Science.gov

Sample records for heroin-induced brain damage

  1. Right Hemisphere Brain Damage

    MedlinePlus

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  2. Coping with brain damage

    NASA Technical Reports Server (NTRS)

    Waring, W.

    1974-01-01

    Two neurological disorders, cerebral palsy, and traumatic brain damage as from an accident, are considered. The discussion covers the incidence of disabilities, their characteristics, and what is now being done to deal with them, particularly in reference to areas in which the capabilities of the engineer can be effectively applied.

  3. Multiple cerebral infarctions in a young patient with heroin-induced hypereosinophilic syndrome.

    PubMed

    Bolz, Jan; Meves, Saskia H; Kara, Kaffer; Reinacher-Schick, Anke; Gold, Ralf; Krogias, Christos

    2015-09-15

    Hypereosinophilic syndrome represents a rare cause for cerebral infarctions and inflammatory neurological disorders. Various possible pathogenic mechanisms for cerebral infarctions have already been discussed. Complex mechanisms including a local hypercoagulability by eosinophilic granules as well as a direct damage to endothelial cells, leading to alterations of the microcirculation seem to be involved. The changing pattern of heroin use to inhalation/sniffing leading to an increasing abuse may cause a rise in the prevalence of Heroin induced eosinophilia, as it has been reported in a case of eosinophilic pneumonia associated with heroin inhalation. To our knowledge, the present case report displays the first description of stroke in the setting of heroin induced hypereosinophilia. Thus, besides usual vasoconstriction, HES should be considered in drug-induced cerebral infarctions.

  4. Selective effects of a morphine conjugate vaccine on heroin and metabolite distribution and heroin-induced behaviors in rats.

    PubMed

    Raleigh, M D; Pravetoni, M; Harris, A C; Birnbaum, A K; Pentel, P R

    2013-02-01

    Morphine conjugate vaccines have effectively reduced behavioral effects of heroin in rodents and primates. To better understand how these effects are mediated, heroin and metabolite distribution studies were performed in rats in the presence and absence of vaccination. In non-vaccinated rats 6-monoacetylmorphine (6-MAM) was the predominant opioid in plasma and brain as early as 1 minute after i.v. administration of heroin and for up to 14 minutes. Vaccination with morphine conjugated to keyhole limpet hemocyanin (M-KLH) elicited high titers and concentrations of antibodies with high affinity for heroin, 6-MAM, and morphine. Four minutes after heroin administration vaccinated rats showed substantial retention of all three opioids in plasma compared to controls and reduced 6-MAM and morphine, but not heroin, distribution to brain. Administration of 6-MAM rather than heroin in M-KLH vaccinated rats showed a similar drug distribution pattern. Vaccination reduced heroin-induced analgesia and blocked heroin-induced locomotor activity throughout 2 weeks of repeated testing. Higher serum opioid-specific antibody concentrations were associated with higher plasma opioid concentrations, lower brain 6-MAM and morphine concentrations, and lower heroin-induced locomotor activity. Serum antibody concentrations over 0.2 mg/ml were associated with substantial effects on these measures. These data support a critical role for 6-MAM in mediating the early effects of i.v. heroin and suggest that reducing 6-MAM concentration in brain is essential to the efficacy of morphine conjugate vaccines.

  5. Selective Effects of a Morphine Conjugate Vaccine on Heroin and Metabolite Distribution and Heroin-Induced Behaviors in Rats

    PubMed Central

    Pravetoni, M.; Harris, A.C.; Birnbaum, A.K.; Pentel, P.R.

    2013-01-01

    Morphine conjugate vaccines have effectively reduced behavioral effects of heroin in rodents and primates. To better understand how these effects are mediated, heroin and metabolite distribution studies were performed in rats in the presence and absence of vaccination. In non-vaccinated rats 6-monoacetylmorphine (6-MAM) was the predominant opioid in plasma and brain as early as 1 minute after i.v. administration of heroin and for up to 14 minutes. Vaccination with morphine conjugated to keyhole limpet hemocyanin (M-KLH) elicited high titers and concentrations of antibodies with high affinity for heroin, 6-MAM, and morphine. Four minutes after heroin administration vaccinated rats showed substantial retention of all three opioids in plasma compared to controls and reduced 6-MAM and morphine, but not heroin, distribution to brain. Administration of 6-MAM rather than heroin in M-KLH vaccinated rats showed a similar drug distribution pattern. Vaccination reduced heroin-induced analgesia and blocked heroin-induced locomotor activity throughout 2 weeks of repeated testing. Higher serum opioid-specific antibody concentrations were associated with higher plasma opioid concentrations, lower brain 6-MAM and morphine concentrations, and lower heroin-induced locomotor activity. Serum antibody concentrations over 0.2 mg/ml were associated with substantial effects on these measures. These data support a critical role for 6-MAM in mediating the early effects of i.v. heroin and suggest that reducing 6-MAM concentration in brain is essential to the efficacy of morphine conjugate vaccines. PMID:23220743

  6. Boxing and chronic brain damage.

    PubMed

    Stiller, J W; Weinberger, D R

    1985-06-01

    A chronic, and at times, progressive neurologic syndrome associated with boxing has been recognized for some time by boxing fans and people involved with the sport. Since Martland's first description of the syndrome in 1929, there has been only one randomly selected study of ex-boxers, that of Roberts, which showed a 17 per cent prevalence of this syndrome among boxers who fought between 1929 and 1955. This syndrome can be progressive but often is not. Furthermore, the extent of occupational exposure is probably a significant risk factor. Because of this, it would be expected that the prevalance of the syndrome in the modern boxer, as well as the amateur, would be significantly less than during the first half of the century, and, indeed, several studies appear to support this. Recent studies provide evidence that brain damage does exist in modern boxers and suggests that "subclinical" brain damage is likely to be more prevalent than obvious clinical dysfunction. There is clearly a discrepancy between subclinical evidence of neurologic involvement (for example, an abnormal CT scan) and signs of clinical neurologic dysfunction (for example, clinical exam and neuropsychological testing). The latter tend to show less frequent and consistent evidence of brain damage in boxers than does the CT scan. Although it is tempting to assume that an abnormal CT scan presages the development of neurologic dysfunction, it is not clear that this is the case. The prevalence of the syndrome, risk for progression to functional deficit, warning signs, and the natural history cannot be defined at this time. The only way to better define these parameters would be a controlled prospective study, which has yet to be undertaken.

  7. Air pollution and brain damage.

    PubMed

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  8. Brain Training for Cancer Survivors' Nerve Damage

    MedlinePlus

    ... html Brain Training for Cancer Survivors' Nerve Damage Neurofeedback seems to offers relief from chemo-induced pain, ... brain waves with a type of training called neurofeedback seems to help cancer survivors ease symptoms of ...

  9. Brain Damage in Deaf Vocational Rehabilitation Clients.

    ERIC Educational Resources Information Center

    Getz, Marc; Vernon, McCay

    1986-01-01

    Screening of 54 deaf vocational clients by the Bender-Gestalt and other tests indicated the likely presence of significantly more brain damage than among the hearing population with a particularly high correlation between low IQ and brain damage in the deaf population. (DB)

  10. Brain damage after intrathecal methotrexate.

    PubMed Central

    Smith, B

    1975-01-01

    Ten brains from leukaemic patients given intrathecal methotrexate and 10 from leukaemic patients without intrathecal therapy have been examined. Three of the methodtrexate treated patients appear to have died from their therapy. The histological changes consisted of destruction of oligodendrocytes, sometimes complete over large areas, and sometimes relatively slight. All the patients who survived long enough after treatment showed severe astrocytosis. Images PMID:1058923

  11. Brain Damage in School Age Children.

    ERIC Educational Resources Information Center

    Haywood, H. Carl, Ed.

    The product of a professional workshop, 10 papers discuss brain damage. An introduction to clinical neuropsychology is presented by H. Carl Haywood. A section on neurological foundations includes papers on the organization of the central nervous system by Jack T. Tapp and Lance L. Simpson, on epilepsy by Angela T. Folsom, and on organic language…

  12. Cognitive Development in Children with Brain Damage.

    ERIC Educational Resources Information Center

    Bortner, Morton

    Presented is a report on a cross-sectional and longitudinal study concerned with the course of intellectual development in 210 children (6-12 years old) educationally designated as brain damaged (learning disabled and/or behavior problems) and assigned to special school placement. The report is divided into four sections which focus on…

  13. Heart Failure Protein May Signal Early Brain Damage

    MedlinePlus

    ... 162447.html Heart Failure Protein May Signal Early Brain Damage Higher levels indicated potential trouble, study showed ... a specific heart disease protein are associated with brain damage, a new study suggests. N-terminal Pro- ...

  14. Musical anhedonia after focal brain damage.

    PubMed

    Belfi, Amy M; Evans, Erin; Heskje, Jonah; Bruss, Joel; Tranel, Daniel

    2017-03-01

    People listen to music because it is pleasurable. However, there are individual differences in the reward value of music. At the extreme low end of this continuum, individuals who derive no pleasure from music are said to have 'musical anhedonia.' Cases of acquired musical anhedonia following focal brain damage are rare, with only a handful having been reported in the scientific literature. Here, we surveyed a large sample of patients with focal brain damage to identify the frequency, specificity, and neural correlates of acquired musical anhedonia. Participants completed the Musical anhedonia Questionnaire and the Barcelona Music Reward Questionnaire (Mas-Herrero et al., 2013) to assess changes in musical enjoyment and reward following brain injury. Neuroanatomical data were analyzed with a proportional MAP-3 method to create voxelwise lesion proportion difference maps. No clear or consistent neuroanatomical correlates of musical anhedonia were identified. One patient with damage to the right-hemisphere putamen and internal capsule displayed specific and severe acquired musical anhedonia. These findings indicate that acquired musical anhedonia is very uncommon, a result which is consistent with the fact that only a small number of such cases have been reported in the literature. This rarity could have positive implications for the therapeutic potentialities of music in patients with severe neurological disorders.

  15. Medical Perspectives on Brain Damage and Development. Revised.

    ERIC Educational Resources Information Center

    McCrae, Marcia Q.

    The author describes damage and normal development of the brain, as well as assessment and intervention with brain-damaged children. After a brief introduction on the complex and delicate process of brain development and a review of incidence, aspects of etiology such as genetic and postnatal causes are discussed. Brain development is examined…

  16. Animal imaging studies of potential brain damage

    NASA Astrophysics Data System (ADS)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  17. Left dorsomedial frontal brain damage is associated with insomnia.

    PubMed

    Koenigs, Michael; Holliday, Jessica; Solomon, Jeffrey; Grafman, Jordan

    2010-11-24

    Insomnia is a common sleep disorder, yet its pathophysiological basis remains poorly understood. Studying a group of 192 patients with focal brain lesions, we show a significant association between insomnia and left dorsomedial prefrontal damage. Our findings are the first to demonstrate a link between insomnia and a discrete locus of brain damage, providing novel insight into the neurobiological mechanisms of sleep maintenance.

  18. BRAIN DAMAGE IN CHILDREN, THE BIOLOGICAL AND SOCIAL ASPECTS.

    ERIC Educational Resources Information Center

    BIRCH, HERBERT G., ED.

    PAPERS AND DISCUSSION SUMMARIES ARE PRESENTED FROM A CONFERENCE ON THE BIOLOGICAL AND SOCIAL PROBLEMS OF CHILDHOOD BRAIN DAMAGE, HELD AT THE CHILDREN'S HOSPITAL OF PHILADELPHIA IN NOVEMBER 1962. A VARIETY OF DISCIPLINES IS REPRESENTED, AND THE FOLLOWING TOPICS ARE CONSIDERED--(1) "THE PROBLEM OF 'BRAIN DAMAGE' IN CHILDREN" BY HERBERT G. BIRCH, (2)…

  19. BRAIN DAMAGE AND BEHAVIOR, A CLINICAL-EXPERIMENTAL STUDY.

    ERIC Educational Resources Information Center

    SCHULMAN, JEROME L.; AND OTHERS

    THIS MONOGRAPH RELATES RESULTS OF A STUDY WHICH WAS UNDERTAKEN TO ATTEMPT TO ANSWER THREE QUESTIONS--TO WHAT EXTENT DO EIGHT TECHNIQUES COMMONLY USED TO DIAGNOSE BRAIN DAMAGE CO-VARY, TO WHAT EXTENT DO THE VARIOUS BEHAVIORAL SYMPTOMS THAT OCCUR WITH BRAIN DAMAGE CO-VARY, AND TO WHAT EXTENT DO THE DIAGNOSTIC MEASURES, SINGLY OR IN GROUPS, PREDICT…

  20. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  1. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain?

    PubMed

    Harper, C

    1998-02-01

    The aim of this review is to identify neuropathological changes that are directly related to the long-term use of excessive amounts of alcohol (ethanol). There is still debate as to whether alcohol per se causes brain damage. The main problem has been to identify those lesions caused by alcohol itself and those caused by other common alcohol-related factors, principally thiamin deficiency. Careful selection and classification of alcoholic cases into those with and without these complications, together with detailed quantitative neuropathological analyses, has provided us with useful data. There is brain shrinkage in uncomplicated alcoholics which can largely be accounted for by loss of white matter. Some of this damage appears to be reversible. However, alcohol-related neuronal loss has been documented in specific regions of the cerebral cortex (superior frontal association cortex), hypothalamus (supraoptic and paraventricular nuclei), and cerebellum. The data is conflicting for several regions: the hippocampus, amygdala and locus ceruleus. No change is found in the basal ganglia, nucleus basalis, or serotonergic raphe nuclei. Many of the regions that are normal in uncomplicated alcoholics are damaged in those with the Wernicke-Korsakoff syndrome. Dendritic and synaptic changes have been documented in uncomplicated alcoholics and these, together with receptor and transmitter changes, may explain functional changes and cognitive deficits that precede the more severe structural neuronal changes. The pattern of damage appears to be somewhat different and species-specific in animal models of alcohol toxicity. Pathological changes that have been found to correlate with alcohol intake include white matter loss and neuronal loss in the hypothalamus and cerebellum.

  2. Neurotrophic Substances and Behavioral Recovery from Brain Damage.

    DTIC Science & Technology

    1983-07-01

    BRAIN DAMRGE(U) CLARK UNIV WORCESTER MA BRAIN RESEARCH LAB D G STEIN JUL 83...8217 .% . .- " ’ , ’ " ’ .* , ’-" " ,’ -’ ." ’ . .. .% %, .’ ’ .’ ’js / AD NEUROTROPHIC SUBSTANCES AND BEHAVIORAL RECOVERY FROM BRAIN DAMAGE to(A0 DONALD G. STEIN July, 1983 Supported by U. S...CATALOG NdUMBER 4. TITLE ’and Subtitle) S. TYPE JF REPORT & PE-IO COVERED NEUROTROPHIC SUBSTANCES AND BEHAVIORAL RECOVERY Annua Report FROM BRAIN DAMAGE

  3. Neural Stability, Sparing, and Behavioral Recovery Following Brain Damage

    ERIC Educational Resources Information Center

    LeVere, T. E.

    1975-01-01

    The present article discusses the possibility that behavioral recovery following brain damage is not dependent on the functional reorganization of neural tissue but is rather the result of the continued normal operation of spared neural mechanisms. (Editor)

  4. Hemispatial neglect in young children with early unilateral brain damage.

    PubMed

    Trauner, Doris A

    2003-03-01

    Hemispatial neglect is commonly observed in adults following right-hemisphere brain lesions. Given the potential for reorganization in the developing brain, spatial neglect may not be apparent following early unilateral damage. This study aimed to determine whether infants who experienced pre- or perinatal focal brain lesions showed evidence of spatial neglect. Study participants were 33 infants/toddlers (22 males, 11 females; age range 6 to 48 months); 27 preschool children (14 males, 13 females; age range 28 to 75 months) with either left hemisphere (LH) or right hemisphere (RH) damage of pre- or perinatal onset (total 60), and 36 control individuals (15 females, 21 males; age range 28 to 75 months). Participants were assessed using two object-removal preference tasks. Control children showed no lateralized preference for object removal. Those with LH or RH damage preferentially removed objects from the side of the board ipsilateral to the lesion first and the contralateral side last. These results suggest that spatial neglect may be found in young children even after very early unilateral brain damage. Further, in contrast to the adult pattern, contralateral neglect is present for up to 6 years after either LH or RH damage. This pattern suggests that there may be a different distribution of attention to space in the developing brain as compared with the mature brain. The persistence of spatial neglect suggests that there are some limitations on plasticity in the developing human brain.

  5. Childhood Aphasia and Brain Damage: Volume II, Differential Diagnosis.

    ERIC Educational Resources Information Center

    Rappaport, Sheldon R., Ed.

    Addressing itself to factors leading to the misdiagnosis of the brain damaged child and the aphasic child, the Pathway School's Second Annual Institute considered the differences between the following: the aphasic and the aphasoid child; the sensory aphasic and the deaf child; the psychotic and the psychotic aphasic child; childhood brain damage…

  6. Neglect severity after left and right brain damage.

    PubMed

    Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto

    2012-05-01

    While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury.

  7. Damage and repair of irradiated mammalian brain

    SciTech Connect

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K.; Stanford Univ., CA . Medical Center; Brookside Hospital, San Pablo, CA )

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs.

  8. Methadone-Induced Toxic Brain Damage

    PubMed Central

    Corré, Jérôme; Pillot, Jérôme; Hilbert, Gilles

    2013-01-01

    A 29-year-old man presented with comatose after methadone intoxication. Cerebral tomography only showed cortico-subcortical hypodense signal in the right cerebellar hemisphere. Brain MRI showed a rare imaging of FLAIR and DWI hyperintensities in the two cerebellar hemispheres as well as basal ganglia (globi pallidi), compatible with methadone overdose. To our knowledge this is the first reported case of both cerebellar and basal ganglia involvement in methadone overdose. PMID:23762729

  9. Radiation damage to the brain: neuropsychiatric aspects

    SciTech Connect

    McMahon, T.; Vahora, S.

    1986-11-01

    Although radiation necrosis of the brain is a recognized complication of irradiation of the central nervous system, the psychiatric aspects of this phenomenon are less well defined. Two cases of radiation necrosis in which psychiatric symptoms were a prominent part of the clinical picture are presented. Factors that determine the evolution and clinical presentation of radiation necrosis are reviewed. In particular, the role of the consultation psychiatrist in the diagnosis and management of such patients is discussed.

  10. Measuring consciousness in severely damaged brains.

    PubMed

    Gosseries, Olivia; Di, Haibo; Laureys, Steven; Boly, Mélanie

    2014-01-01

    Significant advances have been made in the behavioral assessment and clinical management of disorders of consciousness (DOC). In addition, functional neuroimaging paradigms are now available to help assess consciousness levels in this challenging patient population. The success of these neuroimaging approaches as diagnostic markers is, however, intrinsically linked to understanding the relationships between consciousness and the brain. In this context, a combined theoretical approach to neuroimaging studies is needed. The promise of such theoretically based markers is illustrated by recent findings that used a perturbational approach to assess the levels of consciousness. Further research on the contents of consciousness in DOC is also needed.

  11. Predicting aphasia type from brain damage measured with structural MRI.

    PubMed

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas.

  12. Training of Perceptual Motor Skills in Minimally Brain Damaged Children.

    ERIC Educational Resources Information Center

    Glazer, Hilda Ruth; Cox, David L.

    Twenty-five male (aged 7 years, 6 months to 10 years, 7 months) and five female (aged 9 years, 3 months to 10 years, 2 months) minimally brain damaged children were examined to determine feasibility of perceptual motor training on the pursuit rotor (which requires Ss to track a light as it revolves under a pattern on a turntable). Experimental Ss…

  13. Clinical Relevance of Discourse Characteristics after Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman

    2006-01-01

    Purpose: Discourse characteristics of adults with right hemisphere brain damage are similar to those reported for healthy older adults, prompting the question of whether changes are due to neurological lesions or normal aging processes. The clinical relevance of potential differences across groups was examined through ratings by speech-language…

  14. Intellectual Deficit in Chronic Schizophrenia and Brain Damage

    ERIC Educational Resources Information Center

    De Wolfe Alan S.; And Others

    1971-01-01

    A significant interaction of WAIS subtests with diagnosis and a statistically reliable interaction of Halstead Battery subtests with diagnosis and age showed differences between chronic schizophrenics and Ss with nonlateralized brain damage in intellectual deficit patterns. These results suggested differing intellectual deficit patterns in chronic…

  15. [The compensatory plasticity of the brain when it is damaged].

    PubMed

    Siniaia, M S; Pinchuk, D Iu; Sheliakin, A M; Tobias, T V; Bogdanov, O V

    1991-08-01

    A new test for determination of the degree of the compensatory processes after brain damage was proposed in experiments in the cats with one-sided transection of the hemisphere and children with one-sided cerebral palsy. The process of habituation of the skin galvanic reaction was used for this aim.

  16. Experience-dependent neural plasticity in the adult damaged brain

    PubMed Central

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by injury to the adult brain. When experience impacts these same neural circuits, it interacts with degenerative and regenerative cascades to shape neural reorganization and functional outcome. This is evident in the cortical plasticity resulting from compensatory reliance on the “good” forelimb in rats with unilateral sensorimotor cortical infarcts. Behavioral interventions (e.g., rehabilitative training) can drive functionally beneficial neural reorganization in the injured hemisphere. However, experience can have both behaviorally beneficial and detrimental effects. The interactions between experience-dependent and injury-induced neural plasticity are complex, time-dependent, and varied with age and other factors. A better understanding of these interactions is needed to understand how to optimize brain remodeling and functional outcome. Learning outcomes Readers will be able to describe (a) experience effects that are maladaptive for behavioral outcome after brain damage, (b) manipulations of experience that drive functionally beneficial neural plasticity, and (c) reasons why rehabilitative training effects can be expected to vary with age, training duration and timing. PMID:21620413

  17. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    PubMed

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  18. Hyperschematia after right brain damage: a meaningful entity?

    PubMed Central

    Rode, Gilles; Ronchi, Roberta; Revol, Patrice; Rossetti, Yves; Jacquin-Courtois, Sophie; Rossi, Irene; Vallar, Giuseppe

    2014-01-01

    In recent years we reported three right-brain-damaged patients, who exhibited a left-sided disprortionate expansion of drawings, both by copying and from memory, contralateral to the side of the hemispheric lesion (Neurology, 67: 1801, 2006, Neurocase 14: 369, 2008). We proposed the term “hyperschematia” for such an expansion, with reference to an interpretation in terms of a lateral leftward distortion of the representation of extra-personal space, with a leftward anisometric expansion (relaxation) of the spatial medium. The symptom-complex shown by right-brain-damaged patients with “hyperschematia” includes: (1) a disproportionate leftward expansion of drawings (with possible addition of details), by copy and from memory (also in clay modeling, in one patient); (2) an overestimation of left lateral extent, when a leftward movement is required, associated in some patients with a perceptual underestimation; (3) unawareness of the disorder; (4) no unilateral spatial neglect. In most right-brain-damaged patients, left “hyperschematia” involves extra-personal space. In one patient the deficit was confined to a body part (left half-face: personal “hyperschematia”). The neural underpinnings of the disorder include damage to the fronto-temporo-parietal cortices, and subcortical structures in the right cerebral hemisphere, in the vascular territory of the middle cerebral artery. Here, four novel additional patients are reported. Finally, “hypeschematia” is reconsidered, in its clinical components, the underlying pathological mechanisms, as well as its neural underpinnings. PMID:24478674

  19. Avermectin induced inflammation damage in king pigeon brain.

    PubMed

    Chen, Li-Jie; Sun, Bao-Hong; Qu, Jian Ping; Xu, Shiwen; Li, Shu

    2013-11-01

    To determine the effect of Avermectin (AVM) on inflammation damage in king pigeon brain, eighty two-month-old American king pigeons were randomly divided into four groups, and were fed with either commercial diet or AVM-supplemented diet containing 20 mg kg(-1)diet, 40 mg kg(-1)diet, and 60 mg kg(-1)diet AVM for 30, 60 and 90 d, respectively. Then, the expression level of inflammatory factors (iNOS, PTGEs, NF-κB), histological damage, and ultra-structural damage were examined. It showed that AVM caused higher expressions (P<0.05) of iNOS, PTGEs, NF-κB with disorganized histological and ultra-structural structures in cerebrum, cerebellum, and optic lobe. Meanwhile, inflammatory and histopathological damage were induced by AVM in king pigeon brains. In addition, the main targeted organelle in nervous system was mitochondria, which indicated that mitochondria may be relevant to the process of inflammation induced by AVM. To our best knowledge, this is the first report to study the toxic effect of AVM on inflammatory damage in king pigeon. Thus, the information presented in this study is believed to be helpful in supplementing data for further AVM toxicity study.

  20. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    PubMed

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K; Engelhard, Kristin; Thal, Serge C

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  1. Brain Damage and the Moral Significance of Consciousness

    PubMed Central

    kahane, Guy

    2009-01-01

    Neuroimaging studies of brain-damaged patients diagnosed as in the vegetative state suggest that the patients might be conscious. This might seem to raise no new ethical questions given that in related disputes both sides agree that evidence for consciousness gives strong reason to preserve life. We question this assumption. We clarify the widely held but obscure principle that consciousness is morally significant. It is hard to apply this principle to difficult cases given that philosophers of mind distinguish between a range of notions of consciousness and that is unclear which of these is assumed by the principle. We suggest that the morally relevant notion is that of phenomenal consciousness and then use our analysis to interpret cases of brain damage. We argue that enjoyment of consciousness might actually give stronger moral reasons not to preserve a patient's life and, indeed, that these might be stronger when patients retain significant cognitive function. PMID:19193694

  2. L-stepholidine, a natural dopamine receptor D1 agonist and D2 antagonist, inhibits heroin-induced reinstatement.

    PubMed

    Ma, Baomiao; Yue, Kai; Chen, Lin; Tian, Xiang; Ru, Qin; Gan, Yongping; Wang, Daisong; Jin, Guozhang; Li, Chaoying

    2014-01-24

    L-Stepholidine (l-SPD), an alkaloid extract of the Chinese herb Stephania intermedia, is the first compound known to exhibit mixed dopamine D1 receptor agonist/D2 antagonist properties and is a potential medication for the treatment of opiate addiction. The aim of the present study was to investigate the effects of pretreatment with L-SPD on heroin-seeking behavior induced by heroin priming. Male Sprague-Dawley rats were trained to self-administer heroin (0.05mg/kg per infusion) under a fixed ratio 1 schedule for 12 consecutive days and nose-poke responding was extinguished for 12 days, after which reinstatement of drug seeking was induced by heroin priming. Pretreatment with L-SPD (2.5, 5.0 and 10.0mg/kg, i.p.) inhibited the heroin-induced reinstatement of heroin-seeking behavior. Importantly, L-SPD did not affect locomotion, indicating that the observed effects of L-SPD on reinstatement are not the result of motor impairments. The present data suggested that l-SPD inhibits heroin-induced reinstatement and its potential for the treatment of heroin relapse.

  3. Oxidative damage to rat brain in iron and copper overloads.

    PubMed

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  4. The Neurotrophic Substances and Behavioral Recovery from Brain Damage.

    DTIC Science & Technology

    1984-11-01

    this report , brief summaries of exDeri- ments completed to date are presented. Figures and tables follow the report . Effects of purified nerve growth...RECOVERY 0FROM BRAIN DAMAGE 00 I ANNUAL AND FINAL REPORT DONALD G. STEIN November 1984 .. Supported by U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND...Massachusetts 01610 Approved for public release; distribution unlimited. The findings in this report are not to be construed as an official Department of

  5. Knowledge and Strategies for Processing Lexical Metaphor after Right or Left Hemisphere Brain Damage.

    ERIC Educational Resources Information Center

    Tompkins, Connie A.

    1990-01-01

    The study assessed how unilateral right hemisphere brain damage (RHD) affects processing of metaphoric aspects of word meaning. RHD stroke patients (N=25) performed similarly to left-brain-damaged and normal subjects in the automatic condition and when provided with processing strategies. Both brain-damaged groups had difficulty developing…

  6. Do women develop alcoholic brain damage more readily than men?

    PubMed

    Mann, K; Batra, A; Günthner, A; Schroth, G

    1992-12-01

    Chronic alcoholism is related to brain damage (i.e., volume changes) in both men and women. There is an open question whether the brains of women are more vulnerable than those of men to alcohol toxicity. The present follow-up study focuses on a direct comparison of sex-related differences in alcoholic brain shrinkage and its reversibility. In a prospective design, a random sample of 65 alcoholics of both sexes (51 males and 14 females) was studied. Computerized tomography brain scans before and after a 6-week inpatient treatment program with controlled abstinence revealed a significant re-expansion of the brain as assessed by linear measurements. By controlling for moderating variables such as age, mean daily alcohol consumption, liver dysfunction, etc. the degree of brain shrinkage was found to be similar in men and women despite significantly shorter ethanol expositions in the women. These findings corroborate the hypotheses of other investigators about basic biological differences between the two sexes as to the effects of alcohol. The hypothesis of an enhanced vulnerability of women to acute and chronic complications of alcoholism is supported.

  7. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    PubMed

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery.

  8. Gender differences in alcohol-induced neurotoxicity and brain damage.

    PubMed

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse.

  9. Clinical and pathological features of alcohol-related brain damage.

    PubMed

    Zahr, Natalie M; Kaufman, Kimberley L; Harper, Clive G

    2011-05-01

    One of the sequelae of chronic alcohol abuse is malnutrition. Importantly, a deficiency in thiamine (vitamin B(1)) can result in the acute, potentially reversible neurological disorder Wernicke encephalopathy (WE). When WE is recognized, thiamine treatment can elicit a rapid clinical recovery. If WE is left untreated, however, patients can develop Korsakoff syndrome (KS), a severe neurological disorder characterized by anterograde amnesia. Alcohol-related brain damage (ARBD) describes the effects of chronic alcohol consumption on human brain structure and function in the absence of more discrete and well-characterized neurological concomitants of alcoholism such as WE and KS. Through knowledge of both the well-described changes in brain structure and function that are evident in alcohol-related disorders such as WE and KS and the clinical outcomes associated with these changes, researchers have begun to gain a better understanding of ARBD. This Review examines ARBD from the perspective of WE and KS, exploring the clinical presentations, postmortem brain pathology, in vivo MRI findings and potential molecular mechanisms associated with these conditions. An awareness of the consequences of chronic alcohol consumption on human behavior and brain structure can enable clinicians to improve detection and treatment of ARBD.

  10. Intrathecal antibodies and brain damage in autoimmune MRL mice.

    PubMed

    Stanojcic, Mile; Loheswaran, Genane; Xu, Li; Hoffman, Steven A; Sakic, Boris

    2010-02-01

    Neuropsychiatric (NP) manifestations and brain pathology are poorly understood and potentially fatal concomitants of systemic lupus erythematosus (SLE). For many years, autoantibodies to brain tissue (i.e., brain-reactive antibodies, BRA) were proposed as a key factor in pathogenesis of CNS manifestations. Recent evidence suggests that intrathecal BRA, rather than serum autoantibodies, are a better predictor of disturbed brain morphology and function. We presently test this hypothesis by examining the relationship among BRA in cerebrospinal fluid (CSF), behavioral deficits, and brain pathology in a well-established animal model of CNS lupus. We showed earlier that significant diversity in disease manifestations within genetically homogenous MRL-lpr mice allows for constructive and informative correlational analysis. Therefore, levels of CSF antibodies were presently correlated with behavioral, neuropathological and immune measures in a cohort of diseased MRL-lpr males (N=40). ELISA, Western Blotting, standardized behavioral battery, digital planimetry, HE staining, and immunohistochemistry were employed in overall data collection. The IgG antibodies from CSF were binding to different regions of brain parenchyma, with dentate gyrus, amygdale, and subventricular zones showing enhanced immunoreactivity. High levels of CSF antibodies correlated with increased immobility in the forced-swim test and density of HE(+) cells in the paraventricular nucleus. Peripheral measures of autoimmunity were associated with other deficits in behavior and neuropathology. This correlation pattern suggests that etiology of brain damage in lupus-prone mice is multifactorial. Intrathecal BRA may be important in altering motivated responses and activity of major neuroendocrine axes at the onset of SLE-like disease.

  11. Why bilateral damage is worse than unilateral damage to the brain.

    PubMed

    Schapiro, Anna C; McClelland, James L; Welbourne, Stephen R; Rogers, Timothy T; Lambon Ralph, Matthew A

    2013-12-01

    Human and animal lesion studies have shown that behavior can be catastrophically impaired after bilateral lesions but that unilateral damage often produces little or no effect, even controlling for lesion extent. This pattern is found across many different sensory, motor, and memory domains. Despite these findings, there has been no systematic, computational explanation. We found that the same striking difference between unilateral and bilateral damage emerged in a distributed, recurrent attractor neural network. The difference persists in simple feedforward networks, where it can be understood in explicit quantitative terms. In essence, damage both distorts and reduces the magnitude of relevant activity in each hemisphere. Unilateral damage reduces the relative magnitude of the contribution to performance of the damaged side, allowing the intact side to dominate performance. In contrast, balanced bilateral damage distorts representations on both sides, which contribute equally, resulting in degraded performance. The model's ability to account for relevant patient data suggests that mechanisms similar to those in the model may operate in the brain.

  12. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    PubMed

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  13. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.

  14. Areas of Brain Damage Underlying Increased Reports of Behavioral Disinhibition.

    PubMed

    Knutson, Kristine M; Dal Monte, Olga; Schintu, Selene; Wassermann, Eric M; Raymont, Vanessa; Grafman, Jordan; Krueger, Frank

    2015-01-01

    Disinhibition, the inability to inhibit inappropriate behavior, is seen in frontal-temporal degeneration, Alzheimer's disease, and stroke. Behavioral disinhibition leads to social and emotional impairments, including impulsive behavior and disregard for social conventions. The authors investigated the effects of lesions on behavioral disinhibition measured by the Neuropsychiatric Inventory in 177 veterans with traumatic brain injuries. The authors performed voxel-based lesion-symptom mapping using MEDx. Damage in the frontal and temporal lobes, gyrus rectus, and insula was associated with greater behavioral disinhibition, providing further evidence of the frontal lobe's involvement in behavioral inhibition and suggesting that these regions are necessary to inhibit improper behavior.

  15. The dopamine receptor antagonist levo-tetrahydropalmatine attenuates heroin self-administration and heroin-induced reinstatement in rats.

    PubMed

    Yue, Kai; Ma, Baomiao; Ru, Qin; Chen, Lin; Gan, Yongping; Wang, Daisong; Jin, Guozhang; Li, Chaoying

    2012-07-01

    Opiate addiction is a chronic recrudescent disorder characterized by a high rate of relapse. Levo-tetrahydropalmatine (l-THP) is an alkaloid substance extracted from Corydalis and Stephania and is contained in a number of traditional Chinese herbal preparations. Compared to other dopamine receptor antagonists, l-THP has lower affinity for D2 receptors than for D1 receptors, and a recent study showed that l-THP also binds to D3 receptors, possibly functioning as an antagonist. The unique pharmacological profile of l-THP suggests that l-THP may be effective for the treatment of opiate addiction. In this study, we investigated the effects of l-THP on heroin self-administration and reinstatement triggered by a priming injection of heroin in abstinent rats trained to stably self-administer heroin under an extinction/reinstatement protocol, and found that l-THP (2.5 and 5 mg/kg, i.p.) decreased heroin self-administration on the fixed-ratio 1 schedule and dose-dependently (1.25, 2.5 and 5 mg/kg, i.p.) inhibited heroin-induced reinstatement of heroin-seeking behavior. Importantly, l-THP (1.25 and 2.5 mg/kg, i.p.) did not affect locomotion, indicating that the observed effects of l-THP on reinstatement do not appear to be due to motor impairments. The present results demonstrated that dopamine receptor antagonist l-THP attenuates heroin self-administration and heroin-induced reinstatement.

  16. Experimental models of perinatal hypoxic-ischemic brain damage.

    PubMed

    Vannucci, R C

    1993-01-01

    Animal research has provided important information on the pathogenesis of and neuropathologic responses to perinatal cerebral hypoxia-ischemia. In experimental animals, structural brain damage from hypoxia-ischemia has been produced in immature rats, rabbits, guinea pigs, sheep and monkeys (18, 20, 24, 25, 38). Of the several available animal models, the fetal and newborn rhesus monkey and immature rat have been studied most extensively because of their similarities to humans in respect to the physiology of reproduction and their neuroanatomy at or shortly following birth. Given the frequency of occurrence of human perinatal hypoxic-ischemic brain damage and the multiple, often severe neurologic handicaps which ensue in infants and children, it is not surprising that the above described animal models have been developed. These models have provided the basis for investigations to clarify not only physiologic and biochemical mechanisms of tissue injury but also the efficacy of specific management strategies. Hopefully, such animal research will continue to provide important information regarding how best to prevent or minimize the devastating consequences of perinatal cerebral hypoxia-ischemia.

  17. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    PubMed

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael; Eyupoglu, Ilker Y; Savaskan, Nicolai E

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  18. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc−; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  19. AMBIENT PARTICULATE MATTER STIMULATES OXIDATIVE STRESS IN BRAIN MICROGLIA AND DAMAGES NEURONS IN CULTURE.

    EPA Science Inventory

    Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...

  20. Mapping neuroplastic potential in brain-damaged patients.

    PubMed

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients.

  1. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    PubMed

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539).

  2. Interhemispheric and Intrahemispheric Control of Emotion: A Focus on Unilateral Brain Damage.

    ERIC Educational Resources Information Center

    Borod, Joan C.

    1992-01-01

    Discusses neocortical contributions to emotional processing. Examines parameters critical to neuropsychological study of emotion: interhemispheric and intrahemispheric factors, processing mode, and communication channel. Describes neuropsychological theories of emotion. Reviews studies of right-brain-damaged, left-brain-damaged, and normal adults,…

  3. Changes in Connectivity after Visual Cortical Brain Damage Underlie Altered Visual Function

    ERIC Educational Resources Information Center

    Bridge, Holly; Thomas, Owen; Jbabdi, Saad; Cowey, Alan

    2008-01-01

    The full extent of the brain's ability to compensate for damage or changed experience is yet to be established. One question particularly important for evaluating and understanding rehabilitation following brain damage is whether recovery involves new and aberrant neural connections or whether any change in function is due to the functional…

  4. Utility of the Concept of Brain Damage for the School Psychologist

    ERIC Educational Resources Information Center

    Friedman, Ronald

    1968-01-01

    Brain damage remains a medical diagnosis; it does not provide a useful practical framework within which the psychologist and educator can operate. The school psychologist should abandon the concept of brain damage and turn to problems which will benefit more from his attention. (Author)

  5. [Analysis of Electroencephalogram Sample Entropy Measurement in Frontal Association Cortex Based on Heroin-induced Conditioned Place Preference in Rats].

    PubMed

    Huang, Lei; Pan, Qunwan; Zhu, Zaiman; Li, Jing; Gao, Chunfang; Li, Tian; Xu, Xiaoyan

    2015-04-01

    To explore the relationship between the drug-seeking behavior, motivation of conditioned place preference (CPP) rats and the frontal association cortex (FrA) electroencephalogram (EEG) sample entropy, we in this paper present our studies on the FrA EEG sample entropy of control group rats and CPP group rats, respectively. We invested different behavior in four situations of the rat activities, i. e. rats were staying in black chamber of videoed boxes, those staying in white chamber of videoed boxes, those shuttling between black-white chambers and those shuttling between white-black chambers. The experimental results showed that, compared with the control group rats, the FrA EEG sample entropy of CPP rats staying in black chamber of video box and shuttling between white-black chambers had no significant difference. However, sample entropy is significantly smaller (P < 0.01) when heroin-induced group rats stayed in white chamber of video box and shuttled between black-white chambers. Consequently, the drug-seeking behavior and motivation of CPP rats correlated closely with the EEG sample entropy changes.

  6. Systemic Autoimmunity in TAM Triple Knockout Mice Causes Inflammatory Brain Damage and Cell Death

    PubMed Central

    Li, Qiutang; Lu, Qingjun; Lu, Huayi; Tian, Shifu; Lu, Qingxian

    2013-01-01

    The Tyro3, Axl and Mertk (TAM) triply knockout (TKO) mice exhibit systemic autoimmune diseases, with characteristics of increased proinflammatory cytokine production, autoantibody deposition and autoreactive lymphocyte infiltration into a variety of tissues. Here we show that TKO mice produce high level of serum TNF-α and specific autoantibodies deposited onto brain blood vessels. The brain-blood barrier (BBB) in mutant brains exhibited increased permeability for Evans blue and fluorescent-dextran, suggesting a breakdown of the BBB in the mutant brains. Impaired BBB integrity facilitated autoreactive T cells infiltrating into all regions of the mutant brains. Brain autoimmune disorder caused accumulation of the ubiquitin-reactive aggregates in the mutant hippocampus, and early formation of autofluorescent lipofuscins in the neurons throughout the entire brains. Chronic neuroinflammation caused damage of the hippocampal mossy fibers and neuronal apoptotic death. This study shows that chronic systemic inflammation and autoimmune disorders in the TKO mice cause neuronal damage and death. PMID:23840307

  7. Concurrent validation of Hutt's Bender Gestalt screening method for schizophrenia, depression, and brain damage.

    PubMed

    Lownsdale, W S; Rogers, B J; McCall, J N

    1989-01-01

    The effectiveness of Hutt's Bender Gestalt scoring system in screening for schizophrenia, depression, and brain damage was investigated in a sample of mixed, psychiatric inpatients. Fifteen patients represented each diagnostic category. After an examination of each patient's Bender Gestalt protocol according to Hutt's criteria, it was found that the true positive and true negative success rates of the screening procedures for depression and brain damage were significantly higher than corresponding base rates. The Lacks Bender Gestalt screening method for brain damage was no more successful than the Hutt method in identifying true positives and true negatives. With the brain-damaged patients excluded, Hutt's screening procedures for both depression and schizophrenia resulted in significantly high rates of successful identification of true positives and true negatives. Moreover, these rates did not significantly differ from those determined by patients' Minnesota Multiphasic Personality Inventory (MMPI) T scores on corresponding scales.

  8. Effect of aging and damage on the brain modelled by a phase transition

    NASA Astrophysics Data System (ADS)

    Miyazima, Sasuke; Sakakibara, Mitsuharu

    1992-03-01

    Aging and the effects of damage on the brain are considered on the basis of the Hopfield model. As the damage to the brain or the debility of neurons is increased by aging, a sudden change similar to critical phenomena is observed in the ability to retrieve information or in recognition. This type of critical behavior is very similar to the percolation phenomenon in physics. Furthermore the relearning effect, which corresponds to so-called rehabilitation, is discussed.

  9. The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects.

    PubMed

    Eidenmüller, S; Randerath, J; Goldenberg, G; Li, Y; Hermsdörfer, J

    2014-08-01

    The scaling of our finger forces according to the properties of manipulated objects is an elementary prerequisite of skilled motor behavior. Lesions of the motor-dominant left brain may impair several aspects of motor planning. For example, limb-apraxia, a tool-use disorder after left brain damage is thought to be caused by deficient recall or integration of tool-use knowledge into an action plan. The aim of the present study was to investigate whether left brain damage affects anticipatory force scaling when lifting everyday objects. We examined 26 stroke patients with unilateral brain damage (16 with left brain damage, ten with right brain damage) and 21 healthy control subjects. Limb apraxia was assessed by testing pantomime of familiar tool-use and imitation of meaningless hand postures. Participants grasped and lifted twelve randomly presented everyday objects. Grip force was measured with help of sensors fixed on thumb, index and middle-finger. The maximum rate of grip force was determined to quantify the precision of anticipation of object properties. Regression analysis yielded clear deficits of anticipation in the group of patients with left brain damage, while the comparison of patient with right brain damage with their respective control group did not reveal comparable deficits. Lesion-analyses indicate that brain structures typically associated with a tool-use network in the left hemisphere play an essential role for anticipatory grip force scaling, especially the left inferior frontal gyrus (IFG) and the premotor cortex (PMC). Furthermore, significant correlations of impaired anticipation with limb apraxia scores suggest shared representations. However, the presence of dissociations, implicates also independent processes. Overall, our findings suggest that the left hemisphere is engaged in anticipatory grip force scaling for lifting everyday objects. The underlying neural substrate is not restricted to a single region or stream; instead it may rely on

  10. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  11. Unilateral Brain Damage Effects on Processing Homonymous and Polysemous Words

    ERIC Educational Resources Information Center

    Klepousniotou, E.; Baum, S.R.

    2005-01-01

    Using an auditory semantic priming paradigm, the present study investigated the abilities of left-hemisphere-damaged (LHD) non-fluent aphasic, right-hemisphere-damaged (RHD) and normal control individuals to access, out of context, the multiple meanings of three types of ambiguous words, namely homonyms (e.g., ''punch''), metonymies (e.g.,…

  12. Differentiation of Brain Damage Among Low IQ Subjects with Three Projective Techniques

    ERIC Educational Resources Information Center

    Wagner, Edwin E.; And Others

    1978-01-01

    The Rorschach, Hand, and Bender-Gestalt tests discriminated slightly between low IQ subjects classified as brain damaged or not. Substantial discrimination was observed between the same subjects classified by intelligence level. Brain impairment may underlie most or all retardation. The efficacy of projective techniques for diagnosing organicity…

  13. The Involvement of Secondary Neuronal Damage in the Development of Neuropsychiatric Disorders Following Brain Insults

    PubMed Central

    Chen, Yun; Garcia, Gregory E.; Huang, Wei; Constantini, Shlomi

    2014-01-01

    Neuropsychiatric disorders are one of the leading causes of disability worldwide and affect the health of billions of people. Previous publications have demonstrated that neuropsychiatric disorders can cause histomorphological damage in particular regions of the brain. By using a clinical symptom-comparing approach, 55 neuropsychiatric signs or symptoms related usually to 14 types of acute and chronic brain insults were identified and categorized in the present study. Forty percent of the 55 neuropsychiatric signs and symptoms have been found to be commonly shared by the 14 brain insults. A meta-analysis supports existence of the same neuropsychiatric signs or symptoms in all brain insults. The results suggest that neuronal damage might be occurring in the same or similar regions or structures of the brain. Neuronal cell death, neural loss, and axonal degeneration in some parts of the brain (the limbic system, basal ganglia system, brainstem, cerebellum, and cerebral cortex) might be the histomorphological basis that is responsible for the neuropsychiatric symptom clusters. These morphological alterations may be the result of secondary neuronal damage (a cascade of progressive neural injury and neuronal cell death that is triggered by the initial insult). Secondary neuronal damage causes neuronal cell death and neural injury in not only the initial injured site but also remote brain regions. It may be a major contributor to subsequent neuropsychiatric disorders following brain insults. PMID:24653712

  14. Arterial hypertension and brain damage--evidence from animal models (review).

    PubMed

    Amenta, Francesco; Di Tullio, Maria Antonietta; Tomassoni, Daniele

    2003-08-01

    Hypertension is an important risk factor for cerebrovascular disease including stroke and has also a role in the development of vascular cognitive impairment (VCI) and vascular dementia (VaD). Research on pathophysiology and treatment of hypertensive brain damage may benefit from the availability of animal models. This paper has reviewed the main animal models of hypertension in which brain damage is documented. Spontaneously hypertensive rats (SHR) represent the animal model more largely used. In these rats cerebrovascular changes, brain atrophy, loss of nerve cells in cerebrocortical areas, and glial reaction were documented. Several changes observed in SHR are similar to those found by in vivo imaging studies in essential hypertensives. It is documented that brain gets benefit from lowering abnormally elevated blood pressure and that reduction of hypertension protects brain from stroke and probably reduces the incidence of VaD. The influence of anti-hypertensive treatment on brain structure and function in animal models of hypertension is reviewed. Among classes of drugs investigated, dihydropyridine-type Ca2+ antagonists were those with a most documented protective effect on hypertensive brain damage. Limits and perspectives in the use of animal models for assessing brain damage caused by hypertension and protection from it are discussed.

  15. Inferencing Processes after Right Hemisphere Brain Damage: Effects of Contextual Bias

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman

    2009-01-01

    Purpose: Comprehension deficits associated with right hemisphere brain damage (RHD) have been attributed to an inability to use context, but there is little direct evidence to support the claim. This study evaluated the effect of varying contextual bias on predictive inferencing by adults with RHD. Method: Fourteen adults with no brain damage…

  16. The Use of Computers and Video Games in Brain Damage Therapy.

    ERIC Educational Resources Information Center

    Lorimer, David

    The use of computer assisted therapy (CAT) in the rehabilitation of individuals with brain damage is examined. Hardware considerations are explored, and the variety of software programs available for brain injury rehabilitation is discussed. Structured testing and treatment programs in time measurement, memory, and direction finding are described,…

  17. Perceptual Asymmetry for Chimeric Stimuli in Children with Early Unilateral Brain Damage

    ERIC Educational Resources Information Center

    Bava, Sunita; Ballantyne, Angela O.; May, Susanne J.; Trauner, Doris A.

    2005-01-01

    The present study used a chimeric stimuli task to assess the magnitude of the left-hemispace bias in children with congenital unilateral brain damage (n=46) as compared to typically developing matched controls (n=46). As would be expected, controls exhibited a significant left-hemispace bias. In the presence of left hemisphere (LH) damage, the…

  18. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  19. Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage.

    PubMed

    Shao, Qiang; Herrlinger, Stephanie; Yang, Si-Lu; Lai, Fan; Moore, Julie M; Brindley, Melinda A; Chen, Jian-Fu

    2016-11-15

    Zika virus (ZIKV) infection of pregnant women can result in fetal brain abnormalities. It has been established that ZIKV disrupts neural progenitor cells (NPCs) and leads to embryonic microcephaly. However, the fate of other cell types in the developing brain and their contributions to ZIKV-associated brain abnormalities remain largely unknown. Using intracerebral inoculation of embryonic mouse brains, we found that ZIKV infection leads to postnatal growth restriction including microcephaly. In addition to cell cycle arrest and apoptosis of NPCs, ZIKV infection causes massive neuronal death and axonal rarefaction, which phenocopy fetal brain abnormalities in humans. Importantly, ZIKV infection leads to abnormal vascular density and diameter in the developing brain, resulting in a leaky blood-brain barrier (BBB). Massive neuronal death and BBB leakage indicate brain damage, which is further supported by extensive microglial activation and astrogliosis in virally infected brains. Global gene analyses reveal dysregulation of genes associated with immune responses in virus-infected brains. Thus, our data suggest that ZIKV triggers a strong immune response and disrupts neurovascular development, resulting in postnatal microcephaly with extensive brain damage.

  20. Carcinoma cells misuse the host tissue damage response to invade the brain.

    PubMed

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-08-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis.

  1. A clinical study on closing-in in focal brain-damaged individuals.

    PubMed

    De Lucia, Natascia; Grossi, Dario; Trojano, Luigi

    2016-04-15

    In visuo-constructional assessment, brain-damaged individuals may copy figures near to or superimposed on the model, showing the Closing-in (CI). CI has been largely investigated in dementia, and often ascribed to impairments of the attention/executive abilities ("Attraction hypothesis"). Only a few dated studies investigated frequency of CI in brain-damaged individuals, without clarifying the genesis of the phenomenon. We aimed at testing the "Attraction hypothesis" in 27 individuals with focal frontal cortical or sub-cortical brain lesions by a dual-task experimental paradigm. The participants underwent a neuropsychological battery and a copying task to be performed alone (single task condition), or concurrently with a simple or a complex verbal secondary task (dual-task conditions). CI was found in 66% of frontal-damaged individuals, who scored significantly lower than healthy adults on all neuropsychological measures; brain-damaged individuals showing CI performed worse than frontal-damaged individuals without CI on frontal and visuo-constructional measures. In the dual-task condition with the complex secondary task CI was significantly enhanced, with a weaker tendency to self-correction, in individuals with CI compared to individuals without CI. These findings would confirm that the CI in brain-damaged individuals is related to reduction of attentional resources, consistently with the "Attraction hypothesis".

  2. Systems approach to the study of brain damage in the very preterm newborn

    PubMed Central

    Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf

    2015-01-01

    Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780

  3. Methamphetamine induces DNA damage in specific regions of the female rat brain.

    PubMed

    Johnson, Zane; Venters, Jace; Guarraci, Fay A; Zewail-Foote, Maha

    2015-06-01

    Methamphetamine (METH) is a highly addictive psychostimulant that has been shown to produce neurotoxicity. Methamphetamine increases the release of dopamine by reversing the direction of monoamine transporter proteins, leading to the formation of reactive oxygen species in the brain. In this study, we examined the effect of METH on DNA damage in vivo using the single cell gel electrophoresis assay (comet assay) under two different conditions. Rats treated with multiple doses of METH (10 mg/kg × 4) showed significant levels of DNA damage in the nucleus accumbens and striatum, both dopamine-rich areas. In contrast, a single dose of METH did not lead to significant levels of DNA damage in any of the dopamine-rich brain regions that were tested. Overall, the results of our study demonstrate that METH produces greater oxidative DNA damage in brain areas that receive greater dopamine innervation.

  4. Contralateral and ipsilateral disorders of visual attention in patients with unilateral brain damage.

    PubMed Central

    Gainotti, G; Giustolisi, L; Nocentini, U

    1990-01-01

    To explain the prevalence of unilateral spatial neglect in patients with right brain damage, Heilman et al have suggested that the attentional neurons of the right parietal lobe might have bilateral receptive fields, whereas the homologous cells of the left hemisphere would have strictly contralateral receptive fields. One implication of this theory is that patients with right brain damage should show a prevalence of disorders of visual attention not only in the half space contralateral to the damaged hemisphere, but also in the ipsilateral one. To check this theory, 50 control subjects, 102 right and 125 left brain-damaged patients were given a drawing completion task in which patients were requested to complete the missing parts of a star, a cube and a house. Omissions of lines lying on the sides of the models contralateral and ipsilateral to the damaged hemisphere were taken separately into account. Results did not confirm the hypothesis, since right brain-damaged patients failed to complete the contralateral sides of the models much more frequently than patients with left brain injury, but no difference was found between the two hemispheric groups when ipsilateral disorders of visual attention were taken into account. Furthermore, no correlation was found between omissions of lines lying on the sides of the models contralateral and ipsilateral to the damaged hemisphere. This finding suggests that contralateral and ipsilateral disorders of visual attention are not due to the same mechanism in right brain-damaged patients. The alternative hypothesis viewing ipsilateral disorders as resulting from a widespread lowering of general attention (and only contralateral neglect reflecting a specific disorder of visual attention) was supported by results obtained on a verbal memory test, used to evaluate the general cognitive and attention level of the patients. Patients with clear-cut ipislateral inattention obtained very low scores on this test, whereas patients with

  5. Contralateral and ipsilateral disorders of visual attention in patients with unilateral brain damage.

    PubMed

    Gainotti, G; Giustolisi, L; Nocentini, U

    1990-05-01

    To explain the prevalence of unilateral spatial neglect in patients with right brain damage, Heilman et al have suggested that the attentional neurons of the right parietal lobe might have bilateral receptive fields, whereas the homologous cells of the left hemisphere would have strictly contralateral receptive fields. One implication of this theory is that patients with right brain damage should show a prevalence of disorders of visual attention not only in the half space contralateral to the damaged hemisphere, but also in the ipsilateral one. To check this theory, 50 control subjects, 102 right and 125 left brain-damaged patients were given a drawing completion task in which patients were requested to complete the missing parts of a star, a cube and a house. Omissions of lines lying on the sides of the models contralateral and ipsilateral to the damaged hemisphere were taken separately into account. Results did not confirm the hypothesis, since right brain-damaged patients failed to complete the contralateral sides of the models much more frequently than patients with left brain injury, but no difference was found between the two hemispheric groups when ipsilateral disorders of visual attention were taken into account. Furthermore, no correlation was found between omissions of lines lying on the sides of the models contralateral and ipsilateral to the damaged hemisphere. This finding suggests that contralateral and ipsilateral disorders of visual attention are not due to the same mechanism in right brain-damaged patients. The alternative hypothesis viewing ipsilateral disorders as resulting from a widespread lowering of general attention (and only contralateral neglect reflecting a specific disorder of visual attention) was supported by results obtained on a verbal memory test, used to evaluate the general cognitive and attention level of the patients. Patients with clear-cut ipislateral inattention obtained very low scores on this test, whereas patients with

  6. Relationship of plasma S100B and MBP with brain damage in preterm infants

    PubMed Central

    Zhou, Wei; Li, Wei; Qu, Liu-Hong; Tang, Juan; Chen, Shan; Rong, Xiao

    2015-01-01

    To study the relationships of MBP and S100B with PVH-IVH and PVL in preterm infants. 385 cases of preterm infants, whose gestational age was less than 34 weeks, were enrolled in the study. The plasma levels of S100B and MBP were detected within 24 hours and on the 3rd, 7th, 14th day after birth. Cranial ultrasound was preformed 2-3 d, 1 week, 2 weeks, 3 weeks and 4 weeks after birth. They also received Cranial MRI examination before discharge or when the correct gestational age reached 40 weeks. According to the exclusion standard, 73 cases were excluded. The included 312 cases were divided into 3 groups (no brain damage group, PVH-IVH group and PVL group) according to the result of cranial ultrasound and MRI. The differences of plasma levels of S100B and MBP among groups were compared, and the relationships of the plasma levels of S100B and MBP with gestational age in no brain damage group were analyzed. The results of cranial ultrasound and/or MRI showed: 204 cases had no brain damage (enrolled in no brain damage group); 69 cases had PVH-IVH (enrolled in PVH-IVH group); 27 cases had PVL and 12 cases had PVL and PVH-IVH (both enrolled in PVL group). The plasma level of S100B: within 24 h and on the 3rd d after birth, the serum levels of S100B in PVH-IVH group were significantly higher than those in no brain damage group (P < 0.05); and the plasma levels of S100B in PVL group were significantly higher than those in no brain damage group and PVH-IVH group (all P < 0.05). On 7th d and 14th d after birth, there were no significant differences between PVH-IVH group and no brain damage group (P > 0.05); and the plasma levels of S100B in PVL group were still significantly higher than those in no brain damage group and PVH-IVH group (all P < 0.05). The plasma levels of MBP: within 24 h and on the 3rd d, 7th d and 14th d after birth, there were no significant differences between PVH-IVH group and no brain damage group (all P > 0.05); and the plasma levels of MBP in PVL

  7. Relationship of plasma S100B and MBP with brain damage in preterm infants.

    PubMed

    Zhou, Wei; Li, Wei; Qu, Liu-Hong; Tang, Juan; Chen, Shan; Rong, Xiao

    2015-01-01

    To study the relationships of MBP and S100B with PVH-IVH and PVL in preterm infants. 385 cases of preterm infants, whose gestational age was less than 34 weeks, were enrolled in the study. The plasma levels of S100B and MBP were detected within 24 hours and on the 3rd, 7th, 14th day after birth. Cranial ultrasound was preformed 2-3 d, 1 week, 2 weeks, 3 weeks and 4 weeks after birth. They also received Cranial MRI examination before discharge or when the correct gestational age reached 40 weeks. According to the exclusion standard, 73 cases were excluded. The included 312 cases were divided into 3 groups (no brain damage group, PVH-IVH group and PVL group) according to the result of cranial ultrasound and MRI. The differences of plasma levels of S100B and MBP among groups were compared, and the relationships of the plasma levels of S100B and MBP with gestational age in no brain damage group were analyzed. The results of cranial ultrasound and/or MRI showed: 204 cases had no brain damage (enrolled in no brain damage group); 69 cases had PVH-IVH (enrolled in PVH-IVH group); 27 cases had PVL and 12 cases had PVL and PVH-IVH (both enrolled in PVL group). The plasma level of S100B: within 24 h and on the 3rd d after birth, the serum levels of S100B in PVH-IVH group were significantly higher than those in no brain damage group (P < 0.05); and the plasma levels of S100B in PVL group were significantly higher than those in no brain damage group and PVH-IVH group (all P < 0.05). On 7th d and 14th d after birth, there were no significant differences between PVH-IVH group and no brain damage group (P > 0.05); and the plasma levels of S100B in PVL group were still significantly higher than those in no brain damage group and PVH-IVH group (all P < 0.05). The plasma levels of MBP: within 24 h and on the 3rd d, 7th d and 14th d after birth, there were no significant differences between PVH-IVH group and no brain damage group (all P > 0.05); and the plasma levels of MBP in PVL

  8. Perception-response speed and driving capabilities of brain-damaged and older drivers.

    PubMed

    Korteling, J E

    1990-02-01

    Three experiments including reaction time (RT) tasks and driving tasks were conducted to identify variables that may be sensitive to the effects of brain damage or aging and to determine how RT tasks relate to driving performance. In Experiment 1 mean RTs of the brain-damaged and older subjects disproportionately increased relative to those of controls, with increasing difference between subsequent compound stimuli. In Experiment 2 response accuracy of brain-damaged subjects deteriorated more than that of controls when the similarity of a task to actual driving increased. In Experiment 3 brain-damaged patients were slower and less accurate than the controls on all measures of a platoon car-following task, whereas the older subjects were only less accurate. Compared with those of the controls, brake RTs of neither the older subjects nor the patients were disproportionately affected by increasing task load. Performance on the platoon driving task could be successfully predicted by a laboratory RT task on time estimation only for the brain-damaged subjects.

  9. Hyperbaric oxygen suppresses hypoxic-ischemic brain damage in newborn rats.

    PubMed

    Zhu, Min; Lu, Mengru; Li, Qing-Jie; Zhang, Zhuo; Wu, Zheng-Zheng; Li, Jie; Qian, Lai; Xu, Yun; Wang, Zhong-Yuan

    2015-01-01

    The optimal therapeutic time-window and protective mechanism of hyperbaric oxygen in hypoxic-ischemic brain damage remain unclear. This study aimed to determine the neuroprotective effects of hyperbaric oxygen. Following hypoxic-ischemic brain damage modeling in neonatal rats, hyperbaric oxygen was administered at 6, 24, 48, and 72 hours and 1 week after hypoxia, respectively, once daily for 1 week. Fourteen days after hypoxic-ischemic brain damage, cell density and apoptosis rate, number of Fas-L+, caspase-8+, and caspase-3+ neuronal cells, levels of nitric oxide, malondialdehyde, and superoxide dismutase in hippocampus were examined. Morris water maze test was conducted 28 days after insult. Significant improvements were found in cell density, rate of apoptosis, oxidative stress markers, FasL, and caspases in rats treated with hyperbaric oxygen within 72 hours compared to hypoxic-ischemic injury. Similarly, time-dependent behavioral amelioration was observed in pups treated with hyperbaric oxygen. Our findings suggest that hyperbaric oxygen protects against hypoxic-ischemic brain damage by inhibiting oxidative stress and FasL-induced apoptosis, and optimal therapeutic time window is within 72 hours after hypoxic-ischemic brain damage.

  10. [Emotional behavior in schizophrenia and one-sided brain damage. Cerebral hemispheric asymmetry. Part I].

    PubMed

    Kucharska-Pietura, Katarzyna; Hunca-Bednarska, Anna

    2002-01-01

    Although, emotions play a crucial role in schizophrenia, the changes in emotional dimension in relation to brain asymmetry still remain controversial. The aim of our work was: 1) to compare the emotional behaviour between the examined groups: S--non-chronic schizophrenic patients (n = 50), CS--chronic schizophrenic patients (n = 50), N--healthy controls (n = 50), R--right brain-damaged patients (n = 30), and L--left brain-damaged patients (n = 30), 2) to assess the changes in attitude processes and in types of emotional reactions, its relation to lateralised hemisphere damage and chronicity of the schizophrenic process. All psychiatric subjects were diagnosed as paranoid schizophrenics according to DSM-IV criteria and were scored on the PANSS scale after four weeks of neuroleptic treatment. Brain-damaged patients were included if they experienced single-episode cerebrovascular accidents causing right or left hemisphere damage (confirmed in CT scan reports). The neurological patients were examined at least 3 weeks after the onset of the episode. Emotional behaviour was assessed using Observational Scale of Emotional Behaviour aimed at the evaluation of: A) attitude processes B) the emotional reactions. Our results revealed differentiated type of emotional behaviour in the examined population. Right brain-damaged patients significantly often revealed elevated mood, lack of adequacy of self-evaluation and active or negative attitude towards the environment. Left brain-damaged patients showed depressed mood, resignation, positive or seldom passive attitude to others and adequate self-evaluation. Schizophrenic patients mostly revealed indifferent mood and passive attitude to environment, their self-evaluation was rather adequate. Based on our data, the changes in emotional behaviour in schizophrenic patients might reflect frontal lobes dysfunction rather than dysfunction localised in one of cerebral hemispheres.

  11. SUSPECTED EARLY MINIMAL BRAIN DAMAGE AND SEVERE PSYCHOPATHOLOGY IN ADOLESCENCE.

    ERIC Educational Resources Information Center

    POLLACK, MAX

    A GROUP OF ADOLESCENT AND YOUNG ADULT HOSPITALIZED PSYCHIATRIC PATIENTS (10 MALES AND TWO FEMALES) PREVIOUSLY DIAGNOSED AS HAVING SCHIZOPHRENIC OR PERSONALITY DISORDERS WERE REDIAGNOSED AS HAVING CHRONIC BRAIN SYNDROME. DEVELOPMENTAL DEVIANCY, BEHAVIOR DISORDERS STARTING IN CHILDHOOD, AND PSYCHOLOGICAL TEST PERFORMANCES WERE COMPATIBLE WITH AN…

  12. Melatonin attenuates brain mitochondria DNA damage induced by potassium cyanide in vivo and in vitro.

    PubMed

    Yamamoto, Hiro-aki; Mohanan, Parayanthala V

    2002-09-30

    The effect of potassium cyanide on mitochondria DNA (mtDNA) in mouse brain was investigated in vivo and in vitro. When potassium cyanide (0, 0.1, 1.0 or 2.0 mM) was incubated with a crude mitochondria fraction prepared from mouse brain at 37 degrees C for 60 min, the damage of mtDNA was observed in a concentration-dependent manner. However, the mtDNA damage was prevented by a co-treatment with melatonin (1.5 mM), a scavenger of hydroxyl radicals (*OH). Furthermore, a subcutaneous injection of potassium cyanide (7mg/kg) caused both brain mtDNA damage and severe seizures in mouse. The damage of mtDNA and seizures induced by potassium cyanide were abolished by the pre-injection of melatonin (20 mg/kg). Hydrogen peroxide (1.5 mM) inflicted damage to brain mtDNA in the presence of Fe(2+) (3.0 microM). The damage was abolished by the co-treatment with melatonin. Furthermore, when cyanide (0, 0.1 or 1.0 mM) was incubated with the crude mitochondria fraction prepared from mouse brain, the lipid peroxidation was significantly increased in a concentration-dependent manner. The increased lipid peroxidation was completely inhibited by the co-treatment with melatonin (1.0 mM). These results suggest that reactive oxygen species including the *OH may play a cardinal role for mtDNA damage induced by potassium cyanide. Hence, the present study concluded that melatonin protects against DNA damage induced by the *OH produced by cyanide or hydrogen peroxide.

  13. Prenatal Alcohol Exposure Damages Brain Signal Transduction System

    DTIC Science & Technology

    2004-09-01

    phosphatidylinositol-specific Materials and methods phospholipase C isozymes, phospholipase C-71, found in rodent brain. Phospholipase C isozymes catalyze...alcohol syndrome and animal models of fetal alcohol exposure (FAE). alcohol-related neurodevelopmental disorder (Streissguth Most studies on fetal alcohol...1999). In learning and memory deficits. In rodents , FAE is associated our study, the 10% ethanol mice reacted to the presenta- with impaired learning

  14. Brain damage following prophylactic cranial irradiation in lung cancer survivors.

    PubMed

    Simó, Marta; Vaquero, Lucía; Ripollés, Pablo; Jové, Josep; Fuentes, Rafael; Cardenal, Felipe; Rodríguez-Fornells, Antoni; Bruna, Jordi

    2016-03-01

    Long-term toxic effects of prophylactic cranial irradiation (PCI) on cognition in small cell lung cancer (SCLC) patients have not yet been well-established. The aim of our study was to examine the cognitive toxic effects together with brain structural changes in a group of long-term SCLC survivors treated with PCI. Eleven SCLC patients, who underwent PCI ≥ 2 years before, were compared with an age and education matched healthy control group. Both groups were evaluated using a neuropsychological battery and multimodal structural magnetic resonance imaging. Voxel-based morphometry and Tract-based Spatial Statistics were used to study gray matter density (GMD) and white matter (WM) microstructural changes. Cognitive deterioration was correlated with GMD and Fractional Anisotropy (FA). Finally, we carried out a single-subject analysis in order to evaluate individual structural brain changes. Nearly half of the SCLC met criteria for cognitive impairment, all exhibiting a global worsening of cognitive functioning. Patients showed significant decreases of GMD in basal ganglia bilaterally (putamen and caudate), bilateral thalamus and right insula, together with WM microstructural changes of the entire corpus callosum. Cognitive deterioration scores correlated positively with mean FA values in the corpus callosum. Single-subject analysis revealed that GMD and WM changes were consistently observed in nearly all patients. This study showed neuropsychological deficits together with brain-specific structural differences in long-term SCLC survivors. Our results suggest that PCI therapy, possibly together with platinum-based chemotherapy, was associated to permanent long-term cognitive and structural brain effects in a SCLC population.

  15. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury

    DTIC Science & Technology

    2008-06-19

    brain slices were treated after injury with either a nootropic agent (aniracetam, cyclothiazide, IDRA 21, or 1-BCP) or the antiepileptic drug...pharmacological approach. 15. SUBJECT TERMS traumatic brain injury, cell necrosis, neuroprotection, nootropics , epilepsy, long-term potentiation...render their use problematic in an effective brain tourniquet system. We chose to focus our investigations on the nootropic (cognition enhancing) drugs

  16. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals.

    PubMed

    Doi, Kunio

    2011-01-01

    It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.

  17. The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke.

    PubMed

    Wu, Long-Jun; Wu, Gongxiong; Akhavan Sharif, M Reza; Baker, Amanda; Jia, Yonghui; Fahey, Frederic H; Luo, Hongbo R; Feener, Edward P; Clapham, David E

    2012-03-04

    Phagocytic cell NADPH oxidase (NOX) generates reactive oxygen species (ROS) as part of innate immunity. Unfortunately, ischemia can also induce this pathway and inflict damage on native cells. The voltage-gated proton channel Hv1 enables NOX function by compensating cellular loss of electrons with protons. Accordingly, we investigated whether NOX-mediated brain damage in stroke can be inhibited by suppression of Hv1. We found that mouse and human brain microglia, but not neurons or astrocytes, expressed large Hv1-mediated currents. Hv1 was required for NOX-dependent ROS generation in brain microglia in situ and in vivo. Mice lacking Hv1 were protected from NOX-mediated neuronal death and brain damage 24 h after stroke. These results indicate that Hv1-dependent ROS production is responsible for a substantial fraction of brain damage at early time points after ischemic stroke and provide a rationale for Hv1 as a therapeutic target for the treatment of ischemic stroke.

  18. Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment

    PubMed Central

    Dal Ben, Matteo; Bottin, Cristina; Zanconati, Fabrizio; Tiribelli, Claudio; Gazzin, Silvia

    2017-01-01

    The neurologic manifestations of neonatal hyperbilirubinemia in the central nervous system (CNS) exhibit high variations in the severity and appearance of motor, auditory and cognitive symptoms, which is suggestive of a still unexplained selective topography of bilirubin-induced damage. By applying the organotypic brain culture (OBC: preserving in vitro the cellular complexity, connection and architecture of the in vivo brain) technique to study hyperbilirubinemia, we mapped the regional target of bilirubin-induced damage, demonstrated a multifactorial toxic action of bilirubin, and used this information to evaluate the efficacy of drugs applicable to newborns to protect the brain. OBCs from 8-day-old rat pups showed a 2–13 fold higher sensitivity to bilirubin damage than 2-day-old preparations. The hippocampus, inferior colliculus and cerebral cortex were the only brain regions affected, presenting a mixed inflammatory-oxidative mechanism. Glutamate excitotoxicity was appreciable in only the hippocampus and inferior colliculus. Single drug treatment (indomethacin, curcumin, MgCl2) significantly improved cell viability in all regions, while the combined (cocktail) administration of the three drugs almost completely prevented damage in the most affected area (hippocampus). Our data may supports an innovative (complementary to phototherapy) approach for directly protecting the newborn brain from bilirubin neurotoxicity. PMID:28102362

  19. Right posterior brain-damaged patients are poor at assessing the age of a face.

    PubMed

    De Renzi, E; Bonacini, M G; Faglioni, P

    1989-01-01

    The ability to order unknown faces by age was investigated in right and left brain-damaged patients, divided into posterior and non-posterior groups on the basis of CT scan findings. A face recognition test and a figure ground discrimination test were also given. All three tests were affected by brain damage, but their sensitivity to the locus and side of lesion varied. While no hemispheric difference was found on the figure ground discrimination test, the face age test significantly discriminated patients with right posterior injury from any other brain-damaged group. The face recognition test occupied an intermediate position, with right posterior patients significantly impaired in comparison with right non-posterior patients and marginally impaired with respect to left posterior patients. Aphasia did not affect the performance of left brain-damaged patients on any of the tests. The findings are interpreted as evidence that damage of the right posterior hemisphere areas disrupts the structural encoding of visual information. Four prosopagnosic patients were also tested. Only those showing signs of apperceptive agnosia failed on the face age test.

  20. Cognitive rehabilitation in non-communicative brain-damaged patients.

    PubMed

    Trojano, Luigi; Moretta, Pasquale; Cozzolino, Autilia; Saltalamacchia, Annamaria; Estraneo, Anna

    2011-01-01

    Conscious patients with severe motor and speech disorders have great difficulty interacting with the environment and communicating with other people. Several augmentative communication devices are now available to exploit these patients' expressive potential, but their use often demands considerable cognitive effort. Non-communicative patients with severe brain lesions may have, in addition, specific cognitive deficits that hinder the efficient use of augmentative communication methods. Some neuropsychological batteries are now available for testing these patients. On the basis of such cognitive assessments, cognitive rehabilitation training can now be applied, but we underline that this training must be tailored to single patients in order to allow them to communicate autonomously and efficiently.

  1. Ablation of brain by erbium laser: study of dynamic behavior and tissue damage

    NASA Astrophysics Data System (ADS)

    Cubeddu, Rinaldo; Sozzi, C.; Taroni, Paola; Valentini, Gianluca; Bottiroli, Giovanni F.; Croce, Anna C.

    1994-02-01

    In this work two aspects of the ablation of brain by Erbium laser have been mainly addressed: the time evolution of the phenomenon and the damages, both thermal and mechanical, produced in the tissues. The time resolved images acquired during the laser interaction revealed that deep lacerations develop in the tissue due to a mechanical stress. The damages have been evaluated by studying the changes in the autofluorescence emission properties and the reduction in enzymatic activities (NADH Oxidase and ATPase). The results obtained in this study indicate that the thermal alterations resulting from the exposure to Erbium laser are limited, whereas the mechanical damages can be very pronounced.

  2. Cognitive rehabilitation in non-communicative brain-damaged patients

    PubMed Central

    Trojano, Luigi; Moretta, Pasquale; Cozzolino, Autilia; Saltalamacchia, Annamaria; Estraneo, Anna

    Summary Conscious patients with severe motor and speech disorders have great difficulty interacting with the environment and communicating with other people. Several augmentative communication devices are now available to exploit these patients’ expressive potential, but their use often demands considerable cognitive effort. Non-communicative patients with severe brain lesions may have, in addition, specific cognitive deficits that hinder the efficient use of augmentative communication methods. Some neuropsychological batteries are now available for testing these patients. On the basis of such cognitive assessments, cognitive rehabilitation training can now be applied, but we underline that this training must be tailored to single patients in order to allow them to communicate autonomously and efficiently. PMID:21693090

  3. Word finding in the damaged brain: probing Marshall's caveat.

    PubMed

    Ellis, Andrew W

    2006-08-01

    Marshall (1977) constructed a plausible simulation of "anomic" speech out of the 100 most common words in the English language. He suggested that impaired access to lower frequency vocabulary might underlie anomic word finding difficulties. But he also noted that another factor, age of acquisition, may exert an influence, with anomic patients experiencing particular difficulty with later acquired vocabulary. A review of research on word-finding in aphasia and other neuropsychological conditions suggests that Marshall (1977) may have been right on both counts, and that in many patients both frequency of use and age of acquisition influence the likelihood that a given word will be able to be accessed and used. Theoretical accounts of why the age of acquisition of words might affect their retention or loss following brain injury in adulthood are considered.

  4. An Evidence-Based Systematic Review on Communication Treatments for Individuals with Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman; Frymark, Tobi; Venedictov, Rebecca

    2013-01-01

    Purpose: The purpose of this review is to evaluate and summarize the research evidence related to the treatment of individuals with right hemisphere communication disorders. Method: A comprehensive search of the literature using key words related to right hemisphere brain damage and communication treatment was conducted in 27 databases (e.g.,…

  5. Functional Assessment of the Brain Damaged Physically Handicapped Child: Cognitive, Communication, and Motor Variables.

    ERIC Educational Resources Information Center

    Langley, Beth

    Existing instruments for assessing brain damaged physically handicapped children are examined, and research on test modifications in the cognitive, communication, and motor performance domains is reviewed. Noted is the lack of tests standardized on a physically handicapped population. Cautions and criticisms are cited for modifications which have…

  6. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  7. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    ERIC Educational Resources Information Center

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  8. Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation after Brain Damage

    ERIC Educational Resources Information Center

    Kleim, Jeffrey A.; Jones, Theresa A.

    2008-01-01

    Purpose: This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Method: Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the…

  9. Planning of spatially-oriented locomotion following focal brain damage in humans: A pilot study.

    PubMed

    Hicheur, Halim; Boujon, Carole; Wong, Cuebong; Pham, Quang-Cuong; Annoni, Jean-Marie; Bihl, Titus

    2016-03-15

    Motor impairments in human gait following stroke or focal brain damage are well documented. Here, we investigated whether stroke and/or focal brain damage also affect the navigational component of spatially oriented locomotion. Ten healthy adult participants and ten adult brain-damaged patients had to walk towards distant targets from different starting positions (with vision or blindfolded). No instructions as to which the path to follow were provided to them. We observed very similar geometrical forms of paths across the two groups of participants and across visual conditions. This spatial stereotypy of whole-body displacements was observed following brain damage, even in the most severely impaired (hemiparetic) patients. This contrasted with much more variability at the temporal level. In particular, healthy participants and non-hemiparetic patients varied their walking speed according to curvature changes along the path. On the contrary, the walking speed profiles were not stereotypical and were not systematically constrained by path geometry in hemiparetic patients where it was associated with different stepping behaviors. These observations confirm the dissociation between cognitive and motor aspects of gait recovery post-stroke. The impact of these findings on the understanding of the functional and anatomical organization of spatially-oriented locomotion and for rehabilitation purposes is discussed and contextualized in the light of recent advances in electrophysiological studies.

  10. Map-following skills in left and right brain-damaged patients with and without hemineglect.

    PubMed

    Palermo, Liana; Ranieri, Giulia; Boccia, Maddalena; Piccardi, Laura; Nemmi, Federico; Guariglia, Cecilia

    2012-01-01

    Map-following tasks require a "semantic interpretation" of the map, which could be affected by left brain damage, and "superimposition of the map upon the space," which could be compromised by right lesions and particularly by the presence of hemineglect. Participants followed a pathway depicted on a map of a real environment. The pathway included four left and four right turns. A legend explained the meaning of each symbol that appeared on the map. Our results showed no deficits in left brain-damaged patients, but poor performance in right brain-damaged patients affected by hemineglect. This deficit can be ascribed to their impaired egocentric frame of reference, but we cannot exclude a prevalent role of the right hemisphere in their use of the allocentric information on the map despite the presence of hemineglect. Indeed, three right brain-damaged patients without hemineglect showed a specific deficit in performing the task. We discuss the results in light of the possible impairment of the parietomedial temporal pathway, which supports spatial navigation and could be responsible for the patients' deficit.

  11. Endomorphins, endogenous opioid peptides, provide antioxidant defense in the brain against free radical-induced damage.

    PubMed

    Lin, Xin; Yang, Ding-Jian; Cai, Wen-Qing; Zhao, Qian-Yu; Gao, Yan-Feng; Chen, Qiang; Wang, Rui

    2003-11-20

    Oxidative stress has been considered to be a major cause of cellular injuries in a variety of chronic health problems, such as carcinogenesis and neurodegenerative disorders. The brain appears to be more susceptible to oxidative damage than other organs. Therefore, the existence of antioxidants may be essential in brain protective systems. The antioxidative and free radical scavenging effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, have been investigated in vitro. The oxidative damage was initiated by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrocholoride) (AAPH) and hydrogen peroxide (H2O2). The linoleic acid peroxidation, DNA and protein damage were monitored by formation of hydroperoxides, by plasmid pBR 322 DNA nicking assay and single-cell alkaline electrophoresis, and by SDS-polyacrylamide gel electrophoresis. Endomorphins can inhibit lipid peroxidation, DNA strand breakage, and protein fragmentation induced by free radical. Endomorphins also reacted with galvinoxyl radicals in homogeneous solution, and the pseudo-first-order rate constants were determined spectrophotometrically by following the disappearance of galvinoxyl radicals. In all assay systems, EM1 was more potent than EM2 and GSH, a major intracellular water-soluble antioxidant. We propose that endomorphins are one of the protective systems against free radical-induced damage in the brain.

  12. Differential Diagnosis of Dyslexia, Minimal Brain Damage and Emotional Disturbances in Children

    ERIC Educational Resources Information Center

    Hartlage, Lawrence C.

    1970-01-01

    This study examines patterns of responses made by children on tests in each of the three categories of dyslexia, minimal brain damage, and emotional disorder. Results showed that the Wide Range Achievement Test in a mixed population, may be of value as an initial screening device when used in conjunction with appropriate neurological and…

  13. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome.

    PubMed

    De Felice, Claudio; Della Ragione, Floriana; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Ciccoli, Lucia; Scalabrì, Francesco; Marracino, Federico; Madonna, Michele; Belmonte, Giuseppe; Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni; Valacchi, Giuseppe; Durand, Thierry; Galano, Jean-Marie; Oger, Camille; Guy, Alexandre; Bultel-Poncé, Valérie; Guy, Jacky; Filosa, Stefania; Hayek, Joussef; D'Esposito, Maurizio

    2014-08-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.

  14. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome

    PubMed Central

    De Felice, Claudio; Della Ragione, Floriana; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Ciccoli, Lucia; Scalabrì, Francesco; Marracino, Federico; Madonna, Michele; Belmonte, Giuseppe; Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni; Valacchi, Giuseppe; Durand, Thierry; Galano, Jean-Marie; Oger, Camille; Guy, Alexandre; Bultel-Poncé, Valérie; Guy, Jacky; Filosa, Stefania; Hayek, Joussef; D'Esposito, Maurizio

    2014-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. PMID:24769161

  15. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage.

    PubMed

    Hou, Sheng Tao; Nilchi, Ladan; Li, Xuesheng; Gangaraju, Sandhya; Jiang, Susan X; Aylsworth, Amy; Monette, Robert; Slinn, Jacqueline

    2015-01-20

    Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into the cerebral cortex, caused dose- and time-dependent increases in vascular permeability, with a degree comparable to that caused by injection of a known vascular permeability factor vascular endothelial growth factor receptors (VEGF). Application of Sema3A to cultured endothelial cells caused disorganization of F-actin stress fibre bundles and increased endothelial monolayer permeability, confirming Sema3A as a permeability factor. Sema3A-mediated F-actin changes in endothelial cells were through binding to the neuropilin2/VEGFR1 receptor complex, which in turn directly activates Mical2, a F-actin modulator. Down-regulation of Mical2, using specific siRNA, alleviated Sema3A-induced F-actin disorganization, cellular morphology changes and endothelial permeability. Importantly, ablation of Sema3A expression, cerebrovascular permeability and brain damage were significantly reduced in response to transient middle cerebral artery occlusion (tMCAO) and in a mouse model of cerebral ischemia/haemorrhagic transformation. Together, these studies demonstrated that Sema3A is a key mediator of cerebrovascular permeability and contributes to brain damage caused by cerebral ischemia.

  16. Immunomodulation by poly-YE reduces organophosphate-induced brain damage.

    PubMed

    Finkelstein, Arseny; Kunis, Gilad; Berkutzki, Tamara; Ronen, Ayal; Krivoy, Amir; Yoles, Eti; Last, David; Mardor, Yael; Van Shura, Kerry; McFarland, Emylee; Capacio, Benedict A; Eisner, Claire; Gonzales, Mary; Gregorowicz, Danise; Eisenkraft, Arik; McDonough, John H; Schwartz, Michal

    2012-01-01

    Accidental organophosphate poisoning resulting from environmental or occupational exposure, as well as the deliberate use of nerve agents on the battlefield or by terrorists, remain major threats for multi-casualty events, with no effective therapies yet available. Even transient exposure to organophosphorous compounds may lead to brain damage associated with microglial activation and to long-lasting neurological and psychological deficits. Regulation of the microglial response by adaptive immunity was previously shown to reduce the consequences of acute insult to the central nervous system (CNS). Here, we tested whether an immunization-based treatment that affects the properties of T regulatory cells (Tregs) can reduce brain damage following organophosphate intoxication, as a supplement to the standard antidotal protocol. Rats were intoxicated by acute exposure to the nerve agent soman, or the organophosphate pesticide, paraoxon, and after 24 h were treated with the immunomodulator, poly-YE. A single injection of poly-YE resulted in a significant increase in neuronal survival and tissue preservation. The beneficial effect of poly-YE treatment was associated with specific recruitment of CD4(+) T cells into the brain, reduced microglial activation, and an increase in the levels of brain derived neurotrophic factor (BDNF) in the piriform cortex. These results suggest therapeutic intervention with poly-YE as an immunomodulatory supplementary approach against consequences of organophosphate-induced brain damage.

  17. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain.

    PubMed

    Qu, Yi; Shi, Jing; Tang, Ying; Zhao, Fengyan; Li, Shiping; Meng, Junjie; Tang, Jun; Lin, Xuemei; Peng, Xiaodong; Mu, Dezhi

    2016-05-01

    Mixed lineage kinase domain-like protein (MLKL) is a critical molecule mediating cell necroptosis. However, its role in brain injury remains obscure. We first investigated the functions and mechanisms of MLKL in mediating neuronal damage in developing brain after hypoxia-ischemia. Neuronal necroptosis was induced by oxygen-glucose deprivation (OGD) plus caspase inhibitor zVAD treatment (OGD/zVAD). We found that two important necroptosis related proteins, receptor-interacting protein 1 and 3 (RIP1, RIP3) were upregulated. Furthermore, the interaction of RIP1-RIP3 with MLKL increased. Inhibition of MLKL through siRNA diminished RIP1-RIP3-MLKL interaction and attenuated neuronal death induced by OGD/zVAD. The translocation of oligomerized MLKL to the neuronal membrane leading to the injury of cellular membrane is the possible new mechanism of neuronal necroptosis. Animal experiment with neonatal rats further proved that MLKL inhibition attenuated brain damage induced by hypoxia-ischemia. These findings suggest that MLKL is a target to attenuate brain damage in developing brain.

  18. Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy.

    PubMed

    Sokolowska, P; Passemard, S; Mok, A; Schwendimann, L; Gozes, I; Gressens, P

    2011-01-26

    Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage.

  19. Modafinil effects on behavior and oxidative damage parameters in brain of wistar rats.

    PubMed

    Ornell, Felipe; Valvassori, Samira S; Steckert, Amanda V; Deroza, Pedro F; Resende, Wilson R; Varela, Roger B; Quevedo, João

    2014-01-01

    The effects of modafinil (MD) on behavioral and oxidative damage to protein and lipid in the brain of rats were evaluated. Wistar rats were given a single administration by gavage of water or MD (75, 150, or 300 mg/kg). Behavioral parameters were evaluated in open-field apparatus 1, 2, and 3 h after drug administration. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl formation were measured in the brain. MD increased locomotor activity at the highest dose 1 and 3 h after administration. MD administration at the dose of 300 mg/kg increased visits to the center of open-field 1 h after administration; however, 3 h after administration, all administered doses of MD increased visits to the open-field center. MD 300 mg/kg increased lipid damage in the amygdala, hippocampus, and striatum. Besides, MD increased protein damage in the prefrontal cortex, amygdala, and hippocampus; however, this effect varies depending on the dose administered. In contrast, the administration of MD 75 and 300 mg/kg decreased the protein damage in the striatum. This study demonstrated that the MD administration induces behavioral changes, which was depending on the dose used. In addition, the effects of MD on oxidative damage parameters seemed to be in specific brain region and doses.

  20. Modafinil Effects on Behavior and Oxidative Damage Parameters in Brain of Wistar Rats

    PubMed Central

    Valvassori, Samira S.; Steckert, Amanda V.; Deroza, Pedro F.; Resende, Wilson R.; Varela, Roger B.

    2014-01-01

    The effects of modafinil (MD) on behavioral and oxidative damage to protein and lipid in the brain of rats were evaluated. Wistar rats were given a single administration by gavage of water or MD (75, 150, or 300 mg/kg). Behavioral parameters were evaluated in open-field apparatus 1, 2, and 3 h after drug administration. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl formation were measured in the brain. MD increased locomotor activity at the highest dose 1 and 3 h after administration. MD administration at the dose of 300 mg/kg increased visits to the center of open-field 1 h after administration; however, 3 h after administration, all administered doses of MD increased visits to the open-field center. MD 300 mg/kg increased lipid damage in the amygdala, hippocampus, and striatum. Besides, MD increased protein damage in the prefrontal cortex, amygdala, and hippocampus; however, this effect varies depending on the dose administered. In contrast, the administration of MD 75 and 300 mg/kg decreased the protein damage in the striatum. This study demonstrated that the MD administration induces behavioral changes, which was depending on the dose used. In addition, the effects of MD on oxidative damage parameters seemed to be in specific brain region and doses. PMID:25431526

  1. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain

    NASA Astrophysics Data System (ADS)

    Rendon, Cesar A.; Lilge, Lothar

    2004-10-01

    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  2. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Pettet, Garry K J; Luo, Yan; Lim, Ta; Akimov, Stanislav; Sanders, Robert D; Franks, Nicholas P; Maze, Mervyn

    2006-02-01

    Xenon attenuates on-going neuronal injury in both in vitro and in vivo models of hypoxic-ischaemic injury when administered during and after the insult. In the present study, we sought to investigate whether the neuroprotective efficacy of xenon can be observed when administered before an insult, referred to as 'preconditioning'. In a neuronal-glial cell coculture, preexposure to xenon for 2 h caused a concentration-dependent reduction of lactate dehydrogenase release from cells deprived of oxygen and glucose 24 h later; xenon's preconditioning effect was abolished by cycloheximide, a protein synthesis inhibitor. Preconditioning with xenon decreased propidium iodide staining in a hippocampal slice culture model subjected to oxygen and glucose deprivation. In an in vivo model of neonatal asphyxia involving hypoxic-ischaemic injury to 7-day-old rats, preconditioning with xenon reduced infarction size when assessed 7 days after injury. Furthermore, a sustained improvement in neurologic function was also evident 30 days after injury. Phosphorylated cAMP (cyclic adenosine 3',5'-monophosphate)-response element binding protein (pCREB) was increased by xenon exposure. Also, the prosurvival proteins Bcl-2 and brain-derived neurotrophic factor were upregulated by xenon treatment. These studies provide evidence for xenon's preconditioning effect, which might be caused by a pCREB-regulated synthesis of proteins that promote survival against neuronal injury.

  3. Processing of Basic Speech Acts Following Localized Brain Damage: A New Light on the Neuroanatomy of Language

    ERIC Educational Resources Information Center

    Soroker, N.; Kasher, A.; Giora, R.; Batori, G.; Corn, C.; Gil, M.; Zaidel, E.

    2005-01-01

    We examined the effect of localized brain lesions on processing of the basic speech acts (BSAs) of question, assertion, request, and command. Both left and right cerebral damage produced significant deficits relative to normal controls, and left brain damaged patients performed worse than patients with right-sided lesions. This finding argues…

  4. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones.

    PubMed

    Salford, Leif G; Brun, Arne E; Eberhardt, Jacob L; Malmgren, Lars; Persson, Bertil R R

    2003-06-01

    The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats.

  5. Calcium-dependent neuroepithelial contractions expel damaged cells from the developing brain

    PubMed Central

    Herrgen, Leah; Voss, Oliver P.; Akerman, Colin J.

    2016-01-01

    Summary Both developing and adult organisms need efficient strategies for wound repair. In adult mammals, wounding triggers an inflammatory response that can exacerbate tissue injury and lead to scarring. In contrast, embryonic wounds heal quickly and with minimal inflammation, but how this is achieved remains incompletely understood. Using in vivo imaging in the developing brain of Xenopus laevis, we show that ATP release from damaged cells and subsequent activation of purinergic receptors induce long-range calcium waves in neural progenitor cells. Cytoskeletal reorganization, and activation of the actomyosin contractile machinery in a Rho kinase-dependent manner, then lead to rapid and pronounced apical-basal contractions of the neuroepithelium. These contractions drive the expulsion of damaged cells into the brain ventricle within seconds. Successful cell expulsion prevents the death of nearby cells and an exacerbation of the injury. Cell expulsion through neuroepithelial contraction represents a novel mechanism for rapid wound healing in the developing brain. PMID:25468753

  6. Advanced neuroprotection for brain ischemia: an alternative approach to minimize stroke damage.

    PubMed

    Ayuso, Maria Irene; Montaner, Joan

    2015-01-01

    Despite decades of research on neuroprotectants in the fight against ischemic stroke, no successful results have been obtained and new alternative approaches are urgently needed. Translation of effective candidate drugs in experimental studies to patients has systematically failed. However, some of those treatments or neuroprotectant diets which demonstrated only beneficial effects if given before (but not after) ischemia induction and discarded for conventional neuroprotection, could be rescued in order to apply an 'advanced neuroprotection strategy' (ADNES). Herein, the authors discuss how re-profiling those neuroprotective candidate drugs and diets with the best potential, some of which are mentioned in this article as an ADNES, may be a good approach for developing successful treatments that protect the brain against ischemic damage. This novel approach would try to protect the brain of patients who are at high risk of suffering a stroke, before damage occurs, in order to minimize brain injury by having the neuroprotectant drug or diet 'on board' if unfortunately stroke occurs.

  7. Intraperitoneal administration of thioredoxin decreases brain damage from ischemic stroke.

    PubMed

    Wang, Bin; Tian, Shilai; Wang, Jiayi; Han, Feng; Zhao, Lei; Wang, Rencong; Ning, Weidong; Chen, Wei; Qu, Yan

    2015-07-30

    Recent studies demonstrate that Thioredixin (Trx) possesses a neuronal protective effect and closely relates to oxidative stress and apoptosis of cerebral ischemia injury. The present study was conducted to validate the neuroprotective effect of recombinant human Trx-1 (rhTrx-1) and its potential mechanisms against ischemia injury at middle cerebral artery occlusion (MCAO) in mice. rhTrx-1 was administrated intraperitoneally at a dose of 5, 10 and 20mg/kg 30 min before MCAO in mice, and its neuronal protective effect was evaluated by neurological deficit score, brain dry-wet weight, 2,3,5-triphenyltetrazolium chloride (TTC) staining. The protein carbonyl content and HO-1 were detected to investigate its potential anti-oxidative and anti-inflammatory property, and the anti-apoptotic ability of rhTrx-1 was assessed by casepase-3 and TUNEL staining. The results demonstrated that rhTrx-1 significantly improved neurological functions and reduced cerebral infarction and apoptotic cell death at 24h after MCAO. Moreover, rhTrx-1 resulted in a significant decrease in carbonyl contents and HO-1 against oxidative stress, which turned to be fast reduction during the first 24h and tended to be stable from 24h to 72h after MCAO. The study shows that rhTrx-1 exerts an neuroprotective effect in cerebral ischemia injury. The anti-oxidative, anti-apoptotic and anti-inflammatory properties of rhTrx-1 are more likely to succeed as a therapeutic approach to diminish oxidative stress-induced neuronal apoptotic cell death in acute ischemic stroke.

  8. Treatment with carnosine reduces hypoxia-ischemia brain damage in a neonatal rat model.

    PubMed

    Zhang, Huizhen; Guo, Shang; Zhang, Linlin; Jia, Liting; Zhang, Zhan; Duan, Hongbao; Zhang, Jingbin; Liu, Jingyan; Zhang, Weidong

    2014-03-15

    Perinatal hypoxia-ischemia brain damage (HIBD) is a major cause of mortality and morbidity in neonates, and there is currently no effective therapy for HIBD. Carnosine plays a neuroprotective role in adult brain damage. We have previously demonstrated that carnosine pretreatment protects against HIBD in a neonatal rat model. Therefore, we hypothesized that treatment with carnosine would also have neuroprotective effects. Hypoxia-ischemia was induced in rats on postnatal days 7-9 (P7-9). Carnosine was administered intraperitoneally at a dose of 250mg/kg at 0h, 24h, and 48h after hypoxia-ischemia was induced. The biochemical markers of oxidative stress and apoptosis were evaluated at 72h after hypoxia-ischemia was induced, Brain learning and memory function performance were observed using the Morris water maze test on postnatal days 28-33 (P28-33). Treatment with carnosine post-HIBD significantly reduced the concentration of 8-iso-prostaglandinF2alpha in brain tissue and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region and cortex as well as the mitochondria caspase-3 protein expression. Furthermore, carnosine also improved the cognitive function of P28-33 rats, whose cognitive function decline was due to HIBD. These results demonstrate that carnosine treatment after HIBD can reduce the brain injury, improving brain function. Carnosine could be an attractive candidate for treating HIBD.

  9. Brain vascular damage of cholinergic pathways and EEG markers in mild cognitive impairment.

    PubMed

    Moretti, Davide Vito; Pievani, Michela; Fracassi, Claudia; Geroldi, Cristina; Calabria, Marco; De Carli, Charles S; Rossini, Paolo Maria; Frisoni, Giovanni Battista

    2008-11-01

    We evaluated changes of brain rhythmicity correlating with the cerebrovascular damage of long-range (capsular tract) and short-range (medial and perisylvian tracts) cholinergic pathways in subjects with mild cognitive impairment (MCI). Ninety-four MCI subjects underwent electroencephalographic (EEG) recordings and magnetic resonance imaging (MRI). The EEG relative power spectrum was computed in delta, theta, alpha1, alpha2, alpha3, beta1, beta2, gamma frequency bands. White matter hyperintensities along each cholinergic tract was segmented on MRI. Three MCI subgroups were identified based on increasing damage. A significant increase of delta and theta power band was found in patients with the highest total cholinergic burden as well as in patients with highest capsular pathway damage; total load of cholinergic damage was also associated with decreased gamma power band. Alpha frequency was differentially affected: decrease of alpha3 power band was associated with the greatest damage of the capsular pathway whereas increase of alpha3 power band was associated with the greatest damage of the perisylvian pathway. Multiple regression linear analysis showed independent association of cholinergic damage with delta, theta and gamma frequency, not with alpha frequency. In conclusion, the damage of long-range and short range cholinergic tracts has possible different implications for cognitive functions in MCI subjects.

  10. Endotoxin-induced lung alveolar cell injury causes brain cell damage

    PubMed Central

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia RM; Pelosi, Paolo

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. PMID:25135986

  11. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats

    PubMed Central

    Du, Wanlu; Huang, Junbo; Yao, Hailan; Zhou, Kechun; Duan, Bo; Wang, Yizheng

    2010-01-01

    Brain injury after focal cerebral ischemia, the most common cause of stroke, develops from a series of pathological processes, including excitotoxicity, inflammation, and apoptosis. While NMDA receptors have been implicated in excitotoxicity, attempts to prevent ischemic brain damage by blocking NMDA receptors have been disappointing. Disruption of neuroprotective pathways may be another avenue responsible for ischemic damage, and thus preservation of neuronal survival may be important for prevention of ischemic brain injury. Here, we report that suppression of proteolytic degradation of transient receptor potential canonical 6 (TRPC6) prevented ischemic neuronal cell death in a rat model of stroke. The TRPC6 protein level in neurons was greatly reduced in ischemia via NMDA receptor–dependent calpain proteolysis of the N-terminal domain of TRPC6 at Lys16. This downregulation was specific for TRPC6 and preceded neuronal death. In a rat model of ischemia, activating TRPC6 prevented neuronal death, while blocking TRPC6 increased sensitivity to ischemia. A fusion peptide derived from the calpain cleavage site in TRPC6 inhibited degradation of TRPC6, reduced infarct size, and improved behavioral performance measures via the cAMP response element–binding protein (CREB) signaling pathway. Thus, TRPC6 proteolysis contributed to ischemic neuronal cell death, and suppression of its degradation preserved neuronal survival and prevented ischemic brain damage. PMID:20811149

  12. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment.

    PubMed

    Reckziegel, Patrícia; Dias, Verônica Tironi; Benvegnú, Dalila; Boufleur, Nardeli; Silva Barcelos, Raquel Cristine; Segat, Hecson Jesser; Pase, Camila Simonetti; Dos Santos, Clarissa Marques Moreira; Flores, Erico Marlon Moraes; Bürger, Marilise Escobar

    2011-05-30

    We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.

  13. Driving safety after brain damage: follow-up of twenty-two patients with matched controls.

    PubMed

    Katz, R T; Golden, R S; Butter, J; Tepper, D; Rothke, S; Holmes, J; Sahgal, V

    1990-02-01

    Driving after brain damage is a vital issue, considering the large number of patients who suffer from cerebrovascular and traumatic encephalopathy. The ability to operate a motor vehicle is an integral part of independence for most adults and so should be preserved whenever possible. The physician may estimate a patient's ability to drive safely based on his own examination, the evaluation of a neuropsychologist, and a comprehensive driving evaluation--testing, driving simulation, behind-the-wheel observation--with a driving specialist. This study sought to evaluate the ability of brain-damaged individuals to operate a motor vehicle safely at follow-up. These patients had been evaluated (by a physician, a neuropsychologist, and a driving specialist) and were judged able to operate a motor vehicle safely after their cognitive insult. Twenty-two brain-damaged patients who were evaluated at our institution were successfully followed up to five years (mean interval of 2.67 years). Patients were interviewed by telephone. Their driving safely was compared with a control group consisting of a close friend or spouse of each patient. Statistical analysis revealed no difference between patient and control groups in the type of driving, the incidence of speeding tickets, near accidents, and accidents, and the cost of vehicle damage when accidents occurred. The patient group was further divided into those who had, and those who had not experienced driving difficulties so that initial neuropsychologic testing could be compared. No significant differences were noted in any aspect of the neuropsychologic test battery. We conclude that selected brain-damaged patients who have passed a comprehensive driving assessment as outlined were as fit to drive as were their normal matched controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Exendin-4 attenuates brain death-induced liver damage in the rat.

    PubMed

    Carlessi, Rodrigo; Lemos, Natalia E; Dias, Ana L; Brondani, Leticia A; Oliveira, Jarbas R; Bauer, Andrea C; Leitão, Cristiane B; Crispim, Daisy

    2015-11-01

    The majority of liver grafts destined for transplantation originate from brain dead donors. However, significantly better posttransplantation outcomes are achieved when organs from living donors are used, suggesting that brain death (BD) causes irreversible damage to the liver tissue. Recently, glucagon-like peptide-1 (GLP1) analogues were shown to possess interesting hepatic protection effects in different liver disease models. We hypothesized that donor treatment with the GLP1 analogue exendin-4 (Ex-4) could alleviate BD-induced liver damage. A rat model of BD was employed in order to estimate BD-induced liver damage and Ex-4's potential protective effects. Liver damage was assessed by biochemical determination of circulating hepatic markers. Apoptosis in the hepatic tissue was assessed by immunoblot and immunohistochemistry using an antibody that only recognizes the active form of caspase-3. Gene expression changes in inflammation and stress response genes were monitored by quantitative real-time polymerase chain reaction. Here, we show that Ex-4 administration to the brain dead liver donors significantly reduces levels of circulating aspartate aminotransferase and lactate dehydrogenase. This was accompanied by a remarkable reduction in hepatocyte apoptosis. In this model, BD caused up-regulation of tumor necrosis factor and stress-related genes, confirming previous findings in clinical and animal studies. In conclusion, treatment of brain dead rats with Ex-4 reduced BD-induced liver damage. Further investigation is needed to determine the molecular basis of the observed liver protection. After testing in a randomized clinical trial, the inclusion of GLP1 analogues in organ donor management might help to improve organ quality, maximize organ donation, and possibly increase liver transplantation success rates.

  15. Leukocytosis after routine cranial surgery: A potential marker for brain damage in intracranial surgery

    PubMed Central

    Agrawal, Deepak; Kurwale, Nilesh; Sharma, Bhawani Shankar

    2016-01-01

    Aims and Objectives: Leukocytosis after intracranial surgery may create concern about possible infection, especially when associated with fever. Knowledge of the expected degree of leukocytosis after surgery would assist in the interpretation of leukocytosis. It was hypothesized that the degree of leukocytosis after intracranial surgery correlated with the extent of brain damage inflicted during the surgery. Materials and Methods: In this prospective study conducted over 6 months, consecutive patients undergoing either elective resections of brain tumors (having significant collateral brain damage) or aneurysm clipping (with minimal collateral brain damage) were studied. Total blood leukocyte count was checked daily in the morning for the first five postoperative days in both the groups. The mean of the leukocyte count ratio (postoperative leukocyte count/preoperative leukocyte count) on each day was calculated for each group. Results: There were 76 patients, 46 in the test group and 30 controls. Both groups were well matched in age, sex, duration of surgery, and intraoperative fluid balance. The mean leukocyte count ratio on POD1 in the tumor group was significantly higher (1.87) as compared to 1.1 in the aneurysm group (P = 0.001). This difference in the leukocyte count ratio between the groups was maintained on the second and third postoperative days, with decreasing level of significance after the third day. Conclusions: This study shows that intraoperative brain injury is associated with leukocytosis in the immediate postoperative period. This can assist in the interpretation of leukocytosis after intracranial surgeries and could be a quantitative marker for brain injury in patients undergoing intracranial surgery. PMID:27057215

  16. Idazoxan reduces blood-brain barrier damage during experimental autoimmune encephalomyelitis in mouse.

    PubMed

    Wang, Xin-Shi; Fang, Hui-Lin; Chen, Yu; Liang, Shan-Shan; Zhu, Zhen-Guo; Zeng, Qing-Yi; Li, Jia; Xu, Hui-Qin; Shao, Bei; He, Jin-Cai; Hou, Sheng-Tao; Zheng, Rong-Yuan

    2014-08-05

    We have previously shown that Idazoxan (IDA), an imidazoline 2 receptor ligand, is neuroprotective against spinal cord injury caused by experimental autoimmune encephalomyelitis (EAE) in mouse, an animal modal of multiple sclerosis (MS). However, the protective mechanism remains unclear. Here, we provided evidence to show that IDA confers neuroprotection through reduction in blood-brain barrier (BBB) damage. EAE was induced by immunizing C57 BL/6 mice with myelin oligodendrocyte glycoprotein35-55 amino acid peptide (MOG35-55). IDA was administrated for 14 days after MOG immunization at 2 mg/kg (i.p., bid). Significant reduction in BBB damage occurred in the IDA-treated group of mice compared with the saline-treated group, as evidenced by the reduction in Evan׳s blue content in the brain tissue and the reduced BBB tight junction damage viewed under a transmission electron microscope. Moreover, EAE-induced reductions in tight junction proteins (JAM-1, Occludin, Claudin-5 and ZO-1) were also significantly ameliorated in IDA-treated mice, all of which supported the notion that IDA reduced BBB damage. Interestingly, the expression levels of extracellular matrix metalloproteinase-9 (MMP-9) and the ratio of MMP-9 against tissue inhibitor of metalloproteinase-1 (TIMP-1), which is known to be associated with MS-induced BBB damage, were significantly reduced in IDA-treated group, lending further support to the hypothesis that IDA confers brain protection through reducing BBB damage. This study raised a possibility that IDA is a promising pro-drug for development against MS.

  17. Brain oxidative damage restored by Sesbania grandiflora in cigarette smoke-exposed rats.

    PubMed

    Ramesh, Thiyagarajan; Sureka, Chandrabose; Bhuvana, Shanmugham; Begum, Vavamohaideen Hazeena

    2015-08-01

    Cigarette smoking has been associated with high risk of neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, etc., The present study was designed to evaluate the restorative effects of Sesbania grandiflora (S. grandiflora) on oxidative damage induced by cigarette smoke exposure in the brain of rats. Adult male Wistar-Kyoto rats were exposed to cigarette smoke for a period of 90 days and consecutively treated with S. grandiflora aqueous suspension (SGAS, 1000 mg/kg body weight per day by oral gavage) for a period of 3 weeks. The levels of protein carbonyl, nitric oxide, and activities of cytochrome P450, NADPH oxidase and xanthine oxidase were significantly increased, whereas the levels of total thiol, protein thiol, non-protein thiol, nucleic acids, tissue protein and the activities of Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were significantly diminished in the brain of rats exposed to cigarette smoke as compared with control rats. Also cigarette smoke exposure resulted in a significant alteration in brain total lipid, total cholesterol, triglycerides and phospholipids content. Treatment of SGAS is regressed these alterations induced by cigarette smoke. The results of our study suggest that S. grandiflora restores the brain from cigarette smoke induced oxidative damage. S. grandiflora could have rendered protection to the brain by stabilizing their cell membranes and prevented the protein oxidation, probably through its free radical scavenging and anti-peroxidative effect.

  18. Quantitation of heavy ion damage to the mammalian brain - Some preliminary findings

    NASA Technical Reports Server (NTRS)

    Cox, A. B.; Kraft, L. M.

    1984-01-01

    For several years, studies have been conducted regarding late effects of particulate radiations in mammalian tissues, taking into account the brains of rodents and lagomorphs. Recently, it has become feasible to quantify pathological damage and morpho-physiologic alterations accurately in large numbers of histological specimens. New investigative procedures make use of computer-assisted automated image analysis systems. Details regarding the employed methodology are discussed along with the results of the information. The radiations of high linear energy transfer (LET) cause apparently earlier and more dramatic shrinkage of olfactory glomeruli in exposed rabbit brains than comparable doses of Co-60 gamma photons.

  19. Brain damage complicating septic shock: acute haemorrhagic leucoencephalitis as a complication of the generalised Shwartzman reaction.

    PubMed Central

    Graham, D I; Behan, P O; More, I A

    1979-01-01

    The neuropathological findings in six patients who developed neurological signs after the onset of "septic shock" caused by Gram-negative septicaemia are described. The changes in the brains were characteristic of acute haemorrhagic leucoencephalitis, and there was evidence, particularly in the kidneys, of disseminated intravascular coagulation with tubular necrosis and, in some, appearances indistinguishable from membrano-proliferative glomerulonephritis. It is agreed that acute haemorrhagic leucoencephalitis is another manifestation of a generalised Shwartzman reaction, and it is suggested that activation of complement is the final common pathway that produces tissue damage in the brain and kidney. Images PMID:762582

  20. Alcohol-induced vascular damage of brain can be ameliorated by administration of magnesium

    SciTech Connect

    Altura, B.M.; Altura, B.T.; Gebrewold, A.

    1986-03-01

    Long-term as well as short-term administration of alcohol can cause neuronal and vascular damage in the brain. The authors have reported that acute administration of ethyl alcohol (ALC), either directly into the rat brain, IV or locally, can produce concentration-dependent spasms of cerebral arterioles, venules, arteries and veins followed by irreversible rupture of capillaries and veins followed by irreversible rupture of capillaries and venules. Several experiments have suggested that administration of magnesium ions (Mg/sup 2 +/) can modify vascular tone. Whether Mg/sup 2 +/ can exert direct actions on the intact cerebral microcirculation is not known. Using the above intact rat brain model, and TV-image intensification, the authors determine whether administration of Mg/sup 2 +/ : 1) exerts actions on cerebral (coritical) arterioles (A) and venules (V) (12-40..mu..m); 2) directly into the brain alters arterial blood pressure (BP); and 3) could ameliorate or prevent some of the detrimental cerebral-vascular actions ALC exerts in the brain. The data show that infusion of Mg/sup 7 +/ : 1) into the rat brain result in a rapid dose-dependent lowering of systolic and diastolic and BP; 2) IV or intra-arterially (IA) produces dose-dependent vaso-dilation of A and V; 3) IV or IA prevents spasms and rupture of A and V induced by 10% ALC. The cerebral vascular actions of Mg/sup 2 +/ may prove to be useful in treatment and prevention of ALC-induced brain damage.

  1. Pathogenesis of brain damage produced in sheep by Clostridium perfringens type D epsilon toxin: a review.

    PubMed

    Finnie, J W

    2003-04-01

    Microvascular endothelial damage by the epsilon toxin of Clostridium perfringens type D appears to be the fundamental cause of cerebral parenchymal injury and lesions occur in a seemingly dose- and time-dependent manner. Large doses of circulating toxin produce a severe, generalised, vasogenic cerebral oedema and an acute or peracute clinical course to death. With lower doses of toxin, or in partially immune sheep, focal necrosis, often bilaterally symmetrical, occurs in certain selectively vulnerable brain regions, which appear to become fewer as the toxin dose is reduced. These cases follow a more protracted clinical course, but death is the usual outcome. The precise pathogenesis of the focal brain damage found in subacutely intoxicated sheep is unresolved, but several possible mechanisms are discussed.

  2. Nutritional management of a patient with brain damage and spinal cord injury.

    PubMed

    Bildsten, C; Lamid, S

    1983-08-01

    Few reports on nutritional management of patients with both brain damage and spinal-cord-injury appear in the literature. We present a case of a 20-year-old male quadriplegic, C4 complete, who also sustained brain damage secondary to cerebral anoxia. When the patient was transferred to our rehabilitation unit, deterioration in nutritional status was noted, as evidenced by weight loss and depressed serum albumin and hemoglobin. Nutritional rehabilitation consisted of weaning from nasogastric tube feedings to an oral diet providing snacks and commercial supplements. This resulted in a positive nitrogen balance. Other factors, such as mobilization, exercises, and closure of a pressure sore, contributed favorably to improvement of nutritional status.

  3. Role of microvascular disruption in brain damage from traumatic brain injury

    PubMed Central

    Logsdon, Aric F.; Lucke-Wold, Brandon P.; Turner, Ryan C.; Huber, Jason D.; Rosen, Charles L.; Simpkins, James W.

    2015-01-01

    Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis. PMID:26140712

  4. Cavitation-Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    DTIC Science & Technology

    2014-10-14

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 14-10-2014 Approved for public release; distribution is unlimited. Quad: Cavitation -Induced...AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Cavitation ; Neurons, Traumatic brain injury...University of Florida Office of Engineering Research 339 Weil Hall Gainesville, FL 32611 -6550 ABSTRACT Quad: Cavitation -Induced Structural and Neural Damage

  5. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats.

    PubMed

    Sankar, Palanisamy; Telang, Avinash Gopal; Kalaivanan, Ramya; Karunakaran, Vijayakaran; Suresh, Subramaniyam; Kesavan, Manickam

    2016-03-01

    Arsenic exposure through drinking water causes oxidative stress and tissue damage in the kidney and brain. Curcumin (CUR) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, which can be overcome by the encapsulation of CUR with nanoparticles (NPs). The present study investigates the therapeutic efficacy of free CUR and NP-encapsulated CUR (CUR-NP) against sodium arsenite-induced renal and neuronal oxidative damage in rat. The CUR-NP prepared by emulsion technique and particle size ranged between 120 and 140 nm, with the mean particle size being 130.8 nm. Rats were divided into five groups (groups 1-5) with six animals in each group. Group 1 served as control. Group 2 rats were exposed to sodium arsenite (25 ppm) daily through drinking water for 42 days. Groups 3, 4, and 5 were treated with arsenic as in Group 2; however, these animals were also administered with empty NPs, CUR (100 mg/kg body weight), and CUR-NP (100 mg/kg), respectively, by oral gavage during the last 14 days of arsenic exposure. Arsenic exposure significantly increased serum urea nitrogen and creatinine levels. Arsenic increased lipid peroxidation (LPO), reduced glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were depleted significantly in both kidney and brain. Treatment with free CUR and CUR-NP decreased the LPO and increased the enzymatic and nonenzymatic antioxidant system in kidney and brain. Histopathological examination showed that kidney and brain injury mediated by arsenic was ameliorated by treatment. However, the amelioration percentage indicates that CUR-NP had marked therapeutic effect on arsenic-induced oxidative damage in kidney and brain tissues.

  6. Monochloroacetic acid toxicity in the mouse associated with blood-brain barrier damage

    SciTech Connect

    Berardi, M.R.

    1986-01-01

    Monochloroacetic acid (MCA) damages the blood-brain barrier (BBB) of mice when administered orally at lethal doses. Damage was characterized by the finding of RBC's in the brain parenchyma of mice exhibiting neurologic dysfunction after MCA treatment, and by the entry of (/sup 14/C)inulin and (/sup 3/H)dopamine into the brain following a lethal dose of MCA. Results of acute toxicity studies, pharmacological antidote studies, and toxicokinetics studies in mice and rats are also presented. Acute toxicity of MCA in rats and mice by several routes of administration was determined. Toxicity of molten MCA by the dermal route was characterized by a small amount of surface area exposure and short application time necessary to produce death in both species. Some mice surviving an acute lethal oral dose of MCA exhibited a rigid clasping of the front paws (myotonia) with impairment of walking. Oral administration of (/sup 14/C)MCA to both mice and rats was followed by a rapid elimination of radioactivity from non-cerebral tissues and rapid appearance in the urine. As the dose was increased from a trace dose to a toxic dose, the percent of the administrated dose which was found in the tissues, including brain regions, was greatly increased. Two hours after oral administration of an LD80 of MCA to mice, and coinciding with the onset of toxic signs, entry of (/sup 14/C)inulin into brain regions was significantly increased compared to controls. Both MCA lethality and front paw dysfunction in mice appear to be associated with damage to the BBB.

  7. Bender-Gestalt test and background interference procedure in discernment of organic brain damage.

    PubMed

    Pardue, A M

    1975-02-01

    Although the Bender-Gestalt test has proven adequate in differentiating groups of organic from groups of nonorganic Ss, attempts at individual diagnosis have frequently met with failure. Canter's Background Interference Procedure was designed to increase the sensitivity of the Bender test to the discernment of organic brain damage. The purpose of this paper was to check the validity of the Canter procedure, and to investigate its applicability to Hain's scoring system for the Bender test. 20 brain-damaged patients, 20 schizophrenics and 20 nonorganic, non-brain-damaged patients were matched for age and intelligence. Each of these groups was further divided into outpatients and inpatients. All patients were administered the Bender test on the standard white paper, the WAIS vocabulary subtest, and again the Bender test, on paper for the Background Interference Procedure. Significant results were obtained with the Background Interference administration for both Pascal-Suttell's and Hain's scoring systems where the standard administration had failed to yield significance. The tentative criteria proposed by Canter for individual diagnosis, however, were adequate for Pascal-Suttell's scoring system but not for Hain's method. Possible explanations for this disagreement, as well as suggestions for further research, are offered.

  8. Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy?

    PubMed

    Fleiss, Bobbi; Gressens, Pierre

    2012-06-01

    Cerebral palsy is caused by injury or developmental disturbances to the immature brain and leads to substantial motor, cognitive, and learning deficits. In addition to developmental disruption associated with the initial insult to the immature brain, injury processes can persist for many months or years. We suggest that these tertiary mechanisms of damage might include persistent inflammation and epigenetic changes. We propose that these processes are implicit in prevention of endogenous repair and regeneration and predispose patients to development of future cognitive dysfunction and sensitisation to further injury. We suggest that treatment of tertiary mechanisms of damage might be possible by various means, including preventing the repressive effects of microglia and astrocyte over-activation, recapitulating developmentally permissive epigenetic conditions, and using cell therapies to stimulate repair and regeneration Recognition of tertiary mechanisms of damage might be the first step in a complex translational task to tailor safe and effective therapies that can be used to treat the already developmentally disrupted brain long after an insult.

  9. Protective role for type 4 metabotropic glutamate receptors against ischemic brain damage.

    PubMed

    Moyanova, Slavianka G; Mastroiacovo, Federica; Kortenska, Lidia V; Mitreva, Rumiana G; Fardone, Erminia; Santolini, Ines; Sobrado, Mónica; Battaglia, Giuseppe; Bruno, Valeria; Nicoletti, Ferdinando; Ngomba, Richard T

    2011-04-01

    We examined the influence of type 4 metabotropic glutamate (mGlu4) receptors on ischemic brain damage using the permanent middle cerebral artery occlusion (MCAO) model in mice and the endothelin-1 (Et-1) model of transient focal ischemia in rats. Mice lacking mGlu4 receptors showed a 25% to 30% increase in infarct volume after MCAO as compared with wild-type littermates. In normal mice, systemic injection of the selective mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-caboxamide (PHCCC; 10  mg/kg, subcutaneous, administered once 30  minutes before MCAO), reduced the extent of ischemic brain damage by 35% to 45%. The drug was inactive in mGlu4 receptor knockout mice. In the Et-1 model, PHCCC administered only once 20  minutes after ischemia reduced the infarct volume to a larger extent in the caudate/putamen than in the cerebral cortex. Ischemic rats treated with PHCCC showed a faster recovery of neuronal function, as shown by electrocorticographic recording and by a battery of specific tests, which assess sensorimotor deficits. These data indicate that activation of mGlu4 receptors limit the development of brain damage after permanent or transient focal ischemia. These findings are promising because selective mGlu4 receptor enhancers are under clinical development for the treatment of Parkinson's disease and other central nervous system disorders.

  10. Radial bisection of words and lines in right-brain-damaged patients with spatial neglect.

    PubMed

    Veronelli, Laura; Arduino, Lisa S; Girelli, Luisa; Vallar, Giuseppe

    2015-11-27

    The bisection of lines positioned radially (with the two ends of the line close and far, with respect to the participant's body) has been less investigated than that of lines placed horizontally (with their two ends left and right, with respect to the body's midsagittal plane). In horizontal bisection, patients with left neglect typically show a rightward bias for both lines and words, greater with longer stimuli. As for radial bisection, available data indicate that neurologically unimpaired participants make a distal error, while results from right-brain-damaged patients with left spatial neglect are contradictory. We investigated the bisection of radially oriented words, with the prediction that, during bisection, linguistic material would be recoded to its canonical left-to-right format in reading, with the performance of neglect patients being similar to that for horizontal words. Thirteen right-brain-damaged patients (seven with left spatial neglect) and fourteen healthy controls were asked to manually bisect 40 radial and 40 horizontal words (5-10 letters), and 80 lines, 40 radial and 40 horizontal, of comparable length. Right-brain-damaged patients with spatial neglect exhibited a proximal bias in the bisection of short radial words, with the proximal part corresponding to the final right part of horizontally oriented words. This proximal error was not found in patients without neglect and healthy controls. For bisection, short radial words may be recoded to the canonical orthographic horizontal format, unveiling the impact of left neglect on radially oriented stimuli.

  11. Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model.

    PubMed

    Zhang, Xiangmin; Song, Lili; Cheng, Xiuyong; Yang, Yi; Luan, Bin; Jia, Liting; Xu, Falin; Zhang, Zhan

    2011-09-30

    Perinatal hypoxia-ischemia brain injury is a major cause of mortality and morbidity in neonates and lacks an effective treatment thus far. Carnosine has been demonstrated to play a neuroprotective role in the adult brain injuries. However, there is no information available concerning its neuroprotective role in the immature brains after hypoxia-ischemia insults. Therefore, we investigated whether carnosine could also confer neuroprotective effects in a neonatal rat hypoxia-ischemia model. Hypoxia-ischemia was induced in rats on postnatal day 7 (P7). Carnosine (250 mg/kg) was administered intraperitoneally, 30 min prior to hypoxia-ischemia induction. Morphological brain injury and biochemical markers of apoptosis and oxidative stress were evaluated 24 h after hypoxia-ischemia induction. Cognitive performance was evaluated by the Morris Water Maze test on P28-P33. We found that pretreatment with carnosine significantly reduced the infarct volume and the number of terminal-deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells in the hypoxia-ischemia brain. Carnosine also inhibited mRNA expression of apoptosis-inducing factor(AIF) and caspase-3, which was accompanied by an increase in superoxide dismutase(SOD)activity and a decrease in the malondialdehyde(MDA)level in carnosine-treated rats. Furthermore, carnosine also improved the spatial learning and memory abilities of rats declined due to hypoxia-ischemia. These results demonstrate that carnosine can protect rats against hypoxia-ischemia-induced brain damage by antioxidation.

  12. Does Swedish amateur boxing lead to chronic brain damage? 3. A retrospective clinical neurophysiological study.

    PubMed

    Haglund, Y; Persson, H E

    1990-12-01

    The aim of the present study was to investigate possible chronic brain damage due to Swedish amateur boxing. Forty seven former amateur boxers, 22 with many (HM = high-matched) and 25 with few matches (LM = low-matched) during their career were examined and compared with two control groups of 25 soccer players and 25 track and field athletes in the same age-range. No severe EEG abnormality was found. There was a somewhat higher incidence of slight or moderate EEG deviations among HM-(32%, 7/22) and LM-(36%, 9/25) boxers than among soccer players (20%, 5/25) and track and field athletes (12%, 3/25). Brain electric activity mapping (BEAM), brainstem auditory evoked potential (BAEP) and auditory evoked P 300 potential (P 300) did not differ significantly between the groups. No neurophysiological variable was correlated to the number of bouts, number of lost fights or length of boxing career. Thus, no signs of serious chronic brain damage was found among the amateur boxers or the soccer players and the track and field athletes. However, it cannot be excluded that the EEG differences between the groups may be a sign of slight brain dysfunction in some of the amateur boxers.

  13. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia

    PubMed Central

    Koh, Han Seok; Chang, Chi Young; Jeon, Sae-Bom; Yoon, Hee Jung; Ahn, Ye-Hyeon; Kim, Hyung-Seok; Kim, In-Hoo; Jeon, Sung Ho; Johnson, Randall S.; Park, Eun Jung

    2015-01-01

    Inflammation is closely related to the extent of damage following cerebral ischaemia, and the targeting of this inflammation has emerged as a promising therapeutic strategy. Here, we present that hypoxia-induced glial T-cell immunoglobulin and mucin domain protein (TIM)-3 can function as a modulator that links inflammation and subsequent brain damage after ischaemia. We find that TIM-3 is highly expressed in hypoxic brain regions of a mouse cerebral hypoxia-ischaemia (H/I) model. TIM-3 is distinctively upregulated in activated microglia and astrocytes, brain resident immune cells, in a hypoxia-inducible factor (HIF)-1-dependent manner. Notably, blockade of TIM-3 markedly reduces infarct size, neuronal cell death, oedema formation and neutrophil infiltration in H/I mice. Hypoxia-triggered neutrophil migration and infarction are also decreased in HIF-1α-deficient mice. Moreover, functional neurological deficits after H/I are significantly improved in both anti-TIM-3-treated mice and myeloid-specific HIF-1α-deficient mice. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against hypoxia-associated brain diseases. PMID:25790768

  14. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia.

    PubMed

    Koh, Han Seok; Chang, Chi Young; Jeon, Sae-Bom; Yoon, Hee Jung; Ahn, Ye-Hyeon; Kim, Hyung-Seok; Kim, In-Hoo; Jeon, Sung Ho; Johnson, Randall S; Park, Eun Jung

    2015-03-20

    Inflammation is closely related to the extent of damage following cerebral ischaemia, and the targeting of this inflammation has emerged as a promising therapeutic strategy. Here, we present that hypoxia-induced glial T-cell immunoglobulin and mucin domain protein (TIM)-3 can function as a modulator that links inflammation and subsequent brain damage after ischaemia. We find that TIM-3 is highly expressed in hypoxic brain regions of a mouse cerebral hypoxia-ischaemia (H/I) model. TIM-3 is distinctively upregulated in activated microglia and astrocytes, brain resident immune cells, in a hypoxia-inducible factor (HIF)-1-dependent manner. Notably, blockade of TIM-3 markedly reduces infarct size, neuronal cell death, oedema formation and neutrophil infiltration in H/I mice. Hypoxia-triggered neutrophil migration and infarction are also decreased in HIF-1α-deficient mice. Moreover, functional neurological deficits after H/I are significantly improved in both anti-TIM-3-treated mice and myeloid-specific HIF-1α-deficient mice. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against hypoxia-associated brain diseases.

  15. Apelin-13 attenuates traumatic brain injury-induced damage by suppressing autophagy.

    PubMed

    Bao, Hai-Jun; Zhang, Lin; Han, Wen-Can; Dai, Ding-Kun

    2015-01-01

    The adipocytokine apelin is a peptide, Apelin and its receptor are abundantly expressed in the nervous and cardiovascular systems. Previous studies had found apelin-13 reduces brain injuries and postischemic cerebral edema through blocking programmed cell death, Apelin-13 is also able to inhibit glucose deprivation induced cardiomyocyte autophagy in a concentration dependent fashion. To observe the effect of Apelin-13 on the brain injury induced by traumatic brain injury (TBI), and explore the effect of Apelin-13 on autophagy in TBI, We performed The neurological test, and the numbers of TBI-induced neural cell death were also counted by propidium iodide labeling. At last, the autophagy associated proteins LC3, Beclin-1, Bcl-2, p62 were also assessed with western-blotting. Compared with saline vehicle groups, the neural cell death, lesion volume, and neural dysfunction were attenuated by apelin-13 after TBI. In additionally, Apelin-13 also reversed TBI induced downregulation of LC3, Beclin-1, Bcl-2, p62 expression, compared with saline vehicle groups, at 24 and 48 h post TBI. Apelin-13 attenuates TBI induced brain damage by suppressing autophagy. All these results revealed that Apelin-13 suppressed autophagy. The autophagy may be involved in the mechanism of Apelin-13 rescue the subsequent damaged neuron in TBI.

  16. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    PubMed Central

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  17. Frontal white matter damage impairs response inhibition in children following traumatic brain injury.

    PubMed

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-05-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition.

  18. Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.

    PubMed

    Haimovici, Ariel; Balenzuela, Pablo; Tagliazucchi, Enzo

    2016-12-01

    Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human "structural connectome." Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (subcritical) and disordered (supercritical) phases. Here, we explore the hypothesis that pathologies resulting from brain injury of different etiologies are related to this model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an empirical weighted network of human structural connections with a conceptual model of critical dynamics, we show that lesions located at highly transited connections progressively displace the model toward the subcritical regime. The topological properties of the nodes and links are of less importance when considered independently of their weight in the network. We observe that damage to midline hubs such as the middle and posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected areas and that intersubject variability could obscure lesions located at nonhub regions. Finally, we discuss the predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative disorders.

  19. Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage

    PubMed Central

    Zhao, Xiurong; Wang, Huan; Sun, Guanghua; Zhang, Jie; Edwards, Nancy J.

    2015-01-01

    After ischemic stroke, various damage-associated molecules are released from the ischemic core and diffuse to the ischemic penumbra, activating microglia and promoting proinflammatory responses that may cause damage to the local tissue. Here we demonstrate using in vivo and in vitro models that, during sublethal ischemia, local neurons rapidly produce interleukin-4 (IL-4), a cytokine with potent anti-inflammatory properties. One such anti-inflammatory property includes its ability to polarize macrophages away from a proinflammatory M1 phenotype to a “healing” M2 phenotype. Using an IL-4 reporter mouse, we demonstrated that IL-4 expression was induced preferentially in neurons in the ischemic penumbra but not in the ischemic core or in brain regions that were spared from ischemia. When added to cultured microglia, IL-4 was able to induce expression of genes typifying the M2 phenotype and peroxisome proliferator activated receptor γ (PPARγ) activation. IL-4 also enhanced expression of the IL-4 receptor on microglia, facilitating a “feedforward” increase in (1) their expression of trophic factors and (2) PPARγ-dependent phagocytosis of apoptotic neurons. Parenteral administration of IL-4 resulted in augmented brain expression of M2- and PPARγ-related genes. Furthermore, IL-4 and PPARγ agonist administration improved functional recovery in a clinically relevant mouse stroke model, even if administered 24 h after the onset of ischemia. We propose that IL-4 is secreted by ischemic neurons as an endogenous defense mechanism, playing a vital role in the regulation of brain cleanup and repair after stroke. Modulation of IL-4 and its associated pathways could represent a potential target for ischemic stroke treatment. SIGNIFICANCE STATEMENT Depending on the activation signal, microglia/macrophages (MΦ) can behave as “healing” (M2) or “harmful” (M1). In response to ischemia, damaged/necrotic brain cells discharge factors that polarize MΦ to a M1-like

  20. Distinct time courses of secondary brain damage in the hippocampus following brain concussion and contusion in rats.

    PubMed

    Nakajima, Yuko; Horiuchi, Yutaka; Kamata, Hiroshi; Yukawa, Masayoshi; Kuwabara, Masato; Tsubokawa, Takashi

    2010-07-01

    Secondary brain damage (SBD) is caused by apoptosis after traumatic brain injury that is classified into concussion and contusion. Brain concussion is temporary unconsciousness or confusion caused by a blow on the head without pathological changes, and contusion is a brain injury with hemorrhage and broad extravasations. In this study, we investigated the time-dependent changes of apoptosis in hippocampus after brain concussion and contusion using rat models. We generated the concussion by dropping a plumb on the dura from a height of 3.5 cm and the contusion by cauterizing the cerebral cortex. SBD was evaluated in the hippocampus by histopathological analyses and measuring caspase-3 activity that induces apoptotic neuronal cell death. The frequency of abnormal neuronal cells with vacuolation or nuclear condensation, or those with DNA fragmentation was remarkably increased at 1 hr after concussion (about 30% for each abnormality) from the pre-injury level (0%) and reached the highest level (about 50% for each) by 48 hrs, whereas the frequency of abnormal neuronal cells was increased at 1 hr after contusion (about 10%) and reached the highest level (about 40%) by 48 hrs. In parallel, caspase-3 activity was increased sevenfold in the hippocampus at 1 hr after concussion and returned to the pre-injury level by 48 hrs, whereas after contusion, caspase-3 activity was continuously increased to the highest level at 48 hrs (fivefold). Thus, anti-apoptotic-cell-death treatment to prevent SBD must be performed by 1 hr after concussion and at latest by 48 hrs after contusion.

  1. SR141716A reduces the reinforcing properties of heroin but not heroin-induced increases in nucleus accumbens dopamine in rats.

    PubMed

    Caillé, Stéphanie; Parsons, Loren H

    2003-12-01

    The present experiments tested the hypothesis that the selective CB1 receptor antagonist SR141716A alters heroin self-administration by attenuating heroin-induced increases in nucleus accumbens dopamine levels. SR141716A pretreatment dose-dependently (0.3-3 mg/kg, i.p.) reduced operant heroin self-administration by male Wistar rats under a fixed ratio schedule of reinforcement, and significantly lowered the breaking point of responding for heroin under a progressive ratio schedule of reinforcement. These observations are consistent with recent reports that CB1 receptor inactivation reduces the rewarding properties of opiates. Operant responding for water reinforcement by water-restricted rats was unaltered by these SR141716A doses. Microdialysis tests revealed that heroin self-administration significantly increases interstitial dopamine levels in the nucleus accumbens shell of vehicle-pretreated control rats. However, whereas SR141716A pretreatment dose-dependently reduced heroin self-administration, it did not alter the heroin-associated increase in nucleus accumbens dopamine. These findings suggest that the CB1 antagonist-induced attenuation of heroin reward does not involve dopaminergic mechanisms in the nucleus accumbens shell.

  2. A Programmed Training Technique That Uses Reinforcement to Facilitate Acquisition and Retention in Brain-Damaged Patients

    ERIC Educational Resources Information Center

    Dolan, Michael P.; Norton, James C.

    1977-01-01

    Hospitalized brain-damaged patients were Ss in a study designed to evaluate the effectiveness of a treatment technique used with contingent reinforcement to facilitate acquisition and retention of environmentally relevant information. (Editor)

  3. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    PubMed

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  4. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes.

    PubMed

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie

    2016-11-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6h post exposure while TSPO receptor density increased only at 24h. In all brain regions tested, bax mRNA decreased 1h post exposure followed by an increase 24h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous "first response" mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention.

  5. The dig task: a simple scent discrimination reveals deficits following frontal brain damage.

    PubMed

    Martens, Kris M; Vonder Haar, Cole; Hutsell, Blake A; Hoane, Michael R

    2013-01-04

    Cognitive impairment is the most frequent cause of disability in humans following brain damage, yet the behavioral tasks used to assess cognition in rodent models of brain injury is lacking. Borrowing from the operant literature our laboratory utilized a basic scent discrimination paradigm in order to assess deficits in frontally-injured rats. Previously we have briefly described the Dig task and demonstrated that rats with frontal brain damage show severe deficits across multiple tests within the task. Here we present a more detailed protocol for this task. Rats are placed into a chamber and allowed to discriminate between two scented sands, one of which contains a reinforcer. The trial ends after the rat either correctly discriminates (defined as digging in the correct scented sand), incorrectly discriminates, or 30 sec elapses. Rats that correctly discriminate are allowed to recover and consume the reinforcer. Rats that discriminate incorrectly are immediately removed from the chamber. This can continue through a variety of reversals and novel scents. The primary analysis is the accuracy for each scent pairing (cumulative proportion correct for each scent). The general findings from the Dig task suggest that it is a simple experimental preparation that can assess deficits in rats with bilateral frontal cortical damage compared to rats with unilateral parietal damage. The Dig task can also be easily incorporated into an existing cognitive test battery. The use of more tasks such as this one can lead to more accurate testing of frontal function following injury, which may lead to therapeutic options for treatment. All animal use was conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee.

  6. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    SciTech Connect

    Read, David J.; Li Yong; Chao, Moses V.; Cavanagh, John B.; Glynn, Paul

    2010-05-15

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but may incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.

  7. Pharmacological Effects of a Monoclonal Antibody against 6-Monoacetylmorphine upon Heroin-Induced Locomotor Activity and Pharmacokinetics in Mice.

    PubMed

    Kvello, Anne Marte Sjursen; Andersen, Jannike Mørch; Øiestad, Elisabeth Leere; Mørland, Jørg; Bogen, Inger Lise

    2016-08-01

    Immunotherapy can provide a supplemental treatment strategy against heroin use on the principle of sequestering the active drug in the bloodstream, thereby reducing its distribution to the brain. Previous studies have shown that heroin's first metabolite, 6-monoacetylmorphine (6-MAM), is the main mediator of acute heroin effects. The objective of the present study was to characterize the pharmacological potential of a monoclonal antibody against 6-MAM (anti-6-MAM mAb) to counteract the heroin response. The individual contributions from heroin and 6-MAM to heroin effects were also examined by pretreating mice with anti-6-MAM mAb (10-100 mg/kg) prior to either heroin or 6-MAM injection (1.25-2.5 μmol/kg). The opioid-induced behavioral response was assessed in a locomotor activity test, followed by opioid and antibody quantification in blood and brain tissue. Pretreatment with mAb caused a profound reduction of heroin- and 6-MAM-induced behavior, accompanied by correspondingly decreased levels of 6-MAM in brain tissue. mAb pretreatment was more efficient against 6-MAM injection than against heroin, leading to an almost complete blockade of 6-MAM-induced effects. mAb pretreatment was unable to block the immediate (5-minute) transport of active metabolites across the blood-brain barrier after heroin injection, indicating that heroin itself appears to enhance the immediate delivery of 6-MAM to the brain. The current study provides additional evidence that 6-MAM sequestration is crucial for counteracting the acute heroin response, and demonstrates the pharmacological potential of immunotherapy against heroin use.

  8. Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology.

    PubMed

    Su, J H; Deng, G; Cotman, C W

    1997-01-01

    We have shown that many neurons in Alzheimer's disease (AD) exhibit terminal deoxynucleotidyl transferase (TdT) labeling for DNA strand breaks, and upregulation of Bcl-2 is associated with neurons exhibiting nuclear DNA fragmentation, while downregulation of Bcl-2 is associated with tangle-bearing neurons in AD brains. Consequently, we examined the expression of bcl-associated X (Bax) protein in AD brain. Immunoreactivity for Bax was seen in neurons and microglia of the hippocampal formation, and was elevated in the majority of AD cases as compared to control cases. Interestingly, 3 transitional cases, which had mild degeneration changes, exhibited relatively high levels of Bax immunoreactivity. Most Bax-positive neurons showed either TdT-labeled nuclei or Bcl-2 immunoreactivity. Although Bax immunoreactivity was detected within most early tangle-bearing neurons, many Bax-positive neurons did not colocalize with later-stage tangle-bearing neurons. In regions containing relatively few tangles in mild AD brains, many TdT-labeled neurons were immunolabeled with Bax antibody and most of them lacked evidence of neurofibrillary changes. These findings suggest that Bax may contribute to neuronal cell death in AD. Furthermore, DNA damage and the upregulation of Bax appear to precede tangle formation or may represent an alternative pathway of cell death in AD.

  9. Social reinforcement in block design performance by brain-damaged, emotionally disturbed, and non-disturbed retardates.

    PubMed

    Lehinger, S; McManis, D L

    1976-12-01

    48 retarded adults, equally divided by sex in three diagnostic categories (brain-damaged, nondamaged disturbed, and nondamaged-nondisturbed) were assigned to posttest reinforcement or control conditions on the basis of CA, IQ, and pretest performance on the Block Design. Reinforced subjects were praised for each individual correct block placement on the posttrest; control subjects repeated the test without reinforcement. Both brain-damaged and non-damaged-nondisturbed subjects showed accuracy gains under reinforcement, while nondamaged-disturbed subjects decreased in accuracy. Failure to replicate previous differential reinforcement effects with brain-damaged and nondamaged-nondisturbed subjects, and the discrepant reinforcement effect on nondamaged-disturbed subjects, did not support the use of reinforcement of performance on the Block Design test as an aid in detecting organic damage.

  10. Treatment with nicardipine protects brain in an animal model of hypertension-induced damage.

    PubMed

    Amenta, Francesco; Tomassoni, Daniele

    2004-05-01

    Control of blood pressure protects from the development of cerebrovascular lesions and vascular dementia (VaD). This study has assessed the influence of treatment with the dihydropyridine-type Ca2+ antagonist nicardipine on brain microanatomical changes in spontaneously hypertensive rats (SHR). SHR were treated from 16th to 26th week of age with hypotensive (3 mg/Kg/day) or non-hypotensive (0.1 mg/Kg/day) doses of nicardipine, with the non-dihydropyridine-type vasodilator hydralazine (10 mg/kg/day) or with vehicle (control group). Untreated age-matched Wistar Kyoto (WKY) rats were used as a normotensive reference group. Brain volume, number of neurons, glial fibrillary-acidic protein (GFAP)-immunoreactive astrocytes and neurofilament 200 KDa (NFP)-immunoreactivity (IR) were assessed in frontal and occipital cortex, hippocampus and striatum. A decrease of volume and number of nerve cells and a loss of NFP-IR was found in the frontal and occipital cortex and in the CA1 subfield of hippocampus and in the striatum of SHR. Treatment with nicardipine countered microanatomical changes occurring in SHR, whereas hydralazine displayed a less pronounced effect. Comparatively, the non-hypotensive dose of nicardipine was less active than the hypotensive one. The observation that equihypotensive doses of nicardipine or hydralazine did not protect brain in the same way from hypertensive brain damage suggests that lowering blood pressure is per se not enough for affording neuroprotection. The demonstration of neuroprotective effect of nicardipine suggests an use of the compound in situations in which hypertension is accompanied by the risk of brain damage.

  11. Bumetanide increases manganese accumulation in the brain of rats with liver damage.

    PubMed

    Montes, Sergio; Castro-Chávez, Armando; Florian-Soto, Circe; Heras-Romero, Yessica; Ríos, Camilo; Rivera-Mancía, Susana

    2016-03-05

    Hepatic encephalopathy is a common complication in cases of liver damage; it results from several factors, including the accumulation of toxic substances in the brain, e.g. manganese, ammonia and glutamine. We have previously reported that manganese favors ammonia and glutamine accumulation in the brain of cirrhotic rats, and we suggested that such effect could be mediated by manganese-elicited activation of the NKCC1 (Na(+)/K(+)/2Cl(-) cotransporter 1). To test this hypothesis, we used bumetanide, an NKCC1 blocker prescribed to treat ascites in cirrhotic patients; we expected that if NKCC1 was responsible for manganese-mediated ammonia buildup and the subsequent glutamine accumulation, bumetanide could counteract such effect and improve motor coordination. In addition, we considered essential to test the effect of bumetanide on manganese brain levels. We used a model of liver damage in rats, consisting in bile-duct ligation. Animals were exposed to manganese in the drinking water (1 mg/ml) for two weeks and ammonia in the food (20% w/w of ammonia acetate) during the second week after surgery. Bumetanide was administered intraperitoneally in the course of the ammonia treatment. We measured glutamine and manganese in three brain regions: frontal cortex, striatum and cerebellum. Bumetanide produced no effect on glutamine accumulation; however, because of bumetanide treatment, manganese was increased in the brain, and also the activity of gamma-glutamyl transferase in plasma; thus, we consider that the influence of bumetanide and similar diuretics on liver function and manganese homeostasis should be further studied.

  12. Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination

    PubMed Central

    López-Espíndola, Daniela; Morales-Bastos, Carmen; Grijota-Martínez, Carmen; Liao, Xiao-Hui; Lev, Dorit; Sugo, Ella; Verge, Charles F.; Refetoff, Samuel

    2014-01-01

    Context: Mutations in the MCT8 (SLC16A2) gene, encoding a specific thyroid hormone transporter, cause an X-linked disease with profound psychomotor retardation, neurological impairment, and abnormal serum thyroid hormone levels. The nature of the central nervous system damage is unknown. Objective: The objective of the study was to define the neuropathology of the syndrome by analyzing brain tissue sections from MCT8-deficient subjects. Design: We analyzed brain sections from a 30th gestational week male fetus and an 11-year-old boy and as controls, brain tissue from a 30th and 28th gestational week male and female fetuses, respectively, and a 10-year-old girl and a 12-year-old boy. Methods: Staining with hematoxylin-eosin and immunostaining for myelin basic protein, 70-kDa neurofilament, parvalbumin, calbindin-D28k, and synaptophysin were performed. Thyroid hormone determinations and quantitative PCR for deiodinases were also performed. Results: The MCT8-deficient fetus showed a delay in cortical and cerebellar development and myelination, loss of parvalbumin expression, abnormal calbindin-D28k content, impaired axonal maturation, and diminished biochemical differentiation of Purkinje cells. The 11-year-old boy showed altered cerebellar structure, deficient myelination, deficient synaptophysin and parvalbumin expression, and abnormal calbindin-D28k expression. The MCT8-deficient fetal cerebral cortex showed 50% reduction of thyroid hormones and increased type 2 deiodinase and decreased type 3 deiodinase mRNAs. Conclusions: The following conclusions were reached: 1) brain damage in MCT8 deficiency is diffuse, without evidence of focal lesions, and present from fetal stages despite apparent normality at birth; 2) deficient hypomyelination persists up to 11 years of age; and 3) the findings are compatible with the deficient action of thyroid hormones in the developing brain caused by impaired transport to the target neural cells. PMID:25222753

  13. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    PubMed

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated β-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined.

  14. Genetic influences in emotional dysfunction and alcoholism-related brain damage

    PubMed Central

    Oscar-Berman, Marlene; Bowirrat, Abdalla

    2005-01-01

    Alcoholism is a complex, multifactorial disorder involving problematic ethanol ingestion; it results from the interplay between genetic and environmental factors. Personality, likewise, is formed from a combination of inherited and acquired influences. Because selected dimensions of emotional temperament are associated with distinct neurochemical substrates contributing to specific personality phenotypes, certain aspects of abnormal emotional traits in alcoholics may be inherited. Emotions involve complex subjective experiences engaging multiple brain regions, most notably the cortex, limbic system, and cerebellum. Results of in vivo magnetic resonance imaging and post-mortem neuropathological studies of alcoholics indicate that the greatest cortical loss occurs in the frontal lobes, with concurrent thinning of the corpus callosum. Additional damage has been documented for the amygdala and hippocampus, as well as in the white matter of the cerebellum. All of the critical areas of alcoholism-related brain damage are important for normal emotional functioning. When changes occur in these brain regions, either as a consequence of chronic ethanol abuse or from a genetic anomaly affecting temperament and/or a vulnerability to alcoholism, corresponding changes in emotional functions are to be expected. In alcoholics, such changes have been observed in their perception and evaluation of emotional facial expressions, interpretation of emotional intonations in vocal utterances, and appreciation of the meaning of emotional materials. PMID:18568071

  15. Cocaine induces apoptosis in cerebral vascular muscle cells: potential roles in strokes and brain damage.

    PubMed

    Su, Jialin; Li, Jianfeng; Li, Wenyan; Altura, Bella T; Altura, Burton M

    2003-12-15

    Cocaine abuse is known to induce different types of brain-microvascular damage and many adverse cerebrovascular effects, including cerebral vasculitis, intracranial hemorrhage, cerebral infarction and stroke. A major physiological event leading to these pathophysiological actions of cocaine could be apoptosis. Whether cocaine can cause brain-microvascular pathology and vascular toxicity by inducing apoptosis of cerebral vascular smooth muscle cells is not known. This study, using several different methods to discern apoptosis, was designed to investigate if primary cultured canine cerebral vascular smooth muscle cells can undergo apoptosis when treated with cocaine. After treatment with cocaine (10(-6)-10(-3) M) for 12-24 h, the death rates of cerebral vascular smooth muscle cells increased in a concentration-dependent manner compared with controls. Morphological analysis of cerebral vascular smooth muscle cells using confocal fluoresence microscopy showed that the percentage of apoptotic cerebral vascular smooth muscle cells increased after cocaine (10(-6)-10(-3) M) treatment in a concentration-dependent manner. TUNEL assays also showed positive results for cerebral vascular smooth muscle cells treated with cocaine. These results clearly demonstrate that cerebral vascular smooth muscle cells can undergo rapid apoptosis in response to cocaine in a concentration-dependent manner. Cocaine-induced apoptosis may thus play a major role in brain-microvascular damage, cerebral vascular toxicity and strokes.

  16. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries.

    PubMed

    Glezer, Isaias; Lapointe, Amelie; Rivest, Serge

    2006-04-01

    Regarded as a damaging reaction, innate immune response can either improve or worsen brain outcome after injury. Hence, inflammatory molecules might modulate cell susceptibility or healing events. The remyelination that follows brain lesions is dependent on the recruitment of oligodendrocyte progenitor cells (OPCs) and expression of genes controlling differentiation and myelin production, such as Olig1 and Olig2 bHLH transcription factors. We aimed to determine how innate immunity affects these processes. Here we report that lipopolysaccharide (LPS) infusion triggered OPC reactivity. Acute inflammation changed the distribution of Olig1- and Olig2-expressing cells following chemical demyelination, enhanced reappearance of transcription signals linked to remyelination and rapidly cleared myelin debris. Although cells expressing Olig1, Olig2, and proteolipid protein were attracted to demyelinated sites in the course of chronic inflammation, myelin loss was not associated with the effects of inflammation on OPC reactivity. In addition, the beneficial properties of brain immunity are broadened to an aggressive model of injury, wherein LPS through Toll-like receptor 4 (TLR4) reduced surfactant-mediated damage while anti-inflammatory treatment enlarged the lesion. In conclusion, TLR4 activation in microglia is a powerful mechanism for improving repair at the remyelination level and protecting the cerebral tissue in presence of agents with strong cytolytic properties.

  17. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain.

    PubMed

    Gong, Yu; Chai, Yi; Ding, Jian-Hua; Sun, Xiu-Lan; Hu, Gang

    2011-01-13

    Increasing evidence implicates mitochondrial failure as a crucial factor in the pathogenesis of mental disorders, such as depression. The aim of the present study was to investigate the effects of exposure to chronic mild stress (CMS), a paradigm developed in the late 1980s as an animal model of depression, on the mitochondrial function and mitochondrial ultrastructure in the mouse brain. The results showed that the CMS regime induced depressive-like symptoms in mice characterized by reduced sucrose preference and body weight. Moreover, CMS exposure was associated with a significant increase in immobility time in the tail suspension test. Exposure to the CMS paradigm inhibited mitochondrial respiration rates and dissipated mitochondrial membrane potential in hippocampus, cortex and hypothalamus of mice. In addition, we found a damaged mitochondrial ultrastructure in brains of mice exposed to CMS. These findings provide evidence for brain mitochondrial dysfunction and ultrastructural damage in a mouse model of depression. Moreover, these findings suggest that mitochondrial malfunction-induced oxidative injury could play a role in stress-related disorders such as depression.

  18. Bilateral molecular changes in a neonatal rat model of unilateral hypoxic-ischemic brain damage.

    PubMed

    van den Tweel, Evelyn R W; Kavelaars, Annemieke; Lombardi, Maria Stella; Nijboer, Cora H A; Groenendaal, Floris; van Bel, Frank; Heijnen, Cobi J

    2006-03-01

    Perinatal hypoxia ischemia (HI) is a frequent cause of neonatal brain injury. This study aimed at describing molecular changes during the first 48 h after exposure of the neonatal rat brain to HI. Twelve-day-old rats were subjected to unilateral carotid artery occlusion and 90 min of 8% O2, leading to neuronal damage in the ipsilateral hemisphere only. Phosphorylated-Akt levels were decreased from 0.5 to 6 h post-HI, whereas the level of phosphorylated extracellular signal-related kinases (ERK)1/2 increased during this time frame. Hypoxia-inducible factor (HIF)-1alpha protein increased with a peak at 3 h after HI. mRNA expression for IL-beta and tumor necrosis factor-alpha and -beta started to increase at 6 h with a peak at 24 h post-HI. Expression of heat shock protein 70 was increased from 12 h after HI onwards in the ipsilateral hemisphere only. Surprisingly, HI changed the expression of cytokines, HIF1-alpha ,and P-Akt to the same extent in both the ipsi- as well as the contralateral hemisphere, although neuronal damage was unilateral. Exposure of animals to hypoxia without carotid artery occlusion induced similar changes in cytokines, HIF-1alpha, and P-Akt. We conclude that during HI, hypoxia is sufficient to regulate multiple molecular mediators that may contribute, but are not sufficient, to induce long-term neuronal damage.

  19. Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury

    PubMed Central

    Valko, Philipp O.; Gavrilov, Yuri V.; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R.; Scammell, Thomas E.

    2016-01-01

    Study Objectives: Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Methods: Postmortem examination of 8 TBI patients and 10 controls. Results: Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. Conclusions: TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. Citation: Valko PO, Gavrilov YV, Yamamoto M, Noain D, Reddy H, Haybaeck J, Weis S, Baumann CR, Scammell TE. Damage to arousal-promoting brainstem neurons with traumatic brain injury. SLEEP 2016;39(6):1249–1252. PMID:27091531

  20. Brain-peripheral cell crosstalk in white matter damage and repair.

    PubMed

    Hayakawa, Kazuhide; Lo, Eng H

    2016-05-01

    White matter damage is an important part of cerebrovascular disease and may be a significant contributing factor in vascular mechanisms of cognitive dysfunction and dementia. It is well accepted that white matter homeostasis involves multifactorial interactions between all cells in the axon-glia-vascular unit. But more recently, it has been proposed that beyond cell-cell signaling within the brain per se, dynamic crosstalk between brain and systemic responses such as circulating immune cells and stem/progenitor cells may also be important. In this review, we explore the hypothesis that peripheral cells contribute to damage and repair after white matter damage. Depending on timing, phenotype and context, monocyte/macrophage can possess both detrimental and beneficial effects on oligodendrogenesis and white matter remodeling. Endothelial progenitor cells (EPCs) can be activated after CNS injury and the response may also influence white matter repair process. These emerging findings support the hypothesis that peripheral-derived cells can be both detrimental or beneficial in white matter pathology in cerebrovascular disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.

  1. Differences between dextroamphetamine and methamphetamine: behavioral changes and oxidative damage in brain of Wistar rats.

    PubMed

    da-Rosa, Dayane D; Valvassori, Samira S; Steckert, Amanda V; Arent, Camila O; Ferreira, Camila L; Lopes-Borges, Jéssica; Varela, Roger B; Mariot, Edemilson; Dal-Pizzol, Felipe; Andersen, Monica L; Quevedo, João

    2012-01-01

    In this study methamphetamine (m-AMPH) and dextroamphetamine (d-AMPH) were compared to determine the potency of the two drugs on behavior and oxidative damage in brain of rats. Male adult Wistar rats were given single (acute administration) or repeated (chronic administration, 14 days) intraperitoneal injections of saline (0.9% NaCl), d-AMPH (2 mg/kg) or m-AMPH (0.25, 0.5, 1 or 2 mg/kg). Locomotor activity was evaluated in open-field apparatus 2 h after the last drug injection. Additionally, thiobarbituric acid reactive substances (TBARS) and protein carbonyl formation were measured in the prefrontal cortex, amygdala, hippocampus and striatum. In both experiments, d-AMPH and m-AMPH (all doses administered) increased the locomotor activity of animals, meantime, no significant difference between d-AMPH and m-AMPH was observed. d-AMPH and m-AMPH increased lipid and protein damage, but m-AMPH was more potent than d-AMPH, however, this effect varies depending on the brain region and the experimental protocol. The results of this study show that d-AMPH and m-AMPH have similar behavioral effects, which previous studies had already reported. On the other hand, this study demonstrated that the m-AMPH induces oxidative damage greater than d-AMPH, showing neurochemical differences previously unknown.

  2. The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats.

    PubMed

    Otsuka, Shotaro; Sakakima, Harutoshi; Sumizono, Megumi; Takada, Seiya; Terashi, Takuto; Yoshida, Yoshihiro

    2016-04-15

    Preconditioning exercise can exert neuroprotective effects after stroke. However, the mechanism underlying these neuroprotective effects by preconditioning exercise remains unclear. We investigated the neuroprotective effects of preconditioning exercise on brain damage and the expression levels of the midkine (MK) and brain-derived neurotrophic factor (BDNF) after brain ischemia. Animals were assigned to one of 4 groups: exercise and ischemia (Ex), no exercise and ischemia (No-Ex), exercise and no ischemia (Ex-only), and no exercise and intact (Control). Rats ran on a treadmill for 30 min once a day at a speed of 25 m/min for 5 days a week for 3 weeks. After the exercise program, stroke was induced by a 60 min left middle cerebral artery occlusion using an intraluminal filament. The infarct volume, motor function, neurological deficits, and the cellular expressions levels of MK, BDNF, GFAP, PECAM-1, caspase 3, and nitrotyrosine (NT) were evaluated 48 h after the induction of ischemia. The infarct volume, neurological deficits and motor function in the Ex group were significantly improved compared to that of the No-Ex group. The expression levels of MK, BDNF, GFAP, and PECAM-1 were enhanced in the Ex group compared to the expression levels in the No-Ex group after brain ischemia, while the expression levels of activated caspase 3 and NT were reduced in the area surrounding the necrotic lesion. Our findings suggest that preconditioning exercise reduced the infract volume and ameliorated motor function, enhanced expression levels of MK and BDNF, increased astrocyte proliferation, increased angiogenesis, and reduced neuronal apoptosis and oxidative stress.

  3. Ascorbic acid ameliorates seizures and brain damage in rats through inhibiting autophagy.

    PubMed

    Dong, Yan; Wang, Shengjun; Zhang, Tongxia; Zhao, Xiuhe; Liu, Xuewu; Cao, Lili; Chi, Zhaofu

    2013-10-16

    Oxidative stress is a mechanism of cell death induced by seizures. Antioxidant compounds have neuroprotective effects due to their ability to inhibit free radical production. Autophagy is a process in which cytoplasmic components such as organelles and proteins are delivered to the lysosomal compartment for degradation, and plays an essential role in the maintenance of cellular homeostasis. The activity of autophagy is enhanced during oxidative stress. The objectives of this work were first to study the inhibitory action of antioxidant ascorbic acid on behavioral changes and brain damage induced by high doses of pilocarpine, then to study the effect of ascorbic acid on oxidative stress (MDA and SOD were used to estimate oxidative stress) and activated autophagy (beclin 1 was used to estimate autophagy) induced by seizures, aiming to further clarify the mechanism of action of this antioxidant compound. In order to determinate neuroprotective effects, we studied the effects of ascorbic acid (500 mg/kg, i.p.) on the behavior and brain lesions observed after seizures induced by pilocarpine (340 mg/kg, i.p., P340 model) in rats. Ascorbic acid injections prior to pilocarpine suppressed behavioral seizure episodes by increasing the latency to the first myoclonic, clonic and tonic seizure and decreasing the percentage of incidence of clonic and tonic seizures as well as the mortality rate. These findings suggested that oxidative stress can be produced and autophagy is increased during brain damage induced by seizures. In the P340 model, ascorbic acid significantly decreased cerebral damage, reduced oxidative stress and inhibited autophagy by reducing de novo synthesis of beclin 1. Antioxidant compound can exert neuroprotective effects associated with inhibition of free radical production and autophagy. These results highlighted the promising therapeutic potential of ascorbic acid in treatment for seizures.

  4. Exposure of rats to ozone: evidence of damage to heart and brain

    SciTech Connect

    Rahman, I.; Massaro, G.D.; Massaro, D. )

    1992-01-01

    Ozone is a strong oxidizing agent, and in many locations it is a major atmospheric pollutant. It is phytotoxic and an important cause of lung dysfunction in humans. Recently, a significant association has been established between total atmospheric oxidants, of which ozone is one, and daily cardiovascular mortality rates. In this article, we show that exposure of rats to ozone for 5 days, in a concentration found in major urban centers, results in an increased concentration of thiobarbituric acid-reactive material (an indicator of lipid peroxidation) in heart and brain tissue as well as elevated activity of catalase and glutathione peroxidase (enzymic scavengers of peroxides) in these tissues. We examined the heart anatomically and found evidence of extracellular and intracellular edema. These findings indicate that the heart and brain are damaged by a concentration of ozone present in major urban centers; they may have important implications for chronic illness and degenerative processes in humans.

  5. Repeated Administration of Mercury Intensifies Brain Damage in Multiple Sclerosis through Mitochondrial Dysfunction

    PubMed Central

    Kahrizi, Farzad; Salimi, Ahmad; Noorbakhsh, Farshid; Faizi, Mehrdad; Mehri, Freshteh; Naserzadeh, Parvaneh; Naderi, Nima; Pourahmad, Jalal

    2016-01-01

    In this study we investigated the additive effect of mercury on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model. Experimental animals (female C57BL/6 mice) are divided into four groups (n = 8); control, Hg, EAE, EAE with Hg. EAE model of MS induced by injecting myelin oligodendrocyte glycoprotein (MOG). Neurobehavioral alterations are recorded and then mice were sacrificed at day 28 and brain mitochondria were isolated and mitochondrial toxicity parameters including mitochondrial swelling, reactive oxygen species (ROS) formation, collapse of mitochondrial membrane potential (MMP) and cytochrome c release were measured. Our results showed that repeated treatment of mercury following induction of EAE in mice significantly increased the neurobehavioral scores, as well as mitochondrial toxicity through ROS formation, mitochondrial swelling, collapse of MMP and cytochrome c release. Our findings proved that repeated exposure with mercury accelerates progression of MS through mitochondrial damage related to oxidative stress and finally apoptosis. PMID:28243280

  6. Measurement of Postreplicative DNA Metabolism and Damage in the Rodent Brain.

    PubMed

    Patel, Jay P; Sowers, Mark L; Herring, Jason L; Theruvathu, Jacob A; Emmett, Mark R; Hawkins, Bridget E; Zhang, Kangling; DeWitt, Douglas S; Prough, Donald S; Sowers, Lawrence C

    2015-12-21

    The DNA of all organisms is metabolically active due to persistent endogenous DNA damage, repair, and enzyme-mediated base modification pathways important for epigenetic reprogramming and antibody diversity. The free bases released from DNA either spontaneously or by base excision repair pathways constitute DNA metabolites in living tissues. In this study, we have synthesized and characterized the stable-isotope standards for a series of pyrimidines derived from the normal DNA bases by oxidation and deamination. We have used these standards to measure free bases in small molecule extracts from rat brain. Free bases are observed in extracts, consistent with both endogenous DNA damage and 5-methylcytosine demethylation pathways. The most abundant free base observed is uracil, and the potential sources of uracil are discussed. The free bases measured in tissue extracts constitute the end product of DNA metabolism and could be used to reveal metabolic disturbances in human disease.

  7. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    PubMed

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats.

  8. Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats.

    PubMed

    Acar, Abdullah; Akil, Esref; Alp, Harun; Evliyaoglu, Osman; Kibrisli, Erkan; Inal, Ali; Unan, Fatma; Tasdemir, Nebahat

    2012-07-01

    To date, there have not been enough studies about the effects of curcumin against oxidative stress on sciatic nerves caused by streptozotocin (STZ) in diabetic rats. Therefore, this study was undertaken to determine whether curcumin, by virtue of its antioxidant properties, could affect the oxidant/antioxidant balance in the sciatic nerve and brain tissues of streptozotocin (STZ)-induced diabetic rats. A total of 28 rats were randomly divided into four groups of seven rats each: normal controls, only curcumin treated, diabetic controls, and diabetics treated with curcumin. Biomarkers-malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and NO levels-for oxidative stress in the brain and sciatic nerve tissues of the rats were measured. We found a significant increase in MDA, NO, TOS, and OSI, along with a reduction in TAS levels in the brains and sciatic nerves of the STZ-induced diabetic rats (for both parameters p < 0.05). The MDA, TOS, OSI, and NO levels in these tissues were significantly reduced in the curcumin-treated diabetic group compared to the untreated diabetic group. In conclusion, the results of this study suggested that curcumin exhibits neuroprotective effects against oxidative damage in the brain and sciatic tissues of diabetic rats.

  9. Plumbagin alters telomere dynamics, induces DNA damage and cell death in human brain tumour cells.

    PubMed

    Khaw, Aik Kia; Sameni, Safoura; Venkatesan, Shriram; Kalthur, Guruprasad; Hande, M Prakash

    2015-11-01

    Natural plant products may possess much potential in palliative therapy and supportive strategies of current cancer treatments with lesser cytotoxicity to normal cells compared to conventional chemotherapy. In the current study, anti-cancer properties of plumbagin, a plant-derived naphthoquinone, on brain cancer cells were determined. Plumbagin treatment resulted in the induction of DNA damage, cell cycle arrest and apoptosis, followed by suppression of the colony forming ability of the brain tumour cells. These effects were substantiated by upregulation of PTEN, TNFRSF1A and downregulation of E2F1 genes, along with a drop in MDM2, cyclin B1, survivin and BCL2 protein expression. Plumbagin induced elevated levels of caspase-3/7 activity as well. For the first time, we show here that plumbagin inhibits telomerase in brain tumour cells and results in telomere shortening following chronic long-term treatment. This observation implies considerable cytotoxicity of plumbagin towards cancer cells with higher telomerase activity. Collectively, our findings suggest plumbagin as a potential chemotherapeutic phytochemical in brain tumour treatment modalities.

  10. Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage

    PubMed Central

    Kim, Kyeong-A; Akram, Muhammad; Shin, Young-Jun; Kim, Eun-Sun; Yu, Seong Woon; Majid, Arshad; Bae, Ok-Nam

    2014-01-01

    Background and Purpose Despite the rapidly increasing global burden of ischemic stroke, no therapeutic options for neuroprotection against stroke currently exist. Recent studies have shown that autophagy plays a key role in ischemic neuronal death and treatments that target autophagy may represent a novel strategy in neuroprotection. We investigated whether autophagy is regulated by carnosine, an endogenous pleiotropic dipeptide which has robust neuroprotective activity against ischemic brain damage. Methods We examined the effect of carnosine on mitochondrial dysfunction and autophagic processes in rat focal ischemia and in neuronal cultures. Results Autophagic pathways such as reduction of phosphorylated mTOR/p70S6K and the conversion of LC3-I to LC3-II were enhanced in the ischemic brain. However, treatment with carnosine significantly attenuated autophagic signaling in the ischemic brain, with improvement of brain mitochondrial function and mitophagy signaling. The protective effect of carnosine against autophagy was also confirmed in primary cortical neurons. Conclusion Taken together, our data suggest that the neuroprotective effect of carnosine is at least partially mediated by mitochondrial protection, and attenuation of deleterious autophagic processes. Our findings shed new light on the mechanistic pathways that this exciting neuroprotective agent influences. PMID:24938837

  11. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    PubMed

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  12. ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke.

    PubMed

    Gladbach, Amadeus; van Eersel, Janet; Bi, Mian; Ke, Yazi D; Ittner, Lars M

    2014-05-01

    Ischemic stroke is a leading cause of death. It has previously been shown that blocking activation of extracellular signal-regulated kinase (ERK) with the MEK inhibitor U0126 mitigates brain damage in rodent models of ischemic stroke. Here we show that the newer MEK inhibitor PD184161 reduces cell death and altered gene expression in cultured neurons and mice undergoing excitotoxicity, and has similar protective effects in a mouse model of stroke. This further supports ERK inhibition as a potential treatment for stroke.

  13. Tool use in left brain damage and Alzheimer's disease: What about function and manipulation knowledge?

    PubMed

    Jarry, Christophe; Osiurak, François; Besnard, Jérémy; Baumard, Josselin; Lesourd, Mathieu; Croisile, Bernard; Etcharry-Bouyx, Frédérique; Chauviré, Valérie; Le Gall, Didier

    2016-03-01

    Tool use disorders are usually associated with difficulties in retrieving function and manipulation knowledge. Here, we investigate tool use (Real Tool Use, RTU), function (Functional Association, FA) and manipulation knowledge (Gesture Recognition, GR) in 17 left-brain-damaged (LBD) patients and 14 AD patients (Alzheimer disease). LBD group exhibited predicted deficit on RTU but not on FA and GR while AD patients showed deficits on GR and FA with preserved tool use skills. These findings question the role played by function and manipulation knowledge in actual tool use.

  14. Blood Occludin Level as a Potential Biomarker for Early Blood Brain Barrier Damage Following Ischemic Stroke

    PubMed Central

    Pan, Rong; Yu, Kewei; Weatherwax, Theodore; Zheng, Handong; Liu, Wenlan; Liu, Ke Jian

    2017-01-01

    Concern about intracerebral hemorrhage (ICH) is the primary reason for withholding tPA therapy from patients with ischemic stroke. Early blood brain barrier (BBB) damage is the major risk factor for fatal post-thrombolysis ICH, but rapidly assessing BBB damage before tPA administration is highly challenging. We recently reported that ischemia induced rapid degradation of tight junction protein occludin in cerebromicrovessels. The present study investigates whether the cleaved occludin is released into the blood stream and how blood occludin levels correlate to the extent of BBB damage using a rat model of ischemic stroke. Cerebral ischemia induced a time-dependent increase of blood occludin with a sharp increase at 4.5-hour post-ischemia onset, which concurrently occurred with the loss of occludin from ischemic cerebral microvessels and a massive BBB leakage at 4.5-hour post-ischemia. Two major occludin fragments were identified in the blood during cerebral ischemia. Furthermore, blood occludin levels remained significantly higher than its basal level within the first 24 hours after ischemia onset. Our findings demonstrate that blood occludin levels correlate well with the extent of BBB damage and thus may serve as a clinically relevant biomarker for evaluating the risk of ICH before tPA administration. PMID:28079139

  15. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade.

    PubMed

    Barakat, Waleed; Safwet, Nancy; El-Maraghy, Nabila N; Zakaria, Mohamed N M

    2014-02-05

    Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to penumbral tissues by brain swelling, impaired microcirculation, and inflammation. The only drug approved for the treatment ischemic stroke is recombinant tissue plasminogen activator (rt-PA). The current study was designed to investigate the protective effects of candesartan (0.15 mg/kg, orally) and glycyrrhizin (30 mg/kg, orally) experimentally-induced ischemic brain damage in C57BL/6 mice (middle cerebral artery occlusion, MCAO) in comparison to the effects of a standard neuroprotective drug (cerebrolysin, 7.5 mg/kg, IP). All drugs were administered 30 min before and 24h after MCAO. Both candesartan and glycyrrhizin ameliorated the deleterious effects of MCAO as indicated by the improvement in the performance of the animals in behaviour tests, reduction in brain infarction, neuronal degeneration, and leukocyte infiltration. In addition, MCAO induced a significant upregulation in the different elements of the TLR pathway including TLR-2 and TLR-4, Myd88, TRIF and IRF-3 and the downstream effectors TNF-α, IL-1β, IL-6 and NF-kB. All these changes were significantly ameliorated by treatment with candesartan and glycyrrhizin. The results of the current study represent a new indication for both candesartan and glycyrrhizin in the management of ischemic stroke with effects comparable to those of the standard neuroprotective drug cerebrolysin.

  16. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate.

    PubMed

    Tovar-y-Romo, Luis B; Penagos-Puig, Andrés; Ramírez-Jarquín, Josué O

    2016-01-01

    Neuronal survival depends on multiple factors that comprise a well-fueled energy metabolism, trophic input, clearance of toxic substances, appropriate redox environment, integrity of blood-brain barrier, suppression of programmed cell death pathways and cell cycle arrest. Disturbances of brain homeostasis lead to acute or chronic alterations that might ultimately cause neuronal death with consequent impairment of neurological function. Although we understand most of these processes well when they occur independently from one another, we still lack a clear grasp of the concerted cellular and molecular mechanisms activated upon neuronal damage that intervene in protecting damaged neurons from death. In this review, we summarize a handful of endogenously activated mechanisms that balance molecular cues so as to determine whether neurons recover from injury or die. We center our discussion on mechanisms that have been identified to participate in stroke, although we consider different scenarios of chronic neurodegeneration as well. We discuss two central processes that are involved in endogenous repair and that, when not regulated, could lead to tissue damage, namely, trophic support and neuroinflammation. We emphasize the need to construct integrated models of neuronal degeneration and survival that, in the end, converge in neuronal fate after injury. Under neurodegenerative conditions, endogenously activated mechanisms balance out molecular cues that determine whether neurons contend toxicity or die. Many processes involved in endogenous repair may as well lead to tissue damage depending on the strength of stimuli. Signaling mediated by trophic factors and neuroinflammation are examples of these processes as they regulate different mechanisms that mediate neuronal demise including necrosis, apoptosis, necroptosis, pyroptosis and autophagy. In this review, we discuss recent findings on balanced regulation and their involvement in neuronal death.

  17. Vision restoration after brain and retina damage: the "residual vision activation theory".

    PubMed

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive

  18. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor

    PubMed Central

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C.; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K.; Lok, Josephine; Ihara, Masafumi

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAPcre/BDNFwt/fl) in which BDNF expression is downregulated specifically in GFAP+ astrocytes. Both wild-type (GFAPwt/BDNFwt/fl mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. SIGNIFICANCE STATEMENT The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white

  19. Azotemia (48 h) decreases the risk of brain damage in rats after correction of chronic hyponatremia.

    PubMed

    Soupart, A; Penninckx, R; Stenuit, A; Decaux, G

    2000-01-03

    /24 in pooled controls 1 and 2, p < 0.001). In conclusion, we showed for the first time that chronic hyponatremic rats with azotemia (48 h) tolerated large increases in SNa (approximately 30 mEq/l/24 h) without significant brain damage.

  20. Mild Hyperthermia Worsens the Neuropathological Damage Associated with Mild Traumatic Brain Injury in Rats

    PubMed Central

    Sakurai, Atsushi; Atkins, Coleen M.; Alonso, Ofelia F.; Bramlett, Helen M.

    2012-01-01

    Abstract The effects of slight variations in brain temperature on the pathophysiological consequences of acute brain injury have been extensively described in models of moderate and severe traumatic brain injury (TBI). In contrast, limited information is available regarding the potential consequences of temperature elevations on outcome following mild TBI (mTBI) or concussions. One potential confounding variable with mTBI is the presence of elevated body temperature that occurs in the civilian or military populations due to hot environments combined with exercise or other forms of physical exertion. We therefore determined the histopathological effects of pre- and post-traumatic hyperthermia (39°C) on mTBI. Adult male Sprague-Dawley rats were divided into 3 groups: pre/post-traumatic hyperthermia, post-traumatic hyperthermia alone for 2 h, and normothermia (37°C). The pre/post-hyperthermia group was treated with hyperthermia starting 15 min before mild parasagittal fluid-percussion brain injury (1.4–1.6 atm), with the temperature elevation extending for 2 h after trauma. At 72 h after mTBI, the rats were perfusion-fixed for quantitative histopathological evaluation. Contusion areas and volumes were significantly larger in the pre/post-hyperthermia treatment group compared to the post-hyperthermia and normothermic groups. In addition, pre/post-traumatic hyperthermia caused the most severe loss of NeuN-positive cells in the dentate hilus compared to normothermia. These neuropathological results demonstrate that relatively mild elevations in temperature associated with peri-traumatic events may affect the long-term functional consequences of mTBI. Because individuals exhibiting mildly elevated core temperatures may be predisposed to aggravated brain damage after mTBI or concussion, precautions should be introduced to target this important physiological variable. PMID:22026555

  1. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  2. The oxidative damage and inflammation caused by pesticides are reverted by lipoic acid in rat brain.

    PubMed

    Astiz, Mariana; de Alaniz, María J T; Marra, Carlos Alberto

    2012-12-01

    We have previously demonstrated that the administration of low doses of dimethoate, glyphosate and zineb to rats (i.p. 1/250 LD50, three times a week for 5weeks) provokes severe oxidative stress (OS) in specific brain regions: substantia nigra, cortex and hippocampus. These effects were also observed in plasma. Lipoic acid (LA) is considered an "ideal antioxidant" due to its ability to scavenge reactive species, reset antioxidant levels and cross the blood-brain barrier. To investigate its protective effect we administered LA (i.p. 25, 50 and 100mg/kg) simultaneously with the pesticide mixture (PM) for 5weeks. After suppression of PM administration, we evaluated the restorative effect of LA for a further 5weeks. LA prevented OS and the production of nitrites+nitrates [NOx] caused by PM in a dose-dependent manner. The PM-induced decrease in reduced glutathione and α-tocopherol levels in all brain regions was completely restored by LA at both high doses. PM administration also caused an increase in prostaglandins E(2) and F(2α) in brain that was reduced by LA in a dose-dependent fashion. Taking into account the relationship between OS, inflammation and apoptosis, we measured caspase and calpain activity. Only milli- and micro-calpain isoforms were increased in the PM-treated group and LA reduced the activities to basal levels. We also demonstrated that interrupting PM administration is not enough to restore the levels of all the parameters measured and that LA is necessary to achieve basal status. In our experimental model LA displayed a protective role against pesticide-induced damage, suggesting that LA administration is a promising therapeutic strategy to cope with disorders suspected to be caused by OS generators, especially in brain.

  3. Piano training in youths with hand motor impairments after damage to the developing brain

    PubMed Central

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  4. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury.

    PubMed

    Liu, Xiao-Bo; Shen, Yan; Plane, Jennifer M; Deng, Wenbin

    2013-04-01

    Premature birth is a significant economic and public health burden, and its incidence is rising. Periventricular leukomalacia (PVL) is the predominant form of brain injury in premature infants and the leading cause of cerebral palsy. PVL is characterized by selective white-matter damage with prominent oligodendroglial injury. The maturation-dependent vulnerability of developing and premyelinating oligodendrocytes to excitotoxic, oxidative, and inflammatory forms of injury is a major factor in the pathogenesis of PVL. Recent studies using mouse models of PVL reveal that synapses between axons and developing oligodendrocytes are quickly and profoundly damaged in immature white matter. Axon-glia synapses are highly vulnerable to white-matter injury in the developing brain, and the loss of synapses between axons and premyelinating oligodendrocytes occurs before any cellular loss in the immature white matter. Microglial activation and astrogliosis play important roles in triggering white-matter injury. Impairment of white-matter development and function in the neonatal period contributes critically to functional and behavioral deficits. Preservation of the integrity of the white matter is likely key in the treatment of PVL and subsequent neurological consequences and disabilities.

  5. CDP-choline (citicoline) attenuates brain damage in a rat model of birth asphyxia.

    PubMed

    Fiedorowicz, Michał; Makarewicz, Dorota; Stańczak-Mrozek, Kinga I; Grieb, Paweł

    2008-01-01

    To estimate protective potential of citicoline in a model of birth asphyxia, the drug was given to 7-day old rats subjected to permanent unilateral carotid artery occlusion and exposed for 65 min to a hypoxic gas mixture. Daily citicoline doses of 100 or 300 m/kg, or vehicle, were injected intraperitoneally for 7 consecutive days beginning immediately after the end of the ischemic-hypoxic insult, and brain damage was assessed by gross zorphology score and weight deficit two weeks after the insult. Caspase-3, alpha-fodrin, Bcl-2, and Hsp70 levels were assessed at 0, 1, and 24 h after the end of the hypoxic insult in another group of rat pups subjected to the same insult and given a single dose of 300 m/kg of citicoline or the vehicle. Citicoline markedly reduced caspase-3 activation and Hsp70 expression 24 h after the insult, and dose-dependently attenuated brain damage. In the context of the well-known excellent safety profile of citicoline, these data suggest that clinical evaluation of the efficacy of the drug in human birth asphyxia may be warranted.

  6. Dimensions of Personality Disturbance After Focal Brain Damage: Investigation with the Iowa Scales of Personality Change

    PubMed Central

    Barrash, Joseph; Asp, Erik; Markon, Kristian; Manzel, Kenneth; Anderson, Steven W.; Tranel, Daniel

    2011-01-01

    This study employed a multi-step, rational-empirical approach to identify dimensions of personality disturbance in brain-damaged individuals: (1) Five dimensions were hypothesized based on empirical literature and conceptual grounds. (2) Principal components analysis was performed on the Iowa Scales of Personality Change to determine the pattern of covariance among 30 personality characteristics. (3) When discrepancies existed between principal components analysis results and conceptually-based dimensions, empirical findings and clinical considerations were weighed to determine assignment of ISPC scales to dimensions. (4) The fit of data to the refined dimensions was assessed by examination of intercorrelations. (5) Differential predictions concerning the relationship of dimensions to ventromedial prefrontal (vmPFC) damage were tested. This process resulted in specification of five dimensions: Disturbed Social Behavior, Executive/Decision-Making Deficits, Diminished Motivation/Hypo-emotionality, Irascibility, and Distress. In accord with predictions, the 28 participants with vmPFC lesions, compared to 96 participants with focal lesions elsewhere in the brain, had significantly more Disturbed Social Behavior and Executive/Decision-Making Deficits, and tended to have more Diminished Motivation/Hypo-emotionality. Irascibility was not significantly higher among the vmPFC group, and the groups had very similar levels of Distress. The findings indicate that conceptually distinctive dimensions with differential relationships to vmPFC can be derived from the Iowa Scales of Personality Change. PMID:21500116

  7. FeTPPS Reduces Secondary Damage and Improves Neurobehavioral Functions after Traumatic Brain Injury

    PubMed Central

    Bruschetta, Giuseppe; Impellizzeri, Daniela; Campolo, Michela; Casili, Giovanna; Di Paola, Rosanna; Paterniti, Irene; Esposito, Emanuela; Cuzzocrea, Salvatore

    2017-01-01

    Traumatic brain injury (TBI) determinate a cascade of events that rapidly lead to neuron's damage and death. We already reported that administration of FeTPPS, a 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrin iron III chloride peroxynitrite decomposition catalyst, possessed evident neuroprotective effects in a experimental model of spinal cord damage. The present study evaluated the neuroprotective property of FeTPPS in TBI, using a clinically validated model of TBI, the controlled cortical impact injury (CCI). We observe that treatment with FeTPPS (30 mg/kg, i.p.) reduced: the state of brain inflammation and the tissue hurt (histological score), myeloperoxidase activity, nitric oxide production, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines expression and apoptosis process. Moreover, treatment with FeTPPS re-established motor-cognitive function after CCI and it resulted in a reduction of lesion volumes. Our results established that FeTPPS treatment decreases the growth of inflammatory process and the tissue injury associated with TBI. Thus our study confirmed the neuroprotective role of FeTPPS treatment on TBI. PMID:28223911

  8. Assessment of hand after brain damage with the aim of functional surgery.

    PubMed

    Romain, M; Benaim, C; Allieu, Y; Pelissier, J; Chammas, M

    1999-01-01

    The semiology of the hand after brain damage is really rich. Its clinical evaluation remains quite difficult and must be integrated in the neuro-orthopedic and cognitive context. Deficiency, neuropsychological, analytic and functional status, must be assessed before any surgical decision aiming the improvement of prehension. Neuropsychological evaluation precise the hemispheric specialization: right hemisphere lesions conduct to unilateral spatial neglect while left hemispherical lesions determine language troubles and gesture impairment (apraxia). The analytical evaluation describes motor and sensitive function and assesses spasticity and pain. Concerning the functional assessment, the Enjalbert's score seems to be the most adapted to the upper limb. The assessment of hand deficiency and its origin is necessary to orientate the surgical decision and includes the Zancolli classification for the fingers and wrist and the House classification for the thumb. These classification used for cerebral palsy seems to be insufficient for all the different situations occurring after brain damage. A new classification is proposed based on 3 parameters: fingers extension, thumb abduction and supination. Surgical decision should be examined only after an adapted rehabilitation program.

  9. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    PubMed

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults.

  10. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  11. Is brain damage really involved in the pathogenesis of obstructive sleep apnea?

    PubMed

    Li, Jie; Li, Ming-Xian; Liu, Sheng-Nan; Wang, Jing-Hua; Huang, Min; Wang, Min; Wang, Shao

    2014-05-28

    Obstructive sleep apnea (OSA) syndrome is a surprisingly complex and highly individualized disease, with different factors contributing toward the disease process. Many factors can induce OSA disease, such as hypertrophy uvula, adenoidectomy, tonsil caused by mechanical obstruction of the airway, airway obstruction on obesity cause of decubitus, etc.; in addition, abnormal structure and function of the central nervous system (CNS) is also one of the important factors. This paper examines the relationship of the CNS with the onset of OSA. Evidence has shown that dysfunction of the CNS may be related to the occurrence of OSA. Although modification of the behaviors of the motor neurons may offer a potentially interesting means of controlling the airway, human afferent and motor pathways that regulate eupnea are still poorly understood. Combining some clinical phenomena of patients with cerebral hemorrhage or brain trauma at the temporal lobe, it seems that no close relation with OSA has been observed in clinical work and animal experiments; however, CNS damage at the temporal lobe is involved in the pathogenesis of OSA. This article examines the role of the CNS in the pathogenesis of OSA and its mechanisms. We have summarized previous findings of OSA-related brain damage, which were obtained by brain functional MRI, clinical, and animal experiment data to better understand the roles of the CNS in the pathogenesis of OSA. More specifically, this review summarizes how altered activity of the limbic system and its related structures could be associated with the occurrence of OSA. This conclusion may contribute toward our understanding of nosogenesis and the treatment of OSA.

  12. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    PubMed

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning.

  13. A cross-talk between brain-damage patients and infants on action and language.

    PubMed

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-06-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to bear insights from the study of brain-damaged patients exhibiting language disorders and from the study of the mechanisms for language acquisition in infants. Cognitive neuropsychology studies have assessed how damage to representations supporting action production impacts patients' ability to process action-related words. While correlations between verbal and nonverbal (motor) impairments are very common in patients, damage to the representations for action production can leave the ability to understand action-words unaffected; likewise, actions can still be produced successfully in cases of impaired action-word understanding. Studies with infants have evaluated the relevance of sensorimotor information when infants learn to map a novel word onto an action that they are performing or perceiving. These results demonstrate that sensorimotor information is insufficient to fully account for the complexity of verb learning: in this process, infants seem to privilege abstract constructs such as goal, intentionality and causality, as well as syntactic constraints, over the perceptual and motor dimensions of an action. Altogether, the empirical data suggest that, while not crucial for verb learning and understanding, sensorimotor processes can contribute to solving the problem of symbol grounding and/or serve as a primary mechanism in social cognition, to learn about others' goals and intentions. By assessing the relevance of sensorimotor representations in the way action-related words are acquired and represented, we aim to provide a useful set of criteria for testing specific predictions made by different theories of concepts.

  14. Selective deficit of second language: a case study of a brain-damaged Arabic-Hebrew bilingual patient

    PubMed Central

    Ibrahim, Raphiq

    2009-01-01

    Background An understanding of how two languages are represented in the human brain is best obtained from studies of bilingual patients who have sustained brain damage. The primary goal of the present study was to determine whether one or both languages of an Arabic-Hebrew bilingual individual are disrupted following brain damage. I present a case study of a bilingual patient, proficient in Arabic and Hebrew, who had sustained brain damage as a result of an intracranial hemorrhage related to herpes encephalitis. Methods The patient's performance on several linguistic tasks carried out in the first language (Arabic) and in the second language (Hebrew) was assessed, and his performance in the two languages was compared. Results The patient displayed somewhat different symptomatologies in the two languages. The results revealed dissociation between the two languages in terms of both the types and the magnitude of errors, pointing to aphasic symptoms in both languages, with Hebrew being the more impaired. Further analysis disclosed that this dissociation was apparently caused not by damage to his semantic system, but rather by damage at the lexical level. Conclusion The results suggest that the principles governing the organization of lexical representations in the brain are not similar for the two languages. PMID:19284632

  15. Effect of oxcarbazepine pretreatment on convulsive activity and brain damage induced by kainic acid administration in rats.

    PubMed

    Ayala-Guerrero, Fructuoso; Mexicano, Graciela; Campos-Sepúlveda, Efraín; Romero, Rosa María; Reynoso-Robles, Rafael; González-Maciel, Angélica

    2008-11-01

    Temporal lobe epilepsy is one of the most common types of epilepsy. Progress in the understanding and treatment of this type of epilepsy would be greatly facilitated by the availability of an animal model, which reproduced the behavioral and electrographic features of this condition. In this context, kainic acid (KA, 2-carboxy-3-carboxymethyl-4-isopropenylpyrrolidine) administration causes a syndrome characterized by an acute status epilepticus and subsequent brain damage similar to that in temporal lobe epilepsy of humans. The aim of the present study was to investigate whether oxcarbazepine (10,11-dihydro-10-oxo-5 H -dibenz(b,f)azepine-5-carboxamide), an antiepileptic drug, protects against both epileptic activity and brain damage induced by KA administration. Chronically implanted adult male Wistar rats were polygraphically recorded during 10 continuous hours under 4 different conditions: a) control, b) after KA administration alone, c) after KA administration in oxcarbazepine pretreated animals and d) after the administration of oxcarbazepine alone. Animals treated with KA alone presented behavioral and electrophysiological convulsive activity as well as brain damage. Latency of seizure installation was lengthened significantly and convulsive activity was slightly reduced, however, brain damage was still present in oxcarbazepine pretreated animals. Administration of oxcarbazepine alone induced a hypnotic behavior and brain damage was also present.

  16. Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage

    NASA Astrophysics Data System (ADS)

    Takagi, Yasushi; Mitsui, Akira; Nishiyama, Akira; Nozaki, Kazuhiko; Sono, Hiroshi; Gon, Yasuhiro; Hashimoto, Nobuo; Yodoi, Junji

    1999-03-01

    Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.

  17. Low-Power 2-MHz Pulsed-Wave Transcranial Ultrasound Reduces Ischemic Brain Damage in Rats.

    PubMed

    Alexandrov, Andrei V; Barlinn, Kristian; Strong, Roger; Alexandrov, Anne W; Aronowski, Jaroslaw

    2011-09-01

    It is largely unknown whether prolonged insonation with ultrasound impacts the ischemic brain tissue by itself. Our goal was to evaluate safety and the effect of high-frequency ultrasound on infarct volume in rats. Thirty-two Long-Evans rats with permanent middle cerebral and carotid artery occlusions received either 2-MHz ultrasound at two levels of insonation power (128 or 10 mW) or no ultrasound (controls). We measured cerebral hemorrhage, indirect and direct infarct volume as well as edema volume at 24 h. No cerebral hemorrhages were detected in all animals. Exposure to low-power (10 mW) ultrasound resulted in a significantly decreased indirect infarct volume (p = 0.0039), direct infarct volume (p = 0.0031), and brain edema volume (p = 0.01) compared with controls. High-power (128 mW) ultrasound had no significant effects. An additional experiment with India ink showed a greater intravascular penetration of dye into ischemic tissues exposed to low-power ultrasound. Insonation with high-frequency, low-power ultrasound reduces ischemic brain damage in rat. Its effect on edema reduction and possible promotion of microcirculation could be used to facilitate drug and nutrient delivery to ischemic areas.

  18. Maladaptive change of body representation in the brain after damage to central or peripheral nervous system.

    PubMed

    Oouchida, Yutaka; Sudo, Tamami; Inamura, Tetsunari; Tanaka, Naofumi; Ohki, Yukari; Izumi, Shin-ichi

    2016-03-01

    Our brain has great flexibility to cope with various changes in the environment. Use-dependent plasticity, a kind of functional plasticity, plays the most important role in this ability to cope. For example, the functional recovery of paretic limb motor movement during post-stroke rehabilitation depends mainly on how much it is used. Patients with hemiparesis, however, tend to gradually disuse the paretic limb because of its motor impairment. Decreased use of the paretic hand then leads to further functional decline brought by use-dependent plasticity. To break this negative loop, body representation, which is the conscious and unconscious information regarding body state stored in the brain, is key for using the paretic limb because it plays an important role in selecting an effector while a motor program is generated. In an attempt to understand body representation in the brain, we reviewed animal and human literature mainly on the alterations of the sensory maps in the primary somatosensory cortex corresponding to the changes in limb usage caused by peripheral or central nervous system damage.

  19. Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria.

    PubMed

    Samid, D; Ram, Z; Hudgins, W R; Shack, S; Liu, L; Walbridge, S; Oldfield, E H; Myers, C E

    1994-02-15

    Phenylacetate, a deaminated metabolite of phenylalanine, has been implicated in damage to immature brain in phenylketonuria. Because primary brain tumors are highly reminiscent of the immature central nervous system, these neoplasms should be equally vulnerable. We show here that sodium phenylacetate can induce cytostasis and reversal of malignant properties of cultured human glioblastoma cells, when used at pharmacological concentrations that are well tolerated by children and adults. Treated tumor cells exhibited biochemical alterations similar to those observed in phenylketonuria-like conditions, including selective decline in de novo cholesterol synthesis from mevalonate. Because gliomas, but not mature normal brain cells, are highly dependent on mevalonate for production of sterols and isoprenoids vital for cell growth, sodium phenylacetate would be expected to affect tumor growth in vivo while sparing normal tissues. Systemic treatment of rats bearing intracranial gliomas resulted in significant tumor suppression with no apparent toxicity to the host. The data indicate that phenylacetate, acting through inhibition of protein prenylation and other mechanisms, may offer a safe and effective novel approach to treatment of malignant gliomas and perhaps other neoplasms as well.

  20. Microcavitation as a Neuronal Damage Mechanism in Blast Traumatic Brain Injury

    NASA Astrophysics Data System (ADS)

    Franck, Christian; Estrada, Jonathan

    2015-11-01

    Blast traumatic brain injury (bTBI) is a leading cause of injury in the armed forces. Diffuse axonal injury, the hallmark feature of blunt TBI, has been investigated in direct mechanical loading conditions. However, recent evidence suggests inertial cavitation as a possible bTBI mechanism, particularly in the case of exposure to blasts. Cavitation damage to free surfaces has been well-studied, but bubble interactions within confined 3D environments, in particular their stress and strain signatures are not well understood. The structural damage due to cavitation in living tissues - particularly at the cellular level - are incompletely understood, in part due to the rapid bubble formation and deformation strain rates of up to ~ 105-106 s-1. This project aims to characterize material damage in 2D and 3D cell culture environments by utilizing a novel high-speed red-blue diffraction assisted image correlation method at speeds of up to 106 frames per second. We gratefully acknowledge funding from the Office of Naval Research (POC: Dr. Tim Bentley).

  1. Arsenosugar induced blood and brain oxidative stress, DNA damage and neurobehavioral impairments.

    PubMed

    Bin Sayeed, Muhammad Shahdaat; Ratan, Md; Hossen, Farhad; Hassan, Faizule; Faisal, Mohammad; Kadir, Mohammad Fahim

    2013-02-01

    The effect of Arsenosugar on motor function and contextual memory-related to place and event; the extent of DNA damage and oxidative stress in male swiss albino mice was investigated. Passive avoidance test was used for memory test; rota motor test was used for motor function. Several biochemical parameters were used for assessing oxidative stress due to arsenosugar ingestion. Decreased passive avoidance time and decreased retention time in rotating rod indicated disruption of normal neurobehavior. Significant dose-dependent DNA damage was found in mice blood and brain. Decreased super oxide dismutase, increased lipid peroxidation, decreased protein sulfohydryl content, increased protein carbonyl content in blood and hippocampal tissue; glutathione in blood and glutathione peroxidase in hippocampal tissue indicated the ability of arsenosugar to cause oxidative stress. This study concludes with evidence that arsenosugar ingestion causes higher oxidative stress, increases DNA damage in the blood and hippocampus in vivo. This might be responsible for the dysfunction of cognitive and motor functions. However, further investigation is suggested for deciphering the biomolecular mechanism.

  2. Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia.

    PubMed

    Zugno, A I; Chipindo, H L; Volpato, A M; Budni, J; Steckert, A V; de Oliveira, M B; Heylmann, A S; da Rosa Silveira, F; Mastella, G A; Maravai, S G; Wessler, P G; Binatti, A R; Panizzutti, B; Schuck, P F; Quevedo, J; Gama, C S

    2014-02-14

    Supplementation with omega-3 has been identified as an adjunctive alternative for the treatment of psychiatric disorders, in order to minimize symptoms. Considering the lack of understanding concerning the pathophysiology of schizophrenia, the present study hypothesized that omega 3 prevents the onset of symptoms similar to schizophrenia in young Wistar rats submitted to ketamine treatment. Moreover, the role of oxidative stress in this model was assessed. Omega-3 (0.8g/kg) or vehicle was given by orogastric gavage once daily. Both treatments were performed during 21days, starting at the 30th day of life in young rats. After 14days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25mg/kg ip daily) was started and maintained until the last day of the experiment. We evaluated the pre-pulse inhibition of the startle reflex, activity of antioxidant systems and damage to proteins and lipids. Our results demonstrate that supplementation of omega-3 prevented: decreased inhibition of startle reflex, damage to lipids in the hippocampus and striatum and damage to proteins in the prefrontal cortex. Furthermore, these changes are associated with decreased GPx in brain tissues evaluated. Together, our results suggest the prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia.

  3. Long-term prehypertension treatment with losartan effectively prevents brain damage and stroke in stroke-prone spontaneously hypertensive rats.

    PubMed

    He, De-Hua; Zhang, Liang-Min; Lin, Li-Ming; Ning, Ruo-Bing; Wang, Hua-Jun; Xu, Chang-Sheng; Lin, Jin-Xiu

    2014-02-01

    Prehypertension has been associated with adverse cerebrovascular events and brain damage. The aims of this study were to investigate ⅰ) whether short‑ and long-term treatments with losartan or amlodipine for prehypertension were able to prevent blood pressure (BP)-linked brain damage, and ⅱ) whether there is a difference in the effectiveness of treatment with losartan and amlodipine in protecting BP-linked brain damage. In the present study, prehypertensive treatment with losartan and amlodipine (6 and 16 weeks treatment with each drug) was performed on 4-week‑old stroke-prone spontaneously hypertensive rats (SHRSP). The results showed that long-term (16 weeks) treatment with losartan is the most effective in lowering systolic blood pressure in the long term (up to 40 weeks follow-up). Additionally, compared with the amlodipine treatment groups, the short‑ and long-term losartan treatments protected SHRSP from stroke and improved their brains structurally and functionally more effectively, with the long-term treatment having more benefits. Mechanistically, the short‑ and long-term treatments with losartan reduced the activity of the local renin-angiotensin-aldosterone system (RAAS) in a time-dependent manner and more effectively than their respective counterpart amlodipine treatment group mainly by decreasing AT1R levels and increasing AT2R levels in the cerebral cortex. By contrast, the amlodipine treatment groups inhibited brain cell apoptosis more effectively as compared with the losartan treatment groups mainly through the suppression of local oxidative stress. Taken together, the results suggest that long-term losartan treatment for prehypertension effectively protects SHRSP from stroke-induced brain damage, and this protection is associated with reduced local RAAS activity than with brain cell apoptosis. Thus, the AT1R receptor blocker losartan is a good candidate drug that may be used in the clinic for long-term treatment on prehypertensive

  4. Overproduction of nitric oxide intensifies brain infarction and cerebrovascular damage through reduction of claudin-5 and ZO-1 expression in striatum of ischemic brain.

    PubMed

    Mohammadi, Mohammad Taghi

    2016-11-01

    Nitric oxide (NO) overproduction has been demonstrated from different NO-synthase overexpression or hyperactivity after brain ischemia. Here, we examined the effects of inhibition of NO overproduction on brain infarction, cerebrovascular damage and expression of claudin-5 and zonula occludens-1 (ZO-1) in striatum of ischemic brain. The experiment was performed in three groups of rats; sham, control ischemia and ischemic treatment. Brain ischemia was induced by 60min of middle cerebral artery occlusion (MCAO) followed by 24h of reperfusion. Treated rats received L-NAME 30min before induction of ischemia (1mg/kg, i.p.). Infarct volume and histopathological changes of ischemic striatum were assessed by TTC and LFB staining methods, respectively. Ultimately, quantitative RT-PCR was used for assessment of claudins-5 and ZO-1 expression. MCAO in the control group induced infarction (135±25mm(3)) at large areas of striatum in accompany with neuronal damages, whereas L-NAME significantly reduced infarction (87±16mm(3)) and neuronal injuries. The mRNA of ZO-1 and claudin-5 decreased in ischemic striatum, whereas inhibition of NO overproduction by L-NAME attenuated this reduction for these genes. Our findings indicated that NO overproduction after brain ischemia plays a crucial role in neuronal damage especially at striatal regions. Hence, inhibition of excessive NO production may save striatal cerebrovascular integrity of ischemic brain.

  5. Neuronal Over-expression of ACE2 Protects Brain from Ischemia-induced Damage

    PubMed Central

    Chen, Ji; Zhao, Yuhui; Chen, Shuzhen; Wang, Jinju; Xiao, Xiang; Ma, Xiaotang; Penchikala, Madhuri; Xia, Huijing; Lazartigues, Eric; Zhao, Bin; Chen, Yanfang

    2014-01-01

    Angiotensin (Ang) II exaggerates cerebral injury in ischemic damage. Angiotensin-converting enzyme type 2 (ACE2) converts Ang II into Ang (1–7) and thus, may protect against the effects of Ang II. We hypothesized that neuronal ACE2 over-expression decreases ischemic stroke in mice with Ang II overproduction. Human renin and angiotensinogen double transgenic (RA) mice and RA mice with neuronal over-expression of ACE2 (SARA) were used for the study. The mean arterial pressure (MAP) was calculated from telemetry-recorded blood pressure (BP). SARA mice were infused peripherally with Norepinephrine to “clamp” the BP, or intracerebroventricularly-infused with a Mas receptor antagonist (A-779). Middle cerebral artery occlusion (MCAO) surgery was performed to induce permanent focal ischemic stroke. Cerebral blood flow (CBF) and neurological function were determined. Two days after surgery, brain samples were collected for various analyses. Results showed: 1) When compared to chronically hypertensive RA mice, SARA mice had lower basal MAP, less MCAO-induced infarct volume, and increased CBF, neurological function and cerebral microvascular density in the peri-infarct area; 2) These changes in SARA mice were not altered after MAP “clamping”, but partially reversed by brain infusion of A-779; 3) Ang (1–7)/Ang II ratio, angiogenic factors, endothelial nitric oxide synthase (eNOS) expression and nitric oxide production were increased, whereas, NADPH oxidase subunits and reactive oxygen species were decreased in the brain of SARA mice. ACE2 protects brain from ischemic injury via the regulation of NADPH oxidase/eNOS pathways by changing Ang (1–7)/Ang II ratio, independently of MAP changes. PMID:24440367

  6. Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning.

    PubMed

    Krishnan, Jishnu K S; Arun, Peethambaran; Appu, Abhilash P; Vijayakumar, Nivetha; Figueiredo, Taíza H; Braga, Maria F M; Baskota, Sudikshya; Olsen, Cara H; Farkas, Natalia; Dagata, John; Frey, William H; Moffett, John R; Namboodiri, Aryan M A

    2016-03-01

    Intranasal delivery is an emerging method for bypassing the blood brain barrier (BBB) and targeting therapeutics to the CNS. Oximes are used to counteract the effects of organophosphate poisoning, but they do not readily cross the BBB. Therefore, they cannot effectively counteract the central neuropathologies caused by cholinergic over-activation when administered peripherally. For these reasons we examined intranasal administration of oximes in an animal model of severe organophosphate poisoning to determine their effectiveness in reducing mortality and seizure-induced neuronal degeneration. Using the paraoxon model of organophosphate poisoning, we administered the standard treatment (intramuscular pralidoxime plus atropine sulphate) to all animals and then compared the effectiveness of intranasal application of obidoxime (OBD) to saline in the control groups. Intranasally administered OBD was effective in partially reducing paraoxon-induced acetylcholinesterase inhibition in the brain and substantially reduced seizure severity and duration. Further, intranasal OBD completely prevented mortality, which was 41% in the animals given standard treatment plus intranasal saline. Fluoro-Jade-B staining revealed extensive neuronal degeneration in the surviving saline-treated animals 24h after paraoxon administration, whereas no detectable degenerating neurons were observed in any of the animals given intranasal OBD 30min before or 5min after paraoxon administration. These findings demonstrate that intranasally administered oximes bypass the BBB more effectively than those administered peripherally and provide an effective method for protecting the brain from organophosphates. The addition of intranasally administered oximes to the current treatment regimen for organophosphate poisoning would improve efficacy, reducing both brain damage and mortality.

  7. COMPARATIVE STUDY OF CLINICAL EFFECTIVENESS OF LURIA-NEBRASKA NEUROPSYCHOLOGICAL BATTERY, EEG AND CT SCAN IN BRAIN DAMAGED PATIENTS

    PubMed Central

    James, M.X.; Nizamie, A.; Nizamie, S.Haque

    1997-01-01

    The clinical effectiveness and concurrent validity of Luria-Nebraska Neuropsychological Battery (LNNB) was assessed in a sample of 30 brain-damaged and 30 non-patient, normal control subjects. Both the groups were matched for age, sex and education. There were highly significant differences between the mean scale scores of the two groups on all LNNB clinical scales. Brain damaged patients did poorer than normal controls. The LNNB had a hit rate of86.66% in diagnosing brain-damaged patients in comparison to 70% and 52% of EEG and CT scan respectively. The three measures were found to be significantly correlated with each other. The LNNB was found to be an effective instrument for neuropsychological assessment. PMID:21584044

  8. No inherent left and right side in human 'mental number line': evidence from right brain damage.

    PubMed

    Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio

    2012-08-01

    Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial

  9. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    PubMed

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p<0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p<0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p<0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p<0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect

  10. Co-speech hand movements during narrations: What is the impact of right vs. left hemisphere brain damage?

    PubMed

    Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda

    2016-10-27

    Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production.

  11. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    PubMed

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future.

  12. Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria.

    PubMed

    Englander, Ella W; Hu, Zhaoyong; Sharma, Abha; Lee, Heung-Man; Wu, Zhao-Hui; Greeley, George H

    2002-12-01

    Mitochondrial genomes are exposed to a heavy load of reactive oxygen species (ROS) that damage DNA. Since in neurons, mitochondrial DNA integrity must be maintained over the entire mammalian life span, neuronal mitochondria most likely repair oxidatively damaged DNA. We show that the Escherichia coli MutY DNA glycosylase homolog (MYH) in rat (rMYH) involved in repair of oxidative damage is abundantly expressed in the rat brain, with isoforms that are exclusive to brain tissue. Confocal microscopy and western analyses reveal localization of rMYH in neuronal mitochondria. To assess involvement of MYH in the neuronal response to oxidative DNA damage, we used a rat model of respiratory hypoxia, in which acutely reduced blood oxygenation leads to generation of superoxide, and formation and subsequent removal of 8-hydroxy-2'-deoxyguanosine (8OHdG). Removal of 8OHdG is accompanied by a spatial increase in rMYH immunoreactivity in the brain and an increase in levels of one of the three mitochondrial MYH isoforms, suggesting that inducible and non-inducible MYH isoforms exist in the brain. The mitochondrial localization of oxidative DNA damage repair enzymes in neurons may represent a specialized neuronal mechanism that safeguards mitochondrial genomes in the face of routine and accidental exposures to heavy loads of injurious ROS.

  13. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice

    PubMed Central

    Ruseva, Marieta M.; Ramaglia, Valeria; Morgan, B. Paul; Harris, Claire L.

    2015-01-01

    Activation of complement is a key determinant of neuropathology and disability after traumatic brain injury (TBI), and inhibition is neuroprotective. However, systemic complement is essential to fight infections, a critical complication of TBI. We describe a targeted complement inhibitor, comprising complement receptor of the Ig superfamily (CRIg) fused with complement regulator CD59a, designed to inhibit membrane attack complex (MAC) assembly at sites of C3b/iC3b deposition. CRIg and CD59a were linked via the IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited MAC formation and prevented complement-mediated lysis in vitro. CD59-2a-CRIg dimer bound C3b-coated surfaces with submicromolar affinity (KD). In experimental TBI, CD59-2a-CRIg administered posttrauma homed to sites of injury and significantly reduced MAC deposition, microglial accumulation, mitochondrial stress, and axonal damage and enhanced neurologic recovery compared with placebo controls. CD59-2a-CRIg inhibited MAC-induced inflammasome activation and IL-1β production in microglia. Given the important anti-infection roles of complement opsonization, site-targeted inhibition of MAC should be considered to promote recovery postneurotrauma. PMID:26578778

  14. Mitochondrial fission and fusion in secondary brain damage after CNS insults.

    PubMed

    Balog, Justin; Mehta, Suresh L; Vemuganti, Raghu

    2016-12-01

    Mitochondria are dynamically active organelles, regulated through fission and fusion events to continuously redistribute them across axons, dendrites, and synapses of neurons to meet bioenergetics requirements and to control various functions, including cell proliferation, calcium buffering, neurotransmission, oxidative stress, and apoptosis. However, following acute or chronic injury to CNS, altered expression and function of proteins that mediate fission and fusion lead to mitochondrial dynamic imbalance. Particularly, if the fission is abnormally increased through pro-fission mediators such as Drp1, mitochondrial function will be impaired and mitochondria will become susceptible to insertion of proapototic proteins. This leads to the formation of mitochondrial transition pore, which eventually triggers apoptosis. Thus, mitochondrial dysfunction is a major promoter of neuronal death and secondary brain damage after an insult. This review discusses the implications of mitochondrial dynamic imbalance in neuronal death after acute and chronic CNS insults.

  15. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing.

  16. The selective estrogen receptor modulator, bazedoxifene, reduces ischemic brain damage in male rat.

    PubMed

    Castelló-Ruiz, María; Torregrosa, Germán; Burguete, María C; Miranda, Francisco J; Centeno, José M; López-Morales, Mikahela A; Gasull, Teresa; Alborch, Enrique

    2014-07-11

    While the estrogen treatment of stroke is under debate, selective estrogen receptor modulators (SERMs) arise as a promising alternative. We hypothesize that bazedoxifene (acetate, BZA), a third generation SERM approved for the treatment of postmenopausal osteoporosis, reduces ischemic brain damage in a rat model of transient focal cerebral ischemia. For comparative purposes, the neuroprotective effect of 17β-estradiol (E2) has also been assessed. Male Wistar rats underwent 60min middle cerebral artery occlusion (intraluminal thread technique), and grouped according to treatment: vehicle-, E2- and BZA-treated rats. Optimal plasma concentrations of E2 (45.6±7.8pg/ml) and BZA (20.7±2.1ng/ml) were achieved 4h after onset of ischemia, and maintained until the end of the procedure (24h). Neurofunctional score and volume of the damaged brain regions were the main end points. At 24h after ischemia-reperfusion, neurofunctional examination of the animals did not show significant differences among the three experimental groups. By contrast, both E2- and BZA-treated groups showed significantly lower total infarct volumes, BZA acting mainly in the cortical region and E2 acting mainly at the subcortical level. Our results demonstrate that: (1) E2 at physiological plasma levels in female rats is neuroprotective in male rats when given at the acute stage of the ischemic challenge and (2) BZA at clinically relevant plasma levels mimics the neuroprotective action of E2 and could be, therefore, a candidate in stroke treatment.

  17. Unusual use of objects after unilateral brain damage: the technical reasoning model.

    PubMed

    Osiurak, François; Jarry, Christophe; Allain, Philippe; Aubin, Ghislaine; Etcharry-Bouyx, Frédérique; Richard, Isabelle; Bernard, Isabelle; Le Gall, Didier

    2009-06-01

    It has been suggested that gesture engrams, conceptual knowledge and/or the ability to infer function from structure can support object use. The present paper proposes an alternative view which is based upon the idea that object use requires solely the ability to reason about technical means provided by objects. Technical means are abstract principles which are not linked with any object representation (e.g., cutting involves the opposition between dense and permeable material). The technical reasoning model predicts that the inability to perform technical reasoning should impair performance in any situation requiring the use of objects (in a conventional way or not). Twenty left brain-damaged (LBD) patients, 11 right brain-damaged (RBD) patients and 41 healthy controls were examined on experimental tests assessing the conventional use of objects (e.g., screwing a screw with a screwdriver), conceptual knowledge about object function, pantomime of object use and recognition of object utilization gestures. We also designed the Unusual Use of Objects Test, which demands unusual applications of objects to achieve a purpose for which the usually applied object is not provided (e.g., screwing a screw with a knife). The key findings are that only LBD patients have more difficulties on the Unusual Use of Objects Test than controls or RBD patients, and that the severity of their impairment is correlated with that on conventional use of objects. Correlations with tests assessing conceptual knowledge as well as with tests of pantomime of object use and recognition of object utilization gestures were weaker. These results support the technical reasoning model and question the role of conceptual knowledge and gesture engrams in object use. Since the technical reasoning model also predicts two distinct technical disorders, the discussion focuses on the existence of these disorders in regard to individual performance profiles obtained in the Unusual Use of Objects Test.

  18. Reappraisal generation after acquired brain damage: The role of laterality and cognitive control

    PubMed Central

    Salas, Christian E.; Gross, James J.; Turnbull, Oliver H.

    2014-01-01

    In the past decade, there has been growing interest in the neuroanatomical and neuropsychological bases of reappraisal. Findings suggest that reappraisal activates a set of areas in the left hemisphere (LH), which are commonly associated with language abilities and verbally mediated cognitive control. The main goal of this study was to investigate whether individuals with focal damage to the LH (n = 8) were more markedly impaired on a reappraisal generation task than individuals with right hemisphere lesions (RH, n = 8), and healthy controls (HC, n = 14). The reappraisal generation task consisted of a set of ten pictures from the IAPS, depicting negative events of different sorts. Participants were asked to quickly generate as many positive reinterpretations as possible for each picture. Two scores were derived from this task, namely difficulty and productivity. A second goal of this study was to explore which cognitive control processes were associated with performance on the reappraisal task. For this purpose, participants were assessed on several measures of cognitive control. Findings indicated that reappraisal difficulty – defined as the time taken to generate a first reappraisal – did not differ between LH and RH groups. However, differences were found between patients with brain injury (LH + RH) and HC, suggesting that brain damage in either hemisphere influences reappraisal difficulty. No differences in reappraisal productivity were found across groups, suggesting that neurological groups and HC are equally productive when time constraints are not considered. Finally, only two cognitive control processes inhibition and verbal fluency- were inversely associated with reappraisal difficulty. Implications for the neuroanatomical and neuropsychological bases of reappraisal generation are discussed, and implications for neuro-rehabilitation are considered. PMID:24711799

  19. The perception of positive and negative facial expressions in unilateral brain-damaged patients: A meta-analysis.

    PubMed

    Abbott, Jacenta D; Cumming, Geoff; Fidler, Fiona; Lindell, Annukka K

    2013-01-01

    How the brain is lateralised for emotion processing remains a key question in contemporary neuropsychological research. The right hemisphere hypothesis asserts that the right hemisphere dominates emotion processing, whereas the valence hypothesis holds that positive emotion is processed in the left hemisphere and negative emotion is controlled by the right hemisphere. A meta-analysis was conducted to assess unilateral brain-damaged individuals' performance on tasks of facial emotion perception according to valence. A systematic search of the literature identified seven articles that met the conservative selection criteria and could be included in a meta-analysis. A total of 12 meta-analyses of facial expression perception were constructed assessing identification and labelling tasks according to valence and the side of brain damage. The results demonstrated that both left and right hemisphere damage leads to impairments in emotion perception (identification and labelling) irrespective of valence. Importantly, right hemisphere damage prompted more pronounced emotion perception impairment than left hemisphere damage, across valence, suggesting right hemisphere dominance for emotion perception. Furthermore, right hemisphere damage was associated with a larger tendency for impaired perception of negative than positive emotion across identification and labelling tasks. Overall the findings support Adolphs, Jansari, and Tranel (2001) model whereby the right hemisphere preferentially processes negative facial expressions and both hemispheres process positive facial expressions.

  20. Relation between brain temperature and white matter damage in subacute carbon monoxide poisoning

    PubMed Central

    Fujiwara, Shunrou; Yoshioka, Yoshichika; Matsuda, Tsuyoshi; Nishimoto, Hideaki; Ogawa, Akira; Ogasawara, Kuniaki; Beppu, Takaaki

    2016-01-01

    In the previous studies, carbon monoxide (CO) poisoning showed an imbalance between cerebral perfusion and metabolism in the acute phase and the brain temperature (BT) in these patients remained abnormally high from the acute to the subacute phase. As observed in chronic ischemic patients, BT can continuously remain high depending on impairments of cerebral blood flow and metabolism; this is because heat removal and production system in the brain may mainly be maintained by the balance of these two factors; thus, cerebral white matter damage (WMD) affecting normal metabolism may affect the BT in patients with CO poisoning. Here, we investigated whether the BT correlates with the degree of WMD in patients with subacute CO-poisoning. In 16 patients with subacute CO-poisoning, the BT and degree of WMD were quantitatively measured by using magnetic resonance spectroscopy and the fractional anisotropy (FA) value from diffusion tensor imaging dataset. Consequently, the BT significantly correlated with the degree of WMD. In particular, BT observed in patients with delayed neuropsychiatric sequelae, a crucial symptom with sudden-onset in the chronic phase after CO exposure, might indicate cerebral hypo-metabolism and abnormal hemodynamics like “matched perfusion,” in which the reduced perfusion matches the reduced metabolism. PMID:27819312

  1. Does amateur boxing lead to chronic brain damage? A review of some recent investigations.

    PubMed

    Haglund, Y; Eriksson, E

    1993-01-01

    Fifty former amateur boxers were examined and compared with two control groups of soccer players and track and field athletes. All subjects were interviewed regarding their sports career, medical history, and social variables. They underwent a physical and a neurologic examination. Personality traits were investigated and related to the platelet monoamine oxidase activity. Cerebral morphologic changes were evaluated using computed tomography and magnetic resonance imaging. Further, clinical neurophysiologic tests were made as well as neuropsychologic tests. No significant differences were found between the groups in any of the physical or neurologic examinations or in platelet monoamine oxidase activity. Socially, the boxers had a lower degree of education and had chosen less intellectual professions, but they were less impulsive and more socialized. The computed tomography images and magnetic resonance imaging studies showed no significant differences between the groups. There was a significantly higher incidence of slight or moderate electroencephalography deviations among the boxers. Neuropsychologically, the boxers had an inferior finger-tapping performance. Thus, no signs of serious chronic brain damage were found among any of the groups studied. However, the electroencephalography and finger-tapping differences between the groups might indicate slight brain dysfunction in some of the amateur boxers.

  2. Correlation of behavior with brain damage after in utero exposure to toxic agents

    SciTech Connect

    Norton, S.; Kimler, B.F.

    1987-03-01

    Early postnatal behaviors involving sensorimotor integration were measured along with thickness of the sensorimotor cortex in rats irradiated with 1.0 Gy on gestational day 11 or 17. Body weight and morphology of anterior pituitary cells were recorded. Irradiation on day 17 was more effective in reducing cortical thickness and body weight and performance on behavioral tests and less effective in altering pituitary cells than irradiation on day 11. Prediction of behavioral effects, using cortical layers, body weight and pituitary morphology as predictors in stepwise multiple regression, was measured in both irradiated and control rats. Cortical Layer V more than I more than IV and VI as significant predictors of behavior. The best predictions accounted for about half of the variance in the data. When behavioral data were used to predict brain damage, the best predictor was negative geotaxis. Significant association of behavior with Layers V and VI was found. These experiments show the difficulties in correlating complex behaviors with specific brain areas and, at the same time, implicate especially Layer V of the sensorimotor cortex in these behaviors.

  3. Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats.

    PubMed

    He, Xiao-Li; Wang, Yue-Hua; Bi, Ming-Gang; Du, Guan-Hua

    2012-04-05

    Chronic cerebral hypoperfusion, induced by permanent occlusion of bilateral common carotid arteries (2VO), is related to neurological disorders and contributes to cognitive decline. Chrysin (5,7-dihydroxyflavone) is an important member of the flavonoid family. The aim of this study is to investigate the effects of chrysin on cognitive deficits and brain damage in this rat 2VO model. At 52days after ligation, the escape latency in Morris water maze was significantly increased in rats subjected to 2VO, the neuronal damage was also increased accompanied by a large proliferation in glial fibrillary acidic protein (GFAP) immunoreactivity with marked white matter lesions, and neuronal cell apoptosis, all of which were significantly alleviated by long treatment of chrysin (30mg/kg). Biochemical examinations revealed that chrysin decreased lipid peroxide, reduced the increased activities of superoxide dismutase, and attenuated the decreased activities of glutathione peroxidase in 2VO rats. The results suggest that chrysin may have therapeutic potential for the treatment of neurodegeneration and dementia caused by decreased cerebral blood flow, which is most likely related, at least in part, to its anti-inflammatory and antioxidant properties.

  4. Establishment and identification of a hypoxia-ischemia brain damage model in neonatal rats

    PubMed Central

    YAO, DAN; ZHANG, WEIRAN; HE, XUE; WANG, JINHU; JIANG, KEWEN; ZHAO, ZHENGYAN

    2016-01-01

    The present study was designed to set up a reliable model of severe hypoxia-ischemia brain damage (HIBD) in neonatal rats and several methods were used to identify whether the model was successful. A total of 40 healthy 7-day-old Sprague-Dawley rats were randomly divided into 2 groups: The sham-surgery group (n=18) and the HIBD model group (n=22). The HIBD model was produced according to the traditional Rice method. The rats were anesthetized with ethyl ether. The left common carotid artery (CCA) was exposed, ligated and cut. Following this, the rats were exposed to hypoxia in a normobaric chamber filled with 8% oxygen and 92% nitrogen for 2 h. In the sham-surgery group, the left CCA was exposed but was not ligated, cut or exposed to hypoxia. The neurobehavioral changes of the rats were observed in the 24 h after HIBD. The brains were collected after 72 h to observe the pathological morphological changes of the brain tissue. The behavioral ability and neurobehavioral changes were studied in each group. The water maze test was used for evaluating the learning-memory ability when the rats were 28 days old. Compared with the sham-surgery group, all the HIBD model rats had a lag of motor development. The rats had evident changes in anatomy and Nissl staining, and cognitive impairment was shown through the result of the water maze. Therefore, the model of HIBD in neonatal rats is feasible and provides a reliable model for subsequent studies. PMID:27073628

  5. Laser-induced accurate frontal cortex damage: a new tool for brain study

    NASA Astrophysics Data System (ADS)

    Flores, Gonzalo; Khotiaintsev, Sergei N.; Sanchez-Huerta, Maria L.; Ibanes, Osvaldo; Hernandez, Adan; Silva, Adriana B.; Calderon, Rafael; Ayala, Griselda; Marroquin, Javier; Svirid, Vladimir; Khotiaintsev, Yuri V.

    1999-01-01

    New laser-based technique for anatomical-functional study of the medial prefrontal cortex (MPFC) of the brain of experimental animals (rats) is presented. The technique is based on making accurate well-controlled lesions to small MPFC and subsequent observing behavioral alterations in the lesioned animals relative to control ones. Laser produces smaller and more accurate lesions in comparison to those obtained by traditional methods, such as: mechanical action, chemical means, and electrical currents. For producing the brain lesions, a 10 W CO2 CW laser is employed for reasons of its sufficiently high power, which is combined with relatively low cost-per-Watt ratio. In our experience, such power rating is sufficient for making MPFC lesions. The laser radiation is applied in a form of pulse series via hollow circular metallic waveguide made of stainless steel. The waveguide is of inner diameter 1.3 mm and 95 mm long. The anesthetized animals are placed in stereotaxic instrument. Via perforations made in the skull bone, the MPFC is exposed to the laser radiation. Several weeks later (after animal recuperation), standard behavioral tests are performed. They reveal behavioral changes, which point to a damage of some small regions of the MPFC. These results correlate with the histological data, which reveal the existence of small and accurate MPFC lesions. The present technique has good prospects for use in anatomical- functional studies of brain by areas. In addition, this technique appears to have considerable promise as a treatment method for some pathologies, e.g. the Parkinson's disease.

  6. Lesion correlates of impairments in actual tool use following unilateral brain damage.

    PubMed

    Salazar-López, E; Schwaiger, B J; Hermsdörfer, J

    2016-04-01

    To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations.

  7. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

    PubMed

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-02-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.

  8. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats.

    PubMed

    Pascual, Maria; Blanco, Ana M; Cauli, Omar; Miñarro, Jose; Guerri, Consuelo

    2007-01-01

    Adolescent brain development seems to be important for the maturation of brain structures and behaviour. Intermittent binge ethanol drinking is common among adolescents, and this type of drinking can induce brain damage. Because we have demonstrated that chronic ethanol treatment induces inflammatory processes in the brain, we investigate whether intermittent ethanol intoxication enhances cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in adolescent rats, and whether these mediators induce brain damage and cause permanent cognitive dysfunctions. Adolescent rats were exposed to ethanol (3.0 g/kg) for two consecutive days at 48-h intervals over 14 days. Levels of COX-2, iNOS and cell death were assessed in the neocortex, hippocampus and cerebellum 24 h after the final ethanol administration. The following day or 20 days after the final injection (adult stage), animals were tested for different behavioural tests (conditional discrimination learning, rotarod, object recognition, beam-walking performance) to assess cognitive and motor functions. Our results show that intermittent ethanol intoxication upregulates COX-2 and iNOS levels, and increases cell death in the neocortex, hippocampus and cerebellum. Furthermore, animals treated with ethanol during adolescence exhibited behavioural deficits that were evident at the end of ethanol treatments and at the adult stage. Administration of indomethacin, a COX-2 inhibitor, abolishes the induction of COX-2 and iNOS expression and cell death, preventing ethanol-induced behavioural deficits. These findings indicate that binge pattern exposure to ethanol during adolescence induces brain damage by inflammatory processes and causes long-lasting neurobehavioural consequences. Accordingly, administering indomethacin protects against ethanol-induced brain damage and prevents detrimental ethanol effects on cognitive and motor processes.

  9. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  10. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain

    PubMed Central

    Nonato, L.F.; Rocha-Vieira, E.; Tossige-Gomes, R.; Soares, A.A.; Soares, B.A.; Freitas, D.A.; Oliveira, M.X.; Mendonça, V.A.; Lacerda, A.C.; Massensini, A.R.; Leite, H.R.

    2016-01-01

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain. PMID:27706439

  11. Comparison of the Bender Gestalt Test for Both Black and White Brain-Damaged Patients Using Two Scoring Systems

    ERIC Educational Resources Information Center

    Butler, Oliver T.; And Others

    1976-01-01

    This study tested for cultural bias in the Bender Visual Motor Gestalt Test. Subjects were 72 black and white patients diagnosed as either brain damaged or psychiatric. Bender protocols were scored by Pascal-Suttell and Hain systems. No race effect appeared except for the Pascal-Suttell system for which blacks scored significantly better. (Author)

  12. It's Either Brain Damage or No Father: The False Issue of Deficit Vs. Difference Models of Afro-American Behavior.

    ERIC Educational Resources Information Center

    Valentine, Charles A.

    The distorting notions of the deficit and different Afro-American subculture have led white psychologists and guidance counselors to diagnose incorrectly behavior aberrations in Black children. A case study of a Black child who was hastily diagnosed and institutionalized as brain damaged, retarded, and psychotic illustrates this point. A…

  13. COMMUNICATION TRAINING IN CHILDHOOD BRAIN DAMAGE, A MONOGRAPH IN THE BANNERSTONE DIVISION OF AMERICAN LECTURES IN SPEECH AND HEARING.

    ERIC Educational Resources Information Center

    MECHAM, MERLIN J.; AND OTHERS

    INTENDED AS A TEXT SOURCE BOOK, OR PRACTICAL REFERENCE, THE BOOK DISCUSSES SPEECH AND HEARING PROBLEMS, PSYCHOLOGICAL AND LINGUISTIC IMPLICATIONS, AND SPECIAL EDUCATION FOR CEREBRAL PALSIED AND BRAIN DAMAGED CHILDREN. NUMBER AND COMPLEXITY OF SPEECH AND HEARING PROBLEMS ARE EMPHASIZED, I.E., NEUROMUSCULAR INVOLVEMENT, ARTICULATION, RHYTHM, VOICE…

  14. A Study of the Relationship Between Neurological Evidence of Brain Damage in Children and Activity and Distractibility

    ERIC Educational Resources Information Center

    Kaspar, Joseph C.; And Others

    1971-01-01

    It was found that brain damaged children were more active in structured situations and more distractibile than control group children. These findings pointed to a deficiency in control mechanisms. The correlational data suggested the manner in which these deficiences operate. Sex differences were also discussed. (Author/CG)

  15. Cluster Analysis of Children and Adolescents with Brain Damage and Learning Disabilities Using Neuropsychological, Psychoeducational, and Sociobehavioral Variables.

    ERIC Educational Resources Information Center

    Williams, Dorothy L.; And Others

    1992-01-01

    The Conners Rating Scale was used to identify psychoeducational, neuropsychological, and sociobehavioral variables in attempting to define subtypes within a population of 95 children (mean age 10.6 years) with learning disabilities (LD) or documented brain damage. Results supported the sociobehavioral component in LD subtyping and parallels…

  16. Poor Hand-Pointing to Sounds in Right Brain-Damaged Patients: Not Just a Problem of Spatial-Hearing

    ERIC Educational Resources Information Center

    Pavani, Francesco; Farne, Alessandro; Ladavas, Elisabetta

    2005-01-01

    We asked 22 right brain-damaged (RBD) patients and 11 elderly healthy controls to perform hand-pointing movements to free-field unseen sounds, while modulating two non-auditory variables: the initial position of the responding hand (left, centre or right) and the presence or absence of task-irrelevant ambient vision. RBD patients suffering from…

  17. Acute hyperglycemia worsens ischemic stroke-induced brain damage via high mobility group box-1 in rats.

    PubMed

    Huang, Jingyang; Liu, Baoyi; Yang, Chenghui; Chen, Haili; Eunice, Dzivor; Yuan, Zhongrui

    2013-10-16

    Hyperglycemia adversely affects the outcome of ischemic stroke. Extracellular HMGB1 plays a role in aggravating brain damage in the postischemic brain. The aim of this study was to determine whether the extracellular HMGB1 is involved in the worsened ischemic damage during hyperglycemic stroke. Male Wistar rats underwent middle cerebral artery occlusion (MCAO) for 90 min with reperfusion. Acute hyperglycemia was induced by an injection of 50% dextrose. Rats received glycyrrhizin, a specific HMGB1 inhibitor, or vehicle. HMGB-1 in cerebrospinal fluid and in brain parenchyma was detected at 2 or 4 h post-reperfusion. Neurological deficits, infarct volume and cerebral edema were assessed 24 h post-MCAO the disruption of blood-brain barrier (BBB) and the expression of tight junction protein Occludin were measured at 4 h post-reperfusion. Hyperglycemia enhanced the early release of HMGB1 from ischemic brain tissue, which was accompanied by increased infarct volume, neurological deficit, cerebral edema and BBB disruption. Glycyrrhizin alleviated the aggravation of infarct volume, neurological deficit, cerebral edema and BBB disruption by decreasing the degradation of tight junction protein Occludin in the ischemic hemisphere of hyperglycemic rats. In conclusion, enhanced early extracellular release of HMGB1 might represent an important mechanism for worsened ischemic damage, particularly early BBB disruption, during hyperglycemic stroke. An HMGB1 inhibitor glycyrrhizin is a potential therapeutic option for hyperglycemic stroke.

  18. Brain damage from sup 125 I brachytherapy evaluated by MR imaging, a blood-brain barrier tracer, and light and electron microscopy in a rat model

    SciTech Connect

    Bernstein, M.; Marotta, T.; Stewart, P.; Glen, J.; Resch, L.; Henkelman, M. )

    1990-10-01

    Changes in normal rat brain were studied acutely, and at 3, 6, 9, and 12 months following interstitial brachytherapy with high-activity {sup 125}I seeds. An 80-Gy radiation dose was administered to an area with a 5.5-mm radius. Effects were measured with magnetic resonance (MR) imaging (with and without gadolinium enhancement), leakage of horseradish peroxidase (HRP), electron microscopy, and light microscopy. Significant histological damage was seen at radiation doses above 295 Gy, and breakdown of the blood-brain barrier was observed only in tissue receiving a dose of 165 Gy or greater. Blood-brain barrier breakdown increased up to the 6-month time point, and thereafter appeared to stabilize or decrease. The area of blood-brain barrier disruption indicated by gadolinium-enhanced MR imaging was greater than that indicated by leakage of HRP.

  19. The protective effect of M40401, a superoxide dismutase mimetic, on post-ischemic brain damage in Mongolian gerbils

    PubMed Central

    Mollace, Vincenzo; Iannone, Michelangelo; Muscoli, Carolina; Palma, Ernesto; Granato, Teresa; Modesti, Andrea; Nisticò, Robert; Rotiroti, Domenicantonio; Salvemini, Daniela

    2003-01-01

    Background Overproduction of free radical species has been shown to occur in brain tissues after ischemia-reperfusion injury. However, most of free radical scavengers known to antagonize oxidative damage (e.g. superoxide dismutase, catalase), are unable to protect against ischemia-reperfusion brain injury when given in vivo, an effect mainly due to their difficulty to gain access to brain tissues. Here we studied the effect of a low molecular weight superoxide dismutase mimetic (M40401) in brain damage subsequent to ischemia-reperfusion injury in Mongolian gerbils. Results In animals undergoing ischemia-reperfusion injury, neuropathological and ultrastructural changes were monitored for 1–7 days either in the presence or in the absence of M40401 after bilateral common carotid artery occlusion (BCCO). Administration of M40401 (1–40 mg/kg, given i.p. 1 h after BCCO) protected against post-ischemic, ultrastructural and neuropathological changes occurring within the hippocampal CA1 area. The protective effect of M40401 was associated with a significant reduction of the levels of malondialdehyde (MDA; a marker of lipid peroxidation) in ischemic brain tissues after ischemia-reperfusion. Conclusion Taken together, these results demonstrate that M40401 provides protective effects when given early after the induction of ischemia-reperfusion of brain tissues and suggest the possible use of such compounds in the treatment of neurological dysfunction subsequent to cerebral flow disturbances. PMID:12809567

  20. Exploring the impact of plasticity-related recovery after brain damage in a connectionist model of single-word reading.

    PubMed

    Welbourne, Stephen R; Ralph, Matthew A Lambon

    2005-03-01

    The effect of retraining a damaged connectionist model of single-word reading was investigated with the aim of establishing whether plasticity-related changes occurring during the recovery process can contribute to our understanding of the pattern of dissociations found in brain-damaged patients. In particular, we sought to reproduce the strong frequency x consistency interactions found in surface dyslexia. A replication of Plaut, McClelland, Seidenberg, and Patterson's (1996) model of word reading was damaged and then retrained, using a standard backpropagation algorithm. Immediately after damage, there was only a small frequency x consistency interaction. Retraining the damaged model crystallized out these small differences into a strong dissociation, very similar to the pattern found in surface dyslexic patients. What is more, the percentage of regularization errors, always high in surface dyslexics, increased greatly over the retraining period, moving from under 10% to over 80% in some simulations. These results suggest that the performance patterns of brain-damaged patients can owe as much to the substantial changes in the pattern of connectivity occurring during recovery as to the original premorbid structure. This finding is discussed in relation to the traditional cognitive neuropsychological assumptions of subtractivity and transparency.

  1. A different story on "Theory of Mind" deficit in adults with right hemisphere brain damage.

    PubMed

    Tompkins, Connie A; Scharp, Victoria L; Fassbinder, Wiltrud; Meigh, Kimberly M; Armstrong, Elizabeth M

    2008-01-01

    BACKGROUND: Difficulties in social cognition and interaction can characterise adults with unilateral right hemisphere brain damage (RHD). Some pertinent evidence involves their apparently poor reasoning from a "Theory of Mind" perspective, which requires a capacity to attribute thoughts, beliefs, and intentions in order to understand other people's behaviour. Theory of Mind is typically assessed with tasks that induce conflicting mental representations. Prior research with a commonly used text task reported that adults with RHD were less accurate in drawing causal inferences about mental states than at making non-mental-state causal inferences from control texts. However, the Theory of Mind and control texts differed in the number and nature of competing discourse entity representations. This stimulus discrepancy, together with the explicit measure of causal inferencing, likely put the adults with RHD at a disadvantage on the Theory of Mind texts. AIMS: This study revisited the question of Theory of Mind deficit in adults with RHD. The aforementioned Theory of Mind texts were used but new control texts were written to address stimulus discrepancies, and causal inferencing was assessed relatively implicitly. Adults with RHD were hypothesised not to display a Theory of Mind deficit under these conditions. METHODS #ENTITYSTARTX00026; PROCEDURES: The participants were 22 adults with unilateral RHD from cerebrovascular accident, and 38 adults without brain damage. Participants listened to spoken texts that targeted either mental-state or non-mental-state causal inferences. Each text was followed by spoken True/False probe sentences, to gauge target inference comprehension. Both accuracy and RT data were recorded. Data were analysed with mixed, two-way Analyses of Variance (Group by Text Type). OUTCOMES #ENTITYSTARTX00026; RESULTS: There was a main effect of Text Type in both accuracy and RT analyses, with a performance advantage for the Theory of Mind

  2. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage.

    PubMed

    Glushakova, Olena Y; Johnson, Danny; Hayes, Ronald L

    2014-07-01

    Traumatic brain injury (TBI) is a significant risk factor for chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD). Cerebral microbleeds, focal inflammation, and white matter damage are associated with many neurological and neurodegenerative disorders including CTE, AD, PD, vascular dementia, stroke, and TBI. This study evaluates microvascular abnormalities observed at acute and chronic stages following TBI in rats, and examines pathological processes associated with these abnormalities. TBI in adult rats was induced by controlled cortical impact (CCI) of two magnitudes. Brain pathology was assessed in white matter of the corpus callosum for 24 h to 3 months following injury using immunohistochemistry (IHC). TBI resulted in focal microbleeds that were related to the magnitude of injury. At the lower magnitude of injury, microbleeds gradually increased over the 3 month duration of the study. IHC revealed TBI-induced focal abnormalities including blood-brain barrier (BBB) damage (IgG), endothelial damage (intercellular adhesion molecule 1 [ICAM-1]), activation of reactive microglia (ionized calcium binding adaptor molecule 1 [Iba1]), gliosis (glial fibrillary acidic protein [GFAP]) and macrophage-mediated inflammation (cluster of differentiation 68 [CD68]), all showing different temporal profiles. At chronic stages (up to 3 months), apparent myelin loss (Luxol fast blue) and scattered deposition of microbleeds were observed. Microbleeds were surrounded by glial scars and co-localized with CD68 and IgG puncta stainings, suggesting that localized BBB breakdown and inflammation were associated with vascular damage. Our results indicate that evolving white matter degeneration following experimental TBI is associated with significantly delayed microvascular damage and focal microbleeds that are temporally and regionally associated with development of punctate BBB breakdown and progressive inflammatory responses. Increased

  3. Periodic Estrogen Receptor-Beta Activation: A Novel Approach to Prevent Ischemic Brain Damage.

    PubMed

    Cue, Lauren; Diaz, Francisca; Briegel, Karoline J; Patel, Hersila H; Raval, Ami P

    2015-10-01

    In women, the risk for cerebral ischemia climbs rapidly after menopause. At menopause, production of ovarian hormones; i.e., progesterone and estrogen, slowly diminishes. Estrogen has been suggested to confer natural protection to premenopausal women from ischemic stroke and some of its debilitating consequences. This notion is also strongly supported by laboratory studies showing that a continuous chronic 17β-estradiol (E2; a potent estrogen) regimen protects brain from ischemic injury. However, concerns regarding the safety of the continuous intake of E2 were raised by the failed translation to the clinic. Recent studies demonstrated that repetitive periodic E2 pretreatments, in contrast to continuous E2 treatment, provided neuroprotection against cerebral ischemia in ovariectomized rats. Periodic E2 pretreatment protects hippocampal neurons through activation of estrogen receptor subtype beta (ER-β). Apart from neuroprotection, periodic activation of ER-β in ovariectomized rats significantly improves hippocampus-dependent learning and memory. Difficulties in learning and memory loss are the major consequence of ischemic brain damage. Periodic ER-β agonist pretreatment may provide pharmacological access to a protective state against ischemic stroke and its debilitating consequences. The use of ER-β-selective agonists constitutes a safer target for future research than ER-α agonist or E2, inasmuch as it lacks the ability to stimulate the proliferation of breast or endometrial tissue. In this review, we highlight ER-β signaling as a guide for future translational research to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women, while avoiding the side effects produced by chronic E2 treatment.

  4. Pomegranate from Oman Alleviates the Brain Oxidative Damage in Transgenic Mouse Model of Alzheimer's disease

    PubMed Central

    Subash, Selvaraju; Essa, Musthafa Mohamed; Al-Asmi, Abdullah; Al-Adawi, Samir; Vaishnav, Ragini; Braidy, Nady; Manivasagam, Thamilarasan; Guillemin, Gilles J.

    2014-01-01

    Oxidative stress may play a key role in Alzheimer's disease (AD) neuropathology. Pomegranates (石榴 Shí Liú) contain very high levels of antioxidant polyphenolic substances, as compared to other fruits and vegetables. Polyphenols have been shown to be neuroprotective in different model systems. Here, the effects of the antioxidant-rich pomegranate fruit grown in Oman on brain oxidative stress status were tested in the AD transgenic mouse. The 4-month-old mice with double Swedish APP mutation (APPsw/Tg2576) were purchased from Taconic Farm, NY, USA. Four-month-old Tg2576 mice were fed with 4% pomegranate or control diet for 15 months and then assessed for the influence of diet on oxidative stress. Significant increase in oxidative stress was found in terms of enhanced levels of lipid peroxidation (LPO) and protein carbonyls. Concomitantly, decrease in the activities of antioxidant enzymes was observed in Tg2576 mice treated with control diet. Supplementation with 4% pomegranate attenuated oxidative damage, as evidenced by decreased LPO and protein carbonyl levels and restoration in the activities of the antioxidant enzymes [superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione (GSH), and Glutathione S transferase (GST)]. The activities of membrane-bound enzymes [Na+ K+-ATPase and acetylcholinesterase (AChE)] were altered in the brain regions of Tg2576 mouse treated with control diet, and 4% pomegranate supplementation was able to restore the activities of enzymes to comparable values observed in controls. The results suggest that the therapeutic potential of 4% pomegranate in the treatment of AD might be associated with counteracting the oxidative stress by the presence of active phytochemicals in it. PMID:25379464

  5. Repeated edaravone treatment reduces oxidative cell damage in rat brain induced by middle cerebral artery occlusion.

    PubMed

    Yamamoto, Yorihiro; Yanagisawa, Makoto; Tak, Nyou Wei; Watanabe, Kazutoshi; Takahashi, Chizuko; Fujisawa, Akio; Kashiba, Misato; Tanaka, Masahiko

    2009-01-01

    The free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) has been used to treat acute brain infarction in Japan since 2001. To obtain direct evidence that edaravone serves as an antioxidant in vivo, four groups of rats were prepared: (i) an ischemia/reperfusion (I/R) group receiving 2 h occlusion-reperfusion of the middle cerebral artery; (ii) a single administration group treated by intravenous infusion of edaravone (3 mg/kg) immediately after I/R; (iii) a repeated treatment group receiving twice daily edaravone administration for 14 days; and (iv) a sham operation group without occlusion. Repeated treatment with edaravone significantly improved the neurological symptoms and impairment of motor function as compared to the I/R group, while single administration demonstrated limited efficacy. No significant differences in plasma antioxidants such as ascorbate, urate, and vitamin E, or in redox status of coenzyme Q(9) were observed among the four groups. In contrast, the plasma content of oleic acid in the total free fatty acids (percentage 18:1) was significantly increased in the I/R group for 7 days as compared to the sham operation group. Oleic acid was produced from stearic acid by the action of stearoyl-CoA desaturase to compensate for the oxidative loss of polyunsaturated fatty acids. The above results suggest that cellular oxidative damage in the rat brain is evident for at least 7 days after I/R. Repeated treatment suppressed the percentage 18:1 increment, while the single administration did not, which is consistent with the limited efficacy of single administration.

  6. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage.

    PubMed

    Roll, Lars; Faissner, Andreas

    2014-01-01

    The limited regeneration capacity of the adult central nervous system (CNS) requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation. In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP) and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo. As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM), a complex network that contains numerous signaling molecules. It appears that signals in the damaged CNS lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C (TN-C). Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  7. The perception of peripersonal space in right and left brain damage hemiplegic patients

    PubMed Central

    Bartolo, Angela; Carlier, Mauraine; Hassaini, Sabrina; Martin, Yves; Coello, Yann

    2014-01-01

    Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere (RH) in motor planning and of the left hemisphere (LH) in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH) or right (RH) hemisphere and eight matched healthy controls performed a color discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the color discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH) or to the healthy arm (RH). Moreover, RH group showed longer response times in the reachability judgment task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that RH damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of peripersonal space. PMID

  8. The perception of peripersonal space in right and left brain damage hemiplegic patients.

    PubMed

    Bartolo, Angela; Carlier, Mauraine; Hassaini, Sabrina; Martin, Yves; Coello, Yann

    2014-01-01

    Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere (RH) in motor planning and of the left hemisphere (LH) in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH) or right (RH) hemisphere and eight matched healthy controls performed a color discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the color discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH) or to the healthy arm (RH). Moreover, RH group showed longer response times in the reachability judgment task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that RH damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of peripersonal space.

  9. Up-regulation of heme oxygenase-1 protects against cold injury-induced brain damage: a laboratory-based study.

    PubMed

    Shih, Ruey-Horng; Cheng, Shin-Ei; Tung, Wei-Hsuan; Yang, Chuen-Mao

    2010-08-01

    Heme oxygenase-1 (HO-1), a kind of stress protein, is critical for the protection against ischemic stroke and cerebrovascular endothelium damage. However, the effects of HO-1 on trauma-induced brain injury are still unknown. Hence, we attempted to use a cold injury-induced brain trauma (CIBT) model in mice, which provides for a well-established approach for assessing brain edema and blood-brain barrier breakdown. Additionally, we explored cultured mouse brain endothelial cells (bEnd.3) to investigate the protective effects of HO-1. HO-1 was induced by infection with a recombinant adenovirus carrying the human HO-1 gene or an inducer of HO-1 activity, cobalt protoporphyrin IX (CoPP). The recombinant adenovirus (3.5 x 10(7) PFU/mouse, i.v.) or CoPP (10 mg/kg, i.v.) significantly increased HO-1 protein expression and HO-1 enzyme activity in the cerebral cortex of the mice. We found that overexpression of HO-1 protected against cold injury-induced secondary damage and behavioral impairment. Up-regulation of HO-1 decreased brain edema and neutrophil infiltration induced by cold injury. These HO-1-dependent protecting effects were abrogated by pretreatment with the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP; 3 mg/kg, i.v.). HO-1 expression in the cerebral endothelium was observed by immunofluorescent staining. CoPP-induced (1 muM, 24 h) HO-1 protein expression was determined by western blotting in bEnd.3 cells. Enhanced HO-1 also protected against cold injury-induced cell loss and damage, which were respectively determined by GAPDH leakage into the cell medium and XTT assay in bEnd.3 cells. In summary, HO-1 overexpression appears to offer an effective neuroprotection against cold-induced secondary brain injury.

  10. Protective and damaging effects of stress mediators: central role of the brain

    PubMed Central

    McEwen, Bruce S.

    2006-01-01

    The mind involves the whole body, and two-way communication between the brain and the cardiovascular, immune, and other systems via neural and endocrine mechanisms. Stress is a condition of the mind-body interaction, and a factor in the expression of disease that differs among individuals. It is not just the dramatic stressful events that exact their toll, but rather the many events of daily life that elevate and sustain activities of physiological systems and cause sleep deprivation, overeating, and other health-damaging behaviors, producing the feeling of being “stressed out.” Over time, this results in wear and tear on the body, which is called “allostatic load,” and it reflects not only the impact of life experiences but also of genetic load, individual lifestyle habits reflecting items such as diet, exercise, and substance abuse, and developmental experiences that set life-long patterns of behavior and physiological reactivity. Hormones associated with stress and allostatic load protect the body in the short run and promote adaptation by the process known as allostasis, but in the long run allostatic load causes changes in the body that can lead to disease. The brain is the key organ of stress, allostasis, and allostatic load, because it determines what is threatening and therefore stressful, and also determines the physiological and behavioral responses. Brain regions such as the hippocampus, amygdala, and prefrontal cortex respond to acute and chronic stress by undergoing structural remodeling, which alters behavioral and physiological responses. Translational studies in humans with structural and functional imaging reveal smaller hippocampal volume in stress-related conditions, such as mild cognitive impairment in aging and prolonged major depressive illness, as well as in individuals with low self-esteem. Alterations in amygdala and prefrontal cortex are also reported. Besides Pharmaceuticals, approaches to alleviate chronic stress and reduce

  11. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  12. Transplanted bone marrow stromal cells protect neurovascular units and ameliorate brain damage in stroke-prone spontaneously hypertensive rats.

    PubMed

    Ito, Masaki; Kuroda, Satoshi; Sugiyama, Taku; Maruichi, Katsuhiko; Kawabori, Masahito; Nakayama, Naoki; Houkin, Kiyohiro; Iwasaki, Yoshinobu

    2012-10-01

    This study was aimed to assess whether bone marrow stromal cells (BMSC) could ameliorate brain damage when transplanted into the brain of stroke-prone spontaneously hypertensive rats (SHR-SP). The BMSC or vehicle was stereotactically engrafted into the striatum of male SHR-SP at 8 weeks of age. Daily loading with 0.5% NaCl-containing water was started from 9 weeks. MRIs and histological analysis were performed at 11 and 12 weeks, respectively. Wistar-Kyoto rats were employed as the control. As a result, T2-weighted images demonstrated neither cerebral infarct nor intracerebral hemorrhage, but identified abnormal dilatation of the lateral ventricles in SHR-SP. HE staining demonstrated selective neuronal injury in their neocortices. Double fluorescence immunohistochemistry revealed that they had a decreased density of the collagen IV-positive microvessels and a decreased number of the microvessels with normal integrity between basement membrane and astrocyte end-feet. BMSC transplantation significantly ameliorated the ventricular dilatation and the breakdown of neurovascular integrity. These findings strongly suggest that long-lasting hypertension may primarily damage neurovascular integrity and neurons, leading to tissue atrophy and ventricular dilatation prior to the occurrence of cerebral stroke. The BMSC may ameliorate these damaging processes when directly transplanted into the brain, opening the possibility of prophylactic medicine to prevent microvascular and parenchymal-damaging processes in hypertensive patients at higher risk for cerebral stroke.

  13. Early Brain Damage and the Development of Motor Behavior in Children: Clues for Therapeutic Intervention?

    PubMed Central

    Hadders-Algra, Mijna

    2001-01-01

    The Neuronal Group Selection Theory (NGST) could offer new insights into the mechanisms directing motor disorders, such as cerebral palsy and developmental coordination disorder. According to NGST, normal motor development is characterized by two phases of variability. Variation is not at random but determined by criteria set by genetic information. Development starts with the phase of primary variability,during which variation in motor behavior is not geared to external conditions. At function-specific ages secondary variability starts, during which motor performance can be adapted to specific situations. In both forms, of variability, selection on the basis of afferent information plays a significant role. From the NGST point of view, children with pre- or perinatally acquired brain damage, such as children with cerebral palsy and part of the children with developmental coordination disorder, suffer from stereotyped motor behavior, produced by a limited repertoire or primary (sub)cortical neuronal networks. These children also have roblems in selecting the most efficient neuronal activity, due to deficits in the processing of sensory information. Therefore, NGST suggests that intervention in these children at early age should aim at an enlargement of the primary neuronal networks. With increasing age, the emphasis of intervention could shift to the provision of ample opportunities for active practice, which might form a compensation for the impaired selection. PMID:11530887

  14. Mechanical problem-solving strategies in left-brain damaged patients and apraxia of tool use.

    PubMed

    Osiurak, François; Jarry, Christophe; Lesourd, Mathieu; Baumard, Josselin; Le Gall, Didier

    2013-08-01

    Left brain damage (LBD) can impair the ability to use familiar tools (apraxia of tool use) as well as novel tools to solve mechanical problems. Thus far, the emphasis has been placed on quantitative analyses of patients' performance. Nevertheless, the question still to be answered is, what are the strategies employed by those patients when confronted with tool use situations? To answer it, we asked 16 LBD patients and 43 healthy controls to solve mechanical problems by means of several potential tools. To specify the strategies, we recorded the time spent in performing four kinds of action (no manipulation, tool manipulation, box manipulation, and tool-box manipulation) as well as the number of relevant and irrelevant tools grasped. We compared LBD patients' performance with that of controls who encountered difficulties with the task (controls-) or not (controls+). Our results indicated that LBD patients grasped a higher number of irrelevant tools than controls+ and controls-. Concerning time allocation, controls+ and controls- spent significantly more time in performing tool-box manipulation than LBD patients. These results are inconsistent with the possibility that LBD patients could engage in trial-and-error strategies and, rather, suggest that they tend to be perplexed. These findings seem to indicate that the inability to reason about the objects' physical properties might prevent LBD patients from following any problem-solving strategy.

  15. Influence of green tea extract on oxidative damage and apoptosis induced by deltamethrin in rat brain.

    PubMed

    Ogaly, Hanan A; Khalaf, A A; Ibrahim, Marwa A; Galal, Mona K; Abd-Elsalam, Reham M

    2015-01-01

    In the present study, we investigated the protective effect of an aqueous extract of green tea leaves (GTE) against neurotoxicity and oxidative damage induced by deltamethrin (DM) in male rats. Four different groups of rats were used: the 1st group was the vehicle treated control group, the 2nd group received DM (0.6 mg/kg BW), the 3rd group received DM plus GTE, and the 4th received GTE alone (25 mg/kg BW). The brain tissues were collected at the end of the experimental regimen for subsequent investigation. Rats that were given DM had a highly significant elevation in MDA content, nitric oxide concentration, DNA fragmentation and expression level of apoptotic genes, TP53 and COX2. Additionally, a significant reduction in the total antioxidant capacity in the second group was detected. The findings for the 3rd group highlight the efficacy of GTE as a neuro-protectant in DM-induced neurotoxicity through improving the oxidative status and DNA fragmentation as well as suppressing the expression of the TP53 and COX2 genes. In conclusion, GTE, at a concentration of 25mg/kg/day, protected against DM-induced neurotoxicity through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product against DM-induced neurotoxicity.

  16. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases.

    PubMed

    Bolaños, J P; Almeida, A; Stewart, V; Peuchen, S; Land, J M; Clark, J B; Heales, S J

    1997-06-01

    Within the CNS and under normal conditions, nitric oxide (.NO) appears to be an important physiological signalling molecule. Its ability to increase cyclic GMP concentration suggests that .NO is implicated in the regulation of important metabolic pathways in the brain. Under certain circumstances .NO synthesis may be excessive and .NO may become neurotoxic. Excessive glutamate-receptor stimulation may lead to neuronal death through a mechanism implicating synthesis of both .NO and superoxide (O2.-) and hence peroxynitrite (ONOO-) formation. In response to lipopolysaccharide and cytokines, glial cells may also be induced to synthesize large amounts of .NO, which may be deleterious to the neighbouring neurones and oligodendrocytes. The precise mechanism of .NO neurotoxicity is not fully understood. One possibility is that it may involve neuronal energy deficiency. This may occur by ONOO- interfering with key enzymes of the tricarboxylic acid cycle, the mitochondrial respiratory chain, mitochondrial calcium metabolism, or DNA damage with subsequent activation of the energy-consuming pathway involving poly(ADP-ribose) synthetase. Possible mechanisms whereby ONOO- impairs the mitochondrial respiratory chain and the relevance for neurotoxicity are discussed. The intracellular content of reduced glutathione also appears important in determining the sensitivity of cells to ONOO- production. It is concluded that neurotoxicity elicited by excessive .NO production may be mediated by mitochondrial dysfunction leading to an energy deficiency state.

  17. Taurine-like GABA aminotransferase inhibitors prevent rabbit brain slices against oxygen-glucose deprivation-induced damage.

    PubMed

    Ricci, Lorenzo; Valoti, Massimo; Sgaragli, Giampietro; Frosini, Maria

    2012-06-01

    The activation of the GABAergic system has been shown to protect brain tissues against the damage that occurs after cerebral ischaemia. On the other hand, the taurine analogues (±)Piperidine-3-sulphonic- (PSA), 2-aminoethane phosphonic- (AEP), 2-(N-acetylamino) cyclohexane sulfonic-acids (ATAHS) and 2-aminobenzene sulfonate-acids (ANSA) have been reported to block GABA metabolism by inhibiting rabbit brain GABA aminotransferase and to increase GABA content in rabbit brain slices. The present investigation explored the neuroprotection provided by GABA, Vigabatrin (VIGA) and taurine analogues in the course of oxygen-glucose deprivation and reperfusion induced damage of rabbit brain slices. Tissue damage was assessed by measuring the release of glutamate and lactate dehydrogenase (LDH) during reperfusion and by determining final tissue water gain, measured as the index of cell swelling. GABA (30-300 μM) and VIGA (30-300 μM) significantly antagonised LDH and glutamate release, as well as tissue water gain caused by oxygen-glucose deprivation and reperfusion. Lower (1-10 μM) or higher concentrations (up to 3,000 μM) were ineffective. ANSA, PSA and ATAHS significantly reduced glutamate and LDH release and tissue water gain in a range of concentrations between 30 and 300 μM. Lower (0-10 μM) or higher (up to 3,000 μM) concentrations were ineffective. Both mechanisms suggest hormetic ("U-shaped") effects. These results indicate that the GABAergic system activation performed directly by GABA or indirectly through GABA aminotransferase inhibition is a promising approach for protecting the brain against ischemia and reperfusion-induced damage.

  18. Protective Role of Endogenous Ovarian Hormones Against Learning and Memory Impairments and Brain Tissues Oxidative Damage Induced by Lipopolysaccharide

    PubMed Central

    Pourganji, Masoume; Hosseini, Mahmoud; Soukhtanloo, Mohammad; Zabihi, Hoda; Hadjzadeh, Mosa Al-reza

    2014-01-01

    Background: The contribution of neuroinflammation in Alzheimer’s disease (AD) has been widely reported. The effects of female gonadal hormones in both neuroinflammation and brain cognitive functions have also been well considered. Objectives: In the present study, the possible protective role for endogenous ovarian hormones against learning and memory impairment as well as brain tissues oxidative damage induced by lipopolysachride (LPS) was investigated in rats. Materials and Methods: The rats were divided into four groups: Sham-LPS, Ovariectomized (OVX)-LPS, Sham, and OVX. The animals of sham group were in proestrous phase in which the serum concentration of estradiol is high. The Sham-LPS and OVX-LPS groups were treated with LPS (250 µg/kg) before acquisition. The animals were examined using passive avoidance (PA) test. The brains were then removed and malondialdehyde (MDA) and total thiol groups concentrations were measured. Results: The time latency to enter the dark compartment by OVX-LPS group was shorter than that of OVX at both first and 24th hours after the shock (P < 0.05 - P < 0.001). In Sham-LPS and OVX-LPS groups, total thiol concentration in hippocampal and cortical tissues were significantly lower while MDA concentrations were higher than that of Sham and OVX groups (P < 0.05 - P < 0.001). ). The hippocampal MDA concentration in OVX-LPS group was higher than Sham- LPS group (P < 0.01). Conclusions: Brain tissue oxidative damage contributed in deleterious effects of LPS on learning and memory. Some protective effects for the endogenous ovarian hormones against damaging effects of LPS on learning and memory function, as well as brain tissues oxidative damage could be postulated; however, it needs more investigation. PMID:24829769

  19. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    NASA Astrophysics Data System (ADS)

    Jeon, Myounggun; Cho, Jeiwon; Kim, Yun Kyung; Jung, Dahee; Yoon, Eui-Sung; Shin, Sehyun; Cho, Il-Joo

    2014-02-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications.

  20. Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones.

    PubMed

    Eberhardt, Jacob L; Persson, Bertil R R; Brun, Arne E; Salford, Leif G; Malmgren, Lars O G

    2008-01-01

    We investigated the effects of global system for mobile communication (GSM) microwave exposure on the permeability of the blood-brain barrier and signs of neuronal damage in rats using a real GSM programmable mobile phone in the 900 MHz band. Ninety-six non-anaesthetized rats were either exposed to microwaves or sham exposed in TEM-cells for 2 h at specific absorption rates of average whole-body Specific Absorption Rates (SAR) of 0.12, 1.2, 12, or 120 mW/kg. The rats were sacrificed after a recovery time of either 14 or 28 d, following exposure and the extravazation of albumin, its uptake into neurons, and occurrence of damaged neurons was assessed. Albumin extravazation and also its uptake into neurons was seen to be enhanced after 14 d (Kruskal Wallis test: p = 0.02 and 0.002, respectively), but not after a 28 d recovery period. The occurrence of dark neurons in the rat brains, on the other hand, was enhanced later, after 28 d (p = 0.02). Furthermore, in the 28-d brain samples, neuronal albumin uptake was significantly correlated to occurrence of damaged neurons (Spearman r = 0.41; p < 0.01).

  1. The Extent of Irradiation-Induced Long-Term Visceral Organ Damage Depends on Cranial/Brain Exposure

    PubMed Central

    Boittin, François-Xavier; Denis, Josiane; Mayol, Jean-François; Martigne, Patrick; Raffin, Florent; Coulon, David; Grenier, Nancy; Drouet, Michel; Hérodin, Francis

    2015-01-01

    In case of high-dose radiation exposure, mechanisms controlling late visceral organ damage are still not completely understood and may involve the central nervous system. To investigate the influence of cranial/brain irradiation on late visceral organ damage in case of high-dose exposure, Wistar rats were irradiated at 12 Gy, with either the head and fore limbs or the two hind limbs protected behind a lead wall (head- and hind limbs-protected respectively), which allows long-term survival thanks to bone marrow protection. Although hind limbs- and head-protected irradiated rats exhibited similar hematopoietic and spleen reconstitution, a late body weight loss was observed in hind limbs-protected rats only. Histological analysis performed at this time revealed that late damages to liver, kidney and ileum were attenuated in rats with head exposed when compared to animals whose head was protected. Plasma measurements of inflammation biomarkers (haptoglobin and the chemokine CXCL1) suggest that the attenuated organ damage in hind limbs-protected rats may be in part related to reduced acute and chronic inflammation. Altogether our results demonstrate the influence of cranial/brain exposure in the onset of organ damage. PMID:25836679

  2. Brain Hyperglycemia Induced by Heroin: Association with Metabolic Neural Activation.

    PubMed

    Solis, Ernesto; Bola, R Aaron; Fasulo, Bradley J; Kiyatkin, Eugene A

    2017-02-15

    Glucose enters the brain extracellular space from arterial blood, and its proper delivery is essential for metabolic activity of brain cells. By using enzyme-based biosensors coupled with high-speed amperometry in freely moving rats, we previously showed that glucose levels in the nucleus accumbens (NAc) display high variability, increasing rapidly following exposure to various arousing stimuli. In this study, the same technology was used to assess NAc glucose fluctuations induced by intravenous heroin. Heroin passively injected at a low dose optimal for maintaining self-administration behavior (100 μg/kg) induces a rapid but moderate glucose rise (∼150-200 μM or ∼15-25% over resting baseline). When the heroin dose was doubled and tripled, the increase became progressively larger in magnitude and longer in duration. Heroin-induced glucose increases also occurred in other brain structures (medial thalamus, lateral striatum, hippocampus), suggesting that brain hyperglycemia is a whole-brain phenomenon but changes were notably distinct in each structure. While local vasodilation appears to be the possible mechanism underlying the rapid rise in extracellular glucose levels, the driving factor for this vasodilation (central vs peripheral) remains to be clarified. The heroin-induced NAc glucose increases positively correlated with increases in intracerebral heat production determined in separate experiments using multisite temperature recordings (NAc, temporal muscle and skin). However, glucose levels rise very rapidly, preceding much slower increases in brain heat production, a measure of metabolic activation associated with glucose consumption.

  3. Effect of progesterone intervention on the dynamic changes of AQP-4 in hypoxic-ischaemic brain damage

    PubMed Central

    Li, Xiaojuan; Bai, Ruiying; Zhang, Junhe; Wang, Xiaoyin

    2015-01-01

    To observe the effect of progesterone (PROG) on blood-brain barrier (BBB) permeability, brain tissue water content and dynamic changes of aquaporin-4 (AQP-4) in neonatal rats with hypoxic-ischaemic brain damage (HIBD). 72 neonatal Wistar rats, aged 7 days old, were randomly divided into control, hypoxic-ischaemic (6, 24 and 72 h, and 7 d subgroups) and drug groups (6, 24 and 72 h, and 7 d subgroups). The HIBD animal model was established. BBB was detected via an Evans blue tracer. Brain water content was determined by the dry/wet method. The AQP-4 expression in the cerebral cortex was observed through immunohistochemistry and Western blot. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the hypoxia-ischaemia group were significantly higher than those of the control group after hypoxia for 6 h (P < 0.05), continued to rise within 24 h and then reached the peak at 72 h. BBB permeability in the cerebral cortex of the neonatal rats, brain water content and AQP-4 expression in the drug group were significantly lower than those of the hypoxia-ischaemia group after hypoxia for 6, 24 and 72 h (P < 0.05). Moreover, BBB permeability and BBB expression were positively correlated with the AQP-4 expression. In conclusion, PROG protects the brain of HIBD neonatal rats by alleviating the damage of BBB and cerebral oedema. The protective effect of PROG may be related to the down-regulation of AQP-4 expression in the cerebral cortex of neonatal rats. PMID:26770503

  4. Use of Early Biomarkers in Neonatal Brain Damage and Sepsis: State of the Art and Future Perspectives

    PubMed Central

    Bersani, Iliana; Auriti, Cinzia; Ronchetti, Maria Paola; Prencipe, Giusi; Gazzolo, Diego; Dotta, Andrea

    2015-01-01

    The identification of early noninvasive biochemical markers of disease is a crucial issue of the current scientific research, particularly during the first period of life, since it could provide useful and precocious diagnostic information when clinical and radiological signs are still silent. The ideal biomarker should be practical and sensitive in the precocious identification of at risk patients. An earlier diagnosis may lead to a larger therapeutic window and improve neonatal outcome. Brain damage and sepsis are common causes of severe morbidity with poor outcome and mortality during the perinatal period. A large number of potential biomarkers, including neuroproteins, calcium binding proteins, enzymes, oxidative stress markers, vasoactive agents, and inflammatory mediators, have been so far investigated. The aim of the present review was to provide a brief overview of some of the more commonly investigated biomarkers used in case of neonatal brain damage and sepsis. PMID:25685774

  5. Use of early biomarkers in neonatal brain damage and sepsis: state of the art and future perspectives.

    PubMed

    Bersani, Iliana; Auriti, Cinzia; Ronchetti, Maria Paola; Prencipe, Giusi; Gazzolo, Diego; Dotta, Andrea

    2015-01-01

    The identification of early noninvasive biochemical markers of disease is a crucial issue of the current scientific research, particularly during the first period of life, since it could provide useful and precocious diagnostic information when clinical and radiological signs are still silent. The ideal biomarker should be practical and sensitive in the precocious identification of at risk patients. An earlier diagnosis may lead to a larger therapeutic window and improve neonatal outcome. Brain damage and sepsis are common causes of severe morbidity with poor outcome and mortality during the perinatal period. A large number of potential biomarkers, including neuroproteins, calcium binding proteins, enzymes, oxidative stress markers, vasoactive agents, and inflammatory mediators, have been so far investigated. The aim of the present review was to provide a brief overview of some of the more commonly investigated biomarkers used in case of neonatal brain damage and sepsis.

  6. Induction of neuronal damage in guinea pig brain by intratracheal infusion of 2-chloroethyl ethyl sulfide, a mustard gas analog.

    PubMed

    Gadsden-Gray, Jessica; Mukherjee, Shyamali; Ogunkua, Olugbemiga; Das, Salil K

    2012-01-01

    Intratracheal infusion of 2-chloroethyl ethyl sulfide (CEES), a mustard gas analog and a chemical warfare agent is known to cause massive damage to lung. The purpose of this study was to determine whether intratracheal CEES infusion causes neuronal damage. Histological, immunohistochemical, and Western blot studies indicated that CEES treatment caused dose-dependent increases in blood cell aggregation, microglial cell number, microglial activation, and brain inflammation. In addition, an increased expression of α-synuclein and a decreased expression of the dopamine transporter were observed. The results indicate that intratracheal CEES infusion is associated with changes in brain morphology mediated by an increase in α-synuclein expression, leading to neurotoxicity in a guinea pig model. These changes may be mediated by oxidative stress. Furthermore, the present study indicates for the first time that intratracheal infusion of a single dose of CEES can cause neuroinflammation, which may lead to neurological disorders in later part of life.

  7. Using fMRI virtual-reality technology to predict driving ability after brain damage: a preliminary report.

    PubMed

    Hung, Yuwen; Vetivelu, Abeiramey; Hird, Megan A; Yan, Meishan; Tam, Fred; Graham, Simon J; Cusimano, Michael; Schweizer, Tom A

    2014-01-13

    The cerebellum, which is important for movement control and planning, is often affected by many neurological conditions. Until now there has been limited information regarding how the function of the cerebellum impacts driving ability. This study used fMRI with an integrated virtual reality driving simulator to determine which aspects of driving performance are related to the cerebellum in healthy drivers (Experiment 1). It also investigated drivers with focal cerebellar lesions to identify how damage to this brain region impairs driving abilities. The results showed that cerebellar functioning is responsible for motor-speed coordination and complex temporal-motor integration necessary to execute driving behaviours. As predicted, drivers with cerebellar damage, showed significantly compromised speed control during basic driving conditions, whereas their ability to perform during interactive driving situations was preserved. New insights into neural mechanisms and brain plasticity regarding driving behaviour are discussed. Strategies in assessing and rehabilitating drivers with related neurological conditions are provided.

  8. Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage

    PubMed Central

    Rossi, S; Zanier, E; Mauri, I; Columbo, A; Stocchetti, N

    2001-01-01

    OBJECTIVES—To assess the frequency of hyperthermia in a population of acute neurosurgical patients; to assess the relation between brain temperature (ICT) and core temperature (Tc); to investigate the effect of changes in brain temperature on intracranial pressure (ICP).
METHODS—The study involved 20 patients (10 severe head injury, eight subarachnoid haemorrhage, two neoplasms) with median Glasgow coma score (GCS) 6. ICP and ICT were monitored by an intraventricular catheter coupled with a thermistor. Internal Tc was measured in the pulmonary artery by a Swan-Ganz catheter.
RESULTS—Mean ICT was 38.4 (SD 0.8) and mean Tc 38.1 (SD 0.8)°C; 73% of ICT and 57.5% of Tc measurements were ⩾38°C. The mean difference between ICT and Tc was 0.3 (SD 0.3)°C (range −0.7 to 2.3°C) (p=0. 0001). Only in 12% of patients was Tc higher than ICT. The main reason for the differences between ICT and Tc was body core temperature: the difference between ICT and Tc increased significantly with body core temperature and fell significantly when this was lowered. The mean gradient between ICT and Tc was 0.16 (SD 0.31)°C before febrile episodes (ICT being higher than Tc), and 0.41 (SD 0.38)°C at the febrile peak (p<0.05). When changes in temperature were considered, ICT had a profound influence on ICP. Increases in ICT were associated with a significant rise in ICP, from 14.9(SD 7.9) to 22 (SD 10.4) mm Hg (p<0.05). As the fever ebbed there was a significant decrease in ICP, from 17.5 (SD 8.62) to 16 (SD 7.76) mm Hg (p=0.02).
CONCLUSIONS—Fever is extremely frequent during acute cerebral damage and ICT is significantly higher than Tc. Moreover, Tc may underestimate ICT during the phases when temperature has the most impact on the intracranial system because of the close association between increases in ICT and ICP.

 PMID:11561026

  9. Reorganization of Visual Callosal Connections Following Alterations of Retinal Input and Brain Damage

    PubMed Central

    Restani, Laura; Caleo, Matteo

    2016-01-01

    Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital

  10. Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats.

    PubMed

    Pitkänen, A; Immonen, R; Ndode-Ekane, X; Gröhn, O; Stöhr, T; Nissinen, J

    2014-05-01

    In a subgroup of patients, traumatic brain injury (TBI) results in the occurrence of acute epileptic seizures or even status epilepticus, which are treated with antiepileptic drugs (AEDs). Recent experimental data, however, suggest that administration of AEDs at the early post-injury phase can compromise the recovery process. The present study was designed to assess the profile of a novel anticonvulsant, lacosamide (Vimpat) on post-TBI structural, motor and cognitive outcomes. Moderate TBI was induced by lateral fluid-percussion injury in adult rats. Treatment with 0.9% saline or lacosamide (30 mg/kg, i.p.) was started at 30 min post-injury and continued at 8h intervals for 3d (total daily dose 90 mg/kg/d). Rats were randomly assigned to 4 treatment groups: sham-operated controls treated with vehicle (Sham-Veh) or lacosamide (Sham-LCM) and injured animals treated with vehicle (TBI-Veh) or lacosamide (TBI-LCM). As functional outcomes we tested motor recovery with composite neuroscore and beam-walking at 2, 7, and 15 d post-injury. Cognitive recovery was tested with the Morris water-maze at 12-14 d post-TBI. To assess the structural outcome, animals underwent magnetic resonance imaging (MRI) at 2 d post-TBI. At 16d post-TBI, rats were perfused for histology to analyze cortical and hippocampal neurodegeneration and axonal damage. Our data show that at 2 d post-TBI, both the TBI-Veh and TBI-LCM groups were equally impaired in neuroscore. Thereafter, motor recovery occurred similarly during the first week. At 2 wk post-TBI, recovery of the TBI-LCM group lagged behind that in the TBI-VEH group (p<0.05). Performance in beam-walking did not differ between the TBI-Veh and TBI-LCM groups. Both TBI groups were similarly impaired in the Morris water-maze at 2 wk post-TBI. MRI and histology did not reveal any differences in the cortical or hippocampal damage between the TBI-Veh and TBI-LCM groups. Taken together, acute treatment with LCM had no protective effects on post

  11. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia

    PubMed Central

    Zhang, Xuezhong; Wang, Nan; Tan, Jing; Fang, Xianhai; Wang, Qi; Tao, Tao; Li, Wenzhi

    2016-01-01

    Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA) ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30–39 mmHg, 40–49 mmHg, 50–59 mmHg, and 60–69 mmHg, respectively) or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60–80 mmHg) for 180 min. The mean artery pressure (MAP), blood gas, and cerebral blood flow (CBF) were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4) expression. In rats treated with severe hypoxia (PaO2 < 50 mmHg), hypercapnia augmented the decline of MAP with cortical CBF and damaged blood–brain barrier permeability (p < 0.05). In contrast, in rats treated with mild to moderate hypoxia (PaO2 > 50 mmHg), hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg); especially under mild hypoxemia (PaO2 > 60 mmHg), hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05). Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental

  12. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres.

    PubMed

    Kavcic, Voyko; Triplett, Regina L; Das, Anasuya; Martin, Tim; Huxlin, Krystel R

    2015-02-01

    Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision.

  13. Pre-treatment with LCZ696, an orally active angiotensin receptor neprilysin inhibitor, prevents ischemic brain damage.

    PubMed

    Bai, Hui-Yu; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Kukida, Masayoshi; Shan, Bao-Shuai; Yamauchi, Toshifumi; Higaki, Akinori; Iwanami, Jun; Horiuchi, Masatsugu

    2015-09-05

    Angiotensin II receptor blockers (ARBs) are known to prevent ischemic brain damage after stroke. Natriuretic peptides, which are increased by a neprilysin inhibitor, are also reported to protect against brain damage. Therefore, we investigated the possible protective effect of valsartan (VAL) compared with LCZ696 (VAL+ neprilysin inhibitor; 1:1) after middle cerebral artery (MCA) occlusion. Eight-week-old male C57BL/6J mice were treated with VAL (3mg/kg per day) or LCZ696 (6mg/kg per day) for 2 weeks before MCA occlusion. Blood pressure and heart rate were measured by telemetry. Cerebral blood flow (CBF) was determined by laser-Doppler flowmetry. Ischemic area was evaluated by triphenytetrasodium chloride staining, and oxidative stress was determined by dihydroethidium staining. Blood pressure and heart rate were not significantly different before and after treatment. Pre-treatment with LCZ696 or VAL reduced the ischemic area, and this effect of LCZ696 was more marked than that of VAL pre-treatment. The decrease in CBF in the peripheral region of the ischemic area was significantly attenuated by pre-treatment with LCZ696 or VAL, without any significant effect on CBF in the core region. VAL or LCZ696 pre-treatment significantly decreased the increase of superoxide anion production in the cortex on the ischemic side. However, no significant difference in CBF and superoxide anion production was observed between VAL and LCZ696 pre-treatment. The preventive effect of LCZ696 on ischemic brain damage after stroke was more marked than that of VAL. LCZ696 could be used as a new approach to prevent brain damage after stroke. (246 words).

  14. Cingulate neglect in humans: disruption of contralesional reward learning in right brain damage.

    PubMed

    Lecce, Francesca; Rotondaro, Francesca; Bonnì, Sonia; Carlesimo, Augusto; Thiebaut de Schotten, Michel; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2015-01-01

    Motivational valence plays a key role in orienting spatial attention. Nonetheless, clinical documentation and understanding of motivationally based deficits of spatial orienting in the human is limited. Here in a series of one group-study and two single-case studies, we have examined right brain damaged patients (RBD) with and without left spatial neglect in a spatial reward-learning task, in which the motivational valence of the left contralesional and the right ipsilesional space was contrasted. In each trial two visual boxes were presented, one to the left and one to the right of central fixation. In one session monetary rewards were released more frequently in the box on the left side (75% of trials) whereas in another session they were released more frequently on the right side. In each trial patients were required to: 1) point to each one of the two boxes; 2) choose one of the boxes for obtaining monetary reward; 3) report explicitly the position of reward and whether this position matched or not the original choice. Despite defective spontaneous allocation of attention toward the contralesional space, RBD patients with left spatial neglect showed preserved contralesional reward learning, i.e., comparable to ipsilesional learning and to reward learning displayed by patients without neglect. A notable exception in the group of neglect patients was L.R., who showed no sign of contralesional reward learning in a series of 120 consecutive trials despite being able of reaching learning criterion in only 20 trials in the ipsilesional space. L.R. suffered a cortical-subcortical brain damage affecting the anterior components of the parietal-frontal attentional network and, compared with all other neglect and non-neglect patients, had additional lesion involvement of the medial anterior cingulate cortex (ACC) and of the adjacent sectors of the corpus callosum. In contrast to his lateralized motivational learning deficit, L.R. had no lateral bias in the early phases of

  15. Magnesium sulfate and nimesulide have synergistic effects on rescuing brain damage after transient focal ischemia.

    PubMed

    Wang, Liang-Chao; Huang, Chih-Yuan; Wang, Hao-Kuang; Wu, Ming-Hsiu; Tsai, Kuen-Jer

    2012-05-01

    Magnesium sulfate and nimesulide are commonly used drugs with reported neuroprotective effects. Their combination as stroke treatment has the potential benefits of decreasing individual drug dosage and fewer adverse effects. This study evaluated their synergistic effects and compared a low-dose combination with individual drug alone and placebo. Sprague-Dawley rats underwent 90 min of focal ischemia with intraluminal suture occlusion of the middle cerebral artery followed by reperfusion. The rats were randomly assigned to receive one of the following treatments: placebo, magnesium sulfate (MgSO₄; 45 mg/kg) intravenously immediately after the induction of middle cerebral artery occlusion, nimesulide (6 mg/kg) intraperitoneally before reperfusion, and combined therapy. Three days after the ischemia-reperfusion insult, therapeutic outcome was assessed by 2,3,5-triphenyltetrazolium chloride staining and a 28-point neurological severity scoring system. Cyclooxygenase-2, prostaglandin E₂, myeloperoxidase, and caspase-3 expression after treatment were evaluated using Western blot analyses and immunohistochemical staining, followed by immunoreactive cell analysis using tissue cytometry. Only the combination treatment group showed a significant decrease in infarction volume (10.93±6.54% versus 26.43±7.08%, p<0.01), and neurological severity score (p<0.05). Low-dose MgSO₄ or nimesulide showed no significant neuroprotection. There was also significant suppression of cyclooxygenase-2, prostaglandin E₂, myeloperoxidase, and caspase-3 expression in the combination treatment group, suggesting that the combination of the two drugs improved the neuroprotective effects of each individual drug. MgSO₄ and nimesulide have synergistic effects on ischemia-reperfusion insults. Their combination helps decrease drug dosage and adverse effects. Combined treatment strategies may help to combat stroke-induced brain damage in the future.

  16. Sarin-induced brain damage in rats is attenuated by delayed administration of midazolam.

    PubMed

    Chapman, Shira; Yaakov, Guy; Egoz, Inbal; Rabinovitz, Ishai; Raveh, Lily; Kadar, Tamar; Gilat, Eran; Grauer, Ettie

    2015-07-01

    Sarin poisoned rats display a hyper-cholinergic activity including hypersalivation, tremors, seizures and death. Here we studied the time and dose effects of midazolam treatment following nerve agent exposure. Rats were exposed to sarin (1.2 LD50, 108 μg/kg, im), and treated 1 min later with TMB4 and atropine (TA 7.5 and 5 mg/kg, im, respectively). Midazolam was injected either at 1 min (1 mg/kg, im), or 1 h later (1 or 5 mg/kg i.m.). Cortical seizures were monitored by electrocorticogram (ECoG). At 5 weeks, rats were assessed in a water maze task, and then their brains were extracted for biochemical analysis and histological evaluation. Results revealed a time and dose dependent effects of midazolam treatment. Rats treated with TA only displayed acute signs of sarin intoxication, 29% died within 24h and the ECoG showed seizures for several hours. Animals that received midazolam within 1 min survived with only minor clinical signs but with no biochemical, behavioral, or histological sequel. Animals that lived to receive midazolam at 1h (87%) survived and the effects of the delayed administration were dose dependent. Midazolam 5 mg/kg significantly counteracted the acute signs of intoxication and the impaired behavioral performance, attenuated some of the inflammatory response with no effect on morphological damage. Midazolam 1mg/kg showed only a slight tendency to modulate the cognitive function. In addition, the delayed administration of both midazolam doses significantly attenuated ECoG compared to TA treatment only. These results suggest that following prolonged seizure, high dose midazolam is beneficial in counteracting adverse effects of sarin poisoning.

  17. Bax inhibiting peptide reduces apoptosis in neonatal rat hypoxic-ischemic brain damage

    PubMed Central

    Sun, Meng-Ya; Cui, Kai-Jie; Yu, Mao-Min; Zhang, Hui; Peng, Xiang-Li; Jiang, Hong

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) has been reported to induce apoptosis in neonates. We, therefore, analyzed the ability of Bax-inhibiting peptide (BIP) to provide neuroprotective effects during hypoxic-ischemic brain damage (HIBD). Seven-day-old wistar rat pups (n = 198) were randomly divided into a sham-operated group (Group S, n = 18), saline group (Group C, n = 90) and BIP group (Group B, n = 90). Pathological changes in the cerebral tissues of rat pups were analyzed using hematoxylin and eosin stain, TUNEL and Western blot. The expression of cytochrome c and caspase-3 was determined using western blot technique. Rat pups demonstrated neurobehavioral alteration in Groups C and B. TUNEL-positive cells in the left hippocampus were significantly increased in Group C and Group B after HIBD (P < 0.01) when compared with Group S. There was a marked reduction in TUNEL positive cells in subgroups B1 through B4 when compared with the respective subgroups C1 through C5. Compared with Group S, the expression of caspase-3 and cytochrome c was significantly increased in Groups C and B (P < 0.01). The difference in expression of caspase-3 and cytochrome c between subgroups B1 through B4 and C1 through C4 was significant (P < 0.01). In conclusions, the neuro-protective effect of BIP was due to a reduction of nerve cell apoptosis in our neonatal HIE rat model. We propose that BIP has potential as a neuro-protective drug in neonatal HIE cases. PMID:26823794

  18. Therapeutic role of quercetin on oxidative damage induced by acrylamide in rat brain.

    PubMed

    Zargar, Seema; Siddiqi, Nikhat Jamal; Ansar, Sabah; Alsulaimani, Maha Saleh; El Ansary, Afaf K

    2016-09-01

    Context Quercetin (QE), a bioflavonoid present abundantly in fruits and vegetables, has been reported to possess antioxidant properties. Acrylamide (ACR) is formed in foods during cooking and is known to be neurotoxic. Objective The present study was designed to evaluate the protective effect of QE against neurotoxicity induced by ACR. Materials and methods Four groups of Wistar rats consisting of six rats each: (i) control group; (ii) acrylamide treated group (50 mg/kg body weight as single dose); (iii) quercetin group: rats were treated intraperitoneally (i.p.) with QE (10 mg/kg body weight alone every day for 5 d); (iv) quercetin + acrylamide group: quercetin (10 mg/kg bw) was given i.p. every day for 5 d followed by acrylamide i.p. injection (50 mg/kg bw) on fifth day (single dose). Rats were killed after 48 h. Results Administration of ACR (50 mg/kg bw) in Wistar rats resulted in significant increase of dopamine, interferon-γ and 8-hydroxyguanosine with concomitant decrease of serotonin (p < 0.001) in the rat brain. Treatment of rats with QE intraperitonealy (10 mg/kg body weight) before ACR assault resulted in the diminution of ACR-mediated neurotoxicity as evident from decreased levels of dopamine, interferon-γ (p < 0.001) and 8-hydroxyguanosine with concomitant restoration of serotonin levels (p < 0.001). Discussion and conclusion On the basis of the above results, the present study suggests that quercetin may be a potential therapeutic agent for restoration of oxidative damage to neurons.

  19. Pain and Body Awareness: Evidence from Brain-Damaged Patients with Delusional Body Ownership

    PubMed Central

    Pia, Lorenzo; Garbarini, Francesca; Fossataro, Carlotta; Fornia, Luca; Berti, Anna

    2013-01-01

    A crucial aspect for the cognitive neuroscience of pain is the interplay between pain perception and body awareness. Here we report a novel neuropsychological condition in which right brain-damaged patients displayed a selective monothematic delusion of body ownership. Specifically, when both their own and the co-experimenter’s left arms were present, these patients claimed that the latter belonged to them. We reasoned that this was an ideal condition to examine whether pain perception can be “referred” to an alien arm subjectively experienced as one’s own. Seventeen patients (11 with, 6 without the delusion), and 10 healthy controls were administered a nociceptive stimulation protocol to assess pain perception. In the OWN condition, participants placed their arms on a table in front of them. In the ALIEN condition, the co-experimenter’s left (or right) arm was placed alongside the participants’ left (or right) arm, respectively. In the OWN condition, left (or right) participants’ hand dorsum were stimulated. In the ALIEN condition, left (or right) co-experimenter’s hand dorsum was stimulated. Participants had to rate the perceived pain on a 0–5 Likert scale (0 = no pain, 5 = maximal imaginable pain). Results showed that healthy controls and patients without delusion gave scores higher than zero only when their own hands were stimulated. On the contrary, patients with delusion gave scores higher than zero both when their own hands (left or right) were stimulated and when the co-experimenter’s left hand was stimulated. Our results show that in pathological conditions, a body part of another person can become so deeply embedded in one’s own somatosensory representation to effect the subjective feeling of pain. More in general, our findings are in line with a growing number of evidence emphasizing the role of the special and unique perceptual status of body ownership in giving rise to the phenomenological experience of pain. PMID:23801958

  20. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    PubMed

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere.

  1. Assessment of electrophile damage in a human brain endothelial cell line utilizing a clickable alkyne analog of 2-chlorohexadecanal.

    PubMed

    Nusshold, Christoph; Üllen, Andreas; Kogelnik, Nora; Bernhart, Eva; Reicher, Helga; Plastira, Ioanna; Glasnov, Toma; Zangger, Klaus; Rechberger, Gerald; Kollroser, Manfred; Fauler, Günter; Wolinski, Heimo; Weksler, Babette B; Romero, Ignacio A; Kohlwein, Sepp D; Couraud, Pierre-Olivier; Malle, Ernst; Sattler, Wolfgang

    2016-01-01

    Peripheral leukocytes aggravate brain damage by releasing cytotoxic mediators that compromise blood-brain barrier function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system. The reaction of HOCl with the endogenous plasmalogen pool of brain endothelial cells results in the generation of 2-chlorohexadecanal (2-ClHDA), a toxic, lipid-derived electrophile that induces blood-brain barrier dysfunction in vivo. Here, we synthesized an alkynyl-analog of 2-ClHDA, 2-chlorohexadec-15-yn-1-al (2-ClHDyA) to identify potential protein targets in the human brain endothelial cell line hCMEC/D3. Similar to 2-ClHDA, 2-ClHDyA administration reduced cell viability/metabolic activity, induced processing of pro-caspase-3 and PARP, and led to endothelial barrier dysfunction at low micromolar concentrations. Protein-2-ClHDyA adducts were fluorescently labeled with tetramethylrhodamine azide (N3-TAMRA) by 1,3-dipolar cycloaddition in situ, which unveiled a preferential accumulation of 2-ClHDyA adducts in mitochondria, the Golgi, endoplasmic reticulum, and endosomes. Thirty-three proteins that are subject to 2-ClHDyA-modification in hCMEC/D3 cells were identified by mass spectrometry. Identified proteins include cytoskeletal components that are central to tight junction patterning, metabolic enzymes, induction of the oxidative stress response, and electrophile damage to the caveolar/endosomal Rab machinery. A subset of the targets was validated by a combination of N3-TAMRA click chemistry and specific antibodies by fluorescence microscopy. This novel alkyne analog is a valuable chemical tool to identify cellular organelles and protein targets of 2-ClHDA-mediated damage in settings where myeloperoxidase-derived oxidants may play a disease-propagating role.

  2. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    PubMed

    Lecca, Davide; Trincavelli, Maria Letizia; Gelosa, Paolo; Sironi, Luigi; Ciana, Paolo; Fumagalli, Marta; Villa, Giovanni; Verderio, Claudia; Grumelli, Carlotta; Guerrini, Uliano; Tremoli, Elena; Rosa, Patrizia; Cuboni, Serena; Martini, Claudia; Buffo, Annalisa; Cimino, Mauro; Abbracchio, Maria P

    2008-01-01

    Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4)), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4) promoted the

  3. Early orientation of attention toward the half space ipsilateral to the lesion in patients with unilateral brain damage.

    PubMed Central

    Gainotti, G; D'Erme, P; Bartolomeo, P

    1991-01-01

    Posner has suggested that unilateral spatial neglect could be due to a difficulty in disengaging attention from its current focus to orient it toward the neglected half space. Clinical and experimental data suggest, however, that this disengaging difficulty could be only one aspect of a more complex disturbance also characterized by an early automatic orienting of attention toward the half space ipsilateral to the lesion. To test this hypothesis, two different investigations in unselected groups of patients with right and left brain-damage were carried out. The first investigation, to evaluate forms of lateral orienting of attention severe enough to provoke an overt gaze deviation, consisted of the systematic assessment of the phenomenon of "magnetic gaze attraction". The second investigation, to detect milder forms of automatic orienting of attention, analysed the temporal sequence followed in identifying the pictures represented in an "Overlapping Figures task", to see if patients tended to identify first figures lying in the half space ipsilateral to the lesion. In both investigations results consistently showed: a) that patients with right brain damage tend to orient attention automatically toward the ipsilateral half space more than patients with left brain damage; b) that this tendency is tightly linked to the presence of behavioural manifestations of hemi-neglect. These results are therefore consistent with the hypothesis that hemi-neglect is a multi-component syndrome with an early orienting of attention toward the half space ipsilateral to the lesion as the first of these components. Images PMID:1783922

  4. Inhibition of mTOR Pathway by Rapamycin Reduces Brain Damage in Rats Subjected to Transient Forebrain Ischemia

    PubMed Central

    Yang, Xiao; Hei, Changhun; Liu, Ping; Song, Yaozu; Thomas, Taylor; Tshimanga, Sylvie; Wang, Feng; Niu, Jianguo; Sun, Tao; Li, P. Andy

    2015-01-01

    The aims of this study are to clarify the role of mTOR in mediating cerebral ischemic brain damage and the effects of rapamycin on ischemic outcomes. Ten minutes of forebrain ischemia was induced in rats, and their brains were sampled after 3 h, 16 h, and 7 days reperfusion for histology, immunohistochemistry and biochemical analysis. Our data demonstrated that cerebral ischemia resulted in both apoptotic and necrotic neuronal death; cerebral ischemia and reperfusion led to significant increases of mRNA and protein levels of p-mTOR and its downstream p-P70S6K and p-S6; elevation of LC3-II, and release of cytochrome c into the cytoplasm in both the cortex and hippocampus. Inhibition of mTOR by rapamycin markedly reduced ischemia-induced damage; suppressed p-Akt, p-mTOR, p-P70S6K and p-S6 protein levels; decreased LC3-II and Beclin-1; and prevented cytochrome c release in the two structures. All together, these data provide evidence that cerebral ischemia activates mTOR and autophagy pathways. Inhibition of mTOR deactivates the mTOR pathway, suppresses autophagy, prevents cytochrome c release and reduces ischemic brain damage. PMID:26681922

  5. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    PubMed

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome.

  6. Subacute administration of fluoxetine prevents short-term brain hypometabolism and reduces brain damage markers induced by the lithium-pilocarpine model of epilepsy in rats.

    PubMed

    Shiha, Ahmed Anis; de Cristóbal, Javier; Delgado, Mercedes; Fernández de la Rosa, Rubén; Bascuñana, Pablo; Pozo, Miguel A; García-García, Luis

    2015-02-01

    The role of serotonin (5-hydroxytryptamine; 5-HT) in epileptogenesis still remains controversial. In this regard, it has been reported that serotonergic drugs can alter epileptogenesis in opposite ways. The main objective of this work was to investigate the effect of the selective 5-HT selective reuptake inhibitor (SSRI) fluoxetine administered subacutely (10mg/kg/day×7 days) on the eventual metabolic impairment induced by the lithium-pilocarpine model of epilepsy in rats. In vivo 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F] FDG) positron emission tomography (PET) was performed to assess the brain glucose metabolic activity on days 3 and 30 after the insult. In addition, at the end of the experiment (day 33), several histochemical and neurochemical assessments were performed for checking the neuronal functioning and integrity. Three days after the insult, a marked reduction of [(18)F] FDG uptake (about 30% according to the brain region) was found in all brain areas studied. When evaluated on day 30, although a hypometabolism tendency was observed, no statistically significant reduction was present in any region analyzed. In addition, lithium-pilocarpine administration was associated with medium-term hippocampal and cortical damage, since it induced neurodegeneration, glial activation and augmented caspase-9 expression. Regarding the effect of fluoxetine, subacute treatment with this SSRI did not significantly reduce the mortality rate observed after pilocarpine-induced seizures. However, fluoxetine did prevent not only the short-term metabolic impairment, but also the aforementioned signs of neuronal damage in surviving animals to lithium-pilocarpine protocol. Finally, fluoxetine increased the density of GABAA receptor both at the level of the dentate gyrus and CA1-CA2 regions in pilocarpine-treated animals. Overall, our data suggest a protective role for fluoxetine against pilocarpine-induced brain damage. Moreover, this action may be associated with an increase of

  7. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    SciTech Connect

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  8. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  9. In vivo Quantitative evaluation of brain tissue damage in Multiple Sclerosis using Gradient Echo Plural Contrast Imaging technique

    PubMed Central

    Sati, Pascal; Cross, Anne H.; Luo, Jie; Hildebolt, Charles F.; Yablonskiy, Dmitriy A.

    2010-01-01

    Conventional MRI based on weighted spin-echo (SE) images aids in the diagnosis of multiple sclerosis (MS); however, MRI markers derived from SE sequences provide limited information about lesion severity and correlate poorly with patient disability assessed with clinical tests. In this study, we introduced a novel method [based on quantitative R2* (1/T2*) histograms] for estimating the severity of brain tissue damage in MS lesions. We applied at 1.5 T an advanced, multi-gradient-echo MRI technique [gradient echo plural contrast imaging (GEPCI)] to obtain images of the brains of healthy control subjects and subjects with MS. GEPCI is a simple yet robust technique allowing simultaneous acquisition of inherently co-registered quantitative T2* and FLAIR-like maps, along with T1-weighted images within a clinically acceptable time frame. Images obtained with GEPCI appear highly similar to standard scans; hence, they can be used in a reliable and conventional way for a clinical evaluation of the disease. Yet, the main advantage of GEPCI approach is its quantitative nature. Analysis of R2* histograms of white matter revealed a difference in the distribution between healthy subjects and subjects with MS. Based on this difference, we developed a new method for grading the severity of tissue damage [tissue-damage score (TDS)] in MS lesions. This method also provides a tissue damage load (TDL) assessing both lesion load and lesion severity, and a mean tissue damage score (MTDS) estimating the average MS lesion damage. We found promising correlations between the results derived from this method and the standard measure of clinical disability. PMID:20338247

  10. Cell-free DNA as a marker for prediction of brain damage in traumatic brain injury in rats.

    PubMed

    Ohayon, Sharon; Boyko, Matthew; Saad, Amit; Douvdevani, Amos; Gruenbaum, Benjamin F; Melamed, Israel; Shapira, Yoram; Teichberg, Vivian I; Zlotnik, Alexander

    2012-01-20

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality, and early predictors of neurological outcomes are of great clinical importance. Cell free DNA (CFD), a biomarker used for the diagnosis and monitoring of several diseases, has been implicated as a possible prognostic indicator after TBI. The purpose of this study was to determine the pattern and timing of CFD levels after TBI, and whether a relationship exists between the level of CFD and brain edema and neurological outcomes. Thirty-nine Sprague-Dawley rats were randomly assigned to two groups: rats in group 1 (sham group) were anesthetized and had a scalp incision without TBI, and rats in group 2 were anesthetized and had a scalp incision with TBI, which was induced by using a weight drop model that causes diffuse brain injury. A neurological severity score (NSS) was assessed at 1, 24, and 48 h after TBI. CFD was measured via blood samples drawn at t=0 (baseline), 12, 24, 48, 72, and 120 h after TBI. At 48 h after TBI, brain edema was determined in a subgroup of 11 rats by calculating the difference between rats' wet and dry brain weight. The significance of comparisons between and within groups (CFD levels, brain water content, and NSS) were determined using the Kruskal-Wallis, Mann-Whitney and Student t test. The correlation between CFD levels and the NSS, as well as between CFD levels and the extent of brain edema, was calculated using the Spearman and Pearson tests, respectively. Compared with baseline levels, the CFD levels in rats subjected to TBI were significantly increased at 24 and 48 h after TBI (p<0.01 and p<0.05, respectively). A positive correlation was demonstrated between CFD levels 24 h following TBI and the extent of brain edema (r=0.63, p<0.05), as well as between CFD levels and the NSS (r=0.79, p<0.005). In this study, we demonstrated an increase in CFD levels after TBI, as well as a correlation between CFD levels and brain edema and NSS. CFD levels may provide a

  11. Cardiac Arrest Alters Regional Ubiquitin Levels in Association with the Blood-Brain Barrier Breakdown and Neuronal Damages in the Porcine Brain.

    PubMed

    Sharma, Hari S; Patnaik, Ranjana; Sharma, Aruna; Lafuente, José Vicente; Miclescu, Adriana; Wiklund, Lars

    2015-10-01

    The possibility that ubiquitin expression is altered in cardiac arrest-associated neuropathology was examined in a porcine model using immunohistochemical and biochemical methods. Our observations show that cardiac arrest induces progressive increase in ubiquitin expression in the cortex and hippocampus in a selective and specific manner as compared to corresponding control brains using enzyme-linked immunoassay technique (enzyme-linked immunosorbent assay (ELISA)). Furthermore, immunohistochemical studies showed ubiquitin expression in the neurons exhibiting immunoreaction in the cytoplasm and karyoplasm of distorted or damaged cells. Separate Nissl and ubiquitin staining showed damaged and distorted neurons and in the same cortical region ubiquitin expression indicating that ubiquitin expression after cardiac arrest represents dying neurons. The finding that methylene blue treatment markedly induced neuroprotection following identical cardiac arrest and reduced ubiquitin expression strengthens this view. Taken together, our observations are the first to show that cardiac arrest enhanced ubiquitin expression in the brain that is related to the magnitude of neuronal injury and the finding that methylene blue reduced ubiquitin expression points to its role in cell damage, not reported earlier.

  12. A Review of the Bender Gestalt Test as a Screening Instrument for Brain Damage with School-Aged Children of Normal Intelligence Since 1970.

    ERIC Educational Resources Information Center

    Eno, Larry; Deichmann, John

    1980-01-01

    All methods reviewed significantly discriminate between groups of brain damaged and unimpaired children. No method, however, provides successful predictive rates high enough to warrant the use of the Bender as the sole diagnostic instrument in individual cases. (Author)

  13. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    PubMed Central

    Millán, Mónica; Sobrino, Tomás; Arenillas, Juan Francisco; Rodríguez-Yáñez, Manuel; García, María; Nombela, Florentino; Castellanos, Mar; de la Ossa, Natalia Pérez; Cuadras, Patricia; Serena, Joaquín; Castillo, José; Dávalos, Antoni

    2008-01-01

    Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA. Methods: Serum levels of ferritin (as index of increased cellular iron stores), glutamate, interleukin-6, matrix metalloproteinase-9 and cellular fibronectin were determined in 134 patients treated with i.v. t-PA within 3 hours from stroke onset in blood samples obtained before t-PA treatment, at 24 and 72 hours. Results: Serum ferritin levels before t-PA infusion correlated to glutamate (r = 0.59, p < 0.001) and interleukin-6 (r = 0.55, p <0.001) levels at baseline, and with glutamate (r = 0.57,p <0.001), interleukin-6 (r = 0.49,p <0.001), metalloproteinase-9 (r = 0.23, p = 0.007) and cellular fibronectin (r = 0.27, p = 0.002) levels measured at 24 hours and glutamate (r = 0.415, p < 0.001), interleukin-6 (r = 0.359, p < 0.001) and metalloproteinase-9 (r = 0.261, p = 0.004) at 72 hours. The association between ferritin and glutamate levels remained after adjustment for confounding factors in generalized linear models. Conclusions: Brain damage associated with increased iron stores in acute ischemic stroke patients treated with iv. tPA may be mediated by mechanisms linked to excitotoxic damage. The role of inflammation, blood brain barrier disruption and oxidative stress in this condition needs further research. PMID:19096131

  14. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    PubMed

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  15. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    DTIC Science & Technology

    2014-09-29

    test cell filled with artificial CSF and a brain (or a surrogate) slices which is subjected to high pressure rapid loading with a polymer split...region following cavitation. e. Brain tissue mechanical properties: Brain tissues are super soft (Gə kPa) and challenging to characterize. Baseline...Schematic of the fluid filled test cell assembly with the piston rod and pressure sensor. 5.1.2 PSHPB System Polymer split Hopkinson pressure

  16. Mitochondrial Damage: A Diagnostic and Metabolic Approach in Traumatic Brain Injury and Post-Traumatic Disorder

    DTIC Science & Technology

    2013-01-29

    brain after TBI and PTSD and 2) inadequate knowledge about the mitochondrial targeted metabolic therapies in the treatment of brain injury after TBI and...not receive any brain injury. Group 2. TBI: Lateral fluid percussion injury was induced according to our published procedure, originally...24 h post PTSD, animal received TBI by fluid percussion and monitored for 7 days post TBI at which time the experiment was terminated. 6 Group

  17. A histopathological study of premature and mature infants with pontosubicular neuron necrosis: neuronal cell death in perinatal brain damage.

    PubMed

    Takizawa, Yuji; Takashima, Sachio; Itoh, Masayuki

    2006-06-20

    Perinatal hypoxic-ischemic brain damage is a major cause of neuronal and behavior deficits, in which the onset of injury can be before, at or after birth, and the effects may be delayed. Pontosubicular neuron necrosis (PSN) is one of perinatal hypoxic-ischemic brain injury and its pathological peculiarity is neuronal apoptosis. In this study, we investigated whether apoptotic cascade of PSN used a caspase-pathway or not, and whether hypoglycemia activated apoptosis or not. Sections of the pons of PSN with and without hypoglycemia were stained using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) and immunohistochemistry for glial fibrillary acidic protein (GFAP), Bcl-2, Bcl-x and activated caspase 3. Additionally, we performed immunoblot analysis of Bcl-2, Bcl-x and activated caspase 3. TUNEL-positive cell was closely associated with the presence of karyorrhexis. Under combination of karyorrhectic and TUNEL-positive cells, number of apoptotic cells in premature brains was significantly more than in mature brains. Hypoxic-ischemic brain injury was considered to easily lead to apoptosis in premature infants. Moreover, as this pathophysiology, caspase-pathway activation contributed to neuronal death from caspase-immunoexpression analyses. PSN with hypoglycemia showed large number of apoptotic cells and higher expression of activated caspase 3. The result may be more severe with the background of hypoglycemia and prematurity complicated by hypoxia and/or ischemia.

  18. Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain.

    PubMed

    Wilkins, Heather M; Koppel, Scott J; Weidling, Ian W; Roy, Nairita; Ryan, Lauren N; Stanford, John A; Swerdlow, Russell H

    2016-12-01

    Mitochondria and mitochondrial debris are found in the brain's extracellular space, and extracellular mitochondrial components can act as damage associated molecular pattern (DAMP) molecules. To characterize the effects of potential mitochondrial DAMP molecules on neuroinflammation, we injected either isolated mitochondria or mitochondrial DNA (mtDNA) into hippocampi of C57BL/6 mice and seven days later measured markers of inflammation. Brains injected with whole mitochondria showed increased Tnfα and decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation. Some of these effects were also observed in brains injected with mtDNA (decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation), and mtDNA injection also caused several unique changes including increased CSF1R protein and AKT phosphorylation. To further establish the potential relevance of this response to Alzheimer's disease (AD), a brain disorder characterized by neurodegeneration, mitochondrial dysfunction, and neuroinflammation we also measured App mRNA, APP protein, and Aβ1-42 levels. We found mitochondria (but not mtDNA) injections increased these parameters. Our data show that in the mouse brain extracellular mitochondria and its components can induce neuroinflammation, extracellular mtDNA or mtDNA-associated proteins can contribute to this effect, and mitochondria derived-DAMP molecules can influence AD-associated biomarkers.

  19. Blood brain barrier impairment is associated with cerebrospinal fluid markers of neuronal damage in HIV-positive patients.

    PubMed

    Calcagno, A; Atzori, C; Romito, A; Vai, D; Audagnotto, S; Stella, M L; Montrucchio, C; Imperiale, D; Di Perri, G; Bonora, S

    2016-02-01

    Blood brain barrier impairment occurs early in the course of infection by HIV and it may persist in a subset of patients despite effective antiretroviral treatment. We tested the hypothesis that HIV-positive patients with dysfunctional blood brain barrier may have altered biomarkers of neuronal damage. In adult HIV-positive highly active antiretroviral treatment (HAART)-treated patients (without central nervous system infections and undergoing lumbar punctures for clinical reasons) cerebrospinal fluid albumin to serum ratios (CSAR), total tau, phosphorylated tau, 1-42 beta amyloid, and neopterin were measured. In 101 adult patients, cerebrospinal fluid-to-serum albumin ratios were 4.8 (3.7-6.1) with 12 patients (11.9%) presenting age-defined impaired blood brain barrier. A significant correlation was observed between CSAR and total tau (p = 0.005), phosphorylated tau (p = 0.008), and 1-42 beta amyloid (p = 0.040). Patients with impaired blood brain barrier showed significantly higher total tau (201.6 vs. 87.3 pg/mL, p = 0.010), phosphorylated tau (35.3 vs. 32.1 ng/mL, p = 0.035), and 1-42 beta amyloid (1134 vs. 830 pg/mL, p = 0.045). Despite effective antiretroviral treatment, blood brain barrier impairment persists in some HIV-positive patients: it is associated with markers of neuronal damage and it was not associated with CSF neopterin concentrations.

  20. Angiotensin-(1-7) protects from brain damage induced by shiga toxin 2-producing enterohemorrhagic Escherichia coli.

    PubMed

    Goldstein, Jorge; Carden, Tomás R; Perez, María J; Taira, Carlos A; Höcht, Christian; Gironacci, Mariela M

    2016-12-01

    Shiga toxin 2 (Stx2)-producing enterohemorrhagic induced brain damage. Since a cerebroprotective action was reported for angiotensin (Ang)-(1-7), our aim was to investigate whether Ang-(1-7) protects from brain damage induced by Stx2-producing enterohemorrhagic Escherichia coli The anterior hypothalamic area of adult male Wistar rats was injected with saline solution or Stx2 or Stx2 plus Ang-(1-7) or Stx2 plus Ang-(1-7) plus A779. Rats received a single injection of Stx2 at the beginning of the experiment, and Ang-(1-7), A779, or saline was administered daily in a single injection for 8 days. Cellular ultrastructural changes were analyzed by transmission electron microscopy. Stx2 induced neurodegeneration, axonal demyelination, alterations in synapse, and oligodendrocyte and astrocyte damage, accompanied by edema. Ang-(1-7) prevented neuronal damage triggered by the toxin in 55.6 ± 9.5% of the neurons and the Stx2-induced synapse dysfunction was reversed. In addition, Ang-(1-7) blocked Stx2-induced demyelination in 92 ± 4% of the axons. Oligodendrocyte damage caused by Stx2 was prevented by Ang-(1-7) but astrocytes were only partially protected by the peptide (38 ± 5% of astrocytes were preserved). Ang-(1-7) treatment resulted in 50% reduction in the number of activated microglial cells induced by Stx2, suggesting an anti-inflammatory action. All these beneficial effects elicited by Ang-(1-7) were blocked by the Mas receptor antagonist and thus it was concluded that Ang-(1-7) protects mainly neurons and oligodendrocytes, and partially astrocytes, in the central nervous system through Mas receptor stimulation.

  1. Evaluation of lipofuscin-like pigments as an index of lead-induced oxidative damage in the brain.

    PubMed

    Patková, Jana; Vojtíšek, Max; Tůma, Jan; Vožeh, František; Knotková, Jana; Santorová, Pavlína; Wilhelm, Jiří

    2012-01-01

    This study was carried out to investigate the role of lead in the development of oxidative stress in the brain. We examined the rate of lipid peroxidation and we determined lipid fluorescence products (lipofuscin-like pigments - LFP) as a marker of lipid peroxidation after short in vitro incubation of rat brain homogenates with lead acetate (10(-2), 10(-4), 10(-6) M lead acetate, 2 h). Simultaneously we examined by the same method in vivo indices of oxidative stress in brains of mice exposed for 12 weeks to 0.2% lead acetate in drinking water. The results show that the concentration of LFP in rat brain homogenates increased significantly after 2 h incubation with 10(-2) M lead acetate as compared to controls (P<0.0001). This effect was not observed in lower doses of lead acetate (10(-4) and 10(-6) M). After the long-term exposure of mice to 0.2% lead acetate, pronounced accumulation of lead and significantly increased concentration of LFP (P<0.004) in the brains of exposed animals as compared to controls were observed. The evidence for the formation of specific fluorophores originating from oxidative damage was shown also in qualitative changes in 3D spectral arrays and synchronous spectra. The presented results proved the influence of lead on the activation of radical reactions in the brain after short in vitro exposure of rat brain as well as within long-term in vivo exposure in mice using lipofuscin-like pigments as an indicator of oxidative stress.

  2. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    PubMed

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations

  3. The ATM cofactor ATMIN protects against oxidative stress and accumulation of DNA damage in the aging brain.

    PubMed

    Kanu, Nnennaya; Penicud, Kay; Hristova, Mariya; Wong, Barnaby; Irvine, Elaine; Plattner, Florian; Raivich, Gennadij; Behrens, Axel

    2010-12-03

    Progressive accumulation of DNA damage is causally involved in cellular senescence and organismal aging. The DNA damage kinase ATM plays a central role in maintaining genomic stability. ATM mutations cause the genetic disorder ataxia telangiectasia, which is primarily characterized by progressive neurodegeneration and cancer susceptibility. Although the importance of ATM function to protect against oxidative DNA damage and during aging is well described, the mechanism of ATM activation by these stimuli is not known. Here we identify ATM interactor (ATMIN) as an essential component of the ATM signaling pathway in response to oxidative stress and aging. Embryos lacking ATMIN (atmin(Δ/Δ)) died in utero and showed increased numbers of cells positive for phosphorylated histone H2aX, indicative of increased DNA damage. atmin(Δ/Δ) mouse embryonic fibroblasts accumulated DNA damage and prematurely entered senescence when cultured at atmospheric oxygen levels (20%), but this defect was rescued by addition of an antioxidant and also by culturing cells at physiological oxygen levels (3%). In response to acute oxidative stress, atmin(Δ/Δ) mouse embryonic fibroblasts showed slightly lower levels of ATM phosphorylation and reduced ATM substrate phosphorylation. Conditional deletion of ATMIN in the murine nervous system (atmin(ΔN)) resulted in reduced numbers of dopaminergic neurons, as does ATM deficiency. ATM activity was observed in old, but not in young, control mice, but aging-induced ATM signaling was impaired by ATMIN deficiency. Consequently, old atmin(ΔN) mice showed accumulation of DNA damage in the cortex accompanied by gliosis, resulting in increased mortality of aging mutant mice. These results suggest that ATMIN mediates ATM activation by oxidative stress, and thereby ATMIN protects the aging brain by preventing accumulation of DNA damage.

  4. Zero in the brain: A voxel-based lesion-symptom mapping study in right hemisphere damaged patients.

    PubMed

    Benavides-Varela, Silvia; Passarini, Laura; Butterworth, Brian; Rolma, Giuseppe; Burgio, Francesca; Pitteri, Marco; Meneghello, Francesca; Shallice, Tim; Semenza, Carlo

    2016-04-01

    Transcoding numerals containing zero is more problematic than transcoding numbers formed by non-zero digits. However, it is currently unknown whether this is due to zeros requiring brain areas other than those traditionally associated with number representation. Here we hypothesize that transcoding zeros entails visuo-spatial and integrative processes typically associated with the right hemisphere. The investigation involved 22 right-brain-damaged patients and 20 healthy controls who completed tests of reading and writing Arabic numbers. As expected, the most significant deficit among patients involved a failure to cope with zeros. Moreover, a voxel-based lesion-symptom mapping (VLSM) analysis showed that the most common zero-errors were maximally associated to the right insula which was previously related to sensorimotor integration, attention, and response selection, yet for the first time linked to transcoding processes. Error categories involving other digits corresponded to the so-called Neglect errors, which however, constituted only about 10% of the total reading and 3% of the writing mistakes made by the patients. We argue that damage to the right hemisphere impairs the mechanism of parsing, and the ability to set-up empty-slot structures required for processing zeros in complex numbers; moreover, we suggest that the brain areas located in proximity to the right insula play a role in the integration of the information resulting from the temporary application of transcoding procedures.

  5. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.

  6. Beneficial Effects of Teucrium polium and Metformin on Diabetes-Induced Memory Impairments and Brain Tissue Oxidative Damage in Rats

    PubMed Central

    Mousavi, S. Mojtaba; Niazmand, Saeed; Hosseini, Mahmoud; Hassanzadeh, Zarha; Sadeghnia, Hamid Reza; Vafaee, Farzaneh; Keshavarzi, Zakieh

    2015-01-01

    Objective. The effects of hydroalcoholic extract of Teucrium polium and metformin on diabetes-induced memory impairment and brain tissues oxidative damage were investigated. Methods. The rats were divided into: (1) Control, (2) Diabetic, (3) Diabetic-Extract 100 (Dia-Ext 100), (4) Diabetic-Extract 200 (Dia-Ext 200), (5) Diabetic-Extract 400 (Dia-Ext 400), and (6) Diabetic-Metformin (Dia-Met). Groups 3–6 were treated by 100, 200, and 400 mg/kg of the extract or metformin, respectively, for 6 weeks (orally). Results. In passive avoidance test, the latency to enter the dark compartment in Diabetic group was lower than that of Control group (P < 0.01). In Dia-Ext 100, Dia-Ext 200, and Dia-Ext 400 and Metformin groups, the latencies were higher than those of Diabetic group (P < 0.01). Lipid peroxides levels (reported as malondialdehyde, MDA, concentration) in the brain of Diabetic group were higher than Control (P < 0.001). Treatment by all doses of the extract and metformin decreased the MDA concentration (P < 0.01). Conclusions. The results of present study showed that metformin and the hydroalcoholic extract of Teucrium polium prevent diabetes-induced memory deficits in rats. Protection against brain tissues oxidative damage might have a role in the beneficial effects of the extract and metformin. PMID:25810947

  7. Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study.

    PubMed

    Erol, Fatih S; Topsakal, Cahide; Ozveren, M Faik; Kaplan, Metin; Ilhan, Nevin; Ozercan, I Hanifi; Yildiz, Oguz G

    2004-01-01

    Gamma radiation is known to cause serious damage in the brain, and many agents have been used for neuroprotection. In this study, lipid peroxidation levels and histopathological changes in brain tissues of whole-body irradiated rats with likely radiation injury were compared to those with melatonin and vitamin E protection. Forty rats in four equal groups were used. The control group received neither radiation nor medication. The remaining groups received doses of 720 cGy in two equal fractions 12 h apart. The second group received radiation but no medication, the third received radiation plus 100 mg/kg per day of vitamin E i.p., and the fourth received radiation plus 100 mg/kg per day of melatonin i.p. over 5 days. On the 10th postoperative day, all the rats were decapitated and specimens from parietal cortices were analyzed for tissue malondialdehyde (MDA) levels and histopathological changes. Increases in MDA were relatively well prevented by melatonin treatment but less so with vitamin E therapy. On histopathological examination, melatonin significantly reduced the rates of edema, necrosis, and neuronal degeneration, whereas vitamin E reduced only necrosis. Neither substance was capable of preventing vasodilatation. In conclusion, melatonin may be useful in preventing the pathological changes of secondary brain damage as a result of free oxygen radicals generated by irradiation.

  8. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke.

    PubMed

    Lee, Hae In; Lee, Sae-Won; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung

    2017-02-06

    Use of photostimulation including low-level light emitting diode (LED) therapy has broadened greatly in recent years because it is compact, portable, and easy to use. Here, the effects of photostimulation by LED (610 nm) therapy on ischemic brain damage was investigated in mice in which treatment started after a stroke in a clinically relevant setting. The mice underwent LED therapy (20 min) twice a day for 3 days, commencing at 4 hours post-ischemia. LED therapy group generated a significantly smaller infarct size and improvements in neurological function based on neurologic test score. LED therapy profoundly reduced neuroinflammatory responses including neutrophil infiltration and microglia activation in the ischemic cortex. LED therapy also decreased cell death and attenuated the NLRP3 inflammasome, in accordance with down-regulation of pro-inflammatory cytokines IL-1β and IL-18 in the ischemic brain. Moreover, the mice with post-ischemic LED therapy showed suppressed TLR-2 levels, MAPK signaling and NF-kB activation. These findings suggest that by suppressing the inflammasome, LED therapy can attenuate neuroinflammatory responses and tissue damage following ischemic stroke. Therapeutic interventions targeting the inflammasome via photostimulation with LED may be a novel approach to ameliorate brain injury following ischemic stroke. Effect of post-ischemic low-level light emitting diode therapy (LED-T) on infarct reduction was mediated by inflammasome suppression.

  9. Positive Modulation of Pink Nelumbo nucifera Flowers on Memory Impairment, Brain Damage, and Biochemical Profiles in Restraint Rats.

    PubMed

    Prabsattroo, Thawatchai; Wattanathorn, Jintanaporn; Somsapt, Pichet; Sritragool, Opass

    2016-01-01

    Due to the crucial role of oxidative stress in the stress-induced memory deficit, the benefit of substance possessing antioxidant effect is focused. Since no data are available, we aimed to determine the effect of Nelumbo nucifera flowers extract on spatial memory and hippocampal damage in stressed rats. Male Wistar rats, weighing 250-350 g, were orally given N. nucifera extract at doses of 10, 10, and 200 mg·kg(-1) 45 minutes before the exposure to 12-hour restraint stress. The spatial memory and serum corticosterone were assessed at 7 and 14 days of study period. At the end of study, acetylcholinesterase (AChE), monoamine oxidase type A and monoamine oxidase type B (MAO-A and MAO-B), oxidative stress status, neuron density, and Ki67 expression in hippocampus were also assessed. The results showed that N. nucifera extract decreased memory deficit and brain damage, serum corticosterone, oxidative stress status, AChE, and MAO-A and MAO-B activities but increased neuron density and Ki67 expression in hippocampus. These suggested that the improved oxidative stress status, adult neurogenesis, and cholinergic and monoaminergic functions might be responsible for the protective effect against stress-related brain damage and dysfunction of the extract. Therefore, N. nucifera extract is the potential neuroprotective and memory enhancing agent. However, further researches are still required.

  10. False memories to emotional stimuli are not equally affected in right- and left-brain-damaged stroke patients.

    PubMed

    Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky

    2014-10-01

    Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories.

  11. Positive Modulation of Pink Nelumbo nucifera Flowers on Memory Impairment, Brain Damage, and Biochemical Profiles in Restraint Rats

    PubMed Central

    Prabsattroo, Thawatchai; Somsapt, Pichet; Sritragool, Opass

    2016-01-01

    Due to the crucial role of oxidative stress in the stress-induced memory deficit, the benefit of substance possessing antioxidant effect is focused. Since no data are available, we aimed to determine the effect of Nelumbo nucifera flowers extract on spatial memory and hippocampal damage in stressed rats. Male Wistar rats, weighing 250–350 g, were orally given N. nucifera extract at doses of 10, 10, and 200 mg·kg−1 45 minutes before the exposure to 12-hour restraint stress. The spatial memory and serum corticosterone were assessed at 7 and 14 days of study period. At the end of study, acetylcholinesterase (AChE), monoamine oxidase type A and monoamine oxidase type B (MAO-A and MAO-B), oxidative stress status, neuron density, and Ki67 expression in hippocampus were also assessed. The results showed that N. nucifera extract decreased memory deficit and brain damage, serum corticosterone, oxidative stress status, AChE, and MAO-A and MAO-B activities but increased neuron density and Ki67 expression in hippocampus. These suggested that the improved oxidative stress status, adult neurogenesis, and cholinergic and monoaminergic functions might be responsible for the protective effect against stress-related brain damage and dysfunction of the extract. Therefore, N. nucifera extract is the potential neuroprotective and memory enhancing agent. However, further researches are still required. PMID:26858824

  12. Early Exposure to Toxic Substances Damages Brain Architecture. Working Paper #4

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    New science shows that exposure to toxins prenatally or early in life can have a devastating and lifelong effect on the developing architecture of the brain. Exposures to many chemicals have much more severe consequences for embryos, fetuses, and young children, whose brains are still developing, than for adults. Substances that can have a truly…

  13. Processing Homonymy and Polysemy: Effects of Sentential Context and Time-Course Following Unilateral Brain Damage

    ERIC Educational Resources Information Center

    Klepousniotou, Ekaterini; Baum, Shari R.

    2005-01-01

    The present study investigated the abilities of left-hemisphere-damaged (LHD) non-fluent aphasic, right-hemisphere-damaged (RHD), and normal control individuals to access, in sentential biasing contexts, the multiple meanings of three types of ambiguous words, namely homonyms (e.g., ''punch''), metonymies (e.g., ''rabbit''), and metaphors (e.g.,…

  14. Is chronic brain damage in boxing a hazard of the past?

    PubMed

    Kaste, M; Kuurne, T; Vilkki, J; Katevuo, K; Sainio, K; Meurala, H

    1982-11-27

    Of fourteen boxers with a mean age of 31 years who had been Finnish, Scandinavian, or European champions, only one showed deficits in neurological status and he and one other had had episodes of inappropriate behaviour which were attributed to boxing. However, computed tomography revealed pathological findings attributable to brain injury in four of six professional and one of eight amateur boxers. Two of the professionals and four of the amateurs had electroencephalographic abnormalities which may have been caused by brain injury. Twelve of the boxers had psychological test results which suggested brain injury, although only two professionals had definite deviation from normal. The results indicate that modern medical control of boxing cannot prevent chronic brain injuries but may create a dangerous illusion of safety. The only way to prevent brain injuries is to disqualify blows to the head.

  15. Time-Dependent Effects of Arginine-Vasopressin V1 Receptor Inhibition on Secondary Brain Damage after Traumatic Brain Injury.

    PubMed

    Krieg, Sandro M; Trabold, Raimund; Plesnila, Nikolaus

    2017-04-01

    Arginine-vasopressin (AVP) V1 receptors are known to mediate brain edema formation after traumatic brain injury (TBI). So far, however, AVP V1 receptors were only inhibited by genetic deletion or prior to trauma. Therefore, the current study aimed to determine the therapeutic window of AVP V1 receptor antagonization after TBI. Male C57BL/6 mice (n = 7 per group) were subjected to controlled cortical impact (CCI), and 500 ng of a selective peptide V1 receptor antagonist (V1880) were applied by intracerebroventricular injection 5 min, and 1, 3, and 6 h thereafter. After 24 h, brain water content (BWC), intracranial pressure (ICP), and secondary contusion expansion volume were assessed. Neurological function was assessed daily for 7 days after trauma. Inhibition of AVP V1 receptors within 1 h after TBI significantly reduced BWC from 81.6 ± 0.7 to 80.6 ± 0.7% (mean ± SD; p < 0.05). Reduction of brain edema resulted in a significant decrease in ICP from 25.9 ± 1.8 mm Hg to 21.0 ± 1.5 mm Hg (p < 0.05) and a reduction in contusion volume (26.1 ± 2.5 mm(3) vs. 30.1 ± 2.0 mm(3) in controls; p < 0.05). This reduction of brain injury resulted in a significantly improved neurological function 7 days after trauma. Treatments initiated 6 h after TBI had no effect. The results of the current study demonstrate that inhibition of AVP V1 receptors improve outcome after experimental TBI when given within a clinically relevant time window. Therefore, AVP V1 receptors may represent a therapeutic target with clinical potential.

  16. Amelioration of renal damage by administration of anti-thymocyte globulin to potential donors in a brain death rat model.

    PubMed

    Cicora, F; Stringa, P; Guerrieri, D; Roberti, J; Ambrosi, N; Toniolo, F; Cicora, P; Palti, G; Vásquez, D; Raimondi, C

    2012-09-01

    Brain death (BD), a non-immunological factor of renal injury, triggers an inflammatory process causing pathological signs of cell death in the kidney, such as necrosis and apoptosis. Kidneys from brain dead donors show lower success rates than kidneys from living donors and one strategy to improve transplantation outcome is to precondition the donors. For the first time, anti-rat thymoglobulin (rATG) was administered in an experimental brain death animal model to evaluate if it could ameliorate histopathological damage and improve organ function. Animals were divided into three groups: V (n=5) ventilated for 2h; BD (n=5) brain death and ventilated for 2h; and BD+rATG (n=5) brain death, ventilated for 2h, rATG was administered during brain death (10mg/kg). We observed lower creatinine levels in treatment groups (means): V, 0·88±0·22 mg/dl; BD, 1·37±0·07 mg/dl; and BD+rATG, 0·64±0·02 mg/dl (BD versus BD+rATG, P<0·001). In the BD group there appeared to be a marked increase of ATN, whereas ATN was decreased significantly in the rATG group (V, 2·25±0·5 versus BD, 4·75±0·5, P<0·01; BD+rATG, 2·75±0·5 versus BD 4·75±0·5 P<0·01). Gene expression was evaluated with reverse transcription-polymerase chain reaction; tumour necrosis factor (TNF)-α, interleukin (IL)-6, C3, CD86 showed no significant difference between groups. Increased IL-10 and decreased CCL2 in BD+rATG compared to BD (both cases P<0·01). Myeloperoxidase was increased significantly after the brain death setting (V: 32±7·5 versus BD: 129±18). Findings suggest that rATG administered to potential donors may ameliorate renal damage caused by BD. These findings could contribute in the search for specific cytoprotective interventions to improve the quality and viability of transplanted organs.

  17. Dual mechanism of brain damage induced in vivo by the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome.

    PubMed

    Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Tonin, Anelise Miotti; de Moura, Alana Pimentel; Grings, Mateus; Ritter, Luciana; Schuck, Patrícia Fernanda; Ferreira, Gustavo da Costa; Sitta, Angela; Vargas, Carmen Regla; Wajner, Moacir

    2011-01-19

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive disorder caused by a defect in the mitochondrial ornithine transporter, leading to accumulation of ornithine (Orn), homocitrulline (Hcit) and ammonia. Progressive neurological regression whose pathogenesis is not well established is common in this disease. The present work investigated the in vivo effects of intracerebroventricular administration of Orn and Hcit on important parameters of oxidative stress and energy metabolism in cerebral cortex from young rats. Orn and Hcit significantly increased thiobarbituric acid-reactive substances values and carbonyl formation, indicators of lipid and protein oxidative damage, respectively. Furthermore, N-acetylcysteine and the combination of the free radical scavengers ascorbic acid plus α-tocopherol attenuated the lipid oxidation and totally prevented the protein oxidative damage provoked by Orn and Hcit, suggesting that reactive species were involved in these effects. Hcit, but not Orn administration, also decreased glutathione concentrations, as well as the activity of catalase and glutathione peroxidase, indicating that Hcit provokes a reduction of brain antioxidant defenses. As regards to the parameters of energy metabolism, we verified that Orn and Hcit significantly inhibited the citric acid cycle function (inhibition of CO(2) synthesis from [1-(14)C] acetate), the aerobic glycolytic pathway (reduced CO(2) production from [U-(14)C] glucose) and complex I-III activity of the respiratory chain. Hcit also inhibited the activity of aconitase, an enzyme very susceptible to free radical attack. Taken together, our data indicate that mitochondrial homeostasis is disturbed by Orn and especially by Hcit. It is presumed that the impairment of brain bioenergetics and the oxidative damage induced by these metabolites may possibly contribute to the brain deterioration and neurological symptoms affecting patients with HHH syndrome.

  18. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage

    PubMed Central

    Liu, Fang; Rainosek, Shuo W.; Frisch-Daiello, Jessica L.; Patterson, Tucker A.; Paule, Merle G.; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-01-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. PMID:26206149

  19. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage.

  20. Extract of kava (Piper methysticum) and its methysticin constituents protect brain tissue against ischemic damage in rodents.

    PubMed

    Backhauss, C; Krieglstein, J

    1992-05-14

    The purpose of the present study was to test whether kava extract and its constituents kawain, dihydrokawain, methysticin, dihydromethysticin and yangonin provide protection against ischemic brain damage. To this end, we used a model of focal cerebral ischemia in mice and rats. Ischemia was induced by microbipolar coagulation of the left middle cerebral artery (MCA). To quantify the size of the lesion in mice, the area of the infarct on the brain surface was assessed planimetrically 48 h after MCA occlusion by transcardial perfusion of carbon black. In the rat model infarct volume was determined 48 h after MCA occlusion by planimetric analysis and subsequent integration of the infarct areas on serial coronal slices. Compounds were administered i.p., except the kava extract, which was administered orally. The effects of the kava extract and its constituents were compared with those produced by the typical anticonvulsant, memantine. The kava extract, methysticin and dihydromethysticin produced effects similar to those of the reference substance memantine. The kava extract (150 mg/kg, 1 h before ischemia) diminished the infarct area (P less than 0.05) in mouse brains and the infarct volume (P less than 0.05) in rat brains. Methysticin, dihydromethysticin (both 10 and 30 mg/kg, 15 min before ischemia) and memantine (20 mg/kg, 30 min before ischemia) significantly reduced the infarct area in mouse brains. All other compounds failed to produce a beneficial effect on the infarct area in mouse brains. In conclusion, the kava extract exhibited neuroprotective activity, which was probably mediated by its constituents methysticin and dihydromethysticin.

  1. Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus.

    PubMed

    Amara, Salem; Douki, Thierry; Garrel, Catherine; Favier, Alain; Ben Rhouma, Khémais; Sakly, Mohsen; Abdelmelek, Hafedh

    2011-03-01

    The present study was undertaken to determine the effect of co-exposure to static magnetic field (SMF) and cadmium (Cd) on the antioxidant enzymes activity and DNA integrity in rat brain. Sub-chronic exposure to CdCl (CdCl(2), 40 mg/L, per os) for 30 days resulted in a significant reduction in antioxidant enzyme activity such as the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) in frontal cortex and hippocampus. Total GSH were decreased in the frontal cortex of the Cd-exposed group. Cd exposure induced an increase in malondialdehyde (MDA) concentration in the frontal cortex and hippocampus. Moreover, the same exposure increased 8-oxo-7,8-dihydro-2-desoxyguanosine (8-oxodGuo) level in rat brain. Interestingly, the combined effect of SMF (128 mT, 1 hour/day for 30 consecutive days) and CdCl (40 mg/L, per os) decreased the SOD activity and glutathione level in frontal cortex as compared with the Cd group. Moreover, the association between SMF and Cd increased MDA concentration in frontal cortex as compared with Cd-exposed rats. DNA analysis revealed that SMF exposure failed to alter 8-oxodGuo concentration in Cd-exposed rats. Our data showed that Cd exposure altered the antioxidant enzymes activity and induced oxidative DNA lesions in rat brain. The combined effect of SMF and Cd increased oxidative damage in rat brain as compared with Cd-exposed rats.

  2. Multi-modal brain imaging showing brain damage to the orbitofrontal cortex and left hemisphere, in a case of prolonged hypoglycemia-induced transient hemiplegia followed by persistent encephalopathy.

    PubMed

    Koike, Shinsuke; Sasaki, Ryuichi

    2013-07-01

    A 21-year-old left-handed male patient was admitted with a 19-h history of coma after substantial insulin injection for suicide attempt. Although the patient recovered from coma 3 days after injury, he experienced transient hemiplegia followed by permanent brain damage. Electroencephalogram (EEG), brain magnetic resonance imaging (MRI), and brain single-photon emission computed tomography (SPECT) identified the localization of this dysfunction, but consistency between clinical symptoms and brain images changed depending on the course of treatment. Transient hemiplegia corresponded to abnormal waveforms on EEG and decreased cerebral blood flow on SPECT, whereas persistent dysfunctions corresponded to abnormal brain regions on MRI and SPECT.

  3. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression

    PubMed Central

    Takahashi, Tetsuya; Fujimura, Masatake; Koyama, Misaki; Kanazawa, Masato; Usuki, Fusako; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2017-01-01

    Clinical manifestations of methylmercury (MeHg) intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB) damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG) and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity. PMID:28118383

  4. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    PubMed Central

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  5. Brain damage in dogs immediately following pulsatile and non-pulsatile blood flows in extracorporeal circulation

    PubMed Central

    Sanderson, J. M.; Wright, G.; Sims, F. W.

    1972-01-01

    The brains of dogs subjected to total cardiac bypass were examined for early signs of ischaemic nerve cell changes. Diffuse nerve cell changes were found immediately following two- and three-hour non-pulsatile perfusions but not following pulsatile perfusions of the same durations. The nerve cell changes found in the brains were acute cell swelling and early ischaemic cell change. Acute cell swelling was found only in the cerebellar Purkinje cells. Ischaemic cell change was found in several regions of the brain but the cerebral cortex and cerebellar Purkinje cells were most frequently affected. Diffuse nerve cell changes are attributed to non-pulsatile blood flow but some complicating factors are recognized. Focal lesions found in three brains may have been due to embolism by blood cell aggregates and/or gas microbubbles. Images PMID:5039442

  6. A Search for Mitochondrial Damage in Alzheimer’s Disease Using Isolated Rat Brain Mitochondria

    PubMed Central

    Faizi, Mehrdad; Seydi, Enayatollah; Abarghuyi, Sadegh; Salimi, Ahmad; Nasoohi, Sanaz; Pourahmad, Jalal

    2016-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects regions of the brain that control cognition, memory, language, speech and awareness to one’s physical surroundings. The pathological initiation and progression of AD is highly complex and its prevalence is on the rise. In his study, Alzheimer's disease was induced with single injection of amyloid-β (Aβ) peptides (30ng, by stereotaxy) in each hemisphere of the Wistar rat brain. Then memory dysfunction, oxidative stress and apoptosis induced by Aβ peptide were investigated on isolated brain mitochondria obtained from infected rat. Our results showed memory impairment in rats after receiving an Aβ peptide. We also found significant rise (P<0.05) at ROS formation, mitochondrial membrane depolarization, mitochondria swelling, cytochrome c release and significant decrease in ATP/ADP ratio on mitochondria isolated from brain of these memory impaired rats compared with those of untreated control rat group. Activation of caspase-3 the final mediator of apoptosis in the brain homogenate of the memory impaired rats was another justification for occurrence of neuron loss in the experimental model of AD. Our results suggest that oxidative stress and mitochondria mediated apoptosis in brain neurons play very important role in initiation of AD. PMID:28228816

  7. Monkeys that Voluntarily and Chronically Drink Alcohol Damage their Brains: a Longitudinal MRI Study

    PubMed Central

    Kroenke, Christopher D; Rohlfing, Torsten; Park, Byung; Sullivan, Edith V; Pfefferbaum, Adolf; Grant, Kathleen A

    2014-01-01

    Neuroimaging has consistently documented reductions in the brain tissue of alcoholics. Inability to control comorbidity, environmental insult, and nutritional deficiency, however, confound the ability to assess whether ethanol itself is neurotoxic. Here we report monkey oral ethanol self-administration combined with MR imaging to characterize brain changes over 15 months in 18 well-nourished rhesus macaques. Significant brain volume shrinkage occurred in the cerebral cortices of monkeys drinking⩾3 g/kg ethanol/day (12 alcoholic drinks) at 6 months, and this persisted throughout the period of continuous access to ethanol. Correlation analyses revealed a cerebral cortical volumetric loss of ∼0.11% of the intracranial vault for each daily drink (0.25 g/kg), and selective vulnerability of cortical and non-cortical brain regions. These results demonstrate for the first time a direct relation between oral ethanol intake and measures of decreased brain gray matter volume in vivo in primates. Notably, greater volume shrinkage occurred in monkeys with younger drinking onset that ultimately became heavier drinkers than monkeys with older drinking onset. The pattern of volumetric changes observed in nonhuman primates following 15 months of drinking suggests that cerebral cortical gray matter changes are the first macroscopic manifestation of chronic ethanol exposure in the brain. PMID:24077067

  8. Hypertensive Target Organ Damage and Longitudinal Changes in Brain Structure and Function: The Second Manifestations of Arterial Disease-Magnetic Resonance Study.

    PubMed

    van der Veen, Pieternella H; Geerlings, Mirjam I; Visseren, Frank L J; Nathoe, Hendrik M; Mali, Willem P T M; van der Graaf, Yolanda; Muller, Majon

    2015-12-01

    Hypertension has been related to structural and functional brain changes. In high-risk populations, hypertensive target organ damage might better represent exposure to high blood pressure than the blood pressure measurement itself. We examined the association of hypertensive target organ damage with longitudinal changes in brain structure and function within the Second Manifestations of Arterial Disease-Magnetic Resonance (SMART-MR) study. Renal function, albuminuria, and left ventricular hypertrophy on electrocardiography were measured in 663 patients with manifest arterial disease (mean age, 57±9 years; 81% men). Automated brain segmentation was used to quantify progression of global brain atrophy (change in brain parenchymal fraction) and progression of cerebral small vessel disease on 1.5T magnetic resonance imaging, and memory and executive functioning were assessed at baseline and after on average 3.9 years of follow-up. Regression analyses showed that an increasing number of signs of target organ damage was associated with more progression of global brain atrophy and more rapid decline in memory performance. Compared with no target organ damage, mean differences in change in brain parenchymal fraction (95% confidence interval) for 1 and ≥2 signs of organ damage were -0.12 (-0.30; 0.06) and -0.41 (-0.77; -0.05) % intracranial volume, and mean (95% confidence interval) differences in change in memory performance (z score) were -0.15 (-0.29; -0.00) and -0.27 (-0.54; -0.01). Results were independent of blood pressure, antihypertensive treatment, and other confounders. Hypertension target organ damage was not associated with progression of cerebral small vessel disease or change in executive functioning. Routinely assessed signs of hypertensive target organ damage, and in particular impaired renal function, could be used to identify patients at the highest risk of cognitive decline.

  9. Hyperbaric oxygen can induce neuroplasticity and improve cognitive functions of patients suffering from anoxic brain damage

    PubMed Central

    Hadanny, A.; Golan, H.; Fishlev, G.; Bechor, Y.; Volkov, O.; Suzin, G.; Ben-Jacob, E.; Efrati, S.

    2015-01-01

    Abstract Purpose: Cognitive impairment may occur in 42–50% of cardiac arrest survivors. Hyperbaric oxygen therapy (HBO2) has recently been shown to have neurotherapeutic effects in patients suffering from chronic cognitive impairments (CCI) consequent to stroke and mild traumatic brain injury. The objective of this study was to assess the neurotherapeutic effect of HBO2 in patients suffering from CCI due to cardiac arrest. Methods: Retrospective analysis of patients with CCI caused by cardiac arrest, treated with 60 daily sessions of HBO2. Evaluation included objective computerized cognitive tests (NeuroTrax), Activity of Daily Living (ADL) and Quality of life questionnaires. The results of these tests were compared with changes in brain activity as assessed by single photon emission computed tomography (SPECT) brain imaging. Results: The study included 11 cases of CCI patients. Patients were treated with HBO2, 0.5–7.5 years (mean 2.6 ± 0.6 years) after the cardiac arrest. HBO2 was found to induce modest, but statistically significant improvement in memory, attention and executive function (mean scores) of 12% , 20% and 24% respectively. The clinical improvements were found to be well correlated with increased brain activity in relevant brain areas as assessed by computerized analysis of the SPECT imaging. Conclusions: Although further research is needed, the results demonstrate the beneficial effects of HBO2 on CCI in patients after cardiac arrest, even months to years after the acute event. PMID:26409406

  10. The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage.

    PubMed

    Pazar, Asilay; Kolgazi, Meltem; Memisoglu, Aslı; Bahadir, Elif; Sirvanci, Serap; Yaman, Akan; Yeğen, Berrak Ç; Ozek, Eren

    2016-01-01

    Melatonin exerts protection in several inflammatory and neurodegenerative disorders. To investigate the neuroprotective effects of melatonin in an experimental hemolysis-induced hyperbilirubinemia, newborn Sprague-Dawley rats (25-40 g, n = 72) were injected with phenylhydrazine hydrochloride (PHZ; 75 mg/kg) and the injections were repeated at the 24th hour. Rats were treated with saline or melatonin (10 mg/kg) 30 min before the first and second PHZ injections and 24 h after the 2nd PHZ injections. Control rats (n = 24) were injected with saline, but not PHZ. At sixth hours after the last injections of saline or melatonin, all rats were decapitated. Tumor necrosis factor (TNF)-α, IL-1β, IL-10 and brain-derived neurotrophic factor (BDNF) and S100B levels in the plasma were measured. Brain tissue malondialdehyde (MDA), glutathione (GSH) levels and myeloperoxidase (MPO) activities were measured, and brain tissues were evaluated for apoptosis by TUNEL method. In the saline-treated PHZ group, hemoglobin, hematocrit levels were reduced, and total/direct bilirubin levels were elevated when compared to control group. Increased plasma TNF-α, IL-1β levels, along with decreased BDNF, S100B and IL-10 values were observed in the saline-treated PHZ group, while these changes were all reversed in the melatonin-treated group. Increased MDA levels and MPO activities in the brain tissues of saline-treated hyperbilirubinemic rats, concomitant with depleted brain GSH stores, were also reversed in the melatonin-treated hyperbilirubinemic rats. Increased TUNEL(+) cells in the hippocampus of saline-treated PHZ group were reduced by melatonin treatment. Melatonin exerts neuroprotective and anti-apoptotic effects on the oxidative neuronal damage of the newborn rats with hemolysis and hyperbilirubinemia.

  11. Poststroke depression as a factor adversely affecting the level of oxidative damage to plasma proteins during a brain stroke.

    PubMed

    Cichoń, Natalia; Bijak, Michał; Miller, Elżbieta; Niwald, Marta; Saluk, Joanna

    2015-01-01

    Poststroke depression, the second most serious psychosomatic complication after brain stroke, leads to delay of the rehabilitation process and is associated with an increased disability and cognitive impairment along with increase in term mortality. Research into the biochemical changes in depression is still insufficiently described. The aim of our study was therefore to evaluate the possible association between plasma protein oxidative/nitrative damages and the development of poststroke depression. We evaluated oxidative/nitrative modifications of specific proteins by measurement of 3-nitrotyrosine and carbonyl groups levels using ELISA test. Additionally, we checked differences in proteins thiol groups by spectrophotometric assay based on reaction between DTNB and thiols. We also evaluated catalase activity in erythrocytes measured as ability to decompose H2O2. Correlation analysis was performed using Spearman's rank. We observed significant (P < 0.001) differences in all oxidative/nitrative stress parameters in brain stroke patients compared to healthy group. Our research shows that oxidative damage of proteins is correlated with the degree of poststroke depression, while nitrative changes do not show any relationship. We demonstrate a positive correlation between the concentration of carbonyl groups and the Geriatric Depression Scale and a negative correlation between the degree of depression and the concentration of -SH groups or catalase activity.

  12. Does Swedish amateur boxing lead to chronic brain damage? 1. A retrospective medical, neurological and personality trait study.

    PubMed

    Haglund, Y; Edman, G; Murelius, O; Oreland, L; Sachs, C

    1990-10-01

    Sweden banned professional boxing in 1969 and has also considered banning amateur boxing. We therefore analysed possible chronic brain damage in 47 former amateur boxers who started their careers after the introduction of stricter Swedish amateur boxing rules. The boxers were compared with three control groups--25 soccer players, 25 track and field athletes and 19 conscripts. All athletes were interviewed about their sports career, medical history and social variables. They then underwent a physical and a neurological examination, including a mini-mental state examination. Personality traits were investigated and related to their platelet MAO activity in the athletes as well as in the conscripts. No significant differences were found between the groups in any of the physical or neurological examinations. All had a normal mini-mental state examination. Thus, results from these test methods did not reveal any signs of chronic brain damage from Swedish amateur boxing. Neither were any significant differences found with regard to platelet MAO activity, while significant differences were found in some of the social and personality traits variables.

  13. Dizocilpine (MK-801) arrests status epilepticus and prevents brain damage induced by Soman. (Reannouncement with new availability information)

    SciTech Connect

    Sparenborg, S.; Brennecke, L.H.; Jaax, N.K.; Braitman, D.J.

    1992-12-31

    The involvement of the NMDA receptor in the neurotoxicity induced by soman, an organophosphorus compound which irreversibly inhibits cholinesterase, was studied in guinea pigs. The drug MK-801 (0.5, 1 or 5 mg/kg, i.p.) was given as a pretreatment before a convulsant dose of soman or as a post treatment (30, 100 or 300 micron g/kg, i.m.) 5 min after the development of soman-induced status epilepticus. Pyridostigmine, atropine and pralidoxime chloride were also given to each subject to counteract the lethality of soman. All subjects that were challenged with soman and given the vehicle for MK-801 (saline) exhibited severe convulsions and electrographic seizure activity. Neuronal necrosis was found in the hippocampus, amygdala, thalamus and the pyriform and cerebral cortices of those subjects surviving for 48 hr. Pretreatment with 0.5 or 1 mg/kg doses of MK-801 did not prevent nor delay the onset of seizure activity but did diminish its intensity and led to its early arrest. At the largest dose (5 mg/kg), MK-801 completely prevented the development of seizure activity and brain damage. Post treatment with MK-801 prevented, arrested or reduced seizure activity, convulsions and neuronal necrosis in a dose-dependent manner. The NMDA receptor may play a more critical role in the spread and maintenance, rather than the initiation of cholinergically-induced seizure activity....Seizure-related brain damage, Organophosphorus compound, Nerve agent, Cholinesterase inhibition, Excitotoxicity, Guinea pig.

  14. A Lesion-Proof Brain? Multidimensional Sensorimotor, Cognitive, and Socio-Affective Preservation Despite Extensive Damage in a Stroke Patient

    PubMed Central

    García, Adolfo M.; Sedeño, Lucas; Herrera Murcia, Eduar; Couto, Blas; Ibáñez, Agustín

    2017-01-01

    In this study, we report an unusual case of mutidimensional sensorimotor, cognitive, and socio-affective preservation in an adult with extensive, acquired bilateral brain damage. At age 43, patient CG sustained a cerebral hemorrhage and a few months later, she suffered a second (ischemic) stroke. As a result, she exhibited extensive damage of the right hemisphere (including frontal, temporal, parietal, and occipital regions), left Sylvian and striatal areas, bilateral portions of the insula and the amygdala, and the splenium. However, against all probability, she was unimpaired across a host of cognitive domains, including executive functions, attention, memory, language, sensory perception (e.g., taste recognition and intensity discrimination), emotional processing (e.g., experiencing of positive and negative emotions), and social cognition skills (prosody recognition, theory of mind, facial emotion recognition, and emotional evaluation). Her functional integrity was further confirmed through neurological examination and contextualized observation of her performance in real-life tasks. In sum, CG's case resists straightforward classifications, as the extent and distribution of her lesions would typically produce pervasive, multidimensional deficits. We discuss the rarity of this patient against the backdrop of other reports of atypical cognitive preservation, expound the limitations of several potential accounts, and highlight the challenges that the case poses for current theories of brain organization and resilience. PMID:28119603

  15. Aphasic and non-brain-damaged adults' descriptions of aphasia test pictures and gender-biased pictures.

    PubMed

    Correia, L; Brookshire, R H; Nicholas, L E

    1990-11-01

    Twelve aphasic and 12 non-brain-damaged adult males described the speech elicitation pictures from the Boston Diagnostic Aphasia Examination (BDAE), the Minnesota Test for Differential Diagnosis of Aphasia (MTDDA), the Western Aphasia Battery (WAB), and six pictures representing male-biased or female-biased daily-life situations. For each speech sample we calculated number of words, words per minute, number of correct information units, percentage of words that were correct information units, and percentage of correct information units that were nouns or adjectives (amount of enumeration or naming). The WAB picture elicited more enumeration than the BDAE or MTDDA pictures, and information was produced at a slower rate in response to the WAB picture than the other two pictures. These differences were statistically significant and appear to be clinically important. Gender bias had statistically significant effects on two measures. Male-biased pictures elicited significantly more words and significantly more correct information units than female-biased pictures. However, these differences were small and do not appear to be clinically important. Two of the five measures (words per minute and percentage of words that were correct information units) differentiated non-brain-damaged speakers from aphasic speakers. The magnitude of these differences suggests that these measures provide clinically important information about the problems aphasic adults may have when they produce narrative discourse.

  16. N-Terminal Pro-B-Type Natriuretic Peptide and Subclinical Brain Damage in the General Population.

    PubMed

    Zonneveld, Hazel I; Ikram, M Arfan; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Krestin, Gabriel P; Franco, Oscar H; Vernooij, Meike W

    2017-04-01

    Purpose To investigate the association between N-terminal pro-B-type natriuretic peptide (NT-proBNP), which is a marker of heart disease, and markers of subclinical brain damage on magnetic resonance (MR) images in community-dwelling middle-aged and elderly subjects without dementia and without a clinical diagnosis of heart disease. Materials and Methods This prospective population-based cohort study was approved by a medical ethics committee overseen by the national government, and all participants gave written informed consent. Serum levels of NT-proBNP were measured in 2397 participants without dementia or stroke (mean age, 56.6 years; age range, 45.7-87.3 years) and without clinical diagnosis of heart disease who were drawn from the population-based Rotterdam Study. All participants were examined with a 1.5-T MR imager. Multivariable linear and logistic regression analyses were used to investigate the association between NT-proBNP level and MR imaging markers of subclinical brain damage, including volumetric, focal, and microstructural markers. Results A higher NT-proBNP level was associated with smaller total brain volume (mean difference in z score per standard deviation increase in NT-proBNP level, -0.021; 95% confidence interval [CI]: -0.034, -0.007; P = .003) and was predominantly driven by gray matter volume (mean difference in z score per standard deviation increase in NT-proBNP level, -0.037; 95% CI: -0.057, -0.017; P < .001). Higher NT-proBNP level was associated with larger white matter lesion volume (mean difference in z score per standard deviation increase in NT-proBNP level, 0.090; 95% CI: 0.051, 0.129; P < .001), with lower fractional anisotropy (mean difference in z score per standard deviation increase in NT-proBNP level, -0.048; 95% CI: -0.088, -0.008; P = .019) and higher mean diffusivity (mean difference in z score per standard deviation increase in NT-proBNP level, 0.054; 95% CI: 0.018, 0.091; P = .004) of normal-appearing white matter

  17. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of

  18. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage.

    PubMed

    Kokaia, Z; Zhao, Q; Kokaia, M; Elmér, E; Metsis, M; Smith, M L; Siesjö, B K; Lindvall, O

    1995-11-01

    Levels of mRNA for c-fos, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), TrkB, and TrkC were studied using in situ hybridization in the rat brain at different reperfusion times after unilateral middle cerebral artery occlusion (MCAO). Short-term (15 min) MCAO, which does not cause neuronal death, induced elevated BDNF mRNA expression confined to ipsilateral frontal and cingulate cortices outside the ischemic area. With a longer duration of MCAO (2 h), which leads to cortical infarction, the increase was more marked and elevated BDNF mRNA levels were also detected bilaterally in dentate granule cells and CA1 and CA3 pyramidal neurons. Maximum expression was found after 2 h of reperfusion. At 24 h BDNF mRNA expression had returned to control values. In the ischemic core of the parietal cortex only scattered neurons were expressing high levels of BDNF mRNA after 15 min and 2 h of MCAO. Analysis of different BDNF transcripts showed that MCAO induced a marked increase of exon III mRNA but only small increases of exon I and II mRNAs in cortex and hippocampus. In contrast to BDNF mRNA, elevated expression of c-fos mRNA was observed in the entire ipsilateral cerebral cortex, including the ischemic core, after both 15 min and 2 h of MCAO. Two hours of MCAO also induced transient, bilateral increases of NGF and TrkB mRNA levels and a decrease of NT-3 mRNA expression, confined to dentate granule cells. The upregulation of BDNF mRNA expression in cortical neurons after MCAO is probably triggered by glutamate through a spreading depression-like mechanism. The lack of response of the BDNF gene in the ischemic core may be due to suppression of signal transduction or transcription factor synthesis caused by the ischemia. The observed pattern of gene expression after MCAO agrees well with a neuroprotective role of BDNF in cortical neurons. However, elevated levels of NGF and BDNF protein could also increase synaptic efficacy in the

  19. Radiation-Induced Astrogliosis and Blood-Brain Barrier Damage Can Be Abrogated Using Anti-TNF Treatment

    SciTech Connect

    Wilson, Christy M.; Gaber, M. Waleed Sabek, Omaima M.; Zawaski, Janice A.; Merchant, Thomas E.

    2009-07-01

    Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidate the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.

  20. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.

    PubMed

    Long, Aaron; Park, Ji H; Klimova, Nina; Fowler, Carol; Loane, David J; Kristian, Tibor

    2017-01-01

    Several enzymes in cellular bioenergetics metabolism require NAD(+) as an essential cofactor for their activity. NAD(+) depletion following ischemic insult can result in cell death and has been associated with over-activation of poly-ADP-ribose polymerase PARP1 as well as an increase in NAD(+) consuming enzyme CD38. CD38 is an NAD(+) glycohydrolase that plays an important role in inflammatory responses. To determine the contribution of CD38 activity to the mechanisms of post-ischemic brain damage we subjected CD38 knockout (CD38KO) mice and wild-type (WT) mice to transient forebrain ischemia. The CD38KO mice showed a significant amelioration in both histological and neurologic outcome following ischemic insult. Decrease of hippocampal NAD(+) levels detected during reperfusion in WT mice was only transient in CD38KO animals, suggesting that CD38 contributes to post-ischemic NAD(+) catabolism. Surprisingly, pre-ischemic poly-ADP-ribose (PAR) levels were dramatically higher in CD38KO animals compared to WT animals and exhibited reduction post-ischemia in contrast to the increased levels in WT animals. The high PAR levels in CD38 mice were due to reduced expression levels of poly-ADP-ribose glycohydrolase (PARG). Thus, the absence of CD38 activity can not only directly affect inflammatory response, but also result in unpredicted alterations in the expression levels of enzymes participating in NAD(+) metabolism. Although the CD38KO mice showed significant protection against ischemic brain injury, the changes in enzyme activity related to NAD(+) metabolism makes the determination of the role of CD38 in mechanisms of ischemic brain damage more complex.

  1. Is There Chronic Brain Damage in Retired NFL Players? Neuroradiology, Neuropsychology, and Neurology Examinations of 45 Retired Players

    PubMed Central

    Casson, Ira R.; Viano, David C.; Haacke, E. Mark; Kou, Zhifeng; LeStrange, Danielle G.

    2014-01-01

    Background: Neuropathology and surveys of retired National Football League (NFL) players suggest that chronic brain damage is a frequent result of a career in football. There is limited information on the neurological statuses of living retired players. This study aimed to fill the gap in knowledge by conducting in-depth neurological examinations of 30- to 60-year-old retired NFL players. Hypothesis: In-depth neurological examinations of 30- to 60-year-old retired players are unlikely to detect objective clinical abnormalities in the majority of subjects. Study Design: A day-long medical examination was conducted on 45 retired NFL players, including state-of-the-art magnetic resonance imaging (MRI; susceptibility weighted imaging [SWI], diffusion tensor imaging [DTI]), comprehensive neuropsychological and neurological examinations, interviews, blood tests, and APOE (apolipoprotein E) genotyping. Level of Evidence: Level 3. Methods: Participants’ histories focused on neurological and depression symptoms, exposure to football, and other factors that could affect brain function. The neurological examination included Mini-Mental State Examination (MMSE) evaluation of cognitive function and a comprehensive search for signs of dysarthria, pyramidal system dysfunction, extrapyramidal system dysfunction, and cerebellar dysfunction. The Beck Depression Inventory (BDI) and Patient Health Questionnaire (PHQ) measured depression. Neuropsychological tests included pen-and-paper and ImPACT evaluation of cognitive function. Anatomical examination SWI and DTI MRI searched for brain injuries. The results were statistically analyzed for associations with markers of exposure to football and related factors, such as body mass index (BMI), ethanol use, and APOE4 status. Results: The retired players’ ages averaged 45.6 ± 8.9 years (range, 30-60 years), and they had 6.8 ± 3.2 years (maximum, 14 years) of NFL play. They reported 6.9 ± 6.2 concussions (maximum, 25) in the NFL. The

  2. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    PubMed

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  3. Brain zinc chelation by diethyldithiocarbamate increased the behavioral and mitochondrial damages in zebrafish subjected to hypoxia

    PubMed Central

    Braga, Marcos M.; Silva, Emerson S.; Moraes, Tarsila B.; Schirmbeck, Gabriel Henrique; Rico, Eduardo P.; Pinto, Charles B.; Rosemberg, Denis B.; Dutra-Filho, Carlos S.; Dias, Renato D.; Oliveira, Diogo L.; T. Rocha, João Batista; Souza, Diogo O.

    2016-01-01

    The increase in brain levels of chelatable zinc (Zn) in dysfunctions involving oxygen deprivation has stimulated the treatment with Zn chelators, such as diethyldithiocarbamate (DEDTC). However, DEDTC is a redox-active compound and it should be better evaluated during hypoxia. We use the hypoxia model in zebrafish to evaluate DEDTC effects. The exploratory behavior, chelatable Zn content, activities of mitochondrial dehydrogenases, reactive species levels (nitric oxide, superoxide anion, hydroxyl radical scavenger capacity) and cellular antioxidants (sulfhydryl, superoxide dismutase) of zebrafish brain were assessed after recovery, with or without 0.2 mM DEDTC. The increased brain levels of chelatable Zn induced by hypoxia were mitigated by DEDTC. However, the novel tank task indicated that DEDTC did further enhance the exploratory deficit caused by hypoxia. Furthermore, these behavioral impairments caused by DEDTC were more associated with a negative action on mitochondrial activity and brain oxidative balance. Thus, due to apparent pro-oxidant action of DEDTC, our data do not support its use for neuroprotection in neuropathologies involving oxygen deprivation. PMID:26854133

  4. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction.

    PubMed

    Rideau Batista Novais, Aline; Pham, Hoa; Van de Looij, Yohan; Bernal, Miguel; Mairesse, Jerome; Zana-Taieb, Elodie; Colella, Marina; Jarreau, Pierre-Henri; Pansiot, Julien; Dumont, Florent; Sizonenko, Stéphane; Gressens, Pierre; Charriaut-Marlangue, Christiane; Tanter, Mickael; Demene, Charlie; Vaiman, Daniel; Baud, Olivier

    2016-12-01

    Fetal growth restriction (FGR) is a major complication of human pregnancy, frequently resulting from placental vascular diseases and prenatal malnutrition, and is associated with adverse neurocognitive outcomes throughout life. However, the mechanisms linking poor fetal growth and neurocognitive impairment are unclear. Here, we aimed to correlate changes in gene expression induced by FGR in rats and abnormal cerebral white matter maturation, brain microstructure, and cortical connectivity in vivo. We investigated a model of FGR induced by low-protein-diet malnutrition between embryonic day 0 and birth using an interdisciplinary approach combining advanced brain imaging, in vivo connectivity, microarray analysis of sorted oligodendroglial and microglial cells and histology. We show that myelination and brain function are both significantly altered in our model of FGR. These alterations, detected first in the white matter on magnetic resonance imaging significantly reduced cortical connectivity as assessed by ultrafast ultrasound imaging. Fetal growth retardation was found associated with white matter dysmaturation as shown by the immunohistochemical profiles and microarrays analyses. Strikingly, transcriptomic and gene network analyses reveal not only a myelination deficit in growth-restricted pups, but also the extensive deregulation of genes controlling neuroinflammation and the cell cycle in both oligodendrocytes and microglia. Our findings shed new light on the cellular and gene regulatory mechanisms mediating brain structural and functional defects in malnutrition-induced FGR, and suggest, for the first time, a neuroinflammatory basis for the poor neurocognitive outcome observed in growth-restricted human infants. GLIA 2016;64:2306-2320.

  5. Psychosocial Adjustment and Life Satisfaction until 5 Years after Severe Brain Damage

    ERIC Educational Resources Information Center

    Sorbo, Ann K.; Blomqvist, Maritha; Emanuelsson, Ingrid M.; Rydenhag, Bertil

    2009-01-01

    The objectives of this study were to describe psychosocial adjustment and outcome over time for severely brain-injured patients and to find suitable outcome measures for clinical practice during the rehabilitation process and for individual rehabilitation planning after discharge from hospital. The methods include a descriptive, prospective,…

  6. Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training.

    PubMed

    Levine, Brian; Schweizer, Tom A; O'Connor, Charlene; Turner, Gary; Gillingham, Susan; Stuss, Donald T; Manly, Tom; Robertson, Ian H

    2011-01-01

    Executive functioning deficits due to brain disease affecting frontal lobe functions cause significant real-life disability, yet solid evidence in support of executive functioning interventions is lacking. Goal Management Training (GMT), an executive functioning intervention that draws upon theories concerning goal processing and sustained attention, has received empirical support in studies of patients with traumatic brain injury, normal aging, and case studies. GMT promotes a mindful approach to complex real-life tasks that pose problems for patients with executive functioning deficits, with a main goal of periodically stopping ongoing behavior to monitor and adjust goals. In this controlled trial, an expanded version of GMT was compared to an alternative intervention, Brain Health Workshop that was matched to GMT on non-specific characteristics that can affect intervention outcome. Participants included 19 individuals in the chronic phase of recovery from brain disease (predominantly stroke) affecting frontal lobe function. Outcome data indicated specific effects of GMT on the Sustained Attention to Response Task as well as the Tower Test, a visuospatial problem-solving measure that reflected far transfer of training effects. There were no significant effects on self-report questionnaires, likely owing to the complexity of these measures in this heterogeneous patient sample. Overall, these data support the efficacy of GMT in the rehabilitation of executive functioning deficits.

  7. The Expanded Sensory-Perceptual Examination as a Diagnostic Screening Instrument for Organic Brain Damage.

    ERIC Educational Resources Information Center

    Grundvig, John L.

    The primary objectives of this research program were the development of a battery of tests to investigate the effects of brain impairment on sensory and perceptual functioning. The Sensory-Perceptual Exam (SPE) contains measures intended to evaluate both relatively "pure" sensory functions, as well as those which involve more integrated…

  8. A Cross-Talk between Brain-Damage Patients and Infants on Action and Language

    ERIC Educational Resources Information Center

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-01-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to…

  9. EEG Delta Band as a Marker of Brain Damage in Aphasic Patients after Recovery of Language

    ERIC Educational Resources Information Center

    Spironelli, Chiara; Angrilli, Alessandro

    2009-01-01

    In this study spectral delta percentage was used to assess both brain dysfunction/inhibition and functional linguistic impairment during different phases of word processing. To this aim, EEG delta amplitude was measured in 17 chronic non-fluent aphasic patients while engaged in three linguistic tasks: Orthographic, Phonological and Semantic.…

  10. Structural brain changes in chronic pain reflect probably neither damage nor atrophy.

    PubMed

    Rodriguez-Raecke, Rea; Niemeier, Andreas; Ihle, Kristin; Ruether, Wolfgang; May, Arne

    2013-01-01

    Chronic pain appears to be associated with brain gray matter reduction in areas ascribable to the transmission of pain. The morphological processes underlying these structural changes, probably following functional reorganisation and central plasticity in the brain, remain unclear. The pain in hip osteoarthritis is one of the few chronic pain syndromes which are principally curable. We investigated 20 patients with chronic pain due to unilateral coxarthrosis (mean age 63.25±9.46 (SD) years, 10 female) before hip joint endoprosthetic surgery (pain state) and monitored brain structural changes up to 1 year after surgery: 6-8 weeks, 12-18 weeks and 10-14 month when completely pain free. Patients with chronic pain due to unilateral coxarthrosis had significantly less gray matter compared to controls in the anterior cingulate cortex (ACC), insular cortex and operculum, dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex. These regions function as multi-integrative structures during the experience and the anticipation of pain. When the patients were pain free after recovery from endoprosthetic surgery, a gray matter increase in nearly the same areas was found. We also found a progressive increase of brain gray matter in the premotor cortex and the supplementary motor area (SMA). We conclude that gray matter abnormalities in chronic pain are not the cause, but secondary to the disease and are at least in part due to changes in motor function and bodily integration.

  11. Progressive Brain Damage, Synaptic Reorganization and NMDA Activation in a Model of Epileptogenic Cortical Dysplasia

    PubMed Central

    Colciaghi, Francesca; Finardi, Adele; Nobili, Paola; Locatelli, Denise; Spigolon, Giada; Battaglia, Giorgio Stefano

    2014-01-01

    Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity. PMID:24587109

  12. Chronic Exposure to Tributyltin Induces Brain Functional Damage in Juvenile Common Carp (Cyprinus carpio)

    PubMed Central

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2015-01-01

    The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity. PMID:25879203

  13. Monocrotaline: Histological Damage and Oxidant Activity in Brain Areas of Mice

    PubMed Central

    Honório Junior, José Eduardo Ribeiro; Vasconcelos, Germana Silva; Rodrigues, Francisca Taciana Sousa; Sena Filho, José Guedes; Barbosa-Filho, José Maria; Aguiar, Carlos Clayton Torres; Leal, Luzia Kalyne Almeida Moreira; Soares, Pedro Marcos Gomes; Woods, David John; Fonteles, Marta Maria de França; Vasconcelos, Silvânia Maria Mendes

    2012-01-01

    This work was designed to study MCT effect in histopathological analysis of hippocampus (HC) and parahippocampal cortex (PHC) and in oxidative stress (OS) parameters in brain areas such as hippocampus (HC), prefrontal cortex (PFC), and striatum (ST). Swiss mice (25–30 g) were administered a single i.p. dose of MCT (5, 50, or 100 mg/kg) or 4% Tween 80 in saline (control group). After 30 minutes, the animals were sacrificed by decapitation and the brain areas (HC, PHC, PFC, or ST) were removed for histopathological analysis or dissected and homogenized for measurement of OS parameters (lipid peroxidation, nitrite, and catalase) by spectrophotometry. Histological evaluation of brain structures of rats treated with MCT (50 and 100 mg/kg) revealed lesions in the hippocampus and parahippocampal cortex compared to control. Lipid peroxidation was evident in all brain areas after administration of MCT. Nitrite/nitrate content decreased in all doses administered in HC, PFC, and ST. Catalase activity was increased in the MCT group only in HC. In conclusion, monocrotaline caused cell lesions in the hippocampus and parahippocampal cortex regions and produced oxidative stress in the HC, PFC, and ST in mice. These findings may contribute to the neurological effects associated with this compound. PMID:23251721

  14. Suppression and Narrative Time Shifts in Adults with Right-Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Scharp, Victoria L.; Tompkins, Connie A.

    2013-01-01

    Purpose: This study examined the functioning of a central comprehension mechanism, suppression, in adults with right-hemisphere damage (RHD) while they processed narratives that cued a shift in time frame. In normal language comprehension, mental activation of concepts from a prior time frame is suppressed. The (re)activation of information…

  15. A non-canonical pathway from cochlea to brain signals tissue-damaging noise.

    PubMed

    Flores, Emma N; Duggan, Anne; Madathany, Thomas; Hogan, Ann K; Márquez, Freddie G; Kumar, Gagan; Seal, Rebecca P; Edwards, Robert H; Liberman, M Charles; García-Añoveros, Jaime

    2015-03-02

    Intense noise damages the cochlear organ of Corti, particularly the outer hair cells (OHCs) [1]; however, this epithelium is not innervated by nociceptors of somatosensory ganglia, which detect damage elsewhere in the body. The only sensory neurons innervating the organ of Corti originate from the spiral ganglion, roughly 95% of which innervate exclusively inner hair cells (IHCs) [2-4]. Upon sound stimulation, IHCs release glutamate to activate AMPA-type receptors on these myelinated type-I neurons, which carry the neuronal signals to the cochlear nucleus. The remaining spiral ganglion cells (type IIs) are unmyelinated and contact OHCs [2-4]. Their function is unknown. Using immunoreactivity to cFos, we documented neuronal activation in the brainstem of Vglut3(-/-) mice, in which the canonical auditory pathway (activation of type-I afferents by glutamate released from inner hair cells) is silenced [5, 6]. In these deaf mice, we found responses to noxious noise, which damages hair cells, but not to innocuous noise, in neurons of the cochlear nucleus, but not in the vestibular or trigeminal nuclei. This response originates in the cochlea and not in other areas also stimulated by intense noise (middle ear and vestibule) as it was absent in CD1 mice with selective cochlear degeneration but normal vestibular and somatosensory function. These data imply the existence of an alternative neuronal pathway from cochlea to brainstem that is activated by tissue-damaging noise and does not require glutamate release from IHCs. This detection of noise-induced tissue damage, possibly by type-II cochlear afferents, represents a novel form of sensation that we term auditory nociception.

  16. Orexin-A suppresses postischemic glucose intolerance and neuronal damage through hypothalamic brain-derived neurotrophic factor.

    PubMed

    Harada, Shinichi; Yamazaki, Yui; Tokuyama, Shogo

    2013-01-01

    Orexin-A (a glucose-sensing neuropeptide in the hypothalamus) and brain-derived neurotrophic factor (BDNF; a member of the neurotrophin family) play roles in many physiologic functions, including regulation of glucose metabolism. We previously showed that the development of postischemic glucose intolerance is one of the triggers of ischemic neuronal damage. The aim of this study was to determine whether there was an interaction between orexin-A and BDNF functions in the hypothalamus after cerebral ischemic stress. Male ddY mice were subjected to 2 hours of middle cerebral artery occlusion (MCAO). Neuronal damage was estimated by histologic and behavioral analyses. Expression of protein levels was analyzed by Western blot. Small interfering RNA directed BDNF, orexin-A, and SB334867 [N-(2-methyl-6-benzoxazolyl)-N'-1,5-naphthyridin-4-yl urea; a specific orexin-1 receptor antagonist] were administered directly into the hypothalamus. The level of hypothalamic orexin-A, detected by immunohistochemistry, was decreased on day 1 after MCAO. Intrahypothalamic administration of orexin-A (1 or 5 pmol/mouse) significantly and dose-dependently suppressed the development of postischemic glucose intolerance on day 1 and development of neuronal damage on day 3. The MCAO-induced decrease in insulin receptor levels in the liver and skeletal muscle on day 1 was recovered to control levels by orexin-A, and this effect of orexin-A was reversed by the administration of SB334867 as well as by hypothalamic BDNF knockdown. These results suggest that suppression of postischemic glucose intolerance by orexin-A assists in the prevention of cerebral ischemic neuronal damage. In addition, hypothalamic BDNF may play an important role in this effect of orexin-A.

  17. Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake.

    PubMed

    Réus, Gislaine Z; Abaleira, Helena M; Michels, Monique; Tomaz, Débora B; dos Santos, Maria Augusta B; Carlessi, Anelise S; Matias, Beatriz I; Leffa, Daniela D; Damiani, Adriani P; Gomes, Vitor de C; Andrade, Vanessa M; Dal-Pizzol, Felipe; Landeira-Fernadez, Jesus; Quevedo, João

    2015-02-01

    This study aimed at investigating the effects of chronic mild stress on DNA damage, NMDA receptor subunits and glutamate transport levels in the brains of rats with an anxious phenotype, which were selected to represent both the high-freezing (CHF) and low-freezing (CLF) lines. The anxious phenotype induced DNA damage in the hippocampus, amygdala and nucleus accumbens (NAc). CHF rats subjected to chronic stress presented a more pronounced DNA damage in the hippocampus and NAc. NMDAR1 were increased in the prefrontal cortex (PC), hippocampus and amygdala of CHF, and decreased in the hippocampus, amygdala and NAc of CHF stressed. NMDAR2A were decreased in the amygdala of the CHF and stressed; and increased in CHF stressed. NMDRA2A in the NAc was increased after stress, and decreased in the CLF. NMDAR2B were increased in the hippocampus of CLF and CHF. In the amygdala, there was a decrease in the NMDAR2B for stress in the CLF and CHF. NMDAR2B in the NAc were decreased for stress and increased in the CHF; in the PC NMDAR2B increased in the CHF. EAAT1 increased in the PC of CLF+stress. In the hippocampus, EAAT1 decreased in all groups. In the amygdala, EAAT1 decreased in the CLF+stress and CHF. EAAT2 were decreased in the PC for stress, and increased in CHF+control. In the hippocampus, the EAAT2 were increased for the CLF and decreased in the CLF+stress. In the amygdala, there was a decrease in the EATT2 in the CLF+stress and CHF. These findings suggest that an anxious phenotype plus stress may induce a more pronounced DNA damage, and promote more alterations in the glutamatergic system. These findings may help to explain, at least in part, the common point of the mechanisms involved with the pathophysiology of depression and anxiety.

  18. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    SciTech Connect

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  19. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    PubMed

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  20. The natural xanthone alpha-mangostin reduces oxidative damage in rat brain tissue.

    PubMed

    Márquez-Valadez, Berenice; Lugo-Huitrón, Rafael; Valdivia-Cerda, Verónica; Miranda-Ramírez, Luis Rubén; Pérez-De La Cruz, Verónica; González-Cuahutencos, Octavio; Rivero-Cruz, Isabel; Mata, Rachel; Santamaría, Abel; Pedraza-Chaverrí, José

    2009-02-01

    The antiperoxidative properties of alpha-mangostin, a xanthone isolated from mangosteen fruit, were tested for the first time in nerve tissue exposed to different toxic insults. Two reliable biological preparations (rat brain homogenates and synaptosomal P2 fractions) were exposed to the toxic actions of a free radical generator (ferrous sulfate), an excitotoxic agent (quinolinate), and a mitochondrial toxin (3-nitropropionate). alpha-Mangostin decreased the lipoperoxidative action of FeSO(4) in both preparations in a concentration-dependent manner, and completely abolished the peroxidative effects of quinolinate, 3-nitropropionate and FeSO(4) + quinolinate at all concentrations tested. Interestingly, when tested alone in brain homogenates, alpha-mangostin significantly decreased the lipoperoxidation even below basal levels. alpha-Mangostin also prevented the decreased reductant capacity of mitochondria in synaptosomal fractions. Our results suggest that alpha-mangostin exerts a robust antiperoxidative effect in brain tissue preparations probably through its properties as a free radical scavenger. In light of these findings, this antioxidant should be tested in other neurotoxic models involving oxidative stress.

  1. Detection of neuronal damage in degenerative brain disease with cobalt-55 and positron emission tomography

    SciTech Connect

    Jansen, H.M.L.; Pruim, J.; Paans, A.M.J.

    1994-05-01

    We suggest Cobalt-55 (Co) as a Calcium (Ca)-marker to visualize Ca transport across the neuronal membrane. Elevation of intracellular Ca is closely linked with the process of neuronal cell-decay. Co-uptake is correlated with Ca-accumulation through divalent cation-permeable kainate (KA)-activated receptor-operated channels in the neuronal membrane. This hypothesis was studied with position emission tomography (PET) both in patients with a ischemic cerebro-vascular accident (CVA) and in patients with relapsing progressive multiple sclerosis (MS). Co-PET studies were performed in a dynamic mode (6 frames of 10 minutes) 20-25 hours after iv.-administration of 1-2 mCi Co. Regional specific accumulation irrespective of blood brain barrier (BBB) integrity in the (clinically appropriate) affected cerebral region could be demonstrated in CVA-patients, thus suggesting neuronal decay in (the early phase of) infarction. In MS, inhomogeneous cerebral distribution of Co was detected, in contrast to healthy volunteers. This suggests focal accumulation of Co in multiple spots of neuronal decay, possibly related to MS-lesions on MRI. In conclusion, Co-PET may prove to be a valuable tool for the early detection of neuronal decay not only in CVA and MS, but in other brain-pathology as well. The usefulness of Co-PET in imaging brain-tumors and myocardial ischemia has already been established.

  2. Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs.

    PubMed

    Lafuente, Hector; Alvarez, Francisco J; Pazos, M Ruth; Alvarez, Antonia; Rey-Santano, M Carmen; Mielgo, Victoria; Murgia-Esteve, Xabier; Hilario, Enrique; Martinez-Orgado, José

    2011-09-01

    Newborn piglets exposed to acute hypoxia-ischemia (HI) received i.v. cannabidiol (HI + CBD) or vehicle (HI + VEH). In HI + VEH, 72 h post-HI brain activity as assessed by amplitude-integrated EEG (aEEG) had only recovered to 42 ± 9% of baseline, near-infrared spectroscopy (NIRS) parameters remained lower than normal, and neurobehavioral performance was abnormal (27.8 ± 2.3 points, normal 36). In the brain, there were fewer normal and more pyknotic neurons, while astrocytes were less numerous and swollen. Cerebrospinal fluid concentration of neuronal-specific enolase (NSE) and S100β protein and brain tissue percentage of TNFα(+) cells were all higher. In contrast, in HI + CBD, aEEG had recovered to 86 ± 5%, NIRS parameters increased, and the neurobehavioral score normalized (34.3 ± 1.4 points). HI induced histological changes, and NSE and S100β concentration and TNFα(+) cell increases were suppressed by CBD. In conclusion, post-HI administration of CBD protects neurons and astrocytes, leading to histological, functional, biochemical, and neurobehavioral improvements.

  3. Readiness to change and brain damage in patients with chronic alcoholism.

    PubMed

    Le Berre, Anne-Pascale; Rauchs, Géraldine; La Joie, Renaud; Segobin, Shailendra; Mézenge, Florence; Boudehent, Céline; Vabret, François; Viader, Fausto; Eustache, Francis; Pitel, Anne-Lise; Beaunieux, Hélène

    2013-09-30

    High motivation to change is a crucial triggering factor to patients' engagement in clinical treatment. This study investigates whether the low readiness to change observed in some alcoholic inpatients at treatment entry could, at least partially, be linked with macrostructural gray matter abnormalities in critical brain regions. Participants comprised 31 alcoholic patients and 27 controls, who underwent 1.5-T magnetic resonance imaging. The Readiness to Change Questionnaire, designed to assess three stages of motivation to change (precontemplation, contemplation and action stages), was completed by all patients, who were then divided into "Action" (i.e., patients in action stage) and "PreAction" (i.e., patients in precontemplation or in contemplation stage) subgroups. The PreAction subgroup, but not the Action subgroup, had gray matter volume deficits compared with controls. Unlike the patients in the Action subgroup, the PreAction patients had gray matter abnormalities in the cerebellum (Crus I), fusiform gyri and frontal cortex. The low level of motivation to modify drinking behavior observed in some alcoholic patients at treatment entry may be related to macrostructural brain abnormalities in regions subtending cognitive, emotional and social abilities. These brain volume deficits may result in impairment of critical abilities such as decision making, executive functions and social cognition skills. Those abilities may be needed to resolve ambivalence toward alcohol addiction and to apply "processes of change", which are essential for activating the desire to change problematic behavior.

  4. A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment

    PubMed Central

    Granziera, C.; Daducci, A.; Donati, A.; Bonnier, G.; Romascano, D.; Roche, A.; Bach Cuadra, M.; Schmitter, D.; Klöppel, S.; Meuli, R.; von Gunten, A.; Krueger, G.

    2015-01-01

    Objectives The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). Methods Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. Results Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. Conclusion Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features. PMID:26236628

  5. Quantitation of heavy ion damage to the mammalian brain: Some preliminary findings

    NASA Astrophysics Data System (ADS)

    Cox, A. B.; Kraft, L. M.

    Histological preparations of brains from rabbits and mice exposed to different doses of various HZE particles or to low-LET photons have been subjected to preliminary quantitation of radiation-induced morphometric changes. Computer assisted measurements of several brain structures and cell types have been made using the KONTRON Automated Interactive Measurement System (IBAS, Carl Zeiss, Inc., Thornwood, N.,Y. 10594 U.S.A.). New Zealand white rabbits irradiated at ~6 weeks of age were euthanatized 6.5-25 months after exposure to 60Co gamma photons (LET∞ = ~ 0.3 keV/μm, 20Ne particles (LET∞ = 35 +/- 3 keV/μm), or 40Ar particles (LET∞ = 90 +/- 5 keV/μm). Measurements of stained sections of the olfactory bulbs of those animals indicate that the mean size (volume) of olfactory glomeruli is reduced in a dose-dependent (and perhaps an LET-dependent) manner as soon as 6.5 months after irradiation. Differences between mean volumes of additional structures have been noted when histological preparations of control mouse brains were compared with irradiated specimens. Quantitation of intermediate and late changes in nervous (and other) tissues exposed to low- and high-LET radiations will improve our ability to predict late effects in tissues of astronauts and others exposed to the radiation hazards of the space environment.

  6. Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain.

    PubMed

    Manjunath, Mallaya Jayawanth; Muralidhara

    2013-03-01

    Withania somnifera (WS) an ayurvedic medicinal herb is widely known for its memory enhancing ability and improvement of brain function. In the present study, we tested the hypothesis that WS prophylaxis could offset neurotoxicant-induced oxidative dysfunctions in developing brain employing a rotenone (ROT) mouse model. Initially, we assessed the potential of WS oral supplements (100-400 mg/ kg b.w/ d, 4wks) to modulate the endogenous levels of oxidative markers in cerebellum (cb) and striatum (st) of prepubertal (PP) mice. Further, we assessed the induction of oxidative stress in cb and st of mice administered with ROT (i.p. 0.5 and 1mg/ kg b.w, 7d). ROT caused significant elevation in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), hydroperoxides (HP) and nitric oxide (NO) levels in both brain regions. Further ROT caused significant perturbations in the levels of reduced glutathione (GSH), activity levels of antioxidant enzymes, acetylcholinesterase and mitochondrial dysfunctions suggesting a state of oxidative stress. In a satellite study, we examined the protective effects of WS root powder (400mg/ kg b.w/ d, 4wks) in PP mice challenged with ROT (0.5 mg/ kg b.w/ d, 7 d). WS prophylaxis significantly offset ROT-induced oxidative damage in st and cb as evident by the normalized levels of oxidative markers (MDA, ROS levels and HP) and restoration of depleted GSH levels. Further, WS effectively normalized the NO levels in both brain regions suggesting its antiinflammatory action. Furthermore, WS prophylaxis restored the activity levels of cytosolic antioxidant enzymes, neurotransmitter function and dopamine levels in st. Taken together, these findings suggest that WS prophylaxis has the propensity to modulate neurotoxicant-mediated oxidative impairments and mitochondrial dysfunctions in specific brain regions of mice. While the exact mechanism/s underlying the neuroprotective effects of WS merit further investigation, based on our findings, we

  7. Plasma concentrations of arginine and related amino acids following traumatic brain injury: Proline as a promising biomarker of brain damage severity.

    PubMed

    Louin, G; Neveux, N; Cynober, L; Plotkine, M; Marchand-Leroux, C; Jafarian-Tehrani, M

    2007-09-01

    The aim of this study was to find a plasma biomarker, in relation with nitric oxide (NO), as a sign of brain damage severity following traumatic brain injury (TBI). We first investigated the post-traumatic evolution of the plasma concentrations of NO via the level of NO end-products metabolites (nitrite plus nitrate, NO(x)), that of l-arginine (Arg) and amino acids involved in its metabolism as well as the time course of neurological score in a rat model of lateral fluid percussion brain injury. First, the level of NO(x) was increased in plasma at 24 and 48 h post-TBI with a marked increase at 72 h. In contrast, this elevation was neither accompanied by a modification of plasma concentrations of Arg, nor of amino acids involved in NO and Arg metabolism, l-ornithine (Orn), l-glutamate (Glu), and l-glutamine (Gln). Second, TBI induced a fall of plasma l-proline (Pro) concentrations. The time course of post-TBI neurological deficit showed also a decrease of neurological score at 24, 48, and 72 h. Furthermore, there is a weak negative correlation between the neurological score and the plasma level of NO(x) (r=-0.305; P<0.05), while a marked positive correlation has been found between the neurological score and the plasma level of Pro (r=0.563; P<0.001). In conclusion, the plasma concentrations of Pro could be a promising marker of post-traumatic neurological deficit.

  8. No Increases in Biomarkers of Genetic Damage or Pathological Changes in Heart and Brain Tissues in Male Rats Administered Methylphenidate Hydrochloride (Ritalin) for 28 Days

    PubMed Central

    Witt, Kristine L.; Malarkey, David E.; Hobbs, Cheryl A.; Davis, Jeffrey P.; Kissling, Grace E.; Caspary, William; Travlos, Gregory; Recio, Leslie

    2009-01-01

    Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. 2007) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats. PMID:19634155

  9. No increases in biomarkers of genetic damage or pathological changes in heart and brain tissues in male rats administered methylphenidate hydrochloride (Ritalin) for 28 days.

    PubMed

    Witt, Kristine L; Malarkey, David E; Hobbs, Cheryl A; Davis, Jeffrey P; Kissling, Grace E; Caspary, William; Travlos, Gregory; Recio, Leslie

    2010-01-01

    Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. [2007]: Prog Neuropsychopharmacol Biol Psychiatry 31:1282-1288) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats.

  10. Social isolation stress-induced oxidative damage in mouse brain and its modulation by majonoside-R2, a Vietnamese ginseng saponin.

    PubMed

    Huong, Nguyen Thi Thu; Murakami, Yukihisa; Tohda, Michihisa; Watanabe, Hiroshi; Matsumoto, Kinzo

    2005-08-01

    Stressors with a physical factor such as immobilization, electric foot shock, cold swim, etc., have been shown to produce oxidative damage to membrane lipids in the brain. In this study, we investigated the effect of protracted social isolation stress on lipid peroxidation activity in the mouse brain and elucidated the protective effect of majonoside-R2, a major saponin component of Vietnamese ginseng, in mice exposed to social isolation stress. Thiobarbituric acid reactive substance levels, one of the end products of lipid peroxidation reaction, were increased in the brains of mice subjected to 6-8 weeks of social isolation stress. Measurements of nitric oxide (NO) metabolites (NO(x)(-)) also revealed a significant increase of NO production in the brains of socially isolated mice. Moreover, the depletion of brain glutathione content, an endogenous antioxidant, in socially isolated animals occurred in association with the rise in lipid peroxidation. The intraperitoneal administration of majonoside-R2 (10-50 mg/kg) had no effect on thiobarbituric acid reactive substances (TBARS), NO, or glutathione levels in the brains of group-housed control mice but it significantly suppressed the increase in TBARS and NO levels and the decrease in glutathione levels caused by social isolation stress. These results suggest that mice subjected to 6-8 weeks of social isolation stress produces oxidative damage in the brain partly via enhancement of NO production, and that majonoside-R2 exerts a protective effect by modulating NO and glutathione systems in the brain.

  11. A preliminary comparison of flat affect schizophrenics and brain-damaged patients on measures of affective processing.

    PubMed

    Borod, J C; Alpert, M; Brozgold, A; Martin, C; Welkowitz, J; Diller, L; Peselow, E; Angrist, B; Lieberman, A

    1989-04-01

    Flat affect is a major component of schizophrenia and is often also seen in neurological disorders. A preliminary set of comparisons were conducted to delineate neuropsychological mechanisms underlying flat affect in schizophrenia, and new measures are described for the assessment of affective deficits in clinical populations. Subjects were schizophrenic with flat affect (SZs), right brain-damaged (RBD), Parkinson's Disease (PDs), and normal control (NC) right-handed adults. Subjects were administered affective measures of expression and perception in both facial and vocal channels. For both perceptual and expressive tasks the SZs performed significantly less accurately than the NCs and the PDs but did not differ from the RBDs. This was the case for both face and voice. This finding lends support to the speculation that right hemisphere mechanisms, especially cortical ones, may be compromised among schizophrenics with flat affect.

  12. Metformin Prevents Cisplatin-Induced Cognitive Impairment and Brain Damage in Mice

    PubMed Central

    Zhou, Wenjun; Kavelaars, Annemieke; Heijnen, Cobi J.

    2016-01-01

    Rationale Chemotherapy-induced cognitive impairment, also known as ‘chemobrain’, is now widely recognized as a frequent adverse side effect of cancer treatment that often persists into survivorship. There are no drugs available to prevent or treat chemotherapy-induced cognitive deficits. The aim of this study was to establish a mouse model of cisplatin-induced cognitive deficits and to determine the potential preventive effects of the anti-diabetic drug metformin. Results Treatment of C57/BL6J mice with cisplatin (cumulative dose 34.5mg/kg) impaired performance in the novel object and place recognition task as well as in the social discrimination task indicating cognitive deficits. Co-administration of metformin prevented these cisplatin-induced cognitive impairments. At the structural level, we demonstrate that cisplatin reduces coherency of white matter fibers in the cingulate cortex. Moreover, the number of dendritic spines and neuronal arborizations as quantified on Golgi-stained brains was reduced after cisplatin treatment. Co-administration of metformin prevented all of these structural abnormalities in cisplatin-treated mice. In contrast to what has been reported in other models of chemobrain, we do not have evidence for persistent microglial or astrocyte activation in the brains of cisplatin-treated mice. Finally, we show that co-administration of metformin also protects against cisplatin-induced peripheral neuropathy. Conclusion In summary, we show here for the first time that treatment of mice with cisplatin induces cognitive deficits that are associated with structural abnormalities in the brain. Moreover, we present the first evidence that the widely used and safe anti-diabetic drug metformin protects against these deleterious effects of cancer treatment. In view of the ongoing clinical trials to examine the potential efficacy of metformin as add-on therapy in patients treated for cancer, these findings should allow rapid clinical translation. PMID

  13. Head injuries in the 18th century: the management of the damaged brain.

    PubMed

    Ganz, Jeremy C

    2013-07-01

    The 18th century was the time when trauma neurosurgery began to develop into the modern discipline. Before this, the management had, for the most part, changed little from the days of Hippocrates, Celsus, and Galen. Attention was directed to skull injuries, and the brain was treated as the seat of the rational soul but without other function. Symptoms after trauma were attributed to injuries to the bone and meninges. Following the lead of the Royal Academy of Surgery in Paris, it was accepted from the 1730s that the brain was the seat of symptoms after cranial trauma. During the 18th century, at least 12 surgeons published articles on cranial injury, 6 describing significant clinical series on this topic. They were Henri-François Le Dran (1685-1770) of Paris, Percival Pott (1714-1788) of London, James Hill (1703-1776) from Dumfries, Sylvester O'Halloran (1728-1807) of Limerick (Ireland), William Dease (1750-1798) of Dublin, and John Abernethy (1764-1831) of London. This article analyzes these series. Each individual made a different contribution. It is suggested that the relatively lesser-known James Hill in Scotland demonstrated the greatest understanding of the management of brain trauma and achieved the best results. A product of the Scottish Enlightenment, he adapted his management to his own experience and was not tied to the accepted authorities of his day, but he improved the management of each case following his experience with previous patients. He deserves to be remembered.

  14. Inference generation during text comprehension by adults with right hemisphere brain damage: activation failure versus multiple activation.

    PubMed

    Tompkins, Connie A; Fassbinder, Wiltrud; Lehman Blake, Margaret; Baumgaertner, Annette; Jayaram, Nandini

    2004-12-01

    Evidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults with RHD activate multiple interpretations in various comprehension domains. In addition, the activation of contextually inappropriate interpretations is prolonged for many adults with RHD and predicts poor discourse comprehension. This study contrasted Beeman's activation failure hypothesis with the prediction that adults with RHD would generate multiple interpretations in text comprehension. The relation between activation of textually incompatible inferences and discourse comprehension was also investigated for this group. Thirty-seven adults with RHD and 34 without brain damage listened to brief narratives that required a bridging inference (BI) to integrate the text-final sentence. This final sentence, when isolated from its text, was strongly biased toward a contextually incompatible alternate interpretation (AI). Auditory phoneme strings were presented for lexical decision immediately after each text's initial and final sentence. Adults with RHD were both faster and more accurate in making lexical decisions to BI-related target words in final-sentence position than in initial-sentence position. Thus, contrary to the activation failure hypothesis, adults with RHD generated the lexical-semantic foundations of BIs where they were required by the text. AI generation was evident in accuracy data as well, but not in response time data. This result is partially consistent with the multiple activation view. Finally, greater activation for contextually incompatible interpretations was associated with poorer discourse comprehension performance by adults with RHD.

  15. White matter pathway supporting phonological encoding in speech production: a multi-modal imaging study of brain damage patients.

    PubMed

    Han, Zaizhu; Ma, Yujun; Gong, Gaolang; Huang, Ruiwang; Song, Luping; Bi, Yanchao

    2016-01-01

    In speech production, an important step before motor programming is the retrieval and encoding of the phonological elements of target words. It has been proposed that phonological encoding is supported by multiple regions in the left frontal, temporal and parietal regions and their underlying white matter, especially the left arcuate fasciculus (AF) or superior longitudinal fasciculus (SLF). It is unclear, however, whether the effects of AF/SLF are indeed related to phonological encoding for output and whether there are other white matter tracts that also contribute to this process. We comprehensively investigated the anatomical connectivity supporting phonological encoding in production by studying the relationship between the integrity of all major white matter tracts across the entire brain and phonological encoding deficits in a group of 69 patients with brain damage. The integrity of each white matter tract was measured both by the percentage of damaged voxels (structural imaging) and the mean fractional anisotropy value (diffusion tensor imaging). The phonological encoding deficits were assessed by various measures in two oral production tasks that involve phonological encoding: the percentage of nonword (phonological) errors in oral picture naming and the accuracy of word reading aloud with word comprehension ability regressed out. We found that the integrity of the left SLF in both the structural and diffusion tensor imaging measures consistently predicted the severity of phonological encoding impairment in the two phonological production tasks. Such effects of the left SLF on phonological production remained significant when a range of potential confounding factors were considered through partial correlation, including total lesion volume, demographic factors, lesions on phonological-relevant grey matter regions, or effects originating from the phonological perception or semantic processes. Our results therefore conclusively demonstrate the central role of

  16. Brain Malformations

    MedlinePlus

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  17. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    PubMed

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  18. Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold.

    PubMed

    Álvarez, Zaida; Castaño, Oscar; Castells, Alba A; Mateos-Timoneda, Miguel A; Planell, Josep A; Engel, Elisabeth; Alcántara, Soledad

    2014-06-01

    Regenerative medicine strategies to promote recovery following traumatic brain injuries are currently focused on the use of biomaterials as delivery systems for cells or bioactive molecules. This study shows that cell-free biomimetic scaffolds consisting of radially aligned electrospun poly-l/dl lactic acid (PLA70/30) nanofibers release L-lactate and reproduce the 3D organization and supportive function of radial glia embryonic neural stem cells. The topology of PLA nanofibers supports neuronal migration while L-lactate released during PLA degradation acts as an alternative fuel for neurons and is required for progenitor maintenance. Radial scaffolds implanted into cavities made in the postnatal mouse brain fostered complete implant vascularization, sustained neurogenesis, and allowed the long-term survival and integration of the newly generated neurons. Our results suggest that the endogenous central nervous system is capable of regeneration through the in vivo dedifferentiation induced by biophysical and metabolic cues, with no need for exogenous cells, growth factors, or genetic manipulation.

  19. Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors.

    PubMed

    Otake, M; Schull, W J

    1998-08-01

    Many studies of prenatally exposed survivors of the atomic bombings of Hiroshima and Nagasaki have shown that exposure to ionizing radiation during gestation has harmful effects on the developing human brain. Data on the occurrence of severe mental retardation as well as variation in intelligence quotient (IQ) and school performance show significant effects on those survivors exposed 8-15 and 16-25 weeks after ovulation. Studies of seizures, especially those without a known precipitating cause, also exhibit a radiation effect in survivors exposed 8-15 weeks after ovulation. The biologic events that subtend these abnormalities are still unclear. However, magnetic resonance imaging of the brains of some mentally retarded survivors has revealed a large region of abnormally situated gray matter, suggesting an abnormality in neuronal migration. Radiation can induce small head size as well as mental retardation, and a review of the relationship between small head size and anthropometric measurements, such as height, weight, sitting height and chest circumference, shows that individuals with small head size have smaller anthropometric measurements than normocephalics. This suggests that radiation-related small head size is related to a generalized growth retardation. Finally, the issue of a threshold in the occurrence of one or more of these effects, both heuristically and from a regulatory perspective, remains uncertain. Simple inspection of the data often suggests that a threshold may exist, but little statistical support for this impression can be advanced, except in the instance of mental retardation.

  20. Morphometric studies of heavy ion damage in the brains of rodents

    NASA Technical Reports Server (NTRS)

    Kraft, L. M.; Cox, A. B.

    1986-01-01

    The relative biological effectiveness (RBE) of different heavy ions for the mammalian brain was determined in mice irradiated at 100 days of age with He-4, C-12, Ne-20, Fe-56, Ar-40, or Co-60 gamma photons (with the primary particle LET values ranging from 2 to 650). Brain preparations were examined 16 months later for volume changes in the external plexiform layer (P-zone) of the olfactory bulb and an internal region (G-zone), which consists of the granule cells, the internal plexiform layer, and the mitral cell layer. The result indicate that the volume changes did occur in the olfactory bulb, not only in absolute terms but also when expressed as the ratio of the structures to each other and to the bulb as a whole. While the observed increased neuronal loss in mice receiving 700 cGy of Co-60 support the earlier data from irradiated rabbits, the increases observed in bulbar volumes and in the volume ratios of the P and the G zones measured in the mice given lower doses (320 or 160 cGy of He or C), were not expected.

  1. Human Umbilical Cord Blood Cells Restore Brain Damage Induced Changes in Rat Somatosensory Cortex

    PubMed Central

    Geißler, Maren; Dinse, Hubert R.; Neuhoff, Sandra; Kreikemeier, Klaus; Meier, Carola

    2011-01-01

    Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury. PMID:21673795

  2. Morphometric studies of heavy ion damage in the brains of rodents.

    PubMed

    Kraft, L M; Cox, A B

    1986-01-01

    As an approach to determining the relative biological effectiveness (RBE) of each of five different heavy ions for the mammalian brain, histological preparations of brains from mice exposed to various HZE particles at different doses and primary LETinfinity values were examined by means of semi-automated image analysis for volume changes in specific regions of the olfactory bulb. The mice were irradiated at 100 days of age and euthanatized about 500 days (16 months) later. Exposures were: 60Co gamma photons (LETinfinity = 1-2 keV/micrometer), 4He (LETinfinity = 6 keV/micrometer), 12C (LETinfinity = 80 keV/micrometer), 20Ne (LETinfinity = 150 keV/micrometer), 56Fe (LETinfinity = 180 keV/micrometer), and 40Ar (LETinfinity = 650 keV/micrometer). Animals receiving particle radiation were exposed in an extended Bragg peak region except for iron where the plateau region was used. The zones measured in the olfactory bulb were 1) the external plexiform layer (zone) and 2) an internal region consisting of the granule cells, internal plexiform layer, and layer of mitral cells. These studies indicated that volume changes did indeed occur, not only in absolute terms but also when expressed as the ratio of the structures to each other and to the bulb as a whole. Although this study is exploratory in character, the data obtained may nevertheless contribute to a determination of risk factors due to late effects from HZE articles.

  3. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    PubMed

    Geissler, Maren; Dinse, Hubert R; Neuhoff, Sandra; Kreikemeier, Klaus; Meier, Carola

    2011-01-01

    Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  4. Triethyllead-induced peroxidative damage in various regions of the rat brain

    SciTech Connect

    Ali, S.F. ); Bondy, S.C. )

    1989-01-01

    Adult male Fisher 344 rats (8-10 wk old) were dosed ip with 1.75 mg/kg body weight of triethyllead chloride (TEL) for 5 consecutive days. Rats were sacrificed 1, 7, or 21 d after the last injection. The rate of lipid peroxidation was significantly elevated in frontal cortex at all three time points assayed (1, 7, or 21 d). However, hippocampal and cerebellar membranes showed no changes in peroxidative capacity at these time points. In order to determine whether cortical membrane damage was reflected in alteration of a restricted protein population, a series of high-affinity receptor binding sites was determined in cortical membranes derived from treated rats 7 d after the last injection of triethyllead. The rate of lipid peroxidation was significantly increased in the frontal cortex of triethyllead treated rats; however, no changes in the binding of ({sup 3}H)spiroperidol, ({sup 3}H)quinuclidinyl benzilate, and ({sup 3}H)benzodiazepine were seen in animals exposed to triethyllead. The cortical wet weight, protein content, and cell number were also unchanged by TEL treatment, reflecting an absence of gross damage.

  5. Correlation between Patent Foramen Ovale, Cerebral "Lesions" and Neuropsychometric Testing in Experienced Sports Divers: Does Diving Damage the Brain?

    PubMed

    Balestra, Costantino; Germonpré, Peter

    2016-01-01

    SCUBA diving exposes divers to decompression sickness (DCS). There has been considerable debate whether divers with a Patent Foramen Ovale of the heart have a higher risk of DCS because of the possible right-to-left shunt of venous decompression bubbles into the arterial circulation. Symptomatic neurological DCS has been shown to cause permanent damage to brain and spinal cord tissue; it has been suggested that divers with PFO may be at higher risk of developing subclinical brain lesions because of repeated asymptomatic embolization of decompression-induced nitrogen bubbles. These studies however suffer from several methodological flaws, including self-selection bias. We recruited 200 volunteer divers from a recreational diving population who had never suffered from DCS; we then randomly selected 50 of those for further investigation. The selected divers underwent brain Magnetic Resonance Imaging to detect asymptomatic brain lesions, contrast trans-oesophageal echocardiography for PFO, and extensive neuro-psychometric testing. Neuro-psychometry results were compared with a control group of normal subjects and a separate control group for subjects exposed to neurotoxic solvents. Forty two divers underwent all the tests and are included in this report. Grade 2 Patent Foramen Ovale was found in 16 (38%) of the divers; brain Unidentified Bright Objects (UBO's) were found in 5 (11.9%). There was no association between PFO and the presence of UBO's (P = 0.693) or their size (p = 0.5) in divers. Neuropsychometric testing in divers was significantly worse from controls in two tests, Digit Span Backwards (DSB; p < 0.05) and Symbol-Digit-Substitution (SDS; p < 0.01). Compared to subjects exposed to neurotoxic solvents, divers scored similar on DSB and SDS tests, but significantly better on the Simple Reaction Time (REA) and Hand-Eye Coordination (EYE) tests. There was no correlation between PFO, number of UBO's and any of the neuro-psychometric tests. We conclude that for

  6. Evidence of diffuse damage in frontal and occipital cortex in the brain of patients with post-traumatic stress disorder.

    PubMed

    Tavanti, Maricla; Battaglini, Marco; Borgogni, Federico; Bossini, Letizia; Calossi, Sara; Marino, Daniela; Vatti, Gianpaolo; Pieraccini, Fulvio; Federico, Antonio; Castrogiovanni, Paolo; De Stefano, Nicola

    2012-02-01

    A number of MRI studies have shown focal or diffuse cortical gray matter (GM) abnormalities in patients with post-traumatic stress disorder (PTSD). However, the results of these studies are unclear regarding the cortical regions involved in this condition, perhaps due to the heterogeneity of the PTSD population included or to the differences in the methodology used for the quantification of the brain structures. In this study, we assessed differences in cortical GM volumes between a selected group of 25 drug-naive PTSD patients with history of adulthood trauma and 25 matched non-traumatized controls. Analyses were performed by using two different automated methods: the structural image evaluation using normalization of atrophy (SIENAX) and the voxel-based morphometry (VBM), as we trusted that if these complementary techniques provided similar results, it would increase the confidence in the validity of the assessment. Results of SIENAX and VBM analyses similarly showed that cortical GM volume decreases in PTSD patients when compared to healthy controls, particularly in the frontal and occipital lobes. These decreases seem to correlate with clinical measures. Our findings suggest that in drug-naïve PTSD patients with a history of adulthood trauma, brain structural damage is diffuse, with a particular prevalence for the frontal and occipital lobes, and is clinically relevant.

  7. Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum

    PubMed Central

    Zhou, Kai; Boström, Martina; Ek, C. Joakim; Li, Tao; Xie, Cuicui; Xu, Yiran; Sun, Yanyan; Blomgren, Klas; Zhu, Changlian

    2017-01-01

    Posterior fossa tumors are the most common childhood intracranial tumors, and radiotherapy is one of the most effective treatments. However, irradiation induces long-term adverse effects that can have significant negative impacts on the patient’s quality of life. The purpose of this study was to characterize irradiation-induced cellular and molecular changes in the cerebellum. We found that irradiation-induced cell death occurred mainly in the external germinal layer (EGL) of the juvenile rat cerebellum. The number of proliferating cells in the EGL decreased, and 82.9% of them died within 24 h after irradiation. Furthermore, irradiation induced oxidative stress, microglia accumulation, and inflammation in the cerebellum. Interestingly, blood-brain barrier damage and blood flow reduction was considerably more pronounced in the cerebellum compared to other brain regions. The cerebellar volume decreased by 39% and the migration of proliferating cells to the internal granule layer decreased by 87.5% at 16 weeks after irradiation. In the light of recent studies demonstrating that the cerebellum is important not only for motor functions, but also for cognition, and since treatment of posterior fossa tumors in children typically results in debilitating cognitive deficits, this differential susceptibility of the cerebellum to irradiation should be taken into consideration for future protective strategies. PMID:28382975

  8. Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome.

    PubMed

    Hayashi, Masaharu; Araki, Satoshi; Kohyama, Jun; Shioda, Kei; Fukatsu, Ryo

    2005-01-01

    Xeroderma pigmentosum group A (XPA) and Cockayne syndrome (CS) are caused by a genetic defect of nucleotide excision repair mechanisms, showing cutaneous hypersensitivity to sunlight and progressive neurological disturbances. The cause of neurological abnormalities has yet to be clarified and fundamental treatments have never been established in both disorders. In order to investigate neurodegeneration of XPA and CS, we immunohistochemically examined deposition of oxidative stress-related materials of nucleotides and expression of two types of superoxide dismutase (SOD) in the brains from autopsy cases of XPA and CS. Cases of XPA but not CS demonstrated nuclear deposition of 8-hydroxy-2'-deoxyguanosine and cytoplasmic deposition of 8-hydroxyguanosine, being speculated as oxidative stress-related materials of DNA and RNA, respectively, in the globus pallidus. Four of five XPA cases exhibited reduced neuronal immunoreactivity for Cu/ZnSOD in the cerebral and cerebellar corteces in addition to the basal ganglia, and two XPA cases showed reduced immunoreactivity for MnSOD in the brain regions examined. In contrast, five CS cases demonstrated comparatively preserved immunoreactivity for Cu/ZnSOD and MnSOD. Both XPA and CS cases showed increased cytoplasmic immunoreactivity for Cu/ZnSOD and/or MnSOD in the microglial cells in the cerebral and cerebellar white matters. These findings suggest that oxidative damage to nucleotides and disturbed SOD expression can be involved in neurodegeneration in XPA but not CS.

  9. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke.

    PubMed

    Frankowski, Jan C; DeMars, Kelly M; Ahmad, Abdullah S; Hawkins, Kimberly E; Yang, Changjun; Leclerc, Jenna L; Doré, Sylvain; Candelario-Jalil, Eduardo

    2015-12-09

    Cyclooxygenase-2 (COX-2) is activated in response to ischemia and significantly contributes to the neuroinflammatory process. Accumulation of COX-2-derived prostaglandin E2 (PGE2) parallels the substantial increase in stroke-mediated blood-brain barrier (BBB) breakdown. Disruption of the BBB is a serious consequence of ischemic stroke, and is mainly mediated by matrix metalloproteinases (MMPs). This study aimed to investigate the role of PGE2 EP1 receptor in neurovascular injury in stroke. We hypothesized that pharmacological blockade or genetic deletion of EP1 protects against BBB damage and hemorrhagic transformation by decreasing the levels and activity of MMP-3 and MMP-9. We found that post-ischemic treatment with the EP1 antagonist, SC-51089, or EP1 genetic deletion results in a significant reduction in BBB disruption and reduced hemorrhagic transformation in an experimental model of transient focal cerebral ischemia. These neurovascular protective effects of EP1 inactivation are associated with a significant reduction in MMP-9/-3, less peripheral neutrophil infiltration, and a preservation of tight junction proteins (ZO-1 and occludin) composing the BBB. Our study identifies the EP1 signaling pathway as an important link between neuroinflammation and MMP-mediated BBB breakdown in ischemic stroke. Targeting the EP1 receptor could represent a novel approach to diminish the devastating consequences of stroke-induced neurovascular damage.

  10. Influence of the side of brain damage on postural upper-limb control including the scapula in stroke patients.

    PubMed

    Robertson, Johanna V G; Roche, Nicolas; Roby-Brami, Agnès

    2012-04-01

    Following stroke, control of both the contralesional (paretic) and ipsilesional (less affected) arms is altered. The purpose of this study was to analyse the consequences of stroke on joint rotations of both shoulder girdles, that is, glenohumeral (GH) and scapula motion. Because of hemispheric specialization, we hypothesized that changes would relate to the side of hemisphere damage. Nine stroke patients with left, and 9 with right hemisphere damage (LHD and RHD) and 9 healthy subjects were included. Reaching movements to targets positioned close, far and high in three directions were recorded using an electromagnetic system. Initial and final postures of the scapula, GH and elbow joint were evaluated. Inter-joint rotations throughout the movements were analysed using principal component analysis (PCA). The main finding was that initial and final postures of the contralesional and ipsilesional shoulders differed depending on the side of brain lesion. On the contralesional side, there was less scapula protraction and GH lateral rotation for both groups. Scapula tilt was less anterior in LHD patients, and GH elevation was greater in RHD patients. On the ipsilesional side, GH lateral rotation was reduced in both groups, and scapula protraction was reduced only for LHD patients. PCA confirmed that postures of both shoulders of the LHD group were substantially different to the healthy subjects, while only the contralesional arm of the RHD subjects differed. These results add to existing knowledge of hemispheric specialization, suggesting that the left hemisphere plays a greater role in bilateral joint postures than the right hemisphere.

  11. DNA damage in brain cells and behavioral deficits in mice after treatment with high doses of amantadine.

    PubMed

    Kaefer, Vanessa; Semedo, Juliane Garcia; Silva Kahl, Vivian Francília; Von Borowsky, Rafael Gomes; Gianesini, Janaína; Ledur Kist, Tarso Benigno; Pereira, Patrícia; Picada, Jaqueline Nascimento

    2010-11-01

    Amantadine (AMA) is an uncompetitive antagonist of the N-methyl-d-aspartate receptor, with clinical application, acting on treatment of influenza A virus and Parkinson's disease. It has been proposed that AMA can indirectly modulate dopaminergic transmission. In high doses, the central nervous system is its primary site of toxicity. To examine deleterious effects on CNS induced by AMA, this study evaluated possible neurobehavioral alterations induced by AMA such as stereotyped behavior, the effects on locomotion and memory and its possible genotoxic/mutagenic activities. Adult male CF-1 mice were treated with a systemic injection of AMA (15, 30 or 60 mg kg(-1) ) 20 min before behavioral tasks on open field and inhibitory avoidance. Higher AMA doses increased the latency to step-down inhibitory avoidance test in the training session in the inhibitory avoidance task. At 60 mg kg(-1) AMA induced impairing effects on locomotion and exploration and hence impaired habituation to a novel environment. Stereotyped behavior after each administration in a 3-day trial was observed, suggesting effects on dopaminergic system. Amantadine was not able to induce chromosomal mutagenesis or toxicity on bone marrow, as evaluated by the micronucleus assay. At the lowest dose tested, AMA did not induce DNA damage and it was unable to impair memory, locomotion, exploration or motivation in mice. However, higher AMA doses increased DNA damage in brain tissue, produced locomotor disturbances severe enough to preclude testing for learning and memory effects, and induced stereotypy, suggesting neurotoxicity.

  12. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates.

    PubMed

    Angeles, Danilyn M; Ashwal, Stephen; Wycliffe, Nathaniel D; Ebner, Charlotte; Fayard, Elba; Sowers, Lawrence; Holshouser, Barbara A

    2007-05-01

    To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p < or = 0.03) and higher Cho/Cr and glutamate/glutamine (Glx) Cr (p < or = 0.02) correlated with increased TDP incidence in the first 2 d of life (DOL). We also found that occipital gray matter (OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.

  13. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    PubMed Central

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). Results: The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). Conclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects. PMID:27222836

  14. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine.

    PubMed

    Silva-Adaya, Daniela; Pérez-De La Cruz, Verónica; Herrera-Mundo, María Nieves; Mendoza-Macedo, Karina; Villeda-Hernández, Juana; Binienda, Zbigniew; Ali, Syed F; Santamaría, Abel

    2008-05-01

    Excitotoxicity and disrupted energy metabolism are major events leading to nerve cell death in neurodegenerative disorders. These cooperative pathways share one common aspect: triggering of oxidative stress by free radical formation. In this work, we evaluated the effects of the antioxidant and energy precursor, levocarnitine (L-CAR), on the oxidative damage and the behavioral, morphological, and neurochemical alterations produced in nerve tissue by the excitotoxin and free radical precursor, quinolinic acid (2,3-pyrindin dicarboxylic acid; QUIN), and the mitochondrial toxin, 3-nitropropionic acid (3-NP). Oxidative damage was assessed by the estimation of reactive oxygen species formation, lipid peroxidation, and mitochondrial dysfunction in synaptosomal fractions. Behavioral, morphological, and neurochemical alterations were evaluated as markers of neurotoxicity in animals systemically administered with L-CAR, chronically injected with 3-NP and/or intrastriatally infused with QUIN. At micromolar concentrations, L-CAR reduced the three markers of oxidative stress stimulated by both toxins alone or in combination. L-CAR also prevented the rotation behavior evoked by QUIN and the hypokinetic pattern induced by 3-NP in rats. Morphological alterations produced by both toxins (increased striatal glial fibrillary acidic protein-immunoreactivity for QUIN and enhanced neuronal damage in different brain regions for 3-NP) were reduced by L-CAR. In addition, L-CAR prevented the synergistic action of 3-NP and QUIN to increase motor asymmetry and depleted striatal GABA levels. Our results suggest that the protective properties of L-CAR in the neurotoxic models tested are mostly mediated by its characteristics as an antioxidant agent.

  15. Pretreatment Blood Brain Barrier Damage and Post Treatment Intracranial Hemorrhage in Patients Receiving IV tPA

    PubMed Central

    Leigh, Richard; Jen, Shyian S.; Hillis, Argye E.; Krakauer, John W.; Barker, Peter B.

    2014-01-01

    Background and Purpose Early blood brain barrier (BBB) damage after acute ischemic stroke (AIS) has previously been qualitatively linked to subsequent intracranial hemorrhage (ICH). In this quantitative study, it was investigated whether the amount of BBB damage evident on pre-tPA MRI scans was related to the degree of post-tPA ICH in patients with AIS. Methods Analysis was performed on a database of patients with AIS provided by the STIR and VISTA Imaging Investigators. Patients with perfusion-weighted imaging (PWI) lesions >10mL and negative gradient-recalled echo (GRE) imaging prior to IV tPA were included. Post processing of the PWI source images was performed to estimate changes in BBB permeability within the perfusion deficit relative to the unaffected hemisphere. Follow-up GRE images were reviewed for evidence of ICH and divided into three groups according to ECASS criteria: no hemorrhage (NH), hemorrhagic infarction (HI), and parenchymal hematoma (PH). Results 75 patients from the database met the inclusion criteria, 28 of whom experienced ICH, of which 19 were classified as HI, and nine were classified as PH. The mean permeability (±standard deviations), expressed as an index of contrast leakage, was 17.0%±8.8 in the NH group, 19.4%±4.0 in the HI group, and 24.6%±4.5 in the PH group. Permeability was significantly correlated with ICH grade in univariate (p=0.007) and multivariate (p=0.008) linear regression modeling. Conclusions A PWI-derived index of BBB damage measured prior to IV tPA is associated with the severity of ICH after treatment in patients with AIS. PMID:24876245

  16. DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia.

    PubMed

    Malyapa, R S; Ahern, E W; Bi, C; Straube, W L; LaRegina, M; Pickard, W F; Roti Roti, J L

    1998-06-01

    The present study was done to confirm the reported observation that low-intensity acute exposure to 2450 MHz radiation causes DNA single-strand breaks (Lai and Singh, Bioelectromagnetics 16, 207-210, 1995). Male Sprague-Dawley rats weighing approximately 250 g were irradiated with 2450 MHz continuous-wave (CW) microwaves for 2 h at a specific absorption rate of 1.2 W/kg in a cylindrical waveguide system (Guy et al., Radio Sci. 14, 63-74, 1979). There was no associated rise in the core body temperature of the rats. After the irradiation or sham treatments, rats were euthanized by either CO2 asphyxia or decapitation by guillotine (eight pairs of animals per euthanasia group). After euthanasia the brains were removed and immediately immersed in cold Ames medium and the cells of the cerebral cortex and the hippocampus were dissociated separately and subjected to the alkaline comet assay. Irrespective of whether the rats were euthanized by CO2 asphyxia or decapitated by guillotine, no significant differences were observed between either the comet length or the normalized comet moment of cells from either the cerebral cortex or the hippocampus of sham-treated rats and those from the irradiated rats. However, the data for the rats asphyxiated with CO2 showed more intrinsic DNA damage and more experiment-to-experiment variation than did the data for rats euthanized by guillotine. Therefore, the guillotine method of euthanasia is the most appropriate in studies relating to DNA damage. Furthermore, we did not confirm the observation that DNA damage is produced in cells of the rat cerebral cortex or the hippocampus after a 2-h exposure to 2450 MHz CW microwaves or at 4 h after the exposure.

  17. Brain Damage and Motor Cortex Impairment in Chronic Obstructive Pulmonary Disease: Implication of Nonrapid Eye Movement Sleep Desaturation

    PubMed Central

    Alexandre, Francois; Heraud, Nelly; Sanchez, Anthony M.J.; Tremey, Emilie; Oliver, Nicolas; Guerin, Philippe; Varray, Alain

    2016-01-01

    Study Objectives: Nonrapid eye movement (NREM) sleep desaturation may cause neuronal damage due to the withdrawal of cerebrovascular reactivity. The current study (1) assessed the prevalence of NREM sleep desaturation in nonhypoxemic patients with chronic obstructive pulmonary disease (COPD) and (2) compared a biological marker of cerebral lesion and neuromuscular function in patients with and without NREM sleep desaturation. Methods: One hundred fifteen patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 2 and 3), resting PaO2 of 60–80 mmHg, aged between 40 and 80 y, and without sleep apnea (apnea-hypopnea index < 15) had polysomnographic sleep recordings. In addition, twenty-nine patients (substudy) were assessed i) for brain impairment by serum S100B (biological marker of cerebral lesion), and ii) for neuromuscular function via motor cortex activation and excitability and maximal voluntary quadriceps strength measurement. Results: A total of 51.3% patients (n = 59) had NREM sleep desaturation (NREMDes). Serum S100B was higher in the NREMDes patients of the substudy (n = 14): 45.1 [Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.ml−1 (P = 0.028). Motor cortex activation and excitability were lower in NREMDes patients (both P = 0.03), but muscle strength was comparable between groups (P = 0.58). Conclusions: Over half the nonhypoxemic COPD patients exhibited NREM sleep desaturation associated with higher values of the cerebral lesion biomarker and lower neural drive reaching the quadriceps during maximal voluntary contraction. The lack of muscle strength differences between groups suggests a compensatory mechanism(s). Altogether, the results are consistent with an involvement of NREM sleep desaturation in COPD brain impairment. Clinical Trial Registration: The study was registered at www.clinicaltrials.gov as NCT01679782. Citation: Alexandre F, Heraud N, Sanchez AM, Tremey E, Oliver N, Guerin P, Varray A. Brain

  18. Early diagnosis of diffuse brain damage resulting from a blunt head injury.

    PubMed

    Ogata, Mamoru

    2007-03-01

    Diffuse types of traumatic brain injury (TBI) are more difficult to diagnose than focal types in forensic postmortem examination, since macroscopic abnormalities may be minimal. In addition, most microscopic findings are not specific to TBI and are sometimes not obvious in cases when the survival period is short. Therefore, early diagnosis of diffuse TBI is most difficult. Histopathological and immunohistochemical examinations of various elements including axons, nerve cells, and glial cells in a sufficient number of blocks are indispensable. Mapping of changes in these elements with complicated focal lesions, even if the lesions are trivial, on anatomical diagrams would be useful. The combination of histopathological and immunohistochemical examinations as well as analysis of the exact history of the trauma, if possible, and elimination of other causes of death would lead to accurate diagnosis of diffuse types of TBI in cases when the survival period is brief.

  19. [Neurotoxic effect of toluene on background of prenatal hypoxic brain damage to white rats].

    PubMed

    Vokina, V A; Sosedova, L M; Rukavishnikov, V S; Iakimova, N L; Lizarev, A V

    2014-01-01

    Comparative study covered influence of toluene on behavioral parameters, cognitive abilities and brain bioelectric activity in white rats with normal embryonic development or with prenatal hypoxia. Prenatal hypoxia was simulated by subcutaneous injection of 50 mg/kg sodium nitrite into female white rats on day 13-14 of gestation. The offspring at the age of 2, 5-3 months was exposed to toluene (concentration of 560 mg/m3, 4 hours per day, 5 days per week, over 4 weeks). After the exposure, the animals were estimated for individual and intraspecific behaviour in "open fields and "resident-intruder" tests, for cognitive abilities in "radial maze" training, EEG with visual and auditory evoked potentials. Acute hypoxia at early stages of organogenesis appeared to be burdening factor and to influence consequences of toluene intoxication.

  20. Vaccinia virus-induced smallpox postvaccinal encephalitis in case of blood-brain barrier damage.

    PubMed

    Garcel, Aude; Fauquette, William; Dehouck, Marie-Pierre; Crance, Jean-Marc; Favier, Anne-Laure

    2012-02-08

    Smallpox vaccination is the only currently effective mean to combat the threat of variola virus used as a bioterrorism agent, although it is responsible for a rare but serious complication, the postvaccinal encephalitis (PVE). Development of safer vaccines therefore is a high priority as the PVE physiopathology is not well understood to date. If vaccinia virus (VACV) is responsible for PVE by central nervous system (CNS) dissemination, trans-migration of the VACV across the blood-brain barrier (BBB) would be supposed to be essential. Given the complexity of the pathogenesis of vaccinia neurovirulence, an in vitro BBB model was used to explore the mechanism of VACV to induce BBB permeability. Two VACV strains were studied, the neurovirulent Western Reserve strain (VACV-WR) and the vaccine reference Lister strain (VACV-List). A mouse model was also developed to study the ability of these two viral strains to propagate in the brain from the blood compartment, their neurovirulence and their neuropathogenesis. In vitro, the loss of permeability resulted from the tight-junctions disruption was induced by virus replication. The ability of VACV to release infectious particles at the abluminal side suggests the capacity of both VACV strains to migrate across the BBB from the blood to the CNS. In vivo, the virus replication in mice CNS was strain-dependent. The VACV-WR laboratory strain proved to be neuroinvasive and neurovirulent, whereas the VACV-List strain is safe in physiological conditions. Mice PVE was observed only with VACV-WR in the co-infection model, when BBB opening was obtained by lipopolysaccharide (LPS) treatment. This study suggests that VACV is able to cross the BBB but encephalitis occurs only in the presence of a co-infection by bacteria. So, a model of co-infection, mimicked by LPS treatment, could have important implication towards the assessment of neurovirulence of new vaccines.

  1. A link between vascular damage and cognitive deficits after whole-brain radiation therapy for cancer: A clue to other types of dementia?

    PubMed

    Yamada, Maki K

    Whole brain radiation therapy for the treatment of tumors can sometimes cause cognitive impairment. Memory deficits were noted in up to 50% of treated patients over a short period of several months. In addition, an increased rate of dementia in young patients has been noted over the longer term, i.e. years. A deficit in neurogenesis after irradiation has been postulated to be the main cause of cognitive decline in patients, but recent data on irradiation therapy for limited parts of the brain appear to indicate other possibilities. Irradiation can directly damage various types of cells other than neuronal stem cells. However, this paper will focus on injury to brain vasculature leading to cognitive decline since vessels represent a better therapeutic target for drug development than other cells in the brain because of the blood-brain barrier.

  2. The Mammalian Brain in the Electromagnetic Fields Designed by Man with Special Reference to Blood-Brain Barrier Function, Neuronal Damage and Possible Physical Mechanisms

    NASA Astrophysics Data System (ADS)

    Salford, L. G.; Nittby, H.; Brun, A.; Grafström, G.; Malmgren, L.; Sommarin, M.; Eberhardt, J.; Widegren, B.; Persson, B. R.

    Life on earth was formed during billions of years, exposed to,and shaped by the original physical forces such as gravitation, cosmic irradiation, atmospheric electric fields and the terrestrial magnetism. The Schumann resonances at 7.4 Hz are an example of oscillations possibly important for life. The existing organisms are created to function in harmony with these forces. However, in the late 19th century mankind introduced the use of electricity, in the early 20th century long-wave radio and in the 1940-ies short-wave radio. High frequency RF was introduced in the 50-ies as FM and television and during the very last decades, microwaves of the modern communication society spread around the world. Today, however, one third of the world's population is owner of the microwave-producing mobile phones and an even larger number is exposed to the cordless RF emitting systems. To what extent are all living organisms affected by these, almost everywhere present radio freque ncy fields? And what will be the effects of many years of continuing exposure? Since 1988 our group has studied the effects upon the mammalian blood-brain barrier (BBB) in rats by non-thermal radio frequency electromagnetic fields (RF-EMF). These have been shown to cause significantly increased leakage of the rats' own blood albumin through the BBB of exposed rats, at energy levels of 1W/kg and below, as compared to non-exposed animals in a total series of about two thousand animals.-6)} One remarkable observation is the fact that the lowest energy levels, with whole-body average power densities below 10mW/kg, give rise to the most pronounced albumin leakage. If mobile communication, even at extremely low energy levels, causes the users' own albumin to leak out through the BBB, also other unwanted and toxic molecules in the blood, may leak into the brain tissue and concentrate in and damage the neurons and glial cells of the brain. In later studies we have shown that a 2-h exposure to GSM 915 MHz, at

  3. The "self-awareness-anosognosia" paradox explained: How can one process be associated with activation of, and damage to, opposite sides of the brain?

    PubMed

    Morin, Alain

    2017-01-01

    Healthy volunteers engaged in self-referential tasks such as reflecting on their personality traits exhibit mostly left lateralized brain activation, yet patients with lack of awareness of their deficit suffer from predominantly right hemisphere damage. How can the same basic process of self-awareness be associated with opposite sides of the brain? Anosognosia and self-awareness substantially differ on important dimensions and thus should not be equated. It is proposed that (1) anosognosia does not actually result from uniquely right hemisphere damage; (2) self-awareness and anosognosia do not constitute unitary concepts and encompass multiple other related processes, most likely associated with activity in distinct anatomical networks; and (3) impaired awareness of deficit is mostly caused by problems with self-monitoring, pre-/post-brain damage comparisons of performance, and episodic memory, and is more passive, unintentional, and about the body. Self-awareness produced by inviting participants to intentionally and actively think about more mental aspects of the self relies on judgements, inferential reasoning, imagination, and semantic memory. Consequently, the "self-awareness-anosognosia" paradox is only apparent. Furthermore, the claim that healthy self-awareness is located in the right hemisphere because anosognosia results from damage to this side of the brain must be fallacious.

  4. Evidence for Separate Tonal and Segmental Tiers in the Lexical Specification of Words: A Case Study of a Brain-Damaged Chinese Speaker

    ERIC Educational Resources Information Center

    Liang, Jie; van Heuven, Vincent J.

    2004-01-01

    We present an acoustic study of segmental and prosodic properties of words produced by a female speaker of Chinese with left-hemisphere brain damage. We measured the location of the point vowels /a, e, @?, i, y, o, u/ and determined their separation in the vowel plane, and their perceptual distinctivity. Similarly, the acoustic properties of the…

  5. MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits.

    PubMed

    Vinciguerra, Antonio; Formisano, Luigi; Cerullo, Pierpaolo; Guida, Natascia; Cuomo, Ornella; Esposito, Alba; Di Renzo, Gianfranco; Annunziato, Lucio; Pignataro, Giuseppe

    2014-10-01

    Na(+)/Ca2+ exchanger (NCX) is a plasma membrane transporter that, by regulating Ca2+ and Na(+) homeostasis, contributes to brain stroke damage. The objectives of this study were to investigate whether there might be miRNAs in the brain able to regulate NCX1 expression and, thereafter, to set up a valid therapeutic strategy able to reduce stroke-induced brain damage by regulating NCX1 expression. Thus, we tested whether miR-103-1, a microRNA belonging to the miR-103/107 family that on the basis of sequence analysis might be a potential NCX1 regulator, could control NCX1 expression. The role of miR-103-1 was assessed in a rat model of transient cerebral ischemia by evaluating the effect of the correspondent antimiRNA on both brain infarct volume and neurological deficits. NCX1 expression was dramatically reduced when cortical neurons were exposed to miR-103-1. This alleged tight regulation of NCX1 by miR-103-1 was further corroborated by luciferase assay. Notably, antimiR-103-1 prevented NCX1 protein downregulation induced by the increase in miR-103-1 after brain ischemia, thereby reducing brain damage and neurological deficits. Overall, the identification of a microRNA able to selectively regulate NCX1 in the brain clarifies a new important molecular mechanism of NCX1 regulation in the brain and offers the opportunity to develop a new therapeutic strategy for stroke.

  6. Association between neuroserpin and molecular markers of brain damage in patients with acute ischemic stroke

    PubMed Central

    2011-01-01

    Background Neuroserpin has shown neuroprotective effects in animal models of cerebral ischemia and has been associated with functional outcome after ischemic stroke. Our aim was to study whether neuroserpin serum levels could be associated to biomarkers of excitotoxicity, inflammation and blood brain barrier disruption. Methods We prospectively included 129 patients with ischemic stroke (58.1% male; mean age, 72.4 ± 9.6 years) not treated with tPA within 12 hours (h) of symptoms onset (mean time, 4.7 ± 2.1 h). Poor functional outcome at 3 months was considered as a modified Rankin scale score >2. Serum levels of neuroserpin, Interleukin 6 (IL-6), Intercellular adhesion molecule-1 (ICAM-1), active Matrix metalloproteinase 9 (MMP-9), and cellular fibronectin (cFn) (determined by ELISA) and glutamate (determined by HPLC) were measured on admission, 24 and 72 h. The main variable was considered the decrease of neuroserpin levels within the first 24 h. ROC analysis was used to select the best predictive value for neuroserpin to predict poor functional outcome due to a lack of linearity. Results The decrease of neuroserpin levels within the first 24 h was negatively correlated with serum levels at 24 hours of glutamate (r = -0.642), IL-6 (r = -0.678), ICAM-1 (r = -0.345), MMP-9 (r = -0.554) and cFn (r = -0.703) (all P < 0.0001). In the multivariate analysis, serum levels of glutamate (OR, 1.04; CI95%, 1.01-1.06, p = 0.001); IL-6 (OR, 1.4; CI95%, 1.1-1.7, p = 0.001); and cFn (OR, 1.3; CI95%, 1.1-1.6, p = 0.002) were independently associated with a decrease of neuroserpin levels <70 ng/mL at 24 h after adjusting for confounding factors. Conclusions These findings suggest that neuroprotective properties of neuroserpin may be related to the inhibition of excitotoxicity, inflammation, as well as blood brain barrier disruption that occur after acute ischemic stroke. PMID:21569344

  7. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: Lessons learned from the bedside.

    PubMed

    Kochanek, Patrick M.; Clark, Robert S.B.; Ruppel, Randall A.; Adelson, P. David; Bell, Michael J.; Whalen, Michael J.; Robertson, Courtney L.; Satchell, Margaret A.; Seidberg, Neal A.; Marion, Donald W.; Jenkins, Larry W.

    2000-07-01

    OBJECTIVE: To present a state-of-the-art review of mechanisms of secondary injury in the evolution of damage after severe traumatic brain injury in infants and children. DATA SOURCES: We reviewed 152 peer-reviewed publications, 15 abstracts and proceedings, and other material relevant to the study of biochemical, cellular, and molecular mechanisms of damage in traumatic brain injury. Clinical studies of severe traumatic brain injury in infants and children were the focus, but reports in experimental models in immature animals were also considered. Results from both clinical studies in adults and models of traumatic brain injury in adult animals were presented for comparison. DATA SYNTHESIS: Categories of mechanisms defined were those associated with ischemia, excitotoxicity, energy failure, and resultant cell death cascades; secondary cerebral swelling; axonal injury; and inflammation and regeneration. CONCLUSIONS: A constellation of mediators of secondary damage, endogenous neuroprotection, repair, and regeneration are set into motion in the brain after severe traumatic injury. The quantitative contribution of each mediator to outcome, the interplay between these mediators, and the integration of these mechanistic findings with novel imaging methods, bedside physiology, outcome assessment, and therapeutic intervention remain an important target for future research.

  8. A clinically relevant model of perinatal global ischemic brain damage in rats.

    PubMed

    Yang, Ting; Zhuang, Lei; Terrando, Niccolò; Wu, Xinmin; Jonhson, Mark R; Maze, Mervyn; Ma, Daqing

    2011-04-06

    We have designed a clinically relevant model of perinatal asphyxia providing intrapartum hypoxia in rats. On gestation day 22 SD rats were anesthetized and the uterine horns were exteriorized and placed in a water bath at 37°C for up to 20min. After this, pups were delivered from the uterus and manually stimulated to initiate breathing in an incubator at 37°C for 1 h in air. Brains were harvested and stained with cresyl violet, caspase-3, and TUNEL to detect morphological and apoptotic changes on postnatal days (PND) 1, 3, and 7. Separate cohorts were maintained until PND 50 and tested for learning and memory using Morris water maze (WM). Survival rate was decreased with longer hypoxic time, and 100% mortality was noted when hypoxia time was beyond 18min. Apoptosis was increased with the duration of hypoxia with neuronal loss and cell shrinkage in the CA1 of hippocampus. The time taken for the juveniles to locate the hidden platform during WM was increased in animals subjected to hypoxia. These data demonstrate that perinatal ischemic injury leads to neuronal death in the hippocampus and long-lasting cognitive dysfunction. This model mimics hypoxic ischemic encephalopathy in humans and may be appropriate for investigating therapeutic interventions.

  9. Planning for selective amygdalohippocampectomy involving less neuronal fiber damage based on brain connectivity using tractography

    PubMed Central

    Lee, Seung-Hak; Kim, Mansu; Park, Hyunjin

    2015-01-01

    Temporal lobe resection is an important treatment option for epilepsy that involves removal of potentially essential brain regions. Selective amygdalohippocampectomy is a widely performed temporal lobe surgery. We suggest starting the incision for selective amygdalohippocampectomy at the inferior temporal gyrus based on diffusion magnetic resonance imaging (MRI) tractography. Diffusion MRI data from 20 normal participants were obtained from Parkinson's Progression Markers Initiative (PPMI) database (www.ppmi-info.org). A tractography algorithm was applied to extract neuronal fiber information for the temporal lobe, hippocampus, and amygdala. Fiber information was analyzed in terms of the number of fibers and betweenness centrality. Distances between starting incisions and surgical target regions were also considered to explore the length of the surgical path. Middle temporal and superior temporal gyrus regions have higher connectivity values than the inferior temporal gyrus and thus are not good candidates for starting the incision. The distances between inferior temporal gyrus and surgical target regions were shorter than those between middle temporal gyrus and target regions. Thus, the inferior temporal gyrus is a good candidate for starting the incision. Starting the incision from the inferior temporal gyrus would spare the important (in terms of betweenness centrality values) middle region and shorten the distance to the target regions of the hippocampus and amygdala. PMID:26330834

  10. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies.

    PubMed

    Narayana, Ponnada A; Herrera, Juan J; Bockhorst, Kurt H; Esparza-Coss, Emilio; Xia, Ying; Steinberg, Joel L; Moeller, F Gerard

    2014-03-30

    The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure.

  11. Neuroendocrine Disturbances after Brain Damage: An Important and Often Undiagnosed Disorder.

    PubMed

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-04-28

    Traumatic brain injury (TBI) is a common and significant public health problem all over the world. Until recently, TBI has been recognized as an uncommon cause of hypopituitarism. The studies conducted during the last 15 years revealed that TBI is a serious cause of hypopituitarism. Although the underlying pathophysiology has not yet been fully clarified, new data indicate that genetic predisposition, autoimmunity and neuroinflammatory changes may play a role in the development of hypopituitarism. Combative sports, including boxing and kickboxing, both of which are characterized by chronic repetitive head trauma, have been shown as new causes of neuroendocrine abnormalities, mainly hypopituitarism, for the first time during the last 10 years. Most patients with TBI-induced pituitary dysfunction remain undiagnosed and untreated because of the non-specific and subtle clinical manifestations of hypopituitarism. Replacement of the deficient hormones, of which GH is the commonest hormone lost, may not only reverse the clinical manifestations and neurocognitive dysfunction, but may also help posttraumatic disabled patients resistant to classical treatment who have undiagnosed hypopituitarism and GH deficiency in particular. Therefore, early diagnosis, which depends on the awareness of TBI as a cause of neuroendocrine abnormalities among the medical community, is crucially important.

  12. Inhibition of cytoskeletal protein carbonylation may protect against oxidative damage in traumatic brain injury

    PubMed Central

    Zhang, Qiusheng; Zhang, Meng; Huang, Xianjian; Liu, Xiaojia; Li, Weiping

    2016-01-01

    Oxidative stress is the principal factor in traumatic brain injury (TBI) that initiates protracted neuronal dysfunction and remodeling. Cytoskeletal proteins are known to be carbonylated under oxidative stress; however, the complex molecular and cellular mechanisms of cytoskeletal protein carbonylation remain poorly understood. In the present study, the expression levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were investigated in PC12 cells treated with H2O2. Western blot analysis was used to monitor the carbonylation levels of β-actin and β-tubulin. The results indicated that oxidative stress was increased in PC12 cells that were treated with H2O2 for 24 or 48 h. In addition, increased carbonylation levels of β-actin and β-tubulin were detected in H2O2-treated cells. However, these carbonylation levels were reduced by pretreatment with aminoguanidine, a type of reactive carbonyl species chelating agent, and a similar trend was observed following overexpression of proteasome β5 via transgenic technology. In conclusion, the present study results suggested that the development of TBI may cause carbonylation of cytoskeletal proteins, which would then undermine the stability of cytoskeletal proteins. Thus, the development of TBI may be improved via the inhibition of cytoskeletal protein carbonylation. PMID:28101189

  13. Dental management in dysphagia syndrome patients with previously acquired brain damages

    PubMed Central

    Bramanti, Ennio; Arcuri, Claudio; Cecchetti, Francesco; Cervino, Gabriele; Nucera, Riccardo; Cicciù, Marco

    2012-01-01

    Dysphagia is defined as difficulty in swallowing food (semi-solid or solid), liquid, or both. Difficulty in swallowing affects approximately 7% of population, with risk incidence increasing with age. There are many disorder conditions predisposing to dysphagia such as mechanical strokes or esophageal diseases even if neurological diseases represent the principal one. Cerebrovascular pathology is today the leading cause of death in developing countries, and it occurs most frequently in individuals who are at least 60 years old. Swallowing disorders related to a stroke event are common occurrences. The incidence ranging is estimated from 18% to 81% in the acute phase and with a prevalence of 12% among such patients. Cerebral, cerebellar, or brain stem strokes can influence swallowing physiology while cerebral lesions can interrupt voluntary control of mastication and bolus transport during the oral phase. Among the most frequent complications of dysphagia are increased mortality and pulmonary risks such as aspiration pneumonia, dehydration, malnutrition, and long-term hospitalization. This review article discusses the epidemiology of dysphagia, the normal swallowing process, pathophysiology, signs and symptoms, diagnostics, and dental management of patients affected. PMID:23162574

  14. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage.

    PubMed

    Bae, Ok-Nam; Majid, Arshad

    2013-08-21

    Urgent need exists for new therapeutic options in ischemic stroke. We recently demonstrated that carnosine, an endogenous dipeptide consisting of alanine and histidine, is robustly neuroprotective in ischemic brain injury and has a wide clinically relevant therapeutic time window. The precise mechanistic pathways that mediate this neuroprotective effect are not known. Following in vivo administration, carnosine is hydrolyzed into histidine, a precursor of histamine. It has been hypothesized that carnosine may exert its neuroprotective activities through the histidine/histamine pathway. Herein, we investigated whether the neuroprotective effect of carnosine is mediated by the histidine/histamine pathway using in vitro primary astrocytes and cortical neurons, and an in vivo rat model of ischemic stroke. In primary astrocytes, carnosine significantly reduced ischemic cell death after oxygen-glucose deprivation, and this effect was abolished by histamine receptor type I antagonist. However, histidine or histamine did not exhibit a protective effect on ischemic astrocytic cell death. In primary neuronal cultures, carnosine was found to be neuroprotective but histamine receptor antagonists had no effect on the extent of neuroprotection. The in vivo effect of histidine and carnosine was compared using a rat model of ischemic stroke; only carnosine exhibited neuroprotection. Taken together, our data demonstrate that although the protective effects of carnosine may be partially mediated by activity at the histamine type 1 receptor on astrocytes, the histidine/histamine pathway does not appear to play a critical role in carnosine induced neuroprotection.

  15. Chronic Cocaine Administration Causes Extensive White Matter Damage in Brain: Diffusion Tensor Imaging and Immunohistochemistry Studies

    PubMed Central

    Narayana, Ponnada A.; Herrera, Juan J.; Bockhorst, Kurt H; Esparza-Coss, Emilio; Xia, Ying; Steinberg, Joel L.; Moeller, F. Gerard

    2014-01-01

    The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100 mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein – 43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). Significant increase in the activity in the fine motor movements and decrease in the number of rearing events were observed in the cocaine treated animals. Reduced MBP and Nogo-A, and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and increased GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure. PMID:24507117

  16. Dual-tasking postural control in patients with right brain damage.

    PubMed

    Bourlon, Clémence; Lehenaff, Laurent; Batifoulier, Cécile; Bordier, Aurélie; Chatenet, Aurélia; Desailly, Eric; Fouchard, Christian; Marsal, Muriel; Martinez, Marianne; Rastelli, Federica; Thierry, Anaïs; Bartolomeo, Paolo; Duret, Christophe

    2014-01-01

    The control of dual-tasking effects is a daily challenge in stroke neurorehabilitation. It maybe one of the reasons why there is poor functional prognosis after a stroke in the right hemisphere, which plays a dominant role in posture control. The purpose of this study was to explore cognitive motor interference in right brain-lesioned and healthy subjects maintaining a standing position while performing three different tasks: a control task, a simple attentional task and a complex attentional task. We measured the sway area of the subjects on a force platform, including the center of pressure and its displacements. Results showed that stroke patients presented a reduced postural sway compared to healthy subjects, who were able to maintain their posture while performing a concomitant attentional task in the same dual-tasking conditions. Moreover, in both groups, the postural sway decreased with the increase in attentional load from cognitive tasks. We also noticed that the stability of stroke patients in dual-tasking conditions increased together with the weight-bearing rightward deviation, especially when the attentional load of the cognitive tasks and lower limb motor impairments were high. These results suggest that stroke patients and healthy subjects adopt a similar postural regulation pattern aimed at maintaining stability in dual-tasking conditions involving a static standing position and different attention-related cognitive tasks. Our results indicate that attention processes might facilitate static postural control.

  17. Neuroendocrine Disturbances after Brain Damage: An Important and Often Undiagnosed Disorder

    PubMed Central

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a common and significant public health problem all over the world. Until recently, TBI has been recognized as an uncommon cause of hypopituitarism. The studies conducted during the last 15 years revealed that TBI is a serious cause of hypopituitarism. Although the underlying pathophysiology has not yet been fully clarified, new data indicate that genetic predisposition, autoimmunity and neuroinflammatory changes may play a role in the development of hypopituitarism. Combative sports, including boxing and kickboxing, both of which are characterized by chronic repetitive head trauma, have been shown as new causes of neuroendocrine abnormalities, mainly hypopituitarism, for the first time during the last 10 years. Most patients with TBI-induced pituitary dysfunction remain undiagnosed and untreated because of the non-specific and subtle clinical manifestations of hypopituitarism. Replacement of the deficient hormones, of which GH is the commonest hormone lost, may not only reverse the clinical manifestations and neurocognitive dysfunction, but may also help posttraumatic disabled patients resistant to classical treatment who have undiagnosed hypopituitarism and GH deficiency in particular. Therefore, early diagnosis, which depends on the awareness of TBI as a cause of neuroendocrine abnormalities among the medical community, is crucially important. PMID:26239451

  18. The assessment of pragmatics in Iranian patients with right brain damage

    PubMed Central

    Sobhani-Rad, Davood; Ghorbani, Askar; Ashayeri, Hassan; Jalaei, Shohereh; Mahmoodi-Bakhtiari, Behrooz

    2014-01-01

    Background: Pragmatics is appropriate use of language across a variety of social contexts that provides accurate interpretation of intentions. The occurrence of the right hemisphere lesions can interfere with pragmatic abilities, and particularly with the processing of nonliteral speech acts. Methods: Since the objective of this study was to assess different aspects of pragmatic competence in the right hemisphere damage (RHD) patients, 20 Iranian patients with right hemisphere lesions were examined by adult pragmatic profile (APP) and a novel checklist was introduced for Persian language speaking individuals. Meanwhile, 40 healthy adult individuals, who were age and gender matched with RHD patients, were considered as the control group. After obtaining video records, all subjects were evaluated for 35 pragmatic skills, including 24 verbal, 5 paralinguistic, and 6 nonverbal aspects, by a two-point scale system. Results: Studying RHD patients and their healthy counterparts revealed that the performance by participants with right hemisphere lesions exhibited a high degree of inappropriate pragmatic abilities compared with controls in all domains. Furthermore, RHD patients showed a trend of increasing difficulty in understanding and producing different pragmatic phenomena, including standard communication acts. Conclusion: Present results indicated that the right hemisphere lesions significantly affected pragmatic abilities in verbal, paralinguistic and nonverbal aspects. Such a pattern of performance, which is in line with deficits previously reported for RHD, proved the unquestioned role of the right hemisphere in processing nonliteral language. PMID:25295151

  19. When brain damage "improves" perception: neglect patients can localize motion-shifted probes better than controls.

    PubMed

    de Vito, Stefania; Lunven, Marine; Bourlon, Clémence; Duret, Christophe; Cavanagh, Patrick; Bartolomeo, Paolo

    2015-12-01

    When we look at bars flashed against a moving background, we see them displaced in the direction of the upcoming motion (flash-grab illusion). It is still debated whether these motion-induced position shifts are low-level, reflexive consequences of stimulus motion or high-level compensation engaged only when the stimulus is tracked with attention. To investigate whether attention is a causal factor for this striking illusory position shift, we evaluated the flash-grab illusion in six patients with damaged attentional networks in the right hemisphere and signs of left visual neglect and six age-matched controls. With stimuli in the top, right, and bottom visual fields, neglect patients experienced the same amount of illusion as controls. However, patients showed no significant shift when the test was presented in their left hemifield, despite having equally precise judgments. Thus, paradoxically, neglect patients perceived the position of the flash more veridically in their neglected hemifield. These results suggest that impaired attentional processes can reduce the interaction between a moving background and a superimposed stationary flash, and indicate that attention is a critical factor in generating the illusory motion-induced shifts of location.

  20. Evaluating the Role of Reduced Oxygen Saturation and Vascular Damage in Traumatic Brain Injury Using Magnetic Resonance Perfusion-Weighted Imaging and Susceptibility-Weighted Imaging and Mapping.

    PubMed

    Kou, Zhifeng; Ye, Yongquan; Haacke, Ewart Mark

    2015-10-01

    The cerebral vasculature, along with neurons and axons, is vulnerable to biomechanical insult during traumatic brain injury (TBI). Trauma-induced vascular injury is still an underinvestigated area in TBI research. Cerebral blood flow and metabolism could be important future treatment targets in neural critical care. Magnetic resonance imaging offers a number of key methods to probe vascular injury and its relationship with traumatic hemorrhage, perfusion deficits, venous blood oxygen saturation changes, and resultant tissue damage. They make it possible to image the hemodynamics of the brain, monitor regional damage, and potentially show changes induced in the brain's function not only acutely but also longitudinally following treatment. These methods have recently been used to show that even mild TBI (mTBI) subjects can have vascular abnormalities, and thus they provide a major step forward in better diagnosing mTBI patients.

  1. A Cannabinoid Receptor 2 Agonist Prevents Thrombin-Induced Blood-Brain Barrier Damage via the Inhibition of Microglial Activation and Matrix Metalloproteinase Expression in Rats.

    PubMed

    Li, Lin; Tao, Yihao; Tang, Jun; Chen, Qianwei; Yang, Yang; Feng, Zhou; Chen, Yujie; Yang, Liming; Yang, Yunfeng; Zhu, Gang; Feng, Hua; Chen, Zhi

    2015-12-01

    Thrombin mediates the life-threatening cerebral edema and blood-brain barrier (BBB) damage that occurs after intracerebral hemorrhage (ICH). We previously found that the selective cannabinoid receptor 2 (CB2R) agonist JWH-133 reduced brain edema and neurological deficits following germinal matrix hemorrhage (GMH). We explored whether CB2R stimulation ameliorated thrombin-induced brain edema and BBB permeability as well as the possible molecular mechanism involved. A total of 144 Sprague-Dawley (S-D) rats received a thrombin (20 U) injection in the right basal ganglia. JWH-133 (1.5 mg/kg) or SR-144528 (3.0 mg/kg) and vehicle were intraperitoneally (i.p.) injected 1 h after surgery. Brain water content measurement, Evans blue (EB) extravasation, Western blot, and immunofluorescence were used to study the effects of a CB2R agonist 24 h after surgery. The results demonstrated that JWH-133 administration significantly decreased thrombin-induced brain edema and reduced the number of Iba-1-positive microglia. JWH-133 also decreased the number of P44/P42(+)/Iba-1(+) microglia, lowered Evans blue extravasation, and inhibited the elevated matrix metallopeptidase (MMP)-9 and matrix metallopeptidase (MMP)-12 activities. However, a selective CB2R antagonist (SR-144528) reversed these effects. We demonstrated that CB2R stimulation reduced thrombin-induced brain edema and alleviated BBB damage. We also found that matrix metalloproteinase suppression may be partially involved in these processes.

  2. Monitoring stroke progression: in vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model.

    PubMed

    Schoknecht, Karl; Prager, Ofer; Vazana, Udi; Kamintsky, Lyn; Harhausen, Denise; Zille, Marietta; Figge, Lena; Chassidim, Yoash; Schellenberger, Eyk; Kovács, Richard; Heinemann, Uwe; Friedman, Alon

    2014-11-01

    Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.

  3. A different story on “Theory of Mind” deficit in adults with right hemisphere brain damage

    PubMed Central

    Tompkins, Connie A.; Scharp, Victoria L.; Fassbinder, Wiltrud; Meigh, Kimberly M.; Armstrong, Elizabeth M.

    2009-01-01

    Background Difficulties in social cognition and interaction can characterise adults with unilateral right hemisphere brain damage (RHD). Some pertinent evidence involves their apparently poor reasoning from a “Theory of Mind” perspective, which requires a capacity to attribute thoughts, beliefs, and intentions in order to understand other people’s behaviour. Theory of Mind is typically assessed with tasks that induce conflicting mental representations. Prior research with a commonly used text task reported that adults with RHD were less accurate in drawing causal inferences about mental states than at making non-mental-state causal inferences from control texts. However, the Theory of Mind and control texts differed in the number and nature of competing discourse entity representations. This stimulus discrepancy, together with the explicit measure of causal inferencing, likely put the adults with RHD at a disadvantage on the Theory of Mind texts. Aims This study revisited the question of Theory of Mind deficit in adults with RHD. The aforementioned Theory of Mind texts were used but new control texts were written to address stimulus discrepancies, and causal inferencing was assessed relatively implicitly. Adults with RHD were hypothesised not to display a Theory of Mind deficit under these conditions. Methods & Procedures The participants were 22 adults with unilateral RHD from cerebrovascular accident, and 38 adults without brain damage. Participants listened to spoken texts that targeted either mental-state or non-mental-state causal inferences. Each text was followed by spoken True/False probe sentences, to gauge target inference comprehension. Both accuracy and RT data were recorded. Data were analysed with mixed, two-way Analyses of Variance (Group by Text Type). Outcomes & Results There was a main effect of Text Type in both accuracy and RT analyses, with a performance advantage for the Theory of Mind/mental-state inference stimuli. The control group

  4. Synaptic Mitochondria Sustain More Damage than Non-Synaptic Mitochondria after Traumatic Brain Injury and Are Protected by Cyclosporine A.

    PubMed

    Kulbe, Jacqueline R; Hill, Rachel L; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2016-10-13

    Currently, there are no Food and Drug Administration (FDA)-approved pharmacotherapies for the treatment of those with traumatic brain injury (TBI). As central mediators of the secondary injury cascade, mitochondria are promising therapeutic targets for prevention of cellular death and dysfunction after TBI. One of the most promising and extensively studied mitochondrial targeted TBI therapies is inhibition of the mitochondrial permeability transition pore (mPTP) by the FDA-approved drug, cyclosporine A (CsA). A number of studies have evaluated the effects of CsA on total brain mitochondria after TBI; however, no study has investigated the effects of CsA on isolated synaptic and non-synaptic mitochondria. Synaptic mitochondria are considered essential for proper neurotransmission and synaptic plasticity, and their dysfunction has been implicated in neurodegeneration. Synaptic and non-synaptic mitochondria have heterogeneous characteristics, but their heterogeneity can be masked in total mitochondrial (synaptic and non-synaptic) preparations. Therefore, it is essential that mitochondria targeted pharmacotherapies, such as CsA, be evaluated in both populations. This is the first study to examine the effects of CsA on isolated synaptic and non-synaptic mitochondria after experimental TBI. We conclude that synaptic mitochondria sustain more damage than non-synaptic mitochondria 24 h after severe controlled cortical impact injury (CCI), and that intraperitoneal administration of CsA (20 mg/kg) 15 min after injury improves synaptic and non-synaptic respiration, with a significant improvement being seen in the more severely impaired synaptic population. As such, CsA remains a promising neuroprotective candidate for the treatment of those with TBI.

  5. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients.

    PubMed

    Maffei, Vincenzo; Mazzarella, Elisabetta; Piras, Fabrizio; Spalletta, Gianfranco; Caltagirone, Carlo; Lacquaniti, Francesco; Daprati, Elena

    2016-05-01

    Rich behavioral evidence indicates that the brain estimates the visual direction and acceleration of gravity quite accurately, and the underlying mechanisms have begun to be unraveled. While the neuroanatomical substrates of gravity direction processing have been studied extensively in brain-damaged patients, to our knowledge no such study exists for the processing of visual gravitational motion. Here we asked 31 stroke patients to intercept a virtual ball moving along the vertical under either natural gravity or artificial reversed gravity. Twenty-seven of them also aligned a luminous bar to the vertical direction (subjective visual vertical, SVV). Using voxel-based lesion-symptom mapping as well as lesion subtraction analysis, we found that lesions mainly centered on the posterior insula are associated with greater deviations of SVV, consistent with several previous studies. Instead, lesions mainly centered on the parietal operculum decrease the ability to discriminate natural from unnatural gravitational acceleration with a timed motor response in the interception task. Both the posterior insula and the parietal operculum belong to the vestibular cortex, and presumably receive multisensory information about the gravity vector. We speculate that an internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of mechanical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, which are stored in the cortical vestibular network. The present lesion data suggest a specific role for the parietal operculum in detecting the mismatch between predictive signals from the internal model and the online visual signals.

  6. Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain.

    PubMed

    Morozov, Yury M; Sun, Yu-Yo; Kuan, Chia-Yi; Rakic, Pasko

    2016-01-01

    Mitochondria play a critical role in various pathways of regulated cell death. Here we propose a novel method for detection of initial derangement of mitochondria in degenerating and dying neuronal cells. The method is based on our recent finding that antibodies directed against the cannabinoid type 1 receptor (CB1) also bind the mitochondrial stomatin-like protein 2 (SLP2) that belongs to an inner mitochondrial membrane protein complex. It is well established that SLP2 regulates mitochondrial biogenesis and respiratory functions. We now show that anti-CB1 antibodies recognize conformational epitopes but not the linear amino acid sequence of SLP2. In addition we found that anti-CB1 serum mostly labels swollen mitochondria with early or advanced stages of pathology in mouse brain while other proteins of the complex may mask epitopes of SLP2 in the normal mitochondria. Although neurons and endothelial cells in healthy brains contain occasional immunopositive mitochondria detectable with anti-CB1 serum, their numbers increase significantly after hypoxic insults in parallel with signs of cellular damage. Moreover, use of electron microscopy suggests relocation of SLP2 from its normal functional position in the inner mitochondrial membrane into the mitochondrial matrix in pathological cells. Thus, SLP2-like immunolabeling serves as an in situ histochemical target detecting early derangement of mitochondria. Anti-CB1 serum is crucial for this purpose because available anti-SLP2 antibodies do not provide selective labeling of mitochondria in the fixed tissue. This new method of detecting mitochondrial dysfunction can benefit the in vitro research of human diseases and developmental disorders by enabling analysis in live animal models.

  7. Persistence of Gender Related-Effects on Visuo-Spatial and Verbal Working Memory in Right Brain-Damaged Patients

    PubMed Central

    Piccardi, Laura; Matano, Alessandro; D’Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola

    2016-01-01

    The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men’s superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement. PMID:27445734

  8. Pre-ischemic treadmill training alleviates brain damage via GLT-1-mediated signal pathway after ischemic stroke in rats.

    PubMed

    Wang, X; Zhang, M; Yang, S-D; Li, W-B; Ren, S-Q; Zhang, J; Zhang, F

    2014-08-22

    Physical exercise could play a neuroprotective role in both human and animals. However, the involved signal pathways underlying the neuroprotective effect are still not well established. This study was to investigate the possible signal pathways involved in the neuroprotection of pre-ischemic treadmill training after ischemic stroke. Seventy-two SD rats were randomly assigned into three groups (n=24/group): sham surgery group, middle cerebral artery occlusion (MCAO) group and MCAO with exercise group. Following three weeks of treadmill training exercise, ischemic stroke was induced by occluding the middle cerebral artery (MCA) in rat for 2 h, followed by reperfusion. Twenty-four hours after MCAO/reperfusion, 12 rats in each group were evaluated for neurological deficit scores and then sacrificed to measure the infarct volume (n=6) and cerebral edema (n=6). Six rats in each group were sacrificed to measure the expression level of glutamate transporter-1 (GLT-1), protein kinase C-α (PKC-α), Akt, and phosphatidylinositol 3 kinase (PI3K) (n=6). Two hundred and eighty minutes (4.67 h) after occlusion, six rats in each group were decapitated to detect the mRNA expression level of metabotropic glutamate receptor 5 (mGluR5) and N-methyl-D-aspartate receptor subunit type 2B (NR2B) (n=6).The results demonstrated that pre-ischemic treadmill training exercise reduced brain infarct volume, cerebral edema and neurological deficits, also decreased the over expression of PKC-α and increased the expression level of GLT-1, Akt and PI3K after ischemic stroke (p<0.05). The over-expression of mGluR5 and NR2B mRNA was also inhibited by pre-ischemic exercise (p<0.05). In summary, exercise preconditioning ameliorated brain damage after ischemic stroke, which might be involved in two signal pathways: PKC-α-GLT-1-Glutamate and PI3K/Akt-GLT-1-Glutamate.

  9. Red photon treatment inhibits apoptosis via regulation of bcl-2 proteins and ROS levels, alleviating hypoxic-ischemic brain damage.

    PubMed

    Jiang, W; Chen, L; Zhang, X J; Chen, J; Li, X C; Hou, W S; Xiao, N

    2014-05-30

    Therapeutic options for hypoxic-ischemic brain damage (HIBD) are scarce and inefficient. Recently, many studies have demonstrated that red photon plays an important role in anti-inflammatory processes as well as apoptosis, the main trait of HIBD. In this study, we investigated whether red photon can protect from HIBD in SD rats and oxygen-glucose deprivation (OGD) in PC12 cells. Apoptosis, mitochondrial transmembrane potential (MMP), and reactive oxygen species (ROS) rates were assessed in PC12 cells. We found that 6-h irradiation resulted in decreased MMP, ROS and apoptosis rates, although these changes were reversible with prolonged irradiation. Importantly, these effects were sustained for 2-8h upon quenching of the red photon. Similar trends were observed for protein and mRNA expression of bax and bcl-2, with short-term irradiation (6h) inhibiting apoptosis in PC12 Cells. However, long-term (>6h) irradiation caused cell damage. In vivo experiments, bax mRNA and protein levels were reduced after 7days in HIBD model rats treated with red photon, in contrast to bcl-2. Furthermore, we found that bax and bcl-2 were mainly expressed in pyramidal cells of the hippocampus CA1 and CA3. Importantly, Morris Water Maze test results revealed an improvement in learning ability and spatial memory in rats after irradiation. Overall, our data showed that short-term irradiation with red photon in the acute phase inhibits the mitochondrial apoptotic pathway via regulation of bcl-2-related proteins and reduction of ROS levels, thereby decreasing apoptosis in nerve cells and improving the neurological prognosis of HIBD.

  10. Willed-movement training reduces brain damage and enhances synaptic plasticity related proteins synthesis after focal ischemia.

    PubMed

    Nie, Jingjing; Yang, Xiaosu; Tang, Qingping; Shen, Qin; Li, Simin

    2016-01-01

    It has been wildly accepted that willed movement(WM) training promotes neurological rehabilitation in patients with stroke. However, it was not clear whether the effect of WM is better than other forms of exercise. The purpose of this study is to assess different effects of WM and other forms of exercise on rats with focal ischemia. The subjects are all had right middle cerebral artery occlusion (MCAO) surgery and randomly allocated to three groups of training and one control group with no training. Infarct volume by 2,3,5-triphenyltetrazolium chloride (TTC) dye, expression of PICK1 and synaptophysin in cerebral cortex and striatum of injured side by western blotting and immunofluorescence performed are analyzed. Exercise has done respectively on rats in each group for 15 days and 30 days. Compared with the control group, the brain damage is reduced in other groups after 15 days exercise. The protein expressions levels of synaptophysin and PICK1 are upregulated after exercise. Concentration of PICK1 protein in WM is greater than other exercise groups, and the expression of synaptophysin in WM and SM groups are higher than EM groups. The number of PICK1 positive cells, synaptophysin and PICK1 co-positive cells are increased by exercise. Synaptophysin is widely distributed in cortex surrounding the injury area in WM and EM. It is indicated in our result that willed-movement training is the most effective intervention in enhancing the PICK1-mediated synaptic plasticity in the area adjacent to the damage region of ischemic rats.

  11. Distinguishing lies from jokes: theory of mind deficits and discourse interpretation in right hemisphere brain-damaged patients.

    PubMed

    Winner, E; Brownell, H; Happé, F; Blum, A; Pincus, D

    1998-03-01

    Right-hemisphere brain damaged (RHD) patients and a normal control group were tested for their ability to infer first- and second-order mental states and to understand the communicative intentions underlying ironic jokes and lies. Subjects listened to stories involving a character who had either a true or a false belief about another character's knowledge. Stories ended either with an ironic joke or a lie by this character. In the joke stories, the speaker knew that the listener knew the truth (a true second-order belief) and did not expect the listener to believe what was said; in the lie stories, the speaker did not know that the listener actually knew the truth (a false second-order belief) and thus did expect the listener to believe what was said. RHD patients performed significantly worse than control subjects on one of two measures of second-order belief, which suggests that the ability to make second-order mental state attributions is fragile and unreliable following right-hemisphere damage. RHD patients in addition performed worse than controls when asked to distinguish lies from jokes, confirming their known difficulties with discourse interpretation. For both groups, the ability to distinguish lies from jokes was strongly correlated with two measures of the ability to attribute correctly second-order beliefs. These results suggest that the fragility of RHD patients' understanding of second-order mental states underlies a portion of their difficulties in discourse comprehension, but that the underlying impairment is not restricted to right hemisphere dysfunction.

  12. The impact of acquired brain damage in terms of epidemiology, economics and loss in quality of life

    PubMed Central

    2011-01-01

    Background Patients with acquired brain damage (ABD) have suffered a brain lesion that interrupts vital development in the physical, psychological and social spheres. Stroke and traumatic brain injury (TBI) are the two main causes. The objectives of this study were to estimate the incidence and prevalence of ABD in the population of the Basque Country and Navarre in 2008, to calculate the associated cost of the care required and finally to assess the loss in health-related quality of life. Methods On the one hand, a cross-sectional survey was carried out, in order to estimate the incidence of ABD and its consequences in terms of costs and loss in quality of life from the evolution of a sample of patients diagnosed with stroke and TBI. On the other hand, a discrete event simulation model was built that enabled the prevalence of ABD to be estimated. Finally, a calculation was made of the formal and informal costs of ABD in the population of the Basque Country and Navarre (2,750,000 people). Results The cross-sectional study showed that the incidences of ABD caused by stroke and TBI were 61.8 and 12.5 cases per 100,000 per year respectively, while the overall prevalence was 657 cases per 100,000 people. The SF-36 physical and mental component scores were 28.9 and 44.5 respectively. The total economic burden was calculated to be 382.14 million euro per year, distributed between 215.27 and 166.87 of formal and informal burden respectively. The average cost per individual was 21,040 € per year. Conclusions The main conclusion of this study is that ABD has a high impact in both epidemiological and economic terms as well as loss in quality of life. The overall prevalence obtained is equivalent to 0.7% of the total population. The substantial economic burden is distributed nearly evenly between formal and informal costs. Specifically, it was found that the physical dimensions of quality of life are the most severely affected. The prevalence-based approach showed adequate

  13. Early postoperative serum S100β levels predict ongoing brain damage after meningioma surgery: a prospective observational study

    PubMed Central

    Einav, Sharon; Shoshan, Yigal; Ovadia, Haim; Matot, Idit; Hersch, Moshe; Itshayek, Eyal

    2006-01-01

    associated with higher serum S100β levels immediately (p = 0.022, 95% CI -0.092 to -0.007) and at 48 hours after surgery (p = 0.017, 95% CI -0.142 to -0.026). The degree of elevation in S100β levels at 24 and 48 hours after surgery also correlated with the severity of midline shift and edema. Conclusion In patients with meningioma, serum S100β levels perform poorly as an indicator of tumour characteristics but may suggest ongoing postcraniotomy injury. Serum S100β levels may serve as a potentially useful early marker of postcraniotomy brain damage in patients undergoing elective meningioma resection. PMID:17020600

  14. Dapsone improves functional deficit and diminishes brain damage evaluated by 3-Tesla magnetic resonance image after transient cerebral ischemia and reperfusion in rats.

    PubMed

    Diaz-Ruiz, Araceli; Roldan-Valadez, Ernesto; Ortiz-Plata, Alma; Mondragón-Lozano, Rodrigo; Heras-Romero, Yessica; Mendez-Armenta, Marisela; Osorio-Rico, Laura; Nava-Ruiz, Concepción; Ríos, Camilo

    2016-09-01

    Stroke is a frequent cause of death and the first of disability in the world population. We have shown that dapsone acts as an antioxidant, antiinflammatory and antiapoptotic agent after brain Ischemia reperfusion (I/R) in rats; however, its therapeutic efficacy, measured by imaging has not been characterized. In this context, the aim of this study was to evaluate the neuroprotective effect of dapsone by magnetic resonance imaging (MRI) and to correlate imaging markers with motor function and oxidative stress after transient cerebral ischemia and reperfusion (I/R). We used male rats throughout the experiment. Functional deficit after I/R was assessed by using Longa scale. The area of brain tissue damage was measured by histology. The nuclear factor erythroid 2-related factor 2 (Nrf-2) and the amount of reactive oxygen species (ROS) were measured as biomarkers of oxidative stress. Finally, difussion tensor MRI was employed to measure the fractional anisotropy (FA), as a MRI marker of the pathophysiologic brain status. Results showed a better functional recovery and less damaged tissue in animals treated with dapsone vs control group. The values of FA were higher in animals receiving treatment, indicating a better preservation of brain structure. At early stages of the damage, dapsone was able to reduce both oxidative markers (Nrf-2 and ROS). Our findings provide new evidence for the efficacy of dapsone when administered during the acute phase after I/R and that quantitative sequences of MRI are useful for characterizing its potential therapeutic benefits after stroke.

  15. High hepatotoxic dose of paracetamol produces generalized convulsions and brain damage in rats. A counteraction with the stable gastric pentadecapeptide BPC 157 (PL 14736).

    PubMed

    Ilic, S; Drmic, D; Zarkovic, K; Kolenc, D; Coric, M; Brcic, L; Klicek, R; Radic, B; Sever, M; Djuzel, V; Ivica, M; Boban Blagaic, A; Zoricic, Z; Anic, T; Zoricic, I; Djidic, S; Romic, Z; Seiwerth, S; Sikiric, P

    2010-04-01

    We focused on stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419, an anti-ulcer peptide efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported) because of its hepatoprotective effects. We investigate a particular aspect of the sudden onset of encephalopathy with extreme paracetamol overdose (5 g/kg intraperitoneally) so far not reported: rapidly induced progressive hepatic encephalopathy with generalized convulsions in rats. BPC 157 therapy (10 microg, 10 ng, 10 pg/kg, intraperitoneally or intragastrically) was effective (microg-ng range) against paracetamol toxicity, given in early (BPC 157 immediately after paracetamol, prophylactically) or advanced stage (BPC 157 at 3 hours after paracetamol, therapeutically). At 25 min post-paracetamol increased ALT, AST and ammonium serum values precede liver lesion while in several brain areas, significant damage became apparent, accompanied by generalized con