suspended sediment for all sites sampled was 23 mg/L. The highest concentration of suspended sediment (1,486 mg/L) was measured following a storm event at Sinking Creek near Lodiburg, Ky.

  8. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment.

    PubMed

    Papadakis, Emmaluel N; Vryzas, Zisis; Kotopoulou, Athena; Kintzikoglou, Katerina; Makris, Konstantinos C; Papadopoulou-Mourkidou, Euphemia

    2015-06-01

    A pesticide monitoring study covering the main rivers and lakes of Northern Greece (Macedonia, Thrace and Thessaly) was undertaken. A total of 416 samples were collected over a 1.5-year sampling period (September 1999- February 2001) from six rivers and ten lakes. The water samples were analyzed with an off-line solid phase extraction technique coupled with a gas chromatography ion trap mass spectrometer using an analytical method for 147 pesticides and their metabolites, including organochlorines, organophosphates, triazines, chloroacetanilides, pyrethroids, carbamates, phthalimides and other pesticides (herbicides, insecticides and fungicides). Based on the pesticide survey results, a human health carcinogenic and non-carcinogenic risk assessment was conducted for adults and children. Ecotoxicological risk assessment was also conducted using default endpoint values and the risk quotient method. Results showed that the herbicides metolachlor, prometryn, alachlor and molinate, were the most frequently detected pesticides (29%, 12.5%, 12.5% and 10%, respectively). They also exhibited the highest concentration values, often exceeding 1 μg/L. Chlorpyrifos ethyl was the most frequently detected insecticide (7%). Seasonal variations in measured pesticide concentrations were observed in all rivers and lakes. The highest concentrations were recorded during May-June period, right after pesticide application. Concentrations of six pesticides were above the maximum allowable limit of 0.1 μg/L set for drinking water. Alachlor, atrazine and a-HCH showed unacceptable carcinogenic risk estimates (4.5E-06, 4.6E-06 and 1.3E-04, respectively). Annual average concentrations of chlorpyriphos ethyl (0.031 μg L), dicofol (0.01 μg/L), dieldrin (0.02 μg/L) and endosulfan a (0.065 μg/L) exceeded the EU environmental quality standards. The risk quotient estimates for the insecticides chorpyrifos ethyl, diazinon and parathion methyl and herbicide prometryn were above acceptable risk values. The coupling of monitoring data to probabilistic human and ecotoxicological risk estimates could find use by Greek regulatory authorities, proposing effective pollution management schemes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Midstory hardwood species respond differently to chainsaw girdle method and herbicide treatment

    Treesearch

    Ronald A. Rathfon; Michael R. Saunders

    2013-01-01

    Foresters in the Central Hardwoods Region commonly fell or girdle interfering trees and apply herbicide to the cut surface when performing intermediate silvicultural treatments. The objective of this study was to compare the use of single and double chainsaw girdle methods in combination with a herbicide treatment and, within the double girdle method, compare herbicide...

  10. Seasonal and spatial variability of pesticides in streams of the upper Tennessee River basin, 1996-99

    USGS Publications Warehouse

    Treece, M.W.

    2003-01-01

    From 1996 to 1999, the U.S. Geological Survey conducted an assessment of pesticides in streams in the upper Tennessee River Basin (UTEN), which includes parts of Tennessee, North Carolina, Virginia, and Georgia. A total of 362 water samples were collected at 13 fixed surface-water sites from March 1996 through June 1999, and an additional 61 samples were collected throughout the UTEN during the spring and summers of 1996, 1997, and 1998. In 1996, 3 of the 13 fixed sites located in agricultural watersheds were sampled intensively (weekly) for about 8 months during the growing season. Water samples were analyzed for 85 herbicides, insecticides, and pesticide metabolites. Based on a threshold concentration of 0.01 microgram per liter, the most frequently detected herbicides were atrazine (59 percent); tebuthiuron (41 percent); the metabolite, deethylatrazine (31 percent); metolachlor (24 percent); simazine (17 percent); and prometon (6.4 percent). The insecticides detected most frequently were carbaryl (6.1 percent), diazinon (1.9 percent), carbofuran (1.7 percent), and chlorpyrifos (1.1 percent). Pesticide concentrations varied seasonally and were closely related to land use. The highest pesticide concentrations occurred in the agricultural watersheds in late spring and early summer (April through July), coinciding with pesticide application and the first substantial storm following pesticide application. Results of the spatial analysis of pesticides during base-flow conditions indicate that water-quality conditions at the fixed sites were representative of conditions in the upper Tennessee River Basin. Although most of the water samples collected in the upper Tennessee River Basin contained detectable concentrations of one or more pesticides, none of the concentrations exceeded any human health guidelines.

  11. Enantiomeric separation of metolachlor and its metabolites using LC-MS and CZE

    USGS Publications Warehouse

    Klein, C. John; Schneider, R.J.; Meyer, M.T.; Aga, D.S.

    2006-01-01

    The stereoisomers of metolachlor and its two polar metabolites [ethane sulfonic acid (ESA) and oxanilic acid (OXA)] were separated using liquid chromatography-mass spectrometry (LC-MS) and capillary zone electrophoresis (CZE), respectively. The separation of metolachlor enantiomers was achieved using a LC-MS equipped with a chiral stationary phase based on cellulose tris(3,5-dimethylphenyl carbamate) and an atmospheric pressure chemical ionization source operated under positive ion mode. The enantiomers of ESA and OXA were separated using CZE with gamma-cyclodextrin (??-CD) as chiral selector. Various CZE conditions were investigated to achieve the best resolution of the ESA and OXA enantiomers. The optimum background CZE electrolyte was found to consist of borate buffer (pH = 9) containing 20% methanol (v/v) and 2.5% ??-CD (w/v). Maximum resolution of ESA and OXA enantiomers was achieved using a capillary temperature of 15??C and applied voltage of 30 kV. The applicability of the LC-MS and CZE methods was demonstrated successfully on the enantiomeric analysis of metolachlor and its metabolites in samples from a soil and water degradation study that was set up to probe the stereoselectivity of metolachlor biodegradation. These techniques allow the enantiomeric ratios of the target analytes to be followed over time during the degradation process and thus will prove useful in determining the role of chirality in pesticide degradation and metabolite formation. ?? 2005 Elsevier Ltd. All rights reserved.

  12. Quantitative Evaluation of the Environmental Impact Quotient (EIQ) for Comparing Herbicides

    PubMed Central

    Kniss, Andrew R.; Coburn, Carl W.

    2015-01-01

    Various indicators of pesticide environmental risk have been proposed, and one of the most widely known and used is the environmental impact quotient (EIQ). The EIQ has been criticized by others in the past, but it continues to be used regularly in the weed science literature. The EIQ is typically considered an improvement over simply comparing the amount of herbicides applied by weight. Herbicides are treated differently compared to other pesticide groups when calculating the EIQ, and therefore, it is important to understand how different risk factors affect the EIQ for herbicides. The purpose of this work was to evaluate the suitability of the EIQ as an environmental indicator for herbicides. Simulation analysis was conducted to quantify relative sensitivity of the EIQ to changes in risk factors, and actual herbicide EIQ values were used to quantify the impact of herbicide application rate on the EIQ Field Use Rating. Herbicide use rate was highly correlated with the EIQ Field Use Rating (Spearman’s rho >0.96, P-value <0.001) for two herbicide datasets. Two important risk factors for herbicides, leaching and surface runoff potential, are included in the EIQ calculation but explain less than 1% of total variation in the EIQ. Plant surface half-life was the risk factor with the greatest relative influence on herbicide EIQ, explaining 26 to 28% of the total variation in EIQ for actual and simulated EIQ values, respectively. For herbicides, the plant surface half-life risk factor is assigned values without any supporting quantitative data, and can result in EIQ estimates that are contrary to quantitative risk estimates for some herbicides. In its current form, the EIQ is a poor measure of herbicide environmental impact. PMID:26121252

  13. Quantitative Evaluation of the Environmental Impact Quotient (EIQ) for Comparing Herbicides.

    PubMed

    Kniss, Andrew R; Coburn, Carl W

    2015-01-01

    Various indicators of pesticide environmental risk have been proposed, and one of the most widely known and used is the environmental impact quotient (EIQ). The EIQ has been criticized by others in the past, but it continues to be used regularly in the weed science literature. The EIQ is typically considered an improvement over simply comparing the amount of herbicides applied by weight. Herbicides are treated differently compared to other pesticide groups when calculating the EIQ, and therefore, it is important to understand how different risk factors affect the EIQ for herbicides. The purpose of this work was to evaluate the suitability of the EIQ as an environmental indicator for herbicides. Simulation analysis was conducted to quantify relative sensitivity of the EIQ to changes in risk factors, and actual herbicide EIQ values were used to quantify the impact of herbicide application rate on the EIQ Field Use Rating. Herbicide use rate was highly correlated with the EIQ Field Use Rating (Spearman's rho >0.96, P-value <0.001) for two herbicide datasets. Two important risk factors for herbicides, leaching and surface runoff potential, are included in the EIQ calculation but explain less than 1% of total variation in the EIQ. Plant surface half-life was the risk factor with the greatest relative influence on herbicide EIQ, explaining 26 to 28% of the total variation in EIQ for actual and simulated EIQ values, respectively. For herbicides, the plant surface half-life risk factor is assigned values without any supporting quantitative data, and can result in EIQ estimates that are contrary to quantitative risk estimates for some herbicides. In its current form, the EIQ is a poor measure of herbicide environmental impact.

  14. Influence of the nature and age of cover crop residues on the sorption of three pesticides

    NASA Astrophysics Data System (ADS)

    Cassigneul, Ana; Alletto, Lionel; Chuette, Delphine; Le Gac, Anne-Laure; Hatier, Jules; Etievant, Veronique; Bergheaud, Valérie; Baumberger, Stéphanie; Méchin, Valérie; Justes, Eric; Benoit, Pierre

    2013-04-01

    In agricultural fields, soil and water quality preservation is strongly influenced by pesticides use and behavior. To limit the environmental impacts of agricultural activities, best management practices such as the use of cover crops are encouraged. Cover crops during the fallow period were found to be efficient in reducing nitrate leaching, controlling soil erosion, improving soil organic content and enhancing soil biological activity. This technique was also found to modify soil water dynamics in the following crop. According to these effects, modifications on pesticide behavior in soil, such as sorption, degradation and transport, are expected (Alletto et al., 2012 ; 2013). In this study, the impact of the nature and level of decomposition of cover crop was studied on the sorption characteristics of three pesticides. These pesticides differed in their physicochemical characteristics (hydrophobicity, solubility, persistence) and were two herbicides, S-metolachlor and glyphosate, which are largely used in maize production and predominantly found as pollutants in water; and one fungicide, epoxiconazole. Correlations between pesticide sorption and physicochemical characteristics of the cover crop residues were studied. Residues of oat, turnip rape, red clover and phacelia were collected in March 2011 and incubated at 28°C and at the water holding capacity during 0, 6, 28 or 56 days. For each date, adsorption of the three radiolabeled pesticides was measured in batch on the different cover crop residues, and their biochemical composition (Van Soest fractionation), hydrophobicity (contact angle measurement) and C/N ratio were determined. Results showed that the adsorption of the pesticides differed significantly according to (i) the pesticide, (ii) the nature of cover crop, (iii) the decomposition level of the cover crop and the interaction cover crop x decomposition time. Epoxiconazole was the most adsorbed molecule, with Kd values ranging from 161 ± 30 L/Kg (oat, turnip rape, phacelia) to 206 ± 45 L/Kg (red clover); and glyphosate was the less adsorbed, with Kd values ranging from 1 ± 1 L/Kg (oat, red clover) to 9 ± 1 L/Kg (phacelia) at day 0. Differences between pesticides were expected considering the hydrophobicity of these molecules. Adsorption of the three pesticides increased with decomposition time (up to sevenfold for glyphosate on oat), and was negatively correlated with C/N ratio (-0.73<ρ<-0.89, p<0.001) and positively with the lignin fraction of the residue in decomposition (0.54<ρ<0.85, p<0.05). The correlation between adsorption and wettability was slight and not significant, except for glyphosate on oat and turnip rape (ρ=-0.99 and ρ=-0.62, p<0.05 respectively), leading to the assumption of the contribution of other factors than biochemical composition in wettability. This study highlighted that the nature and level of decomposition of cover crop at the soil surface influenced the mobility of pesticides as it was observed in decomposing mulch of crop residues (Aslam et al., 2013). As a result, the type of cover crop and the changes of cover crop residues composition during decomposition in field may control differently the movement of non-ionic pesticides compared to ionic compounds such as glyphosate, largely used in conservation agriculture practices. Keywords : Cover crops ; Glyphosate ; S-metolachlor ; Epoxiconazole ; Mulch; Sorption ; Biochemical composition References Alletto L., Benoit P., Justes E., Coquet Y. 2012. Effects of tillage and fallow period management on the fate of the herbicide isoxaflutole in an irrigated continuous-maize field. Agriculture, Ecosystems Environment, 153, 40- 49. http://dx.doi:10.1016/j.agee.2012.03.002 Alletto L., Benoit P., Coufignal M., Bergheaud V., Dumény V., Longueval D., Barriuso E. 2013. Sorption and mineralization of S-metolachlor in 51 fields cultivated with conservation tillage. Soil Tillage Research 128, 97-103. http://dx.doi.org/10.1016/j.still.2012.11.005 Aslam S., Garnier P., Rumpel C., Parent S., Benoit P. 2013. Adsorption and desorption behavior of selected pesticides as influenced by decomposition of maize mulch. Chemosphere, in press. http://dx.doi.org/10.1016/j.chemosphere.2012.12.005

  15. Reconnaissance of ground-water quality in the Papio-Missouri River Natural Resources District, eastern Nebraska, July through September 1992

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Ellis, M.J.

    1995-01-01

    A reconnaissance of ground-water quality was conducted in the Papio-Missouri River Natural Resources District of eastern Nebraska. Sixty-one irrigation, municipal, domestic, and industrial wells completed in the principal aquifers--the unconfined Elkhorn, Missouri, and Platte River Valley alluvial aquifers, the upland area alluvial aquifers, and the Dakota aquifer--were selected for water-quality sampling during July, August, and September 1992. Analyses of water samples from the wells included determination of dissolved nitrate as nitrogen and triazine and acetanilide herbicides. Waterquality analyses of a subset of 42 water samples included dissolved solids, major ions, metals, trace elements, and radionuclides. Concentrations of dissolved nitrate as nitrogen in water samples from 2 of 13 wells completed in the upland area alluvial aquifers exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Thirty-nine percent of the dissolved nitrate-as-nitrogen concentrations were less than the detection level of 0.05 milligram per liter. The largest median dissolved nitrate-as-nitrogen concentrations were in water from the upland area alluvial aquifers and the Dakota aquifer. Water from all principal aquifers, except the Dakota aquifer, had detectable concentrations of herbicides. Herbicides detected included alachlor (1 detection), atrazine (13 detections), cyanazine (5 detections), deisopropylatrazine (6 detections), deethylatrazine (9 detections), metolachlor (6 detections), metribuzin (1 detection), prometon (6 detections), and simazine (2 detections). Herbicide concentrations did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels for drinking water. In areas where the hydraulic gradient favors loss of surface water to ground water, the detection of herbicides in water from wells along the banks of the Platte River indicates that the river could act as a line source of herbicides. Water from the alluvial and bedrock aquifers generally was a calcium bicarbonate type and was hard. Two of nine water samples collected from the Dakota aquifer contained calcium sulfate type water. Results of analyses of 42 groundwater samples for major ions, metals, trace elements, and radionuclide constituents indicated that statistically at least one principal aquifer had significant differences in its water chemistry. In general, the water chemistry of the Dakota aquifer was similar to the water chemistry of the upland area alluvial aquifers in areas where there was a hydraulic connection. The water from the Dakota aquifer had large dissolved-solids, calcium, sulfate, chloride, iron, lithium, manganese, and strontium concentrations in areas where the aquifer is thought not to be in hydraulic connection with the Missouri River Valley and upland area alluvial aquifers. Ground-water quality in the Papio-MissouriRiver Natural Resources District is generally suitable for most uses. However, the numerous occurrences of herbicides in water of the Elkhorn and Platte River Valley alluvial aquifers, especially near the Platte River, are of concern because U.S. Environmental Protection Agency Maximum Contaminant Levels could be exceeded. Concentrations in three of nine water samples collected from wells completed in the Dakota aquifer exceeded the U.S. Environmental Protection Agency Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for gross alpha activity, radon-222 activity, dissolved solids, sulfate, or iron. Also of concern are the exceedances of the U.S Environmental Protection Agency proposed Maximum Contaminant Level for radon-222 activity.

  16. Stream-water chemistry, nutrients, and pesticides in Town Brook, a headwater stream of the Cannonsville Reservoir Watershed, Delaware County, New York, 1999

    USGS Publications Warehouse

    McHale, Michael R.; Phillips, Patrick J.

    2001-01-01

    Stream-water chemistry was monitored from January 1 through December 31, 1999, in the Town Brook watershed (TBW) in Delaware County, N.Y. to provide a basis for future evaluation of the effectiveness of Best Management Practices (BMPs) in decreasing agricultural nutrient and pesticide leaching to receiving waters. Total runoff from the watershed during 1999 was 664 millimeters (mm). Annual nutrient export (in kilograms per hectare) values were: ammonia (NH3), 0.25; nitrate (NO3-), 4.3; total nitrogen (TN), 10.6; orthophosphate (OP), 0.26; total dissolved phosphorus (TDP), 0.30; and total phosphorus (TP), 1.2 during 1999. Streamwater samples were collected during baseflow, elevated baseflow, and stormflow conditions. Stormflow, which produced the greatest flowweighted mean nutrient concentrations, represented only 41 percent of the annual runoff but accounted from 49 to 68 percent of the annual nutrient export. The highest seasonal flow-weighted mean concentrations were measured during the summer; the highest concentrations occurred during a large storm on July 4, 1999 with a recurrence interval greater than 100 years. The greatest seasonal export of dissolved nutrients (NH3, NO3-, OP, and TDP) occurred during the winter, whereas the greatest export of TN and TP was during the summer. Most of the TN and TP export during the summer occurred during the July 4 storm. That storm, together with a second large storm on September 16, 1999, accounted for the following percentages of annual export: ammonia, 17 percent; NO3-, 21 percent; TN, 45 percent; OP, 21 percent; TDP, 21 percent; and TP, 56 percent. Although these results provide information on the quantity and timing of nutrient export, they do not indicate the nutrient source nor the transport mechanisms by which nutrients are delivered to the stream.Baseflow and stormflow samples were collected for pesticide analyses at the Town Brook watershed outlet from January through July 1999. Eight pesticides and pesticide metabolites (degradation products) were detected in the samples. Four compounds (metolachlor, atrazine, metolachlor ESA, and metolachlor OA) were detected in concentrations greater than 1 micrograms per liter (μg/L) in one or more samples. Two of these compounds.the herbicide metabolites metalochlor ESA and metalochlor OA.were detected in concentrations higher than those of the parent compound metolachlor. Only one sample, collected during the July 4 storm, exceeded New York State surface-water-quality standards for any pesticide (simazine); its concentration of 0.53 μg/L was 0.03 μg/L higher than the New York State standard (0.50 μg/L). No concentrations exceeded Federal water-quality standards. Pesticide and metabolite concentrations were as much as 25 times greater during stormflow than during baseflow. Stormflow pesticide concentrations were indicative of a spring 'flushing', in which stream pesticide concentrations are elevated from concentrations typical during the rest of the year during the first few storms after pesticide application. Pesticides and pesticide metabolites were detected in all stormflow samples. These results illustrate the need to include baseflow and stormflow in pesticide sampling routines.The results of this study emphasize the need for (1) baseflow and stormflow sampling to capture the range of nutrient and pesticide concentrations from agricultural watersheds, and (2) research to define the mechanisms of nutrient and pesticide export in agriculutral watersheds.

  17. Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: consequences on herbicide fate and risk assessment.

    PubMed

    Doublet, Jérémy; Mamy, Laure; Barriuso, Enrique

    2009-10-01

    Following application, pesticides can be intercepted and absorbed by weeds and/or crops. Plants containing pesticides residues may then reach the soil during the crop cycle or after harvest. However, the fate in soil of pesticides residues in plants is unknown. Two commonly used foliar herbicides, glyphosate and sulcotrione, (14)C-labeled, were applied on leaves of oilseed rape and/or maize, translocation was studied, and then soil incubations of aerial parts of plants containing herbicides residues were performed. Soil treated directly with herbicides was used as control. The effects of adjuvants on herbicide plant-absorption and subsequent soil-degradation were also investigated comparing herbicides application as active ingredients and as commercial formulations. The fate in soil of herbicides residues in plants was different from that of control, and different for glyphosate and sulcotrione. Mineralization in soil of glyphosate in crops decreased compared to control, and amounts of (14)C-extractable residues, mainly composed by the metabolite aminomethylphosphonic acid (AMPA), and non-extractable residues (NER) increased. In contrast, mineralization in soil of sulcotrione in maize increased compared to control, with a decrease in the (14)C-extractable residues and an increase in NER. The fate of both herbicides was influenced by the type of plant organ in which herbicide was incorporated, because of differences in herbicides bioavailability and organs biodegradability, but not by adjuvants. Absorption of both herbicides in plant delays their subsequent soil-degradation, and particularly, glyphosate persistence in soil could increase from two to six times. The modifications of herbicide degradation in soil due to interception by plants should be considered for environmental risks assessment.

  18. Water Quality Conditions Monitored at the Corps’ Oahe Project in South Dakota during the 3-Year Period 2005 through 2007

    DTIC Science & Technology

    2008-02-01

    isophenphos, isopropalin, metolachlor, metribuzin, molinate, oxadiazon, oxyfluorfen , pebulate, pendimethalin, phorate, profluralin, prometon, propachlor...EPTC, ethalfluralin, fonofos, hexazinone, isophenphos, isopropalin, metolachlor, metribuzin, molinate, oxadiazon, oxyfluorfen , pebulate, pendimethalin...oxadiazon, oxyfluorfen , pebulate, pendimethalin, phorate, profluralin, prometon, propachlor, propazine, simazine, terbufos, triallate, trifluralin

  19. 40 CFR 180.368 - Metolachlor; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Soybean, hay 8.0 Soybean, seed 0.20 Tomato 0.10 Vegetable, foliage of legume, subgroup 7A, except soybean 15.0 Vegetable, legume, group 6 0.30 (2) Tolerances are established for residues of S-metolachlor... Turnip, greens 1.8 Vegetable, foliage of legume, except soybean, subgroup 7A 15.0 Vegetable, fruiting...

  20. Effects of an atrazine, metolachlor, and fipronil mixture on Hyalella azteca (Saussure) in a modified backwater wetland

    USDA-ARS?s Scientific Manuscript database

    We examined the toxicity mitigation efficiency of a hydrologically modified backwater wetland amended with a mixture of three pesticides, atrazine, metolachlor, and fipronil, using 96 h survival bioassays with Hyalella azteca. Significant H. azteca 96 h mortality occurred within the first two hours...

  1. Development of reproduction in Allegheny hardwood stands after herbicide-clearcuts and herbicide-shelterwood cuts

    Treesearch

    Stephen B. Horsley

    1982-01-01

    Dense ground covers of fern and grass interfere with the regeneration of Allegheny hardwoods. An herbicide containing N-phosphonomethyl glycine controls the fern and grass, but also kills advance reproduction of desirable tree species. Preliminary results of an experiment comparing regeneration 3 years after herbicide-clearcuts and herbicide-shelterwood seed cuts...

  2. Precision Herbicide Application Technologies To Decrease Herbicide Losses in Furrow Irrigation Outflows in a Northeastern Australian Cropping System.

    PubMed

    Davis, Aaron M; Pradolin, Jordan

    2016-05-25

    This study compared water quality benefits of using precision herbicide application technologies in relation to traditional spraying approaches across several pre- and postemergent herbicides in furrow-irrigated canefarming systems. The use of shielded sprayers (herbicide banding) provided herbicide load reductions extending substantially beyond simple proportionate decreases in amount of active herbicide ingredient applied to paddocks. These reductions were due largely to the extra management control available to irrigating growers in relation to where both herbicides and irrigation water can be applied to paddocks, coupled with knowledge of herbicide toxicological and physicochemical properties. Despite more complex herbicide mixtures being applied in banded practices, banding provided capacity for greatly reduced environmental toxicity in off-paddock losses. Similar toxicological and loss profiles of alternative herbicides relative to recently regulated pre-emergent herbicides highlight the need for a carefully considered approach to integrating alternative herbicides into improved pest management.

  3. Breakthrough dynamics of s-metolachlor metabolites in drinking water wells: Transport pathways and time to trend reversal

    NASA Astrophysics Data System (ADS)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; Köppchen, Stephan; Krause, Martina; Hofmann, Diana

    2018-06-01

    We present the results of a two years study on the contamination of the Luxembourg Sandstone aquifer by metolachlor-ESA and metolachlor-OXA, two major transformation products of s-metolachlor. The aim of the study was twofold: (i) assess whether elevated concentrations of both transformation products (up to 1000 ng/l) were due to fast flow breakthough events of short duration or the signs of a contamination of the entire aquifer and (ii) estimate the time to trend reversal once the parent compound was withdrawn from the market. These two questions were addressed by a combined use of groundwater monitoring, laboratory experiments and numerical simulations of the fate of the degradation products in the subsurface. Twelve springs were sampled weekly over an eighteen month period, and the degradation rates of both the parent compound and its transformation products were measured on a representative soil in the laboratory using a radiolabeled precursor. Modelling with the numeric code PEARL simulating pesticide fate in soil coupled to a simple transfer function model for the aquifer compartment, and calibrated from the field and laboratory data, predicts a significant damping by the aquifer of the peaks of concentration of both metolachlor-ESA and -OXA leached from the soil. The time to trend reversal following the ban of s-metolachlor in spring protection zones should be observed before the end of the decade, while the return of contaminant concentrations below the drinking water limit of 100 ng/l however is expected to last up to twelve years. The calculated contribution to total water discharge of the fast-flow component from cropland and short-circuiting the aquifer was small in most springs (median of 1.2%), but sufficient to cause additional peaks of concentration of several hundred nanograms per litre in spring water. These peaks are superimposed on the more steady contamination sustained by the base flow, and should cease immediately once application of the parent compound stops.

  4. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States - II) Untreated drinking water sources

    USGS Publications Warehouse

    Focazio, M.J.; Kolpin, D.W.; Barnes, K.K.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Barber, L.B.; Thurman, M.E.

    2008-01-01

    Sixty-three of the 100 targeted chemicals were detected in at least one water sample. Interestingly, in spite of the low detection levels 60% of the 36 pharmaceuticals (including prescription drugs and antibiotics) analyzed were not detected in any water sample. The five most frequently detected chemicals targeted in surface water were: cholesterol (59%, natural sterol), metolachlor (53%, herbicide), cotinine (51%, nicotine metabolite), β-sitosterol (37%, natural plant sterol), and 1,7-dimethylxanthine (27%, caffeine metabolite); and in ground water: tetrachloroethylene (24%, solvent), carbamazepine (20%, pharmaceutical), bisphenol-A (20%, plasticizer), 1,7-dimethylxanthine (16%, caffeine metabolite), and tri (2-chloroethyl) phosphate (12%, fire retardant). A median of 4 compounds were detected per site indicating that the targeted chemicals generally occur in mixtures (commonly near detection levels) in the environment and likely originate from a variety of animal and human uses and waste sources. These data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States.

  5. Summary of pesticide data from streams and wells in the Potomac River Basin, 1993-96

    USGS Publications Warehouse

    Donnelly, Colleen A.; Ferrari, Matthew J.

    1998-01-01

    Eighty-five water-soluble pesticides and pesticide degradation products were analyzed in 384 surface-water and ground-water samples collected from the Potomac River Basin during March 1993 through September 1996. Thirty-nine of these compounds were detected in surface-water samples and 16 were detected in ground-water samples. At least one pesticide was detected in 86 percent of the streams sampled and 45 percent of the wells sampled. Pesticides were detected more frequently and at higher concentrations in surface water than in ground water. The following four herbicides and one degradation product were the most frequently detected pesticides in both surface water and ground water: atrazine and metolachlor, which are used primarily on corn and soybean crops; prometon, which is used primarily in nonagricultural (urban and suburban) areas; simazine, which is used in both agricultural and nonagricultural areas, and desethylatrazine, which is one of the degradation products of atrazine. Insecticides were detected more frequently in surface water than in ground water. Diazinon, chlorpyrifos, and gamma-HCH (Undone) were found in more than 10 percent of surface-water samples, but in none of the ground-water samples.

  6. Runoff and Leaching of Metolachlor from Mississippi River Alluvial Soil during Seasons of Average and Below-Average Rainfall

    USDA-ARS?s Scientific Manuscript database

    The movement of metolachlor via runoff and leaching from plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a six-year period, 1995-2000. The first three years were characterized by normal rainfall volume, the second three years by reduced rainfall. The ...

  7. Effects of an atrazine, metolachlor and fipronil mixture on Hyalella azteca (Saussure) in a modified backwater wetland.

    PubMed

    Lizotte, Richard E; Knight, Scott S; Shields, F Douglas; Bryant, Charles T

    2009-12-01

    We examined the toxicity mitigation efficiency of a hydrologically modified backwater wetland amended with a pesticide mixture of atrazine, metolachlor, and fipronil, using 96 h survival bioassays with Hyalella azteca. Significant H. azteca 96 h mortality occurred within the first 2 h of amendment at the upstream amendment site but not at any time at the downstream site. H. azteca survival varied spatially and temporally in conjunction with measured pesticide mixture concentrations. Hyalella azteca 96 h survival pesticide mixture effects concentrations ranges were 10.214–11.997, 5.822–6.658, 0.650–0.817, and 0.030–0.048 μg L−1 for atrazine, metolachlor, fipronil, and fipronil-sulfone, respectively.

  8. Comparative metabolism and elimination of acetanilide compounds by rat.

    PubMed

    Davison, K L; Larsen, G L; Feil, V J

    1994-10-01

    1. 14C-labelled propachlor, alachlor, butachlor, metolachlor, methoxypropachlor and some of their mercapturic acid pathway metabolites (MAP) were given to rat either by gavage or by perfusion into a renal artery. MAP metabolites were isolated from bile and urine. 2. Rat gavaged with propachlor and methoxypropachlor eliminated 14C mostly in urine, whereas rat gavaged with alachlor, butachlor and metolachlor eliminated 14C about equally divided between urine and faeces. When bile ducts were cannulated, the gavaged rat eliminated most of the 14C in bile for all compounds. The amount of 14C in bile from the propachlor-gavaged rat was less than that for the other acetanilides, with the difference being in the urine. 3. The mercapturic acid metabolites 2-methylsulphinyl-N-(1-methylhydroxyethyl)-N-phenylacetam ide and 2-methylsulphinyl-N-(1-methylmethoxyethyl)-N-phenylacetam ide were isolated from the urine and bile of the methoxypropachlor-gavaged rat. 4. Bile was the major route for 14C elimination when MAP metabolites of alachlor, butachlor and metolachlor were perfused into a renal artery. Urine was the major route for 14C elimination when MAP metabolites of propachlor and methoxypropachlor were perfused. Mercapturic acid conjugates were major metabolites in bile and urine when MAP metabolites were perfused. 5. We conclude that alkyl groups on the phenyl portion of the acetanilide causes biliary elimination to be favoured over urinary elimination.

  9. Bioremediation strategies for pesticide-contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaplin-Anhalt, J.A.; Anderson, T.A.; Perkovich, B.S.

    1995-12-31

    As the number of pesticide-contaminated sites at places such as agrochemical dealerships continues to grow there is an urgent need to find methods of remediation. Soils from two pesticide-contaminated sites, Alpha and Bravo, were analyzed using gas chromatography. The contaminants and their concentrations ({mu}g/g) were as follows: atrazine (0.1 to 24), metolachlor (2 to 121), trifluralin (1 to 244), and pendimethalin (5 to 334). A radiotracer study was conducted to determine the fate of a combined application of atrazine and metolachlor at a concentration of 50 {mu}g/g each. The mixture was applied to Alpha and Bravo nonvegetated soils and Kochiamore » scoparia rhizosphere soils. After 30 d incubation in Bravo soil, mineralization of metolachlor was minimal with less than 1% recovered as {sup 14}CO{sub 2}. Metolachlor degradation in the rhizosphere soil was greater than in nonvegetated soils with 56% and 100% of metolachlor remaining, respectively, after 30 d. Atrazine mineralization was as high as 62% of the applied {sup 14}C. Additional soil from Bravo was treated with 50 {mu}g/g of unlabeled atrazine. The soil was divided into three treatments and a control with three replicates each. Each treatment involved inoculation of 100 g of Bravo soil with 2 g from one of three soils determined in our laboratory to have enhanced atrazine degradative capabilities. Soils were incubated for 15 or 35 d. The soils will be analyzed by gas chromatography to determine which, if any, of the inoculants increase the degradation of atrazine.« less

  10. Water-quality characteristics, trends, and nutrient and sediment loads of streams in the Treyburn development area, North Carolina, 1988–2009

    USGS Publications Warehouse

    Fine, Jason M.; Harned, Douglas A.; Oblinger, Carolyn J.

    2013-01-01

    Streamflow and water-quality data, including concentrations of nutrients, metals, and pesticides, were collected from October 1988 through September 2009 at six sites in the Treyburn development study area. A review of water-quality data for streams in and near a 5,400-acre planned, mixed-use development in the Falls Lake watershed in the upper Neuse River Basin of North Carolina indicated only small-scale changes in water quality since the previous assessment of data collected from 1988 to 1998. Loads and yields were estimated for sediment and nutrients, and temporal trends were assessed for specific conductance, pH, and concentrations of dissolved oxygen, suspended sediment, and nutrients. Water-quality conditions for the Little River tributary and Mountain Creek may reflect development within these basins. The nitrogen and phosphorus concentrations at the Treyburn sites are low compared to sites nationally. The herbicides atrazine, metolachlor, prometon, and simazine were detected frequently at Mountain Creek and Little River tributary but concentrations are low compared to sites nationally. Little River tributary had the lowest median suspended-sediment yield over the 1988–2009 study period, whereas Flat River tributary had the largest median yield. The yields estimated for suspended sediment and nutrients were low compared to yields estimated for other basins in the Southeastern United States. Recent increasing trends were detected in total nitrogen concentration and suspended-sediment concentrations for Mountain Creek, and an increasing trend was detected in specific conductance for Little River tributary. Decreasing trends were detected in dissolved nitrite plus nitrate nitrogen, total ammonia plus organic nitrogen, sediment, and specific conductance for Flat River tributary. Water chemical concentrations, loads, yields, and trends for the Treyburn study sites reflect some effects of upstream development. These measures of water quality are generally low, however, compared to regional and national averages.

  11. Experimental metolachlor toxicosis in Nubian goats in the Sudan.

    PubMed

    Mohamed, O S; Ahmed, K E; Adam, S E; Idris, O F

    1994-01-01

    Six out of 15 Nubian goats kids were given single oral doses of metolachlor (Dual 720 EC) at 2,000 or 500 mg/kg liveweight and died within 1 h of the dosing. Other 6 goats were given daily oral doses at 200 or 25 mg/kg and died or were slaughtered between days 8 and 25. In goats receiving single doses, the signs of poisoning were convulsive episodes, incoordination of movement, tremors, severe muscular spasms, stiffness, profuse salivation, respiratory distress, abnormal posture and recumbency. In goats receiving metolachlor at daily doses, the signs were similar, but developed slowly. Increases in the activities of serum AST and GGT and in the concentration of urea, and decreases in total protein concentration were correlated with clinical changes and lesions.

  12. Population dynamics of weeds in oil palm (Elaeis guineensis Jacq.) circle weeding area affected by herbicide application

    NASA Astrophysics Data System (ADS)

    Sidik, S.; Purba, E.; Yakub, E. N.

    2018-02-01

    Weed problems in oil palm field were mainly overcomed by herbicide application. The application certain herbicides may lead to rapid population dynamic of certain species due to their different response to herbicides. Some species may less susceptible to certain herbicide whereas other species more susceptible. The objective of this study was to determine the population dynamic of weed species in circle weeding of oil palm in Serdang Bedagai, North Sumatra. Six treatments using glyphosate singly and mixture compared with manual weeding were evaluated for weed control. The treatments were arranged in a randomized block design with four replicates. Each treatment consisted of four circle weedings. The results showed that glyphosate 720 g a.i/ha + indaziflam 50 g a.i/hareduced seedbank and regrowth of weeds. Up to 12 weeks after application glyphosate 720 g a.i/ha + indaziflam 50 g a.i/ha is 29.46% total weeds dry weight compared to manual weeding. The effect of herbicide application on changes on the weed composition and weed seedbank are affected by the characteristic of herbicides and weed response to herbicide application.

  13. Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed.

    PubMed

    Fairbairn, David J; Karpuzcu, M Ekrem; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth F; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L

    2016-05-01

    The occurrence and spatiotemporal variation of 26 contaminants of emerging concern (CECs) were evaluated in 68 water samples in 2011-2012 in the Zumbro River watershed, Minnesota, U.S.A. Samples were collected across a range of seasonal/hydrological conditions from four stream sites that varied in associated land use and presence of an upstream wastewater treatment plant (WWTP). Selected CECs included human/veterinary pharmaceuticals, personal care products, pesticides, phytoestrogens, and commercial/industrial compounds. Detection frequencies and concentrations varied, with atrazine, metolachlor, acetaminophen, caffeine, DEET, and trimethoprim detected in more than 70% of samples, acetochlor, mecoprop, carbamazepine, and daidzein detected in 30%-50% of samples, and 4-nonylphenol, cotinine, sulfamethoxazole, erythromycin, tylosin, and carbaryl detected in 10%-30% of samples. The remaining target CECs were not detected in water samples. Three land use-associated trends were observed for the detected CECs. Carbamazepine, 4-nonylphenol, erythromycin, sulfamethoxazole, tylosin, and carbaryl profiles were WWTP-dominated, as demonstrated by more consistent loading and significantly greater concentrations downstream of the WWTP and during low-flow seasons. In contrast, acetaminophen, trimethoprim, DEET, caffeine, cotinine, and mecoprop patterns demonstrated both seasonally-variable non-WWTP-associated and continual WWTP-associated influences. Surface water studies of CECs often target areas near WWTPs. This study suggests that several CECs often characterized as effluent-associated have additional important sources such as septic systems or land-applied biosolids. Finally, agricultural herbicide (atrazine, acetochlor, and metolachlor) profiles were strongly influenced by agricultural land use and seasonal application-runoff, evident by significantly greater concentrations and loadings at upstream sites and in early summer when application and precipitation rates are greatest. Our results indicate that CEC monitoring studies should consider a range of land uses, seasonality, and transport pathways in relation to concentrations and loadings. This knowledge can augment CEC monitoring programs to result in more accurate source, occurrence, and ecological risk characterizations, more precisely targeted mitigation initiatives, and ultimately, enhanced environmental decision-making. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Pesticides in groundwater in the Anacostia River and Rock Creek watersheds in Washington, D.C., 2005 and 2008

    USGS Publications Warehouse

    Koterba, Michael T.; Dieter, Cheryl A.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the District Department of the Environment, conducted a groundwater-quality investigation to (a) determine the presence, concentrations, and distribution of selected pesticides in groundwater, and (b) assess the presence of pesticides in groundwater in relation to selected landscape, hydrogeologic, and groundwater-quality characteristics in the shallow groundwater underlying the Anacostia River and Rock Creek watersheds in Washington, D.C. With one exception, well depths were 100 feet or less below land surface. The USGS obtained or compiled ancillary data and information on land use (2001), subsurface sediments, and groundwater samples from 17 wells in the lower Anacostia River watershed from September through December 2005, and from 14 wells in the lower Anacostia River and lower Rock Creek watersheds from August through September 2008. Twenty-seven pesticide compounds, reflecting at least 19 different types of pesticides, were detected in the groundwater samples obtained in 2005 and 2008. No fungicides were detected. In relation to the pesticides detected, degradate compounds were as or more likely to be detected than applied (parent) compounds. The detected pesticides chiefly reflected herbicides commonly used in urban settings for non-specific weed control or insecticides used for nonspecific haustellate insects (insects with specialized mouthparts for sucking liquid) or termite-specific control. Detected pesticides included a combination of pesticides currently (2008) in use, banned or under highly restricted use, and some that had replaced the banned or restricted-use pesticides. The presence of banned and restricted-use pesticides illustrates their continued persistence and resistance to complete degradation in the environment. The presence of the replacement pesticides indicates the susceptibility of the surficial aquifer to contamination irrespective of the changes in the pesticides used. A preliminary review of the data collected in 2005 and 2008 indicated that differences in the surficial geology, land use (as a surrogate for pesticide use), and above-average precipitation for most of 2004 through 2008, as well as differences in the number and performance of USGS laboratory methods used, could have led to more pesticides detected in groundwater samples collected in 2008 than in groundwater samples collected in 2005. Thus, although data from both years of collection were used for interpretive analysis, emphasis was placed on the analysis of the data obtained in 2008. The presence of pesticides in shallow groundwater (less than approximately 100 ft (feet), or 30 m (meters), below land surface) indicated at least the upper surficial aquifer in Washington, D.C. was susceptible to contamination. One or more herbicides or insecticides were detected in groundwater samples collected from 50 percent of the shallow wells sampled in 2005, and from 62 percent of the shallow wells sampled in 2008. Differences among types of pesticides in shallow groundwater were apparent. The most frequently detected class of herbicides was the s-triazine compounds-atrazine, simazine, or prometon, or the atrazine-degradate compounds-2-chloro-4-ethylamino-6-amino-s-triazine (desethylatrazine or CIAT) and 2-chloro-4-isopropylamino-6-amino-s-triazine (hydroxyatrazine or OIET). The next most frequently detected classes of herbicides were the chloroacetanilides, including metolachlor and acetochlor, and the ureic herbicides, including diuron (and degradate, 3,4-dichloroaniline), fluometuron, metsulfuron methyl, sulfameturon, bromacil, and tebuthiuron. Insecticides also were detected, but less frequently than herbicides, with one or more insecticides present in groundwater samples from 38 percent of shallow wells sampled in 2008. Detected insecticides included parent or degradate compounds commonly used for either nonspecific or haustellate (sucking) insects, including chlorpyri

  15. The Effect of Four Herbicides on the Survival and Growth of Nine Hardwood Species

    Treesearch

    Robert D. Williams; John E. Krajicek

    1976-01-01

    To learn more about the tolerance of hardwoods to herbicides, the survival and growth on nine hardwood species were compared in plots eitehr cultivated or treated with various herbicides applied at different rates, on prepared and unprepared ground, and before and after planting. Black walnut and white oak were very tolerant to all herbicides tested but American...

  16. Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L.

    PubMed

    Keith, Barbara K; Burns, Erin E; Bothner, Brian; Carey, Charles C; Mazurie, Aurélien J; Hilmer, Jonathan K; Biyiklioglu, Sezgi; Budak, Hikmet; Dyer, William E

    2017-11-01

    Intensive use of herbicides has led to the evolution of two multiple herbicide-resistant (MHR) Avena fatua (wild oat) populations in Montana that are resistant to members of all selective herbicide families available for A. fatua control in US small grain crops. We used transcriptome and proteome surveys to compare constitutive changes in MHR and herbicide-susceptible (HS) plants associated with non-target site resistance. Compared to HS plants, MHR plants contained constitutively elevated levels of differentially expressed genes (DEGs) with functions in xenobiotic catabolism, stress response, redox maintenance and transcriptional regulation that are similar to abiotic stress-tolerant phenotypes. Proteome comparisons identified similarly elevated proteins including biosynthetic and multifunctional enzymes in MHR plants. Of 25 DEGs validated by RT-qPCR assay, differential regulation of 21 co-segregated with flucarbazone-sodium herbicide resistance in F 3 families, and a subset of 10 of these were induced or repressed in herbicide-treated HS plants. Although the individual and collective contributions of these DEGs and proteins to MHR remain to be determined, our results support the idea that intensive herbicide use has selected for MHR populations with altered, constitutively regulated patterns of gene expression that are similar to those in abiotic stress-tolerant plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Anthropogenic organic compounds in source water of nine community water systems that withdraw from streams, 2002-05

    USGS Publications Warehouse

    Kingsbury, James A.; Delzer, Gregory C.; Hopple, Jessica A.

    2008-01-01

    Source water, herein defined as stream water collected at a water-system intake prior to water treatment, was sampled at nine community water systems, ranging in size from a system serving about 3,000 people to one that serves about 2 million people. As many as 17 source-water samples were collected at each site over about a 12-month period between 2002 and 2004 for analysis of 258 anthropogenic organic compounds. Most of these compounds are unregulated in drinking water, and the compounds analyzed include pesticides and selected pesticide degradates, gasoline hydrocarbons, personal-care and domestic-use compounds, and solvents. The laboratory analytical methods used in this study have relatively low detection levels - commonly 100 to 1,000 times lower than State and Federal standards and guidelines for protecting water quality. Detections, therefore, do not necessarily indicate a concern to human health but rather help to identify emerging issues and to track changes in occurrence and concentrations over time. About one-half (134) of the compounds were detected at least once in source-water samples. Forty-seven compounds were detected commonly (in 10 percent or more of the samples), and six compounds (chloroform, atrazine, simazine, metolachlor, deethylatrazine, and hexahydrohexamethylcyclopentabenzopyran (HHCB) were detected in more than one-half of the samples. Chloroform was the most commonly detected compound - in every sample (year round) at five sites. Findings for chloroform and the fragrances HHCB and acetyl hexamethyl tetrahydronaphthalene (AHTN) indicate an association between occurrence and the presence of large upstream wastewater discharges in the watersheds. The herbicides atrazine, simazine, and metolachlor also were among the most commonly detected compounds. Degradates of these herbicides, as well as those of a few other commonly occurring herbicides, generally were detected at concentrations similar to or greater than concentrations of the parent compound. Samples typically contained mixtures of two or more compounds. The total number of compounds and their total concentration in samples generally increased with the amount of urban and agricultural land use in a watershed. Annual mean concentrations of all compounds were less than human-health benchmarks. Single-sample concentrations of anthropogenic organic compounds in source water generally were less than 0.1 microgram per liter and less than established human-health benchmarks. Human-health benchmarks used for comparison were U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for regulated compounds and U.S. Geological Survey Health-Based Screening Levels for unregulated compounds. About one-half of all detected compounds do not have human-health benchmarks or adequate toxicity information for evaluating results in a human-health context. During a second sampling phase (2004-05), source water and finished water (water that has passed through all the treatment processes but prior to distribution) were sampled at eight of the nine community water systems. Water-treatment processes differ among the systems. Specifically, treatment at five of the systems is conventional, typically including steps of coagulation, flocculation, sedimentation, filtration, and disinfection. One water system uses slow sand filtration and disinfection, a second system uses ozone as a preliminary treatment step to conventional treatment, and a third system is a direct filtration treatment plant that uses many of the steps employed in conventional treatment. Most of these treatment steps are not designed specifically to remove the compounds monitored in this study. About two-thirds of the compounds detected commonly in source water were detected at similar frequencies in finished water. Although the water-treatment steps differ somewhat among the eight water systems, the amount of change in concentration of the compounds from source- to finish

  18. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard.

    PubMed

    Calderon, Maria Jesus; De Luna, Elena; Gomez, Jose Alfonso; Hermosin, M Carmen

    2016-11-01

    Occurrences of surface water contamination by herbicides in areas where olive orchards are established reveal a need to understand soil processes affecting herbicide fate at field scale for this popular Mediterranean crop. A monitoring study with two herbicides (terbuthylazine and oxyfluorfen) in the first 2cm of soil, runoff waters, and sediments, was carried out after under natural rainfall conditions following winter herbicide application. At the end of the 107day field experiment, no residues of the soil applied terbuthylazine were recovered, whereas 42% of the oxyfluorfen applied remained in the top soil. Very low levels of both herbicides were measured in runoff waters; however, concentrations were slightly higher for terbuthylazine (0.53% of applied) than for oxyfluorfen (0.03% of applied), relating to their respective water solubilities. Congruent with soil residue data, 38.15% of the applied oxyfluorfen was found in runoff-sediment, compared to only 0.46% for terbuthylazine. Accordingly, the herbicide soil distribution coefficients measured within runoff field tanks was much greater for oxyfluorfen (Kd=3098) than for terbuthylazine (Kd=1.57). The herbicide oxyfluorfen is co-transported with sediment in runoff, remaining trapped and/or adsorbed to soil particle aggregates, due in part to its low water solubility. In contrast, terbuthylazine soil dissipation may be associated more so with leaching processes, favored by its high water solubility, low sorption, and slow degradation. By comparing these two herbicides, our results reaffirm the importance of herbicide physico-chemical properties in dictating their behavior in soil and also suggest that herbicides with low solubility, as seen in the case oxyfluorfen, remain susceptible to offsite transport associated with sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Input dynamics of pesticide transformation products into surface water

    NASA Astrophysics Data System (ADS)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P.; Fenner, Kathrin

    2010-05-01

    Some pesticide transformation products have been observed to occur in higher concentrations and more frequently than the parent active pesticide in surface water and groundwater. These products are often more mobile and sometimes more stable than the parent pesticide. If they also represent the major product into which the parent substance is transformed, these transformation products may dominate observed pesticide occurrences in surface water and groundwater. Their potential contribution to the overall risk to the aquatic environment caused by the use of the parent pesticide should therefore not be neglected in chemical risk and water quality assessments. The same is true for transformation products of other compound classes that might reach the soil environment, such as veterinary pharmaceuticals. However, the fate and input pathways of transformation products of soil-applied chemicals into surface water are not yet well understood, which largely prevents their appropriate inclusion into chemical risk and water quality assessments. Here, we studied whether prioritization methods based on available environmental fate data from pesticide registration dossiers in combination with basic fate models could help identify transformation products which can be found in relevant concentrations in surface and groundwater and which should therefore be included into monitoring programs. A three-box steady state model containing air, soil, and surface water compartments was used to predict relative inputs of pesticide transformation products into surface waters based on their physico-chemical and environmental fate properties. The model predictions were compared to monitoring data from a small Swiss river located in an intensely agricultural catchment (90 km2) which was flow-proportionally sampled from May to October 2008 and screened for 74 pesticides as well as 50 corresponding transformation products. Sampling mainly occurred during high discharge, but additional samples during baseflow conditions were also taken. The analytical measurements included solid phase extraction, liquid chromatography and high resolution mass spectrometry (SPE-LC-HR-MS/MS). Quantification was achieved using reference standards and internal standards. Besides the well-known transformation products of triazine and chloroacetanilide herbicides, transformation products of other compound classes such as azoxystrobin acid (from azoxystrobin, strobilurin fungicide), chloridazon-desphenyl and chloridazon-methyl-desphenyl (from chloridazon, pyridazinone herbicide), and metamitron-desamino (from metamitron, triazinone herbicide) were analyzed in surface water. For a selection of widely used pesticides in the catchment, modelled ratios of transformation product versus parent pesticide concentrations were compared to the measured concentration ratios in the river for the application period and for two 2-month periods following application. Concentration ratios agreed within a factor of 10 for all pairs of parent pesticides and transformation products, and for all seasons, with a single exception. The ratio of chloridazon-desphenyl to chloridazon was under-predicted by a factor of approximately 20. The data revealed that chloridazon-desphenyl was also found in elevated concentrations in all baseflow samples, indicating its presence in the groundwater component of the catchment. The same was true for other transformation products (e.g., metamitron-desamino, chloridazon-methly-desphenyl, metolachlor-ESA), but to a lesser degree. Based on baseflow separation of the hydrograph, the concentration ratio estimation model was supplemented with an additional baseflow component. The concentrations in the baseflow component were estimated with a simple leaching relationship that was compared against measured baseflow concentrations and groundwater findings in Switzerland. The final model yielded good agreement for all compounds and is therefore deemed suitable for prioritization of transformation products with a relevant exposure potential. It also clearly indicated the contribution of groundwater to the overall occurrence of pesticides and their transformation products in Swiss surface waters.

  20. Exposure of native bees foraging in an agricultural landscape to current-use pesticides.

    PubMed

    Hladik, Michelle L; Vandever, Mark; Smalling, Kelly L

    2016-01-15

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado in both grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >2% of the samples included: insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), imidacloprid (13%), fipronil desulfinyl (7%; degradate); fungicides azoxystrobin (17%), pyraclostrobin (11%), fluxapyroxad (9%), and propiconazole (9%); herbicides atrazine (19%) and metolachlor (9%). Concentrations ranged from 1 to 310 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m radius influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in an agricultural landscape are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators. Published by Elsevier B.V.

  1. Bioremediation of pesticide wastes in soil using two plant species, Kochia Scoparia and Brassica Napus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, E.L.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    Radiotracer studies were conducted to determine the fate of atrazine and metolachlor, applied as a mixture, in soils taken from pesticide-contaminated sites. Samples taken from nonvegetated areas and from the rhizosphere of Kochia scoparia were treated with {sup 14}C-atrazine and unlabeled metolachlor (50 {mu}g/g each) and incubated for 30, 60 or 135 d. A mass balance of the {sup 14}C applied revealed significant differences between the two soil types in soil bound residues, {sup 14}CO{sub 2}, and the extractable organic fraction (p<0.05). After 135-d incubation, 28% of the applied {sup 14}C was mineralized in Kochia rhizosphere soil, compared to 4%more » in soil taken from a nonvegetated area. A greater amount of {sup 14}C was extractable from the nonvegetated soil compared to the rhizosphere soil (64% and 22%, respectively). The half-life of atrazine based on extractable {sup 14}C-atrazine was 193 d in nonvegetated soil and 50 d in Kochia rhizosphere soil. Additional subsamples of nonvegetated soils treated with a mixture of {sup 14}C-atrazine and metolachlor were allowed to age for 135 d, and then were either planted with Brassica napus, Kochia scoparia, or left unvegetated. Incubations were carried out in enclosed chambers under controlled conditions. After 30 additional days, a subset of samples was extracted and analyzed using thin-layer chromatography, soil and plant combustion, and liquid scintillation spectroscopy. The percent of applied {sup 14}C-atrazine remaining as atrazine in soil which was nonvegetated, or planted with Brassica napus or Kochia scoparia was 9.3, 6.5, and 4.2%, respectively. Combustion of plants revealed that 11% of the applied radioactivity was taken up in Kochia scoparia, while less than 1% was taken up in Brassica napus plants. The potential for vegetation to aid in bioremediating pesticide wastes in soil is promising.« less

  2. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice.

    PubMed

    Zaller, Johann G; Cantelmo, Clemens; Santos, Gabriel Dos; Muther, Sandrina; Gruber, Edith; Pallua, Paul; Mandl, Karin; Friedrich, Barbara; Hofstetter, Ingrid; Schmuckenschlager, Bernhard; Faber, Florian

    2018-06-03

    Herbicides are increasingly applied in vineyards worldwide. However, not much is known on potential side effects on soil organisms or on the nutrition of grapevines (Vitis vinifera). In an experimental vineyard in Austria, we examined the impacts of three within-row herbicide treatments (active ingredients: flazasulfuron, glufosinate, glyphosate) and mechanical weeding on grapevine root mycorrhization; soil microorganisms; earthworms; and nutrient concentration in grapevine roots, leaves, xylem sap and grape juice. The three herbicides reduced grapevine root mycorrhization on average by 53% compared to mechanical weeding. Soil microorganisms (total colony-forming units, CFU) were significantly affected by herbicides with highest CFUs under glufosinate and lowest under glyphosate. Earthworms (surface casting activity, density, biomass, reproduction) or litter decomposition in soil were unaffected by herbicides. Herbicides altered nutrient composition in grapevine roots, leaves, grape juice and xylem sap that was collected 11 months after herbicide application. Xylem sap under herbicide treatments also contained on average 70% more bacteria than under mechanical weeding; however, due to high variability, this was not statistically significant. We conclude that interdisciplinary approaches should receive more attention when assessing ecological effects of herbicides in vineyard ecosystems.

  3. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing.

    PubMed

    Hu, Maolong; Pu, Huiming; Gao, Jianqin; Long, Weihua; Chen, Feng; Zhang, Wei; Zhou, Xiaoyin; Peng, Qi; Chen, Song; Zhang, Jiefu

    2017-01-01

    Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance.

  4. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing

    PubMed Central

    Hu, Maolong; Pu, Huiming; Gao, Jianqin; Long, Weihua; Chen, Feng; Zhang, Wei; Zhou, Xiaoyin; Peng, Qi; Chen, Song; Zhang, Jiefu

    2017-01-01

    Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance. PMID:28950015

  5. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape.

    PubMed

    Egan, J Franklin; Graham, Ian M; Mortensen, David A

    2014-03-01

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming systems, including the clearing of seminatural habitat fragments, confound the influence of herbicides. The present study introduces a new approach to evaluate the impacts of herbicide pollution on plant communities at landscape or regional scales. If herbicides are in fact a key factor shaping agricultural plant diversity, one would expect to see the signal of past herbicide impacts in the current plant community composition of an intensively farmed region, with common, successful species more tolerant to widely used herbicides than rare or declining species. Data from an extensive field survey of plant diversity in Lancaster County, Pennsylvania, USA, were compared with herbicide bioassay experiments in a greenhouse to test the hypothesis that common species possess higher herbicide tolerances than rare species. Five congeneric pairs of rare and common species were treated with 3 commonly used herbicide modes of action in bioassay experiments, and few significant differences were found in the tolerances of rare species relative to common species. These preliminary results suggest that other factors beyond herbicide exposure may be more important in shaping the distribution and abundance of plant species diversity across an agricultural landscape. © 2014 SETAC.

  6. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations.

    PubMed

    Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul

    2017-02-01

    Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Kudzu eradication trials with new herbicides

    Treesearch

    James H. Miller

    1988-01-01

    Two screening studies in Georgia tested new herbicides as potential eradicators of kudzu (Pueraria lobata (Willd.) Ohwi). One study was conducted on a Coastal Plain and the other on a Piedmont site. Tordon 101 was applied as the standard. Those herbicides which are currently labeled for forest land site preparation and which gave control comparable...

  8. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.

    PubMed

    Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A

    2014-11-01

    Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality. © 2014 SETAC.

  9. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats.

    PubMed

    Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L

    2014-07-01

    The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified. © The Author(s) 2014.

  10. Effects on aquatic and human health due to large scale bioenergy crop expansion.

    PubMed

    Love, Bradley J; Einheuser, Matthew D; Nejadhashemi, A Pouyan

    2011-08-01

    In this study, the environmental impacts of large scale bioenergy crops were evaluated using the Soil and Water Assessment Tool (SWAT). Daily pesticide concentration data for a study area consisting of four large watersheds located in Michigan (totaling 53,358 km²) was estimated over a six year period (2000-2005). Model outputs for atrazine, bromoxynil, glyphosate, metolachlor, pendimethalin, sethoxydim, triflualin, and 2,4-D model output were used to predict the possible long-term implications that large-scale bioenergy crop expansion may have on the bluegill (Lepomis macrochirus) and humans. Threshold toxicity levels were obtained for the bluegill and for human consumption for all pesticides being evaluated through an extensive literature review. Model output was compared to each toxicity level for the suggested exposure time (96-hour for bluegill and 24-hour for humans). The results suggest that traditional intensive row crops such as canola, corn and sorghum may negatively impact aquatic life, and in most cases affect the safe drinking water availability. The continuous corn rotation, the most representative rotation for current agricultural practices for a starch-based ethanol economy, delivers the highest concentrations of glyphosate to the stream. In addition, continuous canola contributed to a concentration of 1.11 ppm of trifluralin, a highly toxic herbicide, which is 8.7 times the 96-hour ecotoxicity of bluegills and 21 times the safe drinking water level. Also during the period of study, continuous corn resulted in the impairment of 541,152 km of stream. However, there is promise with second-generation lignocellulosic bioenergy crops such as switchgrass, which resulted in a 171,667 km reduction in total stream length that exceeds the human threshold criteria, as compared to the base scenario. Results of this study may be useful in determining the suitability of bioenergy crop rotations and aid in decision making regarding the adaptation of large-scale bioenergy cropping systems. Published by Elsevier B.V.

  11. Identification and discrimination of herbicide residues using a conducting polymer electronic nose

    Treesearch

    Alphus Dan Wilson

    2016-01-01

    The identification of herbicide residues on crop foliage is necessary to make crop-management decisions for weed pest control and to monitor pesticide residue levels on food crops. Electronic-nose (e-nose) methods were tested as a cheaper, alternative means of discriminating between herbicide residue types (compared with conventional chromatography methods), by...

  12. DETERMINING POTENTIAL RISK TO NATIVE PLANTS FROM HERBICIDE DRIFT: COMPARATIVE RESPONSE OF SELECTED CROP AND NATIVE PLANT SPECIES TO GLYPHOSATE AND SULFOMETURON

    EPA Science Inventory

    abstract/abstract

    While native plant communities may be at risk from herbicide use, current crop-centric test procedures for pesticide registration may not adequately represent the sensitivity of native non-crop plants to herbicides. We are designing a protocol to determi...

  13. Vapor movement of the synthetic auxin herbicides, aminocyclopyrachlor and its methyl ester under laboratory and enclosed chamber environments

    USDA-ARS?s Scientific Manuscript database

    Aminocyclopyrachlor (DPX MAT28) a newly discovered synthetic auxin herbicide and its methyl ester (DPX KJM44) appear to control a number of perennial broadleaf weeds. The potential volatility of this new herbicide and its methyl ester were determined under laboratory conditions and were also compar...

  14. Screening and selection of most potent diazotrophic cyanobacterial isolate exhibiting natural tolerance to rice field herbicides for exploitation as biofertilizer.

    PubMed

    Singh, Surendra; Datta, Pallavi

    2006-01-01

    Periodic applications of heavy dosages of herbicides in modern rice-agriculture are a necessary evil for obtaining high crop productivity. Such herbicides are not only detrimental to weeds but biofertilizer strains of diazotrophic cyanobacteria also. It is therefore, essential to screen and select such biofertilizer strains of diazotrophic cyanobacteria exhibiting natural tolerance to common rice-field herbicides that can be further improved by mutational techniques to make biofertilizer technology a viable one. Therefore, efforts have been made to screen five dominant diazotrophic cyanobacterial forms e.g. filamentous heterocystous Nostoc punctiforme , Nostoc calcicola , Anabaena variabilis and unicellular Gloeocapsa sp. and Aphanocapsa sp. along with standard laboratory strain Nostoc muscorum ISU against increasing concentrations (0-100 mg l(-1) of four commercial grade common rice-field herbicides i.e. Arozin, Butachlor, Alachlor and 2,4-D under diazotrophic growth conditions. The lethal and IGC(50) concentrations for all four herbicides tested were found highest for A. variabilis as compared to other test cyanobacteria. The lowest reduction in chlorophyll a content, photosynthetic oxygen evolution, and N(2)-fixation was found in A. variabilis as compared to other rice field isolates and standard laboratory strain N. muscorum ISU. On the basis of prolong survival potential and lowest reductions in vital metabolic activities tested at IGC(50) concentration of four herbicides, it is concluded that A. variabilis is the most potent and promising cyanobacterial isolate as compared with other forms. This could be further improved by mutational techniques for exploitation as most potential and viable biofertilizer strain.

  15. Impacts of forest herbicides on wildlife: Toxicity and habitat alteration

    USGS Publications Warehouse

    Morrison, M.L.; Meslow, E.C.

    1983-01-01

    This paper begins with a review of both laboratory and field studies on tbe possible direct toxic effects of herbicides on terrestrial vertebrates, primarily birds and mammals. Alteration of the palatability of forage and changes in reproductive success are also discussed. Emphasis is placed on the use of herbicides in forestry; studies dealing with agricultural systems are referenced where appropriate. The indirect effects of herbicides on wildlife-habitat are then conceptualized and quantified using data from a 3-year study on effects of phenoxy and glyphosate herbicides on bird and small mammal communities in western Oregon. Data on density and habitat use are presented and compared with data available from other geographic regions.

  16. Toxicity of Neurons Treated with Herbicides and Neuroprotection by Mitochondria-Targeted Antioxidant SS31

    PubMed Central

    Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Mao, Peizhong; Reddy, Arubala P.; Shirendeb, Ulziibat; Park, Byung; Reddy, P. Hemachandra

    2011-01-01

    The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1–6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides—picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity. PMID:21318024

  17. Occurrence and behavior of the herbicide Prometon in the hydrologic system

    USGS Publications Warehouse

    Capel, P.D.; Spexet, A.H.; Larson, S.J.

    1999-01-01

    Prometon, a triazine herbicide, is used for total vegetation control on industrial sites, on noncrop areas on farms, in and under asphalt, and to a small extent by homeowners. Prometon has often been detected in surface water and groundwater in studies reported in the literature, but its presence is seldom discussed, partly because of its infrequent inclusion on lists of herbicides used in either agricultural or urban areas. In recent large-scale studies by the U.S. Geological Survey, prometon has been the most commonly detected herbicide in surface water and groundwater in urban areas and the third and fourth most commonly detected herbicide in groundwater and surface water, respectively, in agricultural areas. It also has been detected in rain. The frequent detection of prometon in the environment is discussed in relation to its use practices and predicted environmental behavior. Prometon is compared to atrazine, a structurally similar agricultural triazine herbicide that is one of the most studied and most commonly detected herbicides found in the hydrologic environment. The environmental data presented here demonstrate the wide-scale occurrence of prometon in all components of the hydrologic system, particularly in the surface water and groundwater of urban areas.Prometon, a triazine herbicide, is used for total vegetation control on industrial sites, on noncrop areas on farms, in and under asphalt, and to a small extent by homeowners. Prometon has often been detected in surface water and groundwater in studies reported in the literature, but its presence is seldom discussed, partly because of its infrequent inclusion on lists of herbicides used in either agricultural or urban areas. In recent large-scale studies by the U.S. Geological Survey, prometon has been the most commonly detected herbicide in surface water and groundwater in urban areas and the third and fourth most commonly detected herbicide in groundwater and surface water, respectively, in agricultural areas. It also has been detected in rain. The frequent detection of prometon in the environment is discussed in relation to its use practices and predicted environmental behavior. Prometon is compared to atrazine, a structurally similar agricultural triazine herbicide that is one of the most studied and most commonly detected herbicides found in the hydrologic environment. The environmental data presented here demonstrate the wide-scale occurrence of prometon in all components of the hydrologic system, particularly in the surface water and groundwater of urban areas.

  18. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.).

    PubMed

    Chesworth, J C; Donkin, M E; Brown, M T

    2004-02-25

    The herbicides Irgarol 1051 (2-(tert-butylamino)-4-cyclopropylamino)-6-(methylthio)-1,3,5-triazine) and Diuron (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) are commonly incorporated into antifouling paints to boost the efficacy of the compound towards algae. Previous investigations have identified environmental concentrations of these herbicides as being a threat to non-target organisms, such as seagrasses. Their individual toxicity has been assessed, but they can co-occur and interact, potentially increasing their toxicity and the threat posed to seagrass meadows. Chlorophyll fluorescence (Fv:Fm) and leaf specific biomass ratio (representing plant growth) were examined in Zostera marina L. after a 10-day exposure to the individual herbicides. The EC20 for each herbicide was determined and these then used in herbicide mixtures to assess their interactive effects. Irgarol 1051 was found to be more toxic than Diuron with lowest observable effect concentrations for Fv:Fm reduction of 0.5 and 1.0 +/- microg/l and 10-day EC50 values of 1.1 and 3.2 microg/l, respectively. Plants exposed to Irgarol 1051 and Diuron showed a significant reduction in growth at concentrations of 1.0 and 5.0 microg/l, respectively. When Z. marina was exposed to mixtures, the herbicides commonly interacted additively or antagonistically, and no significant further reduction in photosynthetic efficiency was found at any concentration when compared to plants exposed to the individual herbicides. However, on addition of the Diuron EC20 to varying Irgarol 1051 concentrations and the Irgarol 1051 EC20 to varying Diuron concentrations, significant reductions in Fv:Fm were noted at an earlier stage. The growth of plants exposed to Diuron plus the Irgarol 1051 EC20 were significantly reduced when compared to plants exposed to Diuron alone, but only at the lower concentrations. Growth of plants exposed to Irgarol 1051 and the Diuron EC20 showed no significant reduction when compared to the growth of plants exposed to Irgarol 1051 alone. Despite the addition of the EC20 not eliciting a further significant reduction when compared to the herbicides acting alone for most of the mixtures, the lowest observable significant effect concentration for growth and photosynthetic efficiency decreased to 0.5 microg/l for both herbicides. Irgarol 1051 and Diuron have been shown to occur together in concentrations above 0.5 microg/l, suggesting that seagrasses may be experiencing reduced photosynthetic efficiency and growth as a result.

  19. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    PubMed Central

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of the GBR from further decline. PMID:24098726

  20. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    PubMed

    Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of the GBR from further decline.

  1. Integrated use of biomarkers and bioaccumulation data in Zebra mussel (Dreissena polymorpha) for site-specific quality assessment.

    PubMed

    Binelli, A; Ricciardi, F; Riva, C; Provini, A

    2006-01-01

    One of the useful biological tools for environmental management is the measurement of biomarkers whose changes are related to the exposure to chemicals or environmental stress. Since these responses might vary with different contaminants or depending on the pollutant concentration reached in the organism, the support of bioaccumulation data is needed to prevent false conclusions. In this study, several persistent organic pollutants -- 23 polychlorinated biphenyl (PCB) congeners, 11 polycyclic aromatic hydrocarbons (PAHs), six dichlorodiphenyltricholroethane (DDT) relatives, hexachlorobenzene (HCB), chlorpyrifos and its oxidized metabolite -- and some herbicides (lindane and the isomers alpha, beta, delta; terbutilazine; alachlor; metolachlor) were measured in the soft tissues of the freshwater mollusc Zebra mussel (Dreissena polymorpha) from 25 sampling sites in the Italian portions of the sub-alpine great lakes along with the measure of ethoxyresorufin dealkylation (EROD) and acetylcholinesterase (AChE) activity. The linkage between bioaccumulation and biomarker data allowed us to create site-specific environmental quality indexes towards man-made chemicals. This classification highlighted three different degrees of xenobiotic contamination of the Italian sub-alpine great lakes: a high water quality in Lake Lugano with negligible pollutant levels and no effects on enzyme activities, an homogeneous poor quality for Lakes Garda, Iseo and Como, and the presence of some xenobiotic point-sources in Lake Maggiore, whose ecological status could be jeopardized, also due to the heavy DDT contamination revealed since 1996.

  2. Pesticides in Mississippi air and rain: A comparison between 1995 and 2007

    USGS Publications Warehouse

    Majewski, Michael S; Coupe, Richard H.; Foreman, William T.; Capel, Paul D.

    2014-01-01

    A variety of current-use pesticides were determined in weekly composite air and rain samples collected during the 1995 and 2007 growing seasons in the Mississippi Delta (MS, USA) agricultural region. Similar sampling and analytical methods allowed for direct comparison of results. Decreased overall pesticide use in 2007 relative to 1995 generally resulted in decreased detection frequencies in air and rain; observed concentration ranges were similar between years, however, even though the 1995 sampling site was 500 m from active fields whereas the 2007 sampling site was within 3 m of a field. Mean concentrations of detections were sometimes greater in 2007 than in 1995, but the median values were often lower. Seven compounds in 1995 and 5 in 2007 were detected in ≥50% of both air and rain samples. Atrazine, metolachlor, and propanil were detected in ≥50% of the air and rain samples in both years. Glyphosate and its degradation product, aminomethyl-phosphonic acid (AMPA), were detected in ≥75% of air and rain samples in 2007 but were not measured in 1995. The 1995 seasonal wet depositional flux was dominated by methyl parathion (88%) and was >4.5 times the 2007 flux. Total herbicide flux in 2007 was slightly greater than in 1995 and was dominated by glyphosate. Malathion, methyl parathion, and degradation products made up most of the 2007 nonherbicide flux.

  3. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    PubMed

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  4. Pesticides in Mississippi air and rain: a comparison between 1995 and 2007.

    PubMed

    Majewski, Michael S; Coupe, Richard H; Foreman, William T; Capel, Paul D

    2014-06-01

    A variety of current-use pesticides were determined in weekly composite air and rain samples collected during the 1995 and 2007 growing seasons in the Mississippi Delta (MS, USA) agricultural region. Similar sampling and analytical methods allowed for direct comparison of results. Decreased overall pesticide use in 2007 relative to 1995 generally resulted in decreased detection frequencies in air and rain; observed concentration ranges were similar between years, however, even though the 1995 sampling site was 500 m from active fields whereas the 2007 sampling site was within 3 m of a field. Mean concentrations of detections were sometimes greater in 2007 than in 1995, but the median values were often lower. Seven compounds in 1995 and 5 in 2007 were detected in ≥50% of both air and rain samples. Atrazine, metolachlor, and propanil were detected in ≥50% of the air and rain samples in both years. Glyphosate and its degradation product, aminomethyl-phosphonic acid (AMPA), were detected in ≥75% of air and rain samples in 2007 but were not measured in 1995. The 1995 seasonal wet depositional flux was dominated by methyl parathion (88%) and was >4.5 times the 2007 flux. Total herbicide flux in 2007 was slightly greater than in 1995 and was dominated by glyphosate. Malathion, methyl parathion, and degradation products made up most of the 2007 nonherbicide flux. © 2014 SETAC.

  5. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  6. Occurrence and fate of pesticides in four contrasting agricultural settings in the United States

    USGS Publications Warehouse

    Steele, G.V.; Johnson, H.M.; Sandstrom, M.W.; Capel, P.D.; Barbash, J.E.

    2008-01-01

    Occurrence and fate of 45 pesticides and 40 pesticide degradates were investigated in four contrasting agricultural settings—in Maryland, Nebraska, California, and Washington. Primary crops included corn at all sites, soybeans in Maryland, orchards in California and Washington, and vineyards in Washington. Pesticides and pesticide degradates detected in water samples from all four areas were predominantly from two classes of herbicides—triazines and chloroacetanilides; insecticides and fungicides were not present in the shallow ground water. In most samples, pesticide degradates greatly exceeded the concentrations of parent pesticide. In samples from Nebraska, the parent pesticide atrazine [6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine] was about the same concentration as the degradate, but in samples from Maryland and California atrazine concentrations were substantially smaller than its degradate. Simazine [6-chloro-N,N′-diethyl-1,3,5-triazine-2,4-diamine], the second most detected triazine, was detected in ground water from Maryland, California, and Washington. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] rarely was detected without its degradates, and when they were detected in the same sample metolachlor always had smaller concentrations. The Root-Zone Water-Quality Model was used to examine the occurrence and fate of metolachlor at the Maryland site. Simulations accurately predicted which metolachlor degradate would be predominant in the unsaturated zone. In analyses of relations among redox indicators and pesticide variance, apparent age, concentrations of dissolved oxygen, and excess nitrogen gas (from denitrification) were important indicators of the presence and concentration of pesticides in these ground water systems.

  7. Interlaboratory comparison of extraction efficiency of pesticides from surface and laboratory water using solid-phase extraction disks.

    PubMed

    Senseman, Scott A; Mueller, Thomas C; Riley, Melissa B; Wauchope, R Don; Clegg, Chris; Young, Roddy W; Southwick, Lloyd M; Moye, H Anson; Dumas, Jose A; Mersie, Wondi; Mattice, John D; Leidy, Ross B

    2003-06-18

    A continuation of an earlier interlaboratory comparison was conducted (1) to assess solid-phase extraction (SPE) using Empore disks to extract atrazine, bromacil, metolachlor, and chlorpyrifos from various water sources accompanied by different sample shipping and quantitative techniques and (2) to compare quantitative results of individual laboratories with results of one common laboratory. Three replicates of a composite surface water (SW) sample were fortified with the analytes along with three replicates of deionized water (DW). A nonfortified DW sample and a nonfortified SW sample were also extracted. All samples were extracted using Empore C(18) disks. After extraction, part of the samples were eluted and analyzed in-house. Duplicate samples were evaporated in a 2-mL vial, shipped dry to a central laboratory (SDC), redissolved, and analyzed. Overall, samples analyzed in-house had higher recoveries than SDC samples. Laboratory x analysis type and laboratory x water source interactions were significant for all four compounds. Seven laboratories participated in this interlaboratory comparison program. No differences in atrazine recoveries were observed from in-house samples analyzed by laboratories A, B, D, and G compared with the recovery of SDC samples. In-house atrazine recoveries from laboratories C and F were higher when compared with recovery from SDC samples. However, laboratory E had lower recoveries from in-house samples compared with SDC samples. For each laboratory, lower recoveries were observed for chlorpyrifos from the SDC samples compared with samples analyzed in-house. Bromacil recovery was <65% at two of the seven laboratories in the study. Bromacil recoveries for the remaining laboratories were >75%. Three laboratories showed no differences in metolachlor recovery; two laboratories had higher recoveries for samples analyzed in-house, and two other laboratories showed higher metolachlor recovery for SDC samples. Laboratory G had a higher recovery in SW for all four compounds compared with DW. Other laboratories that had significant differences in pesticide recovery between the two water sources showed higher recovery in DW than in the SW regardless of the compound. In comparison to earlier work, recovery of these compounds using SPE disks as a temporary storage matrix may be more effective than shipping dried samples in a vial. Problems with analytes such as chlorpyrifos are unavoidable, and it should not be assumed that an extraction procedure using SPE disks will be adequate for all compounds and transferrable across all chromatographic conditions.

  8. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology

    PubMed Central

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-01-01

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress. PMID:29271905

  9. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    PubMed

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  10. Occurrence of pesticides in groundwater underlying areas of high-density row-crop production in Alabama, 2009-2013

    USGS Publications Warehouse

    Welch, Heather L.

    2015-01-01

    Concentrations of metolachlor and atrazine have substantially decreased in the northern Alabama wells since 2000. A decline in use of metolachlor and atrazine from a high in the late-1990s and a high in 2004, respectively, in northern Alabama could account for the lower concentrations. Fluometuron use has also declined since 1998, but the relation between time and concentrations differed in the five northern Alabama wells. Fluometuron concentrations in three of the five wells have been decreasing over time, while concentrations in the remaining two wells have been increasing.

  11. Pesticide occurrence in groundwater in areas of high-density row crop production in Alabama, 2009

    USGS Publications Warehouse

    Moreland, Richard S.

    2011-01-01

    High-density row crop production occurs in three areas of Alabama that are underlain by productive aquifers, northern Alabama, southeastern Alabama, and Baldwin County in southwestern Alabama. The U.S. Geological Survey collected five groundwater samples from each of these three areas during 2009 for analysis of selected pesticides. Results of these analyses showed detections for 37 of 152 analytes. The three most frequently detected compounds were atrazine, 2-Chloro-4-isopropylamino-6-amino-triazine (CIAT), and metolachlor. The highest concentration for any analyte was 4.08 micrograms per liter for metolachlor.

  12. Population and life-stage-specific effects of two herbicide formulations on the aquatic development of European common frogs (Rana temporaria).

    PubMed

    Wagner, Norman; Veith, Michael; Lötters, Stefan; Viertel, Bruno

    2017-01-01

    Environmental contamination is suggested to contribute to amphibian population declines. However, the effects of a contaminant on a particular amphibian species can differ among populations. The authors investigated the toxic effects of 2 herbicide formulations on different populations and on representative developmental stages of the European common frog (Rana temporaria). Larvae from forest populations were more sensitive to a commonly used glyphosate-based herbicide compared with individuals from agrarian land. Median lethal concentrations correlated with measured glyphosate levels in the breeding ponds, which may be a sign of evolved tolerances. The reverse result was observed for a less commonly used cycloxydim-based herbicide. Effects of the glyphosate-based herbicide were stronger for earlier larval stages compared with later larval stages. Hence, applications in early spring (when early larvae are present in breeding ponds) pose greater risk concerning acute toxic effects on R. temporaria. With regard to late larval stages, short exposure (96 h) of prometamorphic larvae prolonged time to metamorphosis, but only at the highest test concentration that did not significantly induce mortality. This could be due to impairment of the thyroid axis. Notably, nearly all test concentrations of the 2 herbicides provoked growth retardation. Further research on how evolved or induced tolerances are acquired, actual contamination levels of amphibian habitats, and potential endocrine effects of glyphosate-based herbicides is necessary. Environ Toxicol Chem 2017;36:190-200. © 2016 SETAC. © 2016 SETAC.

  13. Proximity to crops and residential to agricultural herbicides in Iowa

    USGS Publications Warehouse

    Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R.

    2006-01-01

    Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case-control study of non-Hodgkin lymphoma in Iowa (1998-2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02-1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101-250, 251-500, and 501-750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields.

  14. Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides.

    PubMed

    Park, Jihae; Brown, Murray T; Depuydt, Stephen; Kim, Jang K; Won, Dam-Soo; Han, Taejun

    2017-01-01

    An ecological impact assessment of four herbicides (atrazine, diuron, paraquat and simazine) was assessed using the aquatic floating vascular plants, Lemna gibba, Lemna minor and Lemna paucicostata as test organisms. The sensitivity of several ecologically relevant parameters (increase in frond area, root length after regrowth, maximum and effective quantum yield of PSII and maximum electron transport rate (ETR max ), were compared after a 72 h exposure to herbicides. The present test methods require relatively small sample volume (3 mL), shorter exposure times (72 h), simple and quick analytical procedures as compared with standard Lemna assays. Sensitivity ranking of endpoints, based on EC 50 values, differed depending on the herbicide. The most toxic herbicides were diuron and paraquat and the most sensitive endpoints were root length (6.0-12.3 μg L -1 ) and ETR max (4.7-10.3 μg L -1 ) for paraquat and effective quantum yield (6.8-10.4 μg L -1 ) for diuron. Growth and chlorophyll a fluorescence parameters in all three Lemna species were sensitive enough to detect toxic levels of diuron and paraquat in water samples in excess of allowable concentrations set by international standards. CV values of all EC 50 s obtained from the Lemna tests were in the range of 2.8-24.33%, indicating a high level of repeatability comparable to the desirable level of <30% for adoption of toxicity test methods as international standards. Our new Lemna methods may provide useful information for the assessment of toxicity risk of residual herbicides in aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Proteome response of fish under multiple stress exposure: Effects of pesticide mixtures and temperature increase.

    PubMed

    Gandar, Allison; Laffaille, Pascal; Marty-Gasset, Nathalie; Viala, Didier; Molette, Caroline; Jean, Séverine

    2017-03-01

    Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL -1 and 42μgL -1 ) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes in pathways involved in metabolism, cell structure and cell cycle, with possible deleterious outcomes at higher biological scales and (2) that increasing temperature could affect the response of fish to pesticide exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Laboratory study on leachability of five herbicides in South Australian soils.

    PubMed

    Ying, G G; Williams, B

    2000-03-01

    Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of "rainfall" reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.

  17. Temporal trends of selected agricultural chemicals in Iowa's groundwater, 1982-1995: Are things getting better?

    USGS Publications Warehouse

    Kolpin, D.W.; Sneck-Fahrer, D.; Hallberg, G.R.; Libra, R.D.

    1997-01-01

    Since 1982, the Iowa Groundwater Monitoring (IGWM) Program has been used to sample untreated groundwater from Iowa municipal wells for selected agricultural chemicals. This long-term database was used to determine if concentrations of select agricultural chemicals in groundwater have changed with time. Nitrate, alachlor [2-chloro-2′-6′-diethyl-N-(methoxymethyl)-acetanilide], atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile)], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were selected for this temporal analysis of the data. Conclusive temporal changes in frequency of detection and median chemical concentrations were found only for atrazine (decrease) and metolachlor (increase). The greatest temporal chemical changes occurred in the shallowest wells and in alluvial aquifers—both relating to groups of wells generally having the youngest groundwater age. The temporal patterns found for atrazine and metolachlor are consistent with their patterns of chemical use and/or application rates and are suggestive of a causal relation. Only continued data collection, however, will indicate if the trends in chemical concentrations described here represent long-term temporal patterns or only short-term changes in groundwater. No definitive answers could be made in regards to the question of overall improvements in groundwater quality with respect to agricultural chemical contamination and time, due to the inherent problems with the simplistic measurement of overall severity (summation of alachlor + atrazine + cyanazine + metolachlor concentrations) examined for this study. To adequately determine if there is an actual decreasing trend in the overall severity of contamination (improving groundwater quality), the collection of additional water-chemistry data and the investigation of other measures of severity are needed.

  18. Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: consequences on groundwater quality in an alluvial aquifer (Ain Plain, France).

    PubMed

    Baran, Nicole; Gourcy, Laurence

    2013-11-01

    This study characterizes the transfer of S-metolachlor (SMOC) and its metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA) to the alluvial aquifer. Sorption and mineralization of SMOC and its two ionic metabolites were characterized for cultivated soils and solids from the vadose (unsaturated) zone in the Ain Plain (France). Under sterile soil conditions, the absence of mineralization confirms the importance of biotic processes in SMOC degradation. There is some adsorption and mineralization of the parent molecule and its metabolites in the unsaturated zone, though less than in soils. For soils, the MESA adsorption constant is statistically higher than that of MOXA and the sorption constants of the two metabolites are significantly lower than that of SMOC. After 246 days, for soils, maximums of 26% of the SMOC, 30% of the MESA and 38% of the MOXA were mineralized. This partly explains the presence of these metabolites in the groundwater at concentrations generally higher than those of the parent molecule for MESA, although there is no statistical difference in the mineralization of the 3 molecules. The laboratory results make it possible to explain the field observations made during 27 months of groundwater quality monitoring (monthly sampling frequency). The evolution of both metabolite concentrations in the groundwater is directly related to recharge dynamics; there is a positive correlation between concentrations and the groundwater level. The observed lag of several months between the signals of the parent molecule and those of the metabolites is probably due to greater sorption of the parent molecule than of its metabolites and/or to degradation kinetics. © 2013.

  19. Level of UV-B radiation influences the effects of glyphosate-based herbicide on the spotted salamander.

    PubMed

    Levis, Nicholas A; Johnson, Jarrett R

    2015-07-01

    Glyphosate-based herbicides are the number one pesticide in the United States and are used commonly around the world. Understanding the affects of glyphosate-based herbicides on non-target wildlife, for example amphibians, is critical for evaluation of regulations pertaining to the use of such herbicides. Additionally, it is important to understand how variation in biotic and abiotic environmental conditions, such as UV-B light regime, could potentially affect how glyphosate-based herbicides interact with non-target species. This study used artificial pond mesocosms to identify the effects of generic glyphosate-based herbicide (GLY-4 Plus) on mortality, cellular immune response, body size, and morphological plasticity of larvae of the spotted salamander (Ambystoma maculatum) under conditions that reflect moderate (UV(M)) and low (UV(L)) UV-B light regimes. Survival within a given UV-B level was unaffected by herbicide presence or absence. However, when herbicide was present, survival varied between UV-B levels with higher survival in UV(M) conditions. Herbicide presence in the UV(M) treatments also decreased body size and reduced cellular immune response. In the UV(L) treatments, the presence of herbicide increased body size and affected tail morphology. Finally, in the absence of herbicide, body size and cellular immune response were higher in UV(M) treatments compared to UV(L) treatments. Thus, the effects of herbicide on salamander fitness were dependent on UV-B level. As anthropogenic habitat modifications continue to alter landscapes that contain amphibian breeding ponds, salamanders may increasingly find themselves in locations with reduced canopy cover and increased levels of UV light. Our findings suggest that the probability of surviving exposure to the glyphosate-based herbicide used in this study may be elevated in more open canopy ponds, but the effects on other components of fitness may be varied and unexpected.

  20. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome. [Triticum aestivum; Bromus tectorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auge, R.M.; Gealy, D.R.; Ogg, A.G.

    1987-04-01

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with /sup 3/H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and thenmore » either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted.« less

  1. Mechanism of Sulfonylurea Herbicide Resistance in the Broadleaf Weed, Kochia scoparia

    PubMed Central

    Saari, Leonard L.; Cotterman, Josephine C.; Primiani, Michael M.

    1990-01-01

    Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistant kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I50 to susceptible I50) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [14C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The Km values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mm, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme. PMID:16667465

  2. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saari, L.L.; Cotterman, J.C.; Primiani, M.M.

    Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistance kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measuredmore » by the ratio of resistant I{sub 50} to susceptible I{sub 50}) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of ({sup 14}C)chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The K{sub m} values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mM, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme.« less

  3. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  4. Recurrent selection with reduced 2,4-D amine doses results in the rapid evolution of 2,4-D herbicide resistance in wild radish (Raphanus raphanistrum L.).

    PubMed

    Ashworth, Michael B; Walsh, Michael J; Flower, Ken C; Powles, Stephen B

    2016-11-01

    When used at effective doses, weed resistance to auxinic herbicides has been slow to evolve when compared with other modes of action. Here we report the evolutionary response of a herbicide-susceptible population of wild radish (Raphanus raphanistrum L.) and confirm that sublethal doses of 2,4-dichlorophenoxyacetic acid (2,4-D) amine can lead to the rapid evolution of 2,4-D resistance and cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides. Following four generations of 2,4-D selection, the progeny of a herbicide-susceptible wild radish population evolved 2,4-D resistance, increasing the LD 50 from 16 to 138 g ha -1 . Along with 2,4-D resistance, cross-resistance to the ALS-inhibiting herbicides metosulam (4.0-fold) and chlorsulfuron (4.5-fold) was evident. Pretreatment of the 2,4-D-selected population with the cytochrome P450 inhibitor malathion restored chlorsulfuron to full efficacy, indicating that cross-resistance to chlorsulfuron was likely due to P450-catalysed enhanced rates of herbicide metabolism. This study is the first to confirm the rapid evolution of auxinic herbicide resistance through the use of low doses of 2,4-D and serves as a reminder that 2,4-D must always be used at highly effective doses. With the introduction of transgenic auxinic-herbicide-resistant crops in the Americas, there will be a marked increase in auxinic herbicide use and therefore the risk of resistance evolution. Auxinic herbicides should be used only at effective doses and with diversity if resistance is to remain a minimal issue. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Comparative toxicity of bentazon and molinate on growth, photosynthetic pigments, photosynthesis, and respiration of the Portuguese ricefield cyanobacterium Nostoc muscorum.

    PubMed

    Galhano, Victor; Peixoto, Francisco; Gomes-Laranjo, José; Fernández-Valiente, Eduardo

    2010-04-01

    Bentazon and molinate are selective herbicides recommended for integrated weed management in rice. Their toxicity on growth and some biochemical and physiological parameters of Nostoc muscorum, an abundant cyanobacterium in Portuguese rice fields, was evaluated under laboratory conditions during time- and concentration-dependent exposure for 72 h. Results showed that toxic concentrations (0.75-2 mM) of both herbicides have pleiotropic effects on the cyanobacterium. Molinate was more toxic than bentazon to growth, respiration, chlorophyll-a, carotenoids, and phycobiliproteins contents. Protein content was increased by both herbicides although the effect was particularly evident with higher concentrations of molinate (1.5-2 mM). The herbicides had contrasting effects on carbohydrates content: molinate increased this organic fraction whereas bentazon decreased it. Photosynthesis and respiration were inhibited by both herbicides.

  6. Getting More Ecologically Relevant Information from Laboratory Tests: Recovery of Lemna minor After Exposure to Herbicides and Their Mixtures.

    PubMed

    Knežević, Varja; Tunić, Tanja; Gajić, Pero; Marjan, Patricija; Savić, Danko; Tenji, Dina; Teodorović, Ivana

    2016-11-01

    Recovery after exposure to herbicides-atrazine, isoproturon, and trifluralin-their binary and ternary mixtures, was studied under laboratory conditions using a slightly adapted standard protocol for Lemna minor. The objectives of the present study were (1) to compare empirical to predicted toxicity of selected herbicide mixtures; (2) to assess L. minor recovery potential after exposure to selected individual herbicides and their mixtures; and (3) to suggest an appropriate recovery potential assessment approach and endpoint in a modified laboratory growth inhibition test. The deviation of empirical from predicted toxicity was highest in binary mixtures of dissimilarly acting herbicides. The concentration addition model slightly underestimated mixture effects, indicating potential synergistic interactions between photosynthetic inhibitors (atrazine and isoproturon) and a cell mitosis inhibitor (trifluralin). Recovery after exposure to the binary mixture of atrazine and isoproturon was fast and concentration-independent: no significant differences between relative growth rates (RGRs) in any of the mixtures (IC10 Mix , 25 Mix , and 50 Mix ) versus control level were recorded in the last interval of the recovery phase. The recovery of the plants exposed to binary and ternary mixtures of dissimilarly acting herbicides was strictly concentration-dependent. Only plants exposed to IC10 Mix , regardless of the herbicides, recovered RGRs close to control level in the last interval of the recovery phase. The inhibition of the RGRs in the last interval of the recovery phase compared with the control level is a proposed endpoint that could inform on reversibility of the effects and indicate possible mixture effects on plant population recovery potential.

  7. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    PubMed

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  8. Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis

    PubMed Central

    Rizwan, Muhammad; Aslam, Muhammad; Asghar, Muhammad Jawad; Abbas, Ghulam; Shah, Tariq Mahmud; Shimelis, Hussein

    2017-01-01

    Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil. PMID:28196091

  9. Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis.

    PubMed

    Rizwan, Muhammad; Aslam, Muhammad; Asghar, Muhammad Jawad; Abbas, Ghulam; Shah, Tariq Mahmud; Shimelis, Hussein

    2017-01-01

    Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil.

  10. Effects of Paraquat Ban on Herbicide Poisoning-Related Mortality.

    PubMed

    Ko, Dong Ryul; Chung, Sung Phil; You, Je Sung; Cho, Soohyung; Park, Yongjin; Chun, Byeongjo; Moon, Jeongmi; Kim, Hyun; Kim, Yong Hwan; Kim, Hyun Jin; Lee, Kyung Woo; Choi, SangChun; Park, Junseok; Park, Jung Soo; Kim, Seung Whan; Seo, Jeong Yeol; Park, Ha Young; Kim, Su Jin; Kang, Hyunggoo; Hong, Dae Young; Hong, Jung Hwa

    2017-07-01

    In Korea, registration of paraquat-containing herbicides was canceled in November 2011, and sales thereof were completely banned in November 2012. We evaluated the effect of the paraquat ban on the epidemiology and mortality of herbicide-induced poisoning. This retrospective study analyzed patients treated for herbicide poisoning at 17 emergency departments in South Korea between January 2010 and December 2014. The overall and paraquat mortality rates were compared pre- and post-ban. Factors associated with herbicide mortality were evaluated using logistic analysis. To determine if there were any changes in the mortality rates before and after the paraquat sales ban and the time point of any such significant changes in mortality, R software, version 3.0.3 (package, bcp) was used to perform a Bayesian change point analysis. We enrolled 2257 patients treated for herbicide poisoning (paraquat=46.8%). The overall and paraquat poisoning mortality rates were 40.6% and 73.0%, respectively. The decreased paraquat poisoning mortality rate (before, 75% vs. after, 67%, p=0.014) might be associated with increased intentionality. The multivariable logistic analysis revealed the paraquat ban as an independent predictor that decreased herbicide poisoning mortality (p=0.035). There were two major change points in herbicide mortality rates, approximately 3 months after the initial paraquat ban and 1 year after complete sales ban. This study suggests that the paraquat ban decreased intentional herbicide ingestion and contributed to lowering herbicide poisoning-associated mortality. The change point analysis suggests a certain timeframe was required for the manifestation of regulatory measures outcomes. © Copyright: Yonsei University College of Medicine 2017

  11. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    PubMed

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-02

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices.

  12. Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.

    PubMed

    Garcia, Mario Daniel; Wang, Jian-Guo; Lonhienne, Thierry; Guddat, Luke William

    2017-07-01

    Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the first enzyme in the branched-chain amino acid biosynthesis pathway. Five of the most widely used commercial herbicides (i.e. sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinyl-benzoates and sulfonylamino-cabonyl-triazolinones) target this enzyme. Here we have determined the first crystal structure of a plant AHAS in the absence of any inhibitor (2.9 Å resolution) and it shows that the herbicide-binding site adopts a folded state even in the absence of an inhibitor. This is unexpected because the equivalent regions for herbicide binding in uninhibited Saccharomyces cerevisiae AHAS crystal structures are either disordered, or adopt a different fold when the herbicide is not present. In addition, the structure provides an explanation as to why some herbicides are more potent inhibitors of Arabidopsis thaliana AHAS compared to AHASs from other species (e.g. S. cerevisiae). The elucidation of the native structure of plant AHAS provides a new platform for future rational structure-based herbicide design efforts. The coordinates and structure factors for uninhibited AtAHAS have been deposited in the Protein Data Bank (www.pdb.org) with the PDB ID code 5K6Q. © 2017 Federation of European Biochemical Societies.

  13. Resistance to AHAS inhibitor herbicides: current understanding.

    PubMed

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined. © 2013 Society of Chemical Industry.

  14. Comparative toxicity of 20 herbicides to 5 periphytic algae and the relationship with mode of action.

    PubMed

    Nagai, Takashi; Taya, Kiyoshi; Yoda, Ikuko

    2016-02-01

    The authors used 5 species of periphytic algae to conduct toxicity assays of 20 herbicides. The 5 tested species represent riverine primary producers most likely to be affected by herbicides. A fluorescence microplate toxicity assay was used as an efficient and economical high-throughput assay. Toxicity characteristics were analyzed, focusing on their relationship to herbicide mode of action. The relative differences between 50% and 10% effect concentrations depended on herbicide mode of action, rather than tested species. Moreover, a clear relationship between sensitive species and herbicide mode of action was also observed. Green alga was most sensitive to herbicides of 2 mode of action groups: inhibitors of protoporphyrinogen oxidase and very long-chain fatty acid synthesis. Diatoms were most sensitive to herbicides of 1 mode of action group: 4-hydroxyphenyl-pyruvate-dioxygenase inhibitors. Cyanobacterium was most sensitive to herbicides of 1 mode of action group: inhibitors of acetolactate synthase. The species sensitivity distribution based on obtained data was also analyzed. The slopes of the species sensitivity distribution significantly differed among modes of action, suggesting that difference in species sensitivity is specific to the mode of action. In particular, differences in species sensitivity were markedly large for inhibitors of acetolactate synthase, protoporphyrinogen oxidase, and very long-chain fatty acid synthesis. The results clearly showed that a single algal species cannot represent the sensitivity of an algal assemblage. Therefore, multispecies algal toxicity data are essential for substances with specific modes of action. © 2015 SETAC.

  15. Summary of and factors affecting pesticide concentrations in streams and shallow wells of the lower Susquehanna River basin, Pennsylvania and Maryland, 1993-95

    USGS Publications Warehouse

    Hainly, Robert A.; Zimmerman, Tammy M.; Loper, Connie A.; Lindsey, Bruce D.

    2001-01-01

    This report presents the detection frequency of 83 analyzed pesticides, describes the concentrations of those pesticides measured in water from streams and shallow wells, and presents conceptual models of the major factors affecting seasonal and areal patterns of pesticide concentrations in water from streams and shallow wells in the Lower Susquehanna River Basin. Seasonal and areal patterns of pesticide concentrations were observed in 577 samples and nearly 40,000 pesticide analyses collected from 155 stream sites and 169 shallow wells from 1993 to 1995. For this study, shallow wells were defined as those generally less than 200 feet deep.The most commonly detected pesticides were agricultural herbicides?atrazine, metolachlor, simazine, prometon, alachlor, and cyanazine. Atrazine and metolachlor are the two most-used agricultural pesticides in the Lower Susquehanna River Basin. Atrazine was detected in 92 percent of all the samples and in 98 percent of the stream samples. Metolachlor was detected in 83 percent of all the samples and in 95 percent of the stream samples. Nearly half of all the analyzed pesticides were not detected in any sample. Of the 45 pesticides that were detected at least once, the median concentrations of 39 of the pesticides were less than the detection limit for the individual compounds, indicating that for at least 50 percent of the samples collected, those pesticides were not detected. Only 10 (less than 0.025 percent) of the measured concentrations exceeded any established drinking-water standards; 25 concentrations exceeded 2 mg/L (micrograms per liter) and 55 concentrations exceeded 1 mg/L. None of the elevated concentrations were measured in samples collected from streams that are used for public drinking-water supplies, and 8 of the 10 were measured in storm-affected samples.The timing and rate of agricultural pesticide applications affect the seasonal and areal concentration patterns of atrazine, simazine, chlorpyrifos, and diazinon observed in water from wells and streams in the Lower Susquehanna River Basin. Average annual pesticide use for agricultural purposes and nonagricultural pesticide use indicators were used to explain seasonal and areal patterns. Elevated concentrations of some pesticides in streams during base-flow and storm-affected conditions were related to the seasonality of agricultural-use applications and local climate conditions. Agricultural-use patterns affected areal concentration patterns for the high-use pesticides, but indicators of nonagricultural use were needed to explain concentration patterns of pesticides with smaller amounts used for agricultural purposes.Bedrock type influences the movement and discharge of ground water, which in turn affects concentration patterns of pesticides. The ratio of atrazine concentrations in stream base flow to concentrations in shallow wells varied among the different general rock types found in the Lower Susquehanna River Basin. Median concentrations of atrazine in well water and stream base flow tended to be similar in individual areas underlain by carbonate bedrock, indicating the connectivity of water in streams and shallow wells in these areas. In areas underlain by noncarbonate bedrock, median concentrations of atrazine tended to be significantly higher in stream base flow than in well water. This suggests a deep ground-water system that delivers water to shallow wells and a near-surficial system that supplies base-flow water to streams. In addition to the presence or absence of carbonate bedrock, pesticide leaching potential and persistence, soil infiltration capacity, and agricultural land use affected areal patterns in detection frequency and concentration differences between samples collected from streams during base-flow conditions and shallow wells.

  16. Developing ionic liquid forms of picloram with reduced negative effects on the aquatic environment.

    PubMed

    Tang, Gang; Wang, Baitao; Ding, Guanglong; Zhang, Wenbing; Liang, You; Fan, Chen; Dong, Hongqiang; Yang, Jiale; Kong, Dandan; Cao, Yongsong

    2018-03-01

    As a widely used herbicide, picloram has been frequently detected in the aquatic environment due to its high leaching potential and low adsorption by soil. To reduce aquatic environmental risk of this herbicide caused by leaching and runoff, five herbicidal ionic liquids (HILs) based on picloram were prepared by pairing isopropylamine, octylamine, octadecylamine, 1-methylimidazole, 4-methylmorpholine respectively. Their physicochemical properties including water solubility, octanol-water partition coefficient, surface activity, leaching, as well as soil adsorption were compared. The results showed that these properties could be adjusted by appropriate selection of counter cations. The HILs with long alkyl chains in cations had low water solubility and leaching characteristics, good surface tension and lipophilicity, as well as high soil adsorption. Compared with currently used picloram in the forms of potassium salts, HIL3 had more excellent herbicidal activity against broadleaf weeds and may offer a lower use dosage. The HILs based on picloram can reduce its negative effects on the aquatic environment and can be used as a desirable alternative to commercial herbicidal formulations of picloram in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 75 FR 55626 - Certification Related to Aerial Eradication in Colombia Under the International Narcotics Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ..., 2010, (Division F, Pub. L. 111-117), I hereby determine and certify that: (1) The herbicide used for... for comparable use in the United States and in accordance with Colombian laws; (2) the herbicide, in...

  18. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    PubMed

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor.

  19. Protocols for Robust Herbicide Resistance Testing in Different Weed Species.

    PubMed

    Panozzo, Silvia; Scarabel, Laura; Collavo, Alberto; Sattin, Maurizio

    2015-07-02

    Robust protocols to test putative herbicide resistant weed populations at whole plant level are essential to confirm the resistance status. The presented protocols, based on whole-plant bioassays performed in a greenhouse, can be readily adapted to a wide range of weed species and herbicides through appropriate variants. Seed samples from plants that survived a field herbicide treatment are collected and stored dry at low temperature until used. Germination methods differ according to weed species and seed dormancy type. Seedlings at similar growth stage are transplanted and maintained in the greenhouse under appropriate conditions until plants have reached the right growth stage for herbicide treatment. Accuracy is required to prepare the herbicide solution to avoid unverifiable mistakes. Other critical steps such as the application volume and spray speed are also evaluated. The advantages of this protocol, compared to others based on whole plant bioassays using one herbicide dose, are related to the higher reliability and the possibility of inferring the resistance level. Quicker and less expensive in vivo or in vitro diagnostic screening tests have been proposed (Petri dish bioassays, spectrophotometric tests), but they provide only qualitative information and their widespread use is hindered by the laborious set-up that some species may require. For routine resistance testing, the proposed whole plant bioassay can be applied at only one herbicide dose, so reducing the costs.

  20. Evolution of herbicide resistance mechanisms in grass weeds.

    PubMed

    Matzrafi, Maor; Gadri, Yaron; Frenkel, Eyal; Rubin, Baruch; Peleg, Zvi

    2014-12-01

    Herbicide resistant weeds are becoming increasingly common, threatening global food security. Here, we present BrIFAR: a new model system for the functional study of mechanisms of herbicide resistance in grass weeds. We have developed a large collection of Brachypodium accessions, the BrI collection, representing a wide range of habitats. Wide screening of the responses of the accessions to four major herbicide groups (PSII, ACCase, ALS/AHAS and EPSPS inhibitors) identified 28 herbicide-resistance candidate accessions. Target-site resistance to PSII inhibitors was found in accessions collected from habitats with a known history of herbicide applications. An amino acid substitution in the psbA gene (serine264 to glycine) conferred resistance and also significantly affected the flowering and shoot dry weight of the resistant accession, as compared to the sensitive accession. Non-target site resistance to ACCase inhibitors was found in accessions collected from habitats with a history of herbicide application and from a nature reserve. In-vitro enzyme activity tests and responses following pre-treatment with malathion (a cytochrome-P450 inhibitor) indicated sensitivity at the enzyme level, and give strong support to diclofop-methyl and pinoxaden enhanced detoxification as NTS resistance mechanism. BrIFAR can promote better understanding of the evolution of mechanisms of herbicide resistance and aid the implementation of integrative management approaches for sustainable agriculture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Łukasz; Heipieper, Hermann J

    2017-01-01

    Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited. Furthermore, the relation between hydrophobicity associated with the length of alkyl chains and toxicity for ionic liquids has not been thoroughly studied. Therefore we investigated toxic effects of herbicidal ionic liquid forms on growth inhibition, given as EC 50, of the common soil bacterium Pseudomonas putida. We thereby concentrated on quaternary ammonium salts. Analyzed compounds were composed of dicamba or MCPP moieties and cation with various alkyl chain lengths (n = 6,8,10) We compared them with commercial herbicides, and ammonium-based ionic liquids with neutral anion (Br - ). In addition, cis-trans isomerisation of unsaturated membrane fatty acids in Pseudomonas putida was applied as the proxy for toxicity and membrane activity. We showed that toxicity increased with the length of alkyl chains. However, this correlation is only valid for six and eight carbon atom in alkyl chains, where for n = 10 the EC 50 values rise by one order of magnitude. In our studies, the herbicidal ionic liquids [C 10 ,C 10 ,C 1 ,C 1 N][MCPP] and [C 10 ,C 10 ,C 1 ,C 1 N][dicamba] showed the lowest toxicity among analyzed quaternary ammonium salts and comparable toxicity with corresponding herbicides. No clear increase in toxicity could be followed by changing the anion moieties for ammonium-based ionic liquid forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    PubMed

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mucilage from seeds of chia (Salvia hispanica L.) used as soil conditioner; effects on the sorption-desorption of four herbicides in three different soils.

    PubMed

    Di Marsico, A; Scrano, L; Amato, M; Gàmiz, B; Real, M; Cox, L

    2018-06-01

    The objective of this work was to determine the effect of the mucilage extracted from Chia seeds (Salvia hispanica L.) as soil amendment on soil physical properties and on the sorption-desorption behaviour of four herbicides (MCPA, Diuron, Clomazone and Terbuthylazine) used in cereal crops. Three soils of different texture (sandy-loam, loam and clay-loam) were selected, and mercury intrusion porosimetry and surface area analysis were used to examine changes in the microstructural characteristics caused by the reactions that occur between the mucilage and soil particles. Laboratory studies were conducted to characterise the selected herbicides with regard their sorption on tested soils added or not with the mucilage. Mucilage amendment resulted in a reduction in soil porosity, basically due to a reduction in larger pores (radius>10μm) and an important increase in finer pores (radius<10μm) and in partcles' surface. A higher herbicide sorption in the amended soils was ascertained when compared to unamended soils. The sorption percentage of herbicides in soils treated with mucilage increased in the order; sandy-loam

  4. Utilization of long duration high-volume sampling coupled to SPME-GC-MS/MS for the assessment of airborne pesticides variability in an urban area (Strasbourg, France) during agricultural application.

    PubMed

    Liaud, Céline; Brucher, Michel; Schummer, Claude; Coscollà, Clara; Wolff, Hélène; Schwartz, Jean-Jacques; Yusà, Vicent; Millet, Maurice

    2016-10-02

    Atmospheric samples have been collected between 14 March and 12 September 2012 on a 2-week basis (15 days of sampling and exchange of traps each 7 days) in Strasbourg (east of France) for the analysis of 43 pesticides. Samples (particle and gas phases) were separately extracted using Accelerated Solvent Extraction (ASE) and pre-concentrated by Solid Phase Micro-Extraction (SPME) before analysis by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Four SPME consecutive injections at distinct temperatures were made in order to increase the sensitivity of detection for the all monitored pesticides. Currently used detected pesticides can be grouped in four classes; those used in maize crops (acetochlor, benoxacor, dicamba, s-metolachlor, pendimethalin, and bromoxynil), in cereal crops (benoxacor, chlorothalonil, fenpropimorph, and propiconazole), in vineyards (tebuconazole), and as herbicides for orchards, meadows of green spaces (2,4-MCPA, trichlopyr). This is in accordance with the diversity of crops found in the Alsace region and trends observed are in accordance with the period of application of these pesticides. Variations observed permit also to demonstrate that the long time sampling duration used in this study is efficient to visualize temporal variations of airborne pesticides concentrations. Then, long time high-volume sampling could be a simple method permitting atmospheric survey of atmospheric contamination without any long analysis time and consequently low cost.

  5. Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems.

    PubMed

    Pathiratne, Asoka; Kroon, Frederieke J

    2016-02-01

    To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species. © 2015 SETAC.

  6. Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor.

    PubMed

    Chen, Chao-Nan; Chen, Qiong; Liu, Yu-Chao; Zhu, Xiao-Lei; Niu, Cong-Wei; Xi, Zhen; Yang, Guang-Fu

    2010-07-15

    The triazolopyrimidine-2-sulfonanilide, discovered from preparing bioisosteres of the sulfonylurea herbicides, is an important class of acetohydroxyacid synthase (AHAS, EC 4.1.3.18) inhibitors. At least over ten triazolopyrimidine sulfonanilides have been commercialized as herbicides for the control of broadleaf weeds and grass with cereal crop selectivity. Herein, a series of triazolopyrimidine-2-sulfonanilides were designed and synthesized with the aim of discovery of new herbicides with higher activity. The assay results of the inhibition activity of the synthesized compounds against Arabidopsis thatiana AHAS indicated that some compounds showed a little higher activity against flumetsulam (FS), the first commercial triazolopyrimidine-2-sulfonanilide-type herbicide. The ki values of two promising compounds 3d and 8h are respectively, 1.61 and 1.29 microM, while that of FS is 1.85 microM. Computational simulation results indicated the ester group of compound 3d formed hydrogen bonds with the surrounding residues Arg'198 and Ser653, which accounts for its 11.5-folds higher AHAS inhibition activity than Y6610. Further green house assay showed that compound 3d has comparable herbicidal activity as FS. Even at the concentration of 37.5g.ai/ha, 3d showed excellent herbicidal activity against Galium aparine, Cerastium arvense, Chenopodium album, Amaranthus retroflexus, and Rmumex acetasa, moderate herbicidal activity against Polygonum humifusum, Cyperus iria, and Eclipta prostrate. The combination of in vitro and in vivo assay indicated that 3d could be regarded as a new potential acetohydroxyacid synthase-inhibiting herbicide candidate for further study. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment.

    PubMed

    Annett, Robert; Habibi, Hamid R; Hontela, Alice

    2014-05-01

    Glyphosate [N-(phosphonomethyl) glycine] is a broad spectrum, post emergent herbicide and is among the most widely used agricultural chemicals globally. Initially developed to control the growth of weed species in agriculture, this herbicide also plays an important role in both modern silviculture and domestic weed control. The creation of glyphosate tolerant crop species has significantly increased the demand and use of this herbicide and has also increased the risk of exposure to non-target species. Commercially available glyphosate-based herbicides are comprised of multiple, often proprietary, constituents, each with a unique level of toxicity. Surfactants used to increase herbicide efficacy have been identified in some studies as the chemicals responsible for toxicity of glyphosate-based herbicides to non-target species, yet they are often difficult to chemically identify. Most glyphosate-based herbicides are not approved for use in the aquatic environment; however, measurable quantities of the active ingredient and surfactants are detected in surface waters, giving them the potential to alter the physiology of aquatic organisms. Acute toxicity is highly species dependant across all taxa, with toxicity depending on the timing, magnitude, and route of exposure. The toxicity of glyphosate to amphibians has been a major focus of recent research, which has suggested increased sensitivity compared with other vertebrates due to their life history traits and reliance on both the aquatic and terrestrial environments. This review is designed to update previous reviews of glyphosate-based herbicide toxicity, with a focus on recent studies of the aquatic toxicity of this class of chemicals. Copyright © 2014 John Wiley & Sons, Ltd.

  8. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    PubMed

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  9. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  10. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    PubMed Central

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P.C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications. PMID:26813942

  11. Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms.

    PubMed

    Knauert, Stefanie; Escher, Beate; Singer, Heinz; Hollender, Juliane; Knauer, Katja

    2008-09-01

    Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30), which we derived from species sensitivity distributions calculated on the basis of EC50 growth inhibition data. The respective herbicide mixture comprised 1/3 of the HC30 of each herbicide. Short-term laboratory experiments revealed that the HC30 values corresponded to EC40 values when regarding photosynthetic activity as the response parameter. In the outdoor mesocosm experiment, effects of atrazine, isoproturon, diuron and their mixture on the photosynthetic activity of phytoplankton were investigated during a five-week period with constant exposure and a subsequent five-month postexposure period when the herbicides dissipated. The results demonstrated that mixture effects determined at the beginning of constant exposure can be described by concentration addition since the mixture elicited a phytotoxic effect comparable to the single herbicides. Declining effects on photosynthetic activity during the experiment might be explained by both a decrease in water herbicide concentrations and by the induction of community tolerance.

  12. Grafting and Paladin Pic-21 for Nematode and Weed Management in Vegetable Production

    PubMed Central

    Kokalis-Burelle, Nancy; Butler, David M.; Hong, Jason C.; Bausher, Michael G.; McCollum, Greg; Rosskopf, Erin N.

    2016-01-01

    Two years of field trials conducted in a Meloidogyne incognita-infested field evaluated grafting and Paladin Pic-21 (dimethyl disulfide:chloropicrin [DMDS:Pic] 79:21) for root-knot nematode and weed control in tomato and melon. Tomato rootstocks evaluated were; ‘TX301’, ‘Multifort’, and ‘Aloha’. ‘Florida 47’ was the scion and the nongrafted control. A double crop of melon was planted into existing beds following tomato harvest. Melon rootstocks, C. metulifer and ‘Tetsukabuto’, were evaluated with nongrafted ‘Athena’ in year 1. In year 2, watermelon followed tomato with scion variety ‘Tri-X Palomar’ as the control and also grafted onto ‘Emphasis’ and ‘Strongtosa’ rootstocks. Four soil treatments were applied in fall both years under Canslit metalized film; Paladin Pic-21, methyl bromide:chloropicrin (MeBr:C33, 67:33), Midas (iodomethane:chloropicrin 50:50), and a herbicide-treated control. M. incognita J2 in soil were highest in herbicide control plots and nongrafted tomato. All soil treatments produced similar tomato growth, which was greater than the herbicide control. All treatments reduced M. incognita J2 in roots compared to the herbicide control. ‘Multifort’ rootstock produced the largest and healthiest roots; however, the number of M. incognita isolated from roots did not differ among the tomato rootstocks tested. Galling on tomato was highest in herbicide control plots and nongrafted plants. In melon, M. incognita J2 in soil did not differ among melon rootstocks, but numbers isolated from melon rootstocks increased in ‘Tetsukabuto’ compared with C. metuliferus. ‘Tetsukabuto’ were larger root systems than nongrafted ‘Athena’. All fumigants provided protection for all melon rootstocks against galling by M. incognita compared to the herbicide control. Galling on C. metuliferus rootstock was less in all fumigant treatments compared with nongrafted ‘Athena’ and ‘Tetsukabuto’. In watermelon, M. incognita in soil and roots did not differ among soil treatments or watermelon rootstocks, and yield was lower in both grafted rootstocks compared with the nongrafted control. All soil treatments increased average fruit weight of watermelon compared with the herbicide control, and provided effective weed control, keeping the most predominant weed, purple nutsedge (Cyperus rotundus L.), density at or below 1/m row. Grafting commercial scions onto M. incognita-resistant rootstocks has potential for nematode management combined with soil treatments or as a stand-alone component in crop production systems. PMID:28154429

  13. Herbicide and conifer options for reforesting upper slopes in the Cascade Range.

    Treesearch

    Edward J. Dimock

    1981-01-01

    Nine herbicides were compared for aiding establishment of four conifer species on upper-slope forest sites dominated by sedge and beargrass. Both glyphosate and a mixture of atrazine + dalapon produced substantial and consistent gains in survival of all four conifers after 3 years.

  14. Kudzu (Pueraria montana) community responses to herbicides, burning, and high-density loblolly pine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.B. Harrington; L.T. Rader-Dixon; J.W. Taylor, Jr.

    Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a nonsprayed check), in which loblolly pines were planted at three densities (0, 1, and 4 seedlings m22) to induce competition and potentially delay kudzu recovery. This split-plot design was replicated on each of the four kudzu-dominated sites near Aiken, SC. Relative light intensity (RLI) andmore » soil water content (SWC) were measured periodically to identify mechanisms of interference among plant species. Two years after treatment (1999), crown coverage of kudzu averaged , 2% in herbicide plots compared with 93% in the nonsprayed check, and these differences were maintained through 2001, except in clopyralid plots where kudzu cover increased to 15%. In 2001, pine interference was associated with 33, 56, and 67% reductions in biomass of kudzu, blackberry, and herbaceous vegetation, respectively. RLI in kudzu-dominated plots (4 to 15% of full sun) generally was less than half that of herbicide-treated plots. SWC was greatest in tebuthiuron plots, where total vegetation cover averaged 26% compared with 77 to 111% in other plots. None of the treatments eradicated kudzu, but combinations of herbicides and induced pine competition delayed its recovery.« less

  15. Evaluating changes in matrix based, recovery-adjusted concentrations in paired data for pesticides in groundwater

    USGS Publications Warehouse

    Zimmerman, Tammy M.; Breen, Kevin J.

    2012-01-01

    Pesticide concentration data for waters from selected carbonate-rock aquifers in agricultural areas of Pennsylvania were collected in 1993–2009 for occurrence and distribution assessments. A set of 30 wells was visited once in 1993–1995 and again in 2008–2009 to assess concentration changes. The data include censored matched pairs (nondetections of a compound in one or both samples of a pair). A potentially improved approach for assessing concentration changes is presented where (i) concentrations are adjusted with models of matrix-spike recovery and (ii) area-wide temporal change is tested by use of the paired Prentice-Wilcoxon (PPW) statistical test. The PPW results for atrazine, simazine, metolachlor, prometon, and an atrazine degradate, deethylatrazine (DEA), are compared using recovery-adjusted and unadjusted concentrations. Results for adjusted compared with unadjusted concentrations in 2008–2009 compared with 1993–1995 were similar for atrazine and simazine (significant decrease; 95% confidence level) and metolachlor (no change) but differed for DEA (adjusted, decrease; unadjusted, increase) and prometon (adjusted, decrease; unadjusted, no change). The PPW results were different on recovery-adjusted compared with unadjusted concentrations. Not accounting for variability in recovery can mask a true change, misidentify a change when no true change exists, or assign a direction opposite of the true change in concentration that resulted from matrix influences on extraction and laboratory method performance. However, matrix-based models of recovery derived from a laboratory performance dataset from multiple studies for national assessment, as used herein, rather than time- and study-specific recoveries may introduce uncertainty in recovery adjustments for individual samples that should be considered in assessing change.

  16. Multiple-Herbicide Resistance Is Widespread in Roadside Palmer Amaranth Populations.

    PubMed

    Bagavathiannan, Muthukumar V; Norsworthy, Jason K

    2016-01-01

    Herbicide-resistant Palmer amaranth is a widespread issue in row-crop production in the Midsouthern US. Palmer amaranth is commonly found on roadside habitats in this region, but little is known on the degree of herbicide resistance in these populations. Herbicide resistance in roadside Palmer amaranth populations can represent the spread of an adaptive trait across a selective landscape. A large-scale survey was carried out in the Mississippi Delta region of eastern Arkansas to document the level of resistance in roadside Palmer amaranth populations to pyrithiobac and glyphosate, two important herbicides with broad history of use in the region. A total of 215 Palmer amaranth populations collected across 500 random survey sites were used in the evaluations. About 89 and 73% of the surveyed populations showed >90% survival to pyrithiobac and glyphosate, respectively. Further, only 3% of the populations were completely susceptible to glyphosate, while none of the populations was completely controlled by pyrithiobac. Among the 215 populations evaluated, 209 populations showed multiple resistance to both pyrithiobac and glyphosate at varying degrees. Dose-response assays confirmed the presence of high levels of herbicide resistance in the five selected populations (≥ 25-fold compared to a susceptible standard). Results demonstrate the prevalence of multiple-herbicide resistance in roadside Palmer amaranth populations in this region. Growers should be vigilant of Palmer amaranth infestation in roadsides adjacent to their fields and implement appropriate control measures to prevent likely spread of herbicide resistance into their fields.

  17. Effects of diquat and fomesafen applied alone and in combination with a nonylphenol polyethoxylate adjuvant on Lemna minor in aquatic indoor microcosms.

    PubMed

    Gorzerino, Caroline; Quemeneur, Alphonse; Hillenweck, Anne; Baradat, Maryse; Delous, Georges; Ollitrault, Martine; Azam, Didier; Caquet, Thierry; Lagadic, Laurent

    2009-03-01

    The influence of tank-mix adjuvants on pesticide toxicity remains largely unknown. Agral 90, a nonylphenol polyethoxylated tank-mix adjuvant, has been used with diquat (bipyridylium herbicide) and fomesafen (diphenyl-ether herbicide) in aquatic indoor microcosms in order to compare the toxicity of the single compounds and of binary herbicide-adjuvant mixtures to Lemna minor. Twenty-four microcosms were used and treatments were performed with substances alone or with herbicide-adjuvant binary mixtures, at two concentrations levels (44.4 and 222.2 microg/L for the herbicides, and 100 and 500 microg/L for Agral 90). Toxicity was assessed weekly for 1 month through growth measurements, as inferred from the relative frond number (RFN) and relative frond area (RFA). Concentrations of diquat and fomesafen in water and sediments were measured weekly. The herbicides showed very different behaviour in microcosms, with a rapid disappearance of diquat from the aqueous phase whereas fomesafen levels remained almost constant over time. Diquat strongly inhibited the growth of L. minor whereas fomesafen had no effect on plant growth. Presence of the adjuvant only slightly reduced the effect of the lowest concentration of diquat, probably as a result of dispersion of the herbicide at the water surface. It is concluded that tank-mix adjuvant designed to improve herbicide efficiency in the terrestrial environment did not have any effect on aquatic plants when applied to the aquatic environment.

  18. Sample-size needs for forestry herbicide trials

    Treesearch

    S.M. Zedaker; T.G. Gregoire; James H. Miller

    1994-01-01

    Forest herbicide experiments are increasingly being designed to evaluate smaller treatment differences when comparing existing effective treatments, tank mix ratios, surfactants, and new low-rate products. The ability to detect small differences in efficacy is dependent upon the relationship among sample size. type I and II error probabilities, and the coefficients of...

  19. Comparison and Assessment of Mechanical and Herbicide-Chemical Side-Trimming Methods of Managing Roadside Vegetation by the Texas Department of Transportation (TxDOT)

    DOT National Transportation Integrated Search

    2012-09-01

    The project compared and assessed the mechanical and herbicide-chemical side-trimming methods : that TxDOT uses to manage roadside vegetation. This report discusses safety, effectiveness, and economic : costs of these methods. It also shares industry...

  20. Preharvest herbicide treatment improves regeneration in Southern Appalachian Hardwoods

    Treesearch

    David Loftis

    2009-01-01

    Preharvest herbicide treatment of undesirable and unmerchantable vegetation was compared to postharvest felling. Ten years after the clearcut harvesting, the preharvest treatment had increased the number and proportion of diserable stems and decreased the number and proportion of undesirable sprouts in the dominant stand. Stands that developed after the preharvest...

  1. Overlapping Residual Herbicides for Control of Photosystem (PS) II- and 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibitor-Resistant Palmer amaranth (Amaranthus palmeri S. Watson) in Glyphosate-Resistant Maize

    PubMed Central

    Chahal, Parminder S.; Ganie, Zahoor A.; Jhala, Amit J.

    2018-01-01

    A Palmer amaranth (Amaranthus palmeri S. Watson) biotype has evolved resistance to photosystem (PS) II- (atrazine) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (mesotrione, tembotrione, and topramezone) in maize seed production field in Nebraska, USA. The objectives of this study were to determine the effect of soil residual pre-emergence (PRE) herbicides followed by (fb) tank-mixture of residual and foliar active post-emergence (POST) herbicides on PS-II- and HPPD-inhibitor-resistant Palmer amaranth control, maize yield, and net economic returns. Field experiments were conducted in a grower's field infested with PS II- and HPPD-inhibitor-resistant Palmer amaranth near Shickley in Fillmore County, Nebraska, USA in 2015 and 2016. The contrast analysis suggested that saflufenacil plus dimethenamid-P or pyroxasulfone plus saflufenacil applied PRE provided 80–82% Palmer amaranth control compared to 65 and 39% control with saflufenacil and pyroxasulfone applied alone at 3 weeks after PRE (WAPRE), respectively. Among the PRE fb POST herbicide programs, 95–98% Palmer amaranth control was achieved with pyroxasulfone plus safluefenacil, or saflufenacil plus dimethenamid-P applied PRE, fb glyphosate plus topramezone plus dimethenamid-P plus atrazine, glyphosate plus diflufenzopyr plus dicamba plus pyroxasulfone, glyphosate plus diflufenzopyr plus pendimethalin, or glyphosate plus diflufenzopyr plus dicamba plus atrazine applied POST at 3 weeks after POST (WAPOST) through maize harvest. Based on contrast analysis, PRE fb POST programs provided 77–83% Palmer amaranth control at 3 WAPOST through maize harvest compared to 12–15% control with PRE-only and 66–84% control with POST-only programs. Similarly, PRE fb POST programs provided 99% biomass reduction at 6 WAPOST compared to PRE-only (28%) and POST-only (87%) programs. PRE fb POST programs provided higher maize yield (13,617 kg ha−1) and net return (US $1,724 ha−1) compared to the PRE-only (2,656 kg ha−1; US $285 ha−1) and POST-only (11,429 kg ha−1; US $1,539 ha−1) programs. The results indicated that effective control of multiple herbicide-resistant Palmer amaranth can be achieved with PRE fb POST programs that include herbicides with overlapping residual activity to maintain season-long control. PMID:29375605

  2. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum.

    PubMed

    Yu, Qin; Abdallah, Ibrahim; Han, Heping; Owen, Mechelle; Powles, Stephen

    2009-09-01

    This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [(14)C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.

  3. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass)

    PubMed Central

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; Délye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR) in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass) to the major herbicides inhibiting acetolactate-synthase (ALS) pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their associated ALS-inhibiting herbicide and most likely exacerbated herbicide-degrading secondary metabolism pathways. This suggests that genetic variation for safener response is present in Lolium sp. Thus, a possible, uninvestigated way to NTSR evolution could be selection for increased responsiveness to safener action. Delivering safeners exclusively to the crop could mitigate the risk for NTSR evolution in weeds. PMID:28848566

  4. Herbicide Safeners Decrease Sensitivity to Herbicides Inhibiting Acetolactate-Synthase and Likely Activate Non-Target-Site-Based Resistance Pathways in the Major Grass Weed Lolium sp. (Rye-Grass).

    PubMed

    Duhoux, Arnaud; Pernin, Fanny; Desserre, Diane; Délye, Christophe

    2017-01-01

    Herbicides are currently pivotal to control weeds and sustain food security. Herbicides must efficiently kill weeds while being as harmless as possible for crops, even crops taxonomically close to weeds. To increase their selectivity toward crops, some herbicides are sprayed in association with safeners that are bioactive compounds exacerbating herbicide-degrading pathways reputedly specifically in crops. However, exacerbated herbicide metabolism is also a key mechanism underlying evolved non-target-site-based resistance to herbicides (NTSR) in weeds. This raised the issue of a possible role of safeners on NTSR evolution in weeds. We investigated a possible effect of the respective field rates of the two broadly used safeners cloquintocet-mexyl and mefenpyr-diethyl on the sensitivity of the troublesome global weed Lolium sp. (rye-grass) to the major herbicides inhibiting acetolactate-synthase (ALS) pyroxsulam and iodosulfuron + mesosulfuron, respectively. Three Lolium sp. populations were studied in three series of experiments. The first experiment series compared the frequencies of plants surviving application of each herbicide alone or in association with its safener. Safener co-application caused a net increase ranging from 5.0 to 46.5% in the frequency of plants surviving the field rate of their associated herbicide. In a second series of experiments, safener effect was assessed on individual plant sensitivity using vegetative propagation. A reduction in sensitivity to pyroxsulam and to iodosulfuron + mesosulfuron was observed for 44.4 and 11.1% of the plants in co-treatment with cloquintocet-mexyl and mefenpyr-diethyl, respectively. A third series of experiments investigated safener effect on the expression level of 19 Lolium sp. NTSR marker genes. Safeners showed an enhancing effect on the expression level of 10 genes. Overall, we demonstrated that cloquintocet-mexyl and mefenpyr-diethyl both reduced the sensitivity of Lolium sp. to their associated ALS-inhibiting herbicide and most likely exacerbated herbicide-degrading secondary metabolism pathways. This suggests that genetic variation for safener response is present in Lolium sp. Thus, a possible, uninvestigated way to NTSR evolution could be selection for increased responsiveness to safener action. Delivering safeners exclusively to the crop could mitigate the risk for NTSR evolution in weeds.

  5. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape

    PubMed Central

    Bohan, David A; Boffey, Caroline W.H; Brooks, David R; Clark, Suzanne J; Dewar, Alan M; Firbank, Les G; Haughton, Alison J; Hawes, Cathy; Heard, Matthew S; May, Mike J; Osborne, Juliet L; Perry, Joe N; Rothery, Peter; Roy, David B; Scott, Rod J; Squire, Geoff R; Woiwod, Ian P; Champion, Gillian T

    2005-01-01

    We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypothesis that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and more monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and butterflies that forage and select for dicot weeds were less abundant in GMHT WOSR management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds. PMID:15799941

  6. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape.

    PubMed

    Bohan, David A; Boffey, Caroline W H; Brooks, David R; Clark, Suzanne J; Dewar, Alan M; Firbank, Les G; Haughton, Alison J; Hawes, Cathy; Heard, Matthew S; May, Mike J; Osborne, Juliet L; Perry, Joe N; Rothery, Peter; Roy, David B; Scott, Rod J; Squire, Geoff R; Woiwod, Ian P; Champion, Gillian T

    2005-03-07

    We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypotheses that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds, there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and Butterflies that forage and select for dicot weeds were less abundant in GMHT WORS management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds.

  7. Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds.

    PubMed

    Zhila, Natalia; Murueva, Anastasiya; Shershneva, Anna; Shishatskaya, Ekaterina; Volova, Tatiana

    2017-10-03

    The present study reports the herbicidal activity of metribuzin and tribenuron-methyl embedded in the degradable matrix of natural poly-3-hydroxybutyrate [P(3HB)/MET and P(3HB)/TBM]. The developed formulations were constructed as films and microgranules, which were tested against the weeds such as white sweet clover Melilotus albus and lamb's quarters Chenopodium album in the presence of soft spring wheat (Triticum aestivum, cv. Altaiskaya 70) as the subject crop for investigation. The activity was measured in laboratory scale experiments by determining the density and weight of the vegetative organs of weeds. The study was also aimed at testing the effect of the experimental formulation on the growth of wheat crop as dependent on the method of herbicide delivery. The experimental MET and TBM formulations showed pronounced herbicidal activity against the weed species used in the study. The effectiveness of the experimental formulations in inhibiting weed growth was comparable to and, sometimes, higher than that of the commercial formulations (positive control). The amount of the biomass of the wheat treated with the experimental herbicide formulations was significantly greater than that of the wheat treated with commercial formulations.

  8. Mechanism of resistance to mesotrione in an Amaranthus tuberculatus population from Nebraska, USA

    PubMed Central

    Hutchings, Sarah-Jane; Dale, Richard P.; Howell, Anushka; Morris, James A.; Kramer, Vance C.; Shivrain, Vinod K.; Mcindoe, Eddie

    2017-01-01

    Amaranthus tuberculatus is a troublesome weed in corn and soybean production systems in Midwestern USA, due in part to its ability to evolve multiple resistance to key herbicides including 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we have investigated the mechanism of resistance to mesotrione, an important chemical for managing broadleaf weeds in corn, in a multiple herbicide resistant population (NEB) from Nebraska. NEB showed a 2.4-fold and 45-fold resistance increase to mesotrione compared to a standard sensitive population (SEN) in pre-emergence and post-emergence dose-response pot tests, respectively. Sequencing of the whole HPPD gene from 12 each of sensitive and resistant plants did not detect any target-site mutations that could be associated with post-emergence resistance to mesotrione in NEB. Resistance was not due to HPPD gene duplication or over-expression before or after herbicide treatment, as revealed by qPCR. Additionally, no difference in mesotrione uptake was detected between NEB and SEN. In contrast, higher levels of mesotrione metabolism via 4-hydroxylation of the dione ring were observed in NEB compared to the sensitive population. Overall, the NEB population was characterised by lower levels of parent mesotrione exported to other parts of the plant, either as a consequence of metabolism in the treated leaves and/or impaired translocation of the herbicide. This study demonstrates another case of non-target-site based resistance to an important class of herbicides in an A. tuberculatus population. The knowledge generated here will help design strategies for managing multiple herbicide resistance in this problematic weed species. PMID:28662111

  9. Pigments as biomarkers of exposure to the vineyard herbicide flazasulfuron in freshwater algae.

    PubMed

    Couderchet, Michel; Vernet, Guy

    2003-07-01

    Weed control in Champagne vineyards has long relied on the use of diuron and substituted triazines; these compounds are now being replaced by flazasulfuron, a sulfonylurea that is used at a much lower dosage. The vineyards of Champagne are planted on steep slopes and runoff is important, and even though low doses of these herbicides are used, they may present some potential risk for freshwater ecosystems. Therefore, the effects of the sulfonylurea herbicide, flazasulfuron (formulated as Katana) was investigated on the unicellular green alga Scenedesmus obliquus. The pigment content of the algal suspensions was followed as a biomarker of exposure to the herbicide. The results demonstrate that flazasulfuron induced a reduction in chlorophyll content at concentrations of 10 microg/L, while the increase of pigment content in the culture was reduced with the lowest concentration tested (0.1 microg/L). Among the three pigments tested, chlorophyll a appeared to be the most sensitive biomarker. In the algal medium, flazasulfuron was slowly degraded (DT(50) approximately 8 days) in a compound that was tentatively identified. The toxicity of this herbicide for the algae was comparable to that of older herbicides which are used at a much higher rate. Therefore, we may speculate that even if flazasulfuron comes into contact with freshwater ecosystems, its effects on algae will be less deleterious than that of traditional herbicides.

  10. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.).

    PubMed

    Yang, Xia; Zhang, Zichang; Gu, Tao; Dong, Mingchao; Peng, Qiong; Bai, Lianyang; Li, Yongfeng

    2017-01-06

    Barnyardgrass (Echinochloa crus-galli) is one of the top 15 herbicide-resistant weeds around the world that interferes with rice growth, resulting in major losses of rice yield. Thus, multi-herbicide resistance in barnyardgrass presents a major threat, with the underlying mechanisms that contribute to resistance requiring elucidation. In an attempt to characterize this multi-herbicide resistance at the proteomic level, comparative analysis of resistant and susceptible barnyardgrasses was performed using iTRAQ, both with and without quinclorac, bispyribac-sodium and penoxsulam herbicidal treatment. A total of 1342 protein species were identified from 2248 unique peptides by searching the UniProt database and conducting data analysis. Approximately 904 protein species with 4774 Gene Ontology (GO) terms were grouped into the categories of biological process, cellular component and molecular function. Among these, 688 protein species were annotated into 1583 KEGG pathways, with 980 protein species relating to metabolism and 93 relating to environmental information processing. A total of 292 protein species showed more than a 1.2-fold change in abundance in the resistant biotype relative to the susceptible biotype. Furthermore, herbicide treatment resulted in 157 protein species that showed more than a 1.2-fold change in the resistant biotype. Moreover, physiological analyses demonstrated an ecological fitness cost in the resistant biotype. While some studies have shown a fitness cost to be associated with an altered ecological interaction, our understanding of the fitness costs associated with herbicide resistance are limited. Herein, physiological and proteomic analysis demonstrates herbicide resistance associated ecological fitness cost and potential mechanisms of herbicide-resistance in resistant biotypes of E. crus-galli. The results presented herein have revealed differences in ecological adaptation between resistant and susceptible biotypes in E. crus-galli and provide a fundamental basis enabling the development of new strategies for weed control. Lastly, this is the first large-scale proteomics study to examine herbicide stress responses in different barnyardgrass biotypes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Economics of site preparation and release treatments using herbicides in Central Georgia

    Treesearch

    Rodney L. Busby; James H. Miller; M. Boyd Edwards

    1998-01-01

    Abstract. Land expectation values (LEV) of site preparation and release treatments using herbicides in central Georgia are calculated and compared Loblolly pine growth and hardwood competition levels were measured at age 6 for the site preparation treatments and age 8 for the release treatments. These measurements were projected to final harvest...

  12. Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans.

    PubMed

    Hangler, Martin; Jensen, Bo; Rønhede, Stig; Sørensen, Sebastian R

    2007-03-01

    A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.

  13. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996–2012

    PubMed Central

    Brookes, Graham

    2014-01-01

    Crops that have been genetically modified (GM) to be tolerant to herbicides have been widely grown in the USA since 1996. The rapid and widespread adoption of this technology reflects the important economic and environmental benefits that farmers have derived from its use (equal to $21.7 billion additional farm income and a 225 million kg reduction in herbicide active ingredient use 1996–2012). During this time, weed control practices in these crops relative to the ‘conventional alternative’ have evolved to reflect experience of using the technology, the challenges that have arisen and the increasing focus in recent years on developing sustainable production systems. This paper examines the evidence on the changing nature of herbicides used with these crops and in particular how farmers addressed the challenge of weed resistance. The evidence shows that use of the technology has resulted in a net reduction in both the amount of herbicide used and the associated environmental impact, as measured by the EIQ indicator when compared to what can reasonably be expected if the area planted to GM HT crops reverted to conventional production methods. It also facilitated many farmers being able to derive the economic and environmental benefits associated with switching from a plough-based to a no tillage or conservation tillage production system. In terms of herbicide use, the technology has also contributed to a change the profile of herbicides used. A broad range of, mostly selective herbicides has been replaced by one or 2 broad-spectrum herbicides (mostly glyphosate) used in conjunction with one or 2 other (complementary) herbicides. Since the mid-2000s, the average amount of herbicide applied and the associated environmental load, as measured by the EIQ indicator, have increased on both GM HT and conventional crops. A primary reason for these changes has been increasing incidence of weed species developing populations resistant to herbicides and increased awareness of the consequences of relying on a single or very limited number of herbicides for weed control. As a result, growers of GM HT crops have become much more proactive and diversified in their weed management programs in line with weed scientist recommendations and now include other herbicides (with different and complementary modes of action) in combination with glyphosate, even where instances of weed resistance to glyphosate have not been found. The willingness to proactively diversity weed management systems in the GM HT crops is also influenced by a desire to maintain effective weed control and hence continue to enjoy the benefits of no tillage and conservation tillage. Nevertheless, despite the increase in herbicide use in recent years, the use of GM HT technology continues to deliver significant economic and environmental gains to US farmers. PMID:25523177

  14. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012.

    PubMed

    Brookes, Graham

    2014-01-01

    Crops that have been genetically modified (GM) to be tolerant to herbicides have been widely grown in the USA since 1996. The rapid and widespread adoption of this technology reflects the important economic and environmental benefits that farmers have derived from its use (equal to $21.7 billion additional farm income and a 225 million kg reduction in herbicide active ingredient use 1996-2012). During this time, weed control practices in these crops relative to the 'conventional alternative' have evolved to reflect experience of using the technology, the challenges that have arisen and the increasing focus in recent years on developing sustainable production systems. This paper examines the evidence on the changing nature of herbicides used with these crops and in particular how farmers addressed the challenge of weed resistance. The evidence shows that use of the technology has resulted in a net reduction in both the amount of herbicide used and the associated environmental impact, as measured by the EIQ indicator when compared to what can reasonably be expected if the area planted to GM HT crops reverted to conventional production methods. It also facilitated many farmers being able to derive the economic and environmental benefits associated with switching from a plough-based to a no tillage or conservation tillage production system. In terms of herbicide use, the technology has also contributed to a change the profile of herbicides used. A broad range of, mostly selective herbicides has been replaced by one or 2 broad-spectrum herbicides (mostly glyphosate) used in conjunction with one or 2 other (complementary) herbicides. Since the mid-2000s, the average amount of herbicide applied and the associated environmental load, as measured by the EIQ indicator, have increased on both GM HT and conventional crops. A primary reason for these changes has been increasing incidence of weed species developing populations resistant to herbicides and increased awareness of the consequences of relying on a single or very limited number of herbicides for weed control. As a result, growers of GM HT crops have become much more proactive and diversified in their weed management programs in line with weed scientist recommendations and now include other herbicides (with different and complementary modes of action) in combination with glyphosate, even where instances of weed resistance to glyphosate have not been found. The willingness to proactively diversity weed management systems in the GM HT crops is also influenced by a desire to maintain effective weed control and hence continue to enjoy the benefits of no tillage and conservation tillage. Nevertheless, despite the increase in herbicide use in recent years, the use of GM HT technology continues to deliver significant economic and environmental gains to US farmers.

  15. Effects of Environmental Conditions on the Fitness Penalty in Herbicide Resistant Brachypodium hybridum

    PubMed Central

    Frenkel, Eyal; Matzrafi, Maor; Rubin, Baruch; Peleg, Zvi

    2017-01-01

    Herbicide-resistance mutations may impose a fitness penalty in herbicide-free environments. Moreover, the fitness penalty associated with herbicide resistance is not a stable parameter and can be influenced by ecological factors. Here, we used two Brachypodium hybridum accessions collected from the same planted forest, sensitive (S) and target-site resistance (TSR) to photosystem II (PSII) inhibitors, to study the effect of agro-ecological parameters on fitness penalty. Both accessions were collected in the same habitat, thus, we can assume that the genetic variance between them is relatively low. This allow us to focus on the effect of PSII TSR on plant fitness. S plants grains were significantly larger than those of the TSR plants and this was associated with a higher rate of germination. Under low radiation, the TSR plants showed a significant fitness penalty relative to S plants. S plants exhibiting dominance when both types of plants were grown together in a low-light environment. In contrast to previous documented studies, under high-light environment our TSR accession didn’t show any significant difference in fitness compared to the S accession. Nitrogen deficiency had significant effect on the R compared to the S accession and was demonstrated in significant yield reduction. TSR plants also expressed a high fitness penalty, relative to the S plants, when grown in competition with wheat plants. Two evolutionary scenarios can be suggested to explain the coexistence of both TSR and S plants in the same habitat. The application of PSII inhibitors may have created selective pressure toward TSR dominancy; termination of herbicide application gave an ecological advantage to S plants, creating changes in the composition of the seed bank. Alternatively, the high radiation intensities found in the Mediterranean-like climate may reduce the fitness penalty associated with TSR. Our results may suggest that by integrating non-herbicidal approaches into weed-management programs, we can reduce the agricultural costs associated with herbicide resistance. PMID:28217132

  16. Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents

    USDA-ARS?s Scientific Manuscript database

    Azimsulfuron is an acidic herbicide with a high water solubility which makes risk of groundwater contamination a concern. Various wood based biochars produced at different pyrolysis temperatures were characterized along with their sorption capacity for the herbicide azimsulfuron. In addition, we com...

  17. Pesticide Mixtures, Endocrine Disruption, and Amphibian Declines: Are We Underestimating the Impact?

    PubMed Central

    Hayes, Tyrone B.; Case, Paola; Chui, Sarah; Chung, Duc; Haeffele, Cathryn; Haston, Kelly; Lee, Melissa; Mai, Vien Phoung; Marjuoa, Youssra; Parker, John; Tsui, Mable

    2006-01-01

    Amphibian populations are declining globally at an alarming rate. Pesticides are among a number of proposed causes for these declines. Although a sizable database examining effects of pesticides on amphibians exists, the vast majority of these studies focus on toxicological effects (lethality, external malformations, etc.) at relatively high doses (parts per million). Very few studies focus on effects such as endocrine disruption at low concentrations. Further, most studies examine exposures to single chemicals only. The present study examined nine pesticides (four herbicides, two fungicides, and three insecticides) used on cornfields in the midwestern United States. Effects of each pesticide alone (0.1 ppb) or in combination were examined. In addition, we also examined atrazine and S-metolachlor combined (0.1 or 10 ppb each) and the commercial formulation Bicep II Magnum, which contains both of these herbicides. These two pesticides were examined in combination because they are persistent throughout the year in the wild. We examined larval growth and development, sex differentiation, and immune function in leopard frogs (Rana pipiens). In a follow-up study, we also examined the effects of the nine-compound mixture on plasma corticosterone levels in male African clawed frogs (Xenopus laevis). Although some of the pesticides individually inhibited larval growth and development, the pesticide mixtures had much greater effects. Larval growth and development were retarded, but most significantly, pesticide mixtures negated or reversed the typically positive correlation between time to metamorphosis and size at metamorphosis observed in controls: exposed larvae that took longer to metamorphose were smaller than their counterparts that metamorphosed earlier. The nine-pesticide mixture also induced damage to the thymus, resulting in immunosuppression and contraction of flavobacterial meningitis. The study in X. laevis revealed that these adverse effects may be due to an increase in plasma levels of the stress hormone corticosterone. Although it cannot be determined whether all the pesticides in the mixture contribute to these adverse effects or whether some pesticides are effectors, some are enhancers, and some are neutral, the present study revealed that estimating ecological risk and the impact of pesticides on amphibians using studies that examine only single pesticides at high concentrations may lead to gross underestimations of the role of pesticides in amphibian declines. PMID:16818245

  18. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants

    PubMed Central

    Garg, Bharti; Gill, Sarvajeet S.; Biswas, Dipul K.; Sahoo, Ranjan K.; Kunchge, Nandkumar S.; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis. PMID:28392794

  19. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    PubMed

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  20. Alkyl(C16, C18, C22)trimethylammonium-Based Herbicidal Ionic Liquids.

    PubMed

    Pernak, Juliusz; Giszter, Rafał; Biedziak, Agnieszka; Niemczak, Michał; Olszewski, Radosław; Marcinkowska, Katarzyna; Praczyk, Tadeusz

    2017-01-18

    In the framework of this study a synthesis methodology and characterization of long alkyl herbicidal ionic liquids (HILs) based on four commonly used herbicides (2,4-D, MCPA, MCPP, and dicamba) are presented. New HILs were obtained with high efficiency (>95%) using an acid-base reaction between herbicidal acids and hexadecyltrimethylammonium, octadecyltrimethylammonium, and behenyltrimethylammonium hydroxides in alcoholic medium. Among all synthesized salts, only three compounds comprising the MCPP anion were liquids at room temperature. Subsequently, the influence of both the alkyl chain length and the anion structure on their physicochemical properties (thermal decomposition profiles, solubility in 10 representative solvents, surface activity, density, viscosity, and refractive index) was determined. All HILs exhibited high thermal stability as well as surface activity; however, their solubility notably depended on both the length of the carbon chain and the structure of the anion. The herbicidal efficacy of the obtained salts was tested in greenhouse and field experiments. Greenhouse testing performed on common lambsquarters (Chenopodium album L.) and flixweed (Descurainia sophia L.) as test plants indicated that HILs were characterized by similar or higher efficacy compared to commercial herbicides. The results of field trials confirmed the high activity of HILs, particularly those containing phenoxyacids as anions (MCPA, 2,4-D, and MCPP).

  1. Performance of Different Herbicides in Dry-Seeded Rice in Bangladesh

    PubMed Central

    Ahmed, Sharif; Chauhan, Bhagirath Singh

    2014-01-01

    A field study was conducted in the boro season of 2011-12 and aman season of 2012 at Jessore, Bangladesh, to evaluate the performance of sequential applications of preemergence herbicides (oxadiargyl 80 g ai ha−1, pendimethalin 850 g ai ha−1, acetachlor + bensulfuranmethyl 240 g ai ha−1, and pyrazosulfuron 15 g ai ha−1) followed by a postemergence herbicide (ethoxysulfuron 18 g ai ha−1) in dry-seeded rice. All evaluated herbicides reduced weed density and biomass by a significant amount. Among herbicides, pendimethalin, oxadiargyl, and acetachlor + bensulfuranmethyl performed very well against grasses; pyrazosulfuron, on the other hand, was not effective. The best herbicide for broadleaf weed control was oxadiargyl (65–85% control); pendimethalin and acetachlor + bensulfuraonmethyl were not effective for this purpose. The best combination for weed control was oxadiargyl followed by ethoxysulfuron in the boro season and oxadiargyl followed by a one-time hand weeding in the aman season. Compared with the partial weedy plots (hand weeded once), oxadiargyl followed by ethoxysulfuron (4.13 t ha−1) provided a 62% higher yield in the boro season while oxadiargyl followed by a one-time hand weeding (4.08 t ha−1) provided a 37% higher yield in the aman season. PMID:24688423

  2. Bermudagrass (Cynodon spp) dose-response relationships with clethodim, glufosinate and glyphosate.

    PubMed

    Webster, Theodore M; Hanna, Wayne W; Mullinix, Benjamin G

    2004-12-01

    Greenhouse studies were conducted to evaluate the sensitivity of three commercial cultivars, eight experimental cultivars and common bermudagrass to clethodim, glufosinate and glyphosate. Each herbicide was applied at eight doses. Data were regressed on herbicide dose using a log-logistic curve (R2 = 0.56-0.95 for clethodim, R2 = 0.60-0.94 for glufosinate, and R2 = 0.70-0.96 for glyphosate). The herbicide rate that elicited a 50% plant response (I50) in the bermudagrass cultivars ranged from 0.04 to 0.19 kg ha(-1) clethodim, 0.19 to 1.33 kg ha(-1) glufosinate and 0.34 to 1.14 kg ha(-1) glyphosate. Relative to other cultivars, common bermudagrass was intermediate in its response to clethodim and among the most tolerant cultivars to glufosinate and glyphosate. TifSport was relatively tolerant to clethodim and glufosinate compared with other cultivars, but relatively sensitive to glyphosate. One cultivar, 94-437, was consistently among the most sensitive cultivars to each of the herbicides. While there were differential herbicide tolerances among the tested bermudagrass cultivars, there did not appear to be any naturally occurring herbicide resistance that could be commercially utilized. However, research indicated that breeding efforts should target herbicide resistance that is at least four times the registered use rate. Also, TifSport and Tifway have been identified as suitable representatives of triploid hybrid bermudagrass cultivars to be used to evaluate the success of turfgrass renovation programs. 2004 Society of Chemical Industry.

  3. Effects of chlorophenoxy herbicides and their main transformation products on DNA damage and acetylcholinesterase activity.

    PubMed

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B; Sottomayor, M J; Borges, Fernanda; Garrido, E Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.

  4. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    PubMed Central

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B.; Sottomayor, M. J.; Borges, Fernanda; Garrido, E. Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode. PMID:24795892

  5. Effects of sub-lethal exposure of rats to the herbicide glyphosate in drinking water: glutathione transferase enzyme activities, levels of reduced glutathione and lipid peroxidation in liver, kidneys and small intestine.

    PubMed

    Larsen, K; Najle, R; Lifschitz, A; Virkel, G

    2012-11-01

    Glyphosate (GLP), the active ingredient of many weed killing formulations, is a broad spectrum herbicide compound. Wistar rats were exposed during 30 or 90 days to the highest level (0.7 mg/L) of GLP allowed in water for human consumption (US EPA, 2011) and a 10-fold higher concentration (7 mg/L). The low levels of exposure to the herbicide did not produce histomorphological changes. The production of TBARS was similar or tended to be lower compared to control animals not exposed to the herbicide. In rats exposed to GLP, increased levels of reduced glutathione (GSH) and enhanced glutathione peroxidase (GPx) activity may act as a protective mechanism against possible detrimental effects of the herbicide. Overall, this work showed certain biochemical modifications, even at 3-20-fold lower doses of GLP than the oral reference dose of 2mg/kg/day (US EPA, 1993). The toxicological significance of these findings remains to be clarified. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A Dinitroaniline-Resistant Mutant of Eleusine indica Exhibits Cross-Resistance and Supersensitivity to Antimicrotubule Herbicides and Drugs 1

    PubMed Central

    Vaughn, Kevin C.; Marks, M. David; Weeks, Donald P.

    1987-01-01

    A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:16665371

  7. A Dinitroaniline-Resistant Mutant of Eleusine indica Exhibits Cross-Resistance and Supersensitivity to Antimicrotubule Herbicides and Drugs.

    PubMed

    Vaughn, K C; Marks, M D; Weeks, D P

    1987-04-01

    A dinitroaniline-resistant (R) biotype of Eleusine indica (L.) Gaertner. (goosegrass) is demonstrated to be cross-resistant to a structurally non-related herbicide, amiprophosmethyl, and supersensitive to two other classes of compounds which disrupt mitosis. These characteristics of the R biotype were discovered in a comparative test of the effects of 24 different antimitotic compounds on the R biotype and susceptible (S) wild-type Eleusine. The compounds tested could be classified into three groups based upon their effects on mitosis in root tips of the susceptible (S) biotype. Class I compounds induced effects like the well known mitotic disrupter colchicine: absence of cortical and spindle microtubules, mitosis arrested at prometaphase, and the formation of polymorphic nuclei after arrested mitosis. The R biotype was resistant to treatment with some class I inhibitors (all dinitroaniline herbicides and amiprophosmethyl) but not all (e.g. colchicine, podophyllotoxin, vinblastine, and pronamide). Roots of the R biotype, when treated with either dinitroaniline herbicides or amiprophosmethyl, exhibited no or only small increases in the mitotic index nor were the spindle and cortical microtubules affected. Compounds of class II (carbamate herbicides and griseofulvin) cause misorientation of microtubules which results in multinucleated cells. Compounds of class III (caffeine and structually related alkaloids) cause imcomplete cell walls to form at telophase. Each of these last two classes of compounds affected the R biotype more than the S biotype (supersensitivity). The cross-resistance and high levels of resistance of the R biotype of Eleusine to the dinitroaniline herbicides and the structurally distinct herbicide, amiprophosmethyl, indicate that a mechanism of resistance based upon metabolic modification, translocation, or compartmentation of the herbicides is probably not operative.

  8. Development and validation of a simulation method, PeCHREM, for evaluating spatio-temporal concentration changes of paddy herbicides in rivers.

    PubMed

    Imaizumi, Yoshitaka; Suzuki, Noriyuki; Shiraishi, Fujio; Nakajima, Daisuke; Serizawa, Shigeko; Sakurai, Takeo; Shiraishi, Hiroaki

    2018-01-24

    In pesticide risk management in Japan, predicted environmental concentrations are estimated by a tiered approach, and the Ministry of the Environment also performs field surveys to confirm the maximum concentrations of pesticides with risk concerns. To contribute to more efficient and effective field surveys, we developed the Pesticide Chemicals High Resolution Estimation Method (PeCHREM) for estimating spatially and temporally variable emissions of various paddy herbicides from paddy fields to the environment. We used PeCHREM and the G-CIEMS multimedia environmental fate model to predict day-to-day environmental concentration changes of 25 herbicides throughout Japan. To validate the PeCHREM/G-CIEMS model, we also conducted a field survey, in which river waters were sampled at least once every two weeks at seven sites in six prefectures from April to July 2009. In 20 of 139 sampling site-herbicide combinations in which herbicides were detected in at least three samples, all observed concentrations differed from the corresponding prediction by less than one order of magnitude. We also compared peak concentrations and the dates on which the concentrations reached peak values (peak dates) between predictions and observations. The peak concentration differences between predictions and observations were less than one order of magnitude in 66% of the 166 sampling site-herbicide combinations in which herbicide was detected in river water. The observed and predicted peak dates differed by less than two weeks in 79% of these 166 combinations. These results confirm that the PeCHREM/G-CIEMS model can improve the efficiency and effectiveness of surveys by predicting the peak concentrations and peak dates of various herbicides.

  9. Predicted impact of transgenic, herbicidetolerant corn on drinking water quality in vulnerable watersheds of the mid-western USA.

    PubMed

    Wauchope, R Don; Estes, Tammara L; Allen, Richard; Baker, James L; Hornsby, Arthur G; Jones, Russell L; Richards, R Peter; Gustafson, David I

    2002-02-01

    In the intensely farmed corn-growing regions of the mid-western USA, surface waters have often been contaminated by herbicides, principally as a result of rainfall runoff occurring shortly after application of these to corn and other crops. In some vulnerable watersheds, water quality criteria for chronic human exposure through drinking water are occasionally exceeded. We selected three settings representative of vulnerable corn-region watersheds, and used the PRZM-EXAMS model with the Index Reservoir scenario to predict corn herbicide concentrations in the reservoirs as a function of herbicide properties and use pattern, site characteristics and weather in the watersheds. We compared herbicide application scenarios, including broadcast surface pre-plant atrazine and alachlor applications with a glyphosate pre-plant application, scenarios in which losses of herbicides were mitigated by incorporation or banding, and scenarios in which only glyphosate or glufosinate post-emergent herbicides were used with corn genetically modified to be resistant to them. In the absence of drift, in almost all years a single runoff event dominates the input into the reservoir. As a result, annual average pesticide concentrations are highly correlated with annual maximum daily values. The modeled concentrations were generally higher than those derived from monitoring data, even for no-drift model scenarios. Because of their lower post-emergent application rates and greater soil sorptivity, glyphosate and glufosinate loads in runoff were generally one-fifth to one-tenth those of atrazine and alachlor. These model results indicate that the replacement of pre-emergent corn herbicides with the post-emergent herbicides allowed by genetic modification of crops would dramatically reduce herbicide concentrations in vulnerable watersheds. Given the significantly lower chronic mammalian toxicity of these compounds, and their vulnerability to breakdown in the drinking water treatment process, risks to human populations through drinking water would also be reduced.

  10. Ground-water quality in the Lake Champlain basin, New York, 2004

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2006-01-01

    Water samples were collected from 11 public-supply wells and 11 private domestic wells in the Lake Champlain basin in New York during the fall of 2004 to characterize the chemical quality of ground water. Wells were selected for sampling based on location and focused on areas of greatest ground-water use. Samples were analyzed for 219 physical properties and constituents, including inorganic compounds, nutrients, metals, radionuclides, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Sixty-eight constituents were detected at concentrations above laboratory reporting levels. The cation and anion with the highest median concentration were calcium (34.8 mg/L) bicarbonate (134 mg/L), respectively. The predominant nutrient was nitrate, which was detected in 14 (64 percent) of the 22 samples. The two metals with the highest median concentrations were iron (175 ?g/L) and strontium (124 ?g/L); concentrations of iron, manganese, aluminum, and zinc exceeded U.S. Environmental Protection Agency secondary drinking-water standards in one or more samples. Radon concentrations were less than 1,000 picocuries per liter (pCi/L) in most samples, but concentrations as high as 6,900 pCi/L were detected and, in eight samples, exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level (300 pCi/L) for radon. The most frequently detected pesticides were degradates of the broadleaf herbicides metolachlor, alachlor, and atrazine. Volatile organic compounds were detected in only three samples; those that were detected typically were fuel oxygenates, such as methyl tert-butyl ether. Coliform bacteria were detected in four samples, two of which also tested positive for E. coli.

  11. Water-quality assessment of the Kentucky River basin, Kentucky; nutrients, sediments, and pesticides in streams, 1987-90

    USGS Publications Warehouse

    Haag, K.H.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of nutrients, suspended sediment, and pesticides in streams. Concentrations of phosphorus were signifi- cantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, all of the stream nitrogen load was attributable to wastewater- treatment-plant effluent. Tributary streams affected by agricultural sources of nutrients contained higher densities of phytoplankton than streams that drained forested areas. Data indicate that a consid- erable percentage of total nitrogen was transported as algal biomass during periods of low discharge. Average suspended-sediment concentrations for the study period were positively correlated with dis- charge. There was a downward trend in suspended- sediment concentrations downstream in the Kentucky River main stem during the study. Although a large amount of suspended sediment originates in the Eastern Coal Field Region, contributions of suspended sediment from the Red River and other tributary streams of the Knobs Region also are important. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organo- phosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, heptachlor epoxide, and lindane were found in streambed- sediment samples.

  12. Fate and transport of pesticides in the ground water systems of southwest Georgia, 1993-2005

    USGS Publications Warehouse

    Dalton, M.S.; Frick, E.A.

    2008-01-01

    Modern agricultural practices in the United States have resulted in nearly unrivaled efficiency and productivity. Unfortunately, there is also the potential for release of these compounds to the environment and consequent adverse affects on wildlife and human populations. Since 1993, the National Water-Quality Assessment (NAWQA) program of the U.S. Geological Survey has evaluated water quality in agricultural areas to address these concerns. The objective of this study is to evaluate trends in pesticide concentrations from 1993-2005 in the surficial and Upper Floridan aquifers of southwest Georgia using pesticide and pesticide degradate data collected for the NAWQA program. There were six compounds - five herbicides and one degradate - that were detected in more than 20% of samples: atrazine, deethylatrazine (DEA), metolachlor, alachlor, floumeturon, and tebuthiuron. Of the 128 wells sampled during the study, only eight wells had pesticide concentrations that either increased (7) or decreased (1) on a decadal time scale. Most of the significant trends were increasing concentrations of pesticides in older water; median pesticide concentrations did not differ between the surficial and Upper Floridan aquifers from 1993 and 2005. Deethylatrazine, in the Upper Floridan aquifer, was the only compound that had a significant change (increase) in concentration during the study. The limited number of wells with increases in pesticide concentrations suggest that ground-water sources of these compounds are not increasing in concentration over the time scale represented in this study. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  13. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study

    PubMed Central

    Lebov, Jill F.; Engel, Lawrence S.; Richardson, David; Hogan, Susan L.; Hoppin, Jane A.; Sandler, Dale P.

    2017-01-01

    Objectives Experimental studies suggest a relationship between pesticide exposure and renal impairment, but epidemiological evidence is limited. We evaluated the association between exposure to 41 specific pesticides and end-stage renal disease (ESRD) incidence in the Agricultural Health Study (AHS), a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina. Methods Via linkage to the United States Renal Data System, we identified 320 ESRD cases diagnosed between enrollment (1993-1997) and December 2011 among 55,580 male licensed pesticide applicators. Participants provided pesticide use information via self-administered questionnaires. Lifetime pesticide use was defined as the product of duration and frequency of use and then modified by an intensity factor to account for differences in pesticide application practices. Cox proportional hazards models, adjusted for age and state, were used to estimate associations between ESRD and: 1) ordinal categories of intensity-weighted lifetime use of 41 pesticides, 2) poisoning and high-level pesticide exposures, and 3) pesticide exposure resulting in a medical visit or hospitalization. Results Positive exposure-response trends were observed for the herbicides alachlor, atrazine, metolachlor, paraquat, and pendimethalin, and the insecticide chlordane. More than one medical visit due to pesticide use (HR = 2.13; 95% CI: 1.17, 3.89) and hospitalization due to pesticide use (HR = 3.05; 95% CI: 1.67, 5.58) were significantly associated with ESRD. Conclusions Our findings support an association between ESRD and chronic exposure to specific pesticides and suggest pesticide exposures resulting in medical visits may increase the risk of ESRD. PMID:26177651

  14. [PREDICTING OF RISK OF SOIL CONTAMINATION BY DIFFERENT CLASSES OF FUNGICIDES IN SOIL AND CLIMATIC CONDITIONS OF UKRAINE].

    PubMed

    Korshun, M; Dema, O; Kucherenko, O; Ruda, T; Korshun, O; Gorbachevskyi, R; Pelio, I; Antonenko, A

    2016-07-01

    Application of pesticides in modern agriculture is a powerful permanent risk factor for public health and the natural environment. The aim of the study was a comparative hygienic assessment of soil pollution hazards by the most widely used herbicides of different chemical classes (sulfonylureas, imidazolinones, pyrimidinyl (thio) benzoates, semicarbazones). Hygienic field experiment for studying of the dynamics of residual amounts of the test substances in the soil under different climatic zones of Ukraine was conducted. Half life periods (DT50) or herbicides in soil were calculated using the method of mathematical modeling. Ecotoxicological risk of herbicides on ecosystems and ecological communities was determined. It was established that bispyribac-sodium (pyrimidinyl (thio) benzoates) and imidazolinones are persist the longest time in soil and most rapidly degradable is diflufenzopyr (semicarbazone); ecotoxicological risk of the studied herbicides for terrestrial biocenoses of Ukraine by 4-6 orders of magnitude lower than dihlordifeniltrihlormetilmetan (DDT).

  15. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOEpatents

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  16. Kudzu (Pueraria montana) community responses to herbicides, burning, and high-density loblolly pine.

    Treesearch

    Timothy B. Harrington; Laura T. Rader-Dixon; John W. Jr. Taylor

    2003-01-01

    Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a...

  17. Worker productivity and herbicide usage for pine release with manual application methods

    Treesearch

    James H. Miller; G.R. Glover

    1993-01-01

    Abstract. Productivity, herbicide usage, and costs of manually-applied pine release treatments were examined with linear regression analysis and compared. Data came from a replicated study in a 3-year-old loblolly pine plantation in Alabama’s Piedmont. Brush sawing had the highest labor costs but lowest total treatment costs. While of the...

  18. Soil-active herbicides for single-stem and stand hardwood control

    Treesearch

    James H. Miller

    1984-01-01

    Four studies examined soil-active herbicides for control of hardwoods both as single-stems and in stands. The first study found that comparable control of sweetgum (Liquidambar styraciflua) was achieved both by tree injection using 2,4-D + picloram (Tordon 101R®) and by soil spot applications, using hexazinone (Velpar L®) and picloram (Tordon K®)...

  19. Gene flow from single and stacked herbicide-resistant rice (Oryza sativa): modeling occurrence of multiple herbicide-resistant weedy rice.

    PubMed

    Dauer, Joseph; Hulting, Andrew; Carlson, Dale; Mankin, Luke; Harden, John; Mallory-Smith, Carol

    2018-02-01

    Provisia™ rice (PV), a non-genetically engineered (GE) quizalofop-resistant rice, will provide growers with an additional option for weed management to use in conjunction with Clearfield ® rice (CL) production. Modeling compared the impact of stacking resistance traits versus single traits in rice on introgression of the resistance trait to weedy rice (also called red rice). Common weed management practices were applied to 2-, 3- and 4-year crop rotations, and resistant and multiple-resistant weedy rice seeds, seedlings and mature plants were tracked for 15 years. Two-year crop rotations resulted in resistant weedy rice after 2 years with abundant populations (exceeding 0.4 weedy rice plants m -2 ) occurring after 7 years. When stacked trait rice was rotated with soybeans in a 3-year rotation and with soybeans and CL in a 4-year rotation, multiple-resistance occurred after 2-5 years with abundant populations present in 4-9 years. When CL rice, PV rice, and soybeans were used in 3- and 4-year rotations, the median time of first appearance of multiple-resistance was 7-11 years and reached abundant levels in 10-15 years. Maintaining separate CL and PV rice systems, in rotation with other crops and herbicides, minimized the evolution of multiple herbicide-resistant weedy rice through gene flow compared to stacking herbicide resistance traits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids.

    PubMed

    Sidoli, Pauline; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Baran, Nicole

    2016-07-01

    The transport of pesticides to groundwater is assumed to be impacted by flow processes and geochemical interactions occurring in the vadose zone. In this study, the transport of S-metolachlor (SMOC) and its two metabolites ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) in vadose zone materials of a glaciofluvial aquifer is studied at laboratory scale. Column experiments are used to study the leaching of a conservative tracer (bromide) and SMOC, MESA and MOXA under unsaturated conditions in two lithofacies, a bimodal gravel (Gcm,b) and a sand (S-x). Tracer experiments showed water fractionation into mobile and immobile compartments more pronounced in bimodal gravel columns. In both lithofacies columns, SMOC outflow is delayed (retardation factor>2) and mass balance reveals depletion (mass balance of 0.59 and 0.77 in bimodal gravel and sand, respectively). However, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. SMOC transport is characterized by non-equilibrium sorption and sink term in both bimodal gravel and sand columns. Batch experiments carried out using agitation times consistent with column water residence times confirmed a time-dependence of SMOC sorption and high adsorption rates (>80%) of applied concentrations. Desorption experiments confirm the irreversibility of a major part of the SMOC adsorption onto particles, corresponding to the sink term in columns. In the bimodal gravel column, SMOC adsorption occurs mainly on reactive particles in contact with mobile water because of flow regionalization whereas in the sand column, there is pesticide diffusion to the immobile water. Such results clearly show that sorption mechanisms in the vadose zone solids below the soil are both solute and contact-time-dependent and are impacted by hydrodynamic conditions. The more rapid transport of MESA and MOXA to the aquifer would be controlled mainly by water flow through the unsaturated zone whereas SMOC transport is retarded by sorption processes within the vadose zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Pesticide compounds in streamwater in the Delaware River Basin, December 1998-August 2001

    USGS Publications Warehouse

    Hickman, R. Edward

    2004-01-01

    During 1998-2001, 533 samples of streamwater at 94 sites were collected in the Delaware River Basin in Pennsylvania, New Jersey, New York, and Delaware as part of the U.S. Geological Survey National Water-Quality Assessment Program. Of these samples, 531 samples were analyzed for dissolved concentrations of 47 pesticide compounds (43 pesticides and 4 pesticide degradation products); 70 samples were analyzed for an additional 6 pesticide degradation products. Of the 47 pesticide compounds analyzed for in 531 samples, 30 were detected. The most often detected compounds were atrazine (90.2 percent of samples), metolachlor (86.1 percent), deethylatrazine (82.5 percent), and simazine (78.9 percent). Atrazine, metolachlor, and simazine are pesticides; deethylatrazine is a degradation product of atrazine. Relations between concentrations of pesticides in samples from selected streamwater sites and characteristics of the subbasins draining to these sites were evaluated to determine whether agricultural uses or nonagricultural uses appeared to be the more important sources. Concentrations of atrazine, metolachlor, and pendimethalin appear to be attributable more to agricultural uses than to nonagricultural uses; concentrations of prometon, diazinon, chlorpyrifos, tebuthiuron, trifluralin, and carbaryl appear to be attributable more to nonagricultural uses. In general, pesticide concentrations during the growing season (April-October) were greater than those during the nongrowing season (November-March). For atrazine, metolachlor, and acetochlor, the greatest concentrations generally occurred during May, June, and July. Concentrations of pesticide compounds rarely (in only 7 out of 531 samples) exceeded drinking-water standards or guidelines, indicating that, when considered individually, these compounds present little hazard to the health of the public through consumption of the streamwater. The combined effects of more than one pesticide compound in streamwater were not considered. Diazinon appeared to be the pesticide compound most likely to adversely affect aquatic life in the streams of the Delaware River Basin; concentrations of diazinon exceeded guidelines (designed to protect aquatic life) in 19 samples, the most of any pesticide compound. Concentrations of as many as 5 compounds exceeded guidelines in 29 of 531 samples.

  2. Epistatic Interactions Among Herbicide Resistances in Arabidopsis thaliana: The Fitness Cost of Multiresistance

    PubMed Central

    Roux, Fabrice; Camilleri, Christine; Giancola, Sandra; Brunel, Dominique; Reboud, Xavier

    2005-01-01

    The type of interactions among deleterious mutations is considered to be crucial in numerous areas of evolutionary biology, including the evolution of sex and recombination, the evolution of ploidy, the evolution of selfing, and the conservation of small populations. Because the herbicide resistance genes could be viewed as slightly deleterious mutations in the absence of the pesticide selection pressure, the epistatic interactions among three herbicide resistance genes (acetolactate synthase CSR, cellulose synthase IXR1, and auxin-induced AXR1 target genes) were estimated in both the homozygous and the heterozygous states, giving 27 genotype combinations in the model plant Arabidopsis thaliana. By analyzing eight quantitative traits in a segregating population for the three herbicide resistances in the absence of herbicide, we found that most interactions in both the homozygous and the heterozygous states were best explained by multiplicative effects (each additional resistance gene causes a comparable reduction in fitness) rather than by synergistic effects (each additional resistance gene causes a disproportionate fitness reduction). Dominance coefficients of the herbicide resistance cost ranged from partial dominance to underdominance, with a mean dominance coefficient of 0.07. It was suggested that the csr1-1, ixr1-2, and axr1-3 resistance alleles are nearly fully recessive for the fitness cost. More interestingly, the dominance of a specific resistance gene in the absence of herbicide varied according to, first, the presence of the other resistance genes and, second, the quantitative trait analyzed. These results and their implications for multiresistance evolution are discussed in relation to the maintenance of polymorphism at resistance loci in a heterogeneous environment. PMID:16020787

  3. A geographic information system for characterizing exposure to Agent Orange and other herbicides in Vietnam.

    PubMed

    Stellman, Jeanne Mager; Stellman, Steven D; Weber, Tracy; Tomasallo, Carrie; Stellman, Andrew B; Christian, Richard

    2003-03-01

    Between 1961 and 1971, U.S. military forces dispersed more than 19 million gallons of phenoxy and other herbicidal agents in the Republic of Vietnam, including more than 12 million gallons of dioxin-contaminated Agent Orange, yet only comparatively limited epidemiologic and environmental research has been carried out on the distribution and health effects of this contamination. As part of a response to a National Academy of Sciences' request for development of exposure methodologies for carrying out epidemiologic research, a conceptual framework for estimating exposure opportunity to herbicides and a geographic information system (GIS) have been developed. The GIS is based on a relational database system that integrates extensive data resources on dispersal of herbicides (e.g., HERBS records of Ranch Hand aircraft flight paths, gallonage, and chemical agent), locations of military units and bases, dynamic movement of combat troops in Vietnam, and locations of civilian population centers. The GIS can provide a variety of proximity counts for exposure to 9,141 herbicide application missions. In addition, the GIS can be used to generate a quantitative exposure opportunity index that accounts for quantity of herbicide sprayed, distance, and environmental decay of a toxic factor such as dioxin, and is flexible enough to permit substitution of other mathematical exposure models by the user. The GIS thus provides a basis for estimation of herbicide exposure for use in large-scale epidemiologic studies. To facilitate widespread use of the GIS, a user-friendly software package was developed to permit researchers to assign exposure opportunity indexes to troops, locations, or individuals.

  4. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield.

    PubMed

    Karkanis, Anestis; Lykas, Christos; Liava, Vasiliki; Bezou, Anna; Petropoulos, Spyridon; Tsiropoulos, Nikolaos

    2018-01-01

    'Minor crops' such as spearmint and peppermint are high added value crops, despite the fact that their production area is comparably small worldwide. The main limiting factor in mint commercial cultivation is weed competition. Thus, field experiments were carried out to evaluate the effects of weed interference on growth, biomass and essential oil yield in peppermint and spearmint under different herbicide treatments. The application of pendimethalin and oxyfluorfen provided better control of annual weeds resulting in higher crop yield. Additionally, when treated with herbicides both crops were more competitive against annual weeds in the second year than in the first year. All pre-emergence herbicides increased biomass yield, since pendimethalin, linuron and oxyfluorfen reduced the density of annual weeds by 71-92%, 63-74% and 86-95%, respectively. Weed interference and herbicide application had no effect on essential oil content; however, a relatively strong impact on essential oil production per cultivated area unit was observed, mainly due to the adverse effect of weed interference on plant growth. Considering that pendimethalin and oxyfluorfen were effective against annual weeds in both spearmint and peppermint crops, these herbicides should be included in integrated weed management systems for better weed management in mint crops. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Catchment-scale herbicides transport: Theory and application

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A.

    2013-02-01

    This paper proposes and tests a model which couples the description of hydrologic flow and transport of herbicides at catchment scales. The model accounts for streamflow components' age to characterize short and long term fluctuations of herbicide flux concentrations in stream waters, whose peaks exceeding a toxic threshold are key to exposure risk of aquatic ecosystems. The model is based on a travel time formulation of transport embedding a source zone that describes near surface herbicide dynamics. To this aim we generalize a recently proposed scheme for the analytical derivation of travel time distributions to the case of solutes that can be partially taken up by transpiration and undergo chemical degradation. The framework developed is evaluated by comparing modeled hydrographs and atrazine chemographs with those measured in the Aabach agricultural catchment (Switzerland). The model proves reliable in defining complex transport features shaped by the interplay of long term processes, related to the persistence of solute components in soils, and short term dynamics related to storm inter-arrivals. The effects of stochasticity in rainfall patterns and application dates on concentrations and loads in runoff are assessed via Monte Carlo simulations, highlighting the crucial role played by the first rainfall event occurring after herbicide application. A probabilistic framework for critical determinants of exposure risk to aquatic communities is defined. Modeling of herbicides circulation at catchment scale thus emerges as essential tools for ecological risk assessment.

  6. Recovery of young ponderosa pines damaged by herbicide spraying

    Treesearch

    Jay R. Bentley; David A. Blakeman; Stanley B. Carpenter

    1971-01-01

    Foliage injury and over-all tree damage to ponderosa pine plantations from aerial sprays of 2,4,5-T in 1965 were evaluated. Damage in 1966 was compared to tree growth from 1966 to 1968. The herbicide treatment caused above-normal damage to young trees when applied in September in a year with above-average summer precipitation and freezing weather soon after treatment....

  7. Observational monitoring of biological control vs. herbicide to suppress leafy spurge (Euphorbia esula) for eight years

    Treesearch

    R. A. Progar; G. Markin; D. Scarbrough; C. L. Jorgensen; T. Barbouletos

    2013-01-01

    The effectiveness of Aphthona flea beetles (87 percent A. lacertosa Rosenhauer and A. czwalinae Weise, and 13 percent A. nigriscutis Foudras) as biological control agents of leafy spurge, Ephorbia esula L. was compared with a single application of herbicide (picloram) and untreated plots for a period of 8 years. Percentage of cover of leafy spurge, grasses; and flea...

  8. Thirteen Year Loblolly Pine Growth Following Machine Application of Cut-Stump Treament Herbicides For Hardwood Stump-Sprout Control

    Treesearch

    Clyde G. Vidrine; John C. Adams

    2002-01-01

    Thirteen year growth results of 1-0 out-planted loblolly pine seedlings on nonintensively prepared up-land mixed pine-hardwood sites receiving machine applied cut-stump treatment (CST) herbicides onto hardwood stumps at the time of harvesting is presented. Plantation pine growth shows significantly higher growth for pine in the CST treated plots compared to non-CST...

  9. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides

    EPA Pesticide Factsheets

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  10. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in three fenoxaprop-P-ethyl-resistant Beckmannia syzigachne biotypes with differing ACCase mutations.

    PubMed

    Pan, Lang; Zhang, Jian; Wang, Junzhi; Yu, Qin; Bai, Lianyang; Dong, Liyao

    2017-05-08

    American sloughgrass (Beckmannia syzigachne Steud.) is a weed widely distributed in wheat fields of China. In recent years, the evolution of herbicide (fenoxaprop-P-ethyl)-resistant populations has decreased the susceptibility of B. syzigachne. This study compared 4 B. syzigachne populations (3 resistant and 1 susceptible) using iTRAQ to characterize fenoxaprop-P-ethyl resistance in B. syzigachne at the proteomic level. Through searching the UniProt database, 3104 protein species were identified from 13,335 unique peptides. Approximately 2834 protein species were assigned to 23 functional classifications provided by the COG database. Among these, 2299 protein species were assigned to 125 predicted pathways. The resistant biotype contained 8 protein species that changed in abundance relative to the susceptible biotype; they were involved in photosynthesis, oxidative phosphorylation, and fatty acid biosynthesis pathways. In contrast to previous studies comparing only 1 resistant and 1 susceptible population, our use of 3 fenoxaprop-resistant B. syzigachne populations with different genetic backgrounds minimized irrelevant differential expression and eliminated false positives. Therefore, we could more confidently link the differentially expressed proteins to herbicide resistance. Proteomic analysis demonstrated that fenoxaprop-P-ethyl resistance is associated with photosynthetic capacity, a connection that might be related to the target-site mutations in resistant B. syzigachne. This is the first large-scale proteomics study examining herbicide stress responses in different B. syzigachne biotypes. This study has biological relevance because it is the first to employ proteomic analysis for understanding the mechanisms underlying Beckmannia syzigachne herbicide resistance. The plant is a major weed in China and negatively affects crop yield, but has developed considerable resistance to the most common herbicide, fenoxaprop-P-ethyl. Through comparisons of resistant and sensitive biotypes, our study identified multiple proteins (involved in photosynthesis, oxidative phosphorylation, and fatty acid biosynthesis) that are putatively linked to B. syzigachne herbicide response. This large-scale proteomics study, sorely lacking in weed science, contributes valuable data that can be applied to more fine-tuned analyses on the functions of specific proteins in herbicide resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Detailed Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  12. CADDIS Volume 2. Sources, Stressors and Responses: Herbicides - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the herbicides module, when to list herbicides as a candidate cause, ways to measure herbicides, simple and detailed conceptual diagrams for herbicides, herbicides module references and literature reviews.

  13. Benchmark study on glyphosate-resistant crop systems in the United States. Economics of herbicide resistance management practices in a 5 year field-scale study.

    PubMed

    Edwards, C Blake; Jordan, David L; Owen, Michael Dk; Dixon, Philip M; Young, Bryan G; Wilson, Robert G; Weller, Steven C; Shaw, David R

    2014-12-01

    Since the introduction of glyphosate-resistant (GR) crops, growers have often relied on glyphosate-only weed control programs. As a result, multiple weeds have evolved resistance to glyphosate. A 5 year study including 156 growers from Illinois, Iowa, Indiana, Nebraska, North Carolina and Mississippi in the United States was conducted to compare crop yields and net returns between grower standard weed management programs (SPs) and programs containing best management practices (BMPs) recommended by university weed scientists. The BMPs were designed to prevent or mitigate/manage evolved herbicide resistance. Weed management costs were greater for the BMP approach in most situations, but crop yields often increased sufficiently for net returns similar to those of the less expensive SPs. This response was similar across all years, geographical regions, states, crops and tillage systems. Herbicide use strategies that include a diversity of herbicide mechanisms of action will increase the long-term sustainability of glyphosate-based weed management strategies. Growers can adopt herbicide resistance BMPs with confidence that net returns will not be negatively affected in the short term and contribute to resistance management in the long term. © 2014 Society of Chemical Industry.

  14. Toxicity of herbicides in highway runoff.

    PubMed

    Huang, Xinjiang; Fong, Stephanie; Deanovic, Linda; Young, Thomas M

    2005-09-01

    Previous field monitoring at two highway sites found highway-applied herbicides in storm water runoff at maximum concentrations ranging from 10 microg/L for glyphosate and diuron to as high as 200 microg/L for oryzalin. To determine whether these herbicides at these concentrations can cause any toxicity to aquatic organisms, a standard toxicity study was conducted. Storm water was collected along Highway 37, Sonoma County, California, USA, and the herbicides isoxaben, oryzalin, diuron, clopyralid, and glyphosate were spiked into the storm water at the highest concentrations observed during the five previous field-monitoring campaigns. Three different toxicity studies were conducted and the results showed the following: No significant reduction in reproduction or increase in mortality relative to the control for an 8-d Ceriodaphnia (water flea) toxicity test; no significant increase in mortality or decrease in biomass compared to the control during a 7-d Pimephales (fish) toxicity test; and, in a 96-h Selenastrum (algae) toxicity test, both the 10-microg/L diuron treatment and the combined 50-microg/L isoxaben plus 200-microg/L oryzalin treatment produced significant (p < 0.05) reductions in algal growth compared to the controls, although the 30-microg/L clopyralid or 10-microg/L glyphosate treatments did not exhibit any toxic effects.

  15. Laboratory-based experiments to investigate the impact of glyphosate-containing herbicide on pollution attenuation and biodegradation in a model pervious paving system.

    PubMed

    Mbanaso, F U; Coupe, S J; Charlesworth, S M; Nnadi, E O

    2013-01-01

    An experimental investigation was carried out to determine the effect of glyphosate-containing herbicides (GCHs) on the hydrocarbon retention and biodegradation processes known to occur in pervious pavement systems (PPSs). The PPS test rigs were based on the four-layered design detailed in CIRIA C582. This enabled the pollutant retention capacity of the PPS and biodegradation of retained pollutants by microorganisms to be investigated. The use of test rigs also enabled the impact of GCH on PPS eukaryotic organisms to be studied, by the monitoring of protist bioindicators. Results showed that GCH disrupted hydrocarbon retention by the geotextiles relative to rigs with mineral oil only added, as 9.3% and 24.5% of added hydrocarbon were found in herbicide only rigs and herbicide plus oil rigs respectively. In previous studies, PPS contaminated by mineral oil had been shown to retain 98.7% of added oils and over several weeks, biodegrade this oil in situ. Where GCH was added to experimental models, much higher concentrations of heavy metals, including Pb, Cu, and Zn, were released from the PPS in effluent, particularly where GCH and mineral oil were added together. The source of the majority of the metal contamination was thought to be the used engine oil. The herbicide generally increased the total activity of microbial communities in rig systems and had a stimulating effect on bacterial and fungal population numbers. Although the protists, which are part of the microbial community directly or indirectly responsible for biodegradation, were initially strongly affected by the herbicide, they showed resilience by quickly recovering and increasing their population compared with rigs without added herbicide, including the rigs with mineral oil added to them. However, the presence of herbicide was associated with a decrease in the species richness of recorded protist taxa and a predominance of robust, cosmopolitan or ubiquitous protist genera. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    PubMed Central

    Aktar, Md. Wasim; Sengupta, Dwaipayan; Purkait, Swarnali; Chowdhury, Ashim

    2008-01-01

    A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability) through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin at doses of 10.0, 10.0 and 7.7 kg/ha, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0–6, 6–12, 12–18, 18–24 and 24–30 cm) for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD) and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0–6 cm). Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids. PMID:21218121

  17. In vitro and in situ inhibition of carotenoid biosynthesis in Capsicum annuum by bleaching herbicides.

    PubMed

    Simkin, A J; Breitenbach, J; Kuntz, M; Sandmann, G

    2000-10-01

    Pepper leaves treated with the herbicide J852 show an accumulation of phytoene and zeta-carotene, whereas treatment with norflurazon led to an accumulation of only phytoene. The effects of these herbicides were examined in vitro after the expression of carotenoid desaturases in Escherichia coli. Whereas norflurazon is a potent inhibitor of phytoene desaturase (PDS) (I(50) = 0.12 microM) but not of zeta-carotene desaturase (ZDS) (I(50) = 144 microM), J852 inhibits both PDS (I(50) = 23 microM) and ZDS (I(50) = 49 microM). The influence of PDS/ZDS inhibition on gene expression was examined by comparative RT-PCR. None of the examined genes, namely, encoding phytoene synthase, PDS, ZDS, or the terminal oxidase associated with phytoene desaturation, were induced upon herbicide treatment in pepper leaves or seedlings. This was unexpected because inhibition of carotene desaturation led to an up-regulation of the carotenoid biosynthetic capacity (higher amounts of accumulating precursors plus remaining colored carotenoids are present in treated tissues versus control).

  18. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris R.; Scieble, Wolf

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS genemore » can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.« less

  19. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production.

    PubMed

    Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P

    2014-09-01

    Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.

    PubMed

    DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D

    2013-07-01

    Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.

  1. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.

    PubMed

    Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala

    2017-04-01

    Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N 2 O and CO 2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

  2. Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance.

    PubMed

    Pan, Lang; Gao, Haitao; Xia, Wenwen; Zhang, Teng; Dong, Liyao

    2016-03-01

    Non-target site resistance (NTSR) to herbicides is an increasing concern for weed control. Metabolic herbicide resistance is an important mechanism for NTSR. However, little is known about metabolic resistance at the genetic level. In this study, we have identified three fenoxaprop-P-ethyl-resistant American sloughgrass (Beckmannia syzigachne Steud.) populations, in which the molecular basis for NTSR remains unclear. To reveal the mechanisms of metabolic resistance, the genes likely to be involved in herbicide metabolism (e.g. for cytochrome P450s, esterases, hydrolases, oxidases, peroxidases, glutathione S-transferases, glycosyltransferases, and transporter proteins) were isolated using transcriptome sequencing, in combination with RT-PCR (reverse transcription-PCR) and RACE (rapid amplification of cDNA ends). Consequently, we established a herbicide-metabolizing enzyme library containing at least 332 genes, and each of these genes was cloned and the sequence and the expression level compared between the fenoxaprop-P-ethyl-resistant and susceptible populations. Fifteen metabolic enzyme genes were found to be possibly involved in fenoxaprop-P-ethyl resistance. In addition, we found five metabolizing enzyme genes that have a different gene sequence in plants of susceptible versus resistant B. syzigachne populations. These genes may be major candidates for herbicide metabolic resistance. This established metabolic enzyme library represents an important step forward towards a better understanding of herbicide metabolism and metabolic resistance in this and possibly other closely related weed species. This new information may help to understand weed metabolic resistance and to develop novel strategies of weed management. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Interaction of chiral herbicides with soil microorganisms, algae and vascular plants.

    PubMed

    Asad, Muhammad Asad Ullah; Lavoie, Michel; Song, Hao; Jin, Yujian; Fu, Zhengwei; Qian, Haifeng

    2017-02-15

    Chiral herbicides are often used in agriculture as racemic mixtures, although studies have shown that the fate and toxicity of herbicide enantiomers to target and non-target plants can be enantioselective and that herbicide toxicity can be mediated by only one enantiomer. If one enantiomer is active against the target plant, the use of enantiomer-rich herbicide mixtures instead of racemic herbicides could decrease the amount of herbicide applied to a crop and the cost of herbicide application, as well as unintended toxic herbicide effects in the environment. Such a change in the management of herbicide applications requires in-depth knowledge and a critical analysis of the fate and effects of herbicide enantiomers in the environment. This review article first synthesizes the current state of knowledge on soil and plant biodegradation of herbicide enantiomers. Second, we discuss our understanding of the biochemical toxicity mechanisms associated with both enantiomers in target and non-target plants gained from state-of-the-art genomic, proteomic and metabolomic tools. Third, we present the emerging view on the "side effects" of herbicides in the root microbiome and their repercussions on target or non-target plant metabolism. Although our review of the literature indicates that the toxicity of herbicide enantiomers is highly variable depending on plant species and herbicides, we found general trends in the enantioselective toxic effects of different herbicides in vascular plants and algae. The present study will be helpful for pesticide risk assessments as well as for the management of applying enriched-enantiomer herbicides. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid.

    PubMed

    Wang, Yijia; Zeinhom, Mohamed M A; Yang, Mingming; Sun, Rongrong; Wang, Shengfu; Smith, Jordan N; Timchalk, Charles; Li, Lei; Lin, Yuehe; Du, Dan

    2017-09-05

    Onsite rapid detection of herbicides and herbicide residuals in environmental and biological specimens are important for agriculture, environmental concerns, food safety, and health care. The traditional method for herbicide detection requires expensive laboratory equipment and a long turnaround time. In this work, we developed a single-stripe microliter plate smartphone-based colorimetric device for rapid and low-cost in-field tests. This portable smartphone platform is capable of screening eight samples in a single-stripe microplate. The device combined the advantages of small size (50 × 100 × 160 mm 3 ) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and rhodamine B, for the red and green channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for detection of the herbicide 2,4-dichlorophenoxyacetic acid in the range of 1 to 80 ppb. Spiked samples of tap water, rat serum, plasma, and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all of the spiked samples using the microplate reader and from 93.7% to 106.9% for all of the samples using the smartphone device. This work validated that the smartphone optical-sensing platform is comparable to the commercial microplate reader; it is eligible for onsite, rapid, and low-cost detection of herbicides for environmental evaluation and biological monitoring.

  5. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yijia; Zeinhom, Mohamed M. A.; Yang, Mingming

    Onsite rapid detection of herbicide and herbicide residuals in environmental and biological specimens is important for agriculture, environment, food safety, and health care. Traditional method for herbicide detection requires expensive laboratory equipment and a long turn-round time. In this work, we developed a single-stripe microliter plate smartphone colorimetric device for rapid and low-cost in-field test. This portable smartphone platform is capable of screening 8 samples in a microplate single-stripe. The device combined the advantages of small size (50×100×160 mm3) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and Rhodamine B,more » for green and red channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for an herbicide, 2,4-Dichlorophenoxyacetic acid detection in the range of 1 ppb to 80 ppb. Spiked samples of tap water, rat serum, plasma and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all spiked samples using the microplate reader and from 93.7% to 106.9% using the smartphone device. This work validated that the smartphone optical sensing platform is comparable to the commercial microplate reader, it is eligible for onsite rapid and low-cost detection of herbicide for environmental evaluation and biological monitoring.« less

  6. Ile-1781-Leu and Asp-2078-Gly Mutations in ACCase Gene, Endow Cross-resistance to APP, CHD, and PPZ in Phalaris minor from Mexico

    PubMed Central

    Cruz-Hipolito, Hugo; Fernandez, Pablo; Alcantara, Ricardo; Gherekhloo, Javid; Osuna, Maria Dolores; De Prado, Rafael

    2015-01-01

    Herbicides that inhibit acetyl coenzyme A carboxylase (ACCase) are commonly used in Mexico to control weedy grasses such as little seed canarygrass (Phalaris minor). These herbicides are classified into three major families (ariloxyphenoxypropionates (APP), cyclohexanodiones (CHD), and, recently, phenylpyrazolines (PPZ)). In this work, the resistance to ACCase (APP, CHD, and PPZ) inhibiting herbicides was studied in a biotype of Phalaris minor (P. minor) from Mexico, by carrying out bioassays at the whole-plant level and investigating the mechanism behind this resistance. Dose-response and ACCase in vitro activity assays showed cross-resistance to all ACCase herbicides used. There was no difference in the absorption, translocation, and metabolism of the 14C-diclofop-methyl between the R and S biotypes. The PCR generated CT domain fragments of ACCase from the R biotype and an S reference were sequenced and compared. The Ile-1781-Leu and Asp-2078-Gly point mutations were identified. These mutations could explain the loss of affinity for ACCase by the ACCase-inhibing herbicides. This is the first report showing that this substitution confers resistance to APP, CHD, and PPZ herbicides in P. minor from Mexico. The mutations have been described previously only in a few cases; however, this is the first study reporting on a pattern of cross-resistance with these mutations in P. minor. The findings could be useful for better management of resistant biotypes carrying similar mutations. PMID:26370967

  7. Herbicides and transformation products in surface waters of the Midwestern United States

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kalkhoff, S.J.; Porter, S.D.

    2003-01-01

    Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two-component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.

  8. Assessing the environmental fate of S-metolachlor, its commercial product Mercantor Gold® and their photoproducts using a water-sediment test and in silico methods.

    PubMed

    Gutowski, Lukasz; Baginska, Ewelina; Olsson, Oliver; Leder, Christoph; Kümmerer, Klaus

    2015-11-01

    Pesticides enter surface and groundwater by several routes in which partition to sediment contributes to their fate by abiotic (e.g. photolysis, hydrolysis) and biotic processes. Yet, little is known about S-metolachlor (SM) transformation in water-sediment systems. Therefore, a newly developed screening water-sediment test (WST) was applied to compare biodegradation and sorption processes between pure SM and Mercantor Gold® (MG), a commercial formulation of SM. Photolysis in water was performed by Xe lamp irradiation. Subsequently, the biodegradability of SM and MG photolysis mixtures was examined in WST. The primary elimination of SM from water phase was monitored and structures of its TPs resulting from biotransformation (bio-TPs) were elucidated by LC-MS/MS. SM was extracted from sediment in order to estimate the role of sorption in WST for its elimination. A set of in silico prediction software tools was applied for toxicity assessment of SM and its bio-TPs. Obtained results suggest that the MG adjuvants do not significantly affect biodegradation, but do influence diffusion of SM into sediment. 50% of SM could not be re-extracted from sediment with 0.01 M CaCl2 aqueous solution recommended in OECD test guideline for adsorption. Neither the parent compound nor the photo-TPs were biodegraded. However, new bio-TPs have been generated from SM and MG photo-TPs due to bacterial activity in the water-sediment interphase. Moreover, according to in silico assessment of the bio-TPs the biotransformation might lead to an increased toxicity to the water organisms compared with the SM. This might raise concerns of bio-TPs presence in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone.

    PubMed

    Kaya, Armagan; Yigit, Emel

    2014-08-01

    In this study, we comparatively evaluated the effects of the flurochloridone as well as flurochloridone and exogenously applied salicylic acid (SA) on Helianthus annuus L. to find out herbicide-induced toxicity reducing influence of SA. We examined and compared the physiological and biochemical effects of different concentrations of flurochloridone (11, 32 and 72 mM) in both the SA pre-treated and non-treated plants. The plants treated with flurochloridone exhibited reduced total chlorophyll, carotenoid, and relative water content compared to the control group, whereas the plants that were pre-treated with SA exhibited relatively higher values for the same physiological parameters. In the SA non-treated plants, the superoxide dismutase, glutathione reductase and glutathione S-transferase activities were increased in the treatment groups compared to the control group. In the treatment groups, these enzyme activities were decreased in the SA-pre-treated plants compared to the non-treated plants. Ascorbate peroxidase and catalase activities decreased in the flurochloridone-treated plants compared to the control plants. The ascorbate peroxidase activity increased in the control groups but decreased in the treatment groups in the SA pre-treated plants compared to the non-treated plants. However, SA treatment decreased the activity of catalase in the control and treatment groups compared to the plants that were not treated with SA. Flurochloridone treatment increased the malondialdehyde content in the treated groups compared to the control groups, whereas SA-pretreatment decreased malondialdehyde content compared to plants that were not treated with SA. Flurochloridone treatment increased endogenous SA content compared to the control. Although the residual levels of herbicide in the plants increased proportionately with increasing herbicide concentrations, the SA-pre-treated plants exhibited reduced residual herbicide levels compared to the plants that were not treated with SA. These results indicate that the flurochloridone induces various physiological and biochemical responses in non-target plants and that treatment with exogenous SA can increase stress resistance by altering these responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages.

    PubMed

    Babineau, Marielle; Mahmood, Khalid; Mathiassen, Solvejg K; Kudsk, Per; Kristensen, Michael

    2017-02-06

    Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.

  11. Reduction of nonpoint source contamination of surface water and groundwater by starch encapsulation of herbicides

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.

    1994-01-01

    The loss of the preemergent herbicide atrazine in surface runoff from experimental field plots growing corn (Zea mays L.) was significantly reduced using a starchencapsulated formulation versus a conventional powdered formulation. Field edge losses of starch-encapsulated atrazine were described as following a Rayleigh distribution totaling 1.8% of applied herbicide compared to exponential powdered atrazine losses of 2.9% applied - a 40% decrease. This has important implications for the reduction of nonpoint source contamination of surface water by agricultural chemicals. Unsaturated zone release of starchencapsulated atrazine was gradual, but comparable weed control was maintained. Deethylatrazine was a major dealkylated metabolite from each formulation, and deisopropylatrazine was a minor metabolite. The determination of soil partition coefficients for deethylatrazine and deisopropylatrazine (0.4 and 0.3, respectively), aqueous solubilities (3200 and 670 mg/L, respectively), and melting points (133 and 177 ??C, respectively) confirmed that the dealkylated metabolites should move more rapidly through the soil profile to groundwater than atrazine.

  12. Interference of allelopathic rice with penoxsulam-resistant barnyardgrass.

    PubMed

    Yang, Xue-Fang; Kong, Chui-Hua; Yang, Xia; Li, Yong-Feng

    2017-11-01

    Despite increasing knowledge of allelopathic rice interference with barnyardgrass, relatively little is known about its action on herbicide-resistant barnyardgrass. The incidence of herbicide-resistant barnyardgrass is escalating in paddy fields. Knowledge of the interference of allelopathic rice with herbicide-resistant barnyardgrass and the potential mechanisms involved is warranted. Penoxsulam-resistant and -susceptible barnyardgrass biotypes were identified and segregated from a putative penoxsulam-resistant population occurring in paddy fields in China. Allelopathic rice inhibited the growth of barnyardgrass roots more than shoots, regardless of biotype. In particular, there was a stronger inhibition for resistant barnyardgrass than for susceptible barnyardgrass. Allelopathic rice significantly reduced total root length, total root area, maximum root amplitude and maximum root depth in barnyardgrass. Furthermore, the rice allelochemicals tricin and momilactone B inhibited the growth of both resistant and susceptible barnyardgrass. Compared with root contact, root segregation significantly increased inhibition of barnyardgrass with an increase in rice allelochemicals. Root exudates from barnyardgrass induced the production of rice allelochemicals, but the effect of susceptible barnyardgrass was much stronger than that of resistant barnyardgrass. Allelopathic rice can interfere with the growth of penoxsulam-resistant barnyardgrass through allelochemical-mediated root interactions. This type of allelopathic interference may provide a non-herbicidal alternative for herbicide-resistant weed management in paddy systems. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    PubMed

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  14. Influence of soil properties and soil moisture on the efficacy of indaziflam and flumioxazin on Kochia scoparia L.

    PubMed

    Sebastian, Derek J; Nissen, Scott J; Westra, Phil; Shaner, Dale L; Butters, Greg

    2017-02-01

    Kochia (Kochia scoparia L.) is a highly competitive, non-native weed found throughout the western United States. Flumioxazin and indaziflam are two broad-spectrum pre-emergence herbicides that can control kochia in a variety of crop and non-crop situations; however, under dry conditions, these herbicides sometimes fail to control this important weed. There is very little information describing the effect of soil properties and soil moisture on the efficacy of these herbicides. Soil organic matter (SOM) explained the highest proportion of variability in predicting the herbicide dose required for 80% kochia growth reduction (GR 80 ) for flumioxazin and indaziflam (R 2 = 0.72 and 0.79 respectively). SOM had a greater impact on flumioxazin phytotoxicity compared to indaziflam. Flumioxazin and indaziflam kochia phytotoxicity was greatly reduced at soil water potentials below -200 kPa. Kochia can germinate at soil moisture potentials below the moisture required for flumioxazin and indaziflam activation, which means that kochia control is greatly influenced by the complex interaction between soil physical properties and soil moisture. This research can be used to gain a better understanding of how and why some weeds, like kochia, are so difficult to manage even with herbicides that normally provide excellent control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops.

    PubMed

    Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Midtiby, Henrik Skov; Jensen, Kjeld; Christiansen, Martin Peter; Giselsson, Thomas Mosgaard; Mortensen, Anders Krogh; Jensen, Peter Kryger

    2016-11-04

    The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels) were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect.

  16. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops

    PubMed Central

    Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Midtiby, Henrik Skov; Jensen, Kjeld; Christiansen, Martin Peter; Giselsson, Thomas Mosgaard; Mortensen, Anders Krogh; Jensen, Peter Kryger

    2016-01-01

    The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels) were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect. PMID:27827908

  17. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay.

    PubMed

    Ma, Rong; Skelton, Joshua J; Riechers, Dean E

    2015-09-07

    In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and -sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification.

  18. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave a higher concentration in the immediate vicinity of the exit boundary than the semi-infinite solution. The applicability of the proposed model was tested with a field herbicide and tracer leaching experiment in an agricultural area of northeastern Greece. The simulation results indicated that the proposed CDE with depth-dependent reaction coefficients was able to capture the evolution of metolachlor concentration at the upper soil depths. However, the simulation results at deep depths were not satisfactory as the proposed model did not account for preferential flow observed in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Seasonal and spatial dynamic of current-use pesticides (CUPs) in an Argentinian watershed.

    NASA Astrophysics Data System (ADS)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The Argentinian Pampa region is the major agricultural zone, in which, the agricultural lands are strongly linked to surface waters. However, Argentina has not regulation for most of the current -used pesticides (CUPs) in surface water to protect the aquatic life. The objective of this work was to study the seasonal and spatial variations of CUPs in surface waters of "El Crespo" stream, and to determine the maximum levels reached to evaluate the possible impact on aquatic life. "El Crespo" stream is only influenced by farming activities, with intensive crop systems upstream (US) and extensive livestock production downstream (DS). It is an optimal site for pesticide monitoring studies since there are no urban or industrial inputs into the system. Water samples were collected monthly from October 2014 to October 2015 in the US and DS sites by triplicate using 1 L polypropylene bottles and stored at -20°C until analysis. The samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The most frequently detected residues (>40%) were glyphosate (GLY) and its metabolite amino methylphosphonic acid (AMPA), atrazine, acetochlor, metolachlor, 2,4-D, metsulfuron methyl, fluorocloridone, imidacloprid, tebuconazole and epoxiconazole, which are used in the crops cultivated in the area (i.e. soybean, potato, maize and wheat). Individual analysis showed that the herbicide GLY and its metabolite AMPA presented seasonal and spatial variations. The highest concentrations of GLY and AMPA were detected in US site during spring 2014 (2.09 ± 0.39 and 1.13 ± 0.56 µg/L, respectively) and in DS during summer 2015 (1.06 ± 1.02 and 0.20 ± 0.23 µg/L). Comparing total CUPs concentration between sites, a significant increase in UP site during spring 2014 (4.03 ± 0.43 µg/L) in relation to DS (1.54 ± 1.17 µg/L) was observed, may be due to pesticide applications during fallow and transport via surface runoff. Data generated in the present research could be used for evaluating the possible impact of pesticide mixtures on aquatic life and for regulation guidelines.

  20. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study.

    PubMed

    Lebov, Jill F; Engel, Lawrence S; Richardson, David; Hogan, Susan L; Hoppin, Jane A; Sandler, Dale P

    2016-01-01

    Experimental studies suggest a relationship between pesticide exposure and renal impairment, but epidemiological evidence is limited. We evaluated the association between exposure to 39 specific pesticides and end-stage renal disease (ESRD) incidence in the Agricultural Health Study, a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina. Via linkage to the US Renal Data System, we identified 320 ESRD cases diagnosed between enrolment (1993-1997) and December 2011 among 55 580 male licensed pesticide applicators. Participants provided information on use of pesticides via self-administered questionnaires. Lifetime pesticide use was defined as the product of duration and frequency of use and then modified by an intensity factor to account for differences in pesticide application practices. Cox proportional hazards models, adjusted for age and state, were used to estimate associations between ESRD and: (1) ordinal categories of intensity-weighted lifetime use of 39 pesticides, (2) poisoning and high-level pesticide exposures and (3) pesticide exposure resulting in a medical visit or hospitalisation. Positive exposure-response trends were observed for the herbicides alachlor, atrazine, metolachlor, paraquat, and pendimethalin, and the insecticide permethrin. More than one medical visit due to pesticide use (HR=2.13; 95% CI 1.17 to 3.89) and hospitalisation due to pesticide use (HR=3.05; 95% CI 1.67 to 5.58) were significantly associated with ESRD. Our findings support an association between ESRD and chronic exposure to specific pesticides, and suggest pesticide exposures resulting in medical visits may increase the risk of ESRD. Clinicaltrials.gov NCT00352924. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and transport in Choptank River watershed

    USGS Publications Warehouse

    McCarty, Gregory W.; Hapeman, Cathleen J.; Rice, Clifford P.; Hively, W. Dean; McConnell, Laura L.; Sadeghi, Ali M.; Lang, Megan W.; Whitall, David R.; Bialek, Krystyna; Downey, Peter

    2014-01-01

    Over 50% of streams in the Chesapeake Bay watershed have been rated as poor or very poor based on the index of biological integrity. The Choptank River estuary, a Bay tributary on the eastern shore, is one such waterway, where corn and soybean production in upland areas of the watershed contribute significant loads of nutrients and sediment to streams. We adopted a novel approach utilizing the relationship between the concentration of nitrate-N and the stable, water-soluble herbicide degradation product MESA {2-[2-ethyl-N-(1-methoxypropan-2-yl)-6-methylanilino]-2-oxoethanesulfonic acid} to distinguish between dilution and denitrification effects on the stream concentration of nitrate-N in agricultural subwatersheds. The ratio of mean nitrate-N concentration/(mean MESA concentration * 1000) for 15 subwatersheds was examined as a function of percent cropland on hydric soil. This inverse relationship (R2 = 0.65, p 2 ≤ 0.99) for all eight sampling dates except one where R2 = 0.90. This very strong correlation indicates that nitrate-N was conserved in much of the Choptank River estuary, that dilution alone is responsible for the changes in nitrate-N and MESA concentrations, and more importantly nitrate-N loads are not reduced in the estuary prior to entering the Chesapeake Bay. Thus, a critical need exists to minimize nutrient export from agricultural production fields and to identify specific conservation practices to address the hydrologic conditions within each subwatershed. In well drained areas, removal of residual N within the cropland is most critical, and practices such as cover crops which sequester the residual N should be strongly encouraged. In poorly drained areas where denitrification can occur, wetland restoration and controlled drained structures that minimize ditch flow should be used to maximize denitrification.

  2. Water-quality assessment of the Kentucky River basin, Kentucky; results of investigations of surface-water quality, 1987-90

    USGS Publications Warehouse

    Haag, K.H.; Garcia, Rene; Jarrett, G.L.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water-Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of water-quality constituents including metals and trace elements, nutrients, sediments, pesticides, dissolved oxygen, and fecal-coliform bacteria. Oil-production activities were the source of barium, bromide, chloride, magnesium, and sodium in several watersheds. High concentrations of aluminum, iron, and zinc were related to surface mining in the Eastern Coal Field Region. High concentrations of lead and zinc occurred in streambed sediments in urban areas, whereas concentrations of arsenic, strontium, and uranium were associated with natural geologic sources. Concentrations of phosphorus were significantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, most of the stream nitrogen load was attributable to wastewater-treatment-plant effluent. Average suspended-sediment concentrations were positively correlated with discharge. There was a downward trend in suspended-sediment concentrations downstream in the Kentucky River main stem during the study. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organophosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, and lindane were found in streambed-sediment samples. Dissolved-oxygen concentrations were sometimes below the minimum concentration needed to sustain aquatic life. At some sites, high concentrations of fecal-indicator bacteria were found and water samples did not meet sanitary water-quality criteria.

  3. Pesticides in shallow groundwater in the Delmarva Peninsula

    USGS Publications Warehouse

    Koterba, M.T.; Banks, W.S.L.; Shedlock, R.J.

    1993-01-01

    A regional study of the areal and depth distribution of pesticides in shallow groundwater in the Delmarva Peninsula of Delaware, Maryland, and Virginia was done to (i) relate the pesticides detected to landscape and shallow subsurface features, and (ii) evaluate aquifer vulnerability and the potential contamination of drinking-water supplies. Water samples collected at 100 wells from 1988 to 1990 were analyzed for concentrations of 36 pesticides, four metabolites, and other constituents. The most commonly detected residues were atrazine, cyanazine, simazine, alachlor, metolachlor, and dicamba. Concentrations were low; few exceeded 3 ??g L-1. Most detections correlate with the intensive use of these herbicides in three widely distributed and commonly rotated crops-corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and small grain-particularly if grown in well- drained soils. Most detections occurred in samples collected from shallow wells screened within 10 m of the overlying water table. The shallow depth distribution of most residues is consistent with their suspected history of use (ca. 20 yr), and patterns in shallow groundwater flow in the surficial aquifer in the study area. The areal and depth distributions of detectable residues in groundwater did not correlate with a vulnerability index, nor any of the component scores developed to estimate that index using the DRASTIC method. The shallow depth of most detections also indicates why few samples from water-supply wells in this study had measurable concentrations of pesticides; most supply wells are deeper than 10 m below the water table. The low number of contaminated samples from supply wells implies that deep groundwater currently (1992) used for drinking generally does not contain detectable pesticide residues.

  4. Inheritance of evolved resistance to a novel herbicide (pyroxasulfone).

    PubMed

    Busi, Roberto; Gaines, Todd A; Vila-Aiub, Martin M; Powles, Stephen B

    2014-03-01

    Agricultural weeds have rapidly adapted to intensive herbicide selection and resistance to herbicides has evolved within ecological timescales. Yet, the genetic basis of broad-spectrum generalist herbicide resistance is largely unknown. This study aims to determine the genetic control of non-target-site herbicide resistance trait(s) that rapidly evolved under recurrent selection of the novel lipid biosynthesis inhibitor pyroxasulfone in Lolium rigidum. The phenotypic segregation of pyroxasulfone resistance in parental, F1 and back-cross (BC) families was assessed in plants exposed to a gradient of pyroxasulfone doses. The inheritance of resistance to chemically dissimilar herbicides (cross-resistance) was also evaluated. Evolved resistance to the novel selective agent (pyroxasulfone) is explained by Mendelian segregation of one semi-dominant allele incrementally herbicide-selected at higher frequency in the progeny. In BC families, cross-resistance is conferred by an incompletely dominant single major locus. This study confirms that herbicide resistance can rapidly evolve to any novel selective herbicide agents by continuous and repeated herbicide use. The results imply that the combination of herbicide options (rotation, mixtures or combinations) to exploit incomplete dominance can provide acceptable control of broad-spectrum generalist resistance-endowing monogenic traits. Herbicide diversity within a set of integrated management tactics can be one important component to reduce the herbicide selection intensity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production1

    PubMed Central

    Yu, Qin; Powles, Stephen

    2014-01-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. PMID:25106819

  6. Natural Compounds as Next-Generation Herbicides

    PubMed Central

    Dayan, Franck E.; Duke, Stephen O.

    2014-01-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. PMID:24784133

  7. Natural compounds as next-generation herbicides.

    PubMed

    Dayan, Franck E; Duke, Stephen O

    2014-11-01

    Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. © 2014 American Society of Plant Biologists. All Rights Reserved.

  8. Ground-water quality in northeastern St. Joseph County, Indiana

    USGS Publications Warehouse

    Fenelon, J.M.; Bayless, E. Randall; Watson, Lee R.

    1995-01-01

    No industrial organic compounds were detected in the water samples. Four pesticides - alachlor, carbofuran, metolachlor, and triazines - were detected in water samples; the highest pesticide concentration in a water sample was 1.0 microgram per liter of alachlor.

  9. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay

    PubMed Central

    Ma, Rong; Skelton, Joshua J.; Riechers, Dean E.

    2015-01-01

    In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and –sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification. PMID:26383604

  10. Occurrence of Organic Wastewater Compounds in Selected Surface-Water Supplies, Triangle Area of North Carolina, 2002-2005

    USGS Publications Warehouse

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .

    2007-01-01

    Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic). The occurrence and distribution of organic wastewater compounds varied considerably among sampling sites, but at least one compound was detected at every location. The most organic wastewater compounds (19) were detected at the Neuse River above U.S. 70 at Smithfield, where two-thirds of the total number of samples were collected. The fewest organic wastewater compounds (1) were detected at the Eno River at Hillsborough. The detection of multiple organic wastewater compounds was common, with a median of 3.5 and as many as 12 compounds observed in individual samples. Some compounds, including acetaminophen, cotinine, tri(2-chloroethyl) phosphate, and metolachlor, were detected at numerous sites and in numerous samples, indicating that they are widely distributed in the environment. Other organic wastewater compounds, including acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran, were detected in numerous samples but at only one location, indicating that sources of these compounds are more site specific. Results indicate that municipal wastewater may be a source of antibiotics and synthetic musks; however, the three sites in this study that are located downstream from wastewater discharges also receive runoff from agricultural, urban, and rural residential lands. Source identification was not an objective of this study. Concentrations of individual compounds generally were less than 0.5 microgram per liter. No concentrations exceeded Federal drinking-water standards or health advisories, nor water-quality criteria established by the State of North Carolina; however, such criteria are available for only a few of the compounds that were studied. Compared with other surface waters that have been sampled across the United States, the Triangle Area water-supply sites had fewer detections of organic wastewater compounds; however, differences in study design and analytical methods used among studies must be considered when mak

  11. Herbicides and their transformation products in source-water aquifers tapped by public-supply wells in Illinois, 2001-02

    USGS Publications Warehouse

    Mills, Patrick C.; McMillan, William D.

    2004-01-01

    During 2001-02, ground-water samples were collected from 117 public-supply wells distributed throughout Illinois to evaluate the occurrence of herbicides and their transformation products in the State?s source-water aquifers. Wells were selected using a stratified-random method to ensure representation of the major types of source-water aquifers in the State. Samples were analyzed for 18 herbicides and 18 transformation products, including 3 triazine and 14 chloroacetanilide products. Herbicide compounds (field-applied parent herbicides and their transformation products) were detected in 34 percent of samples. A subset of samples was collected unfiltered to determine if analytical results for herbicides in unfiltered samples are similar to those in paired filtered samples and, thus, can be considered equally representative of herbicide concentrations in ground water supplied to the public. The study by the U.S. Geological Survey was done in cooperation with the Illinois Environmental Protection Agency. Parent herbicides were detected in only 4 percent of all samples. The six most frequently detected herbicide compounds (from 5 to 28 percent of samples) were chloroacetanilide transformation products. The frequent occurrence of transformation products and their higher concentrations relative to those of most parent herbicides confirm the importance of obtaining information on transformation products to understand the mobility and fate of herbicides in ground-water systems. No sample concentrations determined during this study exceeded current (2003) Federal or State drinking-water standards; however, standards are established for only seven parent herbicides. Factors related to the occurrence of herbicide compounds in the State?s source-water aquifers include unconsolidated and unconfined conditions, various hydrogeologic characteristics and well-construction aspects at shallow depths, and proximity to streams. Generally, the closer an aquifer (or well location) is to a recharge area and (or) the stronger the hydraulic connection between an aquifer and a recharge area, the younger the ground water and the more vulnerable the aquifer will be to contamination by herbicide compounds. The weak relation between current (2001) statewide application rates of herbicides and current (2001-02) occurrence of herbicide compounds in source-water aquifers indicates that additional factors must be considered when relating herbicide-application rates to occurrence. These factors include historical application rates and the mobility and persistence of the various herbicide compounds in ground-water systems. Frequency of detection and concentrations of herbicides compounds in the State?s source-water aquifers are indicated to be highest during the spring, when crops are planted and herbicides primarily are applied. Excess nitrate (concentrations of nitrate, as nitrogen, higher than 3 milligrams per liter) in ground water strongly indicates the co-occurrence of herbicide compounds. However, nitrate concentrations are not a reliable indicator of herbicide-compound concentrations. The inverse relation found between current use of land for corn and soybean production and current occurrence of herbicide compounds in underlying aquifers indicates that various factors, along with current agricultural land use, contribute to herbicide occurrence. These factors include, among others, land-use history, ground-water age, ground-water-flow patterns, geology, soil microbiology, and chemistry and persistence of the herbicide compounds. Detection of agriculture-specific herbicide compounds in 71 percent of samples from urban areas with no current or recent agricultural land use near the sampled wells indicates that recharge to certain high-capacity supply wells may originate at considerable distances (up to about 10 miles) from the wells. Essentially no difference was found between the analytical results for herbicides in paired unfiltered and filtered samples,

  12. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    PubMed

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  13. Taxonomic and Life History Bias in Herbicide Resistant Weeds: Implications for Deployment of Resistant Crops

    PubMed Central

    Holt, Jodie S.; Welles, Shana R.; Silvera, Katia; Heap, Ian M.; Heredia, Sylvia M.; Martinez-Berdeja, Alejandra; Palenscar, Kai T.; Sweet, Lynn C.; Ellstrand, Norman C.

    2013-01-01

    Evolved herbicide resistance (EHR) is an important agronomic problem and consequently a food security problem, as it jeopardizes herbicide effectiveness and increases the difficulty and cost of weed management. EHR in weeds was first reported in 1970 and the number of cases has accelerated dramatically over the last two decades. Despite 40 years of research on EHR, why some weeds evolve resistance and others do not is poorly understood. Here we ask whether weed species that have EHR are different from weeds in general. Comparing taxonomic and life history traits of weeds with EHR to a control group (“the world's worst weeds”), we found weeds with EHR significantly over-represented in certain plant families and having certain life history biases. In particular, resistance is overrepresented in Amaranthaceae, Brassicaceae and Poaceae relative to all weeds, and annuality is ca. 1.5 times as frequent in weeds with EHR as in the control group. Also, for perennial EHR weeds, vegetative reproduction is only 60% as frequent as in the control group. We found the same trends for subsets of weeds with EHR to acetolactate synthase (ALS), photosystem II (PSII), and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase-inhibitor herbicides and with multiple resistance. As herbicide resistant crops (transgenic or not) are increasingly deployed in developing countries, the problems of EHR could increase in those countries as it has in the USA if the selecting herbicides are heavily applied and appropriate management strategies are not employed. Given our analysis, we make some predictions about additional species that might evolve resistance. PMID:24039727

  14. Taxonomic and life history bias in herbicide resistant weeds: implications for deployment of resistant crops.

    PubMed

    Holt, Jodie S; Welles, Shana R; Silvera, Katia; Heap, Ian M; Heredia, Sylvia M; Martinez-Berdeja, Alejandra; Palenscar, Kai T; Sweet, Lynn C; Ellstrand, Norman C

    2013-01-01

    Evolved herbicide resistance (EHR) is an important agronomic problem and consequently a food security problem, as it jeopardizes herbicide effectiveness and increases the difficulty and cost of weed management. EHR in weeds was first reported in 1970 and the number of cases has accelerated dramatically over the last two decades. Despite 40 years of research on EHR, why some weeds evolve resistance and others do not is poorly understood. Here we ask whether weed species that have EHR are different from weeds in general. Comparing taxonomic and life history traits of weeds with EHR to a control group ("the world's worst weeds"), we found weeds with EHR significantly over-represented in certain plant families and having certain life history biases. In particular, resistance is overrepresented in Amaranthaceae, Brassicaceae and Poaceae relative to all weeds, and annuality is ca. 1.5 times as frequent in weeds with EHR as in the control group. Also, for perennial EHR weeds, vegetative reproduction is only 60% as frequent as in the control group. We found the same trends for subsets of weeds with EHR to acetolactate synthase (ALS), photosystem II (PSII), and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase-inhibitor herbicides and with multiple resistance. As herbicide resistant crops (transgenic or not) are increasingly deployed in developing countries, the problems of EHR could increase in those countries as it has in the USA if the selecting herbicides are heavily applied and appropriate management strategies are not employed. Given our analysis, we make some predictions about additional species that might evolve resistance.

  15. How benthic diatoms within natural communities respond to eight common herbicides with different modes of action.

    PubMed

    Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J

    2016-07-01

    Herbicides are common pollutants of rivers in agricultural regions. These contaminants include various types of chemicals with different modes of toxic action. Herbicides can have toxic effects on freshwater benthic diatoms, the base of the aquatic food web. We examined the effects of (non-mixture) herbicide exposure to the health of diatoms for eight common herbicides with three different modes of action; the photosystem II (PSII) inhibitors: atrazine, simazine, hexazinone, tebuthiuron and diuron; two auxinic herbicides: MCPA and 2,4-D; and the EPSP synthase inhibitor: glyphosate. Benthic diatoms within riverine communities were exposed to each herbicide in rapid toxicity tests at concentrations of 50, 200 and 500μgL(-1). The most sensitive taxa were Gomphonema spp. and Encyonema gracilis. Navicula cryptotenella was the most tolerant to herbicide exposure. There was no significant effect of the different herbicide modes of action at the community level. Herbicide mode of action did not alter which taxa were most sensitive within the community and sensitivity rankings of the dominant diatom taxa were similar for each of the eight herbicides. The consistency of the results between herbicides suggests that freshwater benthic diatoms may be suitable in situ indicators for detecting the toxicity of herbicides with differing modes of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production.

    PubMed

    Yu, Qin; Powles, Stephen

    2014-11-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  17. Hydrogeology and water quality of five principal aquifers in the Lower Platte South Natural Resources District, eastern Nebraska, 1994

    USGS Publications Warehouse

    Druliner, A.D.; Mason, J.P.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the Lower Platte South Natural Resources District, conducted a hydrogeologic and water-quality reconnaissance study of the five principal aquifers in deposits of Quaternary age in the Natural Resources District. The purpose of the study was to delineate the approximate extent of the aquifers, to estimate volumes of drainable water in three aquifers, to provide information that could be useful in designing future ground-water-quality monitoring, and to determine baseline water-quality conditions in the aquifers, focusing on nitrate concentrations. The approximate lateral boundaries of the Dwight-Valparaiso, Crete-Princeton-Adams, and Waverly aquifers were defined as areas in which the thickness of continuous sand and gravel deposits was less than 40 feet. The three aquifers were determined to contain about 1,340,000; 1,540,000; and 172,000 acre-feet of drainable water, respectively, assuming a specific yield of 0.20. During the summer of 1994, ground-water samples were collected from 46 wells in the five aquifers and analyzed for nitrate and screened for triazine herbicides. Additionally, water samples from 39 of these wells were analyzed for major ions, iron, and manganese, and 35 were analyzed for radon. Water-quality analyses revealed that the water in the five aquifers had specific conductances that ranged from 399 to 2,040 micro-siemens per centimeter and was a calcium-carbonate to calcium-magnesium-sodium carbonate type. The most mineralized water samples were from the Crete-Princeton-Adams aquifer, which contained a median concentration of dissolved solids of 520 milligrams per liter. Concentrations of nitrate in water samples from the aquifers ranged from less than 0.05 to 23 milligrams per liter as nitrogen, and only six water samples exceeded the Maximum Contaminant Level established by the U.S. Environmental Protection Agency of 10 milligrams per liter. The median concentration of radon for water samples from the five aquifers was 300 picocuries per liter, which is the proposed Maximum Contaminant Level. Water samples from the Crete-Princeton-Adams and Waverly aquifers had the largest concentrations of radon among the five aquifers. The Crete-Princeton-Adams aquifer had a median concentration of 440 picocuries per liter, and the Waverly aquifer had a median concentration of 390 picocuries per liter. Herbicides were detected in water from only six wells, which were in four of the five aquifers. Atrazine, metabolites of atrazine, metolachlor, and metribuzin were detected in concentrations generally less than 1.00 microgram per liter.

  18. Pesticides and pesticide degradates in the East Fork Little Miami River and William H. Harsha Lake, southwestern Ohio, 1999-2000

    USGS Publications Warehouse

    Funk, Jason M.; Reutter, David C.; Rowe, Gary L.

    2003-01-01

    In 1999 and 2000, the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program conducted a national pilot study of pesticides and degradates in drinking-water supplies, in cooperation with the U.S. Environmental Protection Agency (USEPA). William H. Harsha Lake, which provides drinking water for several thousand people in southwestern Ohio, was selected as one of the drinking-water supplies for this study. East Fork Little Miami River is the main source of water to Harsha Lake and drains a predominantly agricultural basin. Samples were collected from the East Fork Little Miami River upstream from Harsha Lake, at the drinking-water intake at Harsha Lake, at the outfall just below Harsha Lake, and from treated water at the Bob McEwen Treatment Plant. These samples were analyzed using standardized methods developed for the NAWQA Program. In all, 42 pesticide compounds (24 herbicides, 4 insecticides, 1 fungicide, and 13 degradates) were detected at least once in samples collected during this study. No compound in the treated water samples exceeded any drinking-water standard, although atrazine concentrations in untreated water exceeded the USEPA Maximum Contaminant Level (MCL) for drinking water (3 ?g/L) on four occasions. At least eight compounds were detected with greater than 60 percent frequency at each sampling location. Herbicides, such as atrazine, alachlor, acetochlor, cyanazine, metolachlor, and simazine, were detected most frequently. Rainfall affected the pesticide concentrations in surface waters of the East Fork Little Miami River Basin. Drought conditions from May through November 1999 led to lower streamflow and pesticide concentrations throughout southwestern Ohio. More normal climate conditions during 2000 resulted in higher streamflows and seasonally higher concentrations in the East Fork Little Miami River and Harsha Lake for some pesticides Comparison of pesticide concentrations in untreated lake water and treated drinking water supplied by the Bob McEwen Treatment Plant suggests that treatment processes employed by the plant (chlorination, activated carbon) reduced pesticide concentrations to levels well below USEPA drinking-water standards. In particular, the percentage of pesticides remaining in treated water samples decreased significantly for several frequently occurring pesticides when the plant replaced the use of powdered activated carbon with granular activated carbon in November 1999. For example, the median percentage of atrazine remaining after treatment that included powdered activated carbon was 63 percent, whereas the median percentage of atrazine remaining after the switch to granular activated carbon was 2.4 percent.

  19. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    PubMed

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  20. Toxicity of an herbicide and adjuvant to saltmarsh invertebrates in the management of invasive grass; Comparative laboratory and field tests.

    PubMed

    Kleinhenz, Linda S; Nugegoda, Dayanthi; Verspaandonk, Emily R; Coombes, Darcy C; Howe, Steffan; Shimeta, Jeff

    2016-08-15

    Coastal weeds are often treated with herbicides without knowledge of non-target impacts, and toxicity data from standardized test species can have limited applicability. We evaluated toxicity to invertebrates from Fusilade Forte® and the adjuvant Hasten® in the control of invasive salt marsh grass, Spartina anglica. For 3 of 4 local invertebrates, Fusilade Forte® was moderately toxic (96h LC50 5.4-144mgL(-1)), whereas Hasten® was less toxic (14.2-450mgL(-1)). For most species, the mixture was more toxic than the herbicide alone, with 96h LC50 reduced 23-45%. However, a field experiment applying typical concentrations (1000×the lowest 96h LC50) showed low concentrations of herbicide residues and no detrimental impacts on invertebrates over 6months. The results reveal the importance of testing locally relevant species for potential toxicity, and of comparison tests with field exposures to determine the realised toxicity in nature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 77 FR 10472 - Dow AgroScience LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the... phenoxy auxin group (such as the herbicide 2,4-D) and resistance to grass herbicides in the...

  2. Role of a Novel I1781T Mutation and Other Mechanisms in Conferring Resistance to Acetyl-CoA Carboxylase Inhibiting Herbicides in a Black-Grass Population

    PubMed Central

    Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Dale, Richard P.; McIndoe, Eddie

    2013-01-01

    Background Knowledge of the mechanisms of herbicide resistance is important for designing long term sustainable weed management strategies. Here, we have used an integrated biology and molecular approach to investigate the mechanisms of resistance to acetyl-CoA carboxylase inhibiting herbicides in a UK black-grass population (BG2). Methodology/Principal Findings Comparison between BG2 phenotypes using single discriminant rates of herbicides and genotypes based on ACCase gene sequencing showed that the I1781L, a novel I1781T, but not the W2027C mutations, were associated with resistance to cycloxydim. All plants were killed with clethodim and a few individuals containing the I1781L mutation were partially resistant to tepraloxydim. Whole plant dose response assays demonstrated that a single copy of the mutant T1781 allele conferred fourfold resistance levels to cycloxydim and clodinafop-propargyl. In contrast, the impact of the I1781T mutation was low (Rf = 1.6) and non-significant on pinoxaden. BG2 was also characterised by high levels of resistance, very likely non-target site based, to the two cereal selective herbicides clodinafop-propargyl and pinoxaden and not to the poorly metabolisable cyclohexanedione herbicides. Analysis of 480 plants from 40 cycloxydim resistant black grass populations from the UK using two very effective and high throughput dCAPS assays established for detecting any amino acid changes at the 1781 ACCase codon and for positively identifying the threonine residue, showed that the occurrence of the T1781 is extremely rare compared to the L1781 allele. Conclusion/Significance This study revealed a novel mutation at ACCase codon position 1781 and adequately assessed target site and non-target site mechanisms in conferring resistance to several ACCase herbicides in a black-grass population. It highlights that over time the level of suspected non-target site resistance to some cereal selective ACCase herbicides have in some instances surpassed that of target site resistance, including the one endowed by the most commonly encountered I1781L mutation. PMID:23936046

  3. Research methods in weed science: herbicide absorption and translocation in plants using radioisotopes

    USDA-ARS?s Scientific Manuscript database

    Herbicide absorption and translocation in plants is a key component in the study of herbicide physiology, mode of action, selectivity, resistance mechanisms, and in the registration process. Radioactive herbicides have been in use for over half-a-century in the research and study of herbicide absorp...

  4. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    PubMed

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  5. Long-term trends in the intensity and relative toxicity of herbicide use

    NASA Astrophysics Data System (ADS)

    Kniss, Andrew R.

    2017-04-01

    Herbicide use is among the most criticized aspects of modern farming, especially as it relates to genetically engineered (GE) crops. Many previous analyses have used flawed metrics to evaluate herbicide intensity and toxicity trends. Here, I show that herbicide use intensity increased over the last 25 years in maize, cotton, rice and wheat. Although GE crops have been previously implicated in increasing herbicide use, herbicide increases were more rapid in non-GE crops. Even as herbicide use increased, chronic toxicity associated with herbicide use decreased in two out of six crops, while acute toxicity decreased in four out of six crops. In the final year for which data were available (2014 or 2015), glyphosate accounted for 26% of maize, 43% of soybean and 45% of cotton herbicide applications. However, due to relatively low chronic toxicity, glyphosate contributed only 0.1, 0.3 and 3.5% of the chronic toxicity hazard in those crops, respectively.

  6. Why have no new herbicide modes of action appeared in recent years?

    PubMed

    Duke, Stephen O

    2012-04-01

    Herbicides with new modes of action are badly needed to manage the evolution of resistance of weeds to existing herbicides. Yet no major new mode of action has been introduced to the market place for about 20 years. There are probably several reasons for this. New potential products may have remained dormant owing to concerns that glyphosate-resistant (GR) crops have reduced the market for a new herbicide. The capture of a large fraction of the herbicide market by glyphosate with GR crops led to significantly diminished herbicide discovery efforts. Some of the reduced herbicide discovery research was also due to company consolidations and the availability of more generic herbicides. Another problem might be that the best herbicide molecular target sites may have already been discovered. However, target sites that are not utilized, for which there are inhibitors that are highly effective at killing plants, suggests that this is not true. Results of modern methods of target site discovery (e.g. gene knockout methods) are mostly not public, but there is no evidence of good herbicides with new target sites coming from these approaches. In summary, there are several reasons for a long dry period for new herbicide target sites; however, the relative magnitude of each is unclear. The economic stimulus to the herbicide industry caused by the evolution of herbicide-resistant weeds, especially GR weeds, may result in one or more new modes of action becoming available in the not too distant future. Copyright © 2011 Society of Chemical Industry.

  7. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    USGS Publications Warehouse

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  8. An overview comparing results from two decades of monitoring for pesticides in the Nation’s streams and rivers, 1992-2001 and 2002-2011

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Martin, Jeffrey D.

    2014-01-01

    This report provides an overview of the U.S. Geological Survey National Water-Quality Assessment program and National Stream Quality Accounting Network findings for pesticide occurrence in U.S. streams and rivers during 2002–11 and compares them to findings for the previous decade (1992–2001). In addition, pesticide stream concentrations were compared to Human Health Benchmarks (HHBs) and chronic Aquatic Life Benchmarks (ALBs). The comparisons between the decades were intended to be simple and descriptive. Trends over time are being evaluated separately in a series of studies involving rigorous trend analysis. During both decades, one or more pesticides or pesticide degradates were detected more than 90 percent of the time in streams across all types of land uses. For individual pesticides during 2002–11, atrazine (and degradate, deethylatrazine), carbaryl, fipronil (and degradates), metolachlor, prometon, and simazine were detected in streams more than 50 percent of the time. In contrast, alachlor, chlorpyrifos, cyanazine, diazinon, EPTC, Dacthal, and tebuthiuron were detected less frequently in streams during the second decade than during the first decade. During 2002–11, only one stream had an annual mean pesticide concentration that exceeded an HHB. In contrast, 17 percent of agriculture land-use streams and one mixed land-use stream had annual mean pesticide concentrations that exceeded HHBs during 1992–2001. The difference between the first and second decades in terms of percent of streams exceeding HHBs was attributed to regulatory changes. During 2002–11, nearly two-thirds of agriculture land-use streams and nearly one-half of mixed land-use streams exceeded chronic ALBs. For urban land use, 90 percent of the streams exceeded a chronic ALB. Fipronil, metolachlor, malathion, cis-permethrin, and dichlorvos exceeded chronic ALBs for more than 10 percent of the streams. For agriculture and mixed land-use streams, the overall percent of streams that exceeded a chronic ALB was very similar between the decades. For urban land-use streams, the percent of streams exceeding a chronic ALB during 2002–11 nearly doubled that seen during 1992–2001. The reason for this difference was the inclusion of fipronil monitoring during the second decade. Across all land-use streams, the percent of streams exceeding a chronic ALB for fipronil during 2002–11 was greater than all other insecticides during both decades. The percent of streams exceeding a chronic ALB for metolachlor, chlorpyrifos, diazinon, malathion, and carbaryl decreased from the first decade to the second decade. The results of the 2002–11 summary and comparison to 1992–2001 are consistent with the results from more rigorous trend analysis of pesticide stream concentrations for individual streams in various regions of the U.S.

  9. Low-impact chemical weed control techniques in UNESCO World Heritage Sites of Cuba.

    PubMed

    Hernandez-Enriquez, O; Alvarez, R; Morelli, F; Bastida, F; Camacho, D; Menendez, J

    2012-01-01

    Dichrostachys cinerea is a thorny, acacia-like, fast-growing woody bush which invades fields, wasteland, road sides and other disturbed areas. This gregarious species has become a very aggressive invasive weed in Cuba, where no native predators or pathogens are found. It often encroaches in fallows, overgrazed areas and mismanaged veld. D. cinerea is a very difficult weed to eliminate because of its active suckering, and is liable to produce dense thickets which are quite impenetrable on account of the density and abundance of its long, stiff, sharp thorns. In the Valle de los Ingenios area (Cuba Central), the tree is unchecked and forms veritable forests in areas on which cane growing has been discontinued. Physical management by cutting and burning the plants is not a very efficient control method, since the seeds survive in the soil, and they grow very fast. Therefore, chemical methods via the use of herbicides are often necessary to eradicate this weed. A preliminary study using glyphosate and auxin-like herbicides (2,4-D + picloram, MCPA, and MCPA + 2,4-D) plus adjuvants has been carried out in order to elucidate the best mixtures rendering maximum weed control with minimum herbicide rate and environmental stress. None of the herbicides used except glyphosate and 2,4-D + picloram showed acceptable mortality rates (75-80%) at the recommended doses tested. In the failed herbicide treatments, only the use of double herbicide rates succeeded in controlling marabou. The herbicide mixture of 2,4-D + picloram formulated with either a non-ionic surfactant or a mixture of fatty acid esters was the best option to control D. cinerea in terms of maximum effectiveness and minimum environmental stress, as the reduction in active ingredients applied to the environment was x3 in these two adjuvant-amended formulations compared to 2,4-D + picloram alone.

  10. A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence.

    PubMed

    Délye, Christophe; Menchari, Yosra; Michel, Séverine; Cadet, Emilie; Le Corre, Valérie

    2013-04-01

    Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed's life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides. In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos. Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination. Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should also prove useful to investigate the role played by seed storage lipids in the control of seed dormancy and germination.

  11. Sub-lethal effects of herbicides penoxsulam, imazamox, fluridone and glyphosate on Delta Smelt (Hypomesus transpacificus).

    PubMed

    Jin, Jiali; Kurobe, Tomofumi; Ramírez-Duarte, Wilson F; Bolotaolo, Melissa B; Lam, Chelsea H; Pandey, Pramod K; Hung, Tien-Chieh; Stillway, Marie E; Zweig, Leanna; Caudill, Jeffrey; Lin, Li; Teh, Swee J

    2018-04-01

    Concerns regarding non-target toxicity of new herbicides used to control invasive aquatic weeds in the San Francisco Estuary led us to compare sub-lethal toxicity of four herbicides (penoxsulam, imazamox, fluridone, and glyphosate) on an endangered fish species Delta Smelt (Hypomesus transpacificus). We measured 17β-estradiol (E2) and glutathione (GSH) concentrations in liver, and acetylcholinesterase (AChE) activity in brain of female and male fish after 6 h of exposure to each of the four herbicides. Our results indicate that fluridone and glyphosate disrupted the E2 concentration and decreased glutathione concentration in liver, whereas penoxsulam, imazamox, and fluridone inhibited brain AChE activity. E2 concentrations were significantly increased in female and male fish exposed to 0.21 μM of fluridone and in male fish exposed to 0.46, 4.2, and 5300 μM of glyphosate. GSH concentrations decreased in males exposed to fluridone at 2.8 μM and higher, and glyphosate at 4.2 μM. AChE activity was significantly inhibited in both sexes exposed to penoxsulam, imazamox, and fluridone, and more pronounced inhibition was observed in females. The present study demonstrates the potential detrimental effects of these commonly used herbicides on Delta Smelt. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae).

    PubMed

    Mosleh, Yahia Y; Paris-Palacios, Séverine; Couderchet, Michel; Biagianti-Risbourg, Sylvie; Vernet, Guy

    2005-07-01

    Metallothioneins (MTs) are low molecular weight proteins, mainly implicated in metal ion detoxification. Increase in MT contents is considered to be a specific biomarker of metal exposure. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth, and antioxidative defenses. Therefore, the induction of MTs as biomarkers of exposure to the pesticide isoproturon has been investigated in the aquatic worms Tubifex tubifex. MT levels in exposed worms increased significantly (p < 0.05) after 2, 4, and 7 days of exposure to different concentrations of isoproturon (maximum increase compared to unexposed controls: +148.56% for 10 mg l(-1) after 4 days of exposure). In response to isoproturon, the activity of glutathione-S-transferase (max. +52%), glutathione-reductase (max. +100%), and catalase (max. +117%) increased, demonstrating the occurrence of an oxidative stress response to the herbicide. Thus, the increase in MT contents caused by isoproturon was interpreted as a defense response towards increased oxidative stress generated by the herbicide. Residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin were detected in the worm growth medium. Half-life of the herbicide was shorter at a low (0.1 mg l(-1)) initial concentration. The herbicide accumulated in T. tubifex but no metabolite could be detected.

  13. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2015-07-01

    Crops engineered to contain genes for tolerance to multiple herbicides may be treated with several herbicides to manage weeds resistant to each herbicide. Thus, nearby non-target plants may be subjected to increased exposure to several herbicides used in combination. Of particular concern are native plants, as well as adjacent crops which have not been genetically engineered for tolerance to herbicides. We evaluated responses of seven species of native plants grown in a greenhouse and treated less than field application rates of glyphosate and/or dicamba: Andropogon gerardii, Asclepias syriaca, Eutrochium purpureum, Oenothera biennis, Polyganum lapathifolium, Solidago canadensis and Tridens flavus, and non-herbicide resistant soybean (Glycine max, Oregon line M4). Herbicide concentrations were 0.03 or 0.1 × field application rates of 1122 g ha(-1) active ingredient (a.i) (831 g ha(-1) acid glyphosate) for glyphosate and 562 g ha(-1) a.i. for dicamba. In general, plant growth responses to combinations of glyphosate and dicamba were less than the sum of growth responses to the individual herbicides (i.e., antagonistic effect), primarily when one or both herbicides alone caused a large reduction in growth. E. purpureum, P. lapathifolium and S. canadensis were the most sensitive species to both herbicides, while A. gerardii was the most tolerant, with no response to either herbicide. The combinations of herbicides resulted in responses most similar to that from dicamba alone for G. max and from glyphosate alone for T. flavus. The results of this study indicated the need for more data such as effects on native plants in the field to assess risks to non-target plants from combinations of herbicides.

  14. Leaching and persistence of herbicides for kudzu (Pueraria montana) control on pine regeneration sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berisford, Yvette, C.; Bush, Parshall, B.; Taylor, John, W.

    Kudzu is an exotic vine that threatens forests in the southeastern United States. It can climb, overtop, and subsequently kill new seedlings or mature trees. Herbicides are commonly used to control kudzu; however, eradication might require retreatment for 3 to 10 yr in young stands and 7 to 10 yr for mature stands. Clopyralid, picloram, triclopyr, metsulfuron, and tebuthiuron exert various degrees of control, depending on soil type, meteorological conditions, herbicide formulation, seasonal application, characteristics of the kudzu stand, and frequency and number of herbicide. Field residue data for soil or leachate are lacking for all of these herbicides whenmore » they are used in actual forest regeneration programs in the Coastal Plain. These data are needed to assess the relative potential for the herbicides to leach into groundwater or to move off-site into sensitive ecological areas of the Coastal Plain in which sandy soils predominate and the groundwater tends to be shallow. As part of an integrated pest management program to control kudzu on forest regeneration areas at the Savannah River Site near New Ellenton, SC, five herbicides were evaluated from the standpoints of herbicide leaching, kudzu control, and plant community development. Three herbicide chemical families were represented. This included pyridinecarboxylic acid herbicides (clopyralid, picloram 1 2,4-D, and triclopyr), a sulfonylurea herbicide (metsulfuron), and a substituted urea herbicide (tebuthiuron).« less

  15. Herbicides and plant hormesis.

    PubMed

    Belz, Regina G; Duke, Stephen O

    2014-05-01

    Herbicide hormesis is commonly observed at subtoxic doses of herbicides and other phytotoxins. The occurrence and magnitude of this phenomenon are influenced by plant growth stage and physiological status, environmental factors, the endpoint measured and the timing between treatment and endpoint measurement. The mechanism in some cases of herbicide hormesis appears to be related to the target site of the herbicide, whereas in other examples hormesis may be by overcompensation to moderate stress induced by the herbicides or a response to disturbed homeostasis. Theoretically, herbicide hormesis could be used in crop production, but this has been practical only in the case of the use of herbicides as sugar cane 'ripeners' to enhance sucrose accumulation. The many factors that can influence the occurrence, the magnitude and the dose range of hormetic increases in yield for most crops make it too unpredictable and risky as a production practice with the currently available knowledge. Herbicide hormesis can cause undesired effects in situations in which weeds are unintentionally exposed to hormetic doses (e.g. in adjacent fields, when shielded by crop vegetation). Some weeds that have evolved herbicide resistance may have hormetic responses to recommended herbicide application rates. Little is known about such effects under field conditions. A more complete understanding of herbicide hormesis is needed to exploit its potential benefits and to minimize its potential harmful effects in crop production. © 2014 Society of Chemical Industry.

  16. Pesticide Occurrence and Distribution in the Lower Clackamas River Basin, Oregon, 2000-2005

    USGS Publications Warehouse

    Carpenter, Kurt D.; Sobieszczyk, Steven; Arnsberg, Andrew J.; Rinella, Frank A.

    2008-01-01

    Pesticide occurrence and distribution in the lower Clackamas River basin was evaluated in 2000?2005, when 119 water samples were analyzed for a suite of 86?198 dissolved pesticides. Sampling included the lower-basin tributaries and the Clackamas River mainstem, along with paired samples of pre- and post-treatment drinking water (source and finished water) from one of four drinking water-treatment plants that draw water from the lower river. Most of the sampling in the tributaries occurred during storms, whereas most of the source and finished water samples from the study drinking-water treatment plant were obtained at regular intervals, and targeted one storm event in 2005. In all, 63 pesticide compounds were detected, including 33 herbicides, 15 insecticides, 6 fungicides, and 9 pesticide degradation products. Atrazine and simazine were detected in about half of samples, and atrazine and one of its degradates (deethylatrazine) were detected together in 30 percent of samples. Other high-use herbicides such as glyphosate, triclopyr, 2,4-D, and metolachlor also were frequently detected, particularly in the lower-basin tributaries. Pesticides were detected in all eight of the lower-basin tributaries sampled, and were also frequently detected in the lower Clackamas River. Although pesticides were detected in all of the lower basin tributaries, the highest pesticide loads (amounts) were found in Deep and Rock Creeks. These medium-sized streams drain a mix of agricultural land (row crops and nurseries), pastureland, and rural residential areas. The highest pesticide loads were found in Rock Creek at 172nd Avenue and in two Deep Creek tributaries, North Fork Deep and Noyer Creeks, where 15?18 pesticides were detected. Pesticide yields (loads per unit area) were highest in Cow and Carli Creeks, two small streams that drain the highly urban and industrial northwestern part of the lower basin. Other sites having relatively high pesticide yields included middle Rock Creek and upper Noyer Creek, which drain basins having nurseries, pasture, and rural residential land. Some concentrations of insecticides (diazinon, chlorpyrifos, azinphos-methyl, and p,p?-DDE) exceeded U.S. Environmental Protection Agency (USEPA) aquatic-life benchmarks in Carli, Sieben, Rock, Noyer, Doane, and North Fork Deep Creeks. One azinphos-methyl concentration in Doane Creek (0.21 micrograms per liter [?g/L]) exceeded Federal and State of Oregon benchmarks for the protection of fish and benthic invertebrates. Concentrations of several other pesticide compounds exceeded non-USEPA benchmarks. Twenty-six pesticides or degradates were detected in the Clackamas River mainstem, typically at much lower concentrations than those detected in the lower-basin tributaries. At least 1 pesticide was detected in 65 percent of 34 samples collected from the Clackamas River, with an average of 2?3 pesticides per sample. Pesticides were detected in 9 (or 60 percent) of the 15 finished water samples collected from the study water-treatment plant during 2003?2005. These included 10 herbicides, 1 insecticide, 1 fungicide, 1 insect repellent, and 2 pesticide degradates. The herbicides diuron and simazine were the most frequently detected (four times each during the study), at concentrations far below human-health benchmarks?USEPA Maximum Contaminant Levels or U.S. Geological Survey human Health-Based Screening Levels (HBSLs). The highest pesticide concentration in finished drinking water was 0.18 ?g/L of diuron, which was 11 times lower than its low HBSL benchmark. Although 0?2 pesticides were detected in most finished water samples, 9 and 6 pesticides were detected in 2 storm-associated samples from May and September 2005, respectively. Three of the unregulated compounds detected in finished drinking water (diazinon-oxon, deethylatrazine [CIAT], and N, N-diethyl-m-toluamide [DEET]) do not have human-health benchmarks available for comparison. Although most of the 51 curren

  17. Quality of water on the Prairie Band Potawatomi Reservation, northeastern Kansas, February 1999 through February 2001

    USGS Publications Warehouse

    Trombley, T.J.

    2001-01-01

    Water-quality samples were collected from 20 surface-water sites and 7 ground-water sites across the Prairie Band Potawatomi Reservation in northeastern Kansas as part of a water-quality study begun in 1996. Water quality is a very important consideration for the tribe. Three creeks draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, are important tribal resources used for maintaining subsistence fishing and hunting needs for tribal members. Samples were collected twice during June 1999 and June 2000 at all 20 surface-water sites after herbicide application, and nine quarterly samples were collected at 5 of the 20 sampling sites from February 1999 through February 2001. Samples were collected once at six wells and twice at one well from September through December 2000. Surface-water-quality constituents analyzed included nutrients, pesticides, and bacteria. In addition to nutrients, pesticides, and bacteria, ground-water constituents analyzed included major dissolved ions, arsenic, boron, and dissolved iron and manganese. The median nitrite plus nitrate concentration was 0.376 mg/L (milligram per liter) for 81 surface-water samples, and the maximum concentration was 4.18 mg/L as nitrogen, which is less than one-half the U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) for drinking water of 10 mg/L as nitrogen. Fifty-one of the 81 surface-water-quality samples exceeded the U.S. Environmental Protection Agency's recommended goal for total phosphorus of 0.10 mg/L for the protection of aquatic life. Triazine concentrations in 26 surface-water-quality samples collected during May and June 1999 and 2000 exceeded 3.0 ?g/L (micrograms per liter), the Maximum Contaminant Level established for drinking water by the U.S. Environmental Protection Agency. Triazine herbicide concentrations tended to be highest during late spring runoff after herbicide application. High concentrations of fecal indicator bacteria in surface water are a concern on the reservation with fecal coliform concentrations ranging from 4 to greater than 31,000 colonies per 100 milliliters of water with a median concentration of 570 colonies per 100 milliliters. More than one-half of the surface-water-quality samples exceeded the Kansas Department of Health and Environment contact recreation criteria of 200 and 2,000 colonies per 100 milliliters of water and were collected mostly during the spring and summer. Two wells had sodium concentrations of about 10 times the U.S. Environmental Protection Agengy health advisory level (HAL) of 20 mg/L; concentrations ranged from 241 to 336 mg/L. In water from two wells, sulfate concentrations exceeded 800 mg/L, more than three times the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for drinking water of 250 mg/L. All but two of the eight ground-water-quality samples had dissolved-solids concentrations exceeding the SMCL of 500 mg/L. The highest concentration of 2,010 mg/L was more than four times the SMCL. Dissolved boron concentrations exceeded the U.S. Environmental Protection Agency 600-?g/L HAL in water from two of the seven wells sampled. Because the HAL is for a lifetime of exposure, the anticipated health risk due to dissolved boron is low. Dissolved iron concentrations in ground-water samples exceeded the 300-?g/L SMCL for treated drinking water in three of the seven wells sampled. Dissolved manganese concentrations in water from the same three wells also exceeded the established SMCL of 50 ?g/L. Dissolved pesticides were not detected in any of the well samples; however, there were degradation products of the herbicides alachlor and metolachlor in several samples. Insecticides were not detected in any ground-water-quality samples. Low concentrations of E. coli and fecal coliform bacteria were detected in water from two wells, and E. coli was detected in water from one well. Much higher concentrations of E. coli, fecal coliform, and fecal strepto

  18. Analysis of transcriptomic changes in Echinochloa colona in response to treatment with the herbicide imazamox

    USDA-ARS?s Scientific Manuscript database

    Herbicides are the most frequently used means of controlling weeds. For many herbicides the target site is known; however, it is considerably less clear how plant gene expression changes in response to herbicide exposure. Understanding which genes are activated in response to herbicides provides i...

  19. Real World of Industrial Chemistry: The Challenge of Herbicides for Aquatic Weeds.

    ERIC Educational Resources Information Center

    Martin, Dean F.; Martin, Barbara B.

    1985-01-01

    Discusses problems in selecting the correct herbicide for use in controlling aquatic weeds, considering specificity, size of the market, fear of trace contaminants, and herbicide resistance in weeds. Also summarizes some successful herbicides, providing a table listing mode of action of some herbicides used for control of aquatic plants. (JN)

  20. 77 FR 41361 - Dow AgroSciences LLC; Availability of Petition for Determination of Nonregulated Status of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Genetically Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA... broadleaf herbicides in the phenoxy auxin group (such as the herbicide 2,4-D) and the herbicides glyphosate...-44406-6, which has been genetically engineered for tolerance to broadleaf herbicides in the phenoxy...

  1. Pesticide and transformation product detections and age-dating relations from till and sand deposits

    USGS Publications Warehouse

    Warner, K.L.; Morrow, W.S.

    2007-01-01

    Pesticide and transformation product concentrations and frequencies in ground water from areas of similar crop and pesticide applications may vary substantially with differing lithologies. Pesticide analysis data for atrazine, metolachlor, alachlor, acetochlor, and cyanazine and their pesticide transformation products were collected at 69 monitoring wells in Illinois and northern Indiana to document occurrence of pesticides and their transformation products in two agricultural areas of differing lithologies, till, and sand. The till is primarily tile drained and has preferential fractured flow, whereas the sand primarily has surface water drainage and primary porosity flow. Transformation products represent most of the agricultural pesticides in ground water regardless of aquifer material - till or sand. Transformation products were detected more frequently than parent pesticides in both the till and sand, with metolachlor ethane sulfonic acid being most frequently detected. Estimated ground-water recharge dates for the sand were based on chlorofluorocarbon analyses. These age-dating data indicate that ground water recharged prior to 1990 is more likely to have a detection of a pesticide or pesticide transformation product. Detections were twice as frequent in ground water recharged prior to 1990 (82%) than in ground water recharged on or after 1990 (33%). The highest concentrations of atrazine, alachlor, metolachlor, and their transformation products, also were detected in samples from ground water recharged prior to 1990. These age/pesticide detection relations are opposite of what would normally be expected, and may be the result of preferential flow and/or ground-water mixing between aquifers and aquitards as evident by the detection of acetochlor transformation products in samples with estimated ground-water ages predating initial pesticide application. ?? 2007 American Water Resources Association.

  2. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon.

    PubMed

    Wilpiszewska, Katarzyna; Spychaj, Tadeusz; Paździoch, Waldemar

    2016-01-20

    Preparation of novel high substituted carboxymethyl starch-based microparticles containing sodium montmorillonite (MMT) by crosslinking with Al(3+) was described. For preparing nanocomposite granules carboxymethyl starch (CMS) from native potato starch as well as CMS from amylopectin has been used. The hydrophilic CMS/MMT composite systems were used for herbicide, i.e. isoproturon encapsulation (ca. 75% encapsulation efficiency). The herbicide release rate from CMS/MMT composites in water was significantly reduced when compared to commercial isoproturon: 95% released after ca. 700 h and ca. 24h, respectively. Leaching in soil from composite systems was relatively slower than release in water. After a series of eight irrigations leached about 10% of isoproturon loaded. The CMS/MMT carriers could reduce the potential leaching of herbicide and beneficially reduce pollution of the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Use of resistant ACCase mutants to screen for novel inhibitors against resistant and susceptible forms of ACCase from grass weeds.

    PubMed

    Shukla, Amit; Nycholat, Corwin; Subramanian, Mani V; Anderson, Richard J; Devine, Malcolm D

    2004-08-11

    The aryloxyphenoxypropionic acid (AOPP) and cyclohexanedione (CHD) herbicides inhibit the first committed enzyme in fatty acid biosynthesis, acetyl CoA carboxylase (ACCase). The frequent use of AOPP and CHD herbicides has resulted in the development of resistance to these herbicides in many grass weed species. New herbicides that inhibit both the susceptible and resistant forms of ACCase in grass weeds would have obvious commercial appeal. In the present study, an attempt was made to identify molecules that target both the herbicide-sensitive and -resistant forms of ACCase. Seven experimental compounds, either CHD-like or AOPP-CHD hybrids, were synthesized and assayed against previously characterized susceptible and resistant forms of ACCase. All seven compounds inhibited ACCase from sensitive biotypes of Setaria viridis and Eleusine indica (I50 values from 6.4 to >100 microM) but were not particularly potent compared to some commercialized herbicides (I50 values of 0.08-5.6 microM). In almost all cases, the I50 values for each compound assayed against the resistant ACCases were higher than those against the corresponding sensitive ACCase, indicating reduced binding to the resistant ACCases. One compound, a CHD analogue, was almost equally effective against the resistant and susceptible ACCases, although it was not a very potent ACCase inhibitor per se (I50 of 51 and 76 microM against susceptible ACCase from S. viridis and E. indica, respectively). The AOPP-CHD hybrid molecules also inhibited some of the resistant ACCases, with I50 values ranging from 6.4 to 50 microM. These compounds may be good leads for developing ACCase inhibitors that target a wider range of ACCase isoforms, including those found in AOPP- and CHD-resistant weed biotypes.

  4. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil.

    PubMed

    Dechene, Annika; Rosendahl, Ingrid; Laabs, Volker; Amelung, Wulf

    2014-08-01

    Biochar-amended soil has been proven to possess superior sorption capacities for several environmental pollutants compared with pure soil. However, the role of biochar in the immobilization of polar pesticides and their metabolites has hardly been tested. The aim of this study was therefore to investigate the effect of a soil amendment with biochar on the sorption of selected polar herbicides and herbicide metabolites (log Kow 0.3-<2). To simulate worst-case sorption, a sandy soil (1.7% organic matter) was amended with 1.5% biochar (fresh or composted) to determine sorption/desorption isotherms of the test compounds. One herbicide (imazamox) and three herbicide metabolites (methyl-desphenyl-chloridazon, metazachlor oxalic acid, metazachlor sulfonic acid) were tested, i.e. three anionic and one neutral polar compound. The results showed that the presence of biochar increased the sorption capacity of the soil only in the case of the uncharged compound methyl-desphenyl-chloridazon, for which the average distribution coefficients in biochar-amended soils were higher than in pure soil by a factor of 2.1-2.5. However, this effect rather seemed to reflect the increased soil organic carbon content after the addition of biochar than a preferred sorption of methyl-desphenyl-chloridazon to biochar. In the case of the three anionic compounds imazamox, metazachlor oxalic acid and metazachlor sulfonic acid, biochar amendment did not increase the sorption capacity of the soil for these compounds, presumably as a result of its negative net charge. Similarly, desorption experiments did not show any significant effect of the biochar amendment on desorption. This suggests that the potential of using biochar to mitigate the leaching of the tested polar pesticides or metabolites is limited. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria

    PubMed Central

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. PMID:25380132

  6. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    PubMed

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard to avoid. For that reason, and in order to comply with international agreements to protect and enhance biodiversity, agriculture needs to focus on practices that are more environmentally friendly, including an overall reduction in pesticide use. (Pesticides are used for agricultural as well non-agricultural purposes. Most commonly they are used as plant protection products and regarded as a synonym for it and so also in this text.).

  7. Silvicultural use of herbicides in Pacific Northwest forests.

    Treesearch

    H. Gratkowski

    1975-01-01

    After a brief description of silvicultural problems, the author tells how to prescribe herbicidal sprays for aerial, application in Pacific Northwest forests. The publication offers a detailed discussion of the five basic considerations: (1) selection of the best herbicide or herbicides, (2) amount of herbicide to be applied per acre, (3) carriers, (4) volume of spray...

  8. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    PubMed

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research. © 2010 SETAC.

  9. Pesticide mitigation capacities of constructed wetlands

    Treesearch

    Matthew T. Moore; Charles M. Cooper; Sammie Smith; John H. Rodgers

    2000-01-01

    This research focused on using constructed wetlands along field perimeters to buffer receiving water against potential effects of pesticides associated with storm runoff. The current study incorporated wetland mesocosm sampling following simulated runoff events using chlorpyrifos, atrazine, and metolachlor. Through this data collection and simple model analysis,...

  10. Hybridization using cytoplasmic male sterility, cytoplasmic herbicide tolerance, and herbicide tolerance from nuclear genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beversdorf, W.D.; Erickson, L.R.; Grant, I.

    An improved process is described for producing a substantially homogeneous population of plants of a predetermined hybrid variety of crop which is capable of undergoing self-pollination and cross-pollination. The process comprises: growing in a first planting area a substantially random population of cytoplasmic male sterile plants which exhibit cytoplasmic herbicide tolerance to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide which is attributable solely to homozygous dominant nuclear genes and male fertile plants which are homozygous recessive maintainer plants for the cytoplasmic male sterile plants and which lack the cytoplasmic herbicide tolerancemore » to at least one Type A herbicide and exhibit tolerance to at least one Type B herbicide attributable solely to the homozygous dominant nuclear genes.« less

  11. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis).

    PubMed

    Li, Jian; Li, Mei; Gao, Xingxiang; Fang, Feng

    2017-12-01

    Crabgrass (Digitaria sanguinalis) is an annual monocotyledonous weed. In recent years, field applications of nicosulfuron have been ineffective in controlling crabgrass populations in Shandong Province, China. To investigate the mechanisms of resistance to nicosulfuron in crabgrass populations, the acetolactate synthase (ALS) gene fragment covering known resistance-confering mutation sites was amplified and sequenced. Dose-response experiments suggested that the resistant population SD13 (R) was highly resistant to nicosulfuron (resistance index R/S = 43.7) compared with the sensitive population SD22 (S). ALS gene sequencing revealed a Trp574Arg substitution in the SD13 population, and no other known resistance-conferring mutations were found. In vitro ALS enzyme assays further confirmed that the SD13 population was resistant to all tested ALS-inhibiting herbicides. The resistance pattern experiments revealed that, compared with SD22, the SD13 population exhibited broad-spectrum resistance to nicosulfuron (43.7-fold), imazethapyr (11.4-fold) and flumetsulam (16.1-fold); however, it did not develop resistance to atrazine, mesotrione and topramezone. This study demonstrated that Trp574Arg substitution was the main reason for crabgrass resistance to ALS-inhibiting herbicides. To our knowledge, this is the first report of Trp574Arg substitution in a weed species, and is the first report of target-site mechanisms of herbicide resistance for crabgrass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience.

    PubMed

    Walsh, Michael J; Powles, Stephen B

    2014-09-01

    Herbicide resistance continues to escalate in weed populations infesting global wheat (Triticum aestivum L.) crops, threatening grain production and thereby food supply. Conservation wheat production systems are reliant on the use of efficient herbicides providing low-cost, selective weed control in intensive cropping systems. The resistance-driven loss of herbicide resources combined with limited potential for new herbicide molecules means greater emphasis must be placed on preserving existing herbicides. For more than two decades, since the initial recognition of the dramatic consequences of herbicide resistance, the challenge of introducing additional weed control strategies into herbicide-based weed management programmes has been formidable. Throughout this period, herbicide resistance has expanded unabated across the world's wheat production regions. However, in Australia, where herbicide resources have become desperately depleted, the adoption of harvest weed seed control is evidence, at last, of a successful approach to sustainable weed management in wheat production systems. Growers routinely including strategies to target weed seeds during crop harvest, as part of herbicide-based weed management programmes, are now realising significant weed control and crop production benefits. When combined with an attitude of zero weed tolerance, there is evidence of a sustainable weed control future for wheat production systems. The hard-learned lessons of Australian growers can now be viewed by global wheat producers as an example of how to stop the continual loss of herbicide resources in productive cropping systems. © 2013 Society of Chemical Industry.

  13. Integrated pest management and weed management in the United States and Canada.

    PubMed

    Owen, Micheal D K; Beckie, Hugh J; Leeson, Julia Y; Norsworthy, Jason K; Steckel, Larry E

    2015-03-01

    There is interest in more diverse weed management tactics because of evolved herbicide resistance in important weeds in many US and Canadian crop systems. While herbicide resistance in weeds is not new, the issue has become critical because of the adoption of simple, convenient and inexpensive crop systems based on genetically engineered glyphosate-tolerant crop cultivars. Importantly, genetic engineering has not been a factor in rice and wheat, two globally important food crops. There are many tactics that help to mitigate herbicide resistance in weeds and should be widely adopted. Evolved herbicide resistance in key weeds has influenced a limited number of growers to include a more diverse suite of tactics to supplement existing herbicidal tactics. Most growers still emphasize herbicides, often to the exclusion of alternative tactics. Application of integrated pest management for weeds is better characterized as integrated weed management, and more typically integrated herbicide management. However, adoption of diverse weed management tactics is limited. Modifying herbicide use will not solve herbicide resistance in weeds, and the relief provided by different herbicide use practices is generally short-lived at best. More diversity of tactics for weed management must be incorporated in crop systems. © 2014 Society of Chemical Industry.

  14. Herbicides as Weed Control Agents: State of the Art: II. Recent Achievements[C

    PubMed Central

    Kraehmer, Hansjoerg; van Almsick, Andreas; Beffa, Roland; Dietrich, Hansjoerg; Eckes, Peter; Hacker, Erwin; Hain, Ruediger; Strek, Harry John; Stuebler, Hermann; Willms, Lothar

    2014-01-01

    In response to changing market dynamics, the discovery of new herbicides has declined significantly over the past few decades and has only seen a modest upsurge in recent years. Nevertheless, the few introductions have proven to be interesting and have brought useful innovation to the market. In addition, herbicide-tolerant or herbicide-resistant crop technologies have allowed the use of existing nonselective herbicides to be extended into crops. An increasing and now major challenge is being posed by the inexorable increase in biotypes of weeds that are resistant to herbicides. This problem is now at a level that threatens future agricultural productivity and needs to be better understood. If herbicides are to remain sustainable, then it is a must that we adopt diversity in crop rotation and herbicide use as well as increase the use of nonchemical measures to control weeds. Nevertheless, despite the difficulties posed by resistant weeds and increased regulatory hurdles, new screening tools promise to provide an upsurge of potential herbicide leads. Our industry urgently needs to supply agriculture with new, effective resistance-breaking herbicides along with strategies to sustain their utility. PMID:25104721

  15. Broad resistance to acetohydroxyacid-synthase-inhibiting herbicides in feral radish (Raphanus sativus L.) populations from Argentina.

    PubMed

    Pandolfo, Claudio E; Presotto, Alejandro; Moreno, Florencia; Dossou, Ida; Migasso, Juan P; Sakima, Ernesto; Cantamutto, Miguel

    2016-02-01

    Soon after the commercial release of sunflower cultivars resistant to imidazolinone herbicides, several uncontrolled feral radish (Raphanus sativus L.) populations were found in south-eastern Buenos Aires, Argentina. These populations were studied in field, glasshouse and laboratory experiments aiming to characterise their resistance profile and to develop management tools. Three feral radish accessions were highly resistant to ten active ingredients of five families of acetohydroxyacid synthase (AHAS)-inhibiting herbicides. Sequence analysis of the AHAS gene detected a Trp574Leu mutation in all resistant accessions. One accession with an intermediate level of resistance was heterozygous for this mutation, probably owing to gene exchange with a susceptible subpopulation located in the field margin. Herbicide-resistant and herbicide-susceptible radish could be controlled in sunflower by alternative herbicides. This is the first report of feral radish with resistance to herbicides belonging to all the AHAS-inhibiting herbicide families, conferred by Trp574Leu mutation in the AHAS gene. An appropriate herbicide rotation with alternative herbicides such as fluorochloridone or aclonifen and an increase in the diversity of cropping systems are important for minimising the prevalence of these biotypes. © 2015 Society of Chemical Industry.

  16. Influence of an experimental herbicide on soil nitrogen-fixing bacteria and other microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, L.M. Jr.; Hedrick, H.G.

    Influence of an experimental herbicide on two isolates of soil nitrogen-fixing bacteria Rhizobium japonicum 3I1b110 and Azotobacter vinelandii ATCC 12837, was determined using a bioresponse assay, thin-layer chromatographic analysis, and changes in viable cells on the herbicide as the sole source of organic carbon. Seven bacterial and nine fungus isolates were also found by a soil enrichment technique to show utilization of the herbicide. A. vinelandii showed stimulation of growth in the first 4 days of exposure on the herbicide at 1,000 ppM. The herbicide then became toxic or was metabolized into toxic by-products. R. japonicum showed utilization of themore » herbicide by changes in growth rate as influenced by the inoculum concentration, the thoroughness of inoculum washing, and the concentration of herbicide. Using TLC assay techniques, the herbicide was found to be depleted in laboratory experiments by R. japonicum following 10 days of growth, without detectable nonmetabolic by-products. These findings suggested that the addition of the experimental herbicide to soils planted with bean crops could possibly influence the metabolic activity of R. japonicum as a symbiotic nitrogen-fixing bacterium. 5 figures, 1 table.« less

  17. Herbicides as weed control agents: state of the art: II. Recent achievements.

    PubMed

    Kraehmer, Hansjoerg; van Almsick, Andreas; Beffa, Roland; Dietrich, Hansjoerg; Eckes, Peter; Hacker, Erwin; Hain, Ruediger; Strek, Harry John; Stuebler, Hermann; Willms, Lothar

    2014-11-01

    In response to changing market dynamics, the discovery of new herbicides has declined significantly over the past few decades and has only seen a modest upsurge in recent years. Nevertheless, the few introductions have proven to be interesting and have brought useful innovation to the market. In addition, herbicide-tolerant or herbicide-resistant crop technologies have allowed the use of existing nonselective herbicides to be extended into crops. An increasing and now major challenge is being posed by the inexorable increase in biotypes of weeds that are resistant to herbicides. This problem is now at a level that threatens future agricultural productivity and needs to be better understood. If herbicides are to remain sustainable, then it is a must that we adopt diversity in crop rotation and herbicide use as well as increase the use of nonchemical measures to control weeds. Nevertheless, despite the difficulties posed by resistant weeds and increased regulatory hurdles, new screening tools promise to provide an upsurge of potential herbicide leads. Our industry urgently needs to supply agriculture with new, effective resistance-breaking herbicides along with strategies to sustain their utility. © 2014 American Society of Plant Biologists. All Rights Reserved.

  18. SulE, a Sulfonylurea Herbicide De-Esterification Esterase from Hansschlegelia zhihuaiae S113

    PubMed Central

    Hang, Bao-Jian; Hong, Qing; Xie, Xiang-Ting; Huang, Xing; Wang, Cheng-Hong; Li, Shun-Peng

    2012-01-01

    De-esterification is an important degradation or detoxification mechanism of sulfonylurea herbicide in microbes and plants. However, the biochemical and molecular mechanisms of sulfonylurea herbicide de-esterification are still unknown. In this study, a novel esterase gene, sulE, responsible for sulfonylurea herbicide de-esterification, was cloned from Hansschlegelia zhihuaiae S113. The gene contained an open reading frame of 1,194 bp, and a putative signal peptide at the N terminal was identified with a predicted cleavage site between Ala37 and Glu38, resulting in a 361-residue mature protein. SulE minus the signal peptide was synthesized in Escherichia coli BL21 and purified to homogeneity. SulE catalyzed the de-esterification of a variety of sulfonylurea herbicides that gave rise to the corresponding herbicidally inactive parent acid and exhibited the highest catalytic efficiency toward thifensulfuron-methyl. SulE was a dimer without the requirement of a cofactor. The activity of the enzyme was completely inhibited by Ag+, Cd2+, Zn2+, methamidophos, and sodium dodecyl sulfate. A sulE-disrupted mutant strain, ΔsulE, was constructed by insertion mutation. ΔsulE lost the de-esterification ability and was more sensitive to the herbicides than the wild type of strain S113, suggesting that sulE played a vital role in the sulfonylurea herbicide resistance of the strain. The transfer of sulE into Saccharomyces cerevisiae BY4741 conferred on it the ability to de-esterify sulfonylurea herbicides and increased its resistance to the herbicides. This study has provided an excellent candidate for the mechanistic study of sulfonylurea herbicide metabolism and detoxification through de-esterification, construction of sulfonylurea herbicide-resistant transgenic crops, and bioremediation of sulfonylurea herbicide-contaminated environments. PMID:22247165

  19. NOVEL HERBICIDES

    EPA Science Inventory

    Low-dose, high-potency herbicides are defined as those herbicides with a maximum label application rate of 0.5 pounds of active ingredient per acre. Several classes of chemicals fall into this category, including the acetolactate synthase (ALSase) inhibitor herbicides, imidazoli...

  20. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    USGS Publications Warehouse

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    Herbicide use has increased dramatically around the world over the past 6 decades (Gianessi and Reigner, 2007). Few herbicides were in use in the 1950s. However, by 2001 approximately 1.14 billion kilograms of herbicides were applied globally for the control of undesireable vegetation in agricultural, silvicultural, lawncare, aquacultural, and irrigation/recreational water management activities (Kiely et al., 2004). Twenty-eight percent of the total mass of herbicides is applied in the United States, with the remaining 72 percent being applied elsewhere around the globe (Kiely et al., 2004). Herbicides represent 36% of global pesticide use, followed by insecticides (25%), fungicides (10%) and other chemical classes (Kiely et al., 2004). Agricultural production accounts for approximately 90% of herbicide use in the U.S. (Kiely et al., 2004). Gianessi and Reigner (2007) indicated that herbicides are routinely used on more than 90% of the area designated for large commercial crops including corn, soybeans, cotton, sugar beets, peanuts, and rice. Increased farm mechanization, technological advancements in production of inexpensive sources of inorganic nitrogen fertilizer (e.g., anhydrous ammonia), and conversion of forest, grassland, and wetland habitats to cropland has led to a tremendous increase in global food production over the past half-century. Herbicides have augmented advances in large-scale agricultural systems and have largely replaced mechanical and hand-weeding control mechanisms (Gianessi and Reigner, 2007). The wide-spread use of herbicides in agriculture has resulted in frequent chemical detections in surface and groundwaters (Gilliom, 2007). The majority of herbicides used are highly water soluble and are therefore prone to runoff from terrestrial environments. In additon, spray drift and atmospheric deposition can contribute to herbicide contamination of aquatic environments. Lastly, selected herbicides are deliberately applied to aquatic environments for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  1. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    USGS Publications Warehouse

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    Agricultural production accounts for approximately 90% of herbicide use in the U.S. (Kiely et al., 2004). Gianessi and Reigner (2007) indicated that herbicides are routinely used on more than 90% of the area designated for large commercial crops including corn, soybeans, cotton, sugar beets, peanuts, and rice. Increased farm mechanization, technological advancements in production of inexpensive sources of inorganic nitrogen fertilizer (e.g., anhydrous ammonia), and conversion of forest, grassland, and wetland habitats to cropland has led to a tremendous increase in global food production over the past half-century. Herbicides have augmented advances in large-scale agricultural systems and have largely replaced mechanical and hand-weeding control mechanisms (Gianessi and Reigner, 2007). The wide-spread use of herbicides in agriculture has resulted in frequent chemical detections in surface and groundwaters (Gilliom, 2007). The majority of herbicides used are highly water soluble and are therefore prone to runoff from terrestrial environments. In additon, spray drift and atmospheric deposition can contribute to herbicide contamination of aquatic environments. Lastly, selected herbicides are deliberately applied to aquatic environments for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects.

  2. DNA analysis of herbarium Specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides.

    PubMed

    Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno

    2013-01-01

    Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.

  3. Intelligent herbicide application system for reduced herbicide vegetation control : phase II-commercialization

    DOT National Transportation Integrated Search

    2008-12-01

    This report describes the development of a commercial prototype intelligent herbicide application system : (IHAS). The improved design incorporates a parallel add-on type fluid handling system to allow existing : variable-rate herbicide injecti...

  4. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    PubMed

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Release behavior and bioefficacy of imazethapyr formulations based on biopolymeric hydrogels.

    PubMed

    Kumar, Vikas; Singh, Anupama; Das, T K; Sarkar, Dhruba Jyoti; Singh, Shashi Bala; Dhaka, Rashmi; Kumar, Anil

    2017-06-03

    Controlled release formulations of imazethapyr herbicide have been developed employing guar gum-g-cl-polyacrylate/bentonite clay hydrogel composite (GG-HG) and guar gum-g-cl-PNIPAm nano hydrogel (GG-NHG) as carriers, to assess the suitability of biopolymeric hydrogels as controlled herbicide release devices. The kinetics of imazethapyr release from the developed formulations was studied in water and it revealed that the developed formulations of imazethapyr behaved as slow release formulations as compared to commercial formulation. The calculated diffusion exponent (n) values showed that Fickian diffusion was the predominant mechanism of imazethapyr release from the developed formulations. Time for release of half of the loaded imazethapyr (t 1/2 ) ranged between 0.06 and 4.8 days in case of GG-NHG and 4.4 and 12.6 days for the GG-HG formulations. Weed control index (WCI) of GG-HG and GG-NHG formulations was similar to that of the commercial formulation and the herbicidal effect was observed for relatively longer period. Guar gum-based biopolymeric hydrogels in both macro and nano particle size range can serve as potential carriers in developing slow release herbicide formulations.

  6. Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis.

    PubMed

    Faus, Isabel; Zabalza, Ana; Santiago, Julia; Nebauer, Sergio G; Royuela, Mercedes; Serrano, Ramon; Gadea, Jose

    2015-01-21

    The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition.

  7. Sublethal toxicity of Roundup to immunological and molecular aspects of Biomphalaria alexandrina to Schistosoma mansoni infection.

    PubMed

    Mohamed, Azza H

    2011-05-01

    The present study was performed to elucidate the cellular mechanisms of Biomphalaria alexandrina snails hemocytes against sublethal concentration (10 mg/L) of herbicide Roundup (48% Glyphosate) and/or Schistosoma mansoni infection during 7 days of exposure. Obtained results indicated that herbicide treatment and/or infection led to significant increase (P<0.05) in total hemocytes count during exposure period. Examination of hemocytes monolayers resulted in observation of 3 morphologically different cell types, round small, hyalinocytes and spreading hemocytes. Spreading hemocytes are the dominant, more responsive and highly phagocytic cell type in all experimental groups. Moreover, the exposure to herbicide, infection or both together led to a significant increase (P<0.05) of in vitro phagocytic activity against yeast cells during 7 days of exposure. In addition, flow cytometric analysis of cell cycle and comet assay, resulted in DNA damage in B. alexandrina hemocytes exposed to herbicide and/or S. mansoni infection when compared to control group. The immunological responses as well as molecular aspects in B. alexandrina snails have been proposed as biomarkers of exposure to environmental pollutants. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Controlling weeds with fungi, bacteria and viruses: a review

    PubMed Central

    Harding, Dylan P.; Raizada, Manish N.

    2015-01-01

    Weeds are a nuisance in a variety of land uses. The increasing prevalence of both herbicide resistant weeds and bans on cosmetic pesticide use has created a strong impetus to develop novel strategies for controlling weeds. The application of bacteria, fungi and viruses to achieving this goal has received increasingly great attention over the last three decades. Proposed benefits to this strategy include reduced environmental impact, increased target specificity, reduced development costs compared to conventional herbicides and the identification of novel herbicidal mechanisms. This review focuses on examples from North America. Among fungi, the prominent genera to receive attention as bioherbicide candidates include Colletotrichum, Phoma, and Sclerotinia. Among bacteria, Xanthomonas and Pseudomonas share this distinction. The available reports on the application of viruses to controlling weeds are also reviewed. Focus is given to the phytotoxic mechanisms associated with bioherbicide candidates. Achieving consistent suppression of weeds in field conditions is a common challenge to this control strategy, as the efficacy of a bioherbicide candidate is generally more sensitive to environmental variation than a conventional herbicide. Common themes and lessons emerging from the available literature in regard to this challenge are presented. Additionally, future directions for this crop protection strategy are suggested. PMID:26379687

  9. Herbicide Exposure, Vietnam Service, and Hypertension Risk in Army Chemical Corps Veterans.

    PubMed

    Cypel, Yasmin S; Kress, Amii M; Eber, Stephanie M; Schneiderman, Aaron I; Davey, Victoria J

    2016-11-01

    We examined hypertension risk in Army Chemical Corps (ACC) veterans who sprayed defoliant in Vietnam. We analyzed data from the 2013 health survey of 3086 ACC veterans and investigated the association between self-reported physician-diagnosed-hypertension (SRH) and herbicide-spray-history adjusting for Vietnam-service-status, rank, age, tobacco/alcohol use, race, and body mass index (BMI). Spray-history was verified against serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (n = 636). SRH was confirmed by blood pressure (BP) measurement by trained medical technicians and medical record reviews. Herbicide-spray-history (ORadjusted[95%confidence interval {CI}] = 1.74[1.44,2.11]) and Vietnam-service-status (ORadjusted = 1.26[1.05,1.53]) were significantly associated with SRH. The association was highest when comparing Vietnam-service-sprayers to non-Vietnam-service-nonsprayers (ORadjusted = 2.21[1.76,2.77]). Serum TCDD was highest for Vietnam-service-sprayers. Mean systolic BPs were significantly higher among veterans with SRH than those without (P ≤ 0.001). Medical records and SRH overall agreement was 89%. Occupational herbicide exposure history and Vietnam-service-status were significantly associated with hypertension risk.

  10. Metolachlor sorption and degradation in soil amended with fresh and aged biochar

    USDA-ARS?s Scientific Manuscript database

    Addition of organic amendments such as biochar to soils can influence pesticide sorption-desorption processes, and in turn, pesticide availability and biodegradation. Availability is affected by both the physical and chemical properties of soils and pesticides, as well as soil-pesticide contact time...

  11. Delivery of calibration workshops covering herbicide application equipment : final report.

    DOT National Transportation Integrated Search

    2014-03-31

    Proper herbicide sprayer set-up and calibration are critical to the success of the Oklahoma Department of Transportation (ODOT) herbicide program. Sprayer system set-up and calibration training is provided in annual continuing education herbicide wor...

  12. Herbicide Resistant Weed Management

    USDA-ARS?s Scientific Manuscript database

    Metribuzin and rimsulfuron are the only two herbicides registered for postemergence broadleaf weed control in potatoes, and represent the two classes of herbicides, triazines and ALS inhibitors, with the most reported cases of resistant weeds world wide. Other postemergence grass herbicides belongin...

  13. Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities?

    PubMed

    van Wijngaarden, René P A; Arts, Gertie H P

    2018-01-01

    In the aquatic tier-1 effect assessment for plant protection products with an herbicidal mode of action in Europe, it is usually algae and/or vascular plants that determine the environmental risks. This tier includes tests with at least 2 algae and 1 macrophyte (Lemna). Although such tests are considered to be of a chronic nature (based on the duration of the test in relation to the life cycle of the organism), the measurement endpoints derived from the laboratory tests with plants (including algae) and used in the first-tier effect assessment for herbicides are acute effect concentrations affecting 50% of the test organisms (EC50 values) and not no-observed-effect concentrations (NOECs) or effect concentrations affecting 10% of the test organisms (EC10) values. Other European legislative frameworks (e.g., the Water Framework Directive) use EC10 values. The present study contributes to a validation of the tiered herbicide risk assessment approach by comparing the standard first-tier effect assessment with results of microcosm and mesocosm studies. We evaluated EC50 and EC10 values for standard test algae and macrophytes based on either the growth rate endpoint (E r C50) or the lowest available endpoint for growth rate or biomass/yield (E r /E y C50). These values were compared with the regulatory acceptable concentrations for the threshold option as derived from microcosm and mesocosm studies. For these studies, protection is maintained if growth rate is taken as the regulatory endpoint instead of the lowest value of either growth rate or biomass/yield in conjunction with the standard assessment factor of 10. Based on a limited data set of 14 herbicides, we did not identify a need to change the current practice. Environ Toxicol Chem 2018;37:175-183. © 2017 SETAC. © 2017 SETAC.

  14. Herbicide residues in grapes and wine.

    PubMed

    Ying, G G; Williams, B

    1999-05-01

    The persistence of several common herbicides from grapes to wine has been studied. Shiraz, Tarrango and Doradillo grapes were separately sprayed with either norflurazon, oxyfluorfen, oxadiazon or trifluralin-persistent herbicides commonly used for weed control in vineyards. The dissipation of the herbicides from the grapes was followed for 28 days following treatment. Results showed that norflurazon was the most persist herbicide although there were detectable residues of all the herbicides on both red and white grapes at the end of the study period. The penetration of herbicides into the flesh of the grapes was found to be significantly greater for white grapes than for red grapes. Small-lot winemaking experiments showed that norflurazon persisted at levels close to the initial concentration through vinification and into the finished wine. The other herbicides degraded, essentially via first-order kinetics, within the period of "first fermentation" and had largely disappeared after 28 days. The use of charcoal together with filter pads, or with diatomaceous earth was shown to be very effective in removing herbicide residues from the wine. A 5% charcoal filter removed more than 96% of the norflurazon persisting in the treated wine.

  15. Occurrence of selected herbicides and herbicide degradation products in Iowa's Ground Water, 1995

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.; Goolsby, D.A.; Sneck-Fahrer, D. A.; Thurman, E.M.

    1997-01-01

    The occurrence of herbicide compounds had a significant, inverse relation to well depth and a significant, positive relation to dissolved-oxygen concentration. It is felt that both well depth and dissolved oxygen are acting as rough surrogates to ground-water age, with younger ground water being more likely to contain herbicide compounds. The occurrence of herbicide compounds was substantially different among the major aquifer types across Iowa, being detected in 82.5% of the alluvial, 81.8% of the bedrock/ karst region, 40.0% of the glacial-drift, and 25.0% of the bedrock/nonkarst region aquifers. The observed distribution was partially attributed to variations in general ground-water age among these aquifer types. A significant, inverse relation was determined between total herbicide compound concentrations in ground water and the average soil slope within a 2-km radius of sampled wells. Steeper soil slopes may increase the likelihood of surface runoff occurring rather than ground-water infiltration–decreasing the transport of herbicide compounds to ground water. As expected, a significant positive relation was determined between intensity of herbicide use and herbicide concentrations in ground water.

  16. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    PubMed

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Population modeling for pesticide risk assessment of threatened species-A case study of a terrestrial plant, Boltonia decurrens.

    PubMed

    Schmolke, Amelie; Brain, Richard; Thorbek, Pernille; Perkins, Daniel; Forbes, Valery

    2017-02-01

    Although population models are recognized as necessary tools in the ecological risk assessment of pesticides, particularly for species listed under the Endangered Species Act, their application in this context is currently limited to very few cases. The authors developed a detailed, individual-based population model for a threatened plant species, the decurrent false aster (Boltonia decurrens), for application in pesticide risk assessment. Floods and competition with other plant species are known factors that drive the species' population dynamics and were included in the model approach. The authors use the model to compare the population-level effects of 5 toxicity surrogates applied to B. decurrens under varying environmental conditions. The model results suggest that the environmental conditions under which herbicide applications occur may have a higher impact on populations than organism-level sensitivities to an herbicide within a realistic range. Indirect effects may be as important as the direct effects of herbicide applications by shifting competition strength if competing species have different sensitivities to the herbicide. The model approach provides a case study for population-level risk assessments of listed species. Population-level effects of herbicides can be assessed in a realistic and species-specific context, and uncertainties can be addressed explicitly. The authors discuss how their approach can inform the future development and application of modeling for population-level risk assessments of listed species, and ecological risk assessment in general. Environ Toxicol Chem 2017;36:480-491. © 2016 SETAC. © 2016 SETAC.

  18. Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient.

    PubMed

    Dorigo, Ursula; Bourrain, Xavier; Bérard, Annette; Leboulanger, Christophe

    2004-01-05

    A study was undertaken to investigate the environmental impact of herbicides on natural communities of freshwater periphyton and phytoplankton in the river Ozanne and in related nearby water reservoirs, including both pristine and pesticide- (atrazine and isoproturon) contaminated stations. The microalgal toxicity of both herbicides was investigated by short-term studies, using the in vivo fluorescence pattern to perform dose-effect experiments. The taxonomic composition of the communities sampled was assessed by microscopy and by HPLC pigment analysis. The EC50 (periphyton) or EC125 (phytoplankton) values, calculated using in vivo fluorescence endpoints, increased with the herbicide concentration found in the water. In contrast, the structure of the algal communities (periphyton) inhabiting the contaminated stations seemed to be permanently affected when compared to the reference community. A 'memory effect' could be detected, both in herbicide sensitivity and in the structure of periphytic communities that persisted even when peak contaminations had disappeared. This study shows that the response of algal communities is likely to reflect past selection pressures, and suggests that the function and structure of a community could both be modified by the persistent or repeated presence of microcontaminants in natural environments. We could use short-term ecotoxicological tests on freshwater microalgae to assess the effects of past temporary contaminations by agricultural pesticides, and combining this with diversity indices could make it possible to assess the ecotoxicological risk of herbicide contamination even when a complete chemical analysis of the contamination is not feasible.

  19. Multiple Resistance Evolution in Bipyridylium-Resistant Epilobium ciliatum After Recurrent Selection.

    PubMed

    Tahmasebi, Berhoz K; Alcántara-de la Cruz, Ricardo; Alcántara, Esteban; Torra, Joel; Domínguez-Valenzuela, José A; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; De Prado, Rafael

    2018-01-01

    The use of herbicides with different modes of action is the primary strategy used to control weeds possessing resistance to a single mechanism of action (MOA). However, this practice can lead to selection for generalist resistance mechanisms and may cause resistance to all MOAs. In this research, we characterized the resistance to diquat/paraquat (bipyridiliums) in an Epilobium ciliatum biotype (R1) collected in an olive orchard from Chile, where alternatives herbicides (2,4-D, glyphosate, glufosinate, flazasulfuron and pyraflufen-ethyl) with different MOAs were used, but they have also showed failure in controlling this species. Because the resistance/susceptibility patterns of the R1 biotype to glufosinate, 2,4-D and pyraflufen-ethyl were not clear, a recurrent resistance selection was carried out in field and greenhouse using these herbicides on R1 plants for three generations (R2 biotype). One biotype that was never treated with herbicides (S) was included as control. Results indicated that the S biotype was controlled at the field dose of all herbicides tested. The biotype R1 exhibited resistance to diquat, paraquat and flazasulfuron and natural tolerance to glyphosate. The R2 biotype displayed resistance to glufosinate, 2,4-D and pyraflufen-ethyl with LD 50 (herbicide dose to kill 50% of plants) values higher than field doses in all assays. Physiological and biochemical studies determined the resistance to diquat of the R1 biotype, which was due to impaired translocation. The resistance to flazasulfuron in the R1 and R2 biotypes was confirmed by the low sensitivity of the acetolactate synthase (ALS) activity compared to the S biotype. The similar accumulation of shikimate in treated S, R1, and R2 plants with glyphosate supported the existence of innate tolerance to this herbicide in E. ciliatum . Resistance to glufosinate, 2,4-D and pyraflufen-ethyl in the R2 biotype, acquired after recurrent selection, was determined by low sensitivity of the glutamine synthetase, low accumulation of ethylene and protoporphyrinogen IX oxidase, respectively, in comparison to the S biotype. Epilobium ciliatum from Chilean olive orchards had resistance to only two MAOs (photosystem I and ALS inhibitors), but resistance to five MOAs could occur in the next cropping seasons, if alternatives to weed management, other than herbicides, are not included.

  20. Toxicological effects of the herbicide oxyfluorfen on acetylcholinesterase in two fish species: Oreochromis niloticus and Gambusia affinis.

    PubMed

    Hassanein, Hamdy M A

    2002-01-01

    The alterations of the AChE activity in the brains of two fresh water fishes; Oreochromis niloticus and Gambusia affinis were measured after exposure to acute, sub-acute and chronic concentrations from the widely used herbicide; oxyfluorfen. Bioassays were conducted under controlled laboratory conditions. The used concentrations were acute: LC50 for 6 days, sub-acute 1/3 LC50 for 15 days and chronic 1/10 LC50 for 30 days. The obtained results showed marked inhibitory effects of the herbicide on the activity of AChE in both fishes. However, these effects were more pronounced in O. niloticus where the decline in the enzyme activity ranged from 19.7 to 81.28% while in case of G. affinis it ranged from 5.7 to 36.7%. These findings demonstrate that G. affinis is most tolerant to oxyfluorfen toxicity compared with O. niloticus.

Top