Science.gov

Sample records for herpesvirus viral protein

  1. Kaposi’s Sarcoma-Associated Herpesvirus ORF57 Protein: Exploiting All Stages of Viral mRNA Processing

    PubMed Central

    Schumann, Sophie; Jackson, Brian R.; Baquero-Perez, Belinda; Whitehouse, Adrian

    2013-01-01

    Nuclear mRNA export is a highly complex and regulated process in cells. Cellular transcripts must undergo successful maturation processes, including splicing, 5'-, and 3'-end processing, which are essential for assembly of an export competent ribonucleoprotein particle. Many viruses replicate in the nucleus of the host cell and require cellular mRNA export factors to efficiently export viral transcripts. However, some viral mRNAs undergo aberrant mRNA processing, thus prompting the viruses to express their own specific mRNA export proteins to facilitate efficient export of viral transcripts and allowing translation in the cytoplasm. This review will focus on the Kaposi’s sarcoma-associated herpesvirus ORF57 protein, a multifunctional protein involved in all stages of viral mRNA processing and that is essential for virus replication. Using the example of ORF57, we will describe cellular bulk mRNA export pathways and highlight their distinct features, before exploring how the virus has evolved to exploit these mechanisms. PMID:23896747

  2. Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins.

    PubMed

    Rosas, Cristina T; König, Patricia; Beer, Martin; Dubovi, Edward J; Tischer, B Karsten; Osterrieder, Nikolaus

    2007-03-01

    Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle that is maintained in the population by persistently infected animals. Virus infection may result in reproductive failure, respiratory disease and diarrhoea in naïve, susceptible bovines. Here, the construction and characterization of a novel vectored vaccine, which is based on the incorporation of genes encoding BVDV structural proteins (C, Erns, E1, E2) into a bacterial artificial chromosome of the equine herpesvirus type 1 (EHV-1) vaccine strain RacH, are reported. The reconstituted vectored virus, rH_BVDV, expressed BVDV structural proteins efficiently and was indistinguishable from parental vector virus with respect to growth properties in cultured cells. Intramuscular immunization of seronegative cattle with rH_BVDV resulted in induction of BVDV-specific serum neutralizing and ELISA antibodies. Upon experimental challenge infection of immunized calves with the heterologous BVDV strain Ib SE5508, a strong anamnestic boost of the neutralizing-antibody response was observed in all vaccinated animals. Immunized animals presented with reduced viraemia levels and decreased nasal virus shedding, and maintained higher leukocyte counts than mock-vaccinated controls. PMID:17325347

  3. Kaposi's Sarcoma Associated Herpesvirus Tegument Protein ORF75 Is Essential for Viral Lytic Replication and Plays a Critical Role in the Antagonization of ND10-Instituted Intrinsic Immunity

    PubMed Central

    Full, Florian; Jungnickl, Doris; Reuter, Nina; Bogner, Elke; Brulois, Kevin; Scholz, Brigitte; Stürzl, Michael; Myoung, Jinjong; Jung, Jae U.; Stamminger, Thomas; Ensser, Armin

    2014-01-01

    Nuclear domain 10 (ND10) components are restriction factors that inhibit herpesviral replication. Effector proteins of different herpesviruses can antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. We investigated the interplay of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) infection and cellular defense by nuclear domain 10 (ND10) components. Knock-down experiments in primary human cells show that KSHV-infection is restricted by the ND10 components PML and Sp100, but not by ATRX. After KSHV infection, ATRX is efficiently depleted and Daxx is dispersed from ND10, indicating that these two ND10 components can be antagonized by KSHV. We then identified the ORF75 tegument protein of KSHV as the viral factor that induces the disappearance of ATRX and relocalization of Daxx. ORF75 belongs to a viral protein family (viral FGARATs) that has homologous proteins in all gamma-herpesviruses. Isolated expression of ORF75 in primary cells induces a relocalization of PML and dispersal of Sp100, indicating that this viral effector protein is able to influence multiple ND10 components. Moreover, by constructing a KSHV mutant harboring a stop codon at the beginning of ORF75, we could demonstrate that ORF75 is absolutely essential for viral replication and the initiation of viral immediate-early gene expression. Using recombinant viruses either carrying Flag- or YFP-tagged variants of ORF75, we could further corroborate the role of ORF75 in the antagonization of ND10-mediated intrinsic immunity, and show that it is independent of the PML antagonist vIRF3. Members of the viral FGARAT family target different ND10 components, suggesting that the ND10 targets of viral FGARAT proteins have diversified during evolution. We assume that overcoming ND10 intrinsic defense constitutes a critical event in the replication of all herpesviruses; on the other hand, restriction of herpesviral replication by ND10 components may also

  4. Equine herpesvirus type 1 tegument protein VP22 is not essential for pathogenicity in a hamster model, but is required for efficient viral growth in cultured cells

    PubMed Central

    OKADA, Ayaka; IZUME, Satoko; OHYA, Kenji; FUKUSHI, Hideto

    2015-01-01

    VP22 is a major tegument protein of Equine herpesvirus type 1 (EHV-1) that is a conserved protein among alphaherpesviruses. However, the roles of VP22 differ among each virus, and the roles of EHV-1 VP22 are still unclear. Here, we constructed an EHV-1 VP22 deletion mutant and a revertant virus to clarify the role of VP22. We found that EHV-1 VP22 was required for efficient viral growth in cultured cells, but not for virulence in a hamster model. PMID:25948053

  5. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    SciTech Connect

    Kim, Seong K. Kim, Seongman; Dai Gan; Zhang Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2011-09-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: > We examine the functional domains of IR2P that mediates negative regulation. > IR2P inhibits at the transcriptional level. > DNA-binding mutant or TFIIB-binding mutant fails to inhibit. > C-terminal aa 707 to 1116 are required for full inhibition. > Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.

  6. Kaposi's sarcoma associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 suppresses CXCR4 expression by upregulating miR-146a

    PubMed Central

    Punj, Vasu; Matta, Hittu; Schamus, Sandra; Tamewitz, Aletheia; Anyang, Bean; Chaudhary, Preet M.

    2009-01-01

    Kaposi's sarcoma (KS) associated herpesvirus (KSHV)-encoded viral FLICE inhibitory protein (vFLIP) K13 is a potent activator of the NF-κB pathway. Here we demonstrate that infection with KHSV and ectopic expression of K13, but not its NF-κB-defective mutant, suppressed the expression of CXCR4. Suppression of CXCR4 by KSHV and K13 was associated with upregulated expression of miR-146a, a microRNA that is known to bind to the 3′ untranslated region of CXCR4 mRNA. Reporter studies identified two NF-κB sites in the promoter of miR-146a that were essential for its activation by K13. Accordingly, ectopic expression of K13, but not its NF-κB-defective mutant or other vFLIPs, strongly stimulated the miR-146a promoter activity, which could be blocked by specific genetic and pharmacological inhibitors of the NF-κB pathway. Finally, expression of CXCR4 was downregulated in clinical samples of KS and this was accompanied by increased expression of miR-146a. Our results demonstrate that K13-induced NF-κB activity suppresses CXCR4 via upregulation of miR-146a. Downregulation of CXCR4 expression by K13 may contribute to KS development by promoting premature release of KSHV-infected endothelial progenitors into the circulation. PMID:20023696

  7. Herpesvirus Replication Compartments Originate with Single Incoming Viral Genomes

    PubMed Central

    Kobiler, O.; Brodersen, P.; Taylor, M. P.; Ludmir, E. B.; Enquist, L. W.

    2011-01-01

    ABSTRACT Previously we described a method to estimate the average number of virus genomes expressed in an infected cell. By analyzing the color spectrum of cells infected with a mixture of isogenic pseudorabies virus (PRV) recombinants expressing three fluorophores, we estimated that fewer than seven incoming genomes are expressed, replicated, and packaged into progeny per cell. In this report, we expand this work and describe experiments demonstrating the generality of the method, as well as providing more insight into herpesvirus replication. We used three isogenic PRV recombinants, each expressing a fluorescently tagged VP26 fusion protein (VP26 is a capsid protein) under the viral VP26 late promoter. We calculated a similar finite limit on the number of expressed viral genomes, indicating that this method is independent of the promoter used to transcribe the fluorophore genes, the time of expression of the fluorophore (early versus late), and the insertion site of the fluorophore gene in the PRV genome (UL versus US). Importantly, these VP26 fusion proteins are distributed equally in punctate virion assembly structures in each nucleus, which improves the signal-to-noise ratio when determining the color spectrum of each cell. To understand how the small number of genomes are distributed among the replication compartments, we used a two-color fluorescent in situ hybridization assay. Most viral replication compartments in the nucleus occupy unique nuclear territories, implying that they arose from single genomes. Our experiments suggest a correlation between the small number of expressed viral genomes and the limited number of replication compartments. PMID:22186611

  8. Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key

    PubMed Central

    Gruffat, Henri; Marchione, Roberta; Manet, Evelyne

    2016-01-01

    During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II) is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the transcription start site (TSS). Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies (β and γ). In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors – especially ICP4 – play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein. PMID:27375590

  9. Kaposi’s Sarcoma Associated Herpesvirus Encoded Viral FLICE Inhibitory Protein K13 Activates NF-κB Pathway Independent of TRAF6, TAK1 and LUBAC

    PubMed Central

    Matta, Hittu; Gopalakrishnan, Ramakrishnan; Graham, Ciaren; Tolani, Bhairavi; Khanna, Akshat; Yi, Han; Suo, Yulan; Chaudhary, Preet M.

    2012-01-01

    Background Kaposi’s sarcoma associated herpesvirus encoded viral FLICE inhibitory protein (vFLIP) K13 activates the NF-κB pathway by binding to the NEMO/IKKγ subunit of the IκB kinase (IKK) complex. However, it has remained enigmatic how K13-NEMO interaction results in the activation of the IKK complex. Recent studies have implicated TRAF6, TAK1 and linear ubiquitin chains assembled by a linear ubiquitin chain assembly complex (LUBAC) consisting of HOIL-1, HOIP and SHARPIN in IKK activation by proinflammatory cytokines. Methodology/Principal Findings Here we demonstrate that K13-induced NF-κB DNA binding and transcriptional activities are not impaired in cells derived from mice with targeted disruption of TRAF6, TAK1 and HOIL-1 genes and in cells derived from mice with chronic proliferative dermatitis (cpdm), which have mutation in the Sharpin gene (Sharpincpdm/cpdm). Furthermore, reconstitution of NEMO-deficient murine embryonic fibroblast cells with NEMO mutants that are incapable of binding to linear ubiquitin chains supported K13-induced NF-κB activity. K13-induced NF-κB activity was not blocked by CYLD, a deubiquitylating enzyme that can cleave linear and Lys63-linked ubiquitin chains. On the other hand, NEMO was required for interaction of K13 with IKK1/IKKα and IKK2/IKKβ, which resulted in their activation by “T Loop” phosphorylation. Conclusions/Significance Our results demonstrate that K13 activates the NF-κB pathway by binding to NEMO which results in the recruitment of IKK1/IKKα and IKK2/IKKβ and their subsequent activation by phosphorylation. Thus, K13 activates NF-κB via a mechanism distinct from that utilized by inflammatory cytokines. These results have important implications for the development of therapeutic agents targeting K13-induced NF-κB for the treatment of KSHV-associated malignancies. PMID:22590573

  10. Modulation of Immune System by Kaposi's Sarcoma-Associated Herpesvirus: Lessons from Viral Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Brulois, Kevin; Wong, Laiyee; Jung, Jae U

    2012-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), a member of the herpesvirus family, has evolved to establish a long-term, latent infection of cells such that while they carry the viral genome gene expression is highly restricted. Latency is a state of cryptic viral infection associated with genomic persistence in their host and this hallmark of KSHV infection leads to several clinical-epidemiological diseases such as KS, a plasmablastic variant of multicentric Castleman's disease, and primary effusion lymphoma upon immune suppression of infected hosts. In order to sustain efficient life-long persistency as well as their life cycle, KSHV dedicates a large portion of its genome to encode immunomodulatory proteins that antagonize its host's immune system. In this review, we will describe our current knowledge of the immune evasion strategies employed by KSHV at distinct stages of its viral life cycle to control the host's immune system.

  11. Immune evasion strategies of the human gamma-herpesviruses: implications for viral tumorigenesis.

    PubMed

    Zhang, Xiangning; Dawson, Christopher W; He, Zhiwei; Huang, Peichun

    2012-02-01

    Two human gamma-herpesviruses, Epstein-Barr virus and Kaposi's sarcoma associated herpesvirus/human herpesvirus 8 display oncogenic potential, causing benign and malignant lymphoproliferative disorders in genetically susceptible or immunosuppressed individuals. As a family of viruses that establish persistent life-long infections, herpesviruses have evolved strategies to limit innate antiviral responses and evade host immune surveillance. Herpesviruses have developed mechanisms to disrupt antigen presentation, pirate the production of immune regulating cytokines, and inhibit pro-apoptotic signaling pathways. Although these strategies are designed to facilitate the long-term persistence of herpesviruses, in certain circumstances they can contribute to viral-driven carcinogenesis.

  12. The protease and the assembly protein of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8).

    PubMed Central

    Unal, A; Pray, T R; Lagunoff, M; Pennington, M W; Ganem, D; Craik, C S

    1997-01-01

    A genomic clone encoding the protease (Pr) and the assembly protein (AP) of Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) has been isolated and sequenced. As with other herpesviruses, the Pr and AP coding regions are present within a single long open reading frame. The mature KSHV Pr and AP polypeptides are predicted to contain 230 and 283 residues, respectively. The amino acid sequence of KSHV Pr has 56% identity with that of herpesvirus salmiri, the most similar virus by phylogenetic comparison. Pr is expressed in infected human cells as a late viral gene product, as suggested by RNA analysis of KSHV-infected BCBL-1 cells. Expression of the Pr domain in Escherichia coli yields an enzymatically active species, as determined by cleavage of synthetic peptide substrates, while an active-site mutant of this same domain yields minimal proteolytic activity. Sequence comparisons with human cytomegalovirus (HCMV) Pr permitted the identification of the catalytic residues, Ser114, His46, and His134, based on the known structure of the HCMV enzyme. The amino acid sequences of the release site of KSHV Pr (Tyr-Leu-Lys-Ala*Ser-Leu-Ile-Pro) and the maturation site (Arg-Leu-Glu-Ala*Ser-Ser-Arg-Ser) show that the extended substrate binding pocket differs from that of other members of the family. The conservation of amino acids known to be involved in the dimer interface region of HCMV Pr suggests that KSHV Pr assembles in a similar fashion. These features of the viral protease provide opportunities to develop specific inhibitors of its enzymatic activity. PMID:9261433

  13. Tegument protein control of latent herpesvirus establishment and animation.

    PubMed

    Penkert, Rhiannon R; Kalejta, Robert F

    2011-01-01

    Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation. PMID:21429246

  14. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors

    PubMed Central

    de Munnik, Sabrina M.; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies. PMID:25805993

  15. Molecular Biology of Human Herpesvirus 8: Novel Functions and Virus–Host Interactions Implicated in Viral Pathogenesis and Replication

    PubMed Central

    Cousins, Emily; Nicholas, John

    2014-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman’s disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of “accessory” genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus–host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein–coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus–host interactions and their potential roles in both virus biology and virus-associated disease. PMID:24008302

  16. Identification, expression, and immunogenicity of Kaposi's sarcoma-associated herpesvirus-encoded small viral capsid antigen.

    PubMed Central

    Lin, S F; Sun, R; Heston, L; Gradoville, L; Shedd, D; Haglund, K; Rigsby, M; Miller, G

    1997-01-01

    We describe a recombinant antigen for use in serologic tests for antibodies to Kaposi's sarcoma (KS)-associated herpesvirus (KSHV). The cDNA for a small viral capsid antigen (sVCA) was identified by immunoscreening of a library prepared from the BC-1 body cavity lymphoma cell line induced into KSHV lytic gene expression by sodium butyrate. The cDNA specified a 170-amino-acid peptide with homology to small viral capsid proteins encoded by the BFRF3 gene of Epstein-Barr virus and the ORF65 gene of herpesvirus saimiri. KSHV sVCA was expressed from a 0.85-kb mRNA present late in lytic KSHV replication in BC-1 cells. This transcript was sensitive to phosphonoacetic acid and phosphonoformic acid, inhibitors of herpesvirus DNA replication. KSHV sVCA expressed in mammalian cells or Escherichia coli or translated in vitro was recognized as an antigen by antisera from KS patients. Rabbit antisera raised to KSHV sVCA expressed in E. coli detected a 22-kDa protein in KSHV-infected human B cells. Overexpressed KSHV sVCA purified from E. coli and used as an antigen in immunoblot screening assay did not cross-react with EBV BFRF3. Antibodies to sVCA were present in 89% of 47 human immunodeficiency virus (HIV)-positive patients with KS, in 20% of 54 HIV-positive patients without KS, but in none of 122 other patients including children born to HIV-seropositive mothers and patients with hemophilia, autoimmune disease, or nasopharyngeal carcinoma. Low-titer antibody was detected in three sera from 28 healthy subjects. Antibodies to recombinant sVCA correlate with KS in high-risk populations. Recombinant sVCA can be used to examine the seroepidemiology of infection with KSHV in the general population. PMID:9060668

  17. Fluorescent Protein Approaches in Alpha Herpesvirus Research

    PubMed Central

    Hogue, Ian B.; Bosse, Jens B.; Engel, Esteban A.; Scherer, Julian; Hu, Jiun-Ruey; del Rio, Tony; Enquist, Lynn W.

    2015-01-01

    In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer. PMID:26610544

  18. Fluorescent Protein Approaches in Alpha Herpesvirus Research.

    PubMed

    Hogue, Ian B; Bosse, Jens B; Engel, Esteban A; Scherer, Julian; Hu, Jiun-Ruey; Del Rio, Tony; Enquist, Lynn W

    2015-11-01

    In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer. PMID:26610544

  19. Molecular evolution of herpesviruses: genomic and protein sequence comparisons.

    PubMed Central

    Karlin, S; Mocarski, E S; Schachtel, G A

    1994-01-01

    Phylogenetic reconstruction of herpesvirus evolution is generally founded on amino acid sequence comparisons of specific proteins. These are relevant to the evolution of the specific gene (or set of genes), but the resulting phylogeny may vary depending on the particular sequence chosen for analysis (or comparison). In the first part of this report, we compare 13 herpesvirus genomes by using a new multidimensional methodology based on distance measures and partial orderings of dinucleotide relative abundances. The sequences were analyzed with respect to (i) genomic compositional extremes; (ii) total distances within and between genomes; (iii) partial orderings among genomes relative to a set of sequence standards; (iv) concordance correlations of genome distances; and (v) consistency with the alpha-, beta-, gammaherpesvirus classification. Distance assessments within individual herpesvirus genomes show each to be quite homogeneous relative to the comparisons between genomes. The gammaherpesviruses, Epstein-Barr virus (EBV), herpesvirus saimiri, and bovine herpesvirus 4 are both diverse and separate from other herpesvirus classes, whereas alpha- and betaherpesviruses overlap. The analysis revealed that the most central genome (closest to a consensus herpesvirus genome and most individual herpesvirus sequences of different classes) is that of human herpesvirus 6, suggesting that this genome is closest to a progenitor herpesvirus. The shorter DNA distances among alphaherpesviruses supports the hypothesis that the alpha class is of relatively recent ancestry. In our collection, equine herpesvirus 1 (EHV1) stands out as the most central alphaherpesvirus, suggesting it may approximate an ancestral alphaherpesvirus. Among all herpesviruses, the EBV genome is closest to human sequences. In the DNA partial orderings, the chicken sequence collection is invariably as close as or closer to all herpesvirus sequences than the human sequence collection is, which may imply that

  20. Differential Expression of Viral Bcl-2 Encoded by Kaposi's Sarcoma-Associated Herpesvirus and Human Bcl-2 in Primary Effusion Lymphoma Cells and Kaposi's Sarcoma Lesions

    PubMed Central

    Widmer, Isabelle; Wernli, Marion; Bachmann, Felix; Gudat, Fred; Cathomas, Gieri; Erb, Peter

    2002-01-01

    Expression of human herpesvirus 8 viral Bcl-2 protein was demonstrated in spindle cells of late-stage Kaposi's sarcoma lesions but not in primary effusion lymphoma cell lines. In contrast, strong expression of human Bcl-2 was found in stimulated primary effusion lymphoma cells, whereas in Kaposi's sarcoma lesions preferential mononuclear cells, and to a lesser extent spindle cells, stained positive. PMID:11836434

  1. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  2. APOBEC3 Proteins in Viral Immunity.

    PubMed

    Stavrou, Spyridon; Ross, Susan R

    2015-11-15

    Apolipoprotein B editing complex 3 family members are cytidine deaminases that play important roles in intrinsic responses to infection by retroviruses and have been implicated in the control of other viruses, such as parvoviruses, herpesviruses, papillomaviruses, hepatitis B virus, and retrotransposons. Although their direct effect on modification of viral DNA has been clearly demonstrated, whether they play additional roles in innate and adaptive immunity to viruses is less clear. We review the data regarding the various steps in the innate and adaptive immune response to virus infection in which apolipoprotein B editing complex 3 proteins have been implicated. PMID:26546688

  3. Viral complement regulatory proteins.

    PubMed

    Rosengard, A M; Ahearn, J M

    1999-05-01

    The inactivation of complement provides cells and tissues critical protection from complement-mediated attack and decreases the associated recruitment of other inflammatory mediators. In an attempt to evade the host immune response, viruses have evolved two mechanisms to acquire complement regulatory proteins. They can directly seize the host cell complement regulators onto their outer envelope and/or they can produce their own proteins which are either secreted into the neighboring intercellular space or expressed as membrane-bound proteins on the infected host cell. The following review will concentrate on the viral homologues of the mammalian complement regulatory proteins, specifically those containing complement control protein (CCP) repeats. PMID:10408371

  4. Small RNA deep sequencing identifies viral microRNAs during malignant catarrhal fever induced by alcelaphine herpesvirus 1.

    PubMed

    Sorel, Océane; Tuddenham, Lee; Myster, Françoise; Palmeira, Leonor; Kerkhofs, Pierre; Pfeffer, Sébastien; Vanderplasschen, Alain; Dewals, Benjamin G

    2015-11-01

    Alcelaphine herpesvirus 1 (AlHV-1) is a c-herpesvirus (c-HV) carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces a fatal lymphoproliferative disease named malignant catarrhal fever (MCF) in many ruminants, including cattle, and the rabbit model. Latency has been shown to be essential for MCF induction. However, the mechanisms causing the activation and proliferation of infected CD8+T cells are unknown. Many c-HVs express microRNAs (miRNAs). These small non-coding RNAs can regulate expression of host or viral target genes involved in various pathways and are thought to facilitate viral infection and/or mediate activation and proliferation of infected lymphocytes. The AlHV-1 genome has been predicted to encode a large number of miRNAs. However, their precise contribution in viral infection and pathogenesis in vivo remains unknown. Here, using cloning and sequencing of small RNAs we identified 36 potential miRNAs expressed in a lymphoblastoid cell line propagated from a calf infected with AlHV-1 and developing MCF. Among the sequenced candidate miRNAs, 32 were expressed on the reverse strand of the genome in two main clusters. The expression of these 32 viral miRNAs was further validated using Northern blot and quantitative reverse transcription PCR in lymphoid organs of MCF developing calves or rabbits. To determine the concerted contribution in MCF of 28 viralmiRNAs clustered in the non-protein-coding region of the AlHV-1 genome, a recombinant virus was produced. The absence of these 28 miRNAs did not affect viral growth in vitro or MCF induction in rabbits, indicating that the AlHV-1 miRNAs clustered in this non-protein-coding genomic region are dispensable for MCF induction. PMID:26329753

  5. First fatality associated with elephant endotheliotropic herpesvirus 5 in an Asian elephant: pathological findings and complete viral genome sequence.

    PubMed

    Wilkie, Gavin S; Davison, Andrew J; Kerr, Karen; Stidworthy, Mark F; Redrobe, Sharon; Steinbach, Falko; Dastjerdi, Akbar; Denk, Daniela

    2014-01-01

    Infections of Asian elephants (Elephas maximus) with elephant endotheliotropic herpesvirus (EEHV) can cause a rapid, highly lethal, hemorrhagic disease, which primarily affects juvenile animals up to the age of four years. So far, the majority of deaths have been attributed to infections with genotype EEHV1 or, more rarely, EEHV3 and EEHV4. Here, we report the pathological characteristics of the first fatality linked to EEHV5 infection, and describe the complete viral DNA sequence. Gross post-mortem and histological findings were indistinguishable from lethal cases previously attributed to other EEHV genotypes, and the presence of characteristic herpesviral inclusions in capillary endothelial cells at several sites was consistent with the diagnosis of acute EEHV infection. Molecular analysis confirmed the presence of EEHV5 DNA and was followed by sequencing of the viral genome directly from post-mortem material. The genome is 180,800 bp in size and contains 120 predicted protein-coding genes, five of which are fragmented and presumably nonfunctional. The seven families of paralogous genes recognized in EEHV1 are also represented in EEHV5. The overall degree of divergence (37%) between the EEHV5 and EEHV1 genomes, and phylogenetic analysis of eight conserved genes, support the proposed classification of EEHV5 into a new species (Elephantid herpesvirus 5). PMID:25199796

  6. MicroRNAs encoded by Kaposi's sarcoma-associated herpesvirus regulate viral life cycle.

    PubMed

    Lu, Chih-Chung; Li, Zhonghan; Chu, Chia-Ying; Feng, Jiaying; Feng, Jun; Sun, Ren; Rana, Tariq M

    2010-10-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with Kaposi's sarcoma and lymphomas. The pathogenesis of KSHV depends on the balance between two phases of the viral cycle: latency and lytic replication. In this study, we report that KSHV-encoded microRNAs (miRNAs) function as regulators by maintaining viral latency and inhibiting viral lytic replication. MiRNAs are short, noncoding, small RNAs that post-transcriptionally regulate the expression of messenger RNAs. Of the 12 viral miRNAs expressed in latent KSHV-infected cells, we observed that expression of miR-K3 can suppress both viral lytic replication and gene expression. Further experiments indicate that miR-K3 can regulate viral latency by targeting nuclear factor I/B. Nuclear factor I/B can activate the promoter of the viral immediate-early transactivator replication and transcription activator (RTA), and depletion of nuclear factor I/B by short hairpin RNAs had similar effects on the viral life cycle to those of miR-K3. Our results suggest a role for KSHV miRNAs in regulating the viral life cycle. PMID:20847741

  7. CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication by modulating viral gene transcription.

    PubMed

    Li, Da-Jiang; Verma, Dinesh; Mosbruger, Tim; Swaminathan, Sankar

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus that causes Kaposi's sarcoma and is associated with the development of lymphoproliferative diseases. KSHV reactivation from latency and virion production is dependent on efficient transcription of over eighty lytic cycle genes and viral DNA replication. CTCF and cohesin, cellular proteins that cooperatively regulate gene expression and mediate long-range DNA interactions, have been shown to bind at specific sites in herpesvirus genomes. CTCF and cohesin regulate KSHV gene expression during latency and may also control lytic reactivation, although their role in lytic gene expression remains incompletely characterized. Here, we analyze the dynamic changes in CTCF and cohesin binding that occur during the process of KSHV viral reactivation and virion production by high resolution chromatin immunoprecipitation and deep sequencing (ChIP-Seq) and show that both proteins dissociate from viral genomes in kinetically and spatially distinct patterns. By utilizing siRNAs to specifically deplete CTCF and Rad21, a cohesin component, we demonstrate that both proteins are potent restriction factors for KSHV replication, with cohesin knockdown leading to hundred-fold increases in viral yield. High-throughput RNA sequencing was used to characterize the transcriptional effects of CTCF and cohesin depletion, and demonstrated that both proteins have complex and global effects on KSHV lytic transcription. Specifically, both proteins act as positive factors for viral transcription initially but subsequently inhibit KSHV lytic transcription, such that their net effect is to limit KSHV RNA accumulation. Cohesin is a more potent inhibitor of KSHV transcription than CTCF but both proteins are also required for efficient transcription of a subset of KSHV genes. These data reveal novel effects of CTCF and cohesin on transcription from a relatively small genome that resemble their effects on the cellular genome by acting as

  8. Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes

    PubMed Central

    Davis, Zoe H.; Verschueren, Erik; Jang, Gwendolyn M.; Kleffman, Kevin; Johnson, Jeffrey R.; Park, Jimin; Von Dollen, John; Maher, M. Cyrus; Johnson, Tasha; Newton, William; Jäger, Stefanie; Shales, Michael; Horner, Julie; Hernandez, Ryan D.; Krogan, Nevan J.; Glaunsinger, Britt A.

    2014-01-01

    SUMMARY Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle. PMID:25544563

  9. Modulation of B-cell exosome proteins by gamma herpesvirus infection

    PubMed Central

    Meckes, David G.; Gunawardena, Harsha P.; Dekroon, Robert M.; Heaton, Phillip R.; Edwards, Rachel H.; Ozgur, Sezgin; Griffith, Jack D.; Damania, Blossom; Raab-Traub, Nancy

    2013-01-01

    The human gamma herpesviruses, Kaposi sarcoma-associated virus (KSHV) and EBV, are associated with multiple cancers. Recent evidence suggests that EBV and possibly other viruses can manipulate the tumor microenvironment through the secretion of specific viral and cellular components into exosomes, small endocytically derived vesicles that are released from cells. Exosomes produced by EBV-infected nasopharyngeal carcinoma cells contain high levels of the viral oncogene latent membrane protein 1 and viral microRNAs that activate critical signaling pathways in recipient cells. In this study, to determine the effects of EBV and KSHV on exosome content, quantitative proteomics techniques were performed on exosomes purified from 11 B-cell lines that are uninfected, infected with EBV or with KSHV, or infected with both viruses. Using mass spectrometry, 871 proteins were identified, of which ∼360 were unique to the viral exosomes. Analysis by 2D difference gel electrophoresis and spectral counting identified multiple significant changes compared with the uninfected control cells and between viral groups. These data predict that both EBV and KSHV exosomes likely modulate cell death and survival, ribosome function, protein synthesis, and mammalian target of rapamycin signaling. Distinct viral-specific effects on exosomes suggest that KSHV exosomes would affect cellular metabolism, whereas EBV exosomes would activate cellular signaling mediated through integrins, actin, IFN, and NFκB. The changes in exosome content identified in this study suggest ways that these oncogenic viruses modulate the tumor microenvironment and may provide diagnostic markers specific for EBV and KSHV associated malignancies. PMID:23818640

  10. A virally encoded small peptide regulates RTA stability and facilitates Kaposi's sarcoma-associated herpesvirus lytic replication.

    PubMed

    Jaber, Tareq; Yuan, Yan

    2013-03-01

    In both mammalian and viral genomes, a large proportion of sequences are transcribed and annotated as noncoding RNAs. A polyadenylated RNA of 3.0 kb (T3.0) is transcribed from the opposite strand of the open reading frame 50 (ORF50) DNA template in the genome of Kaposi's sarcoma-associated herpesvirus (KSHV) and has been annotated previously as a noncoding RNA. ORF50 encodes the replication and transcription activator (RTA), which controls the switch of the virus between the latent and lytic phases of the life cycle. Here we show that T3.0 encodes a small peptide of 48 amino acids (designated viral small peptide 1 [vSP-1]). vSP-1 interacts with RTA at the protein abundance regulatory signal (PARS) motifs, and the association prevents RTA from being subjected to degradation through the ubiquitin-proteasome pathway. As a consequence, vSP-1 facilitates KSHV gene expression and lytic replication. This finding reveals a novel mechanism of gene regulation in the viral life cycle. PMID:23302891

  11. Crystal Structure of Human Herpesvirus 6B Tegument Protein U14

    PubMed Central

    Tang, Huamin; Kawabata, Akiko; Mahmoud, Nora F.; Khanlari, Zahra; Hamada, Daizo; Tsuruta, Hiroki; Mori, Yasuko

    2016-01-01

    The tegument protein U14 of human herpesvirus 6B (HHV-6B) constitutes the viral virion structure and is essential for viral growth. To define the characteristics and functions of U14, we determined the crystal structure of the N-terminal domain of HHV-6B U14 (U14-NTD) at 1.85 Å resolution. U14-NTD forms an elongated helix-rich fold with a protruding β hairpin. U14-NTD exists as a dimer exhibiting broad electrostatic interactions and a network of hydrogen bonds. This is first report of the crystal structure and dimerization of HHV-6B U14. The surface of the U14-NTD dimer reveals multiple clusters of negatively- and positively-charged residues that coincide with potential functional sites of U14. Three successive residues, L424, E425 and V426, which relate to viral growth, reside on the β hairpin close to the dimer's two-fold axis. The hydrophobic side-chains of L424 and V426 that constitute a part of a hydrophobic patch are solvent-exposed, indicating the possibility that the β hairpin region is a key functional site of HHV-6 U14. Structure-based sequence comparison suggests that U14-NTD corresponds to the core fold conserved among U14 homologs, human herpesvirus 7 U14, and human cytomegalovirus UL25 and UL35, although dimerization appears to be a specific feature of the U14 group. PMID:27152739

  12. Herpesvirus saimiri.

    PubMed Central

    Fickenscher, H; Fleckenstein, B

    2001-01-01

    Herpesvirus saimiri (saimiriine herpesvirus 2) is the classical prototype of the gamma(2)-herpesviruses or rhadinoviruses, which also contains a human member, the Kaposi's sarcoma-associated herpesvirus. The T-lymphotropic Herpesvirus saimiri establishes specific replicative and persistent conditions in different primate host species. Virtually all squirrel monkeys (Saimiri sciureus) are persistently infected with this virus. In its natural host, the virus does not cause disease, whereas it induces fatal acute T-cell lymphoma in other monkey species after experimental infection. The virus can be isolated by cocultivation of permissive epithelial cells with peripheral blood cells from naturally infected squirrel monkeys and from susceptible New World monkeys during the virus-induced disease. Tumour-derived and in vitro-transformed T-cell lines from New World monkeys release virus particles. Herpesvirus ateles is a closely related virus of spider monkeys (Ateles spp.) and has similar pathogenic properties to Herpesvirus saimiri in other New World primate species. Similar to other rhadinoviruses, the genome of Herpesvirus saimiri harbours a series of virus genes with pronounced homology to cellular counterparts including a D-type cyclin, a G-protein-coupled receptor, an interleukin-17, a superantigen homologue, and several inhibitors of the complement cascade and of different apoptosis pathways. Preserved function has been demonstrated for most of the homologues of cellular proteins. These viral functions are mostly dispensable for the transforming and pathogenic capability of the virus. However, they are considered relevant for the apathogenic persistence of Herpesvirus saimiri in its natural host. A terminal region of the non-repetitive coding part of the virus genome is essential for pathogenicity and T-cell transformation. Based on the pathogenic phenotypes and the different alleles of this variable region, the virus strains have been assigned to three subgroups

  13. The exonuclease and host shutoff functions of the SOX protein of Kaposi's sarcoma-associated herpesvirus are genetically separable.

    PubMed

    Glaunsinger, Britt; Chavez, Leonard; Ganem, Don

    2005-06-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) SOX protein, encoded by ORF37, promotes shutoff of host cell gene expression during lytic viral replication by dramatically impairing mRNA accumulation. SOX is the KSHV homolog of the alkaline exonuclease of other herpesviruses, which has been shown to function as a DNase involved in processing and packaging the viral genome. Although the exonuclease activity of these proteins is widely conserved across all herpesviruses, the host shutoff activity observed for KSHV SOX is not. We show here that SOX expression sharply reduces the half-life of target mRNAs. Extensive mutational analysis reveals that the DNase and host shutoff activities of SOX are genetically separable. Lesions affecting the DNase activity cluster in conserved regions of the protein, but residues critical for mRNA degradation are not conserved across the viral family. Additionally, we present evidence suggesting that the two different functions of SOX occur within distinct cellular compartments-DNase activity in the nucleus and host shutoff activity in the cytoplasm.

  14. Definition of an optimal cytotoxic T lymphocyte epitope in the latently expressed Kaposi's sarcoma-associated herpesvirus kaposin protein.

    PubMed

    Brander, C; O'Connor, P; Suscovich, T; Jones, N G; Lee, Y; Kedes, D; Ganem, D; Martin, J; Osmond, D; Southwood, S; Sette, A; Walker, B D; Scadden, D T

    2001-07-15

    Cytotoxic T lymphocytes (CTL) recognize and kill virus-infected cells and contribute to immunologic control of viral replication. For many herpesviruses (e.g., Epstein-Barr and cytomegalovirus), virus-specific CTL responses can be readily detected in infected persons, but CTL responses against Kaposi's sarcoma-associated herpesvirus (KSHV) appear to be weak and remain poorly characterized. Using a human leukocyte antigen (HLA) binding motif-based epitope prediction algorithm, we identified 37 HLA-A*0201 binding peptides from 8 KSHV open-reading frames (ORFs). After in vitro stimulation of peripheral blood mononuclear cells from KSHV-infected persons, CTL responses against 1 peptide in the KSHV kaposin protein (ORF K12) were detected in 2 HLA-A*0201-positive subjects. The optimal CTL epitope was identified by HLA restriction analysis and peptide titration assays. These data describe a latent phase viral gene product targeted by CTL that may be relevant for KSHV immunopathogenesis.

  15. Viral-bacterial pneumonia in calves: duration of the interaction between bovine herpesvirus 1 and Pasteurella haemolytica.

    PubMed Central

    Yates, W D; Babiuk, L A; Jericho, K W

    1983-01-01

    Sixteen six to eight month old beef calves were exposed individually to a five minute aerosol of bovine herpesvirus 1, isolate 108. Aerosol exposure to Pasteurella haemolytica (biotype A, serotype 1) was administered individually for five minutes at either four, ten, 20 or 30 days after the virus. Fibrinous pneumonia and pleuritis occurred in all four groups but were most extensive and severe in those exposed to the virus and bacterium four days apart (the positive controls). Fibrinous pneumonia was associated with persistence of bovine herpesvirus 1 in the respiratory tract despite resolution of virus-induced necrotic lesions of the respiratory mucosa. The results presented here suggest that, although the severity of viral-bacterial synergism may be influenced by virus-induced morphological changes, the continued presence of viral antigens after the resolution of respiratory mucosal lesions may continue to exert some effect on host defenses and disease processes. Images Fig. 2. Fig. 3. Fig. 4. PMID:6315196

  16. Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes

    PubMed Central

    Hill, James M.; Quenelle, Debra C.; Cardin, Rhonda D.; Vogel, Jodi L.; Clement, Christian; Bravo, Fernando J.; Foster, Timothy P.; Bosch-Marce, Marta; Raja, Priya; Lee, Jennifer S.; Bernstein, David I.; Krause, Philip R.; Knipe, David M.; Kristie, Thomas M.

    2015-01-01

    The high prevalence of Herpesviruses in the population and the maintenance of lifelong latent reservoirs are challenges to the control of herpetic diseases, despite the availability of antiviral pharmaceuticals that target viral DNA replication. In addition to oral and genital lesions, herpes simplex virus infections and recurrent reactivations from the latent pool can result in severe pathology including neonatal infection and mortality, blindness due to ocular keratitis, and viral-induced complications in immunosuppressed individuals. Herpesviruses, like their cellular hosts, are subject to the regulatory impacts of chromatin and chromatin modulation machinery that promotes or suppresses gene expression. The initiation of herpes simplex virus infection and reactivation from latency is dependent on a transcriptional coactivator complex that contains two required histone demethylases, LSD1 and JMJD2s. Inhibition of either of these enzymes results in heterochromatic suppression of the viral genome and a block to infection and reactivation in vitro. Here, the concept of epigenetic suppression of viral infection is demonstrated in three animal models of herpes simplex virus infection and disease. Inhibition of LSD1 via treatment of animals with the monoamine oxidase inhibitor tranylcypromine results in suppression of viral lytic infection, subclinical shedding, and reactivation from latency in vivo. Phenotypic suppression is correlated with enhanced epigenetic suppression of the viral genome and suggests that, even during latency, the chromatin state of the virus is dynamic. Given the expanding development of epipharmaceuticals, this approach has substantial potential for anti-herpetic treatments with distinct advantages over the present pharmaceutical options. PMID:25473037

  17. Modulation of Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Function by Hypoxia-Upregulated Protein 1

    PubMed Central

    Giffin, Louise; Yan, Feng; Major, M. Ben

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV, also called human herpesvirus 8) is linked to the development of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). KSHV expresses several proteins that modulate host cell signaling pathways. One of these proteins is viral interleukin-6 (vIL-6), which is a homolog of human IL-6 (hIL-6). vIL-6 is able to prevent apoptosis and promote proinflammatory signaling, angiogenesis, and cell proliferation. Although it can be secreted, vIL-6 is mainly an intracellular protein that is retained in the endoplasmic reticulum (ER). We performed affinity purification and mass spectrometry to identify novel vIL-6 binding partners and found that a cellular ER chaperone, hypoxia-upregulated protein 1 (HYOU1), interacts with vIL-6. Immunohistochemical staining reveals that both PEL and KS tumor tissues express significant amounts of HYOU1. We also show that HYOU1 increases endogenous vIL-6 protein levels and that HYOU1 facilitates vIL-6-induced JAK/STAT signaling, migration, and survival in endothelial cells. Furthermore, our data suggest that HYOU1 also modulates vIL-6's ability to induce CCL2, a chemokine involved in cell migration. Finally, we investigated the impact of HYOU1 on cellular hIL-6 signaling. Collectively, our data indicate that HYOU1 is important for vIL-6 function and may play a role in the pathogenesis of KSHV-associated cancers. IMPORTANCE KSHV vIL-6 is detectable in all KSHV-associated malignancies and promotes tumorigenesis and inflammation. We identified a cellular protein, called hypoxia-upregulated protein 1 (HYOU1), that interacts with KSHV vIL-6 and is present in KSHV-infected tumors. Our data suggest that HYOU1 facilitates the vIL-6-induced signaling, migration, and survival of endothelial cells. PMID:24920810

  18. Identification of the Essential Role of Viral Bcl-2 for Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication

    PubMed Central

    Liang, Qiming; Chang, Brian; Lee, Patrick; Brulois, Kevin F.; Ge, Jianning; Shi, Mude; Rodgers, Mary A.; Feng, Pinghui; Oh, Byung-Ha; Liang, Chengyu

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) evades host defenses through tight suppression of autophagy by targeting each step of its signal transduction: by viral Bcl-2 (vBcl-2) in vesicle nucleation, by viral FLIP (vFLIP) in vesicle elongation, and by K7 in vesicle maturation. By exploring the roles of KSHV autophagy-modulating genes, we found, surprisingly, that vBcl-2 is essential for KSHV lytic replication, whereas vFLIP and K7 are dispensable. Knocking out vBcl-2 from the KSHV genome resulted in decreased lytic gene expression at the mRNA and protein levels, a lower viral DNA copy number, and, consequently, a dramatic reduction in the amount of progeny infectious viruses, as also described in the accompanying article (A. Gelgor, I. Kalt, S. Bergson, K. F. Brulois, J. U. Jung, and R. Sarid, J Virol 89:5298–5307, 2015). More importantly, the antiapoptotic and antiautophagic functions of vBcl-2 were not required for KSHV lytic replication. Using a comprehensive mutagenesis analysis, we identified that glutamic acid 14 (E14) of vBcl-2 is critical for KSHV lytic replication. Mutating E14 to alanine totally blocked KSHV lytic replication but showed little or no effect on the antiapoptotic and antiautophagic functions of vBcl-2. Our study indicates that vBcl-2 harbors at least three important and genetically separable functions to modulate both cellular signaling and the virus life cycle. IMPORTANCE The present study shows for the first time that vBcl-2 is essential for KSHV lytic replication. Removal of the vBcl-2 gene results in a lower level of KSHV lytic gene expression, impaired viral DNA replication, and consequently, a dramatic reduction in the level of progeny production. More importantly, the role of vBcl-2 in KSHV lytic replication is genetically separated from its antiapoptotic and antiautophagic functions, suggesting that the KSHV Bcl-2 carries a novel function in viral lytic replication. PMID:25740994

  19. Kaposi's Sarcoma-Associated Herpesvirus K-Rta Exhibits SUMO-Targeting Ubiquitin Ligase (STUbL) Like Activity and Is Essential for Viral Reactivation

    PubMed Central

    Izumiya, Yoshihiro; Kobayashi, Keisuke; Kim, Kevin Y.; Pochampalli, Mamata; Izumiya, Chie; Shevchenko, Bogdan; Wang, Don-Hong; Huerta, Steve B.; Martinez, Anthony; Campbell, Mel; Kung, Hsing-Jien

    2013-01-01

    The small ubiquitin-like modifier (SUMO) is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL) which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif) and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML) and K-bZIP. PML-NBs (nuclear bodies) or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate unique gene

  20. Cosmid library of the turkey herpesvirus genome constructed from nanogram quantities of viral DNA associated with an excess of cellular DNA.

    PubMed

    Reilly, J D; Silva, R F

    1993-03-01

    A protocol was designed for the rapid and efficient construction of cosmid libraries from cell-associated viral genomes available in very low quantities. Purification of viral DNA from cellular DNA was unnecessary. The vast excess of cellular DNA compensated for the limited amount of available viral DNA, enabling titration of the restriction endonuclease partial digest. A cosmid library of the turkey herpesvirus DNA genome was constructed from 1.5 micrograms of cellular DNA containing approximately 6 nanograms of viral DNA.

  1. A bovine herpesvirus 1 pUL51 deletion mutant shows impaired viral growth in vitro and reduced virulence in rabbits

    PubMed Central

    Raza, Sohail; Deng, Mingliang; Shahin, Farzana; Yang, Kui; Hu, Changmin; Chen, Yingyu; Chen, Huanchun; Guo, Aizhen

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) UL51 protein (pUL51) is a tegument protein of BoHV-1 whose function is currently unknown. Here, we aimed to illustrate the specific role of pUL51 in virion morphogenesis and its importance in BoHV-1 virulence. To do so, we constructed a BoHV-1 bacterial artificial chromosome (BAC). We used recombinant BAC and transgenic techniques to delete a major part of the UL51 open reading frame. Deletion of pUL51 resulted in severe viral growth defects, as evidenced by lower single and multi-step growth kinetics, reduced plaque size, and the accumulation of non-enveloped capsids in the cytoplasm of infected cells. Using tagged BoHV-1 recombinant viruses, it was determined that the pUL51 protein completely co-localized with the cis-Golgi marker protein GM-130. Taken altogether, pUL51 was demonstrated to play a critical role in BoHV-1 growth and it is involved in viral maturation and egress. Moreover, an in vivo analysis showed that the pUL51 mutant exhibited reduced virulence in rabbits, with no clinical signs, no nasal shedding of the virus, and no detectable serum neutralizing antibodies. Therefore, we conclude that the BoHV-1 pUL51 is indispensable for efficient viral growth in vitro and is essential for virulence in vivo. PMID:26934330

  2. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity

    PubMed Central

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V.

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses. PMID:25309527

  3. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells.

    PubMed

    Sun, Xiaoping; Bristol, Jillian A; Iwahori, Satoko; Hagemeier, Stacy R; Meng, Qiao; Barlow, Elizabeth A; Fingeroth, Joyce D; Tarakanova, Vera L; Kalejta, Robert F; Kenney, Shannon C

    2013-09-01

    All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses. PMID:23843639

  4. Structural proteins of Kaposi's sarcoma-associated herpesvirus antagonize p53-mediated apoptosis.

    PubMed

    Chudasama, P; Konrad, A; Jochmann, R; Lausen, B; Holz, P; Naschberger, E; Neipel, F; Britzen-Laurent, N; Stürzl, M

    2015-01-29

    The tumor suppressor p53 is a central regulatory molecule of apoptosis and is commonly mutated in tumors. Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies express wild-type p53. Accordingly, KSHV encodes proteins that counteract the cell death-inducing effects of p53. Here, the effects of all KSHV genes on the p53 signaling pathway were systematically analyzed using the reversely transfected cell microarray technology. With this approach we detected eight KSHV-encoded genes with potent p53 inhibiting activity in addition to the previously described inhibitory effects of KSHV genes ORF50, K10 and K10.5. Interestingly, the three most potent newly identified inhibitors were KSHV structural proteins, namely ORF22 (glycoprotein H), ORF25 (major capsid protein) and ORF64 (tegument protein). Validation of these results with a classical transfection approach showed that these proteins inhibited p53 signaling in a dose-dependent manner and that this effect could be reversed by small interfering RNA-mediated knockdown of the respective viral gene. All three genes inhibited p53-mediated apoptosis in response to Nutlin-3 treatment in non-infected and KSHV-infected cells. Addressing putative mechanisms, we could show that these proteins could also inhibit the transactivation of the promoters of apoptotic mediators of p53 such as BAX and PIG3. Altogether, we demonstrate for the first time that structural proteins of KSHV can counteract p53-induced apoptosis. These proteins are expressed in the late lytic phase of the viral life cycle and are incorporated into the KSHV virion. Accordingly, these genes may inhibit cell death in the productive and in the early entrance phase of KSHV infection. PMID:24469037

  5. Inhibition of cGAS DNA Sensing by a Herpesvirus Virion Protein

    PubMed Central

    Wu, Jian-jun; Li, Wenwei; Shao, Yaming; Avey, Denis; Fu, Bishi; Gillen, Joseph; Hand, Travis; Ma, Siming; Liu, Xia; Miley, Wendell; Konrad, Andreas; Neipel, Frank; Stürzl, Michael; Whitby, Denise; Li, Hong; Zhu, Fanxiu

    2015-01-01

    SUMMARY Invading viral DNA can be recognized by the host cytosolic DNA sensor, cyclic GMP-AMP (cGAMP) synthase (cGAS), resulting in production of the second messenger cGAMP, which directs the adaptor protein STING to stimulate production of type I interferons (IFNs). Although several DNA viruses are sensed by cGAS, viral strategies targeting cGAS are virtually unknown. We report here that Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF52, an abundant gammaherpesvirus-specific tegument protein, subverts cytosolic DNA sensing by directly inhibiting cGAS enzymatic activity through a mechanism involving both cGAS- and DNA-binding. Moreover, ORF52 homologues in other gammaherpesviruses also inhibit cGAS activity and similarly bind cGAS and DNA, suggesting conserved inhibitory mechanisms. Furthermore, KSHV infection evokes cGAS-dependent responses that can limit the infection, and an ORF52-null mutant exhibits increased cGAS signaling. Our findings reveal a mechanism through which gammaherpesviruses antagonize host cGAS DNA sensing. PMID:26320998

  6. Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis.

    PubMed

    Dong, Xiaonan; Cheng, Adam; Zou, Zhongju; Yang, Yih-Sheng; Sumpter, Rhea M; Huang, Chou-Long; Bhagat, Govind; Virgin, Herbert W; Lira, Sergio A; Levine, Beth

    2016-03-15

    The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi's sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling.

  7. Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis.

    PubMed

    Dong, Xiaonan; Cheng, Adam; Zou, Zhongju; Yang, Yih-Sheng; Sumpter, Rhea M; Huang, Chou-Long; Bhagat, Govind; Virgin, Herbert W; Lira, Sergio A; Levine, Beth

    2016-03-15

    The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi's sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling. PMID:26929373

  8. Microarray chip based identification of a mixed infection of bovine herpesvirus 1 and bovine viral diarrhea 2 from Indian cattle.

    PubMed

    Ratta, Barkha; Yadav, Brijesh Singh; Pokhriyal, Mayank; Saxena, Meeta; Sharma, Bhaskar

    2014-01-01

    Bovine herpesvirus 1 (BHV1) and bovine viral diarrhea virus 2 (BVD2) are endemic in India although no mixed infection with these viruses has been reported from India. We report first mixed infection of these viruses in cattle during routine screening with a microarray chip. 62 of the 69 probes of BHV1 and 42 of the 57 BVD2 probes in the chip gave positive signals for the virus. The virus infections were subsequently confirmed by RT-PCR. We also discuss the implications of these findings.

  9. Kaposi's sarcoma-associated herpesvirus ORF6 gene is essential in viral lytic replication.

    PubMed

    Peng, Can; Chen, Jungang; Tang, Wei; Liu, Chunlan; Chen, Xulin

    2014-01-01

    Kaposi's sarcoma associated herpesvirus (KSHV) is associated with Kaposis's sarcoma (KS), primary effusion lymphoma and multicentric Castleman's disease. KSHV encodes at least 8 open reading frames (ORFs) that play important roles in its lytic DNA replication. Among which, ORF6 of KSHV encodes an ssDNA binding protein that has been proved to participate in origin-dependent DNA replication in transient assays. To define further the function of ORF6 in the virus life cycle, we constructed a recombinant virus genome with a large deletion within the ORF6 locus by using a bacterial artificial chromosome (BAC) system. Stable 293T cells carrying the BAC36 (wild type) and BACΔ6 genomes were generated. When monolayers of 293T-BAC36 and 293T-BACΔ6 cells were induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate, infectious virus was detected from the 293T-BAC36 cell supernatants only and not from the 293T- BACΔ6 cell supernatants. DNA synthesis was defective in 293T-BACΔ6 cells. Expression of ORF6 in trans in BACΔ6-containing cells was able to rescue both defects. Our results provide genetic evidence that ORF6 is essential for KSHV lytic replication. The stable 293T cells carrying the BAC36 and BACΔ6 genomes could be used as tools to investigate the detailed functions of ORF6 in the lytic replication of KSHV. PMID:24911362

  10. [Cell analogs of viral proteins].

    PubMed

    Blinov, V M; Gaĭsler, V; Krasnov, G S; Shargunov, A V; Shurdov, M A; Zverev, V V

    2014-01-01

    Horizontal transfer of genes between viruses and their hosts played an important role in the evolution of various eukaryotes including contemporary mammals as well as the pathogens themselves. Elements of viruses of various types can be found in the genome of animals. Endogenous retroviral elements composing up to 8% of human genome length not only determine its high flexibility and rapid adaptation potential. Many of virus genes such as Fv1, Lv1, Lv2 being analogues of capsid and other proteins determine effective suppression of viral replication after cell penetration by the causative agent. Introduction of these elements into genome of a wide variety of animals from fish to primates could have taken place against the background of global natural cataclysms of viral origin. Integration of retrovirus genes coding surface glycoproteins with immunosuppressing domains into genetic apparatus of animals served as an impetus to the development of viviparity and spread ofplacental mammals. Their cell analogs syncytins perform a dual function: take direct part in the formation of syncytiotrophoblast layer of placenta and ensure tolerance of immune system of mother to embryo. The acquisition of cell genes by viruses also played an important role in their evolution: various interleukins and other modulators of immune response introduced into viral genome from cell genetic apparatus became one of the most important factors of pathogenicity of a wide variety of causative agents including poxviruses, cytomegalovirus, Epstein-Barr virus and many others. Evolutionary pathways of the virus and host are thus inseparable from each other, and character of one of these directions is largely dictated by the vector of another. PMID:25051706

  11. Protein kinase CK2 phosphorylation regulates the interaction of Kaposi's sarcoma-associated herpesvirus regulatory protein ORF57 with its multifunctional partner hnRNP K

    PubMed Central

    Malik, Poonam; Clements, J. Barklie

    2004-01-01

    ORF57 protein of Kaposi's sarcoma-associated herpesvirus has a counterpart in all herpesvirus of mammals and birds and regulates gene expression at transcriptional and post-transcriptional levels. ORF57 was capable of self-interaction and bound a rapidly migrating form of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a multifunctional cellular protein involved in gene expression. In virus infected cell extracts, ORF57 was present in a complex with hnRNP K that had protein kinase CK2 activity, and was phosphorylated by CK2. Different regions of ORF57 bound both catalytic α/α′ and regulatory β subunits of CK2. CK2 modification enhanced the ORF57–hnRNP K interaction, and may regulate the presence and activities of components in the complex. We suggest that ORF57 and hnRNP K interaction may modulate ORF57-mediated regulation of viral gene expression. Herpesviral ORF57 (Rhadinovirus) and ICP27 (Simplexvirus) proteins both interact with hnRNP K and CK2 implying that adaptation of the ancestral hnRNP K and CK2 to associate with viral regulatory ancestor protein likely pre-dates divergence of these Herpesviridae genera that occurred 200 million years ago. PMID:15486205

  12. Kaposi΄s sarcoma-associated herpesvirus ORF36 protein induces chromosome condensation and phosphorylation of histone H3.

    PubMed

    Kim, Sunmi; Cha, Seho; Jang, Jun Hyeong; Kim, Yejin; Seo, Taegun

    2013-01-01

    Kaposi΄s sarcoma-associated herpesvirus (KSHV) has been known as an agent causing Kaposi΄s sarcoma, primary effusion lymphoma, and multicentric Castleman΄s disease. In the lytic phase of the virus cycle, various viral genes are expressed, which causes host cell dysregulation. Among the lytic genes, viral protein kinase (vPK) encoded by ORF36 is a member of serine/threonine protein kinase (CHPK) family, which is involved in viral gene expression, viral DNA replication and encapsidation, and nuclear egress of virions. Recent studies have shown that the BGLF4 protein of Epstein-Barr virus (EBV), a member of the CHPK family, alters the host cell chromatin structure through phosphorylation of its key regulators. The role of KSHV ORF36 in cellular mitotic events, however, is not yet understood. In the current study, we showed that KSHV ORF36 induced chromosome condensation and phosphorylation of histone H3 on Ser 10, which are known as cellular mitosis markers. These processes have occurred in a kinase activity-dependent manner. PMID:23530827

  13. The UL97 protein kinase of human cytomegalovirus and homologues in other herpesviruses: impact on virus and host.

    PubMed

    Michel, Detlef; Mertens, Thomas

    2004-03-11

    The human herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), human herpesvirus 6A (HHV-6A), HHV-6B, HHV-7 and HHV-8, establish persistent infections with possible recurrence during immunosuppression. HCMV replication is inhibited by the nucleoside analogue ganciclovir (GCV), the compound of choice for the treatment of HCMV diseases and preemptive treatment of infections. The viral UL97 protein (pUL97) which shares homologies with protein kinases and bacterial phosphotransferases is able to monophosphorylate GCV. Homologues of pUL97 are found in HSV (UL13), VZV (ORF47), EBV (BGLF4), HHV-6 (U69), HHV-8 (ORF36) as well as in murine CMV (M97) or rat CMV (R97). Several indolocarbazoles have been reported to be specific inhibitors of pUL97. The protein is important for efficient replication of the virus. Autophosphorylation of pUL97 was observed using different experimental systems. Most recently, it has been shown that pUL97 interacts with the DNA polymerase processivity factor pUL44. Indolocarbazole protein kinase inhibitors are promising lead compounds for the development of more specific inhibitors of HCMV. PMID:15023359

  14. Activation of Mitogen-Activated Protein Kinase and NF-κB Pathways by a Kaposi's Sarcoma-Associated Herpesvirus K15 Membrane Protein

    PubMed Central

    Brinkmann, Melanie M.; Glenn, Mark; Rainbow, Lucille; Kieser, Arnd; Henke-Gendo, Cornelia; Schulz, Thomas F.

    2003-01-01

    The K15 gene of Kaposi's sarcoma-associated herpesvirus (also known as human herpesvirus 8) consists of eight alternatively spliced exons and has been predicted to encode membrane proteins with a variable number of transmembrane regions and a common C-terminal cytoplasmic domain with putative binding sites for SH2 and SH3 domains, as well as for tumor necrosis factor receptor-associated factors. These features are reminiscent of the latent membrane proteins LMP-1 and LMP2A of Epstein-Barr virus and, more distantly, of the STP, Tip, and Tio proteins of the related γ2-herpesviruses herpesvirus saimiri and herpesvirus ateles. These viral membrane proteins can activate a number of intracellular signaling pathways. We have therefore examined the abilities of different K15-encoded proteins to initiate intracellular signaling. We found that a 45-kDa K15 protein derived from all eight K15 exons and containing 12 predicted transmembrane domains in addition to the cytoplasmic domain activated the Ras/mitogen-activated protein kinase (MAPK) and NF-κB pathways, as well as (more weakly) the c-Jun N-terminal kinase/SAPK pathway. Activation of the MAPK and NF-κB pathways required phosphorylation of tyrosine residue 481 within a putative SH2-binding site (YEEVL). This motif was phosphorylated by the tyrosine kinases Src, Lck, Yes, Hck, and Fyn. The region containing the YEEVL motif interacted with tumor necrosis factor receptor-associated factor 2 (TRAF-2), and a dominant negative TRAF-2 mutant inhibited the K15-mediated activation of the Ras/MAPK pathway, suggesting the involvement of TRAF-2 in the initiation of these signaling routes. In contrast, several smaller K15 protein isoforms activated these pathways only weakly. All of the K15 isoforms tested were, however, localized in lipid rafts, suggesting that incorporation into lipid rafts is not sufficient to initiate signaling. Additional regions of K15, located presumably in exons 2 to 5, may therefore contribute to the

  15. Kaposi's sarcoma-associated herpesvirus ORF57 functions as a viral splicing factor and promotes expression of intron-containing viral lytic genes in spliceosome-mediated RNA splicing.

    PubMed

    Majerciak, Vladimir; Yamanegi, Koji; Allemand, Eric; Kruhlak, Michael; Krainer, Adrian R; Zheng, Zhi-Ming

    2008-03-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 facilitates the expression of both intronless viral ORF59 genes and intron-containing viral K8 and K8.1 genes (V. Majerciak, N. Pripuzova, J. P. McCoy, S. J. Gao, and Z. M. Zheng, J. Virol. 81:1062-1071, 2007). In this study, we showed that disruption of ORF57 in a KSHV genome led to increased accumulation of ORF50 and K8 pre-mRNAs and reduced expression of ORF50 and K-bZIP proteins but had no effect on latency-associated nuclear antigen (LANA). Cotransfection of ORF57 and K8beta cDNA, which retains a suboptimal intron of K8 pre-mRNA due to alternative splicing, promoted RNA splicing of K8beta and production of K8alpha (K-bZIP). Although Epstein-Barr virus EB2, a closely related homolog of ORF57, had a similar activity in the cotransfection assays, herpes simplex virus type 1 ICP27 was inactive. This enhancement of RNA splicing by ORF57 correlates with the intact N-terminal nuclear localization signal motifs of ORF57 and takes place in the absence of other viral proteins. In activated KSHV-infected B cells, KSHV ORF57 partially colocalizes with splicing factors in nuclear speckles and assembles into spliceosomal complexes in association with low-abundance viral ORF50 and K8 pre-mRNAs and essential splicing components. The association of ORF57 with snRNAs occurs by ORF57-Sm protein interaction. We also found that ORF57 binds K8beta pre-mRNAs in vitro in the presence of nuclear extracts. Collectively our data indicate that KSHV ORF57 functions as a novel splicing factor in the spliceosome-mediated splicing of viral RNA transcripts.

  16. CryoEM and mutagenesis reveal that the smallest capsid protein cements and stabilizes Kaposi's sarcoma-associated herpesvirus capsid.

    PubMed

    Dai, Xinghong; Gong, Danyang; Xiao, Yuchen; Wu, Ting-Ting; Sun, Ren; Zhou, Z Hong

    2015-02-17

    With just one eighth the size of the major capsid protein (MCP), the smallest capsid protein (SCP) of human tumor herpesviruses--Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV)--is vital to capsid assembly, yet its mechanism of action is unknown. Here, by cryoEM of KSHV at 6-Å resolution, we show that SCP forms a crown on each hexon and uses a kinked helix to cross-link neighboring MCP subunits. SCP-null mutation decreased viral titer by 1,000 times and impaired but did not fully abolish capsid assembly, indicating an important but nonessential role of SCP. By truncating the C-terminal half of SCP and performing cryoEM reconstruction, we demonstrate that SCP's N-terminal half is responsible for the observed structure and function whereas the C-terminal half is flexible and dispensable. Serial truncations further highlight the critical importance of the N-terminal 10 aa, and cryoEM reconstruction of the one with six residues truncated localizes the N terminus of SCP in the cryoEM density map and enables us to construct a pseudoatomic model of SCP. Fitting of this SCP model and a homology model for the MCP upper domain into the cryoEM map reveals that SCP binds MCP largely via hydrophobic interactions and the kinked helix of SCP bridges over neighboring MCPs to form noncovalent cross-links. These data support a mechanistic model that tumor herpesvirus SCP reinforces the capsid for genome packaging, thus acting as a cementing protein similar to those found in many bacteriophages.

  17. Evaluation of a viral microarray based on simultaneous extraction and amplification of viral nucleotide acid for detecting human herpesviruses and enteroviruses.

    PubMed

    Liu, Yi; Duan, Chunhong; Zhang, Chunxiu; Yang, Xiaomeng; Zhao, Yan; Dong, Rui; Zhou, Jiajing; Gai, Zhongtao

    2015-01-01

    In this study, a viral microarray based assay was developed to detect the human herpesviruses and enteroviruses associated with central nervous system infections, including herpes simplex virus type 1, type 2 (HSV1 and HSV2), Epstein-Barr virus (EBV), cytomegalovirus (CMV), enterovirus 71 (EV71), coxsackievirus A 16 (CA16) and B 5(CB5). The DNA polymerase gene of human herpesviruses and 5'-untranslated region of enteroviruses were selected as the targets to design primers and probes. Human herpesviruses DNA and enteroviruses RNA were extracted simultaneously by using a guanidinium thiocyanate acid buffer, and were subsequently amplified through a biotinylated asymmetry multiplex RT-PCR with the specific primer of enteroviruses. In total, 90 blood samples and 49 cerebrospinal fluids samples with suspected systemic or neurological virus infections were investigated. Out of 139 samples, 66 were identified as positive. The specificities of this multiplex RT-PCR microarray assay were over 96% but the sensitivities were various from 100% for HSV1, HSV2, EV71 and CB5, 95.83% for CMV, 80% for EBV to 71.43% for CA16 in comparison with reference standards of TaqMan qPCR/qRT-PCR. The high Kappa values (>0.90) from HSV1, HSV2, CMV, EV71 and CB5 were obtained, indicating almost perfect agreement in term of the 5 viruses detection. But lower Kappa values for EBV (0.63) and CA16 (0.74) displayed a moderate to substantial agreement. This study provides an innovation of simultaneous extraction, amplification, hybridization and detection of DNA viruses and RNA viruses with simplicity and specificity, and demonstrates a potential clinical utility for a variety of viruses' detection.

  18. Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication.

    PubMed

    Leigh, Kendra E; Sharma, Mayuri; Mansueto, My Sam; Boeszoermenyi, Andras; Filman, David J; Hogle, James M; Wagner, Gerhard; Coen, Donald M; Arthanari, Haribabu

    2015-07-21

    Herpesviruses require a nuclear egress complex (NEC) for efficient transit of nucleocapsids from the nucleus to the cytoplasm. The NEC orchestrates multiple steps during herpesvirus nuclear egress, including disruption of nuclear lamina and particle budding through the inner nuclear membrane. In the important human pathogen human cytomegalovirus (HCMV), this complex consists of nuclear membrane protein UL50, and nucleoplasmic protein UL53, which is recruited to the nuclear membrane through its interaction with UL50. Here, we present an NMR-determined solution-state structure of the murine CMV homolog of UL50 (M50; residues 1-168) with a strikingly intricate protein fold that is matched by no other known protein folds in its entirety. Using NMR methods, we mapped the interaction of M50 with a highly conserved UL53-derived peptide, corresponding to a segment that is required for heterodimerization. The UL53 peptide binding site mapped onto an M50 surface groove, which harbors a large cavity. Point mutations of UL50 residues corresponding to surface residues in the characterized M50 heterodimerization interface substantially decreased UL50-UL53 binding in vitro, eliminated UL50-UL53 colocalization, prevented disruption of nuclear lamina, and halted productive virus replication in HCMV-infected cells. Our results provide detailed structural information on a key protein-protein interaction involved in nuclear egress and suggest that NEC subunit interactions can be an attractive drug target.

  19. A Multifunctional Protein Encoded by Turkey Herpesvirus Suppresses RNA Silencing in Nicotiana benthamiana▿

    PubMed Central

    Jing, Xiu-li; Fan, Mei-na; Jia, Gang; Liu, Lan-wei; Ma, Lin; Zheng, Cheng-chao; Zhu, Xiao-ping; Liu, Hong-mei; Wang, Xiao-yun

    2011-01-01

    Many plant and animal viruses counteract RNA silencing-mediated defense by encoding diverse RNA silencing suppressors. We characterized HVT063, a multifunctional protein encoded by turkey herpesvirus (HVT), as a silencing suppressor in coinfiltration assays with green fluorescent protein transgenic Nicotiana benthamiana line 16c. Our results indicated that HVT063 could strongly suppress both local and systemic RNA silencing induced by either sense RNA or double-stranded RNA (dsRNA). HVT063 could reverse local silencing, but not systemic silencing, in newly emerging leaves. The local silencing suppression activity of HVT063 was also verified using the heterologous vector PVX. Further, single alanine substitution of arginine or lysine residues of the HVT063 protein showed that each selected single amino acid contributed to the suppression activity of HVT063 and region 1 (residues 138 to 141) was more important, because three of four single amino acid mutations in this region could abolish the silencing suppressor activity of HVT063. Moreover, HVT063 seemed to induce a cell death phenotype in the infiltrated leaf region, and the HVT063 dilutions could decrease the silencing suppressor activity and alleviate the cell death phenotype. Collectively, these results suggest that HVT063 functions as a viral suppressor of RNA silencing that targets a downstream step of the dsRNA formation in the RNA silencing process. Positively charged amino acids in HVT063, such as arginine and lysine, might contribute to the suppressor activity by boosting the interaction between HVT063 and RNA, since HVT063 has been demonstrated to be an RNA binding protein. PMID:21957299

  20. Functional characterization of viral tumor necrosis factor receptors encoded by cyprinid herpesvirus 3 (CyHV3) genome.

    PubMed

    Yi, Yang; Qi, Hemei; Yuan, Jimin; Wang, Rui; Weng, Shaoping; He, Jianguo; Dong, Chuanfu

    2015-08-01

    Cyprinid herpesvirus 3 (CyHV3) is a large double-stranded DNA virus of Alloherpesviridae family in the order Herpesvirales. It causes significant morbidity and mortality in common carp and its ornamental koi variety, and threatens the aquaculture industries worldwide. Mimicry of cytokines and cytokine receptors is a particular strategy for large DNA viruses in modulating the host immune response. Here, we report the identification and characterization of two novel viral homologues of tumor necrosis factor receptor (TNFR) encoded by CyHV3-ORF4 and -ORF12, respectively. CyHV3-ORF4 was identified as a homologue of HVEM and CyHV3-ORF12 as a homologue of TNFRSF1. Overexpression of ORF4 and ORF12 in zebrafish embryos results in embryonic lethality, morphological defects and increased apoptosis. Although we failed to identify any interaction between the two vTNFRs and their potential ligands in zebrafish TNF superfamily by yeast two-hybrid system, the expression of some genes in TNF superfamily or TNFR superfamily were mis-regulated in ORF4 or ORF12-overexpressing embryos, especially the death receptor zHDR and its cognate ligand DL1b. Further studies showed that the apoptosis induced by the both CyHV3 vTNFRs is mainly activated through the intrinsic apoptotic pathway and requires the crosstalk between the intrinsic and extrinsic apoptotic pathway. Additionally, using RT-qPCR and Western blot assays, the expression patterns of the both vTNFRs were also analyzed during CyHV3 productive infection. Collectively, this is the first functional study of two unique vTNFRs encoded by a herpesvirus infecting non-mammalian vertebrates, which may provide novel insights into viral immune regulation mechanism and the pathogenesis of CyHV3 infection. PMID:26052019

  1. Beta-interferon treatment reduces human herpesvirus-6 viral load in multiple sclerosis relapses but not in remission.

    PubMed

    Alvarez-Lafuente, Roberto; De Las Heras, Virginia; Bartolomé, Manuel; Picazo, Juan José; Arroyo, Rafael

    2004-01-01

    To determine whether the DNA prevalence of human herpesvirus-6 (HHV-6), the viral load and the prevalence of both HHV-6 variants in relapsing-remitting multiple sclerosis (RRMS) patients in exacerbation are altered by beta-interferon (IFN-beta) treatment, in comparison with RRMS patients in remission, we analyzed HHV-6 (A and B) genomes in 189 serum samples by quantitative real-time polymerase chain reaction: 105 of the RRMS patients were receiving IFN-beta treatment (48 in exacerbation) and 84 were untreated (36 in relapse). The results were as follows. (1) Prevalence decrease because of IFN-beta treatment was not significant: 25% of RRMS patients in relapse vs. 15.9% in remission (p = 0.45). (2) Viral load was twice as much in untreated patients in relapse than in treated ones. (3) We only found variant A. Since IFN-beta treatment is able to significantly reduce HHV-6 viral load in RRMS patients in relapse, but not in remission, we suggest a role for HHV-6 in the pathogenesis of multiple sclerosis exacerbations and an antiviral role for IFN-beta treatment in RRMS.

  2. Kinetics of viral loads and genotypic analysis of elephant endotheliotropic herpesvirus-1 infection in captive Asian elephants (Elephas maximus).

    PubMed

    Stanton, Jeffrey J; Zong, Jian-Chao; Eng, Crystal; Howard, Lauren; Flanagan, Joe; Stevens, Martina; Schmitt, Dennis; Wiedner, Ellen; Graham, Danielle; Junge, Randall E; Weber, Martha A; Fischer, Martha; Mejia, Alicia; Tan, Jie; Latimer, Erin; Herron, Alan; Hayward, Gary S; Ling, Paul D

    2013-03-01

    Elephant endotheliotropic herpesviruses (EEHVs) can cause fatal hemorrhagic disease in juvenile Asian elephants (Elphas maximus); however, sporadic shedding of virus in trunk washes collected from healthy elephants also has been detected. Data regarding the relationship of viral loads in blood compared with trunk washes are lacking, and questions about whether elephants can undergo multiple infections with EEHVs have not been addressed previously. Real-time quantitative polymerase chain reaction was used to determine the kinetics of EEHV1 loads, and genotypic analysis was performed on EEHV1 DNA detected in various fluid samples obtained from five Asian elephants that survived detectable EEHV1 DNAemia on at least two separate occasions. In three elephants displaying clinical signs of illness, preclinical EEHV1 DNAemia was detectable, and peak whole-blood viral loads occurred 3-8 days after the onset of clinical signs. In two elephants with EEHV1 DNAemia that persisted for 7-21 days, no clinical signs of illness were observed. Detection of EEHV1 DNA in trunk washes peaked approximately 21 days after DNAemia, and viral genotypes detected during DNAemia matched those detected in subsequent trunk washes from the same elephant. In each of the five elephants, two distinct EEHV1 genotypes were identified in whole blood and trunk washes at different time points. In each case, these genotypes represented both an EEHV1A and an EEHV1B subtype. These data suggest that knowledge of viral loads could be useful for the management of elephants before or during clinical illness. Furthermore, sequential infection with both EEHV1 subtypes occurs in Asian elephants, suggesting that they do not elicit cross-protective sterilizing immunity. These data will be useful to individuals involved in the husbandry and clinical care of Asian elephants.

  3. Binding of cellular export factor REF/Aly by Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is not required for efficient KSHV lytic replication.

    PubMed

    Li, Da-Jiang; Verma, Dinesh; Swaminathan, Sankar

    2012-09-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is expressed early during lytic KSHV replication, enhances expression of many KSHV genes, and is essential for virus production. ORF57 is a member of a family of proteins conserved among all human and many animal herpesviruses that are multifunctional regulators of gene expression and act posttranscriptionally to increase accumulation of their target mRNAs. The mechanism of ORF57 action is complex and may involve effects on mRNA transcription, stability, and export. ORF57 directly binds to REF/Aly, a cellular RNA-binding protein component of the TREX complex that mediates RNA transcription and export. We analyzed the effects of an ORF57 mutation known to abrogate REF/Aly binding and demonstrate that the REF-binding mutant is impaired in activation of viral mRNAs and noncoding RNAs confined to the nucleus. Although the inability to bind REF leads to decreased ORF57 activity in enhancing gene expression, there is no demonstrable effect on nuclear export of viral mRNA or the ability of ORF57 to support KSHV replication and virus production. These data indicate that REF/Aly-ORF57 interaction is not essential for KSHV lytic replication but may contribute to target RNA stability independent of effects on RNA export, suggesting a novel role for REF/Aly in viral RNA metabolism.

  4. Regulation of the Abundance of Kaposi’s Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2

    PubMed Central

    Chang, Tzu-Hsuan; Chen, Lee-Wen; Shih, Ying-Ju; Chang, Li-Kwan; Liu, Shih-Tung; Chang, Pey-Jium

    2016-01-01

    The switch between latency and the lytic cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490–535) and PARS-II (aa 590–650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50. PMID:27698494

  5. Poly(A) Binding Protein 1 Enhances Cap-Independent Translation Initiation of Neurovirulence Factor from Avian Herpesvirus

    PubMed Central

    Tahiri-Alaoui, Abdessamad; Zhao, Yuguang; Sadigh, Yashar; Popplestone, James; Kgosana, Lydia; Smith, Lorraine P.; Nair, Venugopal

    2014-01-01

    Poly(A) binding protein 1 (PABP1) plays a central role in mRNA translation and stability and is a target by many viruses in diverse manners. We report a novel viral translational control strategy involving the recruitment of PABP1 to the 5' leader internal ribosome entry site (5L IRES) of an immediate-early (IE) bicistronic mRNA that encodes the neurovirulence protein (pp14) from the avian herpesvirus Marek’s disease virus serotype 1 (MDV1). We provide evidence for the interaction between an internal poly(A) sequence within the 5L IRES and PABP1 which may occur concomitantly with the recruitment of PABP1 to the poly(A) tail. RNA interference and reverse genetic mutagenesis results show that a subset of virally encoded-microRNAs (miRNAs) targets the inhibitor of PABP1, known as paip2, and therefore plays an indirect role in PABP1 recruitment strategy by increasing the available pool of active PABP1. We propose a model that may offer a mechanistic explanation for the cap-independent enhancement of the activity of the 5L IRES by recruitment of a bona fide initiation protein to the 5' end of the message and that is, from the affinity binding data, still compatible with the formation of ‘closed loop’ structure of mRNA. PMID:25503397

  6. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 1 Interacts with a Member of the Interferon-Stimulated Gene 15 Pathway

    PubMed Central

    Jacobs, Sarah R.; Stopford, Charles M.; West, John A.; Bennett, Christopher L.; Giffin, Louise

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus known to establish lifelong latency in the human host. We and others have previously shown that three KSHV homologs of cellular interferon regulatory factors (IRFs), known as viral IRFs (vIRFs), participate in evasion of the host interferon (IFN) response. We report that vIRF1 interacts with the cellular interferon-stimulated gene 15 (ISG15) E3 ligase, HERC5, in the context of Toll-like receptor 3 (TLR3) activation and IFN induction. The ISG15 protein is covalently conjugated to target proteins upon activation of the interferon response. Interaction between vIRF1 and HERC5 was confirmed by immunoprecipitation, and the region between amino acids 224 and 349 of vIRF1 was required for interaction with HERC5. We further report that expression of vIRF1 in the context of TLR3 activation results in decreased ISG15 conjugation of proteins. Specifically, TLR3-induced ISG15 conjugation and protein levels of cellular IRF3, a known ISG15 target, were decreased in the presence of vIRF1 compared to the control. vIRF1 itself was also identified as a target of ISG15 conjugation. KSHV-infected cells exhibited increased ISG15 conjugation upon reactivation from latency in coordination with increased IFN. Furthermore, knockdown of ISG15 in latently infected cells resulted in a higher level of KSHV reactivation and an increase in infectious virus. These data suggest that the KSHV vIRF1 protein affects ISG15 conjugation and interferon responses and may contribute to effective KSHV replication. IMPORTANCE The KSHV vIRF1 protein can inhibit interferon activation in response to viral infection. We identified a cellular protein named HERC5, which is the major ligase for ISG15, as a vIRF1 binding partner. vIRF1 association with HERC5 altered ISG15 modification of cellular proteins, and knockdown of ISG15 augmented reactivation of KSHV from latency. PMID:26355087

  7. A Lytic Viral Long Noncoding RNA Modulates the Function of a Latent Protein

    PubMed Central

    Campbell, Mel; Kim, Kevin Y.; Chang, Pei-Ching; Huerta, Steve; Shevchenko, Bogdan; Wang, Don-Hong; Izumiya, Chie; Kung, Hsing-Jien

    2014-01-01

    Latent Kaposi's sarcoma-associated herpesvirus (KSHV) episomes are coated with viral latency-associated nuclear antigen (LANA). In contrast, LANA rapidly disassociates from episomes during reactivation. Lytic KSHV expresses polyadenylated nuclear RNA (PAN RNA), a long noncoding RNA (lncRNA). We report that PAN RNA promotes LANA-episome disassociation through an interaction with LANA which facilitates LANA sequestration away from KSHV episomes during reactivation. These findings suggest that KSHV may have evolved an RNA aptamer to regulate latent protein function. PMID:24257619

  8. Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico

    PubMed Central

    Segura-Correa, J.C.; Zapata-Campos, C.C.; Jasso-Obregón, J.O.; Martinez-Burnes, J.; López-Zavala, R.

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and the principal exporter of calf and heifer to the United States. The objectives of this study were to estimate the seroprevalence of BoHV-1 and of BVDV, and to determine the effects of risk factors on these infections. Blood samples of cattle from 57 farms from rural districts of Tamaulipas were collected. The samples were tested for antibodies against BoHV-1 and BVDV using commercial ELISA kits. Data on potential risk factors were obtained using a questionnaire administered to the farmer at the time the blood samples were taken. The seroprevalences for BoHV-1 and BVDV were 64.4% and 47.8%, respectively. In the logistic regression analysis, the significant risk factors were rural district, herd size and cattle introduced to the farm. This study confirms the high seroprevalence of BoHV-1 and BVDV in unvaccinated cattle in Tamaulipas, Mexico. The results of this study could be used for the development of BoHV-1 and BVDV prevention and control program in North-Eastern, Mexico.

  9. Prevalence of serum antibodies to bovine herpesvirus-1 and bovine viral diarrhea virus in beef cattle in Uruguay.

    PubMed

    Guarino, H; Núñez, A; Repiso, M V; Gil, A; Dargatz, D A

    2008-06-15

    Our objective was to determine the prevalence of serum antibodies to bovine herpesvirus-1 (BHV-1) and bovine viral diarrhea (BVD) virus in beef cattle in Uruguay. A random sample of 230 herds selected with probability proportional to population size based on the number of cattle was chosen from a list frame of all registered livestock farms as of June 1999. Sera from up to 10 heifers, cows and bulls (up to 30 sera total per herd) were collected on selected farms between March 2000 and March 2001 and evaluated by means of enzyme-linked immunosorbent assays (ELISAs). Overall, 6358 serum samples were evaluated. We also collected data on previous diagnosis of BHV-1 or BVD infections and on the use of vaccines against these agents. The estimated prevalence of exposure to BHV-1 and BVD at the herd level for the Uruguayan beef population was 99% and 100%, respectively. Approximately 37% of beef cattle in Uruguay have been exposed to BHV-1 and 69% to BVD virus. Only 3% of beef herds in Uruguay regularly (typically, annually) use vaccines against either of these agents.

  10. Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico.

    PubMed

    Segura-Correa, J C; Zapata-Campos, C C; Jasso-Obregón, J O; Martinez-Burnes, J; López-Zavala, R

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and the principal exporter of calf and heifer to the United States. The objectives of this study were to estimate the seroprevalence of BoHV-1 and of BVDV, and to determine the effects of risk factors on these infections. Blood samples of cattle from 57 farms from rural districts of Tamaulipas were collected. The samples were tested for antibodies against BoHV-1 and BVDV using commercial ELISA kits. Data on potential risk factors were obtained using a questionnaire administered to the farmer at the time the blood samples were taken. The seroprevalences for BoHV-1 and BVDV were 64.4% and 47.8%, respectively. In the logistic regression analysis, the significant risk factors were rural district, herd size and cattle introduced to the farm. This study confirms the high seroprevalence of BoHV-1 and BVDV in unvaccinated cattle in Tamaulipas, Mexico. The results of this study could be used for the development of BoHV-1 and BVDV prevention and control program in North-Eastern, Mexico. PMID:27622156

  11. Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico

    PubMed Central

    Segura-Correa, J.C.; Zapata-Campos, C.C.; Jasso-Obregón, J.O.; Martinez-Burnes, J.; López-Zavala, R.

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and the principal exporter of calf and heifer to the United States. The objectives of this study were to estimate the seroprevalence of BoHV-1 and of BVDV, and to determine the effects of risk factors on these infections. Blood samples of cattle from 57 farms from rural districts of Tamaulipas were collected. The samples were tested for antibodies against BoHV-1 and BVDV using commercial ELISA kits. Data on potential risk factors were obtained using a questionnaire administered to the farmer at the time the blood samples were taken. The seroprevalences for BoHV-1 and BVDV were 64.4% and 47.8%, respectively. In the logistic regression analysis, the significant risk factors were rural district, herd size and cattle introduced to the farm. This study confirms the high seroprevalence of BoHV-1 and BVDV in unvaccinated cattle in Tamaulipas, Mexico. The results of this study could be used for the development of BoHV-1 and BVDV prevention and control program in North-Eastern, Mexico. PMID:27622156

  12. Marked variability in the extent of protein disorder within and between viral families.

    PubMed

    Pushker, Ravindra; Mooney, Catherine; Davey, Norman E; Jacqué, Jean-Marc; Shields, Denis C

    2013-01-01

    Intrinsically disordered regions in eukaryotic proteomes contain key signaling and regulatory modules and mediate interactions with many proteins. Many viral proteomes encode disordered proteins and modulate host factors through the use of short linear motifs (SLiMs) embedded within disordered regions. However, the degree of viral protein disorder across different viruses is not well understood, so we set out to establish the constraints acting on viruses, in terms of their use of disordered protein regions. We surveyed predicted disorder across 2,278 available viral genomes in 41 families, and correlated the extent of disorder with genome size and other factors. Protein disorder varies strikingly between viral families (from 2.9% to 23.1% of residues), and also within families. However, this substantial variation did not follow the established trend among their hosts, with increasing disorder seen across eubacterial, archaebacterial, protists, and multicellular eukaryotes. For example, among large mammalian viruses, poxviruses and herpesviruses showed markedly differing disorder (5.6% and 17.9%, respectively). Viral families with smaller genome sizes have more disorder within each of five main viral types (ssDNA, dsDNA, ssRNA+, dsRNA, retroviruses), except for negative single-stranded RNA viruses, where disorder increased with genome size. However, surveying over all viruses, which compares tiny and enormous viruses over a much bigger range of genome sizes, there is no strong association of genome size with protein disorder. We conclude that there is extensive variation in the disorder content of viral proteomes. While a proportion of this may relate to base composition, to extent of gene overlap, and to genome size within viral types, there remain important additional family and virus-specific effects. Differing disorder strategies are likely to impact on how different viruses modulate host factors, and on how rapidly viruses can evolve novel instances of SLi

  13. K1 and K15 of Kaposi's Sarcoma-Associated Herpesvirus Are Partial Functional Homologues of Latent Membrane Protein 2A of Epstein-Barr Virus

    PubMed Central

    Steinbrück, Lisa; Gustems, Montse; Medele, Stephanie; Schulz, Thomas F.; Lutter, Dominik

    2015-01-01

    ABSTRACT The human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are associated with Hodgkin's lymphoma (HL) and Primary effusion lymphomas (PEL), respectively, which are B cell malignancies that originate from germinal center B cells. PEL cells but also a quarter of EBV-positive HL tumor cells do not express the genuine B cell receptor (BCR), a situation incompatible with survival of normal B cells. EBV encodes LMP2A, one of EBV's viral latent membrane proteins, which likely replaces the BCR's survival signaling in HL. Whether KSHV encodes a viral BCR mimic that contributes to oncogenesis is not known because an experimental model of KSHV-mediated B cell transformation is lacking. We addressed this uncertainty with mutant EBVs encoding the KSHV genes K1 or K15 in lieu of LMP2A and infected primary BCR-negative (BCR−) human B cells with them. We confirmed that the survival of BCR– B cells and their proliferation depended on an active LMP2A signal. Like LMP2A, the expression of K1 and K15 led to the survival of BCR− B cells prone to apoptosis, supported their proliferation, and regulated a similar set of cellular target genes. K1 and K15 encoded proteins appear to have noncomplementing, redundant functions in this model, but our findings suggest that both KSHV proteins can replace LMP2A's key activities contributing to the survival, activation and proliferation of BCR– PEL cells in vivo. IMPORTANCE Several herpesviruses encode oncogenes that are receptor-like proteins. Often, they are constitutively active providing important functions to the latently infected cells. LMP2A of Epstein-Barr virus (EBV) is such a receptor that mimics an activated B cell receptor, BCR. K1 and K15, related receptors of Kaposi's sarcoma-associated herpesvirus (KSHV) expressed in virus-associated tumors, have less obvious functions. We found in infection experiments that both viral receptors of KSHV can replace LMP2A and deliver functions

  14. Phosphorylation of Bovine Herpesvirus 1 VP8 Plays a Role in Viral DNA Encapsidation and Is Essential for Its Cytoplasmic Localization and Optimal Virion Incorporation

    PubMed Central

    Zhang, Kuan; Brownlie, Robert; Snider, Marlene

    2016-01-01

    ABSTRACT VP8 is a major tegument protein of bovine herpesvirus 1 (BoHV-1) and is essential for viral replication in cattle. The protein undergoes phosphorylation after transcription through cellular casein kinase 2 (CK2) and a viral kinase, US3. In this study, a virus containing a mutated VP8 protein that is not phosphorylated by CK2 and US3 (BoHV-1-YmVP8) was constructed by homologous recombination in mammalian cells. When BoHV-1-YmVP8-infected cells were observed by transmission electron microscopy, blocking phosphorylation of VP8 was found to impair viral DNA encapsidation, resulting in release of incomplete viral particles to the extracellular environment. Consequently, less infectious virus was produced by the mutant virus than by wild-type (WT) virus. A comparison of mutant and WT VP8 by confocal microscopy revealed that mutant VP8 is nuclear throughout infection while WT VP8 is nuclear early during infection and is associated with the Golgi apparatus at later stages. This, together with the observation that mutant VP8 is present in virions, albeit in smaller amounts, suggests that the incorporation of VP8 may occur at two stages. The first takes place without the need for phosphorylation and before or during nuclear egress of capsids, whereas the second occurs in the Golgi apparatus and requires phosphorylation of VP8. The results indicate that phosphorylated VP8 plays a role in viral DNA encapsidation and in the secondary virion incorporation of VP8. To perform these functions, the cellular localization of VP8 is adjusted based on the phosphorylation status. IMPORTANCE In this study, phosphorylation of VP8 was shown to have a function in BoHV-1 replication. A virus containing a mutated VP8 protein that is not phosphorylated by CK2 and US3 (BoHV-1-YmVP8) produced smaller numbers of infectious virions than wild-type (WT) virus. The maturation and egress of WT and mutant BoHV-1 were studied, showing a process similar to that reported for other

  15. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4/K10) is a novel interaction partner of CSL/CBF1, the major downstream effector of Notch signaling.

    PubMed

    Heinzelmann, Katharina; Scholz, Barbara A; Nowak, Agnes; Fossum, Even; Kremmer, Elisabeth; Haas, Juergen; Frank, Ronald; Kempkes, Bettina

    2010-12-01

    In cells infected with the Kaposi's sarcoma-associated herpesvirus (KSHV), CSL/CBF1 signaling is essential for viral replication and promotes the survival of KSHV-infected cells. CSL/CBF1 is a DNA adaptor molecule which recruits coactivator and corepressor complexes to regulate viral and cellular gene transcription and which is a major downstream effector molecule of activated Notch. The interaction of KSHV RTA and LANA with CSL/CBF1 has been shown to balance the lytic and latent viral life cycle. Here we report that a third KSHV protein, viral interferon regulatory factor 4 (vIRF4/K10), but none of the three other KSHV-encoded vIRFs, interacts with CSL/CBF1. Two regions of vIRF4 with dissimilar affinities contribute to CSL/CBF1 binding. Similar to Notch, vIRF4 targets the hydrophobic pocket in the beta trefoil domain of CSL/CBF1 through a short peptide motif which closely resembles a motif found in Notch but does not strictly follow the ΦWΦP consensus conserved in human and mouse Notch proteins. Our results suggest that vIRF4 might compete with Notch for CSL/CBF1 binding and signaling. PMID:20861242

  16. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 (vIRF4/K10) Is a Novel Interaction Partner of CSL/CBF1, the Major Downstream Effector of Notch Signaling▿

    PubMed Central

    Heinzelmann, Katharina; Scholz, Barbara A.; Nowak, Agnes; Fossum, Even; Kremmer, Elisabeth; Haas, Juergen; Frank, Ronald; Kempkes, Bettina

    2010-01-01

    In cells infected with the Kaposi's sarcoma-associated herpesvirus (KSHV), CSL/CBF1 signaling is essential for viral replication and promotes the survival of KSHV-infected cells. CSL/CBF1 is a DNA adaptor molecule which recruits coactivator and corepressor complexes to regulate viral and cellular gene transcription and which is a major downstream effector molecule of activated Notch. The interaction of KSHV RTA and LANA with CSL/CBF1 has been shown to balance the lytic and latent viral life cycle. Here we report that a third KSHV protein, viral interferon regulatory factor 4 (vIRF4/K10), but none of the three other KSHV-encoded vIRFs, interacts with CSL/CBF1. Two regions of vIRF4 with dissimilar affinities contribute to CSL/CBF1 binding. Similar to Notch, vIRF4 targets the hydrophobic pocket in the beta trefoil domain of CSL/CBF1 through a short peptide motif which closely resembles a motif found in Notch but does not strictly follow the ΦWΦP consensus conserved in human and mouse Notch proteins. Our results suggest that vIRF4 might compete with Notch for CSL/CBF1 binding and signaling. PMID:20861242

  17. Regulation and Function of Phosphorylation on VP8, the Major Tegument Protein of Bovine Herpesvirus 1

    PubMed Central

    Zhang, Kuan; Afroz, Sharmin; Brownlie, Robert; Snider, Marlene

    2015-01-01

    ABSTRACT The major tegument protein of bovine herpesvirus 1 (BoHV-1), VP8, is essential for virus replication in cattle. VP8 is phosphorylated in vitro by casein kinase 2 (CK2) and BoHV-1 unique short protein 3 (US3). In this study, VP8 was found to be phosphorylated in both transfected and infected cells but was detected as a nonphosphorylated form in mature virions. This suggests that phosphorylation of VP8 is strictly controlled during different stages of the viral life cycle. The regulation and function of VP8 phosphorylation by US3 and CK2 were further analyzed. An in vitro kinase assay, site-directed mutagenesis, and liquid chromatography-mass spectrometry were used to identify the active sites for US3 and CK2. The two kinases phosphorylate VP8 at different sites, resulting in distinct phosphopeptide patterns. S16 is a primary phosphoreceptor for US3, and it subsequently triggers phosphorylation at S32. CK2 has multiple active sites, among which T107 appears to be the preferred residue. Additionally, CK2 consensus motifs in the N terminus of VP8 are essential for phosphorylation. Based on these results, a nonphosphorylated VP8 mutant was constructed and used for further studies. In transfected cells phosphorylation was not required for nuclear localization of VP8. Phosphorylated VP8 appeared to recruit promyelocytic leukemia (PML) protein and to remodel the distribution of PML in the nucleus; however, PML protein did not show an association with nonphosphorylated VP8. This suggests that VP8 plays a role in resisting PML-related host antiviral defenses by redistributing PML protein and that this function depends on the phosphorylation of VP8. IMPORTANCE The progression of VP8 phosphorylation over time and its function in BoHV-1 replication have not been characterized. This study demonstrates that activation of S16 initiates further phosphorylation at S32 by US3. Additionally, VP8 is phosphorylated by CK2 at several residues, with T107 having the highest level

  18. Whole-Genome Sequencing of Kaposi's Sarcoma-Associated Herpesvirus from Zambian Kaposi's Sarcoma Biopsy Specimens Reveals Unique Viral Diversity

    PubMed Central

    Olp, Landon N.; Jeanniard, Adrien; Marimo, Clemence; West, John T.

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent for Kaposi's sarcoma (KS). Both KSHV and KS are endemic in sub-Saharan Africa where approximately 84% of global KS cases occur. Nevertheless, whole-genome sequencing of KSHV has only been completed using isolates from Western countries—where KS is not endemic. The lack of whole-genome KSHV sequence data from the most clinically important geographical region, sub-Saharan Africa, represents an important gap since it remains unclear whether genomic diversity has a role on KSHV pathogenesis. We hypothesized that distinct KSHV genotypes might be present in sub-Saharan Africa compared to Western countries. Using a KSHV-targeted enrichment protocol followed by Illumina deep-sequencing, we generated and analyzed 16 unique Zambian, KS-derived, KSHV genomes. We enriched KSHV DNA over cellular DNA 1,851 to 18,235-fold. Enrichment provided coverage levels up to 24,740-fold; therefore, supporting highly confident polymorphism analysis. Multiple alignment of the 16 newly sequenced KSHV genomes showed low level variability across the entire central conserved region. This variability resulted in distinct phylogenetic clustering between Zambian KSHV genomic sequences and those derived from Western countries. Importantly, the phylogenetic segregation of Zambian from Western sequences occurred irrespective of inclusion of the highly variable genes K1 and K15. We also show that four genes within the more conserved region of the KSHV genome contained polymorphisms that partially, but not fully, contributed to the unique Zambian KSHV whole-genome phylogenetic structure. Taken together, our data suggest that the whole KSHV genome should be taken into consideration for accurate viral characterization. IMPORTANCE Our results represent the largest number of KSHV whole-genomic sequences published to date and the first time that multiple genomes have been sequenced from sub-Saharan Africa, a geographic area

  19. Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins

    PubMed Central

    Trempe, Frédéric; Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Collin, Vanessa; Gilbert-Girard, Shella; Morissette, Guillaume; Kaufer, Benedikt B.; Flamand, Louis

    2015-01-01

    Human herpesvirus-6A (HHV-6A) and HHV-6B integrate their genomes into the telomeres of human chromosomes, however, the mechanisms leading to integration remain unknown. HHV-6A/B encode a protein that has been proposed to be involved in integration termed U94, an ortholog of adeno-associated virus type 2 (AAV-2) Rep68 integrase. In this report, we addressed whether purified recombinant maltose-binding protein (MBP)-U94 fusion proteins of HHV-6A/B possess biological functions compatible with viral integration. We could demonstrate that MBP-U94 efficiently binds both dsDNA and ssDNA containing telomeric repeats using gel shift assay and surface plasmon resonance. MBP-U94 is also able to hydrolyze adenosine triphosphate (ATP) to ADP, providing the energy for further catalytic activities. In addition, U94 displays a 3′ to 5′ exonuclease activity on dsDNA with a preference for 3′-recessed ends. Once the DNA strand reaches 8–10 nt in length, the enzyme dissociates it from the complementary strand. Lastly, MBP-U94 compromises the integrity of a synthetic telomeric D-loop through exonuclease attack at the 3′ end of the invading strand. The preferential DNA binding of MBP-U94 to telomeric sequences, its ability to hydrolyze ATP and its exonuclease/helicase activities suggest that U94 possesses all functions required for HHV-6A/B chromosomal integration. PMID:25999342

  20. Prevalence of antibodies to bluetongue, bovine herpesvirus 1 and bovine viral diarrhea/mucosal disease viruses in water buffaloes in Minas Gerais State, Brazil.

    PubMed

    Lage, A P; Castro, R S; Melo, M I; Aguiar, P H; Barreto Filho, J B; Leite, R C

    1996-01-01

    A serological survey to detect water buffaloes with antibodies to bluetongue virus (BTV), bovine herpesvirus 1 (BHV 1) and bovine viral diarrhea/mucosal disease virus (BVD/MDV) was performed in Minas Gerais State, Brazil. Precipitating antibodies against BTV were detected by the agar gel immunodiffusion test (AGID) in 54.4% of the serum samples tested. Microplate serum-neutralization tests revealed that 14.7% and 52.7% of the water buffaloes had antibodies to BHV 1 and BVD/MDV, respectively. The prevalence of antibodies to BTV in water buffaloes under two years old was significantly lower than in adults.

  1. HCMV gB shares structural and functional properties with gB proteins from other herpesviruses

    SciTech Connect

    Sharma, Sapna; Wisner, Todd W.; Johnson, David C.; Heldwein, Ekaterina E.

    2013-01-20

    Glycoprotein B (gB) facilitates HCMV entry into cells by binding receptors and mediating membrane fusion. The crystal structures of gB ectodomains from HSV-1 and EBV are available, but little is known about the HCMV gB structure. Using multiangle light scattering and electron microscopy, we show here that HCMV gB ectodomain is a trimer with the overall shape similar to HSV-1 and EBV gB ectodomains. HCMV gB ectodomain forms rosettes similar to rosettes formed by EBV gB and the postfusion forms of other viral fusogens. Substitution of several bulky hydrophobic residues within the putative fusion loops with more hydrophilic residues reduced rosette formation and abolished cell fusion. We propose that like gB proteins from HSV-1 and EBV, HCMV gB has two internal hydrophobic fusion loops that likely interact with target membranes. Our work establishes structural and functional similarities between gB proteins from three subfamilies of herpesviruses.

  2. Characterization of nuclear localization and export signals of the major tegument protein VP8 of bovine herpesvirus-1.

    PubMed

    Zheng, Chunfu; Brownlie, Robert; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2004-07-01

    Bovine herpesvirus-1 (BHV-1) VP8 is found in the nucleus immediately after infection. Transient expression of VP8 fused to yellow fluorescent protein (YFP) in COS-7 cells confirmed the nuclear localization of VP8 in the absence of other viral proteins. VP8 has four putative nuclear localization signals (NLS). Deletion of pat4 ((51)RRPR(54)) or pat7 ((48)PRVRRPR(54)) NLS2 abrogated nuclear accumulation, whereas deletion of (48)PRV(50) did not, so pat4 NLS2 is critical for nuclear localization of VP8. Furthermore, NLS1 ((11)RRPRR(15)), pat4 NLS2, and pat7 NLS2 were all capable of transporting the majority of YFP to the nucleus. Finally, a 12-amino-acid peptide with the sequence RRPRRPRVRRPR directed all of YFP into the nucleus, suggesting that reiteration of the RRPR motif makes the nuclear localization more efficient. Heterokaryon assays demonstrated that VP8 is also capable of shuttling between the nucleus and cytoplasm of the cell. Deletion mutant analysis revealed that this property is attributed to a leucine-rich nuclear export sequence (NES) consisting of amino acids (485)LSAYLTLFVAL(495). This leucine-rich NES caused transport of YFP to the cytoplasm. These results demonstrate that VP8 shuttles between the nucleus and cytoplasm.

  3. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    PubMed

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  4. Kaposi's sarcoma-associated herpesvirus infection of endothelial cells inhibits neutrophil recruitment through an interleukin-6-dependent mechanism: a new paradigm for viral immune evasion.

    PubMed

    Butler, L M; Jeffery, H C; Wheat, R L; Rae, P C; Townsend, K; Alkharsah, K R; Schulz, T F; Nash, G B; Blackbourn, D J

    2011-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), an endothelial cell (EC) neoplasm characterized by dysregulated angiogenesis and inflammation. KSHV infection of EC causes production of proinflammatory mediators, regarded as possible initiators of the substantial mononuclear leukocyte recruitment seen in KS. Conversely, KSHV immune evasion strategies exist, such as degradation of EC leukocyte adhesion receptors by viral proteins. Here, we report the effects of KSHV infection of primary EC on recruitment of flowing leukocytes. Infection did not initiate adhesion of any leukocyte subset per se. However, on cytokine-stimulated EC, KSHV specifically inhibited neutrophil, but not PBL or monocyte, transmigration, an observation consistent with the inflammatory cell profile found in KS lesions in vivo. This inhibition could be recapitulated on uninfected EC using supernatant from infected cultures. These supernatants contained elevated levels of human interleukin 6 (hIL-6), and both the KSHV- and the supernatant-induced inhibitions of neutrophil transmigration were abrogated in the presence of a hIL-6 neutralizing antibody. Furthermore, preconditioning of EC with hIL-6 mimicked the effect of KSHV. Using RNA interference (RNAi), we show that upregulation of suppressor of cytokine signaling 3 (SOCS3) was necessary for this effect of hIL-6. These studies reveal a novel paracrine mode of KSHV immune evasion, resulting in reduced recruitment of neutrophils, a cell type whose antiviral and antitumor roles are becoming increasingly appreciated. Moreover, the findings have implications for our understanding of the contribution of hIL-6 to the pathogenesis of other inflammatory disorders and tumors in which this cytokine is abundant.

  5. Murine cytomegalovirus protein pM79 is a key regulator for viral late transcription.

    PubMed

    Chapa, Travis J; Johnson, L Steven; Affolter, Christopher; Valentine, Mark C; Fehr, Anthony R; Yokoyama, Wayne M; Yu, Dong

    2013-08-01

    Herpesvirus genes are temporally expressed during permissive infections, but how their expression is regulated at late times is poorly understood. Previous studies indicate that the human cytomegalovirus (CMV) gene, UL79, is required for late gene expression. However, the mechanism remains to be fully elucidated, and UL79 homologues in other CMVs have not been studied. Here, we characterized the role of the conserved murine CMV (MCMV) gene M79. We showed that M79 encoded a protein (pM79) which was expressed with early-late kinetics and localized to nuclear viral replication compartments. M79 transcription was significantly decreased in the absence of viral DNA synthesis but markedly stimulated by pM79. To investigate its role, we created the recombinant virus SMin79, in which pM79 expression was disrupted. While marker-rescued virus grew efficiently in fibroblasts, SMin79 failed to produce infectious progeny but was rescued by pM79 expression in trans. During SMin79 infection, representative viral immediate-early and early gene products as well as viral DNA accumulated sufficiently. Formation of viral replication compartments also appeared normal. Pulsed-field gel electrophoresis analysis indicated that the overall structure of replicating viral DNA was indistinguishable between wild-type and SMin79 infection. Viral tiled array and quantitative PCR analysis revealed that many late transcripts sensitive to a viral DNA synthesis inhibitor (phosphonoacetic acid) were markedly reduced by pM79 mutation. This study indicates that cytomegaloviruses use a conserved mechanism to promote transcription at late stages of infection and that pM79 is a critical regulator for at least a subset of viral DNA synthesis-dependent transcripts. PMID:23760242

  6. Viral DNA tethering domains complement replication-defective mutations in the p12 protein of MuLV Gag.

    PubMed

    Schneider, William M; Brzezinski, Jonathon D; Aiyer, Sriram; Malani, Nirav; Gyuricza, Mercedes; Bushman, Frederic D; Roth, Monica J

    2013-06-01

    The p12 protein of murine leukemia virus (MuLV) group-specific antigen (Gag) is associated with the preintegration complex, and mutants of p12 (PM14) show defects in nuclear entry or retention. Here we show that p12 proteins engineered to encode peptide sequences derived from known viral tethering proteins can direct chromatin binding during the early phase of viral replication and rescue a lethal p12-PM14 mutant. Peptides studied included segments of Kaposi sarcoma herpesvirus latency-associated nuclear antigen (LANA)(1-23), human papillomavirus 8 E2, and prototype foamy virus chromatin-binding sequences. Amino acid substitutions in Kaposi sarcoma herpesvirus LANA and prototype foamy virus chromatin-binding sequences that blocked nucleosome association failed to rescue MuLV p12-PM14. Rescue by a larger LANA peptide, LANA(1-32), required second-site mutations that are predicted to reduce peptide binding affinity to chromosomes, suggesting that excessively high binding affinity interfered with Gag/p12 function. This is supported by confocal microscopy of chimeric p12-GFP fusion constructs showing the reverted proteins had weaker association to condensed mitotic chromosomes. Analysis of the integration-site selection of these chimeric viruses showed no significant change in integration profile compared with wild-type MuLV, suggesting release of the tethered p12 post mitosis, before viral integration. PMID:23661057

  7. Viral DNA tethering domains complement replication-defective mutations in the p12 protein of MuLV Gag

    PubMed Central

    Schneider, William M.; Brzezinski, Jonathon D.; Aiyer, Sriram; Malani, Nirav; Gyuricza, Mercedes; Bushman, Frederic D.; Roth, Monica J.

    2013-01-01

    The p12 protein of murine leukemia virus (MuLV) group-specific antigen (Gag) is associated with the preintegration complex, and mutants of p12 (PM14) show defects in nuclear entry or retention. Here we show that p12 proteins engineered to encode peptide sequences derived from known viral tethering proteins can direct chromatin binding during the early phase of viral replication and rescue a lethal p12-PM14 mutant. Peptides studied included segments of Kaposi sarcoma herpesvirus latency-associated nuclear antigen (LANA)1–23, human papillomavirus 8 E2, and prototype foamy virus chromatin-binding sequences. Amino acid substitutions in Kaposi sarcoma herpesvirus LANA and prototype foamy virus chromatin-binding sequences that blocked nucleosome association failed to rescue MuLV p12-PM14. Rescue by a larger LANA peptide, LANA1–32, required second-site mutations that are predicted to reduce peptide binding affinity to chromosomes, suggesting that excessively high binding affinity interfered with Gag/p12 function. This is supported by confocal microscopy of chimeric p12-GFP fusion constructs showing the reverted proteins had weaker association to condensed mitotic chromosomes. Analysis of the integration-site selection of these chimeric viruses showed no significant change in integration profile compared with wild-type MuLV, suggesting release of the tethered p12 post mitosis, before viral integration. PMID:23661057

  8. Selective killing of Kaposi's sarcoma-associated herpesvirus lytically infected cells with a recombinant immunotoxin targeting the viral gpK8.1A envelope glycoprotein.

    PubMed

    Chatterjee, Deboeeta; Chandran, Bala; Berger, Edward A

    2012-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is etiologically associated with three neoplastic syndromes: Kaposi sarcoma and the uncommon HIV-associated B-cell lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. The incidence of the latter B-cell pathology has been increasing in spite of antiretroviral therapy; its association with lytic virus replication has prompted interest in therapeutic strategies aimed at this phase of the virus life cycle. We designed and expressed a recombinant immunotoxin (2014-PE38) targeting the gpK8.1A viral glycoprotein expressed on the surface of the virion and infected cells. We show that this immunotoxin selectively kills KSHV-infected cells in dose-dependent fashion, resulting in major reductions of infectious virus release. The immunotoxin and ganciclovir, an inhibitor of viral DNA replication, showed marked reciprocal potentiation of antiviral activities. These results suggest that the immunotoxin, alone or in combination, may represent a new approach to treat diseases associated with KSHV lytic replication. PMID:22377676

  9. Viral load of equine herpesviruses 2 and 5 in nasal swabs of actively racing Standardbred trotters: Temporal relationship of shedding to clinical findings and poor performance.

    PubMed

    Back, Helena; Ullman, Karin; Treiberg Berndtsson, Louise; Riihimäki, Miia; Penell, Johanna; Ståhl, Karl; Valarcher, Jean-François; Pringle, John

    2015-09-30

    The equine gamma herpesviruses 2 and 5 (EHV-2 and -5) have frequently been observed in the equine population and until recently presumed low to nonpathogenic. However, recent reports linking presence of equine gamma herpesviruses with clinical signs of mild to severe lung disease, suggest that the role of these viruses in respiratory disease and poor performance syndrome is still unclear. Moreover, baseline data regarding the temporal pattern of shedding of EHV-2 and EHV-5 within stables and within individual actively racing horses have been lacking. In a prospective longitudinal study, we followed elite racing Standardbred trotters at monthly intervals for 13 months, to investigate whether the amount of EHV-2 and EHV-5 shedded in nasal secretions varied over time within and between individual horses. Sixty-six elite horses were investigated by analyzing nasal swabs and serum samples, a health check and evaluation of athletic performance monthly during the study period. Nasal swabs were analyzed with two newly developed qPCR assays for EHV-2 and EHV-5, respectively. Of 663 samples, 197 (30%) were positive for EHV-2 and 492 (74%) positive for EHV-5. Furthermore, 176 (27%) of the samples were positive for both EHV-2 and EHV-5 simultaneously. There was considerable variation in the amount and frequency of shedding of EHV-2 and EHV-5 within and between individual horses. Viral load varied seasonally, but neither EHV-2 nor EHV-5 viral peaks were associated with clinical respiratory disease and/or poor performance in racing Standardbred trotters.

  10. The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1.

    PubMed Central

    Godden-Kent, D; Talbot, S J; Boshoff, C; Chang, Y; Moore, P; Weiss, R A; Mittnacht, S

    1997-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8) is a novel gammaherpesvirus implicated in the cause of Kaposi's sarcoma and certain malignancies of lymphatic origin. One of the candidate genes possibly involved in promoting tumor development is an open reading frame (ORF) with sequence similarity to human type D cyclin genes. This cyclin-like gene, when expressed in tissue culture cells, promotes phosphorylation and inactivation of the retinoblastoma tumor suppressor protein and thereby may result in deregulation of cell division control. We report here the biochemical characterization of this cyclin (KSHV-cyc) and the kinase activity that it elicits upon expression in tissue culture cells. We demonstrate that the kinase activity associated with KSHV-cyc is sensitive to the cdk inhibitor p27 (KIP) and due to activation of cdk6. However, in contrast to cdk6 activated by cellular type D cyclins, the cdk6 activated by KSHV-cyc is capable of phosphorylating not only the retinoblastoma protein but also histone H1. This finding implies that activation by KSHV-cyc alters the substrate preference of this cdk. This may have important physiological consequences in that the kinase activity triggered by this viral cyclin may abrogate cell cycle checkpoints in addition to those targeted by cellular cyclin D-cdk6 kinase. PMID:9151805

  11. Modulation of interferon regulatory factor 5 activities by the Kaposi sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3 contributes to immune evasion and lytic induction.

    PubMed

    Bi, Xiaohui; Yang, Lisong; Mancl, Margo E; Barnes, Betsy J

    2011-04-01

    Multiple Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded proteins with potential roles in KSHV-associated neoplasms have been identified. KSHV encodes 4 genes with homology to transcription factors of the interferon (IFN) regulatory factor (IRF) family. Viral IRF3 (vIRF3) is expressed in latently KSHV-infected primary effusion lymphoma (PEL) cells and was recently shown to be essential for the survival of PEL cells. The focus of this study was to determine the mechanism(s) of vIRF3 oncogenic activity contributing to KSHV-associated lymphoma. We report that vIRF3 interacts with the amino-terminal DNA binding domain of human IRF5, leading to a complex manipulation of IRF5 function. vIRF3 associated with both exogenous and endogenous IRF5, thereby inhibiting IRF5-mediated IFN promoter activation and the synthesis of biologically active type I IFNs by blocking its binding to endogenous IFNA promoters. The function of this interaction was not limited to the IFN system as IRF5-mediated cell growth regulation was significantly altered by overexpression of vIRF3 in B cells. vIRF3 prevented IRF5-mediated growth inhibition and G2/M cell cycle arrest. Important, IRF5 was upregulated by the protein kinase C agonist 12-O-tetradecanoyl-phorbol-13-acetate in BCBL1 PEL cells and interaction with vIRF3 was observed at the endogenous p21 promoter in response to 12-O-tetradecanoyl-phorbol-13-acetate, suggesting that these 2 proteins cooperate in the regulation of lytic cycle-induced G1 arrest, which is an important early step for the reactivation of KSHV. In conclusion, cellular IRF5 and vIRF3 interact, leading to the functional modulation of IRF5-mediated type I IFN expression and cell cycle regulation. These findings support an important role for vIRF3 in immune evasion and cell proliferation that likely contribute to the survival of PEL cells.

  12. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside.

    PubMed

    Liu, XueQiao; Cohen, Jeffrey I

    2015-05-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  13. The Role of PI3K/Akt in Human Herpesvirus Infection: from the Bench to the Bedside

    PubMed Central

    Liu, XueQiao; Cohen, Jeffrey I.

    2015-01-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  14. Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins down regulate both DC-SIGN and DC-SIGNR.

    PubMed

    Lang, Sabine M; Bynoe, Meisha O F; Karki, Roshan; Tartell, Michael A; Means, Robert E

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman's disease, primary effusion lymphoma and Kaposi's sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins. PMID:23460925

  15. Superresolution imaging of viral protein trafficking

    PubMed Central

    Salka, Kyle; Bhuvanendran, Shivaprasad; Yang, David

    2015-01-01

    The endoplasmic reticulum (ER) membrane is closely apposed to the outer mitochondrial membrane (OMM), which facilitates communication between these organelles. These contacts, known as mitochondria-associated membranes (MAM), facilitate calcium signaling, lipid transfer, as well as antiviral and stress responses. How cellular proteins traffic to the MAM, are distributed therein, and interact with ER and mitochondrial proteins are subject of great interest. The human cytomegalovirus UL37 exon 1 protein or viral mitochondria-localized inhibitor of apoptosis (vMIA) is crucial for viral growth. Upon synthesis at the ER, vMIA traffics to the MAM and OMM, where it reprograms the organization and function of these compartments. vMIA significantly changes the abundance of cellular proteins at the MAM and OMM, including proteins that regulate calcium homeostasis and cell death. Through the use of superresolution imaging, we have shown that vMIA is distributed at the OMM in nanometer scale clusters. This is similar to the clusters reported for the mitochondrial calcium channel, VDAC, as well as electron transport chain, translocase of the OMM complex, and mitochondrial inner membrane organizing system components. Thus, aside from addressing how vMIA targets the MAM and regulates survival of infected cells, biochemical studies and superresolution imaging of vMIA offer insights into the formation, organization, and functioning of MAM. Here, we discuss these insights into trafficking, function, and organization of vMIA at the MAM and OMM and discuss how the use of superresolution imaging is contributing to the study of the formation and trafficking of viruses. PMID:25724304

  16. OX40 and 4-1BB downregulate Kaposi’s sarcoma-associated herpesvirus replication in lymphatic endothelial cells, but 4-1BB and not OX40 inhibits viral replication in B-cells.

    PubMed

    Cho, Min; Myoung, Jinjong

    2015-12-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the human gammaherpesvirus subfamily and is associated with malignancies of endothelial origin (Kaposi’s sarcoma, KS) and B-cell origin [primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD)]. Viral lytic replication is known to be required for KS and MCD. As KSHV-related tumours mostly develop in human subjects when the immune system is compromised by immunosuppressive regimen, human immunodeficiency virus infection or some genetic deficiencies, KSHV-specific immune responses are believed to be important in the control of KSHV replication. However, analysis of the roles of immune cells in viral pathogenesis has been difficult due to the lack of an adequate animal model. Recently, congenital OX40 deficiency, as determined by genome-wide exome sequencing, was shown to be associated with aggressive childhood KS in a patient, suggesting that disrupted OX40–OX40L interactions might be implicated in disease development. Here, we report that interaction of recombinant OX40 protein with OX40L expressed on endothelial cells severely impaired KSHV lytic replication. Furthermore, 4-1BB–4-1BBL interactions were also capable of efficiently inhibiting viral replication in B-cells and endothelial cells. To the best of our knowledge, this is the first direct evidence that ligation of tumour necrosis factor superfamily members and their cognate receptors is important for the control of viral lytic replication. These data are likely to pave the way for the development of KSHV-specific therapies for KS and MCD, in which viral lytic replication is a disease-determining factor. PMID:26467721

  17. Detection of cyprinid herpesvirus 2 in peripheral blood cells of silver crucian carp, Carassius auratus gibelio (Bloch), suggests its potential in viral diagnosis.

    PubMed

    Wang, H; Xu, Lj; Lu, Lq

    2016-02-01

    Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection.

  18. Genome Sequence of Canine Herpesvirus

    PubMed Central

    Papageorgiou, Konstantinos V.; Suárez, Nicolás M.; Wilkie, Gavin S.; McDonald, Michael; Graham, Elizabeth M.; Davison, Andrew J.

    2016-01-01

    Canine herpesvirus is a widespread alphaherpesvirus that causes a fatal haemorrhagic disease of neonatal puppies. We have used high-throughput methods to determine the genome sequences of three viral strains (0194, V777 and V1154) isolated in the United Kingdom between 1985 and 2000. The sequences are very closely related to each other. The canine herpesvirus genome is estimated to be 125 kbp in size and consists of a unique long sequence (97.5 kbp) and a unique short sequence (7.7 kbp) that are each flanked by terminal and internal inverted repeats (38 bp and 10.0 kbp, respectively). The overall nucleotide composition is 31.6% G+C, which is the lowest among the completely sequenced alphaherpesviruses. The genome contains 76 open reading frames predicted to encode functional proteins, all of which have counterparts in other alphaherpesviruses. The availability of the sequences will facilitate future research on the diagnosis and treatment of canine herpesvirus-associated disease. PMID:27213534

  19. Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism.

    PubMed Central

    Zalani, S; Holley-Guthrie, E; Kenney, S

    1996-01-01

    Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, is a human herpesvirus associated with epithelial cell malignancies (nasopharyngeal carcinoma) as well as B-cell malignancies. Understanding how viral latency is disrupted is a central issue in herpesvirus biology. Epithelial cells are the major site of lytic EBV replication within the human host, and viral reactivation occurs in EBV-associated nasopharyngeal carcinomas. It is known that expression of a single viral immediate-early protein, BZLF1, is sufficient to initiate the switch from latent to lytic infection in B cells. Cellular regulation of BZLF1 transcription is therefore thought to play a key role in regulating the stringency of viral latency. Here we show that, unexpectedly, expression of another viral immediate-early protein, BRLF1, can disrupt viral latency in an epithelial cell-specific fashion. Therefore, the mechanisms leading to disruption of EBV latency appear to be cell-type specific. Images Fig. 2 Fig. 3 Fig. 4 PMID:8799177

  20. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    NASA Astrophysics Data System (ADS)

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-09-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA.

  1. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    PubMed Central

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  2. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription.

    PubMed

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  3. Comparison of humoral immune responses in dairy heifers vaccinated with 3 different commercial vaccines against bovine viral diarrhea virus and bovine herpesvirus-1

    PubMed Central

    DesCôteaux, Luc; Cécyre, Dominique; Elsener, Johanne; Beauchamp, Guy

    2003-01-01

    A randomized clinical trial was conducted to compare the humoral immune response to 3 different commercial vaccines in dairy heifers housed in 3 different dairy farms in Quebec. All heifers were seronegative to type 1 bovine viral diarrhea virus (BVDV) (Singer strain), type 2 BVDV (NVSL 125c strain), and bovine herpesvirus-1 (BHV-1) at the beginning of the trial. In addition, control heifers in group 1 remained seronegative to the 2 viruses till the end of the trial. Significant differences in humoral immune responses occurred among the 3 commercial vaccines at 4 weeks and 6 months following vaccination. The vaccine in group 2 elicited higher mean antibody titers and seroconversion rates to both type 1 and type 2 BVDV than that in groups 3 or 4. Vaccines in groups 2 and 3 induced higher mean antibody titers to BHV-1 than did the vaccine in group 4. PMID:14601677

  4. Comparison of humoral immune responses in dairy heifers vaccinated with 3 different commercial vaccines against bovine viral diarrhea virus and bovine herpesvirus-1.

    PubMed

    DesCôteaux, Luc; Cécyre, Dominique; Elsener, Johanne; Beauchamp, Guy

    2003-10-01

    A randomized clinical trial was conducted to compare the humoral immune response to 3 different commercial vaccines in dairy heifers housed in 3 different dairy farms in Quebec. All heifers were seronegative to type 1 bovine viral diarrhea virus (BVDV) (Singer strain), type 2 BVDV (NVSL 125c strain), and bovine herpesvirus-1 (BHV-1) at the beginning of the trial. In addition, control heifers in group 1 remained seronegative to the 2 viruses till the end of the trial. Significant differences in humoral immune responses occurred among the 3 commercial vaccines at 4 weeks and 6 months following vaccination. The vaccine in group 2 elicited higher mean antibody titers and seroconversion rates to both type 1 and type 2 BVDV than that in groups 3 or 4. Vaccines in groups 2 and 3 induced higher mean antibody titers to BHV-1 than did the vaccine in group 4.

  5. Bovine herpesvirus type 1 (BHV-1) and bovine viral diarrhoea virus (BVDV) infections in dairy herds: self clearance and the detection of seroconversions against a new atypical pestivirus.

    PubMed

    Kampa, Jaruwan; Alenius, Stefan; Emanuelson, Ulf; Chanlun, Aran; Aiumlamai, Suneerat

    2009-11-01

    The epidemiology of bovine herpesvirus type 1 (BHV-1) and bovine viral diarrhoea virus (BVDV) was studied in a population of small dairy herds that had not been vaccinated. Bulk tank milk samples of 186 herds in Thailand were collected four times between 2002 and 2004. Serum samples from individual animals in 11 herds were also taken on three occasions. The prevalence of BHV-1 in the 186 herds was 61% in 2002, decreasing to 48% in 2004 and for BVDV was 91% in 2002, decreasing to 72% in 2004. A BVDV antigen-positive calf was found in one of the 11 herds, and animals in this herd and three other herds seroconverted to a recently described atypical BVDV strain (HoBi). This study showed a significantly decreasing prevalence for both BHV-1 and BVDV due to a self-clearance process. Further studies are needed to find out how the atypical BVDV strain entered the cattle population.

  6. Detection of Herpesvirus, Enterovirus, and Arbovirus infection in patients with suspected central nervous system viral infection in the Western Brazilian Amazon.

    PubMed

    Bastos, Michele S; Lessa, Natália; Naveca, Felipe G; Monte, Rossicléia L; Braga, Wornei S; Figueiredo, Luiz Tadeu M; Ramasawmy, Rajendranath; Mourão, Maria Paula G

    2014-09-01

    Acute infections of the central nervous system (CNS) can be caused by various pathogens. In this study, the presence of herpesviruses (HHV), enteroviruses (EVs), and arboviruses were investigated in CSF samples from 165 patients with suspected CNS viral infection through polymerase chain reaction (PCR) and reverse transcriptase PCR. The genomes of one or more viral agents were detected in 29.7% (49/165) of the CSF samples. EVs were predominant (16/49; 32.6%) followed by Epstein-Barr virus (EBV) (22.4%), Varicella-Zoster virus (VZV) (20.4%), Cytomegalovirus (CMV) (18.4%), herpes simplex virus (HSV-1) (4.1%), (HSV-2) (4.1%), and the arboviruses (14.3%). Four of the arboviruses were of dengue virus (DENV) and three of oropouche virus (OROV). The detection of different viruses in the CNS of patients with meningitis or encephalitis highlight the importance of maintaining an active laboratory monitoring diagnostics with rapid methodology of high sensitivity in areas of viral hyperendemicity that may assist in clinical decisions and in the choice of antiviral therapy.

  7. Degradation of cellular and viral Fos proteins.

    PubMed

    Acquaviva, C; Ferrara, P; Bossis, G; Brockly, F; Salvat, C; Jariel-Encontre, I; Piechaczyk, M

    2001-01-01

    c-Fos proto-oncoprotein is a short-lived transcription factor with oncogenic potential. We have shown that it is massively degraded by the proteasome in vivo under various experimental conditions. Other proteolytic systems including lysosomes and calpains, might, however, also marginally operate on it. Although there is evidence that c-Fos can be ubiquitinylated in vitro, the unambiguous demonstration that ubiquitinylation is necessary for its addressing to the proteasome in vivo is still lacking. c-Jun, one of the main dimerization partners of c-Fos within the AP-1 transcription complex, is also an unstable protein. Its degradation is clearly proteasome- and ubiquitin-dependent in vivo. Interestingly, several lines of evidence indicate that the addressing of c-Fos and c-Jun to the proteasome is, at least in part, governed by different mechanisms. c-Fos has been transduced by two murine osteosarcomatogenic retroviruses under mutated forms which are more stable and more oncogenic. The stabilization is not simply accounted for by simple deletion of c-Fos main destabilizer but, rather, by a complex balance between opposing destabilizing and stabilizing mutations. Though mutations in viral Fos proteins confer full resistance to proteasomal degradation, stabilization is limited because mutations also entail sensitivity to an unidentified proteolytic system. This observation is consistent with the idea that Fos-expressing viruses have evolved to ensure control protein levels to avoid high protein accumulation-linked apoptosis. In conclusion, the unveiling of the complex mechanism network responsible for the degradation of AP-1 family members is still at its beginning and a number of issues regarding the regulation of this process and the addressing to the proteasome are still unresolved.

  8. Construction of a recombinant herpesvirus expressing the jellyfish green fluorescent protein.

    PubMed

    Boldogköi, Z; Erdélyi, F; Sik, A; Freund, T F; Fodor, I

    1999-01-01

    Here we report the insertion of a synthetic version of the cDNA encoding the jellyfish (Aequorea victoria) green fluorescent protein (gfph ) into the genome of pseudorabies (Aujeszky's disease) virus (PrV). A putative latency promoter (PLAT) located at the inverted repeat region of the PrV genome was chosen as the target site for the insertion. Recombinant viral DNA designated as vLAT-gfp was generated as a result of homologous recombination between the transfected viral DNA and a plasmid containing the GFP-expression cassette flanked by viral sequences homologous to the target region. Plaques containing recombinant virus were selected visually using a fluorescent microscope. We demonstrated a GFP-expression in infected neurons of rat brain which showed normal morphology at early stage of viral infection by monitoring fluorescent light emission. PMID:10398563

  9. VP8, the Major Tegument Protein of Bovine Herpesvirus 1, Interacts with Cellular STAT1 and Inhibits Interferon Beta Signaling

    PubMed Central

    Afroz, Sharmin; Brownlie, Robert; Fodje, Michel

    2016-01-01

    ABSTRACT The UL47 gene product, VP8, is the most abundant tegument protein of bovine herpesvirus 1 (BoHV-1). Previously, we demonstrated that a UL47-deleted BoHV-1 mutant (BoHV1-ΔUL47) exhibits 100-fold-reduced virulence in vitro and is avirulent in vivo. In this study, we demonstrated that VP8 expression or BoHV-1 infection inhibits interferon beta (IFN-β) signaling by using an IFN-α/β-responsive plasmid in a luciferase assay. As transducer and activator of transcription (STAT) is an essential component in the IFN-signaling pathways, the effect of VP8 on STAT was investigated. An interaction between VP8 and STAT1 was established by coimmunoprecipitation assays in both VP8-transfected and BoHV-1-infected cells. Two domains of VP8, amino acids 259 to 482 and 632 to 686, were found to be responsible for its interaction with STAT1. The expression of VP8 did not induce STAT1 ubiquitination or degradation. Moreover, VP8 did not reduce STAT1 tyrosine phosphorylation to downregulate IFN-β signaling. However, the expression of VP8 or a version of VP8 (amino acids 219 to 741) that contains the STAT1-interacting domains but not the nuclear localization signal prevented nuclear accumulation of STAT1. Inhibition of nuclear accumulation of STAT1 also occurred during BoHV-1 infection, while nuclear translocation of STAT1 was observed in BoHV1-ΔUL47-infected cells. During BoHV-1 infection, VP8 was detected in the cytoplasm at 2 h postinfection without any de novo protein synthesis, at which time STAT1 was already retained in the cytoplasm. These results suggest that viral VP8 downregulates IFN-β signaling early during infection, thus playing a role in overcoming the antiviral response of BoHV-1-infected cells. IMPORTANCE Since VP8 is the most abundant protein in BoHV-1 virions and thus may be released in large amounts into the host cell immediately upon infection, we proposed that it might have a function in the establishment of conditions suitable for viral replication

  10. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors.

    PubMed

    Zhang, Yunfei; Charvat, Robert A; Kim, Seong K; O'Callaghan, Dennis J

    2014-01-20

    The UL4 gene is conserved within the genome of defective interfering particles of equine herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected with the UL4-null virus as compared to wild-type EHV-1. PMID:24418534

  11. Role of the virion host shutoff protein in neurovirulence of monkey B virus (Macacine herpesvirus 1).

    PubMed

    Black, Darla; Ritchey, Jerry; Payton, Mark; Eberle, Richard

    2014-10-01

    Monkey B virus (Macacine herpesvirus 1; BV) is noted for its extreme neurovirulence in humans. Since the vhs protein encoded by the UL41 gene has been shown to be a neurovirulence factor in the related human herpes simplex viruses, the role of the UL41 gene in BV neurovirulence was investigated. BV mutants were constructed that lacked the entire UL41 ORF (Δ41) or had the RNase active site mutated (Δ41A). Neither mutant shut off host protein synthesis, degraded β-actin mRNA, or prevented an IFN-β response, indicating that the vhs protein and its RNase activity are both necessary for these activities. Replication of both mutants in primary mouse cells was impaired and they exhibited a prolonged disease course in mice. Whereas Δ41 infected mice were euthanized for symptoms related to central nervous system (CNS) infection, Δ41A infected mice were euthanized primarily for symptoms of autonomic nervous system dysfunction. While neuroinvasiveness was not affected, lesions in the CNS were more limited in size, anatomical distribution, and severity than for wild-type virus. These results indicate that the vhs protein affects the general replicative efficiency of BV in vivo rather than being a specific neurovirulence factor critical for invasion of or preferential replication in the CNS.

  12. Propranolol Decreases Proliferation of Endothelial Cells Transformed by Kaposi's Sarcoma-Associated Herpesvirus and Induces Lytic Viral Gene Expression

    PubMed Central

    Hanson, Ryan S.; Manion, Rory D.

    2015-01-01

    Kaposi's sarcoma (KS) is common in Africa, but economic constraints hinder successful treatment in most patients. Propranolol, a generic β-adrenergic antagonist, decreased proliferation of KS-associated herpesvirus (KSHV)-infected cells. Downregulation of cyclin A2 and cyclin-dependent kinase 1 (CDK1) recapitulated this phenotype. Additionally, propranolol induced lytic gene expression in association with downregulation of CDK6. Thus, propranolol has diverse effects on KSHV-infected cells, and this generic drug has potential as a therapeutic agent for KS. PMID:26269192

  13. VirusMINT: a viral protein interaction database

    PubMed Central

    Chatr-aryamontri, Andrew; Ceol, Arnaud; Peluso, Daniele; Nardozza, Aurelio; Panni, Simona; Sacco, Francesca; Tinti, Michele; Smolyar, Alex; Castagnoli, Luisa; Vidal, Marc; Cusick, Michael E.; Cesareni, Gianni

    2009-01-01

    Understanding the consequences on host physiology induced by viral infection requires complete understanding of the perturbations caused by virus proteins on the cellular protein interaction network. The VirusMINT database (http://mint.bio.uniroma2.it/virusmint/) aims at collecting all protein interactions between viral and human proteins reported in the literature. VirusMINT currently stores over 5000 interactions involving more than 490 unique viral proteins from more than 110 different viral strains. The whole data set can be easily queried through the search pages and the results can be displayed with a graphical viewer. The curation effort has focused on manuscripts reporting interactions between human proteins and proteins encoded by some of the most medically relevant viruses: papilloma viruses, human immunodeficiency virus 1, Epstein–Barr virus, hepatitis B virus, hepatitis C virus, herpes viruses and Simian virus 40. PMID:18974184

  14. Identification and initial characterization of the IR6 protein of equine herpesvirus 1.

    PubMed

    O'Callaghan, D J; Colle, C F; Flowers, C C; Smith, R H; Benoit, J N; Bigger, C A

    1994-09-01

    The IR6 gene of equine herpesvirus 1 (EHV-1) is a novel gene that maps within each inverted repeat (IR), encodes a potential protein of 272 amino acids, and is expressed as a 1.2-kb RNA whose synthesis begins at very early times (1.5 h) after infection and continues throughout the infection cycle (C. A. Breeden, R. R. Yalamanchili, C.F. Colle, and D.J. O'Callaghan, Virology 191:649-660,1992). To identify the IR6 protein and ascertain its properties, we generated an IR6-specific polyclonal antiserum to a TrpE/IR6 fusion protein containing 129 amino acids (residues 134 to 262) of the IR6 protein. This antiserum immunoprecipitated a 33-kDa protein generated by in vitro translation of mRNA transcribed from a pGEM construct (IR6/pGEM-3Z) that contains the entire IR6 open reading frame. The anti-IR6 antibody also recognized an infected-cell protein of approximately 33 kDa that was expressed as early as 1 to 2 h postinfection and was synthesized throughout the infection cycle. A variety of biochemical analyses including radiolabeling the IR6 protein with oligosaccharide precursors, translation of IR6 mRNA in the presence of canine pancreatic microsomes, radiolabeling the IR6 protein in the presence of tunicamycin, and pulse-chase labeling experiments indicated that the two potential sites for N-linked glycosylation were not used and that the IR6 protein does not enter the secretory pathway. To address the possibility that the unique IR6 gene encodes a novel regulatory protein, we transiently transfected an IR6 expression construct into L-M fibroblasts alone or with an immediate-early gene expression construct along with a representative EHV-1 immediate-early, early, or late promoter-chloramphenicol acetyltransferase reporter construct. The results indicated that the IR6 protein does not affect the expression of these representative promoter constructs. Interestingly, the IR6 protein was shown to be phosphorylated and to associate with purified EHV-1 virions and

  15. Acute phase protein expression during elephant endotheliotropic herpesvirus-1 viremia in Asian elephants (Elephas maximus).

    PubMed

    Stanton, Jeffrey J; Cray, Carolyn; Rodriguez, Marilyn; Arheart, Kristopher L; Ling, Paul D; Herron, Alan

    2013-09-01

    Infection of Asian elephants (Elephas maximus) with elephant endotheliotropic herpesvirus (EEHV) can be associated with rapid, lethal hemorrhagic disease and has been documented in elephant herds in human care and in the wild. Recent reports describe real-time quantitative polymerase chain reaction (qPCR) assays used to monitor clinically ill elephants and also to detect subclinical EEHV1 infection in apparently healthy Asian elephants. Acute phase proteins have been demonstrated to increase with a variety of infectious etiologies in domesticated mammals but have not yet been described in elephants. In addition, the immune response of Asian elephants to EEHV1 infection has not been described. In this study, whole blood and trunk wash samples representing repeated measures from eight elephants were examined for the presence of EEHV1 using a qPCR assay. Elephants were classified into groups, as follows: whole blood negative and positive and trunk wash negative and positive. Serum amyloid A (SAA) and haptoglobin (HP) levels were compared between these groups. A significant difference in SAA was observed with nearly a threefold higher mean value during periods of viremia (P=0.011). Higher values of SAA were associated with >10,000 virus genome copies/ml EEHV1 in whole blood. There were no significant differences in HP levels, although some individual animals did exhibit increased levels with infection. These data indicate that an inflammatory process is stimulated during EEHV1 viremia. Acute phase protein quantitation may aid in monitoring the health status of Asian elephants.

  16. Acute phase protein expression during elephant endotheliotropic herpesvirus-1 viremia in Asian elephants (Elephas maximus).

    PubMed

    Stanton, Jeffrey J; Cray, Carolyn; Rodriguez, Marilyn; Arheart, Kristopher L; Ling, Paul D; Herron, Alan

    2013-09-01

    Infection of Asian elephants (Elephas maximus) with elephant endotheliotropic herpesvirus (EEHV) can be associated with rapid, lethal hemorrhagic disease and has been documented in elephant herds in human care and in the wild. Recent reports describe real-time quantitative polymerase chain reaction (qPCR) assays used to monitor clinically ill elephants and also to detect subclinical EEHV1 infection in apparently healthy Asian elephants. Acute phase proteins have been demonstrated to increase with a variety of infectious etiologies in domesticated mammals but have not yet been described in elephants. In addition, the immune response of Asian elephants to EEHV1 infection has not been described. In this study, whole blood and trunk wash samples representing repeated measures from eight elephants were examined for the presence of EEHV1 using a qPCR assay. Elephants were classified into groups, as follows: whole blood negative and positive and trunk wash negative and positive. Serum amyloid A (SAA) and haptoglobin (HP) levels were compared between these groups. A significant difference in SAA was observed with nearly a threefold higher mean value during periods of viremia (P=0.011). Higher values of SAA were associated with >10,000 virus genome copies/ml EEHV1 in whole blood. There were no significant differences in HP levels, although some individual animals did exhibit increased levels with infection. These data indicate that an inflammatory process is stimulated during EEHV1 viremia. Acute phase protein quantitation may aid in monitoring the health status of Asian elephants. PMID:24063088

  17. Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms

    PubMed Central

    Botto, Sara; Totonchy, Jennifer E.; Gustin, Jean K.

    2015-01-01

    ABSTRACT Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype. PMID:26045540

  18. The A, B, Cs of Herpesvirus Capsids

    PubMed Central

    Tandon, Ritesh; Mocarski, Edward S.; Conway, James F.

    2015-01-01

    Assembly of herpesvirus nucleocapsids shares significant similarities with the assembly of tailed dsDNA bacteriophages; however, important differences exist. A unique feature of herpesviruses is the presence of different mature capsid forms in the host cell nucleus during infection. These capsid forms, referred to as A-, B-, and C-capsids, represent empty capsids, scaffold containing capsids and viral DNA containing capsids, respectively. The C-capsids are the closest in form to those encapsidated into mature virions and are considered precursors to infectious virus. The evidence supporting A- and B-capsids as either abortive forms or assembly intermediates has been lacking. Interaction of specific capsid forms with viral tegument proteins has been proposed to be a mechanism for quality control at the point of nuclear egress of mature particles. Here, we will review the available literature on these capsid forms and present data to debate whether A- and B-capsids play an important or an extraneous role in the herpesvirus life cycle. PMID:25730559

  19. Simultaneous Detection of Antibodies to five Simian Viruses in Nonhuman Primates using Recombinant Viral Protein Based Multiplex Microbead ImmunoAssays

    PubMed Central

    Liao, Qi; Guo, Huishan; Tang, Min; Touzjian, Neal; Lerche, Nicholas W.; Lu, Yichen; Yee, JoAnn L.

    2011-01-01

    Routine screening for infectious agents is critical in establishing and maintaining specific pathogen free (SPF) nonhuman primate (NHP) colonies. More efficient, higher throughput, less costly reagent, and reduced sample consumption multiplex microbead immunoassays (MMIAs) using purified viral lysates have been developed previously to address some disadvantages of the traditional individual enzyme-linked immunosorbent assay (ELISA) methods. To overcome some of the technical and biosafety difficulties in preparing antigens from live viruses for viral lysate protein based MMIAs, novel MMIAs using recombinant glycoprotein D precursor (gD) protein of herpesvirus B and four viral gag proteins of Simian Immunodeficiency Virus (SIV), Simian T Cell Lymphotropic Virus (STLV), Simian Foamy Virus (SFV) and Simian Betaretrovirus (SRV) as antigens have been developed in the current study. The data showed that the recombinant viral protein based MMIAs detected simultaneously antibodies to each of these five viruses with high sensitivity and specificity, and correlated well with viral lysate based MMIAs. Therefore, recombinant viral protein based MMIA is an effective and efficient routine screening method to determine the infection status of nonhuman primates. PMID:21945221

  20. Experimental infection of European flat oyster Ostrea edulis with ostreid herpesvirus 1 microvar (OsHV-1μvar): Mortality, viral load and detection of viral transcripts by in situ hybridization.

    PubMed

    López Sanmartín, Monserrat; Power, Deborah M; de la Herrán, Roberto; Navas, José I; Batista, Frederico M

    2016-06-01

    Ostreid herpesvirus 1 (OsHV-1) infections have been reported in several bivalve species. Mortality of Pacific oyster Crassostrea gigas spat has increased considerably in Europe since 2008 linked to the spread of a variant of OsHV-1 called μvar. In the present study we demonstrated that O. edulis juveniles can be infected by OsHV-1μvar when administered as an intramuscular injection. Mortality in the oysters injected with OsHV-1μvar was first detected 4 days after injection and reached 25% mortality at day 10. Moreover, the high viral load observed and the detection of viral transcripts by in situ hybridization in several tissues of dying oysters suggested that OsHV-1μvar was the cause of mortality in the O. edulis juveniles. This is therefore the first study to provide evidence about the pathogenicity of OsHV-1μvar in a species that does not belong to the Crassostrea genus. Additionally, we present a novel method to detect OsHV-1 transcripts in infected individuals' using in situ hybridization. PMID:26945849

  1. Mapping and Serodiagnostic Application of a Dominant Epitope within the Human Herpesvirus 8 ORF 65-Encoded Protein

    PubMed Central

    Pau, Chou-Pong; Lam, Lee L.; Spira, Thomas J.; Black, Jodi B.; Stewart, John A.; Pellett, Philip E.; Respess, Richard A.

    1998-01-01

    A dominant epitope within the human herpesvirus 8 (HHV8) ORF 65-encoded protein was mapped to an 8-amino-acid (aa) sequence (RKPPSGKK [aa 162 to 169]) by an amino acid replacement method. Using a 14-aa peptide (P4) encompassing this epitope as the antigen, we developed an enzyme immunoassay for HHV8 antibodies. The presence of P4 antibodies in a panel of 61 human serum specimens was highly correlated with biopsy-confirmed Kaposi’s sarcoma. The homologous Epstein-Barr virus peptide derived from BFBR3-encoded protein did not interfere with the assay, suggesting that P4 is specific for HHV8. PMID:9620379

  2. Functional Dissection of an Alternatively Spliced Herpesvirus Gene by Splice Site Mutagenesis

    PubMed Central

    Schommartz, Tim; Loroch, Stefan; Alawi, Malik; Grundhoff, Adam; Sickmann, Albert

    2016-01-01

    ABSTRACT Herpesviruses have large and complex DNA genomes. The largest among the herpesviruses, those of the cytomegaloviruses, include over 170 genes. Although most herpesvirus gene products are expressed from unspliced transcripts, a substantial number of viral transcripts are spliced. Some viral transcripts are subject to alternative splicing, which leads to the expression of several proteins from a single gene. Functional analysis of individual proteins derived from an alternatively spliced gene is difficult, as deletion and nonsense mutagenesis, both common methods used in the generation of viral gene knockout mutants, affect several or all gene products at the same time. Here, we show that individual gene products of an alternatively spliced herpesvirus gene can be inactivated selectively by mutagenesis of the splice donor or acceptor site and by intron deletion or substitution mutagenesis. We used this strategy to dissect the essential M112/113 gene of murine cytomegalovirus (MCMV), which encodes the MCMV Early 1 (E1) proteins. The expression of each of the four E1 protein isoforms was inactivated individually, and the requirement for each isoform in MCMV replication was analyzed in fibroblasts, endothelial cells, and macrophages. We show that the E1 p87 isoform, but not the p33, p36, and p38 isoforms, is essential for viral replication in cell culture. Moreover, the presence of one of the two medium-size isoforms (p36 or p38) and the presence of intron 1, but not its specific sequence, are required for viral replication. This study demonstrates the usefulness of splice site mutagenesis for the functional analysis of alternatively spliced herpesvirus genes. IMPORTANCE Herpesviruses include up to 170 genes in their DNA genomes. The functions of most viral gene products remain poorly defined. The construction of viral gene knockout mutants has thus been an important tool for functional analysis of viral proteins. However, this strategy is of limited use when

  3. Human Oncogenic Herpesvirus and Post-translational Modifications - Phosphorylation and SUMOylation.

    PubMed

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  4. Human Oncogenic Herpesvirus and Post-translational Modifications – Phosphorylation and SUMOylation

    PubMed Central

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S.

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  5. Transient Expression of Viral Proteins in Plants Using Agrobacterium tumefaciens.

    PubMed

    Hitzeroth, Inga I; van Zyl, Albertha R

    2016-01-01

    Transient expression of viral proteins in plants is a novel alternative to other expression platforms. The viral proteins can be used as potential vaccines or in diagnostics. Nicotiana benthamiana leaves or whole plants are infiltrated with recombinant Agrobacterium that harbor the gene of interest. Protein expression in the plants is rapid and results are obtained within 2-7 days. Here we describe how to make electrocompetent Agrobacterium, how to transform Agrobacterium, how to infiltrate leaves or plants with the recombinant Agrobacterium, and lastly how to extract the protein for analysis by gel electrophoresis. PMID:27076324

  6. Genomewide mapping and screening of Kaposi's sarcoma-associated herpesvirus (KSHV) 3' untranslated regions identify bicistronic and polycistronic viral transcripts as frequent targets of KSHV microRNAs.

    PubMed

    Bai, Zhiqiang; Huang, Yufei; Li, Wan; Zhu, Ying; Jung, Jae U; Lu, Chun; Gao, Shou-Jiang

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes over 90 genes and 25 microRNAs (miRNAs). The KSHV life cycle is tightly regulated to ensure persistent infection in the host. In particular, miRNAs, which primarily exert their effects by binding to the 3' untranslated regions (3'UTRs) of target transcripts, have recently emerged as key regulators of KSHV life cycle. Although studies with RNA cross-linking immunoprecipitation approach have identified numerous targets of KSHV miRNAs, few of these targets are of viral origin because most KSHV 3'UTRs have not been characterized. Thus, the extents of viral genes targeted by KSHV miRNAs remain elusive. Here, we report the mapping of the 3'UTRs of 74 KSHV genes and the effects of KSHV miRNAs on the control of these 3'UTR-mediated gene expressions. This analysis reveals new bicistronic and polycistronic transcripts of KSHV genes. Due to the 5'-distal open reading frames (ORFs), KSHV bicistronic or polycistronic transcripts have significantly longer 3'UTRs than do KSHV monocistronic transcripts. Furthermore, screening of the 3'UTR reporters has identified 28 potential new targets of KSHV miRNAs, of which 11 (39%) are bicistronic or polycistronic transcripts. Reporter mutagenesis demonstrates that miR-K3 specifically targets ORF31-33 transcripts at the lytic locus via two binding sites in the ORF33 coding region, whereas miR-K10a-3p and miR-K10b-3p and their variants target ORF71-73 transcripts at the latent locus through distinct binding sites in both 5'-distal ORFs and intergenic regions. Our results indicate that KSHV miRNAs frequently target the 5'-distal coding regions of bicistronic or polycistronic transcripts and highlight the unique features of KSHV miRNAs in regulating gene expression and life cycle. PMID:24155407

  7. Illuminating structural proteins in viral "dark matter" with metaproteomics.

    PubMed

    Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M; Roux, Simon; VerBerkmoes, Nathan C; Rich, Virginia I; Sullivan, Matthew B

    2016-03-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.

  8. Illuminating structural proteins in viral "dark matter" with metaproteomics

    DOE PAGESBeta

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun -Hae; Trubl, Gareth; Jones, Robert M.; Roux, Simon; Verberkmoes, Nathan C.; Rich, Virginia I.; Sullivan, Matthew B.

    2016-02-16

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional darkmatter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore,more » four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Altogether, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.« less

  9. Illuminating structural proteins in viral "dark matter" with metaproteomics.

    PubMed

    Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M; Roux, Simon; VerBerkmoes, Nathan C; Rich, Virginia I; Sullivan, Matthew B

    2016-03-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter. PMID:26884177

  10. ESCRT-I Protein Tsg101 Plays a Role in the Post-macropinocytic Trafficking and Infection of Endothelial Cells by Kaposi’s Sarcoma-Associated Herpesvirus

    PubMed Central

    Kumar, Binod; Dutta, Dipanjan; Iqbal, Jawed; Ansari, Mairaj Ahmed; Roy, Arunava; Chikoti, Leela; Pisano, Gina; Veettil, Mohanan Valiya; Chandran, Bala

    2016-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) binding to the endothelial cell surface heparan sulfate is followed by sequential interactions with α3β1, αVβ3 and αVβ5 integrins and Ephrin A2 receptor tyrosine kinase (EphA2R). These interactions activate host cell pre-existing FAK, Src, PI3-K and RhoGTPase signaling cascades, c-Cbl mediated ubiquitination of receptors, recruitment of CIB1, p130Cas and Crk adaptor molecules, and membrane bleb formation leading to lipid raft dependent macropinocytosis of KSHV into human microvascular dermal endothelial (HMVEC-d) cells. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins, ESCRT-0, -I, -II, and–III, play a central role in clathrin-mediated internalized ubiquitinated receptor endosomal trafficking and sorting. ESCRT proteins have also been shown to play roles in viral egress. We have recently shown that ESCRT-0 component Hrs protein associates with the plasma membrane during macropinocytosis and mediates KSHV entry via ROCK1 mediated phosphorylation of NHE1 and local membrane pH change. Here, we demonstrate that the ESCRT-I complex Tsg101 protein also participates in the macropinocytosis of KSHV and plays a role in KSHV trafficking. Knockdown of Tsg101 did not affect virus entry in HMVEC-d and human umbilical vein endothelial (HUVEC) cells but significantly inhibited the KSHV genome entry into the nucleus and consequently viral gene expression in these cells. Double and triple immunofluorescence, proximity ligation immunofluorescence and co-immuoprecipitation studies revealed the association of Tsg101 with the KSHV containing macropinosomes, and increased levels of Tsg101 association/interactions with EphA2R, c-Cbl, p130Cas and Crk signal molecules, as well as with upstream and downstream ESCRT components such as Hrs (ESCRT-0), EAP45 (ESCRT-II), CHMP6 (ESCRT-III) and CHMP5 (ESCRT-III) in the KSHV infected cells. Tsg101 was also associated with early (Rab5) and late endosomal (Rab7) stages of

  11. Actin in Herpesvirus Infection

    PubMed Central

    Roberts, Kari L.; Baines, Joel D.

    2011-01-01

    Actin is important for a variety of cellular processes, including uptake of extracellular material and intracellular transport. Several emerging lines of evidence indicate that herpesviruses exploit actin and actin-associated myosin motors for viral entry, intranuclear transport of capsids, and virion egress. The goal of this review is to explore these processes and to highlight potential future directions for this area of research. PMID:21994736

  12. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma-associated herpesvirus ORF57 protein is required for RNA splicing.

    PubMed

    Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan; Zheng, Zhi-Ming

    2014-11-01

    Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3-RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing.

  13. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma–associated herpesvirus ORF57 protein is required for RNA splicing

    PubMed Central

    Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan

    2014-01-01

    Kaposi sarcoma–associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3–RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing. PMID:25234929

  14. Aspects of bovine herpesvirus 1 and bovine viral diarrhoea virus herd-level seroprevalence and vaccination in dairy and beef herds in Northern Ireland

    PubMed Central

    2014-01-01

    Background Infections with bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhoea (BVD) virus cause diseases of cattle with a worldwide distribution. The primary objective of the present study was to describe aspects of herd-level BoHV-1 and BVDV seroprevalence (based on testing of pooled sera) and control on farms in Northern Ireland, including vaccine usage. An indirect antibody ELISA test (SVANOVA, Biotech AB, Uppsala, Sweden) was applied to serum pools which were constructed from serum samples taken for a cross-sectional study of a convenience sample of 500 Northern Irish dairy and beef cow herds in 2010, for which vaccination status was determined by telephone survey. The herd-level seroprevalence of BoHV-1 and BVDV in Northern Ireland was estimated in non-vaccinating herds and associations between possible risk factors (herd type and herd size (quartiles)) and herd-level prevalence were determined using chi-squared analysis. Results The herd-level seroprevalence (of BoHV-1 and BVDV) in non-vaccinating herds was 77.3% (95% CI: 73.6–80.9%) and 98.4% (95% CI: 97.3–99.5%) respectively in the cross-sectional study. A significant difference existed in BoHV-1 herd-level seroprevalence between dairy and beef herds (74.7% vs 86.5% respectively; p < 0.02) though not for BVDV seroprevalence (98.5% vs 98.3% respectively; p > 0.91). A significant association was found between herd size (quartiles) and herd-level classification for BoHV-1 herd-level seroprevalence based on cut-off percentage positivity (COPP) (p < 0.01) while no such association was found for BVDV (p = 0.22). 15.5% and 23.8% of farmers used BoHV-1 and BVDV vaccines, respectively. BoHV-1 vaccine was used in 30% of dairy herds and in 11% of beef herds, while BVDV vaccine was used in 46% and 16% of dairy and beef herds, respectively. Conclusions The results from this study indicate that the true herd-level seroprevalences to bovine herpesvirus 1 and bovine virus diarrhoea virus in non

  15. Viral Capsid Proteins Are Segregated in Structural Fold Space

    PubMed Central

    Cheng, Shanshan; Brooks, Charles L.

    2013-01-01

    Viral capsid proteins assemble into large, symmetrical architectures that are not found in complexes formed by their cellular counterparts. Given the prevalence of the signature jelly-roll topology in viral capsid proteins, we are interested in whether these functionally unique capsid proteins are also structurally unique in terms of folds. To explore this question, we applied a structure-alignment based clustering of all protein chains in VIPERdb filtered at 40% sequence identity to identify distinct capsid folds, and compared the cluster medoids with a non-redundant subset of protein domains in the SCOP database, not including the viral capsid entries. This comparison, using Template Modeling (TM)-score, identified 2078 structural “relatives” of capsid proteins from the non-capsid set, covering altogether 210 folds following the definition in SCOP. The statistical significance of the 210 folds shared by two sets of the same sizes, estimated from 10,000 permutation tests, is less than 0.0001, which is an upper bound on the p-value. We thus conclude that viral capsid proteins are segregated in structural fold space. Our result provides novel insight on how structural folds of capsid proteins, as opposed to their surface chemistry, might be constrained during evolution by requirement of the assembled cage-like architecture. Also importantly, our work highlights a guiding principle for virus-based nanoplatform design in a wide range of biomedical applications and materials science. PMID:23408879

  16. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma.

    PubMed Central

    Zhong, W; Wang, H; Herndier, B; Ganem, D

    1996-01-01

    Kaposi sarcoma (KS) is the leading neoplasm of HIV-infected patients and is also found in several HIV-negative populations. Recently, DNA sequences from a novel herpesvirus, termed KS-associated herpesvirus (KSHV), or human herpesvirus 8 (HHV-8) have been identified within KS tissue from both HIV-positive and HIV-negative cases; infection with this agent has been proposed as a possible factor in the etiology or pathogenesis of the tumor. Here we have examined the pattern of KSHV/HHV-8 gene expression in KS and find it to be highly restricted. We identify and characterize two small transcripts that represent the bulk of the virus-specific RNA transcribed from over 120 kb of the KSHV genome in infected cells. One transcript is predicted to encode a small membrane protein; the other is an unusual polyadenylylated RNA that accumulates in the nucleus to high copy number. This pattern of viral gene expression suggests that most infected cells in KS are latently infected, with lytic viral replication likely restricted to a much smaller subpopulation of cells. These findings have implications for the therapeutic utility of currently available antiviral drugs targeted against the lytic replication cycle. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:8692871

  17. Aquareovirus NS80 Initiates Efficient Viral Replication by Retaining Core Proteins within Replication-Associated Viral Inclusion Bodies.

    PubMed

    Yan, Liming; Zhang, Jie; Guo, Hong; Yan, Shicui; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2015-01-01

    Viral inclusion bodies (VIBs) are specific intracellular compartments for reoviruses replication and assembly. Aquareovirus nonstructural protein NS80 has been identified to be the major constituent for forming globular VIBs in our previous study. In this study, we investigated the role of NS80 in viral structural proteins expression and viral replication. Immunofluorescence assays showed that NS80 could retain five core proteins or inner-capsid proteins (VP1-VP4 and VP6), but not outer-capsid proteins (VP5 and VP7), within VIBs in co-transfected or infected cells. Further co-immunoprecipitation analysis confirmed that NS80 could interact with each core protein respectively. In addition, we found that newly synthesized viral RNAs co-localized with VIBs. Furthermore, time-course analysis of viral structural proteins expression showed that the expression of NS80 was detected first, followed by the detection of inner shell protein VP3, and then of other inner-capsid proteins, suggesting that VIBs were essential for the formation of viral core frame or progeny virion. Moreover, knockdown of NS80 by shRNA not only inhibited the expression of aquareovirus structural proteins, but also inhibited viral infection. These results indicated that NS80-based VIBs were formed at earlier stage of infection, and NS80 was able to coordinate the expression of viral structural proteins and viral replication.

  18. Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation.

    PubMed

    Rossetto, Cyprian C; Pari, Gregory S

    2011-12-01

    During lytic infection, Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a polyadenylated nuclear RNA (PAN RNA). This noncoding RNA (ncRNA) is localized to the nucleus and is the most abundant viral RNA during lytic infection; however, to date, the role of PAN RNA in the virus life cycle is unknown. Many examples exist where ncRNAs have a defined key regulatory function controlling gene expression by various mechanisms. Our goal for this study was to identify putative binding partners for PAN RNA in an effort to elucidate a possible function for the transcript in KSHV infection. We employed an in vitro affinity protocol where PAN RNA was used as bait for factors present in BCBL-1 cell nuclear extract to show that PAN RNA interacts with several virus- and host cell-encoded factors, including histones H1 and H2A, mitochondrial and cellular single-stranded binding proteins (SSBPs), and interferon regulatory factor 4 (IRF4). RNA chromatin immunoprecipitation (ChIP) assays confirmed that PAN RNA interacted with these factors in the infected cell environment. A luciferase reporter assay showed that PAN RNA expression interfered with the ability of IRF4/PU.1 to activate the interleukin-4 (IL-4) promoter, strongly suggesting a role for PAN RNA in immune modulation. Since the proteomic screen and functional data suggested a role in immune responses, we investigated if constitutive PAN RNA expression could affect other genes involved in immune responses. PAN RNA expression decreased expression of gamma interferon, interleukin-18, alpha interferon 16, and RNase L. These data strongly suggest that PAN RNA interacts with viral and cellular proteins and can function as an immune modulator. PMID:21957289

  19. Anti-Viral Antibody Profiling by High Density Protein Arrays

    PubMed Central

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  20. Discovery of host-viral protein complexes during infection

    PubMed Central

    Rowles, Daniell L.; Terhune, Scott S.; Cristea, Ileana M.

    2014-01-01

    Summary Viruses have co-evolved with their hosts, developing effective approaches for hijacking and manipulating host cellular processes. Therefore, for their efficient replication and spread, viruses depend on dynamic and temporally-regulated interactions with host proteins. The rapid identification of host proteins targeted by viral proteins during infection provides significant insights into mechanisms of viral protein function. The resulting discoveries often lead to unique and innovative hypotheses on viral protein function. Here, we describe a robust method for identifying virus-host protein interactions and protein complexes, which we have successfully utilized to characterize spatial-temporal protein interactions during infections with either DNA or RNA viruses, including human cytomegalovirus (HCMV), herpes simplex virus type 1 (HSV-1), pseudorabies virus (PRV), human immunodeficiency virus (HIV-1), Sindbis, and West Nile virus (WNV). This approach involves cryogenic cell lysis, rapid immunoaffinity purification targeting a virus or host protein, followed by identification of associated proteins using mass spectrometry. Like most proteomic approaches, this methodology has evolved over the past few years and continues to evolve. We are presenting here the updated approaches for each step, and discuss alternative strategies allowing for the protocol to be optimized for different biological systems. PMID:23996249

  1. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis.

    PubMed

    Cornaby, Caleb; Tanner, Anne; Stutz, Eric W; Poole, Brian D; Berges, Bradford K

    2016-03-01

    Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.

  2. Animal models of tumorigenic herpesviruses--an update.

    PubMed

    Dittmer, Dirk P; Damania, Blossom; Sin, Sang-Hoon

    2015-10-01

    Any one model system, be it culture or animal, only recapitulates one aspect of the viral life cycle in the human host. By providing recent examples of animal models for Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, we would argue that multiple animal models are needed to gain a comprehensive understanding of the pathogenesis associated with human oncogenic herpesviruses. Transgenic mice, homologous animal herpesviruses, and tumorgraft and humanized mouse models all complement each other in the study of viral pathogenesis. The use of animal model systems facilitates the exploration of novel anti-viral and anti-cancer treatment modalities for diseases associated with oncogenic herpesviruses. PMID:26476352

  3. Accessibility of selenomethionine proteins by total chemical synthesis: structural studies of human herpesvirus-8 MIP-II.

    PubMed

    Shao, W; Fernandez, E; Wilken, J; Thompson, D A; Siani, M A; West, J; Lolis, E; Schweitzer, B I

    1998-12-11

    The determination of high resolution three-dimensional structures by X-ray crystallography or nuclear magnetic resonance (NMR) is a time-consuming process. Here we describe an approach to circumvent the cloning and expression of a recombinant protein as well as screening for heavy atom derivatives. The selenomethionine-modified chemokine macrophage inflammatory protein-II (MIP-II) from human herpesvirus-8 has been produced by total chemical synthesis, crystallized, and characterized by NMR. The protein has a secondary structure typical of other chemokines and forms a monomer in solution. These results indicate that total chemical synthesis can be used to accelerate the determination of three-dimensional structures of new proteins identified in genome programs.

  4. Accessibility of selenomethionine proteins by total chemical synthesis: structural studies of human herpesvirus-8 MIP-II.

    PubMed

    Shao, W; Fernandez, E; Wilken, J; Thompson, D A; Siani, M A; West, J; Lolis, E; Schweitzer, B I

    1998-12-11

    The determination of high resolution three-dimensional structures by X-ray crystallography or nuclear magnetic resonance (NMR) is a time-consuming process. Here we describe an approach to circumvent the cloning and expression of a recombinant protein as well as screening for heavy atom derivatives. The selenomethionine-modified chemokine macrophage inflammatory protein-II (MIP-II) from human herpesvirus-8 has been produced by total chemical synthesis, crystallized, and characterized by NMR. The protein has a secondary structure typical of other chemokines and forms a monomer in solution. These results indicate that total chemical synthesis can be used to accelerate the determination of three-dimensional structures of new proteins identified in genome programs. PMID:9877169

  5. Equine Herpesvirus 1 Multiply Inserted Transmembrane Protein pUL43 Cooperates with pUL56 in Downregulation of Cell Surface Major Histocompatibility Complex Class I

    PubMed Central

    Huang, Teng; Ma, Guanggang

    2015-01-01

    ABSTRACT Herpesviruses have evolved an array of strategies to counteract antigen presentation by major histocompatibility complex class I (MHC-I). Previously, we identified pUL56 of equine herpesvirus 1 (EHV-1) as one major determinant of the downregulation of cell surface MHC-I (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554–3563, 2012, http://dx.doi.org/10.1128/JVI.06994-11; T. Huang, M. J. Lehmann, A. Said, G. Ma, and N. Osterrieder, J. Virol. 88:12802–12815, 2014, http://dx.doi.org/10.1128/JVI.02079-14). Since pUL56 was able to exert its function only in the context of virus infection, we hypothesized that pUL56 cooperates with another viral protein. Here, we generated and screened a series of EHV-1 single-gene deletion mutants and found that the pUL43 orthologue was required for downregulation of cell surface MHC-I expression at the same time of infection as when pUL56 exerts its function. We demonstrate that the absence of pUL43 was not deleterious to virus growth and that expression of pUL43 was detectable from 2 h postinfection (p.i.) but decreased after 8 h p.i. due to lysosomal degradation. pUL43 localized within Golgi vesicles and required a unique hydrophilic N-terminal domain to function properly. Finally, coexpression of pUL43 and pUL56 in transfected cells reduced the cell surface expression of MHC-I. This process was dependent on PPxY motifs present in pUL56, suggesting that late domains are required for pUL43- and pUL56-dependent sorting of MHC class I for lysosomal degradation. IMPORTANCE We describe here that the poorly characterized herpesviral protein pUL43 is involved in downregulation of cell surface MHC-I. pUL43 is an early protein and degraded in lysosomes. pUL43 resides in the Golgi vesicles and needs an intact N terminus to induce MHC-I downregulation in infected cells. Importantly, pUL43 and pUL56 cooperate to reduce MHC-I expression on the surface of transfected cells. Our results suggest a model for

  6. Kaposi's sarcoma-associated herpesvirus induces sustained NF-kappaB activation during de novo infection of primary human dermal microvascular endothelial cells that is essential for viral gene expression.

    PubMed

    Sadagopan, Sathish; Sharma-Walia, Neelam; Veettil, Mohanan Valiya; Raghu, Hari; Sivakumar, Ramu; Bottero, Virginie; Chandran, Bala

    2007-04-01

    In vitro Kaposi's sarcoma-associated herpesvirus (KSHV) infection of primary human dermal microvascular endothelial (HMVEC-d) cells and human foreskin fibroblast (HFF) cells is characterized by the induction of preexisting host signal cascades, sustained expression of latency-associated genes, transient expression of a limited number of lytic genes, and induction of several cytokines, growth factors, and angiogenic factors. Since NF-kappaB is a key molecule involved in the regulation of several of these factors, here, we examined NF-kappaB induction during de novo infection of HMVEC-d and HFF cells. Activation of NF-kappaB was observed as early as 5 to 15 min postinfection by KSHV, and translocation of p65-NF-kappaB into nuclei was detected by immunofluorescence assay, electrophoretic mobility shift assay, and p65 enzyme-linked immunosorbent assay. IkappaB phosphorylation inhibitor (Bay11-7082) reduced this activation significantly. A sustained moderate level of NF-kappaB induction was seen during the observed 72 h of in vitro KSHV latency. In contrast, high levels of ERK1/2 activation at earlier time points and a moderate level of activation at later times were observed. p38 mitogen-activated protein kinase was activated only at later time points, and AKT was activated in a cyclic manner. Studies with UV-inactivated KSHV suggested a role for virus entry stages in NF-kappaB induction and a requirement for KSHV viral gene expression in sustained induction. Inhibition of NF-kappaB did not affect target cell entry by KSHV but significantly reduced the expression of viral latent open reading frame 73 and lytic genes. KSHV infection induced the activation of several host transcription factors, including AP-1 family members, as well as several cytokines, growth factors, and angiogenic factors, which were significantly affected by NF-kappaB inhibition. These results suggest that during de novo infection, KSHV induces sustained levels of NF-kappaB to regulate viral and

  7. Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): A promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination.

    PubMed

    Cui, Li-Chun; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong; Xu, Yi-Gang

    2015-06-17

    Spring viremia of carp virus (SVCV) and koi herpesvirus (KHV) are highly contagious and pathogenic to cyprinid fish, causing enormous economic losses in aquaculture. Although DNA vaccines reported in recent years could induce protective immune responses in carps against these viruses via injection, there are a number of consequences and uncertainties related to DNA vaccination. Therefore, more effective and practical method to induce protective immunity such as oral administration would be highly desirable. In this study, we investigated the utilities of a genetically engineered Lactobacillus plantarum (L. plantarum) coexpressing glycoprotein (G) of SVCV and ORF81 protein of KHV as oral vaccine to induce protective immunity in carps via oral vaccination. The surface-displayed recombinant plasmid pYG-G-ORF81 was electroporated into L. plantarum, giving rise to LP/pYG-G-ORF81, where expression and localization of G-ORF81 fusion protein from the LP/pYG-G-ORF81 was identified by SDS-PAGE, Western blotting and immunofluorescence assay. Bait feed particles containing the LP/pYG-G-ORF81 were used as vaccine to immunize carps via gastrointestinal route. Compared to control groups, the carps orally immunized with the LP/pYG-G-ORF81 were induced significant levels of immunoglobulin M (IgM), and its immunogenicity was confirmed by viral loads reduction detected by PCR assay after virus challenge followed by an effective protection rate 71% in vaccinated carps and 53% in vaccinated koi until at days 65 post challenge, respectively. Our study here demonstrates, for the first time, the ability of recombinant L. plantarum as oral vaccine against SVCV and KHV infection in carps, suggesting a practical multivalent strategy for the control of spring viremia of carp and koi herpesvirus disease. PMID:25981489

  8. A Bovine Herpesvirus 1 Protein Expressed in Latently Infected Neurons (ORF2) Promotes Neurite Sprouting in the Presence of Activated Notch1 or Notch3

    PubMed Central

    Sinani, Devis; Frizzo da Silva, Leticia

    2013-01-01

    Bovine herpesvirus 1 (BHV-1) infection induces clinical symptoms in the upper respiratory tract, inhibits immune responses, and can lead to life-threatening secondary bacterial infections. Following acute infection, BHV-1 establishes latency in sensory neurons within trigeminal ganglia, but stress can induce reactivation from latency. The latency-related (LR) RNA is the only viral transcript abundantly expressed in latently infected sensory neurons. An LR mutant virus with stop codons at the amino terminus of the first open reading frame (ORF) in the LR gene (ORF2) is not reactivated from latency, in part because it induces higher levels of apoptosis in infected neurons. ORF2 inhibits apoptosis in transiently transfected cells, suggesting that it plays a crucial role in the latency-reactivation cycle. ORF2 also interacts with Notch1 or Notch3 and inhibits its ability to trans activate certain viral promoters. Notch3 RNA and protein levels are increased during reactivation from latency, suggesting that Notch may promote reactivation. Activated Notch signaling interferes with neuronal differentiation, in part because neurite and axon generation is blocked. In this study, we demonstrated that ORF2 promotes neurite formation in mouse neuroblastoma cells overexpressing Notch1 or Notch3. ORF2 also interfered with Notch-mediated trans activation of the promoter that regulates the expression of Hairy Enhancer of Split 5, an inhibitor of neurite formation. Additional studies provided evidence that ORF2 promotes the degradation of Notch3, but not that of Notch1, in a proteasome-dependent manner. In summary, these studies suggest that ORF2 promotes a mature neuronal phenotype that enhances the survival of infected neurons and consequently increases the pool of latently infected neurons. PMID:23152506

  9. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 (vIRF4) Perturbs the G1-S Cell Cycle Progression via Deregulation of the cyclin D1 Gene.

    PubMed

    Lee, Hye-Ra; Mitra, Jaba; Lee, Stacy; Gao, Shou-Jiang; Oh, Tae-Kwang; Kim, Myung Hee; Ha, Taekjip; Jung, Jae U

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates the host cell cycle to create an environment optimal for its viral-DNA replication during the lytic life cycle. We report here that KSHV vIRF4 targets the β-catenin/CBP cofactor and blocks its occupancy on the cyclin D1 promoter, suppressing the G1-S cell cycle progression and enhancing KSHV replication. This shows that KSHV vIRF4 suppresses host G1-S transition, possibly providing an intracellular milieu favorable for its replication. PMID:26491150

  10. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 (vIRF4) Perturbs the G1-S Cell Cycle Progression via Deregulation of the cyclin D1 Gene.

    PubMed

    Lee, Hye-Ra; Mitra, Jaba; Lee, Stacy; Gao, Shou-Jiang; Oh, Tae-Kwang; Kim, Myung Hee; Ha, Taekjip; Jung, Jae U

    2015-10-21

    Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates the host cell cycle to create an environment optimal for its viral-DNA replication during the lytic life cycle. We report here that KSHV vIRF4 targets the β-catenin/CBP cofactor and blocks its occupancy on the cyclin D1 promoter, suppressing the G1-S cell cycle progression and enhancing KSHV replication. This shows that KSHV vIRF4 suppresses host G1-S transition, possibly providing an intracellular milieu favorable for its replication.

  11. Broad-Spectrum Allosteric Inhibition of Herpesvirus Proteases

    PubMed Central

    2015-01-01

    Herpesviruses rely on a homodimeric protease for viral capsid maturation. A small molecule, DD2, previously shown to disrupt dimerization of Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr) by trapping an inactive monomeric conformation and two analogues generated through carboxylate bioisosteric replacement (compounds 2 and 3) were shown to inhibit the associated proteases of all three human herpesvirus (HHV) subfamilies (α, β, and γ). Inhibition data reveal that compound 2 has potency comparable to or better than that of DD2 against the tested proteases. Nuclear magnetic resonance spectroscopy and a new application of the kinetic analysis developed by Zhang and Poorman [Zhang, Z. Y., Poorman, R. A., et al. (1991) J. Biol. Chem. 266, 15591–15594] show DD2, compound 2, and compound 3 inhibit HHV proteases by dimer disruption. All three compounds bind the dimer interface of other HHV proteases in a manner analogous to binding of DD2 to KSHV protease. The determination and analysis of cocrystal structures of both analogues with the KSHV Pr monomer verify and elaborate on the mode of binding for this chemical scaffold, explaining a newly observed critical structure–activity relationship. These results reveal a prototypical chemical scaffold for broad-spectrum allosteric inhibition of human herpesvirus proteases and an approach for the identification of small molecules that allosterically regulate protein activity by targeting protein–protein interactions. PMID:24977643

  12. Theoretical studies of viral capsid proteins.

    PubMed

    Phelps, D K; Speelman, B; Post, C B

    2000-04-01

    Recent results in structural biology and increases in computer power have prompted initial theoretical studies on capsids of nonenveloped icosahedral viruses. The macromolecular assembly of 60 to 180 protein copies into a protein shell results in a structure of considerable size for molecular dynamics simulations. Nonetheless, progress has been made in examining these capsid assemblies from molecular dynamics calculations and kinetic models. The goals of these studies are to understand capsid function and structural properties, including quarternary structural stability, effects of antiviral compounds that bind the capsid and the self-assembly process. The insight that can be gained from the detailed information provided by simulations is demonstrated in studies of human rhinovirus; an entropic basis for the antiviral activity of hydrophobic compounds, predicted from calculated compressibility values, has been corroborated by experimental measurements on poliovirus. PMID:10753813

  13. A Gateway recombination herpesvirus cloning system with negative selection that produces vectorless progeny.

    PubMed

    Kunec, Dusan; van Haren, Sandra; Burgess, Shane C; Hanson, Larry A

    2009-01-01

    Crossover recombination based on the lambda phage integration/excision functions enables insertion of a gene of interest into a specific locus by a simple one-step in vitro recombination reaction. Recently, a highly efficient recombination system for targeted mutagenesis, which utilizes lambda phage crossover recombination cloning, has been described for a human herpesvirus 2 bacterial artificial chromosome (BAC). The disadvantages of the system are that it allows only neutral selection (loss of green fluorescent protein) of desired recombinants and that it regenerates herpesvirus progeny containing the BAC sequence inserted in the herpesvirus genome. In this study, the existing channel catfish herpesvirus (CCV) infectious clone (in the form of overlapping fragments) was modified to allow introduction of foreign genes by modified lambda phage crossover recombination cloning. This novel system enables negative and neutral selection and regenerates vectorless herpesvirus progeny. Construction of two CCV mutants expressing lacZ, one from the native CCV ORF5 promoter and the other from the immediate-early cytomegalovirus promoter, demonstrated the efficiency and reliability of this system. This novel cloning system enables rapid incorporation, direct delivery and high-level expression of foreign genes by a herpesvirus. This system has broad utility and could be used to facilitate development of recombinant viruses, viral vectors and better vaccines. PMID:18948138

  14. Scaffolding proteins and their role in viral assembly.

    PubMed

    Dokland, T

    1999-11-15

    Scaffolding proteins are proteins that are required to catalyse, regulate or modulate some step in the assembly of a macromolecular complex. They associate specifically with the nascent protein complex during assembly, but are subsequently removed, and are absent from the mature structure. Scaffolding proteins have been described primarily from viral systems, in particular from the double-stranded DNA bacteriophages, but most likely play a more general role in macromolecular assembly, a fundamental process in all biological systems. Scaffolding proteins may act in a specific fashion, by actively encouraging the formation of correct protein-protein interactions, or more generally by nucleating and promoting assembly. They may also work to ensure the fidelity of the assembly process by preventing the formation of improper interactions, in many ways similar to the role of molecular chaperones in protein folding. In viruses, scaffolding proteins are found both in the form of internal cores and external bracing, and may form elaborate and complex structures. This review will focus on the viral scaffolding proteins, for which an increasing amount of structural and functional information has recently become available. PMID:11212308

  15. Origin-Independent Assembly of Kaposi's Sarcoma-Associated Herpesvirus DNA Replication Compartments in Transient Cotransfection Assays and Association with the ORF-K8 Protein and Cellular PML

    PubMed Central

    Wu, Frederick Y.; Ahn, Jin-Hyun; Alcendor, Donald J.; Jang, Won-Jong; Xiao, Jinsong; Hayward, S. Diane; Hayward, Gary S.

    2001-01-01

    Six predicted Kaposi's sarcoma virus herpesvirus (KSHV) proteins have homology with other well-characterized herpesvirus core DNA replication proteins and are expected to be essential for viral DNA synthesis. Intact Flag-tagged protein products from all six were produced from genomic expression vectors, although the ORF40/41 transcript encoding a primase-helicase component proved to be spliced with a 127-bp intron. The intracellular localization of these six KSHV replication proteins and the mechanism of their nuclear translocation were investigated. SSB (single-stranded DNA binding protein, ORF6) and PPF (polymerase processivity factor, ORF59) were found to be intrinsic nuclear proteins, whereas POL (polymerase, ORF9), which localized in the cytoplasm on its own, was translocated to the nucleus when cotransfected with PPF. PAF (primase-associated factor, ORF40/41), a component of the primase-helicase tripartite subcomplex together with PRI (primase, ORF56) and HEL (helicase, ORF44), required the presence of all five other replication proteins for efficient nuclear translocation. Surprisingly, even in the absence of a lytic cycle replication origin (ori-Lyt) and any known initiator or origin binding protein, the protein products of all six KSHV core replication genes cooperated in a transient cotransfection assay to form large globular shaped pseudo-replication compartments (pseudo-RC), which excluded cellular DNA. These pseudo-RC structures were confirmed to include POL, SSB, PRI, and PAF but did not contain any newly synthesized DNA. Similar to the human cytomegalovirus system, the peripheries of these KSHV pre-RC were also found to be surrounded by punctate PML oncogenic domains (PODs). Furthermore, by transient cotransfection, the six KSHV core replication machinery proteins successfully replicated a plasmid containing EBV ori-Lyt in the presence of the Epstein-Barr virus-encoded DNA binding initiator protein, ZTA. The KSHV-encoded K8 (ORF-K8) protein, which is

  16. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication

    PubMed Central

    Zhang, Jie; Guo, Hong; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2016-01-01

    Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1–471) of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection. PMID:26871941

  17. An investigation of the viral pathogenesis of Kikuchi-Fujimoto disease. Lack of evidence for Epstein-Barr virus or human herpesvirus type 6 as the causative agents.

    PubMed

    Hollingsworth, H C; Peiper, S C; Weiss, L M; Raffeld, M; Jaffe, E S

    1994-02-01

    Histiocytic necrotizing lymphadenitis of Kikuchi and Fujimoto is a well-defined clinicopathologic entity of unknown cause. Both the Epstein-Barr virus (EBV) and human herpesvirus type 6 (HHV-6) have been suggested as potential etiologic agents. Twenty cases of Kikuchi-Fujimoto disease were studied for the presence of EBV DNA and HHV-6 DNA by the polymerase chain reaction (PCR), and in situ hybridization in the case of EBV. Cellular DNA from sections of formalin-fixed, paraffin-embedded lymph node tissue was amplified using the PCR technique and oligonucleotide primers to the EBV BamH1 W, lymphocyte-determined membrane antigen, or the EBNA-1 region. These studies were performed in three separate laboratories. In addition, 12 cases were examined by in situ hybridization, eight of which had shown at least one positive PCR signal for EBV. The presence of HHV-6 was assessed by PCR using primers to part of the pZVH14 sequence. Biopsy specimens from eight patients (40%) showed a strong positive signal for EBV in at least one laboratory, while an additional three specimens (15%) showed a weaker positive signal. Five cases studied showed rare positive cells by in situ hybridization, and one case had scattered positive cells. All samples lacked HHV-6 genomic templates. These findings indicate that HHV-6 does not play a role in the pathogenesis of Kikuchi-Fujimoto disease and do not implicate EBV as a causal agent for Kikuchi-Fujimoto disease, since EBV was detected in only a fraction of cases with a low number of positive cells detected by in situ hybridization. Further, some discrepancies were identified in the positive results for EBV in samples studied by multiple laboratories. These results indicate that inconsistent results by PCR may occur with very low levels of viral genomes and that different laboratories perform DNA amplification at different efficiencies. Alternatively, laboratory contamination may give rise to false-positive results. Therefore, a positive result

  18. An investigation of the viral pathogenesis of Kikuchi-Fujimoto disease. Lack of evidence for Epstein-Barr virus or human herpesvirus type 6 as the causative agents.

    PubMed

    Hollingsworth, H C; Peiper, S C; Weiss, L M; Raffeld, M; Jaffe, E S

    1994-02-01

    Histiocytic necrotizing lymphadenitis of Kikuchi and Fujimoto is a well-defined clinicopathologic entity of unknown cause. Both the Epstein-Barr virus (EBV) and human herpesvirus type 6 (HHV-6) have been suggested as potential etiologic agents. Twenty cases of Kikuchi-Fujimoto disease were studied for the presence of EBV DNA and HHV-6 DNA by the polymerase chain reaction (PCR), and in situ hybridization in the case of EBV. Cellular DNA from sections of formalin-fixed, paraffin-embedded lymph node tissue was amplified using the PCR technique and oligonucleotide primers to the EBV BamH1 W, lymphocyte-determined membrane antigen, or the EBNA-1 region. These studies were performed in three separate laboratories. In addition, 12 cases were examined by in situ hybridization, eight of which had shown at least one positive PCR signal for EBV. The presence of HHV-6 was assessed by PCR using primers to part of the pZVH14 sequence. Biopsy specimens from eight patients (40%) showed a strong positive signal for EBV in at least one laboratory, while an additional three specimens (15%) showed a weaker positive signal. Five cases studied showed rare positive cells by in situ hybridization, and one case had scattered positive cells. All samples lacked HHV-6 genomic templates. These findings indicate that HHV-6 does not play a role in the pathogenesis of Kikuchi-Fujimoto disease and do not implicate EBV as a causal agent for Kikuchi-Fujimoto disease, since EBV was detected in only a fraction of cases with a low number of positive cells detected by in situ hybridization. Further, some discrepancies were identified in the positive results for EBV in samples studied by multiple laboratories. These results indicate that inconsistent results by PCR may occur with very low levels of viral genomes and that different laboratories perform DNA amplification at different efficiencies. Alternatively, laboratory contamination may give rise to false-positive results. Therefore, a positive result

  19. Identification of Kaposi Sarcoma Herpesvirus (KSHV) vIRF1 Protein as a Novel Interaction Partner of Human Deubiquitinase USP7.

    PubMed

    Chavoshi, Sara; Egorova, Olga; Lacdao, Ira Kay; Farhadi, Sahar; Sheng, Yi; Saridakis, Vivian

    2016-03-18

    Viral interferon regulatory factor 1 (vIRF1), a Kaposi sarcoma herpesvirus protein, destabilizes p53 by inhibiting p53 acetylation and Hdm2 phosphorylation. This leads to increased ubiquitination and degradation of p53 by Hdm2, which cripples the cellular p53-mediated antiviral response. Ubiquitin-specific protease 7 (USP7) deubiquitinates p53 and Hdm2 and regulates their stability. We identified an EGPS consensus sequence in vIRF1, which is identical to that found in Epstein-Barr virus nuclear antigen 1 (EBNA1) that interacts with the N-terminal domain of USP7 (USP7-NTD). GST pulldown assays demonstrated that vIRF1 interacts with USP7-NTD via its EGPS motif. NMR heteronuclear single quantum correlation (HSQC) analysis revealed chemical perturbations after titration of USP7-NTD with vIRF1 (44)SPGEGPSGTG(53) peptide. In contrast, these perturbations were reduced with a mutant vIRF1 peptide, (44)SPGEGPAGTG(53). Fluorescence polarization analysis indicated that the vIRF1 peptide interacted with USP7-NTD with a Kd of 2.0 μm. The crystal structure of the USP7-NTD·vIRF1 peptide complex revealed an identical mode of binding as that of the EBNA1 peptide to USP7-NTD. We also showed that USP7 interacts with vIRF1 in U2OS cells. Decreased levels of p53, but not Hdm2 or ataxia telangiectasia-mutated (ATM), were seen after expression of vIRF1, but not with a vIRF1 mutant protein. Our results support a new role for vIRF1 through deregulation of the deubiquitinating enzyme USP7 to inhibit p53-mediated antiviral responses.

  20. Uncovering viral protein-protein interactions and their role in arenavirus life cycle.

    PubMed

    Loureiro, Maria Eugenia; D'Antuono, Alejandra; Levingston Macleod, Jesica M; López, Nora

    2012-09-01

    The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article. PMID:23170177

  1. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    PubMed Central

    Loureiro, Maria Eugenia; D’Antuono, Alejandra; Levingston Macleod, Jesica M.; López, Nora

    2012-01-01

    The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article. PMID:23170177

  2. Uncovering viral protein-protein interactions and their role in arenavirus life cycle.

    PubMed

    Loureiro, Maria Eugenia; D'Antuono, Alejandra; Levingston Macleod, Jesica M; López, Nora

    2012-09-01

    The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.

  3. Serum amyloid A protein in acute viral infections.

    PubMed Central

    Miwata, H; Yamada, T; Okada, M; Kudo, T; Kimura, H; Morishima, T

    1993-01-01

    Concentrations of serum amyloid A protein (SAA) were measured in 254 children with viral diseases, including measles, varicella, rubella, mumps, echo-30 meningitis, chronic hepatitis B and C, and in eight with Kawasaki disease. Latex agglutination nephelometric immunoassay was used for assaying SAA. In 191 out of 195 patients (98%), SAA concentrations became markedly raised in the acute phase of the viral disease: measles (97%), varicella (100%), mumps (95%), and echo-30 meningitis (99%) with mean titres of 82.4, 80.5, 60.2, 75.2, and 101.1 micrograms/ml respectively. This increase in SAA was followed by a rapid return to normal concentrations (< 5 micrograms/ml) during convalescence. Remarkably higher concentrations of SAA (mean 1630 micrograms/ml) were detected in the acute phase of patients with Kawasaki disease, but in most of the children with chronic hepatitis B or C, the titres of SAA remained normal. There was no close correlation between SAA and serum concentrations for alpha 1-acid glycoprotein, beta 2-microglobulin, transferrin, and IgG. There was a clear correlation between SAA and C reactive protein concentrations, although SAA showed a greater incremental change than C reactive protein in the acute phase. In the acute phase of these viral diseases, 56% of the patients had raised SAA concentrations (> or = 5 micrograms/ml) with normal C reactive protein concentrations (< 5 micrograms/ml). These results indicate that SAA could be useful as an inflammatory marker in children with acute viral infections. PMID:8481043

  4. Controlled Assembly of Viral Surface Proteins into Biological Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakatani-Webster, Eri

    In recent years, therapeutic use of engineered particles on the 1-1,000 nm scale has gained popularity; these nanoparticles have been developed for use in drug delivery, gene therapy, vaccine preparation, and diagnostics. Often, viral proteins are utilized in the design of such species, and outlined here are completed studies on the in vitro assembly of nanoparticles derived from two very different viral systems. The incorporation of the human immunodeficiency virus (HIV) envelope glycoprotein precursor gp160 into phospholipid bilayer nanodiscs is discussed as a potential platform for vaccine design; efforts were successful, however yield currently limits the practical application of this approach. The utility of bacteriophage lambda procapsids and virus-like particles in therapeutic nanoparticle design is also outlined, as are efforts toward the structural and thermodynamic characterization of a urea-triggered capsid maturation event. It is demonstrated that lambda virus-like particles can be assembled from purified capsid and scaffolding proteins, and that these particles undergo urea-triggered maturation and in vitro decoration protein addition similar to that seen in lambda procapsids. The studies on lambda provided materials for the further development of nanoparticles potentially useful in a clinical setting, as well as shedding light on critical viral assembly and maturation events as they may take place in vivo.

  5. The Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor Contains an Immunoreceptor Tyrosine-Based Inhibitory Motif That Activates Shp2 ▿

    PubMed Central

    Philpott, Nicola; Bakken, Thomas; Pennell, Christopher; Chen, Liwei; Wu, Jie; Cannon, Mark

    2011-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) is a constitutively active, highly angiogenic homologue of the interleukin-8 (IL-8) receptors that signals in part via the cytoplasmic protein tyrosine phosphatase Shp2. We show that vGPCR contains a bona fide immunoreceptor tyrosine-based inhibitory motif (ITIM) that binds and constitutively activates Shp2. PMID:21047965

  6. Bovine herpesvirus 1 regulatory proteins bICP0 and VP16 are readily detected in trigeminal ganglionic neurons expressing the glucocorticoid receptor during the early stages of reactivation from latency.

    PubMed

    Frizzo da Silva, Leticia; Kook, Insun; Doster, Alan; Jones, Clinton

    2013-10-01

    Bovine herpesvirus 1 (BHV-1) establishes a lifelong latent infection in sensory neurons following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Within minutes, corticosteroids activate the glucocorticoid receptor and transcription of promoters containing a glucocorticoid receptor element. A single intravenous injection of the synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. Lytic cycle viral gene expression is detected within 6 h after dexamethasone treatment of calves latently infected with BHV-1. Cellular transcription factors are induced by dexamethasone in trigeminal ganglionic neurons within 1.5 h after dexamethasone treatment, suggesting they promote viral gene expression during the early phases of reactivation from latency, which we operationally defined as the escape from latency. In this study, immunohistochemistry was utilized to examine viral protein expression during the escape from latency. Within 1.5 h after dexamethasone treatment, bICP0 and a late protein (VP16) were consistently detected in a subset of trigeminal ganglionic neurons. Most neurons expressing bICP0 also expressed VP16. Additional studies revealed that neurons expressing the glucocorticoid receptor also expressed bICP0 or VP16 at 1.5 h after dexamethasone treatment. Two other late proteins, glycoprotein C and D, were not detected until 6 h after dexamethasone treatment and were detected in only a few neurons. These studies provide evidence that VP16 and the promiscuous viral trans-activator (bICP0) are expressed during the escape from latency, suggesting they promote the production of infectious virus in a small subset of latently infected neurons. PMID:23926348

  7. Bovine Herpesvirus 1 Regulatory Proteins bICP0 and VP16 Are Readily Detected in Trigeminal Ganglionic Neurons Expressing the Glucocorticoid Receptor during the Early Stages of Reactivation from Latency

    PubMed Central

    Frizzo da Silva, Leticia; Kook, Insun; Doster, Alan

    2013-01-01

    Bovine herpesvirus 1 (BHV-1) establishes a lifelong latent infection in sensory neurons following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Within minutes, corticosteroids activate the glucocorticoid receptor and transcription of promoters containing a glucocorticoid receptor element. A single intravenous injection of the synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. Lytic cycle viral gene expression is detected within 6 h after dexamethasone treatment of calves latently infected with BHV-1. Cellular transcription factors are induced by dexamethasone in trigeminal ganglionic neurons within 1.5 h after dexamethasone treatment, suggesting they promote viral gene expression during the early phases of reactivation from latency, which we operationally defined as the escape from latency. In this study, immunohistochemistry was utilized to examine viral protein expression during the escape from latency. Within 1.5 h after dexamethasone treatment, bICP0 and a late protein (VP16) were consistently detected in a subset of trigeminal ganglionic neurons. Most neurons expressing bICP0 also expressed VP16. Additional studies revealed that neurons expressing the glucocorticoid receptor also expressed bICP0 or VP16 at 1.5 h after dexamethasone treatment. Two other late proteins, glycoprotein C and D, were not detected until 6 h after dexamethasone treatment and were detected in only a few neurons. These studies provide evidence that VP16 and the promiscuous viral trans-activator (bICP0) are expressed during the escape from latency, suggesting they promote the production of infectious virus in a small subset of latently infected neurons. PMID:23926348

  8. Cementing proteins provide extra mechanical stabilization to viral cages

    NASA Astrophysics Data System (ADS)

    Hernando-Pérez, M.; Lambert, S.; Nakatani-Webster, E.; Catalano, C. E.; de Pablo, P. J.

    2014-07-01

    The study of virus shell stability is key not only for gaining insights into viral biological cycles but also for using viral capsids in materials science. The strength of viral particles depends profoundly on their structural changes occurring during maturation, whose final step often requires the specific binding of ‘decoration’ proteins (such as gpD in bacteriophage lambda) to the viral shell. Here we characterize the mechanical stability of gpD-free and gpD-decorated bacteriophage lambda capsids. The incorporation of gpD into the lambda shell imparts a major mechanical reinforcement that resists punctual deformations. We further interrogate lambda particle stability with molecular fatigue experiments that resemble the sub-lethal Brownian collisions of virus shells with macromolecules in crowded environments. Decorated particles are especially robust against collisions of a few kBT (where kB is the Boltzmann’s constant and T is the temperature ~300 K), which approximate those anticipated from molecular insults in the environment.

  9. Protective immunity in gibel carp, Carassius gibelio of the truncated proteins of cyprinid herpesvirus 2 expressed in Pichia pastoris.

    PubMed

    Zhou, Yong; Jiang, Nan; Ma, Jie; Fan, Yuding; Zhang, Linlin; Xu, Jin; Zeng, Lingbing

    2015-12-01

    Cyprinid herpesvirus 2 (CyHV-2) infection is a newly emerged infectious disease of farmed gibel carp (Carassius gibelio) in China and causes huge economic losses to the aquaculture industry. In this study, the three membrane proteins encoded by genes ORF25, ORF25C, and ORF25D of CyHV-2 were truncated and expressed in yeast, Pichia pastoris. Screening of the recombinant yeasts was done by detecting the truncated proteins using Western blot. Through immunogold labeling, it was shown that proteins binding the colloidal gold were presented on the surface of cells. In the experiment of inhibition of virus binding by the recombinant truncated proteins, the TCID50 of the tORF25 group (10(4.1)/ml) was lower than that of tORF25C (10(4.6)/ml) or tORF25D groups (10(5)/ml). These results suggested that the proteins may be involved in attachment of the virus to the cell surface. Healthy gibel carp were immunized with 20 μg of tORF25, tORF25C, and tORF25D proteins, and the control group received PBS. Interleukin 11 (IL-11) expression in the spleens of the immunized fish peaked at day 4 and the complement component C3 (C3) genes were significantly up-regulated at day 7 post-immunization. Specific antibodies were measured in the three immunized groups and the titer detected in the tORF25 group reached 327, that was significantly higher than the tORF25C (247) or tORF25D (228) groups. When the immunized fish were challenged with live CyHV-2 by intraperitoneal injection the relative percent survival (RPS) of the tORF25, tORF25C, and tORF25D immunized groups was 75%, 63%, and 54%, respectively. The feasibility of the P. pastoris yeast expression system for the production of the recombinant truncated proteins and their apparent bioactivity suggests that tORF25, tORF25C, and tORF25D are potential candidate vaccines against Cyprinid herpesvirus 2 infection in gibel carp. PMID:26564473

  10. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.

    PubMed

    Nicola, Anthony V

    2016-09-01

    Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. PMID:27126894

  11. Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57.

    PubMed

    Tunnicliffe, Richard B; Hautbergue, Guillaume M; Kalra, Priti; Jackson, Brian R; Whitehouse, Adrian; Wilson, Stuart A; Golovanov, Alexander P

    2011-01-06

    The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104-112 and 103-120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway.

  12. Structural Basis for the Recognition of Cellular mRNA Export Factor REF by Herpes Viral Proteins HSV-1 ICP27 and HVS ORF57

    PubMed Central

    Tunnicliffe, Richard B.; Hautbergue, Guillaume M.; Kalra, Priti; Jackson, Brian R.; Whitehouse, Adrian; Wilson, Stuart A.; Golovanov, Alexander P.

    2011-01-01

    The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104–112 and 103–120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway. PMID:21253573

  13. Detection of bovine herpesvirus 2 and bovine herpesvirus 4 DNA in trigeminal ganglia of naturally infected cattle by polymerase chain reaction.

    PubMed

    Campos, F S; Franco, A C; Oliveira, M T; Firpo, R; Strelczuk, G; Fontoura, F E; Kulmann, M I R; Maidana, S; Romera, S A; Spilki, F R; Silva, A D; Hübner, S O; Roehe, P M

    2014-06-25

    Establishment of latent infection within specific tissues in the host is a common biological feature of the herpesviruses. In the case of bovine herpesvirus 2 (BoHV-2), latency is established in neuronal tissues, while bovine herpesvirus 4 (BoHV-4) and ovine herpesvirus 2 (OvHV-2) latent virus targets on cells of the monocytic lineage. This study was conducted in quest of BoHV-2, BoHV-4 and OvHV-2 DNA in two hundred trigeminal ganglia (TG) specimens, derived from one hundred clinically healthy cattle, majority of them naturally infected with bovine herpesvirus 1 (BoHV-1) and bovine herpesvirus 5 (BoHV-5). Total DNA extracted from ganglia was analyzed by polymerase chain reaction (PCR) designed to amplify part of the genes coding for BoHV-2, and BoHV-4 glycoprotein B and, for OvHV-2, the gene coding for phosphoribosylformylglycinamidine synthase-like protein. BoHV-2 DNA was detected in TG samples of two (2%) and BoHV-4 DNA in nine (9%) of the animals, whereas OvHV-2 DNA could not be detected in any of the TG DNA. The two animals in which BoHV-2 DNA was identified were also co-infected with BoHV-1 and BoHV-5. Within the nine animals in which BoHV-4 DNA was detected, six were also co-infected with BoHV-1 and BoHV-5. This report provides for the first time evidence that viral DNA from BoHV-2 and BoHV-4 can be occasionally detected in TG of naturally infected cattle. Likewise, in this report we provided for the first time evidence that the co-infection of cattle with three distinct bovine herpesviruses might be a naturally occurring phenomenon.

  14. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly.

    PubMed

    Capuano, Christopher M; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N; Desai, Keshal V; Coombs, Gavin; McCaffery, J Michael; Desai, Prashant J

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction.

  15. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly.

    PubMed

    Capuano, Christopher M; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N; Desai, Keshal V; Coombs, Gavin; McCaffery, J Michael; Desai, Prashant J

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction. PMID:24824860

  16. Marek's disease: Genetic regulation of gallid herpesvirus 2 infection and latency.

    PubMed

    Gennart, Isabelle; Coupeau, Damien; Pejaković, Srdan; Laurent, Sylvie; Rasschaert, Denis; Muylkens, Benoit

    2015-09-01

    Gallid herpesvirus-2 (GaHV-2) is an oncogenic α-herpesvirus that causes Marek's disease (MD), a T cell lymphosarcoma (lymphoma) of domestic fowl (chickens). The GaHV-2 genome integrates by homologous recombination into the host genome and, by modulating expression of viral and cellular genes, induces transformation of latently infected cells. MD is a unique model of viral oncogenesis. Mechanisms implicated in the regulation of viral and cellular genes during GaHV-2 infection operate at transcriptional, post-transcriptional and post-translational levels, with involvement of viral and cellular transcription factors, along with epigenetic modifications, alternative splicing, microRNAs and post-translational modifications of viral proteins. Meq, the major oncogenic protein of GaHV-2, is a viral transcription factor that modulates expression of viral genes, for example by binding to the viral bidirectional promoter of the pp38-pp24/1.8 kb mRNA, and also modulates expression of cellular genes, such as Bcl-2 and matrix metalloproteinase 3. GaHV-2 expresses viral telomerase RNA subunit (vTR), which forms a complex with the cellular telomerase reverse transcriptase (TERT), thus contributing to tumorigenesis, while vTR independent of telomerase activity is implicated in metastasis. Expression of a viral interleukin 8 homologue may contribute to lymphomagenesis. Inhibition of expression of the pro-apoptotic factors JARID2 and SMAD2 by viral microRNAs may promote the survival and proliferation of GaHV-2 latently infected cells, thus enhancing tumorigenesis, while inhibition of interleukin 18 by viral microRNAs may be involved in evasion of immune surveillance. Viral envelope glycoproteins derived from glycoprotein B (gp60 and gp49), as well as glycoprotein C, may also play a role in immune evasion.

  17. Stabilization of Myc through Heterotypic Poly-Ubiquitination by mLANA Is Critical for γ-Herpesvirus Lymphoproliferation

    PubMed Central

    Rodrigues, Lénia; Popov, Nikita; Kaye, Kenneth M.; Simas, J. Pedro

    2013-01-01

    Host colonization by lymphotropic γ-herpesviruses depends critically on expansion of viral genomes in germinal center (GC) B-cells. Myc is essential for the formation and maintenance of GCs. Yet, the role of Myc in the pathogenesis of γ-herpesviruses is still largely unknown. In this study, Myc was shown to be essential for the lymphotropic γ-herpesvirus MuHV-4 biology as infected cells exhibited increased expression of Myc signature genes and the virus was unable to expand in Myc defficient GC B-cells. We describe a novel strategy of a viral protein activating Myc through increased protein stability resulting in increased progression through the cell cycle. This is acomplished by modulating a physiological post-translational regulatory pathway of Myc. The molecular mechanism involves Myc heterotypic poly-ubiquitination mediated via the viral E3 ubiquitin-ligase mLANA protein. EC5SmLANA modulates cellular control of Myc turnover by antagonizing SCFFbw7 mediated proteasomal degradation of Myc, mimicking SCFβ-TrCP. The findings here reported reveal that modulation of Myc is essential for γ-herpesvirus persistent infection, establishing a link between virus induced lymphoproliferation and disease. PMID:23950719

  18. The UL41-encoded virion host shutoff (vhs) protein and vhs-independent mechanisms are responsible for down-regulation of MHC class I molecules by bovine herpesvirus 1.

    PubMed

    Koppers-Lalic, D; Rijsewijk, F A; Verschuren, S B; van Gaans-Van den Brink, J A; Neisig, A; Ressing, M E; Neefjes, J; Wiertz, E J

    2001-09-01

    The virion host shutoff (vhs) protein of alphaherpesviruses causes a rapid shutoff of host cell protein synthesis. We constructed a bovine herpesvirus 1 (BHV1) deletion mutant in which the putative vhs gene, UL41, has been disrupted. Whereas protein synthesis is inhibited within 3 h after infection with wild-type BHV1, no inhibition was observed after infection with the BHV1(vhs-) deletion mutant. These results indicate that the BHV1 UL41 gene product is both necessary and sufficient for shutoff of host cell protein synthesis at early times post-infection. Using the vhs deletion mutant, we investigated the mechanism of BHV1-induced down-regulation of MHC class I cell surface expression. In contrast to BHV1 wild-type infection, the BHV1(vhs-) mutant allows detection of MHC class I molecules at much later time-points after infection. This illustrates the role the vhs protein plays in MHC class I down-regulation. However, even after infection with BHV1(vhs-), MHC class I cell surface expression is impaired. In BHV1(vhs-)-infected cells, MHC class I molecules are retained within the endoplasmic reticulum (ER). Moreover, the transporter associated with antigen presentation (TAP) is still blocked. Temporal control of viral protein expression using chemical inhibitors shows that viral protein(s) expressed within the early phase of BHV1 infection are responsible for ER retention of MHC class I molecules. These results indicate that multiple mechanisms are responsible for down-regulation of MHC class I molecules in BHV1-infected cells.

  19. Viral pneumonia.

    PubMed

    Greenberg, S B

    1991-09-01

    Viral pneumonias are common in infants and young children but rare in adults. Respiratory syncytial virus (RSV) and para-influenza viruses are the most frequent viral pathogens in infants and children. Influenza virus types A and B account for over one half of viral pneumonias in adults. Immunocompromised hosts are susceptible to pneumonias caused by cytomegalovirus (CMV) and other herpesviruses, as well as rubeola and adenovirus. Diagnosis of viral pneumonia depends on appropriate viral cultures and acute and convalescent sera for specific antibodies. Superinfection with bacteria is common in adults. Anti-viral therapy is available for several respiratory viruses. Ribavirin, amantadine/rimantadine, interferon alpha, and acyclovir are antiviral drugs that may be of benefit in treatment and prophylaxis. Prevention of viral pneumonia will depend upon improved viral immunization practices.

  20. Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus.

    PubMed

    Romanutti, Carina; D'Antuono, Alejandra; Palacios, Carlos; Quattrocchi, Valeria; Zamorano, Patricia; La Torre, Jose; Mattion, Nora

    2013-08-30

    The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines. The highest antibody titers were found in the group that received two doses of adjuvanted KV (P<0.002). Antibody titers were higher in those groups receiving a mixed regimen of vectors, compared to immunization with either vector alone (P<0.0001). Priming with any of the viral vectors induced a shift of the cytokine balance toward a Th1 type immune response regardless of the delivery system used for boosting. The highest IgG1 titer was induced by two doses of adjuvanted KV (P=0.0002) and the highest IgG2a titer corresponded to the group primed with Ad and boosted with KV (P=0.01). Re-stimulation of all groups of mice with 0.5 μg of inactivated virus five months later resulted in a fast increase of antibody titers in all the groups tested. After virus stimulation, antibody titers in the groups that received KV alone or Ad prime-KV boost, were indistinguishable (P=0.800). Protection from challenge was similar (75%) in the groups of animals that received Ad prime-Hs boost or Ad prime-KV boost, or two doses of oil-adjuvanted KV. The data presented in this study suggest that sequential immunization with viral vectors-based vaccines combined with protein-based vaccines have the potential to enhance the quality of the immune response against FMDV. PMID:23683999

  1. Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus.

    PubMed

    Romanutti, Carina; D'Antuono, Alejandra; Palacios, Carlos; Quattrocchi, Valeria; Zamorano, Patricia; La Torre, Jose; Mattion, Nora

    2013-08-30

    The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines. The highest antibody titers were found in the group that received two doses of adjuvanted KV (P<0.002). Antibody titers were higher in those groups receiving a mixed regimen of vectors, compared to immunization with either vector alone (P<0.0001). Priming with any of the viral vectors induced a shift of the cytokine balance toward a Th1 type immune response regardless of the delivery system used for boosting. The highest IgG1 titer was induced by two doses of adjuvanted KV (P=0.0002) and the highest IgG2a titer corresponded to the group primed with Ad and boosted with KV (P=0.01). Re-stimulation of all groups of mice with 0.5 μg of inactivated virus five months later resulted in a fast increase of antibody titers in all the groups tested. After virus stimulation, antibody titers in the groups that received KV alone or Ad prime-KV boost, were indistinguishable (P=0.800). Protection from challenge was similar (75%) in the groups of animals that received Ad prime-Hs boost or Ad prime-KV boost, or two doses of oil-adjuvanted KV. The data presented in this study suggest that sequential immunization with viral vectors-based vaccines combined with protein-based vaccines have the potential to enhance the quality of the immune response against FMDV.

  2. Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae.

    PubMed Central

    Moore, P S; Gao, S J; Dominguez, G; Cesarman, E; Lungu, O; Knowles, D M; Garber, R; Pellett, P E; McGeoch, D J; Chang, Y

    1996-01-01

    Detection of novel DNA sequences in Kaposi's sarcoma (KS) and AIDS-related body cavity-based, non-Hodgkin's lymphomas suggests that these neoplasms are caused by a previously unidentified human herpesvirus. We have characterized this agent using a continuously infected B-lymphocyte cell line derived from an AIDS-related lymphoma and a genomic library made from a KS lesion. In this cell line, the agent has a large episomal genome with an electrophoretic mobility similar to that of 270-kb linear DNA markers during clamped homogeneous electric field gel electrophoresis. A 20.7-kb region of the genome has been completely sequenced, and within this region, 17 partial and complete open reading frames are present; all except one have sequence and positional homology to known gammaherpesvirus genes, including the major capsid protein and thymidine kinase genes. Phylogenetic analyses using both single genes and combined gene sets demonstrated that the agent is a gamma-2 herpesvirus (genus Rhadinovirus) and is the first member of this genus known to infect humans. Evidence for transient viral transmission from infected to uninfected cells is presented, but replication-competent virions have not been identified in infected cell lines. Sera from patients with KS have specific antibodies directed against antigens of infected cell lines, and these antibodies are generally absent in sera from patients with AIDS without KS. These studies define the agent as a new human herpesvirus provisionally assigned the descriptive name KS-associated herpesvirus; its formal designation is likely to be human herpesvirus 8. PMID:8523568

  3. Low prevalence of human herpesvirus-6 and varicella zoster virus in blood of multiple sclerosis patients, irrespective of inflammatory status or disease progression.

    PubMed

    Hon, Gloudina M; Erasmus, Rajiv T; Matsha, Tandi

    2014-08-01

    Herpesviruses, including human herpesvirus-6 and varicella zoster virus, have been implicated in the disease aetiology of multiple sclerosis. These viruses are capable of reactivation, reminiscent of the relapsing-remitting nature of multiple sclerosis. However, viral DNA has also been reported present in healthy controls, often at similar prevalence rates. This study aimed to determine whether prevalence could be associated with different stages of activity of the disease as well as the inflammatory status of the patients. Polymerase chain reaction assays were used to screen for human herpesvirus-6 and varicella zoster virus DNA in blood from 31 Caucasian patients with multiple sclerosis and 30 healthy age, sex and race matched control subjects. The patients were screened for inflammation using C-reactive protein as a marker and were also categorized according to their remitting/relapsing status. Results were positive for human herpesvirus-6 in blood from only one patient (3.2%) and human herpesvirus-6 DNA was not present in any control subjects. Varicella zoster virus was not detected in either the patients or control subjects. Similar to some other studies we saw an absence or very low viral positivity in blood from both patients and controls. These findings were irrespective of relapse episodes, increased inflammatory status or duration of the disease. Results therefore do not support a causative role for either human herpesvirus-6 or varicella zoster virus in the disease aetiology of multiple sclerosis, but rather that prevalence in patients may be linked to that of the general population.

  4. Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF

    PubMed Central

    Tunnicliffe, Richard B.; Hautbergue, Guillaume M.; Wilson, Stuart A.; Kalra, Priti; Golovanov, Alexander P.

    2014-01-01

    The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions. PMID:24550725

  5. Hsp90 Inhibitors Are Efficacious against Kaposi Sarcoma by Enhancing the Degradation of the Essential Viral Gene LANA, of the Viral Co-Receptor EphA2 as well as Other Client Proteins

    PubMed Central

    Chen, Wuguo; Sin, Sang-Hoon; Wen, Kwun Wah; Damania, Blossom; Dittmer, Dirk P.

    2012-01-01

    Heat-shock protein 90 (Hsp90) inhibitors exhibit activity against human cancers. We evaluated a series of new, oral bioavailable, chemically diverse Hsp90 inhibitors (PU-H71, AUY922, BIIB021, NVP-BEP800) against Kaposi sarcoma (KS). All Hsp90 inhibitors exhibited nanomolar EC50 in culture and AUY922 reduced tumor burden in a xenograft model of KS. KS is associated with KS-associated herpesvirus (KSHV). We identified the viral latency associated nuclear antigen (LANA) as a novel client protein of Hsp90 and demonstrate that the Hsp90 inhibitors diminish the level of LANA through proteasomal degradation. These Hsp90 inhibitors also downregulated EphA2 and ephrin-B2 protein levels. LANA is essential for viral maintenance and EphA2 has recently been shown to facilitate KSHV infection; which in turn feeds latent persistence. Further, both molecules are required for KS tumor formation and both were downregulated in response to Hsp90 inhibitors. This provides a rationale for clinical testing of Hsp90 inhibitors in KSHV-associated cancers and in the eradication of latent KSHV reservoirs. PMID:23209418

  6. Mouse cytomegalovirus immediate-early protein 1 binds with host cell repressors to relieve suppressive effects on viral transcription and replication during lytic infection.

    PubMed

    Tang, Qiyi; Maul, Gerd G

    2003-01-01

    Herpesviruses start their transcriptional cascade at nuclear domain 10 (ND10). The deposition of virus genomes at these nuclear sites occurs due to the binding of the interferon-inducible repressor protein promyelocytic leukemia protein (PML) and/or Daxx to a viral DNA-protein complex. However, the presence of repressive proteins at the nuclear site of virus transcription has remained unexplained. We investigated the mouse cytomegalovirus (MCMV) immediate-early 1 protein (IE1), which is necessary for productive infection at low multiplicities of infection and therefore likely to be involved in overcoming cellular repression. Temporal analysis of IE1 distribution revealed its initial segregation into ND10 by binding to PML and/or Daxx and IE1-dependent recruitment of the transcriptional repressor histone deacetylase-2 (HDAC-2) to this site. However, these protein aggregates are dissociated in cells producing sufficient IE1 through titration of PML, Daxx, and HDAC-2. Importantly, binding of IE1 to HDAC-2 decreased deacetylation activity. Moreover, inhibition of HDAC by trichostatin-A resulted in an increase in viral protein synthesis, an increase in cells starting the formation of prereplication compartments, and an increase in the total infectious viruses produced. Thus, IE1, like trichostatin-A, reverses the repressive effect of HDAC evident in the presence of acetylated histones in the immediate-early promoter region. Since HDAC also binds to the promoter region of IE1, as determined by the chromatin immunoprecipitation assay, these combined results suggest that IE1 inhibits or reverses HDAC-mediated repression of the infecting viral genomes, possibly by a process akin to activation of heterochromatin. We propose that even permissive cells can repress transcription of infecting viral genomes through repressors, including HDAC, Daxx, and PML, and the segregation of IE1 to ND10 that would inactivate those repressors. The virus can counter this repression by

  7. Anguillid herpesvirus 1 transcriptome.

    PubMed

    van Beurden, Steven J; Gatherer, Derek; Kerr, Karen; Galbraith, Julie; Herzyk, Pawel; Peeters, Ben P H; Rottier, Peter J M; Engelsma, Marc Y; Davison, Andrew J

    2012-09-01

    We used deep sequencing of poly(A) RNA to characterize the transcriptome of an economically important eel virus, anguillid herpesvirus 1 (AngHV1), at a stage during the lytic life cycle when infectious virus was being produced. In contrast to the transcription of mammalian herpesviruses, the overall level of antisense transcription from the 248,526-bp genome was low, amounting to only 1.5% of transcription in predicted protein-coding regions, and no abundant, nonoverlapping, noncoding RNAs were identified. RNA splicing was found to be more common than had been anticipated previously. Counting the 10,634-bp terminal direct repeat once, 100 splice junctions were identified, of which 58 were considered likely to be involved in the expression of functional proteins because they represent splicing between protein-coding exons or between 5' untranslated regions and protein-coding exons. Each of the 30 most highly represented of these 58 splice junctions was confirmed by RT-PCR. We also used deep sequencing to identify numerous putative 5' and 3' ends of AngHV1 transcripts, confirming some and adding others by rapid amplification of cDNA ends (RACE). The findings prompted a revision of the AngHV1 genome map to include a total of 129 protein-coding genes, 5 of which are duplicated in the terminal direct repeat. Not counting duplicates, 11 genes contain integral, spliced protein-coding exons, and 9 contain 5' untranslated exons or, because of alternative splicing, 5' untranslated and 5' translated exons. The results of this study sharpen our understanding of AngHV1 genomics and provide the first detailed view of a fish herpesvirus transcriptome. PMID:22787220

  8. Rodent models of HAND and drug abuse: exogenous administration of viral protein(s) and cocaine.

    PubMed

    Yao, Honghong; Buch, Shilpa

    2012-06-01

    Humans and chimpanzees are the natural hosts for HIV. Non-human primate models of SIV/SHIV infection in rhesus, cynomologus and pigtail macaques have been used extensively as excellent model systems for pathogenesis and vaccine studies. However, owing to the variability of disease progression in infected macaques, a phenomenon identical to humans, coupled with their prohibitive costs, there exists a critical need for the development of small-animal models in which to study the untoward effects of HIV-1 infection. Owing to the fact that rodents are not the natural permissive hosts for lentiviral infection, development of small animal models for studying virus infection has used strategies that circumvent the steps of viral entry and infection. Such strategies involve overexpression of toxic viral proteins, SCID mice engrafted with the human PBLs or macrophages, and EcoHIV chimeric virus wherein the gp120 of HIV-1 was replaced with the gp80 of the ecotropic murine leukemia virus. Additional strategy that is often used by investigators to study the toxic effect of viral proteins involves direct stereotactic injection of the viral protein(s) into specific brain regions. The present report is a compilation of the applications of direct administration of Tat into the striatum to mimic the effects of the viral neurotoxin in the CNS. Added advantage of this model is that it is also amenable to repeated intraperitoneal cocaine injections, thereby allowing the study of the additive/synergistic effects of both the viral protein and cocaine. Such a model system recapitulates aspects of HAND in the context of drug abuse. PMID:22447295

  9. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein

    PubMed Central

    King, Cason R.; Cohen, Michael J.; Fonseca, Gregory J.; Dirk, Brennan S.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2016-01-01

    The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP). E1A interacts with and relocalizes protein kinase A (PKA) to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A’s role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs. PMID:27137912

  10. Human herpesvirus 8 – A novel human pathogen

    PubMed Central

    Edelman, Daniel C

    2005-01-01

    In 1994, Chang and Moore reported on the latest of the gammaherpesviruses to infect humans, human herpesvirus 8 (HHV-8) [1]. This novel herpesvirus has and continues to present challenges to define its scope of involvement in human disease. In this review, aspects of HHV-8 infection are discussed, such as, the human immune response, viral pathogenesis and transmission, viral disease entities, and the virus's epidemiology with an emphasis on HHV-8 diagnostics. PMID:16138925

  11. The Meleagrid herpesvirus 1 genome is partially resistant to transposition.

    PubMed

    Hall, Robyn N; Meers, Joanne; Mitter, Neena; Fowler, Elizabeth V; Mahony, Timothy J

    2013-06-01

    The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed. PMID:23901750

  12. Human herpesvirus 8 encodes a homolog of interleukin-6.

    PubMed Central

    Neipel, F; Albrecht, J C; Ensser, A; Huang, Y Q; Li, J J; Friedman-Kien, A E; Fleckenstein, B

    1997-01-01

    Kaposi's sarcoma is a multifocal lesion that is reported to be greatly influenced by cytokines such as interleukin-6 (IL-6) and oncostatin M. DNA sequences of a novel human gammaherpesvirus, termed human herpesvirus 8 (HHV-8) or Kaposi sarcoma-associated herpesvirus, have been identified in all epidemiological forms of Kaposi's sarcoma with high frequency. The presence of HHV-8 DNA is also clearly associated with certain B-cell lymphomas (body cavity-based lymphomas) and multicentric Castleman's disease. Sequence analysis of a 17-kb fragment revealed that adjacent to a block of conserved herpesvirus genes (major DNA-binding protein, glycoprotein B, and DNA polymerase), the genome of HHV-8 encodes structural homolog of IL-6. This cytokine is involved not only in the pathogenesis of Kaposi's sarcoma but also in certain B-cell lymphomas and multicentric Castleman's disease. The viral counterpart of IL-6 (vIL-6) has conserved important features such as cysteine residues involved in disulfide bridging or an amino-terminal signal peptide. Most notably, the region known to be involved in receptor binding is highly conserved in vIL-6. This conservation of essential features and the remarkable overlap between diseases associated with HHV-8 and diseases associated with IL-6 disregulation clearly suggest that vIL-6 is involved in HHV-8 pathogenesis. PMID:8985427

  13. Kaposi's sarcoma-associated herpesvirus LANA protein downregulates nuclear glycogen synthase kinase 3 activity and consequently blocks differentiation.

    PubMed

    Liu, Jianyong; Martin, Heather; Shamay, Meir; Woodard, Crystal; Tang, Qi-Qun; Hayward, S Diane

    2007-05-01

    The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen (LANA) protein interacts with glycogen synthase kinase 3 (GSK-3) and relocalizes GSK-3 in a manner that leads to stabilization of beta-catenin and upregulation of beta-catenin-responsive cell genes. The LANA-GSK-3 interaction was further examined to determine whether there were additional downstream consequences. In the present study, the nuclear GSK-3 bound to LANA in transfected cells and in BCBL1 primary effusion lymphoma cells was found to be enriched for the inactive serine 9-phosphorylated form of GSK-3. The mechanism of inactivation of nuclear GSK-3 involved LANA recruitment of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the ribosomal S6 kinase 1 (RSK1). ERK1/2 and RSK1 coprecipitated with LANA, and LANA was a substrate for ERK1 in vitro. A model is proposed for the overall inactivation of nuclear GSK-3 that incorporates the previously described GSK-3 phosphorylation of LANA itself. Functional inactivation of nuclear GSK-3 was demonstrated by the ability of LANA to limit phosphorylation of the known GSK-3 substrates C/EBPbeta and C/EBPalpha. The effect of LANA-mediated ablation of C/EBP phosphorylation on differentiation was modeled in the well-characterized 3T3L1 adipogenesis system. LANA-expressing 3T3L1 cells were impaired in their ability to undergo differentiation and adipogenesis. C/EBPbeta induction followed the same time course as that seen in vector-transduced cells, but there was delayed and reduced induction of C/EBPbeta transcriptional targets in LANA-expressing cells. We conclude that LANA inactivates nuclear GSK-3 and modifies the function of proteins that are GSK-3 substrates. In the case of C/EBPs, this translates into LANA-mediated inhibition of differentiation. PMID:17314169

  14. Genome-Wide Mapping of the Binding Sites and Structural Analysis of Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2 Reveal that It Is a DNA-Binding Transcription Factor

    PubMed Central

    Hu, Haidai; Dong, Jiazhen; Liang, Deguang; Gao, Zengqiang; Bai, Lei; Sun, Rui; Hu, Hao; Zhang, Heng

    2015-01-01

    ABSTRACT The oncogenic herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is known to encode four viral interferon regulatory factors (vIRF1 to -4) to subvert the host antiviral immune response, but their detailed DNA-binding profiles as transcription factors in the host remain uncharacterized. Here, we first performed genome-wide vIRF2-binding site mapping in the human genome using chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq). vIRF2 was capable of binding to the promoter regions of 100 putative target genes. Importantly, we confirmed that vIRF2 can specifically interact with the promoters of the genes encoding PIK3C3, HMGCR, and HMGCL, which are associated with autophagosome formation or tumor progression and metastasis, and regulate their transcription in vivo. The crystal structure of the vIRF2 DNA-binding domain (DBD) (referred to here as vIRF2DBD) showed variable loop conformations and positive-charge distributions different from those of vIRF1 and cellular IRFs that are associated with DNA-binding specificities. Structure-based mutagenesis revealed that Arg82 and Arg85 are required for the in vitro DNA-binding activity of vIRF2DBD and can abolish the transcription regulation function of vIRF2 on the promoter reporter activity of PIK3C3, HMGCR, and HMGCL. Collectively, our study provided unique insights into the DNA-binding potency of vIRF2 and suggested that vIRF2 could act as a transcription factor of its target genes in the host antiviral immune response. IMPORTANCE The oncogenic herpesvirus KSHV is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV has developed a unique mechanism to subvert the host antiviral immune responses by encoding four homologues of cellular interferon regulatory factors (vIRF1 to -4). However, none of their DNA-binding profiles in the human genome have been characterized until now, and the structural basis for their diverse

  15. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  16. Multiple Regions of Kaposi’s Sarcoma-Associated Herpesvirus ORF59 RNA are Required for Its Expression Mediated by Viral ORF57 and Cellular RBM15

    PubMed Central

    Massimelli, Maria Julia; Majerciak, Vladimir; Kang, Jeong-Gu; Liewehr, David J.; Steinberg, Seth M.; Zheng, Zhi-Ming

    2015-01-01

    KSHV ORF57 (MTA) promotes RNA stability of ORF59, a viral DNA polymerase processivity factor. Here, we show that the integrity of both ORF59 RNA ends is necessary for ORF57-mediated ORF59 expression and deletion of both 5’ and 3’ regions, or one end region with a central region, of ORF59 RNA prevents ORF57-mediated translation of ORF59. The ORF59 sequence between nt 96633 and 96559 resembles other known MTA-responsive elements (MREs). ORF57 specifically binds to a stem-loop region from nt 96596–96572 of the MRE, which also binds cellular RBM15. Internal deletion of the MRE from ORF59 led to poor export, but accumulation of nuclear ORF59 RNA in the presence of ORF57 or RBM15. Despite of being translatable in the presence of ORF57, this deletion mutant exhibits translational defect in the presence of RBM15. Together, our results provide novel insight into the roles of ORF57 and RBM15 in ORF59 RNA accumulation and protein translation. PMID:25690794

  17. The Sendai virus V protein interacts with the NP protein to regulate viral genome RNA replication.

    PubMed

    Horikami, S M; Smallwood, S; Moyer, S A

    1996-08-15

    The interactions of Sendai virus proteins required for viral RNA synthesis have been characterized both by the yeast two-hybrid system and through the use of glutathione S-transferase (gst)-viral fusion proteins synthesized in mammalian cells. Using the two-hybrid system we have confirmed the previously identified P-L (RNA polymerase), NPo-P (encapsidation substrate), and P-P complexes and now demonstrate NP-NP and NPo-V protein interactions. Expression of gstP and P proteins and binding to glutathione-Sepharose beads as a measure of complex formation confirmed the P-P interaction. The P-gstP binding occurred only on expression of the proteins in the same cell and was mapped to amino acids 345-411. We also show that full-length and deletion gstV and gstW proteins bound NPo protein when these sets of proteins were coexpressed and have identified one required region from amino acids 78-316. Neither gstV nor gstW bound NP assembled into nucleocapsids. Furthermore, both V and W proteins lacking the N-terminal 77 amino acids inhibited DI-H genome replication in vitro, showing the biological relevance of the remaining region. We propose that the specific inhibition of genome replication by V and W proteins occurs through interference with either the formation or the use of the NPo-P encapsidation substrate.

  18. Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: Limitations for integral membrane glycoproteins.

    PubMed

    Lajko, Michelle; Haddad, Alexander F; Robinson, Carolyn A; Connolly, Sarah A

    2015-09-01

    Herpesvirus entry into cells requires coordinated interactions among several viral transmembrane glycoproteins. Viral glycoproteins bind to receptors and interact with other glycoproteins to trigger virus-cell membrane fusion. Details of these glycoprotein interactions are not well understood because they are likely transient and/or low affinity. Proximity biotinylation is a promising protein-protein interaction assay that can capture transient interactions in live cells. One protein is linked to a biotin ligase and a second protein is linked to a short specific acceptor peptide (AP). If the two proteins interact, the ligase will biotinylate the AP, without requiring a sustained interaction. To examine herpesvirus glycoprotein interactions, the ligase and AP were linked to herpes simplex virus 1 (HSV1) gD and Epstein Barr virus (EBV) gB. Interactions between monomers of these oligomeric proteins (homotypic interactions) served as positive controls to demonstrate assay sensitivity. Heterotypic combinations served as negative controls to determine assay specificity, since HSV1 gD and EBV gB do not interact functionally. Positive controls showed strong biotinylation, indicating that viral glycoprotein proximity can be detected. Unexpectedly, the negative controls also showed biotinylation. These results demonstrate the special circumstances that must be considered when examining interactions among glycosylated proteins that are constrained within a membrane.

  19. Evolution of Viral Proteins Originated De Novo by Overprinting

    PubMed Central

    Sabath, Niv; Wagner, Andreas; Karlin, David

    2012-01-01

    New protein-coding genes can originate either through modification of existing genes or de novo. Recently, the importance of de novo origination has been recognized in eukaryotes, although eukaryotic genes originated de novo are relatively rare and difficult to identify. In contrast, viruses contain many de novo genes, namely those in which an existing gene has been “overprinted” by a new open reading frame, a process that generates a new protein-coding gene overlapping the ancestral gene. We analyzed the evolution of 12 experimentally validated viral genes that originated de novo and estimated their relative ages. We found that young de novo genes have a different codon usage from the rest of the genome. They evolve rapidly and are under positive or weak purifying selection. Thus, young de novo genes might have strain-specific functions, or no function, and would be difficult to detect using current genome annotation methods that rely on the sequence signature of purifying selection. In contrast to young de novo genes, older de novo genes have a codon usage that is similar to the rest of the genome. They evolve slowly and are under stronger purifying selection. Some of the oldest de novo genes evolve under stronger selection pressure than the ancestral gene they overlap, suggesting an evolutionary tug of war between the ancestral and the de novo gene. PMID:22821011

  20. In vivo growth-restricted and reversible malignancy induced by Human Herpesvirus-8/ KSHV: a cell and animal model of virally induced Kaposi's sarcoma

    PubMed Central

    Mutlu, Agata D'Agostino; Cavallin, Lucas E.; Vincent, Loïc; Chiozzini, Chiara; Eroles, Pilar; Duran, Elda M.; Asgari, Zahra; Hooper, Andrea T.; La Perle, Krista M. D.; Hilsher, Chelsey; Gao, Shou-Jiang; Dittmer, Dirk P.; Rafii, Shahin; Mesri, Enrique A.

    2007-01-01

    Transfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial lineage cells generates a cell (mECK36) that forms KS-like tumors in mice. mECK36 expressed most KSHV genes and were angiogenic, but didn't form colonies in soft agar. In nude mice, mECK36 formed KSHV-harboring vascularized spindle-cell sarcomas that were LANA+/podoplanin+, overexpressed VEGF and Angiopoietin ligands and receptors, and displayed KSHV and host transcriptomes reminiscent of KS. mECK36 that lost the KSHV episome reverted to non-tumorigenicity. siRNA suppression of KSHV vGPCR, an angiogenic gene up-regulated in mECK36 tumors, inhibited angiogenicity and tumorigenicity. These results show that KSHV malignancy is in vivo growth-restricted and reversible, defining mECK36 as a biologically sensitive animal model of KSHV-dependent KS. PMID:17349582

  1. Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east Africa.

    PubMed

    Hofmann-Lehmann, R; Fehr, D; Grob, M; Elgizoli, M; Packer, C; Martenson, J S; O'Brien, S J; Lutz, H

    1996-09-01

    While viral infections and their impact are well studied in domestic cats, only limited information is available on their occurrence in free-ranging lions. The goals of the present study were (i) to investigate the prevalence of antibodies to feline calicivirus (FCV), herpesvirus (FHV), coronavirus (FCoV), parvovirus (FPV), and immunodeficiency virus (FIV) and of feline leukemia virus (FeLV) antigen in 311 serum samples collected between 1984 and 1991 from lions inhabiting Tanzania's national parks and (ii) to evaluate the possible biological importance and the interrelationship of these viral infections. Antibodies to FCV, never reported previously in free-ranging lions, were detected in 70% of the sera. In addition, a much higher prevalence of antibodies to FCoV (57%) was found than was previously reported in Etosha National Park and Kruger National Park. Titers ranged from 25 to 400. FeLV antigen was not detectable in any of the serum samples. FCoV, FCV, FHV, and FIV were endemic in the Serengeti, while a transient elevation of FPV titers pointed to an outbreak of FPV infection between 1985 and 1987. Antibody titers to FPV and FCV were highly prevalent in the Serengeti (FPV, 75%; FCV, 67%) but not in Ngorongoro Crater (FPV, 27%; FCV, 2%). These differences could be explained by the different habitats and biological histories of the two populations and by the well-documented absence of immigration of lions from the Serengeti plains into Ngorongoro Crater after 1965. These observations indicate that, although the pathological potential of these viral infections seemed not to be very high in free-ranging lions, relocation of seropositive animals by humans to seronegative lion populations must be considered very carefully.

  2. KSHV Rta Promoter Specification and Viral Reactivation.

    PubMed

    Guito, Jonathan; Lukac, David M

    2012-01-01

    Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent Kaposi's sarcoma-associated herpesvirus (KSHV) into the lytic infection cycle is called K-Rta. K-Rta is a transcriptional activator that specifies promoters by binding DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic "CANT DNA repeats" in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta's role as the switch is inefficient. Many factors modulate K-Rta's function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV

  3. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    SciTech Connect

    Sathish, Narayanan; Yuan Yan

    2010-11-25

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-{Delta}65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  4. ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle

    PubMed Central

    Wood, Jennifer J.; Boyne, James R.; Paulus, Christina; Jackson, Brian R.; Nevels, Michael M.

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of commonly fatal malignancies of immunocompromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic life cycle—viral latency and the productive lytic cycle—and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein replication and transcription activator (RTA) is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B [ARID3B]) whose expression was enhanced by RTA and that relocalized to replication compartments upon lytic reactivation. We also show that small interfering RNA (siRNA) knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of fatal malignancies of

  5. A core viral protein binds host nucleosomes to sequester immune danger signals.

    PubMed

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.

  6. A core viral protein binds host nucleosomes to sequester immune danger signals.

    PubMed

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  7. Impairment of nuclear pores in bovine herpesvirus 1-infected MDBK cells.

    PubMed

    Wild, Peter; Engels, Monika; Senn, Claudia; Tobler, Kurt; Ziegler, Urs; Schraner, Elisabeth M; Loepfe, Eva; Ackermann, Mathias; Mueller, Martin; Walther, Paul

    2005-01-01

    Herpesvirus capsids originating in the nucleus overcome the nucleocytoplasmic barrier by budding at the inner nuclear membrane. The fate of the resulting virions is still under debate. The fact that capsids approach Golgi membranes from the cytoplasmic side led to the theory of fusion between the viral envelope and the outer nuclear membrane, resulting in the release of capsids into the cytoplasm. We recently discovered a continuum from the perinuclear space to the Golgi complex implying (i) intracisternal viral transportation from the perinuclear space directly into Golgi cisternae and (ii) the existence of an alternative pathway of capsids from the nucleus to the cytoplasm. Here, we analyzed the nuclear surface by high-resolution microscopy. Confocal microscopy of MDBK cells infected with recombinant bovine herpesvirus 1 expressing green fluorescent protein fused to VP26 (a minor capsid protein) revealed distortions of the nuclear surface in the course of viral multiplication. High-resolution scanning and transmission electron microscopy proved the distortions to be related to enlargement of nuclear pores through which nuclear content including capsids protrudes into the cytoplasm, suggesting that capsids use impaired nuclear pores as gateways to gain access to the cytoplasmic matrix. Close examination of Golgi membranes, rough endoplasmic reticulum, and outer nuclear membrane yielded capsid-membrane interaction of high identity to the budding process at the inner nuclear membrane. These observations signify the ability of capsids to induce budding at any cell membrane, provided the fusion machinery is present and/or budding is not suppressed by viral proteins.

  8. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  9. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    SciTech Connect

    Chen, Lei

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  10. The Viral G Protein-Coupled Receptor ORF74 Hijacks β-Arrestins for Endocytic Trafficking in Response to Human Chemokines

    PubMed Central

    de Munnik, Sabrina M.; Kooistra, Albert J.; van Offenbeek, Jody; Nijmeijer, Saskia; de Graaf, Chris; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus-infected cells express the virally encoded G protein-coupled receptor ORF74. Although ORF74 is constitutively active, it binds human CXC chemokines that modulate this basal activity. ORF74-induced signaling has been demonstrated to underlie the development of the angioproliferative tumor Kaposi’s sarcoma. Whereas G protein-dependent signaling of ORF74 has been the subject of several studies, the interaction of this viral GPCR with β-arrestins has hitherto not been investigated. Bioluminescence resonance energy transfer experiments demonstrate that ORF74 recruits β-arrestins and subsequently internalizes in response to human CXCL1 and CXCL8, but not CXCL10. Internalized ORF74 traffics via early endosomes to recycling and late endosomes. Site-directed mutagenesis and homology modeling identified four serine and threonine residues at the distal end of the intracellular carboxyl-terminal of ORF74 that are required for β-arrestin recruitment and subsequent endocytic trafficking. Hijacking of the human endocytic trafficking machinery is a previously unrecognized action of ORF74. PMID:25894435

  11. The Viral G Protein-Coupled Receptor ORF74 Hijacks β-Arrestins for Endocytic Trafficking in Response to Human Chemokines.

    PubMed

    de Munnik, Sabrina M; Kooistra, Albert J; van Offenbeek, Jody; Nijmeijer, Saskia; de Graaf, Chris; Smit, Martine J; Leurs, Rob; Vischer, Henry F

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus-infected cells express the virally encoded G protein-coupled receptor ORF74. Although ORF74 is constitutively active, it binds human CXC chemokines that modulate this basal activity. ORF74-induced signaling has been demonstrated to underlie the development of the angioproliferative tumor Kaposi's sarcoma. Whereas G protein-dependent signaling of ORF74 has been the subject of several studies, the interaction of this viral GPCR with β-arrestins has hitherto not been investigated. Bioluminescence resonance energy transfer experiments demonstrate that ORF74 recruits β-arrestins and subsequently internalizes in response to human CXCL1 and CXCL8, but not CXCL10. Internalized ORF74 traffics via early endosomes to recycling and late endosomes. Site-directed mutagenesis and homology modeling identified four serine and threonine residues at the distal end of the intracellular carboxyl-terminal of ORF74 that are required for β-arrestin recruitment and subsequent endocytic trafficking. Hijacking of the human endocytic trafficking machinery is a previously unrecognized action of ORF74.

  12. Adenoviral protein VII packages intracellular viral DNA throughout the early phase of infection.

    PubMed Central

    Chatterjee, P K; Vayda, M E; Flint, S J

    1986-01-01

    The proteins associated with parental, adenoviral DNA in productively-infected HeLa cells have been examined both directly and indirectly. HeLa cells infected with 32P-labelled Ad2 were irradiated with u.v. light at various points in the infectious cycle. Following degradation of the DNA, nuclear proteins carrying cross-linked nucleotides, or oligonucleotides, were distinguished from virion phosphoproteins by the resistance of their 32P radioactivity to 1 M NaOH. The major core protein of the virion, protein VII, was found to be associated with viral DNA throughout infection, even when cells were infected at a multiplicity of 0.14. Micrococcal nuclease digestion of intranuclear viral DNA 4 h after infection liberated two nucleoprotein particles containing viral DNA, neither of which co-migrated with HeLa cell mononucleosomes. These results indicate that core protein VII remains associated with parental adenoviral DNA during productive infections. The observation that protein VII can be cross-linked to DNA in cells infected at very low multiplicity, together with the results of a comparison of proteins cross-linkable to viral DNA in cells infected by wild-type virus and a non-infectious mutant containing the precursor to protein VII, suggest that nucleoproteins comprising viral DNA and protein VII must be the templates for expression of pre-early and early viral genes. Images Fig. 1. Fig. 3. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:3743550

  13. One year duration of immunity of the modified live bovine viral diarrhea virus type 1 and type 2 and bovine herpesvirus-1 fractions of Vista® Once SQ vaccine.

    PubMed

    Purtle, Lisa; Mattick, Debra; Schneider, Corey; Smith, Linda; Xue, Wenzhi; Trigo, Emilio

    2016-03-18

    Three studies were performed to determine the duration of immunity of the bovine viral diarrhea virus type 1 and type 2 (BVDV-1 and BVDV-2) and bovine herpesvirus-1 (BHV-1) fractions of a commercially prepared modified-live vaccine. Vista® Once SQ (Vista®) vaccine contains five modified-live viruses, BVDV-1, BVDV-2, BHV-1, bovine respiratory syncytial virus, and bovine parainfluenza 3 virus, and two modified-live bacteria, Pasteurella multocida and Mannheimia haemolytica. For all three studies, calves were administered a single dose of vaccine or placebo vaccine subcutaneously, and were challenged with one of the three virulent viruses at least one year following vaccination. Calves were evaluated daily following challenge for clinical signs of disease associated with viral infection, nasal swab samples were evaluated for virus shedding, and serum was tested for neutralizing antibodies. Following the BVDV-1 and BVDV-2 challenges, whole blood was evaluated for white blood cell counts, and for the BVDV-2 study, whole blood was also evaluated for platelet counts. Calves vaccinated with BVDV type 1a, were protected from challenge with BVDV type 1b, and had significant reductions in clinical disease, fever, leukopenia, and virus shedding compared to control calves. Vaccinated calves in the BVDV-2 study were protected from clinical disease, mortality, fever, leukopenia, thrombocytopenia, and virus shedding compared to controls. Vaccinated calves in the BHV-1 study were protected from clinical disease and fever, and had significantly reduced duration of nasal virus shedding. These three studies demonstrated that a single administration of the Vista® vaccine to healthy calves induces protective immunity against BVDV-1, BVDV-2 and BHV-1 that lasts at least one year following vaccination.

  14. Multivalent display of proteins on viral nanoparticles using molecular recognition and chemical ligation strategies.

    PubMed

    Venter, P Arno; Dirksen, Anouk; Thomas, Diane; Manchester, Marianne; Dawson, Philip E; Schneemann, Anette

    2011-06-13

    Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery, and tissue-specific bioimaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to display covalently a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development. PMID:21545187

  15. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  16. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  17. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  18. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  19. Identification of a Novel Viral Protein Expressed from the PB2 Segment of Influenza A Virus

    PubMed Central

    Watanabe, Mariko; Goto, Hideo

    2015-01-01

    ABSTRACT Over the past 2 decades, several novel influenza virus proteins have been identified that modulate viral infections in vitro and/or in vivo. The PB2 segment, which is one of the longest influenza A virus segments, is known to encode only one viral protein, PB2. In the present study, we used reverse transcription-PCR (RT-PCR) targeting viral mRNAs transcribed from the PB2 segment to look for novel viral proteins encoded by spliced mRNAs. We identified a new viral protein, PB2-S1, encoded by a novel spliced mRNA in which the region corresponding to nucleotides 1513 to 1894 of the PB2 mRNA is deleted. PB2-S1 was detected in virus-infected cells and in cells transfected with a protein expression plasmid encoding PB2. PB2-S1 localized to mitochondria, inhibited the RIG-I-dependent interferon signaling pathway, and interfered with viral polymerase activity (dependent on its PB1-binding capability). The nucleotide sequences around the splicing donor and acceptor sites for PB2-S1 were highly conserved among pre-2009 human H1N1 viruses but not among human H1N1pdm and H3N2 viruses. PB2-S1-deficient viruses, however, showed growth kinetics in MDCK cells and virulence in mice similar to those of wild-type virus. The biological significance of PB2-S1 to the replication and pathogenicity of seasonal H1N1 influenza A viruses warrants further investigation. IMPORTANCE Transcriptome analysis of cells infected with influenza A virus has improved our understanding of the host response to viral infection, because such analysis yields considerable information about both in vitro and in vivo viral infections. However, little attention has been paid to transcriptomes derived from the viral genome. Here we focused on the splicing of mRNA expressed from the PB2 segment and identified a spliced viral mRNA encoding a novel viral protein. This result suggests that other, as yet unidentified viral proteins encoded by spliced mRNAs could be expressed in virus-infected cells. A viral

  20. Identification of viral membrane proteins required for cell fusion and viral dissemination that are modified during vaccinia virus persistence.

    PubMed

    Ortiz, M A; Paez, E

    1994-01-01

    Wild-type vaccinia virus WR strain forms non-fusogenic (F-) large plaques and is hemagglutinin positive (HA+) under normal conditions of virus infection. We have analyzed a collection of spontaneous, highly attenuated mutants of vaccinia virus isolated from persistently infected Friend erythroleukemia cells (E. Paez, S. Dallo, and M. Esteban, J. Virol. 61, 2642-2647, 1987) for the ability to express HA during virus infection. After 14 cell passages, all the mutants isolated were hemadsorption negative (HAD-) and did not synthesize a HA that could be recognized by anti-HA monoclonal antibodies. All these HA- mutants induced extensive cell-cell fusion (F+), with the exception of two mutants (65-16 and 101-14) isolated from late cell passages. Nucleotide sequence analysis of the HA gene in these two mutants confirmed the HA- phenotype. A frameshift mutation very close to the initiation codon resulted in premature translational termination. The truncated gene now only encodes the first 25 amino acids. Analysis of progeny from "wild-type," like early serial passage virus (5-3) X mutant back crosses, shows that for one late passage non-fusogenic small-plaque mutant (101-14) among large plaque progeny there is good correspondence between the ability to fuse and the absence of a viral HA and that each large plaque mutant contains a normal 14 kDa membrane protein. However, with a second serial passage mutant 65-16, which, like 101-14, is a nonfusogenic small-plaque variant, there is again an excellent correlation between the inability to synthesize HA and the ability to fuse, but there is no correlation of plaque size with a normal 14 kDa viral membrane protein, as most large plaque mutants encode a larger, i.e., 17 kDa protein. Rescue experiments of 65-16 with bona fide cloned 14 kDa protein gene confirm that the ability to regulate plaque size and cell fusion in this mutant is due to a protein other than the 14 kDa protein. Marker rescue experiments indicated that the map

  1. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    SciTech Connect

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  2. The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions.

    PubMed Central

    Renne, R; Lagunoff, M; Zhong, W; Ganem, D

    1996-01-01

    The genome of a novel human herpesvirus has been detected in specimens of Kaposi's sarcoma (KS) and in several AIDS-related lymphoproliferative disorders. Here we examine the size and genomic conformation of the DNA of this virus (known as KS-associated herpesvirus or human herpesvirus 8) in latently and lytically infected cells and in virions. Pulsed-field gel electrophoresis of viral DNA shows that the viral genome is similar in size to those of other gammaherpesviruses (160 to 170 kb). As with Epstein-Barr virus, KS-associated herpesvirus DNA is stably maintained in latently infected B cells as episomal monomer circles and induction from latency is associated with the selective accumulation of linear genomic forms. PMID:8892944

  3. Biological roles and functional mechanisms of arenavirus Z protein in viral replication.

    PubMed

    Wang, Jialong; Danzy, Shamika; Kumar, Naveen; Ly, Hinh; Liang, Yuying

    2012-09-01

    Arenaviruses can cause severe hemorrhagic fever diseases in humans, with limited prophylactic or therapeutic measures. A small RING-domain viral protein Z has been shown to mediate the formation of virus-like particles and to inhibit viral RNA synthesis, although its biological roles in an infectious viral life cycle have not been directly addressed. By taking advantage of the available reverse genetics system for a model arenavirus, Pichinde virus (PICV), we provide the direct evidence for the essential biological roles of the Z protein's conserved residues, including the G2 myristylation site, the conserved C and H residues of RING domain, and the poorly characterized C-terminal L79 and P80 residues. Dicodon substitutions within the late (L) domain (PSAPPYEP) of the PICV Z protein, although producing viable mutant viruses, have significantly reduced virus growth, a finding suggestive of an important role for the intact L domain in viral replication. Further structure-function analyses of both PICV and Lassa fever virus Z proteins suggest that arenavirus Z proteins have similar molecular mechanisms in mediating their multiple functions, with some interesting variations, such as the role of the G2 residue in blocking viral RNA synthesis. In summary, our studies have characterized the biological roles of the Z protein in an infectious arenavirus system and have shed important light on the distinct functions of its domains in virus budding and viral RNA regulation, the knowledge of which may lead to the development of novel antiviral drugs.

  4. Viral Proteins Acquired from a Host Converge to Simplified Domain Architectures

    PubMed Central

    Rappoport, Nadav; Linial, Michal

    2012-01-01

    The infection cycle of viruses creates many opportunities for the exchange of genetic material with the host. Many viruses integrate their sequences into the genome of their host for replication. These processes may lead to the virus acquisition of host sequences. Such sequences are prone to accumulation of mutations and deletions. However, in rare instances, sequences acquired from a host become beneficial for the virus. We searched for unexpected sequence similarity among the 900,000 viral proteins and all proteins from cellular organisms. Here, we focus on viruses that infect metazoa. The high-conservation analysis yielded 187 instances of highly similar viral-host sequences. Only a small number of them represent viruses that hijacked host sequences. The low-conservation sequence analysis utilizes the Pfam family collection. About 5% of the 12,000 statistical models archived in Pfam are composed of viral-metazoan proteins. In about half of Pfam families, we provide indirect support for the directionality from the host to the virus. The other families are either wrongly annotated or reflect an extensive sequence exchange between the viruses and their hosts. In about 75% of cross-taxa Pfam families, the viral proteins are significantly shorter than their metazoan counterparts. The tendency for shorter viral proteins relative to their related host proteins accounts for the acquisition of only a fragment of the host gene, the elimination of an internal domain and shortening of the linkers between domains. We conclude that, along viral evolution, the host-originated sequences accommodate simplified domain compositions. We postulate that the trimmed proteins act by interfering with the fundamental function of the host including intracellular signaling, post-translational modification, protein-protein interaction networks and cellular trafficking. We compiled a collection of hijacked protein sequences. These sequences are attractive targets for manipulation of viral

  5. Columbid herpesvirus-1 mortality in great horned owls (Bubo virginianus) from Calgary, Alberta.

    PubMed

    Rose, Nicole; Warren, Amy L; Whiteside, Douglas; Bidulka, Julie; Robinson, John H; Illanes, Oscar; Brookfield, Caroline

    2012-03-01

    Four cases of Columbid herpesvirus-1 infection in great horned owls (Bubo virginianus) were identified in Calgary, Alberta. Necropsy findings included severe multifocal hepatic and splenic necrosis, pharyngeal ulceration and necrosis, and gastrointestinal necrosis. Occasional eosinophilic intranuclear viral inclusion bodies were associated with the foci of necrosis and polymerase chain reaction (PCR) testing confirmed a diagnosis of herpesvirus-induced disease. The sequence of a PCR amplicon had 99.7% homology to Columbid herpesvirus-1. PMID:22942441

  6. Columbid herpesvirus-1 mortality in great horned owls (Bubo virginianus) from Calgary, Alberta

    PubMed Central

    Rose, Nicole; Warren, Amy L.; Whiteside, Douglas; Bidulka, Julie; Robinson, John H.; Illanes, Oscar; Brookfield, Caroline

    2012-01-01

    Four cases of Columbid herpesvirus-1 infection in great horned owls (Bubo virginianus) were identified in Calgary, Alberta. Necropsy findings included severe multifocal hepatic and splenic necrosis, pharyngeal ulceration and necrosis, and gastrointestinal necrosis. Occasional eosinophilic intranuclear viral inclusion bodies were associated with the foci of necrosis and polymerase chain reaction (PCR) testing confirmed a diagnosis of herpesvirus-induced disease. The sequence of a PCR amplicon had 99.7% homology to Columbid herpesvirus-1. PMID:22942441

  7. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins.

    PubMed

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P; Wang, Shanshan; Krug, Robert M

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. PMID:27587337

  8. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins.

    PubMed

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P; Wang, Shanshan; Krug, Robert M

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP.

  9. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins

    PubMed Central

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P.; Wang, Shanshan; Krug, Robert M.

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. PMID:27587337

  10. Dynamics of Virus Shedding and In Situ Confirmation of Chelonid Herpesvirus 5 in Hawaiian Green Turtles With Fibropapillomatosis.

    PubMed

    Work, T M; Dagenais, J; Balazs, G H; Schettle, N; Ackermann, M

    2015-11-01

    Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5.

  11. Dynamics of Virus Shedding and In Situ Confirmation of Chelonid Herpesvirus 5 in Hawaiian Green Turtles With Fibropapillomatosis.

    PubMed

    Work, T M; Dagenais, J; Balazs, G H; Schettle, N; Ackermann, M

    2015-11-01

    Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5. PMID:25445320

  12. Dynamics of virus shedding and in situ confirmation of chelonid herpesvirus 5 in Hawaiian green turtles with Fibropapillomatosis

    USGS Publications Warehouse

    Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schettle, Nelli; Ackermann, Mathias

    2015-01-01

    Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5.

  13. Tacaribe virus Z protein interacts with the L polymerase protein to inhibit viral RNA synthesis.

    PubMed

    Jácamo, Rodrigo; López, Nora; Wilda, Maximiliano; Franze-Fernández, María T

    2003-10-01

    Tacaribe virus (TV) is the prototype of the New World group of arenaviruses. The TV genome encodes four proteins, the nucleoprotein (N), the glycoprotein precursor, the polymerase (L), and a small RING finger protein (Z). Using a reverse genetic system, we recently demonstrated that TV N and L are sufficient to drive transcription and full-cycle RNA replication mediated by TV-like RNAs and that Z is a powerful inhibitor of these processes (N. López, R. Jácamo, and M. T. Franze-Fernández, J. Virol. 65:12241-12251, 2001). In the present study we investigated whether Z might interact with either of the proteins, N and L, required for RNA synthesis. To that end, we used coimmunoprecipitation with monospecific antibodies against the viral proteins and coimmunoprecipitation with serum against glutathione S-transferase (GST) and binding to glutathione-Sepharose beads when Z was expressed as a fusion protein with GST. We demonstrated that Z interacted with L but not with N and that Z inhibitory activity was dependent on its ability to bind to L. We also evaluated the contribution of different Z regions to its binding ability and functional activity. We found that integrity of the RING structure is essential for Z binding to L and for Z inhibitory activity. Mutants with deletions at the N and C termini of Z showed that amino acids within the C-terminal region and immediately adjacent to the RING domain N terminus contribute to efficient Z-L interaction and are required for inhibitory activity. The data presented here provide the first evidence of an interaction between Z and L, suggesting that Z interferes with viral RNA synthesis by direct interaction with L. In addition, coimmunoprecipitation studies revealed a previously unreported interaction between N and L.

  14. Hsp70 Isoforms Are Essential for the Formation of Kaposi’s Sarcoma-Associated Herpesvirus Replication and Transcription Compartments

    PubMed Central

    Baquero-Pérez, Belinda; Whitehouse, Adrian

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs). Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII) relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents. PMID:26587836

  15. Analysis of HSV viral reactivation in explants of sensory neurons

    PubMed Central

    Turner, Anne-Marie W.; Kristie, Thomas M.

    2014-01-01

    As with all Herpesviruses, Herpes simplex virus (HSV) has both a lytic replication phase and a latency-reactivation cycle. During lytic replication, there is an ordered cascade of viral gene expression that leads to the synthesis of infectious viral progeny. In contrast, latency is characterized by the lack of significant lytic gene expression and the absence of infectious virus. Reactivation from latency is characterized by the re-entry of the virus into the lytic replication cycle and the production of recurrent disease. This unit describes the establishment of the mouse sensory neuron model of HSV-1 latency-reactivation as a useful in vivo system for the analysis of mechanisms involved in latency and reactivation. Assays including the determination of viral yields, immunohistochemical/immunofluorescent detection of viral antigens, and mRNA quantitation are used in experiments designed to investigate the network of cellular and viral proteins regulating HSV-1 lytic infection, latency, and reactivation. PMID:25367271

  16. Illuminating structural proteins in viral “dark matter” with metaproteomics

    PubMed Central

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M.; Roux, Simon; VerBerkmoes, Nathan C.; Rich, Virginia I.; Sullivan, Matthew B.

    2016-01-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional “viral dark matter.” Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world’s oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter. PMID:26884177

  17. Broad-spectrum non-nucleoside inhibitors of human herpesviruses

    PubMed Central

    McClain, Lora; Zhi, Yun; Cheng, Hoyee; Ghosh, Ayantika; Piazza, Paolo; Yee, Michael B.; Kumar, Santosh; Milosevic, Jadranka; Bloom, David C.; Arav-Boger, Ravit; Kinchington, Paul R.; Yolken, Robert; Nimgaonkar, Vishwajit; D’Aiuto, Leonardo

    2015-01-01

    Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of ‘quiescent’ HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo. PMID:26079681

  18. Broad-spectrum non-nucleoside inhibitors of human herpesviruses.

    PubMed

    McClain, Lora; Zhi, Yun; Cheng, Hoyee; Ghosh, Ayantika; Piazza, Paolo; Yee, Michael B; Kumar, Santosh; Milosevic, Jadranka; Bloom, David C; Arav-Boger, Ravit; Kinchington, Paul R; Yolken, Robert; Nimgaonkar, Vishwajit; D'Aiuto, Leonardo

    2015-09-01

    Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of 'quiescent' HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo. PMID:26079681

  19. Genetic Economy of Polyoma Virus: Capsid Proteins Are Cleavage Products of Same Viral Gene

    PubMed Central

    Friedmann, Theodore

    1974-01-01

    Two-dimensional tryptic peptide maps of the nonhistone proteins of purified polyoma virus show marked similarities. Protein P1 is a nondisaggregated, possibly covalent, dimer of the major capsid protein P2, whereas P3 and P4 share several new peptides as well as many of the peptides derived from P2. Extensive use of this kind of processing of viral proteins during the biosynthesis of DNA-containing animal viruses has not been reported previously. Images PMID:4360936

  20. Activation of the Epstein-Barr virus replicative cycle by human herpesvirus 6.

    PubMed Central

    Flamand, L; Stefanescu, I; Ablashi, D V; Menezes, J

    1993-01-01

    One common attribute of herpesviruses is the ability to establish latent, life-long infections. The role of virus-virus interaction in viral reactivation between or among herpesviruses has not been studied. Preliminary experiments in our laboratory had indicated that infection of Epstein-Barr virus (EBV) genome-positive human lymphoid cell lines with human herpesvirus 6 (HHV-6) results in EBV reactivation in these cells. To further our knowledge of this complex phenomenon, we investigated the effect of HHV-6 infection on expression of the viral lytic cycle proteins of EBV. Our results indicate that HHV-6 upregulates, by up to 10-fold, expression of the immediate-early Zebra antigen and the diffuse and restricted (85 kDa) early antigens (EA-D and EA-R, respectively) in both EBV producer and nonproducer cell lines (i.e., P3HR1, Akata, and Raji). Maximal EA-D induction was observed at 72 h post-HHV-6 infection. Furthermore, expression of late EBV gene products, namely, the viral capsid antigen (125 kDa) and viral membrane glycoprotein gp350, was also increased in EBV producer cells (P3HR1 and Akata) following infection by HHV-6. By using dual-color membrane immunofluorescence, it was found that most of the cells expressing viral membrane glycoprotein gp350 were also positive for HHV-6 antigens, suggesting a direct effect of HHV-6 replication on induction of the EBV replicative cycle. No expression of late EBV antigens was observed in Raji cells following infection by HHV-6, implying a lack of functional complementation between the deleted form of EBV found in Raji cells and the superinfecting HHV-6. The susceptibility of the cell lines to infection by HHV-6 correlated with increased expression of various EBV proteins in that B95-8 cells, which are not susceptible to HHV-6 infection, did not show an increase in expression of EBV antigens following treatment with HHV-6. Moreover, UV light-irradiated or heat-inactivated HHV-6 had no upregulating effect on the Zebra

  1. The Unfolded Protein Response Is Triggered by a Plant Viral Movement Protein1[W][OA

    PubMed Central

    Ye, Changming; Dickman, Martin B.; Whitham, Steven A.; Payton, Mark; Verchot, Jeanmarie

    2011-01-01

    Infection with Potato virus X (PVX) in Nicotiana benthamiana plants leads to increased transcript levels of several stress-related host genes, including basic-region leucine zipper 60 (bZIP60), SKP1, ER luminal binding protein (BiP), protein disulfide isomerase (PDI), calreticulin (CRT), and calmodulin (CAM). bZIP60 is a key transcription factor that responds to endoplasmic reticulum (ER) stress and induces the expression of ER-resident chaperones (BiP, PDI, CRT, and CAM). SKP1 is a component of SCF (for SKP1-Cullin-F box protein) ubiquitin ligase complexes that target proteins for proteasomal degradation. Expression of PVX TGBp3 from a heterologous vector induces the same set of genes in N. benthamiana and Arabidopsis (Arabidopsis thaliana) leaves. Virus-induced gene silencing was employed to knock down the expression of bZIP60 and SKP1, and the number of infection foci on inoculated leaves was reduced and systemic PVX accumulation was altered. Silencing bZIP60 led to the suppression of BiP and SKP1 transcript levels, suggesting that bZIP60 might be an upstream signal transducer. Overexpression of TGBp3 led to localized necrosis, but coexpression of TGBp3 with BiP abrogated necrosis, demonstrating that the unfolded protein response alleviates ER stress-related cell death. Steady-state levels of PVX replicase and TGBp2 (which reside in the ER) proteins were unaltered by the presence of TGBp3, suggesting that TGBp3 does not contribute to their turnover. Taken together, PVX TGBp3-induced ER stress leads to up-regulation of bZIP60 and unfolded protein response-related gene expression, which may be important to regulate cellular cytotoxicity that could otherwise lead to cell death if viral proteins reach high levels in the ER. PMID:21474436

  2. A protein array screen for Kaposi's sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening.

    PubMed

    Shamay, Meir; Liu, Jianyong; Li, Renfeng; Liao, Gangling; Shen, Li; Greenway, Melanie; Hu, Shaohui; Zhu, Jian; Xie, Zhi; Ambinder, Richard F; Qian, Jiang; Zhu, Heng; Hayward, S Diane

    2012-05-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy. PMID:22379092

  3. At the crossroads of autophagy and infection: Noncanonical roles for ATG proteins in viral replication.

    PubMed

    Solvik, Tina; Debnath, Jayanta

    2016-08-29

    Autophagy-related (ATG) proteins have increasingly demonstrated functions other than cellular self-eating. In this issue, Mauthe et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201602046) conduct an unbiased RNA interference screen of the ATG proteome to reveal numerous noncanonical roles for ATG proteins during viral infection. PMID:27573461

  4. Detection of Viral Proteins in Human Cells Lines by Xeno-Proteomics: Elimination of the Last Valid Excuse for Not Testing Every Cellular Proteome Dataset for Viral Proteins

    PubMed Central

    Chernobrovkin, Alexey L.; Zubarev, Roman A.

    2014-01-01

    Cell cultures used routinely in proteomic experiments may contain proteins from other species because of infection, transfection or just contamination. Since infection or contamination may affect the results of a biological experiment, it is important to test the samples for the presence of “alien” proteins. Usually cells are tested only for the most common infections, and most of the existing tests are targeting specific contaminations. Here we describe a three-step procedure for reliable untargeted detection of viral proteins using proteomics data, and recommend this or similar procedure to be applied to every proteomics dataset submitted for publication. PMID:24618588

  5. Phosphorylation of human respiratory syncytial virus P protein at serine 54 regulates viral uncoating

    SciTech Connect

    Asenjo, Ana; Gonzalez-Armas, Juan C.; Villanueva, Nieves

    2008-10-10

    The human respiratory syncytial virus (HRSV) structural P protein, phosphorylated at serine (S) and threonine (T) residues, is a co-factor of viral RNA polymerase. The phosphorylation of S54 is controlled by the coordinated action of two cellular enzymes: a lithium-sensitive kinase, probably glycogen synthetase kinase (GSK-3) {beta} and protein phosphatase 2A (PP2A). Inhibition of lithium-sensitive kinase, soon after infection, blocks the viral growth cycle by inhibiting synthesis and/or accumulation of viral RNAs, proteins and extracellular particles. P protein phosphorylation at S54 is required to liberate viral ribonucleoproteins (RNPs) from M protein, during the uncoating process. Kinase inhibition, late in infection, produces a decrease in genomic RNA and infectious viral particles. LiCl, intranasally applied to mice infected with HRSV A2 strain, reduces the number of mice with virus in their lungs and the virus titre. Administration of LiCl to humans via aerosol should prevent HRSV infection, without secondary effects.

  6. The Structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex Reveals the Protein-Membrane and Lateral Protein-Protein Interaction

    PubMed Central

    Maurer, Ulrike E.; Zeev-Ben-Mordehai, Tzviya; Pandurangan, Arun Prasad; Cairns, Tina M.; Hannah, Brian P.; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.; Topf, Maya; Huiskonen, Juha T.; Grünewald, Kay

    2013-01-01

    Summary Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region (MPR) but showed an overall similar trimeric shape. The presence of the MPR impeded interaction with liposomes. In contrast, the MPR-lacking form interacted efficiently with liposomes. Lateral interaction resulted in coat formation on the membranes. The structure revealed that interaction of gB with membranes was mediated by the fusion loops and limited to the outer membrane leaflet. The observed intrinsic propensity of gB to cluster on membranes indicates an additional role of gB in driving the fusion process forward beyond the transient fusion pore opening and subsequently leading to fusion pore expansion. PMID:23850455

  7. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7

    PubMed Central

    Capar, Adam; Zheng, Hong; Frappier, Lori; Saridakis, Vivian

    2015-01-01

    Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity. PMID:26046769

  8. Modulation of the Translational Landscape During Herpesvirus Infection

    PubMed Central

    Glaunsinger, Britt A.

    2016-01-01

    Herpesviral mRNAs are produced and translated by cellular machinery, rendering them susceptible to the network of regulatory events that impact translation. In response, these viruses have evolved to infiltrate and hijack translational control pathways as well as to integrate specialized host translation strategies into their own repertoire. They are robust systems to dissect mechanisms of mammalian translational regulation and continue to offer insight into cis-acting mRNA features that impact assembly and activity of the translation apparatus. Here, I discuss recent advances revealing the extent to which the three herpesvirus subfamilies regulate both host and viral translation, thereby dramatically impacting the landscape of protein synthesis in infected cells. PMID:26958918

  9. Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8).

    PubMed Central

    Zhong, W; Ganem, D

    1997-01-01

    Infection with Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) is strongly linked to all forms of Kaposi's sarcoma. We have previously identified two polyadenylated KSHV transcripts that are actively transcribed in Kaposi's sarcoma (KS) tumors and in KSHV-infected B-lymphoma cells. One of these RNAs (termed T1.1 or nut-1 RNA) is a 1.1-kb transcript present in a subpopulation of KS tumor cells. This RNA is localized to the nucleus of infected cells and has no open reading frames longer than 62 codons, suggesting that it may not function as an mRNA in vivo. Here we demonstrate that nut-1 RNA is a lytic-cycle gene product that is found in high-molecular-weight ribonucleoprotein complexes in infected cell nuclei. The transcript lacks the trimethylguanosine (TMG) cap found in many U-like small nuclear RNAs, but a subpopulation of nut-1 RNAs can associate with Sm protein-containing small nuclear ribonucleoproteins, as judged by immunoprecipitation analyses using monoclonal anti-Sm and anti-TMG antibodies. This interaction does not require other viral gene products, and deletion of the sole candidate Sm binding site on nut-1 RNA does not ablate this association. This finding suggests an indirect interaction with Sm-containing structures, and models for such associations are presented. PMID:8995643

  10. Molecular gymnastics at the herpesvirus surface

    PubMed Central

    Rey, Félix A

    2006-01-01

    This review analyses recent structural results that provide clues about a possible molecular mechanism for the transmission of a fusogenic signal among the envelope glycoproteins of the herpes simplex virus on receptor binding by glycoprotein gD. This signal triggers the membrane-fusion machinery of the virus—contained in glycoproteins gB, gH and gL—to induce the merging of viral and cellular membranes, and to allow virus entry into target cells. This activating process parallels that of γ-retroviruses, in which receptor binding by the amino-terminal domain of the envelope protein activates the fusogenic potential of the virion in a similar way, despite the different organization of the envelope complexes of these two types of viruses. Therefore, the new structural results on the interaction of gD with its receptors might also provide insights into the mechanism of fusogenic signal transmission in γ-retroviruses. Furthermore, the fusion activation parallels with retroviruses, together with the recently reported structural homology of gB with the rhabdovirus envelope glycoprotein indicate that the complex entry apparatus of herpesviruses appears to be functionally related to that of simpler enveloped viruses. PMID:17016458

  11. Presence of human herpesviruses in young children with acute otitis media.

    PubMed

    Shinogami, Masanobu; Ishibashi, Toshio

    2004-02-01

    Some herpesviruses have been detected in middle ear fluid (MEF) of patients with acute otitis media (AOM), but their role in middle ear disease is unknown. We examined 73 middle ear fluid samples from 73 children with acute otitis media for the presence of four major herpesviral DNA, respiratory viral genomes, and bacterial DNA by multiplex polymerase chain reaction (PCR). Herpesviruses were detected in 16 specimens (22%), with 18 viral infections were identified overall. Respiratory viruses were detected in 35 specimens (48%), 39 viral infections overall. Bacterial DNA was detected in 51 specimens (70%), 60 bacterial infections overall. Clinical outcome was compared in patients with and without herpesvirus DNA, respiratory viral genomes, or bacterial DNA. Progression to otitis media with effusion (OME) was more common when herpesviral DNA was present. Presence of herpesvirus DNA may reflect an immunocompromised state that may make it difficult to eliminate bacteria from the middle ear after infection.

  12. Vaccinia Virus Telomeres: Interaction with the Viral I1, I6, and K4 Proteins

    PubMed Central

    DeMasi, Joseph; Du, Shan; Lennon, David; Traktman, Paula

    2001-01-01

    The 192-kb linear DNA genome of vaccinia virus has covalently closed hairpin termini that are extremely AT rich and contain 12 extrahelical bases. Vaccinia virus telomeres have previously been implicated in the initiation of viral genome replication; therefore, we sought to determine whether the telomeres form specific protein-DNA complexes. Using an electrophoretic mobility shift assay, we found that extracts prepared from virions and from the cytoplasm of infected cells contain telomere binding activity. Four shifted complexes were detected using hairpin probes representing the viral termini, two of which represent an interaction with the “flip” isoform and two with the “flop” isoform. All of the specificity for protein binding lies within the terminal 65-bp hairpin sequence. Viral hairpins lacking extrahelical bases cannot form the shifted complexes, suggesting that DNA structure is crucial for complex formation. Using an affinity purification protocol, we purified the proteins responsible for hairpin-protein complex formation. The vaccinia virus I1 protein was identified as being necessary and sufficient for the formation of the upper doublet of shifted complexes, and the vaccinia virus I6 protein was shown to form the lower doublet of shifted complexes. Competition and challenge experiments confirmed that the previously uncharacterized I6 protein binds tightly and with great specificity to the hairpin form of the viral telomeric sequence. Incubation of viral hairpins with extracts from infected cells also generates a smaller DNA fragment that is likely to reflect specific nicking at the apex of the hairpin; we show that the vaccinia virus K4 protein is necessary and sufficient for this reaction. We hypothesize that these telomere binding proteins may play a role in the initiation of vaccinia virus genome replication and/or genome encapsidation. PMID:11581377

  13. The Human Respiratory Syncytial Virus Matrix Protein Is Required for Maturation of Viral Filaments

    PubMed Central

    Mitra, Ruchira; Baviskar, Pradyumna; Duncan-Decocq, Rebecca R.; Patel, Darshna

    2012-01-01

    An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding. PMID:22318136

  14. Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes.

    PubMed

    Osterrieder, Nikolaus; Wallaschek, Nina; Kaufer, Benedikt B

    2014-11-01

    It is well known that numerous viruses integrate their genetic material into host cell chromosomes. Human herpesvirus 6 (HHV-6) and oncogenic Marek's disease virus (MDV) have been shown to integrate their genomes into host telomeres of latently infected cells. This is unusual for herpesviruses as most maintain their genomes as circular episomes during the quiescent stage of infection. The genomic DNA of HHV-6, MDV, and several other herpesviruses harbors telomeric repeats (TMRs) that are identical to host telomere sequences (TTAGGG). At least in the case of MDV, viral TMRs facilitate integration into host telomeres. Integration of HHV-6 occurs not only in lymphocytes but also in the germline of some individuals, allowing vertical virus transmission. Although the molecular mechanism of telomere integration is poorly understood, the presence of TMRs in a number of herpesviruses suggests it is their default program for genome maintenance during latency and also allows efficient reactivation.

  15. The chromatin landscape of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Toth, Zsolt; Brulois, Kevin; Jung, Jae U

    2013-05-01

    Kaposi's sarcoma-associated herpesvirus is an oncogenic γ-herpesvirus that causes latent infection in humans. In cells, the viral genome adopts a highly organized chromatin structure, which is controlled by a wide variety of cellular and viral chromatin regulatory factors. In the past few years, interrogation of the chromatinized KSHV genome by whole genome-analyzing tools revealed that the complex chromatin landscape spanning the viral genome in infected cells has important regulatory roles during the viral life cycle. This review summarizes the most recent findings regarding the role of histone modifications, histone modifying enzymes, DNA methylation, microRNAs, non-coding RNAs and the nuclear organization of the KSHV epigenome in the regulation of latent and lytic viral gene expression programs as well as their connection to KSHV-associated pathogenesis. PMID:23698402

  16. The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state

    PubMed Central

    Alarcon, Valentina; Hernández, Sergio; Rubio, Lorena; Alvarez, Francisca; Flores, Yvo; Varas-Godoy, Manuel; De Ferrari, Giancarlo V.; Kann, Michael; Villanueva, Rodrigo A.; Loyola, Alejandra

    2016-01-01

    With about 350 million people chronically infected around the world hepatitis B is a major health problem. Template for progeny HBV synthesis is the viral genome, organized as a minichromosome (cccDNA) inside the hepatocyte nucleus. How viral cccDNA gene expression is regulated by its chromatin structure; more importantly, how the modulation of this structure impacts on viral gene expression remains elusive. Here, we found that the enzyme SetDB1 contributes to setting up a repressed cccDNA chromatin state. This repressive state is activated by the histone lysine demethylase-1 (LSD1). Consistently, inhibiting or reducing LSD1 levels led to repression of viral gene expression. This correlates with the transcriptionally repressive mark H3K9 methylation and reduction on the activating marks H3 acetylation and H3K4 methylation on viral promoters. Investigating the importance of viral proteins we found that LSD1 recruitment to viral promoters was dependent on the viral transactivator protein HBx. Moreover, the histone methyltransferase Set1A and HBx are simultaneously bound to the core promoter, and Set1A expression correlates with cccDNA H3K4 methylation. Our results shed light on the mechanisms of HBV regulation mediated by the cccDNA chromatin structure, offering new therapeutic targets to develop drugs for the treatment of chronically infected HBV patients. PMID:27174370

  17. Differential tropism of human herpesvirus 6 (HHV-6) variants and induction of latency by HHV-6A in oligodendrocytes.

    PubMed

    Ahlqvist, Jenny; Fotheringham, Julie; Akhyani, Nahid; Yao, Karen; Fogdell-Hahn, Anna; Jacobson, Steven

    2005-08-01

    Human herpesvirus 6 (HHV-6) is a ubiquitous beta -herpesvirus associated with a number of clinical disorders. Two closely but biologically distinct variants have been described. HHV-6 variant B causes the common childhood disease exhanthem subitum, and although the pathologic characteristics for HHV-6 variant A are less well defined, HHV-6A has been suggested to be more neurotropic. We studied the effect of both HHV-6 variants in an oligodendrocyte cell line (MO3.13). Infection of M03.13 was monitored by cytopathic effect (CPE), quantitative TaqMan PCR for viral DNA in cells and supernatant, reverse transcriptase-polymerase chain reaction (RT-PCR) to detect viral RNA, and indirect immunofluorescence (IFA) to detect viral protein expression. HHV-6A infection induced significantly more CPE than infection with HHV-6B. HHV-6B induced an abortive infection associated with a decrease of the initial viral DNA load over time, early RNA expression, and no expression of viral antigen. In contrast, infection with HHV-6A DNA persisted in cells for at least 62 days. During the acute phase of infection with HHV-6A, intracellular and extracellular viral load increased and cells expressed the viral protein IE-2 and gp116/54/64. No HHV-6A RNA or protein was expressed after 30 days post infection, suggesting that HHV-6A formed a latent infection. These studies provide in vitro support to the hypothesis that HHV-6 can actively infect oligodendrocytes. Our results suggest that HHV-6A and HHV-6B have different tropism in MO3.13 cells and that an initially active HHV-6A infection can develop latency. Differences between HHV-6A and -6B infection in different neural cell types may be associated with different neurological diseases. PMID:16162481

  18. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    SciTech Connect

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen; Jacobs, Jon M.; Camp, David G.; Purvine, Samuel O.; Gritsenko, Marina A.; Li, Zhihua; Smith, Richard D.; Sugden, Bill; Moore, Patrick S.; Chang, Yuan

    2011-12-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  19. Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication

    PubMed Central

    Phillips, Stacia L.; Soderblom, Erik J.

    2016-01-01

    ABSTRACT Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Due to the limited coding capacity of the viral genome and the complexity of the viral life cycle, host cell proteins play essential roles throughout the course of viral infection. Host RNA-binding proteins mediate various aspects of virus replication through their physical interactions with viral RNA. Here we describe a technique designed to identify such interactions in the context of infected cells using UV cross-linking followed by antisense-mediated affinity purification and mass spectrometry. Using this approach, we identified interactions, several of them novel, between host proteins and dengue viral RNA in infected Huh7 cells. Most of these interactions were subsequently validated using RNA immunoprecipitation. Using small interfering RNA (siRNA)-mediated gene silencing, we showed that more than half of these host proteins are likely involved in regulating virus replication, demonstrating the utility of this method in identifying biologically relevant interactions that may not be identified using traditional in vitro approaches. PMID:26733069

  20. Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein

    PubMed Central

    Julien, Perino; Thielens, Nicole M.; Crouch, Erika; Spehner, Danièle; Crance, Jean-Marc; Favier, Anne-Laure

    2013-01-01

    Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27. PMID:23518578

  1. Protective effect of surfactant protein d in pulmonary vaccinia virus infection: implication of A27 viral protein.

    PubMed

    Perino, Julien; Thielens, Nicole M; Crouch, Erika; Spehner, Danièle; Crance, Jean-Marc; Favier, Anne-Laure

    2013-03-21

    Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.

  2. Comparison of levels and duration of detection of antibodies to bovine viral diarrhea virus 1, bovine viral diarrhea virus 2, bovine respiratory syncytial virus, bovine herpesvirus 1, and bovine parainfluenza virus 3 in calves fed maternal colostrum or a colostrum-replacement product

    PubMed Central

    Chamorro, Manuel F.; Walz, Paul H.; Haines, Deborah M.; Passler, Thomas; Earleywine, Thomas; Palomares, Roberto A.; Riddell, Kay P.; Galik, Patricia; Zhang, Yijing; Givens, M. Daniel

    2014-01-01

    Colostrum-replacement products are an alternative to provide passive immunity to neonatal calves; however, their ability to provide adequate levels of antibodies recognizing respiratory viruses has not been described. The objective of this study was to compare the serum levels of IgG at 2 d of age and the duration of detection of antibodies to bovine viral diarrhea virus 1 (BVDV-1), bovine viral diarrhea virus 2 (BVDV-2), bovine respiratory syncytial virus (BRSV), bovine herpesvirus 1 (BHV-1), and bovine parainfluenza virus 3 (BPIV-3) in calves fed maternal colostrum (MC) or a colostrum replacement (CR) at birth. Forty newborn male Holstein calves were assigned to the CR or the MC group. Group CR (n = 20) received 2 packets of colostrum replacement (100 g of IgG per 470-g packet), while group MC (n = 20) received 3.8 L of maternal colostrum. Blood samples for detection of IgG and virus antibodies were collected from each calf at birth, at 2 and 7 d, and monthly until the calves became seronegative. Calves in the MC group had greater IgG concentrations at 2 d of age. The apparent efficiency of absorption of IgG was greater in the MC group than in the CR group, although the difference was not significant. Calves in the CR group had greater concentrations of BVDV neutralizing antibodies during the first 4 mo of life. The levels of antibodies to BRSV, BHV-1, and BPIV-3 were similar in the 2 groups. The mean time to seronegativity was similar for each virus in the 2 groups; however, greater variation was observed in the antibody levels and in the duration of detection of immunity in the MC group than in the CR group. Thus, the CR product provided calves with more uniform levels and duration of antibodies to common bovine respiratory viruses. PMID:24688168

  3. Comparison of levels and duration of detection of antibodies to bovine viral diarrhea virus 1, bovine viral diarrhea virus 2, bovine respiratory syncytial virus, bovine herpesvirus 1, and bovine parainfluenza virus 3 in calves fed maternal colostrum or a colostrum-replacement product.

    PubMed

    Chamorro, Manuel F; Walz, Paul H; Haines, Deborah M; Passler, Thomas; Earleywine, Thomas; Palomares, Roberto A; Riddell, Kay P; Galik, Patricia; Zhang, Yijing; Givens, M Daniel

    2014-04-01

    Colostrum-replacement products are an alternative to provide passive immunity to neonatal calves; however, their ability to provide adequate levels of antibodies recognizing respiratory viruses has not been described. The objective of this study was to compare the serum levels of IgG at 2 d of age and the duration of detection of antibodies to bovine viral diarrhea virus 1 (BVDV-1), bovine viral diarrhea virus 2 (BVDV-2), bovine respiratory syncytial virus (BRSV), bovine herpesvirus 1 (BHV-1), and bovine parainfluenza virus 3 (BPIV-3) in calves fed maternal colostrum (MC) or a colostrum replacement (CR) at birth. Forty newborn male Holstein calves were assigned to the CR or the MC group. Group CR (n = 20) received 2 packets of colostrum replacement (100 g of IgG per 470-g packet), while group MC (n = 20) received 3.8 L of maternal colostrum. Blood samples for detection of IgG and virus antibodies were collected from each calf at birth, at 2 and 7 d, and monthly until the calves became seronegative. Calves in the MC group had greater IgG concentrations at 2 d of age. The apparent efficiency of absorption of IgG was greater in the MC group than in the CR group, although the difference was not significant. Calves in the CR group had greater concentrations of BVDV neutralizing antibodies during the first 4 mo of life. The levels of antibodies to BRSV, BHV-1, and BPIV-3 were similar in the 2 groups. The mean time to seronegativity was similar for each virus in the 2 groups; however, greater variation was observed in the antibody levels and in the duration of detection of immunity in the MC group than in the CR group. Thus, the CR product provided calves with more uniform levels and duration of antibodies to common bovine respiratory viruses. PMID:24688168

  4. Comparison of levels and duration of detection of antibodies to bovine viral diarrhea virus 1, bovine viral diarrhea virus 2, bovine respiratory syncytial virus, bovine herpesvirus 1, and bovine parainfluenza virus 3 in calves fed maternal colostrum or a colostrum-replacement product.

    PubMed

    Chamorro, Manuel F; Walz, Paul H; Haines, Deborah M; Passler, Thomas; Earleywine, Thomas; Palomares, Roberto A; Riddell, Kay P; Galik, Patricia; Zhang, Yijing; Givens, M Daniel

    2014-04-01

    Colostrum-replacement products are an alternative to provide passive immunity to neonatal calves; however, their ability to provide adequate levels of antibodies recognizing respiratory viruses has not been described. The objective of this study was to compare the serum levels of IgG at 2 d of age and the duration of detection of antibodies to bovine viral diarrhea virus 1 (BVDV-1), bovine viral diarrhea virus 2 (BVDV-2), bovine respiratory syncytial virus (BRSV), bovine herpesvirus 1 (BHV-1), and bovine parainfluenza virus 3 (BPIV-3) in calves fed maternal colostrum (MC) or a colostrum replacement (CR) at birth. Forty newborn male Holstein calves were assigned to the CR or the MC group. Group CR (n = 20) received 2 packets of colostrum replacement (100 g of IgG per 470-g packet), while group MC (n = 20) received 3.8 L of maternal colostrum. Blood samples for detection of IgG and virus antibodies were collected from each calf at birth, at 2 and 7 d, and monthly until the calves became seronegative. Calves in the MC group had greater IgG concentrations at 2 d of age. The apparent efficiency of absorption of IgG was greater in the MC group than in the CR group, although the difference was not significant. Calves in the CR group had greater concentrations of BVDV neutralizing antibodies during the first 4 mo of life. The levels of antibodies to BRSV, BHV-1, and BPIV-3 were similar in the 2 groups. The mean time to seronegativity was similar for each virus in the 2 groups; however, greater variation was observed in the antibody levels and in the duration of detection of immunity in the MC group than in the CR group. Thus, the CR product provided calves with more uniform levels and duration of antibodies to common bovine respiratory viruses.

  5. Novel approaches and challenges to treatment of CNS viral infections

    PubMed Central

    Nath, Avindra; Tyler, Kenneth L.

    2014-01-01

    Existing and emerging viral CNS infections are major sources of human morbidity and mortality. Treatments of proven efficacy are currently limited predominantly to herpesviruses and human immunodeficiency virus. Development of new therapies has been hampered by the lack of appropriate animal model systems for some important viruses and by the difficulty in conducting human clinical trials for diseases that may be rare, or in the case of arboviral infections, often have variable seasonal and geographic incidence. Nonetheless, many novel approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpesvirus drugs include viral helicase-primase and terminase inhibitors. The use of antisense oligonucleotides and other strategies to interfere with viral RNA translation has shown efficacy in experimental models of CNS viral disease. Identifying specific molecular targets within viral replication cycles has led to many existing antivirals and will undoubtedly continue to be the basis of future drug design. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses. Toll-like receptor agonists, and drugs that inhibit specific cytokines as well as interferon preparations have all shown potential therapeutic efficacy. Passive transfer of virus-specific cytotoxic T-lymphocytes have been used in humans and may provide an effective therapies for some herpesvirus infections and potentially for progressive multifocal leukoencephalopathy. Humanized monoclonal antibodies directed against specific viral proteins have been developed and in several cases evaluated in humans in settings including West Nile virus and HIV infection and in pre-exposure prophylaxis for rabies. PMID:23913580

  6. A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin

    PubMed Central

    Raja, Priya; Lee, Jennifer S.; Pan, Dongli; Pesola, Jean M.; Coen, Donald M.

    2016-01-01

    ABSTRACT Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV), for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs) and microRNAs (miRNAs) as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0) is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo. Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections. PMID:27190217

  7. Heterogeneous nuclear ribonuclear protein K interacts with Sindbis virus nonstructural proteins and viral subgenomic mRNA

    SciTech Connect

    Burnham, Andrew J.; Gong, Lei; Hardy, Richard W.

    2007-10-10

    Alphaviruses are a group of arthropod-borne human and animal pathogens that can cause epidemics of significant public health and economic consequence. Alphavirus RNA synthesis requires four virally encoded nonstructural proteins and probably a number of cellular proteins. Using comparative two-dimensional electrophoresis we were able to identify proteins enriched in cytoplasmic membrane fractions containing viral RNA synthetic complexes following infection with Sindbis virus. Our studies demonstrated the following: (i) the host protein hnRNP K is enriched in cytoplasmic membrane fractions following Sindbis virus infection, (ii) viral nonstructural proteins co-immunoprecipitate with hnRNP K, (iii) nsP2 and hnRNP K co-localize in the cytoplasm of Sindbis virus infected cells, (iv) Sindbis virus subgenomic mRNA, but not genomic RNA co-immunoprecipitates with hnRNP K, (v) viral RNA does not appear to be required for the interaction of hnRNP K with the nonstructural proteins. Potential functions of hnRNP K during virus replication are discussed.

  8. Oligomeric viral proteins: small in size, large in presence

    PubMed Central

    Jayaraman, Bhargavi; Smith, Amber M.; Fernandes, Jason D.; Frankel, Alan D.

    2016-01-01

    Viruses are obligate parasites that rely heavily on host cellular processes for replication. The small number of proteins typically encoded by a virus is faced with selection pressures that lead to the evolution of distinctive structural properties, allowing each protein to maintain its function under constraints such as small genome size, high mutation rate, and rapidly changing fitness conditions. One common strategy for this evolution is to utilize small building blocks to generate protein oligomers that assemble in multiple ways, thereby diversifying protein function and regulation. In this review, we discuss specific cases that illustrate how oligomerization is used to generate a single defined functional state, to modulate activity via different oligomeric states, or to generate multiple functional forms via different oligomeric states. PMID:27685368

  9. Dissecting the role of the ϕ29 terminal protein DNA binding residues in viral DNA replication

    PubMed Central

    Holguera, Isabel; Muñoz-Espín, Daniel; Salas, Margarita

    2015-01-01

    Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130–190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification. PMID:25722367

  10. HIV1-viral protein R (Vpr) mutations: associated phenotypes and relevance for clinical pathologies.

    PubMed

    Soares, Rui; Rocha, Graça; Meliço-Silvestre, António; Gonçalves, Teresa

    2016-09-01

    Over the last 30 years, research into HIV has advanced the knowledge of virus genetics and the development of efficient therapeutic strategies. HIV-1 viral protein R (Vpr) is a specialized and multifunctional protein that plays important roles at multiple stages of the HIV-1 viral life cycle. This protein interacts with a number of cellular and viral proteins and with multiple activities including nuclear transport of the pre-integration complex (PIC) to the nucleus, transcriptional activation, cell cycle arrest at G2/M transition phase and induction of cell death via apoptosis. Specifically, Vpr has been shown to control many host cell functions through a variety of biological processes and by interaction with several cellular pathways. The different functions of Vpr may enhance viral replication and impair the immune system in HIV-1 infected patients. Importantly, functional defects induced by mutations in the Vpr protein correlate with slow disease progression of HIV-infected patients. Vpr is also associated with other concomitant pathologies developed by these patients, which may lead it to be considered as a potential novel therapeutic target. This review will focus on HIV-1 Vpr, mainly on the importance of its structural mutations on the progression of HIV infection, associated phenotypes and relevance for clinical pathologies. Copyright © 2016 John Wiley & Sons, Ltd.

  11. HIV1-viral protein R (Vpr) mutations: associated phenotypes and relevance for clinical pathologies.

    PubMed

    Soares, Rui; Rocha, Graça; Meliço-Silvestre, António; Gonçalves, Teresa

    2016-09-01

    Over the last 30 years, research into HIV has advanced the knowledge of virus genetics and the development of efficient therapeutic strategies. HIV-1 viral protein R (Vpr) is a specialized and multifunctional protein that plays important roles at multiple stages of the HIV-1 viral life cycle. This protein interacts with a number of cellular and viral proteins and with multiple activities including nuclear transport of the pre-integration complex (PIC) to the nucleus, transcriptional activation, cell cycle arrest at G2/M transition phase and induction of cell death via apoptosis. Specifically, Vpr has been shown to control many host cell functions through a variety of biological processes and by interaction with several cellular pathways. The different functions of Vpr may enhance viral replication and impair the immune system in HIV-1 infected patients. Importantly, functional defects induced by mutations in the Vpr protein correlate with slow disease progression of HIV-infected patients. Vpr is also associated with other concomitant pathologies developed by these patients, which may lead it to be considered as a potential novel therapeutic target. This review will focus on HIV-1 Vpr, mainly on the importance of its structural mutations on the progression of HIV infection, associated phenotypes and relevance for clinical pathologies. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27264019

  12. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication.

    PubMed

    Ou, Horng D; May, Andrew P; O'Shea, Clodagh C

    2011-01-01

    One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422

  13. Stimulation of cytolytic T cells by isolated viral peptides and HN protein coupled to agarose beads.

    PubMed

    Guertin, D P; Fan, D P

    1980-01-17

    Sendai virus-infected mouse cells can be lysed by mouse cytolytic thymus-dependent lymphocytes (CTL) directed specifically against the infected cells. The CTL is known to recognise the H-2 antigens on the target cells together with structure(s) including at least the two viral surface glycoproteins also found on purified virus. We report here that anti-Sendai CTL can be stimulated in vitro by detergent-solubilised viral haemagglutinin-neuraminidase (HN), either as the isolated protein or coupled to agarose beads. We further show stimulation by the hydrophilic portion of a protein removed from the virus by the protease subtilisin BPN', and we demonstrate that cyanogen bromide- (CNBr-) cleaved viral peptides also produce such stimulation.

  14. Analysis and Characterization of the Complete Genome of Tupaia (Tree Shrew) Herpesvirus

    PubMed Central

    Bahr, Udo; Darai, Gholamreza

    2001-01-01

    The tupaia herpesvirus (THV) was isolated from spontaneously degenerating tissue cultures of malignant lymphoma, lung, and spleen cell cultures of tree shrews (Tupaia spp.). The determination of the complete nucleotide sequence of the THV strain 2 genome resulted in a 195,857-bp-long, linear DNA molecule with a G+C content of 66.5%. The terminal regions of the THV genome and the loci of conserved viral genes were found to be G+C richer. Furthermore, no large repetitive DNA sequences could be identified. This is in agreement with the previous classification of THV as the prototype species of herpesvirus genome group F. The search for potential coding regions resulted in the identification of 158 open reading frames (ORFs) regularly distributed on both DNA strands. Seventy-six out of the 158 ORFs code for proteins that are significantly homologous to known herpesvirus proteins. The highest homologies found were to primate and rodent cytomegaloviruses. Biological properties, protein homologies, the arrangement of conserved viral genes, and phylogenetic analysis revealed that THV is a member of the subfamily Betaherpesvirinae. The evolutionary lineages of THV and the cytomegaloviruses seem to have branched off from a common ancestor. In addition, it was found that the arrangements of conserved genes of THV and murine cytomegalovirus strain Smith, both of which are not able to form genomic isomers, are colinear with two different human cytomegalovirus (HCMV) strain AD169 genomic isomers that differ from each other in the orientation of the long unique region. The biological properties and the high degree of relatedness of THV to the mammalian cytomegaloviruses allow the consideration of THV as a model system for investigation of HCMV pathogenicity. PMID:11312357

  15. Bovine viral diarrhea virus structural protein E2 as a complement regulatory protein.

    PubMed

    Ostachuk, Agustín

    2016-07-01

    Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, family Flaviviridae, and is one of the most widely distributed viruses in cattle worldwide. Approximately 60 % of cattle in endemic areas without control measures are infected with BVDV during their lifetime. This wide prevalence of BVDV in cattle populations results in significant economic losses. BVDV is capable of establishing persistent infections in its host due to its ability to infect fetuses, causing immune tolerance. However, this cannot explain how the virus evades the innate immune system. The objective of the present work was to test the potential activity of E2 as a complement regulatory protein. E2 glycoprotein, produced both in soluble and transmembrane forms in stable CHO-K1 cell lines, was able to reduce complement-mediated cell lysis up to 40 % and complement-mediated DNA fragmentation by 50 %, in comparison with cell lines not expressing the glycoprotein. This work provides the first evidence of E2 as a complement regulatory protein and, thus, the finding of a mechanism of immune evasion by BVDV. Furthermore, it is postulated that E2 acts as a self-associated molecular pattern (SAMP), enabling the virus to avoid being targeted by the immune system and to be recognized as self. PMID:27038454

  16. New insights into the expression and functions of the Kaposi's sarcoma-associated herpesvirus long noncoding PAN RNA.

    PubMed

    Conrad, Nicholas K

    2016-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) is a clinically relevant pathogen associated with several human diseases that primarily affect immunocompromised individuals. KSHV encodes a noncoding polyadenylated nuclear (PAN) RNA that is essential for viral propagation and viral gene expression. PAN RNA is the most abundant viral transcript produced during lytic replication. The accumulation of PAN RNA depends on high levels of transcription driven by the Rta protein, a KSHV transcription factor necessary and sufficient for latent-to-lytic phase transition. In addition, KSHV uses several posttranscriptional mechanisms to stabilize PAN RNA. A cis-acting element, called the ENE, prevents PAN RNA decay by forming a triple helix with its poly(A) tail. The viral ORF57 and the cellular PABPC1 proteins further contribute to PAN RNA stability during lytic phase. PAN RNA functions are only beginning to be uncovered, but PAN RNA has been proposed to control gene expression by several different mechanisms. PAN RNA associates with the KSHV genome and may regulate gene expression by recruiting chromatin-modifying factors. Moreover, PAN RNA binds the viral latency-associated nuclear antigen (LANA) protein and decreases its repressive activity by sequestering it from the viral genome. Surprisingly, PAN RNA was found to associate with translating ribosomes, so this noncoding RNA may be additionally used to produce viral peptides. In this review, I highlight the mechanisms of PAN RNA accumulation and describe recent insights into potential functions of PAN RNA.

  17. Towards protein-based viral mimetics for cancer therapies.

    PubMed

    Unzueta, Ugutz; Céspedes, María Virtudes; Vázquez, Esther; Ferrer-Miralles, Neus; Mangues, Ramón; Villaverde, Antonio

    2015-05-01

    High resistance and recurrence rates, together with elevated drug clearance, compel the use of maximum-tolerated drug doses in cancer therapy, resulting in high-grade toxicities and limited clinical applicability. Promoting active drug accumulation in tumor tissues would minimize such issues and improve therapeutic outcomes. A new class of therapeutic drugs suitable for the task has emerged based on the concept of virus-mimetic nanocarriers, or 'artificial viruses'. Among the spectrum of materials under exploration in nanocarrier research, proteins offer unparalleled structural and functional versatility for designing virus-like molecular vehicles. By exhibiting 'smart' functions and biomimetic traits, protein-based nanocarriers will be a step ahead of the conventional drug-protein conjugates already in the clinic in ensuring efficient delivery of passenger antitumor drugs.

  18. The Epstein-Barr virus (EBV)-encoded protein kinase, EBV-PK, but not the thymidine kinase (EBV-TK), is required for ganciclovir and acyclovir inhibition of lytic viral production.

    PubMed

    Meng, Qiao; Hagemeier, Stacy R; Fingeroth, Joyce D; Gershburg, Edward; Pagano, Joseph S; Kenney, Shannon C

    2010-05-01

    Ganciclovir (GCV) and acyclovir (ACV) are guanine nucleoside analogues that inhibit lytic herpesvirus replication. GCV and ACV must be monophosphorylated by virally encoded enzymes to be converted into nucleotides and incorporated into viral DNA. However, whether GCV and/or ACV phosphorylation in Epstein-Barr virus (EBV)-infected cells is mediated primarily by the EBV-encoded protein kinase (EBV-PK), the EBV-encoded thymidine kinase (EBV-TK), or both is controversial. To examine this question, we constructed EBV mutants containing stop codons in either the EBV-PK or EBV-TK open reading frame and selected for stable 293T clones latently infected with wild-type EBV or each of the mutant viruses. Cells were induced to the lytic form of viral replication with a BZLF1 expression vector in the presence and absence of various doses of GCV and ACV, and infectious viral titers were determined by a green Raji cell assay. As expected, virus production in wild-type EBV-infected 293T cells was inhibited by both GCV (50% inhibitory concentration [IC(50)] = 1.5 microM) and ACV (IC(50) = 4.1 microM). However, the EBV-PK mutant (which replicates as well as the wild-type (WT) virus in 293T cells) was resistant to both GCV (IC(50) = 19.6 microM) and ACV (IC(50) = 36.4 microM). Expression of the EBV-PK protein in trans restored GCV and ACV sensitivity in cells infected with the PK mutant virus. In contrast, in 293T cells infected with the TK mutant virus, viral replication remained sensitive to both GCV (IC(50) = 1.2 microM) and ACV (IC(50) = 2.8 microM), although susceptibility to the thymine nucleoside analogue, bromodeoxyuridine, was reduced. Thus, EBV-PK but not EBV-TK mediates ACV and GCV susceptibilities.

  19. Kaposi's Sarcoma Herpesvirus Genome Persistence.

    PubMed

    Juillard, Franceline; Tan, Min; Li, Shijun; Kaye, Kenneth M

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) has an etiologic role in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. These diseases are most common in immunocompromised individuals, especially those with AIDS. Similar to all herpesviruses, KSHV infection is lifelong. KSHV infection in tumor cells is primarily latent, with only a small subset of cells undergoing lytic infection. During latency, the KSHV genome persists as a multiple copy, extrachromosomal episome in the nucleus. In order to persist in proliferating tumor cells, the viral genome replicates once per cell cycle and then segregates to daughter cell nuclei. KSHV only expresses several genes during latent infection. Prominent among these genes, is the latency-associated nuclear antigen (LANA). LANA is responsible for KSHV genome persistence and also exerts transcriptional regulatory effects. LANA mediates KSHV DNA replication and in addition, is responsible for segregation of replicated genomes to daughter nuclei. LANA serves as a molecular tether, bridging the viral genome to mitotic chromosomes to ensure that KSHV DNA reaches progeny nuclei. N-terminal LANA attaches to mitotic chromosomes by binding histones H2A/H2B at the surface of the nucleosome. C-terminal LANA binds specific KSHV DNA sequence and also has a role in chromosome attachment. In addition to the essential roles of N- and C-terminal LANA in genome persistence, internal LANA sequence is also critical for efficient episome maintenance. LANA's role as an essential mediator of virus persistence makes it an attractive target for inhibition in order to prevent or treat KSHV infection and disease. PMID:27570517

  20. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins

    PubMed Central

    Hedil, Marcio; Kormelink, Richard

    2016-01-01

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far. PMID:27455310

  1. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins.

    PubMed

    Hedil, Marcio; Kormelink, Richard

    2016-01-01

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far. PMID:27455310

  2. The virally encoded killer proteins from Ustilago maydis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several strains of Ustilago maydis, a causal agent of corn smut disease, exhibit a 'killer' phenotype that is due to persistent infection by double-stranded RNA Totiviruses. These viruses produce potent killer proteins that are secreted by the host. This is a rare example of virus/host symbiosis in ...

  3. Singapore Grouper Iridovirus ORF75R is a Scaffold Protein Essential for Viral Assembly

    PubMed Central

    Wang, Fan; Liu, Yang; Zhu, Yi; Ngoc Tran, Bich; Wu, Jinlu; Leong Hew, Choy

    2015-01-01

    Singapore Grouper Iridovirus (SGIV) is a member of nucleo cytoplasmic large DNA viruses (NCLDV). This paper reports the functional analysis of ORF75R, a major structural protein of SGIV. Immuno fluorescence studies showed that the protein was accumulated in the viral assembly site. Immunogold-labelling indicated that it was localized between the viral capsid shell and DNA core. Knockdown of ORF75R by morpholinos resulted in the reduction of coreshell thickness, the failure of DNA encapsidation, and the low yield of infectious particles. Comparative proteomics further identified the structural proteins affected by ORF75R knockdown. Two-dimensional gel electrophoresis combined with proteomics demonstrated that ORF75R was phosphorylated at multiple sites in SGIV-infected cell lysate and virions, but the vast majority of ORF75R in virions was the dephosphorylated isoform. A kinase assay showed that ORF75R could be phosphorylated in vitro by the SGIV structural protein ORF39L. Addition of ATP and Mg2+ into purified virions prompted extensive phosphorylation of structural proteins and release of ORF75R from virions. These data suggest that ORF75R is a novel scaffold protein important for viral assembly and DNA encapsidation, but its phosphorylation facilitates virion disassembly. Compared to proteins from other viruses, we found that ORF75R shares common features with herpes simplex virus VP22. PMID:26286371

  4. Cellular or viral protein binding to a cytomegalovirus promoter transcription initiation site: effects on transcription.

    PubMed Central

    Macias, M P; Huang, L; Lashmit, P E; Stinski, M F

    1996-01-01

    We have previously shown that the IE2 protein of human cytomegalovirus (CMV) represses its own synthesis by binding to the major immediate-early promoter (M. P. Macias and M. F. Stinski, Proc. Natl. Acad. Sci. USA 90:707-711, 1993). The binding of a viral protein (IE2) and a cellular protein in the region of the transcription start site was investigated by site-specific mutational analysis and electrophoretic mobility shift assay. The viral protein and the cellular protein require different but adjacent core DNA sequence elements for binding. In situ chemical footprinting analysis of DNA-protein interactions with purified CMV IE2 protein or HeLa cell nuclear extracts demonstrated binding sites that overlap the transcription start site. The IE2 protein footprint was between bp -15 and +2, relative to the transcription start site, and the cellular protein was between bp -16 and +7. The ability of the unknown human cellular protein of approximately 150 kDa to bind the CMV major immediate-early promoter correlates with an increase in the level of transcription efficiency. Mutations in the core DNA sequence element for cellular protein binding significantly reduced the level of in vitro transcription efficiency. Mutations upstream and downstream of the core sequence moderately reduced the transcription efficiency level. Negative autoregulation of the CMV promoter by the viral IE2 protein may involve both binding to the DNA template and interference with the function of a cellular protein that binds to the transcription start site and enhances transcription efficiency. PMID:8648697

  5. Arenavirus budding resulting from viral-protein-associated cell membrane curvature

    PubMed Central

    Schley, David; Whittaker, Robert J.; Neuman, Benjamin W.

    2013-01-01

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations. PMID:23864502

  6. Host and viral RNA-binding proteins involved in membrane targeting, replication and intercellular movement of plant RNA virus genomes

    PubMed Central

    Hyodo, Kiwamu; Kaido, Masanori; Okuno, Tetsuro

    2014-01-01

    Many plant viruses have positive-strand RNA [(+)RNA] as their genome. Therefore, it is not surprising that RNA-binding proteins (RBPs) play important roles during (+)RNA virus infection in host plants. Increasing evidence demonstrates that viral and host RBPs play critical roles in multiple steps of the viral life cycle, including translation and replication of viral genomic RNAs, and their intra- and intercellular movement. Although studies focusing on the RNA-binding activities of viral and host proteins, and their associations with membrane targeting, and intercellular movement of viral genomes have been limited to a few viruses, these studies have provided important insights into the molecular mechanisms underlying the replication and movement of viral genomic RNAs. In this review, we briefly overview the currently defined roles of viral and host RBPs whose RNA-binding activity have been confirmed experimentally in association with their membrane targeting, and intercellular movement of plant RNA virus genomes. PMID:25071804

  7. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins

    PubMed Central

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-01-01

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%–99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy. PMID:26114473

  8. Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis

    PubMed Central

    Richard, A; Tulasne, D

    2012-01-01

    Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host–apoptosis–virus triangle. PMID:22402601

  9. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins.

    PubMed

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-06-24

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%-99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.

  10. Inhibition of chikungunya virus by picolinate that targets viral capsid protein.

    PubMed

    Sharma, Rajesh; Fatma, Benazir; Saha, Amrita; Bajpai, Sailesh; Sistla, Srinivas; Dash, Paban Kumar; Parida, Manmohan; Kumar, Pravindra; Tomar, Shailly

    2016-11-01

    The protein-protein interactions (PPIs) of the transmembrane glycoprotein E2 with the hydrophobic pocket on the surface of capsid protein (CP) plays a critical role in alphavirus life cycle. Dioxane based derivatives targeting PPIs have been reported to possess antiviral activity against Sindbis Virus (SINV), the prototype alphavirus. In this study, the binding of picolinic acid (PCA) to the conserved hydrophobic pocket of capsid protein was analyzed by molecular docking, isothermal titration calorimetry (ITC), surface plasmon resonance (SPR) and fluorescence spectroscopy. The binding constant KD obtained for PCA was 2.1×10(-7)M. Additionally, PCA significantly inhibited CHIKV replication in infected Vero cells, decreasing viral mRNA and viral load as assessed by qRT-PCR and plaque reduction assay, respectively. This study is suggestive of the potential of pyridine ring compounds as antivirals against alphaviruses and may serve as the basis for the development of PCA based drugs against alphaviral diseases.

  11. Inhibition of chikungunya virus by picolinate that targets viral capsid protein.

    PubMed

    Sharma, Rajesh; Fatma, Benazir; Saha, Amrita; Bajpai, Sailesh; Sistla, Srinivas; Dash, Paban Kumar; Parida, Manmohan; Kumar, Pravindra; Tomar, Shailly

    2016-11-01

    The protein-protein interactions (PPIs) of the transmembrane glycoprotein E2 with the hydrophobic pocket on the surface of capsid protein (CP) plays a critical role in alphavirus life cycle. Dioxane based derivatives targeting PPIs have been reported to possess antiviral activity against Sindbis Virus (SINV), the prototype alphavirus. In this study, the binding of picolinic acid (PCA) to the conserved hydrophobic pocket of capsid protein was analyzed by molecular docking, isothermal titration calorimetry (ITC), surface plasmon resonance (SPR) and fluorescence spectroscopy. The binding constant KD obtained for PCA was 2.1×10(-7)M. Additionally, PCA significantly inhibited CHIKV replication in infected Vero cells, decreasing viral mRNA and viral load as assessed by qRT-PCR and plaque reduction assay, respectively. This study is suggestive of the potential of pyridine ring compounds as antivirals against alphaviruses and may serve as the basis for the development of PCA based drugs against alphaviral diseases. PMID:27614702

  12. Viral-Host Protein Interaction Studies Using Yeast Two-Hybrid Screening Method.

    PubMed

    Dudha, Namrata; Gupta, Sanjay

    2016-01-01

    Yeast two-hybrid (Y2H) assay is one of the earliest methods developed to study protein-protein interactions. In the proteomics era, Y2H has created a niche of its own by providing protein interaction maps for various organisms. Owing to limited coding capacities of their genomes, viruses are dependent on their host cellular machinery for successful infection. Identification of the key players orchestrating the survival of virus in their host is essential for understanding viral life cycle and devising strategies to prevent interactions resulting in pathogenesis. In this chapter, Y2H assay will be explained in detail for studying viral-host protein interactions of Chikungunya virus (CHIKV). PMID:27233270

  13. DNA-templated assembly of viral protein hydrogel

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Tao, Ailin; Xu, Yun

    2014-11-01

    Hydrogels are a promising class of biomaterials that can be easily tailored to produce a native extracellular matrix that exhibits desirable mechanical and chemical properties. Here we report the construction of a hydrogel via the assembly of cucumber mosaic virus (CMV) capsid protein and Y-shaped and cross-shaped DNAs.Hydrogels are a promising class of biomaterials that can be easily tailored to produce a native extracellular matrix that exhibits desirable mechanical and chemical properties. Here we report the construction of a hydrogel via the assembly of cucumber mosaic virus (CMV) capsid protein and Y-shaped and cross-shaped DNAs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02414a

  14. Multiple Functions for ORF75c in Murid Herpesvirus-4 Infection

    PubMed Central

    Gaspar, Miguel; Gill, Michael B.; Lösing, Jens-Bernhard; May, Janet S.; Stevenson, Philip G.

    2008-01-01

    All gamma-herpesviruses encode at least one homolog of the cellular enzyme formyl-glycineamide-phosphoribosyl-amidotransferase. Murid herpesvirus-4 (MuHV-4) encodes 3 (ORFs 75a, 75b and 75c), suggesting that at least some copies have acquired new functions. Here we show that the corresponding proteins are all present in virions and localize to infected cell nuclei. Despite these common features, ORFs 75a and 75b did not substitute functionally for a lack of ORF75c, as ORF75c virus knockouts were severely impaired for lytic replication in vitro and for host colonization in vivo. They showed 2 defects: incoming capsids failed to migrate to the nuclear margin following membrane fusion, and genomes that did reach the nucleus failed to initiate normal gene expression. The latter defect was associated with a failure of in-coming virions to disassemble PML bodies. The capsid transport deficit seemed to be functionally more important, since ORF75c− MuHV-4 infected both PML+ and PML− cells poorly. The original host enzyme has therefore evolved into a set of distinct and multi-functional viral tegument proteins. One important function is moving incoming capsids to the nuclear margin for viral genome delivery. PMID:18648660

  15. Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins.

    PubMed

    Kudryashova, Elena; Koneru, Pratibha C; Kvaratskhelia, Mamuka; Strömstedt, Adam A; Lu, Wuyuan; Kudryashov, Dmitri S

    2016-01-01

    Human defensins are innate immune defense peptides with a remarkably broad repertoire of anti-pathogen activities. In addition to modulating immune response, inflammation, and angiogenesis, disintegrating bacterial membranes, and inactivating bacterial toxins, defensins are known to intercept various viruses at different stages of their life cycles, while remaining relatively benign towards human cells and proteins. Recently we have found that human defensins inactivate proteinaceous bacterial toxins by taking advantage of their low thermodynamic stability and acting as natural "anti-chaperones", i.e. destabilizing the native conformation of the toxins. In the present study we tested various proteins produced by several viruses (HIV-1, PFV, and TEV) and found them to be susceptible to destabilizing effects of human α-defensins HNP-1 and HD-5 and the synthetic θ-defensin RC-101, but not β-defensins hBD-1 and hBD-2 or structurally related plant-derived peptides. Defensin-induced unfolding promoted exposure of hydrophobic groups otherwise confined to the core of the viral proteins. This resulted in precipitation, an enhanced susceptibility to proteolytic cleavage, and a loss of viral protein activities. We propose, that defensins recognize and target a common and essential physico-chemical property shared by many bacterial toxins and viral proteins - the intrinsically low thermodynamic protein stability. PMID:27581352

  16. Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins

    PubMed Central

    Kudryashova, Elena; Koneru, Pratibha C.; Kvaratskhelia, Mamuka; Strömstedt, Adam A.; Lu, Wuyuan; Kudryashov, Dmitri S.

    2016-01-01

    Human defensins are innate immune defense peptides with a remarkably broad repertoire of anti-pathogen activities. In addition to modulating immune response, inflammation, and angiogenesis, disintegrating bacterial membranes, and inactivating bacterial toxins, defensins are known to intercept various viruses at different stages of their life cycles, while remaining relatively benign towards human cells and proteins. Recently we have found that human defensins inactivate proteinaceous bacterial toxins by taking advantage of their low thermodynamic stability and acting as natural “anti-chaperones”, i.e. destabilizing the native conformation of the toxins. In the present study we tested various proteins produced by several viruses (HIV-1, PFV, and TEV) and found them to be susceptible to destabilizing effects of human α-defensins HNP-1 and HD-5 and the synthetic θ-defensin RC-101, but not β-defensins hBD-1 and hBD-2 or structurally related plant-derived peptides. Defensin-induced unfolding promoted exposure of hydrophobic groups otherwise confined to the core of the viral proteins. This resulted in precipitation, an enhanced susceptibility to proteolytic cleavage, and a loss of viral protein activities. We propose, that defensins recognize and target a common and essential physico-chemical property shared by many bacterial toxins and viral proteins – the intrinsically low thermodynamic protein stability. PMID:27581352

  17. An ELISA for detection of trout antibodies to viral haemorrhagic septicemia virus using recombinant fragments of their viral G protein.

    PubMed

    Encinas, P; Gomez-Casado, E; Estepa, A; Coll, J M

    2011-09-01

    An enzyme linked immunosorbent assay (ELISA) method to study serum antibodies to viral haemorrhagic septicemia virus (VHSV) was designed by using recombinant fragments of their G protein. By using this fragment-ELISA, we describe the binding of antibodies against recombinant G fragments of 45-445 amino acids present in VHSV-hyperimmunized trout sera. Fragments were designed by taking into account their tridimensional pH-dependent structure and functional domains. Sera were obtained from hyperimmunized trout following 4-5 intraperitoneal injections of VHSV antigens by using Freund's or saponin adjuvants. Sera from different hyperimmunized trout differed quantitatively rather than qualitatively in their recognition of solid-phase frg11 (56-110), frg12 (65-109), frg13 (97-167), frg14 (141-214), frg15 (65-250), frg16 (252-450) and G (G21-465) by Western blot and ELISA. However, titres were higher when using frg11, frg15 or frg16, rather than G21-465, suggesting higher accessibility to G epitopes. Further knowledge of the antigenicity of the G protein of rhabdoviruses by using fragments might be used to improve current vaccines. On the other hand, they might be used to dissect the trout antibody response to VHSV infections, to complement in vitro neutralizing assays, and/or to quantitate anti-VHSV antibodies in VHSV-infected/vaccinated trout, other fish and/or other body fluids such as mucus.

  18. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-01

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  19. Evasion and subversion of interferon-mediated antiviral immunity by Kaposi's sarcoma-associated herpesvirus: an overview.

    PubMed

    Sathish, Narayanan; Yuan, Yan

    2011-11-01

    Viral invasion of a host cell triggers immune responses with both innate and adaptive components. The innate immune response involving the induction of type I interferons (alpha and beta interferons [IFN-α and -β]) constitutes the first line of antiviral defenses. The type I IFNs signal the transcription of a group of antiviral effector proteins, the IFN-stimulated genes (ISGs), which target distinct viral components and distinct stages of the viral life cycle, aiming to eliminate invading viruses. In the case of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma (KS), a sudden upsurge of type I IFN-mediated innate antiviral signals is seen immediately following both primary de novo infection and viral lytic reactivation from latency. Potent subversion of these responses thus becomes mandatory for the successful establishment of a primary infection following viral entry as well as for efficient viral assembly and egress. This review gives a concise overview of the induction of the type I IFN signaling pathways in response to viral infection and provides a comprehensive understanding of the antagonizing effects exerted by KSHV on type I IFN pathways wielded at various stages of the viral life cycle. Information garnered from this review should result in a better understanding of KSHV biology essential for the development of immunotherapeutic strategies targeted toward KSHV-associated malignancies. PMID:21775463

  20. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection

    PubMed Central

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis. PMID:27271654

  1. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.

    PubMed

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis. PMID:27271654

  2. Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes.

    PubMed

    Rivas, Hembly G; Schmaling, Summer K; Gaglia, Marta M

    2016-04-16

    The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation.

  3. Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes

    PubMed Central

    Rivas, Hembly G.; Schmaling, Summer K.; Gaglia, Marta M.

    2016-01-01

    The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation. PMID:27092522

  4. Human Herpesvirus 7 U21 Tetramerizes To Associate with Class I Major Histocompatibility Complex Molecules

    PubMed Central

    May, Nathan A.; Wang, Qiuhong; Balbo, Andrea; Konrad, Sheryl L.; Buchli, Rico; Hildebrand, William H.; Schuck, Peter

    2014-01-01

    ABSTRACT The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment. IMPORTANCE In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein. PMID:24390327

  5. Essential Role of Dengue Virus Envelope Protein N Glycosylation at Asparagine-67 during Viral Propagation▿

    PubMed Central

    Mondotte, Juan A.; Lozach, Pierre-Yves; Amara, Ali; Gamarnik, Andrea V.

    2007-01-01

    Dengue virus envelope protein (E) contains two N-linked glycosylation sites, at Asn-67 and Asn-153. The glycosylation site at position 153 is conserved in most flaviviruses, while the site at position 67 is thought to be unique for dengue viruses. N-linked oligosaccharide side chains on flavivirus E proteins have been associated with viral morphogenesis, infectivity, and tropism. Here, we examined the relevance of each N-linked glycan on dengue virus E protein by removing each site in the context of infectious viral particles. Dengue viruses lacking Asn-67 were able to infect mammalian cells and translate and replicate the viral genome, but production of new infectious particles was abolished. In addition, dengue viruses lacking Asn-153 in the E showed reduced infectivity. In contrast, ablation of one or both glycosylation sites yielded viruses that replicate and propagate in mosquito cells. Furthermore, we found a differential requirement of N-linked glycans for E secretion in mammalian and mosquito cells. While secretion of E lacking Asn-67 was efficient in mosquito cells, secretion of the same protein expressed in mammalian cells was dramatically impaired. Finally, we found that viruses lacking the carbohydrate at position 67 showed reduced infection of immature dendritic cells, suggesting interaction between this glycan and the lectin DC-SIGN. Overall, our data defined different roles for the two glycans present at the E protein during dengue virus infection, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation. PMID:17459925

  6. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality.

    PubMed

    Wu, Nicholas C; Olson, C Anders; Du, Yushen; Le, Shuai; Tran, Kevin; Remenyi, Roland; Gong, Danyang; Al-Mawsawi, Laith Q; Qi, Hangfei; Wu, Ting-Ting; Sun, Ren

    2015-07-01

    Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available.

  7. Detection of antibodies against equine herpesvirus types 1 and 4 by using recombinant protein derived from an immunodominant region of glycoprotein B.

    PubMed Central

    Sinclair, R; Binns, M M; Chirnside, E D; Mumford, J A

    1993-01-01

    The N-terminal fragment comprising residues +1 to +50 (gB1-50) of equine herpesvirus type 1 (EHV-1) glycoprotein B was expressed as a glutathione S-transferase fusion protein in Escherichia coli. Recombinant gB1-50 (rgB1-50) was recognized in immunoblots by sera from rabbits immunized with EHV-1 and by convalescent-phase sera from horses with natural EHV-1 infections. An enzyme-linked immunosorbent assay (ELISA) for monitoring antibody levels against EHV-1 was developed by using rgB1-50, and its specificity was assessed with a panel of reference antisera against other equine viruses. A specific cross-reaction was detected with EHV-4, which was confirmed by inhibition ELISA. Convalescent-phase sera from horses with natural EHV-1 or EHV-4 infections possessed antibody titers against rgB1-50 ranging from 1:2,000 to 1:64,000, indicating the presence of an immunodominant antigenic site. The study demonstrated the potential application of rgB1-50 as a diagnostic antigen and highlights the glutathione S-transferase fusion system as a simple and effective method of producing purified milligram quantities of antigen. Images PMID:8381809

  8. The Role of the Equine Herpesvirus Type 1 (EHV-1) US3-Encoded Protein Kinase in Actin Reorganization and Nuclear Egress

    PubMed Central

    Proft, Alexandra; Spiesschaert, Bart; Izume, Satoko; Taferner, Selina; Lehmann, Maik J.; Azab, Walid

    2016-01-01

    The serine-threonine protein kinase encoded by US3 gene (pUS3) of alphaherpesviruses was shown to modulate actin reorganization, cell-to-cell spread, and virus egress in a number of virus species. However, the role of the US3 orthologues of equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) has not yet been studied. Here, we show that US3 is not essential for virus replication in vitro. However, growth rates and plaque diameters of a US3-deleted EHV-1 and a mutant in which the catalytic active site was destroyed were significantly reduced when compared with parental and revertant viruses or a virus in which EHV-1 US3 was replaced with the corresponding EHV-4 gene. The reduced plaque sizes were consistent with accumulation of primarily enveloped virions in the perinuclear space of the US3-negative EHV-1, a phenotype that was also rescued by the EHV-4 orthologue. Furthermore, actin stress fiber disassembly was significantly more pronounced in cells infected with parental EHV-1, revertant, or the recombinant EHV-1 expressing EHV-4 US3. Finally, we observed that deletion of US3 in EHV-1 did not affect the expression of adhesion molecules on the surface of infected cells. PMID:27754319

  9. Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins

    PubMed Central

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.; Liang, Tiffany Y.; Pivaroff, Cullen G.; Haynes, Matthew R.; Nulton, Jim; Felts, Ben; Bailey, Barbara A.; Salamon, Peter; Edwards, Robert A.; Burgin, Alex B.; Segall, Anca M.; Rohwer, Forest

    2015-01-01

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented. PMID:26132888

  10. Flavivirus NS1: a multifaceted enigmatic viral protein.

    PubMed

    Rastogi, Meghana; Sharma, Nikhil; Singh, Sunit Kumar

    2016-01-01

    Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review.

  11. Flavivirus NS1: a multifaceted enigmatic viral protein.

    PubMed

    Rastogi, Meghana; Sharma, Nikhil; Singh, Sunit Kumar

    2016-01-01

    Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review. PMID:27473856

  12. Phage phenomics: Physiological approaches to characterize novel viral proteins

    DOE PAGESBeta

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.; Liang, Tiffany Y.; Pivaroff, Cullen G.; Haynes, Matthew R.; Nulton, Jim; Felts, Ben; Bailey, Barbara A.; Salamon, Peter; et al

    2015-06-11

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less

  13. Phage phenomics: Physiological approaches to characterize novel viral proteins

    SciTech Connect

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.; Liang, Tiffany Y.; Pivaroff, Cullen G.; Haynes, Matthew R.; Nulton, Jim; Felts, Ben; Bailey, Barbara A.; Salamon, Peter; Edwards, Robert A.; Burgin, Alex B.; Segall, Anca M.; Rohwer, Forest

    2015-06-11

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.

  14. Disclosing the in vivo organization of a viral histone-like protein in Bacillus subtilis mediated by its capacity to recognize the viral genome.

    PubMed

    Holguera, Isabel; Ballesteros-Plaza, David; Muñoz-Espín, Daniel; Salas, Margarita

    2012-04-10

    Organization of replicating prokaryotic genomes requires architectural elements that, similarly to eukaryotic systems, induce topological changes such as DNA supercoiling. Bacteriophage 29 protein p6 has been described as a histone-like protein that compacts the viral genome by forming a nucleoprotein complex and plays a key role in the initiation of protein-primed DNA replication. In this work, we analyze the subcellular localization of protein p6 by immunofluorescence microscopy and show that, at early infection stages, it localizes in a peripheral helix-like configuration. Later, at middle infection stages, protein p6 is recruited to the bacterial nucleoid. This migrating process is shown to depend on the synthesis of components of the 29 DNA replication machinery (i.e., terminal protein and DNA polymerase) needed for the replication of viral DNA, which is required to recruit the bulk of protein p6. Importantly, the double-stranded DNA-binding capacity of protein p6 is essential for its relocalization at the nucleoid. Altogether, the results disclose the in vivo organization of a viral histone-like protein in bacteria.

  15. Brome mosaic virus capsid protein regulates accumulation of viral replication proteins by binding to the replicase assembly RNA element.

    PubMed

    Yi, Guanghui; Letteney, Ester; Kim, Chul-Hyun; Kao, C Cheng

    2009-04-01

    Viruses provide valuable insights into the regulation of molecular processes. Brome mosaic virus (BMV) is one of the simplest entities with four viral proteins and three genomic RNAs. Here we report that the BMV capsid protein (CP), which functions in RNA encapsidation and virus trafficking, also represses viral RNA replication in a concentration-dependent manner by inhibiting the accumulation of the RNA replication proteins. Expression of the replication protein 2a in trans can partially rescue BMV RNA accumulation. A mutation in the CP can decrease the repression of translation. Translation repression by the CP requires a hairpin RNA motif named the B Box that contains seven loop nucleotides (nt) within the 5' untranslated regions (UTR) of BMV RNA1 and RNA2. Purified CP can bind directly to the B Box RNA with a K (d) of 450 nM. The secondary structure of the B Box RNA was determined to contain a highly flexible 7-nt loop using NMR spectroscopy, native gel analysis, and thermal denaturation studies. The B Box is also recognized by the BMV 1a protein to assemble the BMV replicase, suggesting that the BMV CP can act to regulate several viral infection processes.

  16. Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R.

    PubMed

    Pfaller, Christian K; Radeke, Monte J; Cattaneo, Roberto; Samuel, Charles E

    2014-01-01

    Measles virus (MV) lacking expression of C protein (C(KO)) is a potent activator of the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), whereas the isogenic parental virus expressing C protein is not. Here, we demonstrate that significant amounts of dsRNA accumulate during C(KO) mutant infection but not following parental virus infection. dsRNA accumulated during late stages of infection and localized with virus replication sites containing N and P proteins. PKR autophosphorylation and stress granule formation correlated with the timing of dsRNA appearance. Phospho-PKR localized to dsRNA-containing structures as revealed by immunofluorescence. Production of dsRNA was sensitive to cycloheximide but resistant to actinomycin D, suggesting that dsRNA is a viral product. Quantitative PCR (qPCR) analyses revealed reduced viral RNA synthesis and a steepened transcription gradient in C(KO) virus-infected cells compared to those in parental virus-infected cells. The observed alterations were further reflected in lower viral protein expression levels and reduced C(KO) virus infectious yield. RNA deep sequencing confirmed the viral RNA expression profile differences seen by qPCR between C(KO) mutant and parental viruses. After one subsequent passage of the C(KO) virus, defective interfering RNA (DI-RNA) with a duplex structure was obtained that was not seen with the parental virus. We conclude that in the absence of C protein, the amount of PKR activator RNA, including DI-RNA, is increased, thereby triggering innate immune responses leading to impaired MV growth. PMID:24155404

  17. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    PubMed Central

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-01-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks. PMID:27198619

  18. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    NASA Astrophysics Data System (ADS)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  19. Recombinant measles virus incorporating heterologous viral membrane proteins for use as vaccines.

    PubMed

    Swett-Tapia, Cindy; Bogaert, Lies; de Jong, Pascal; van Hoek, Vladimir; Schouten, Theo; Damen, Irma; Spek, Dirk; Wanningen, Patrick; Radošević, Katarina; Widjojoatmodjo, Myra N; Zahn, Roland; Custers, Jerome; Roy, Soumitra

    2016-09-01

    Recombinant measles virus (rMV) vectors expressing heterologous viral membrane protein antigens are potentially useful as vaccines. Genes encoding the mumps virus haemagglutinin-neuraminidase (MuV-HN), the influenza virus haemagglutinin (Flu-HA) or the respiratory syncytial virus fusion (RSV-F) proteins were inserted into the genome of a live attenuated vaccine strain of measles virus. Additionally, in this case rMV with the MuV-HN or the influenza HA inserts, chimeric constructs were created that harboured the measles virus native haemagglutinin or fusion protein cytoplasmic domains. In all three cases, sucrose-gradient purified preparations of rMV were found to have incorporated the heterologous viral membrane protein on the viral membrane. The possible utility of rMV expressing RSV-F (rMV.RSV-F) as a vaccine was tested in a cotton rat challenge model. Vaccination with rMV.RSV-F efficiently induced neutralizing antibodies against RSV and protected animals from infection with RSV in the lungs. PMID:27311834

  20. Artificial neural networks trained to detect viral and phage structural proteins.

    PubMed

    Seguritan, Victor; Alves, Nelson; Arnoult, Michael; Raymond, Amy; Lorimer, Don; Burgin, Alex B; Salamon, Peter; Segall, Anca M

    2012-01-01

    Phages play critical roles in the survival and pathogenicity of their hosts, via lysogenic conversion factors, and in nutrient redistribution, via cell lysis. Analyses of phage- and viral-encoded genes in environmental samples provide insights into the physiological impact of viruses on microbial communities and human health. However, phage ORFs are extremely diverse of which over 70% of them are dissimilar to any genes with annotated functions in GenBank. Better identification of viruses would also aid in better detection and diagnosis of disease, in vaccine development, and generally in better understanding the physiological potential of any environment. In contrast to enzymes, viral structural protein function can be much more challenging to detect from sequence data because of low sequence conservation, few known conserved catalytic sites or sequence domains, and relatively limited experimental data. We have designed a method of predicting phage structural protein sequences that uses Artificial Neural Networks (ANNs). First, we trained ANNs to classify viral structural proteins using amino acid frequency; these correctly classify a large fraction of test cases with a high degree of specificity and sensitivity. Subsequently, we added estimates of protein isoelectric points as a feature to ANNs that classify specialized families of proteins, namely major capsid and tail proteins. As expected, these more specialized ANNs are more accurate than the structural ANNs. To experimentally validate the ANN predictions, several ORFs with no significant similarities to known sequences that are ANN-predicted structural proteins were examined by transmission electron microscopy. Some of these self-assembled into structures strongly resembling virion structures. Thus, our ANNs are new tools for identifying phage and potential prophage structural proteins that are difficult or impossible to detect by other bioinformatic analysis. The networks will be valuable when sequence is

  1. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein

    SciTech Connect

    Ahn, Byung Chul; Breitenbach, Jonathan E.; Kim, Seong K.; O'Callaghan, Dennis J. . E-mail: docall@lsuhsc.edu

    2007-06-20

    The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5'untranslated region (UTR), a 285 base pair open reading frame (ORF), and a poly adenylation (A) signal [Holden, V.R., Harty, R.N., Yalamanchili, R.R., O'Callaghan, D.J., 1992. The IR3 gene of equine herpesvirus type 1: a unique gene regulated by sequences within the intron of the immediate-early gene. DNA Seq. 3, 143-152]. Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed.

  2. Label Free Inhibitor Screening of Hepatitis C Virus (HCV) NS5B Viral Protein Using RNA Oligonucleotide

    PubMed Central

    Roh, Changhyun; Kim, Sang Eun; Jo, Sung-Kee

    2011-01-01

    Globally, over 170 million people (ca. 3% of the World’s population) are infected with the hepatitis C virus (HCV), which can cause serious liver diseases such as chronic hepatitis, evolving into subsequent health problems. Driven by the need to detect the presence of HCV, as an essential factor in diagnostic medicine, the monitoring of viral protein has been of great interest in developing simple and reliable HCV detection methods. Despite considerable advances in viral protein detection as an HCV disease marker, the current enzyme linked immunosorbent assay (ELISA) based detection methods using antibody treatment have several drawbacks. To overcome this bottleneck, an RNA aptamer become to be emerged as an antibody substitute in the application of biosensor for detection of viral protein. In this study, we demonstrated a streptavidin-biotin conjugation method, namely, the RNA aptamer sensor system that can quantify viral protein with detection level of 700 pg mL−1 using a biotinylated RNA oligonucleotide on an Octet optical biosensor. Also, we showed this method can be used to screen inhibitors of viral protein rapidly and simply on a biotinylated RNA oligonucleotide biosensor. Among the inhibitors screened, (−)-Epigallocatechin gallate showed high binding inhibition effect on HCV NS5B viral protein. The proposed method can be considered a real-time monitoring method for inhibitor screening of HCV viral protein and is expected to be applicable to other types of diseases. PMID:22163979

  3. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    SciTech Connect

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui; Zhang, Jun; Xia, Ning-Shao; Miao, Ji; Zhao, Qinjian

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  4. Viral miRNAs.

    PubMed

    Plaisance-Bonstaff, Karlie; Renne, Rolf

    2011-01-01

    Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109-D111, 2004). miRNAs are short 22  ±  3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350-355, 2004; Cell 116:281-297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91-105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682-686, 2005; J Virol 79:13094-13104, 2005; Virology 383:183-187, 2009; J Virol 82:9823-9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis. PMID:21431678

  5. A plant viral coat protein RNA binding consensus sequence contains a crucial arginine.

    PubMed Central

    Ansel-McKinney, P; Scott, S W; Swanson, M; Ge, X; Gehrke, L

    1996-01-01

    A defining feature of alfalfa mosaic virus (AMV) and ilarviruses [type virus: tobacco streak virus (TSV)] is that, in addition to genomic RNAs, viral coat protein is required to establish infection in plants. AMV and TSV coat proteins, which share little primary amino acid sequence identity, are functionally interchangeable in RNA binding and initiation of infection. The lysine-rich amino-terminal RNA binding domain of the AMV coat protein lacks previously identified RNA binding motifs. Here, the AMV coat protein RNA binding domain is shown to contain a single arginine whose specific side chain and position are crucial for RNA binding. In addition, the putative RNA binding domain of two ilarvirus coat proteins, TSV and citrus variegation virus, is identified and also shown to contain a crucial arginine. AMV and ilarvirus coat protein sequence alignment centering on the key arginine revealed a new RNA binding consensus sequence. This consensus may explain in part why heterologous viral RNA-coat protein mixtures are infectious. Images PMID:8890181

  6. Cannabinoid modulation of Kaposi's sarcoma-associated herpesvirus infection and transformation.

    PubMed

    Zhang, Xuefeng; Wang, Jian Feng; Kunos, George; Groopman, Jerome E

    2007-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV; also named human herpesvirus 8) is necessary but not sufficient for the development of Kaposi's sarcoma. A variety of factors may contribute to the pathogenesis of Kaposi's sarcoma in addition to KSHV. Marijuana is a widely used recreational agent, and Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major active component of marijuana, is prescribed for medicinal use. To evaluate how cannabinoids may affect the pathogenesis of Kaposi's sarcoma, we studied primary human dermal microvascular endothelial cells (HMVEC) exposed to KSHV. There was an increased efficiency of KSHV infection in the presence of low doses of Delta(9)-THC. We also found that Delta(9)-THC increased the viral load in KSHV-infected HMVEC through activation of the KSHV lytic switch gene, the open reading frame 50. Furthermore, we observed that Delta(9)-THC stimulated expression of the KSHV-encoded viral G protein-coupled receptor and Kaposi's sarcoma cell proliferation. Our results indicate that Delta(9)-THC can enhance KSHV infection and replication and foster KSHV-mediated endothelial transformation. Thus, use of cannabinoids may place individuals at greater risk for the development and progression of Kaposi's sarcoma. PMID:17671191

  7. T cell inactivation by poxviral B22 family proteins increases viral virulence.

    PubMed

    Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A; Edwards, David M; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K; Pickup, David J; Lewinsohn, David M; Gold, Marielle C; Wong, Scott W; Sacha, Jonah B; Slifka, Mark K; Früh, Klaus

    2014-05-01

    Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination. PMID:24832205

  8. Influenza virus NS1 protein interacts with viral transcription-replication complexes in vivo.

    PubMed

    Marión, R M; Zürcher, T; de la Luna, S; Ortín, J

    1997-10-01

    The interaction of influenza virus NS1 protein with other viral products in the infected cell was analysed by co-immunoprecipitation studies. The three subunits of the polymerase and the nucleoprotein, but not M1 protein, were co-immunoprecipitated by NS1-specific serum but not when control serum was used. Such co-immunoprecipitation was not sensitive to RNase treatment of the immunoprecipitates. Co-immunoprecipitation was also obtained when the viral transcription-replication system was reconstituted in vivo by transfection of cDNAs and model vRNA template into vaccinia virus-T7-infected cells. Analysis of the RNA pulled-down in the NS1-specific precipitates indicated the presence of both vRNA and mRNA. These results are discussed in the context of the phenotype of virus temperature-sensitive mutants affected in the NS1 gene.

  9. In Vitro and In Vivo Human Herpesvirus 8 Infection of Placenta

    PubMed Central

    Di Gangi, Iole Maria; Cantatore, Santina; Barbierato, Massimo; Bergamo, Elisa; Kfutwah, Anfumbom Jude; Neri, Margherita; Chieco-Bianchi, Luigi; Greco, Pantaleo; Gesualdo, Loreto; Ayouba, Ahidjo; Menu, Elisabeth; Fiore, Josè Ramòn

    2008-01-01

    Herpesvirus infection of placenta may be harmful in pregnancy leading to disorders in fetal growth, premature delivery, miscarriage, or major congenital abnormalities. Although a correlation between human herpesvirus 8 (HHV-8) infection and abortion or low birth weight in children has been suggested, and rare cases of in utero or perinatal HHV-8 transmission have been documented, no direct evidence of HHV-8 infection of placenta has yet been reported. The aim of this study was to evaluate the in vitro and in vivo susceptibility of placental cells to HHV-8 infection. Short-term infection assays were performed on placental chorionic villi isolated from term placentae. Qualitative and quantitative HHV-8 detection were performed by PCR and real-time PCR, and HHV-8 proteins were analyzed by immunohistochemistry. Term placenta samples from HHV-8-seropositive women were analyzed for the presence of HHV-8 DNA and antigens. In vitro infected histocultures showed increasing amounts of HHV-8 DNA in tissues and supernatants; cyto- and syncitiotrophoblasts, as well as endothelial cells, expressed latent and lytic viral antigens. Increased apoptotic phenomena were visualized by the terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end-labeling method in infected histocultures. Ex vivo, HHV-8 DNA and a latent viral antigen were detected in placenta samples from HHV-8-seropositive women. These findings demonstrate that HHV-8, like other human herpesviruses, may infect placental cells in vitro and in vivo, thus providing evidence that this phenomenon might influence vertical transmission and pregnancy outcome in HHV-8-infected women. PMID:19115001

  10. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    SciTech Connect

    Tzeng, W.-P.; Frey, Teryl K. . E-mail: tfrey@gsu.edu

    2005-07-05

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA.

  11. Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays

    PubMed Central

    Ambepitiya Wickramasinghe, Iresha N.; de Vries, Robert P.; Eggert, Amber M.; Wandee, Nantaporn; de Haan, Cornelis A. M.; Gröne, Andrea; Verheije, Monique H.

    2015-01-01

    The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens. PMID:26035584

  12. Herpes Simplex Virus Replication: Roles of Viral Proteins and Nucleoporins in Capsid-Nucleus Attachment▿

    PubMed Central

    Copeland, Anna Maria; Newcomb, William W.; Brown, Jay C.

    2009-01-01

    Replication of herpes simplex virus type 1 (HSV-1) involves a step in which a parental capsid docks onto a host nuclear pore complex (NPC). The viral genome then translocates through the nuclear pore into the nucleoplasm, where it is transcribed and replicated to propagate infection. We investigated the roles of viral and cellular proteins in the process of capsid-nucleus attachment. Vero cells were preloaded with antibodies specific for proteins of interest and infected with HSV-1 containing a green fluorescent protein-labeled capsid, and capsids bound to the nuclear surface were quantified by fluorescence microscopy. Results showed that nuclear capsid attachment was attenuated by antibodies specific for the viral tegument protein VP1/2 (UL36 gene) but not by similar antibodies specific for UL37 (a tegument protein), the major capsid protein (VP5), or VP23 (a minor capsid protein). Similar studies with antibodies specific for nucleoporins demonstrated attenuation by antibodies specific for Nup358 but not Nup214. The role of nucleoporins was further investigated with the use of small interfering RNA (siRNA). Capsid attachment to the nucleus was attenuated in cells treated with siRNA specific for either Nup214 or Nup358 but not TPR. The results are interpreted to suggest that VP1/2 is involved in specific attachment to the NPC and/or in migration of capsids to the nuclear surface. Capsids are suggested to attach to the NPC by way of the complex of Nup358 and Nup214, with high-resolution immunofluorescence studies favoring binding to Nup358. PMID:19073727

  13. Small interfering RNAs targeting viral structural envelope protein genes and the 5ʹ-UTR inhibit replication of bovine viral diarrhea virus in MDBK cells.

    PubMed

    Mishra, N; Rajukumar, K; Kalaiyarasu, S; Behera, S P; Nema, R K; Dubey, S C

    2011-01-01

    Bovine viral diarrhea viruses (BVDVs) are important pathogens of cattle that occur worldwide, and for which no antiviral therapy is available. In the present study, the inhibitory effect of small interfering (si) RNAs on bovine viral diarrhea virus 1 (BVDV-1) replication in cultured bovine cells was explored. Four synthetic siRNAs were designed to target structural envelope region genes (Erns, E1, and E2) and one cocktail of siRNA was generated to target the 5ʹ-UTR of the BVDV-1 genome. The inhibitory effects of siRNAs were assessed by determination of infectious viral titer, viral antigen and viral RNA. The siRNA cocktail and three of the synthetic siRNAs produced moderate anti-BVDV-1 effect in vitro as shown by 25%-40% reduction in BVDV-1 antigen production, 7.9-19.9-fold reduction in viral titer and 21-48-fold reduction in BVDV-1 RNA copy number. Our findings suggest that siRNA cocktail targeted at the 5ʹ-UTR is a stronger inhibitor of BVDV-1 replication and the targets for siRNA inhibition can be extended to BVDV-1 structural envelope protein genes.

  14. A Simple Proteomics-Based Approach to Identification of Immunodominant Antigens from a Complex Pathogen: Application to the CD4 T Cell Response against Human Herpesvirus 6B.

    PubMed

    Becerra-Artiles, Aniuska; Dominguez-Amorocho, Omar; Stern, Lawrence J; Calvo-Calle, J Mauricio

    2015-01-01

    Most of humanity is chronically infected with human herpesvirus 6 (HHV-6), with viral replication controlled at least in part by a poorly characterized CD4 T cell response. Identification of viral epitopes recognized by CD4 T cells is complicated by the large size of the herpesvirus genome and a low frequency of circulating T cells responding to the virus. Here, we present an alternative to classical epitope mapping approaches used to identify major targets of the T cell response to a complex pathogen like HHV-6B. In the approach presented here, extracellular virus preparations or virus-infected cells are fractionated by SDS-PAGE, and eluted fractions are used as source of antigens to study cytokine responses in direct ex vivo T cell activation studies. Fractions inducing significant cytokine responses are analyzed by mass spectrometry to identify viral proteins, and a subset of peptides from these proteins corresponding to predicted HLA-DR binders is tested for IFN-γ production in seropositive donors with diverse HLA haplotypes. Ten HHV-6B viral proteins were identified as immunodominant antigens. The epitope-specific response to HHV-6B virus was complex and variable between individuals. We identified 107 peptides, each recognized by at least one donor, with each donor having a distinctive footprint. Fourteen peptides showed responses in the majority of donors. Responses to these epitopes were validated using in vitro expanded cells and naturally expressed viral proteins. Predicted peptide binding affinities for the eight HLA-DRB1 alleles investigated here correlated only modestly with the observed CD4 T cell responses. Overall, the response to the virus was dominated by peptides from the major capsid protein U57 and major antigenic protein U11, but responses to other proteins including glycoprotein H (U48) and tegument proteins U54 and U14 also were observed. These results provide a means to follow and potentially modulate the CD4 T-cell immune response to HHV-6

  15. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; Ye, Fuzhou; Guan, Liya; Liu, Hong; Qin, Qiwei

    2011-09-01

    Green fluorescent protein-tagged recombinant virus has been successfully applied to observing the infective dynamics and evaluating viral replication. Here, we identified soft-shelled turtle iridovirus (STIV) ORF55 as an envelope protein (VP55), and developed a recombinant STIV expressing an enhanced green fluorescent protein (EGFP) fused to VP55 (EGFP-STIV). Recombinant EGFP-STIV shared similar single-step growth curves and ultrastructural morphology with wild type STIV (wt-STIV). The green fluorescence distribution during EGFP-STIV infection was consistent with the intracellular distribution of VP55 which was mostly co-localized with virus assembly sites. Furthermore, EGFP-STIV could be used to evaluate viral replication conveniently under drug treatment, and the result showed that STIV replication was significantly inhibited after the addition of antioxidant pyrrolidine dithiocarbamate (PDTC). Thus, the EGFP-tagged recombinant iridovirus will not only be useful for further investigations on the viral replicative dynamics, but also provide an alternative simple strategy to screen for antiviral substances.

  16. Genetically engineered, biarsenically labeled influenza virus allows visualization of viral NS1 protein in living cells.

    PubMed

    Li, Yang; Lu, Xinya; Li, Junwei; Bérubé, Nathalie; Giest, Kerri-Lane; Liu, Qiang; Anderson, Deborah H; Zhou, Yan

    2010-07-01

    Real-time fluorescence imaging of viral proteins in living cells provides a valuable means to study virus-host interactions. The challenge of generating replication-competent fluorescent influenza A virus is that the segmented genome does not allow fusion of a fluorescent protein gene to any viral gene. Here, we introduced the tetracysteine (TC) biarsenical labeling system into influenza virus in order to fluorescently label viral protein in the virus life cycle. We generated infectious influenza A viruses bearing a small TC tag (CCPGCC) in the loop/linker regions of the NS1 proteins. In the background of A/Puerto Rico/8/34 (H1N1) (PR8) virus, the TC tag can be inserted into NS1 after amino acid 52 (AA52) (PR8-410), AA79 (PR8-412), or AA102 (PR8-413) or the TC tag can be inserted and replace amino acids 79 to 84 (AA79-84) (PR8-411). Although PR8-410, PR8-411, and PR8-412 viruses are attenuated than the wild-type (WT) virus to some extent in multiple-cycle infection, their growth potential is similar to that of the WT virus during a single cycle of infection, and their NS1 subcellular localization and viral protein synthesis rate are quite similar to those of the WT virus. Furthermore, labeling with membrane-permeable biarsenical dye resulted in fluorescent NS1 protein in the context of virus infection. We could exploit this strategy on NS1 protein of A/Texas/36/91 (H1N1) (Tx91) by successfully rescuing a TC-tagged virus, Tx91-445, which carries the TC tag replacement of AA79-84. The infectivity of Tx91-445 virus was similar to that of WT Tx91 during multiple cycles of replication and a single cycle of replication. The NS1 protein derived from Tx91-445 can be fluorescently labeled in living cells. Finally, with biarsenical labeling, the engineered replication-competent virus allowed us to visualize NS1 protein nuclear import in virus-infected cells in real time.

  17. Falcon Herpesvirus, the etiologic agent of inclusion body disease of falcons.

    PubMed

    Maré, C J; Graham, D L

    1973-07-01

    A viral agent has been isolated from five fatal cases of naturally occurring inclusion body disease in three different falcon species, namely, the prairie falcon (Falco mexicanus), the red-headed falcon (F. chiquera), and the peregrine falcon (F. peregrinus). The virus has been shown to possess the physical, chemical, and biological properties of a herpesvirus and has been used to reproduce inclusion body disease in the prairie falcon, merlin (F. columbarius), and American kestrel (F. sparverius). A similar disease was also produced with this virus in the great horned owl (Bubo virginianus), screech owl (Otus asio), and ring-necked turtle dove (Streptopelia risoria). Serological comparison of the falcon herpesvirus with other known avian herpesviruses revealed that the virus is antigenically closely related to a pigeon herpesvirus and an owl herpesvirus while differing from the former in host range. No antigenic relationship to infectious laryngotracheitis virus, duck virus enteritis, or Marek's disease virus could be demonstrated. PMID:4352453

  18. Chromatin Modulation of Herpesvirus Lytic Gene Expression: Managing Nucleosome Density and Heterochromatic Histone Modifications.

    PubMed

    Kristie, Thomas M

    2016-01-01

    Like their cellular hosts, herpesviruses are subject to the regulatory impacts of chromatin assembled on their genomes. Upon infection, these viruses are assembled into domains of chromatin with heterochromatic signatures that suppress viral gene expression or euchromatic characteristics that promote gene expression. The organization and modulation of these chromatin domains appear to be intimately linked to the coordinated expression of the different classes of viral genes and thus ultimately play an important role in the progression of productive infection or the establishment and maintenance of viral latency. A recent report from the Knipe laboratory (J. S. Lee, P. Raja, and D. M. Knipe, mBio 7:e02007-15, 2016) contributes to the understanding of the dynamic modulation of chromatin assembled on the herpes simplex virus genome by monitoring the levels of characteristic heterochromatic histone modifications (histone H3 lysine 9 and 27 methylation) associated with a model viral early gene during the progression of lytic infection. Additionally, this study builds upon previous observations that the viral immediate-early protein ICP0 plays a role in reducing the levels of heterochromatin associated with the early genes. PMID:26884430

  19. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein

    PubMed Central

    Bugli, Francesca; Caprettini, Valeria; Cacaci, Margherita; Martini, Cecilia; Paroni Sterbini, Francesco; Torelli, Riccardo; Della Longa, Stefano; Papi, Massimiliano; Palmieri, Valentina; Giardina, Bruno; Posteraro, Brunella; Sanguinetti, Maurizio; Arcovito, Alessandro

    2014-01-01

    In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with the newly described small ubiquitin-like modifier (SUMO) fusion system. Our results demonstrate that the histidine-tagged protein does not escape the accumulation in the inclusion bodies, and that SUMO is largely superior to the thioredoxin-fusion tag in enhancing the expression and solubility of VP6 protein. Moreover, the VP6 protein produced according to the SUMO fusion tag displays well-known assembly properties, as observed in both transmission electron microscopy and atomic force microscopy images, giving rise to either VP6 trimers, 60 nm spherical virus-like particles, or nanotubes a few microns long. This different quaternary organization of VP6 shows a higher level of immunogenicity for the elongated structures with respect to the spheres or the protein trimers. Therefore, the expression and purification strategy presented here – providing a large amount of the viral capsid protein in the native form with relatively simple, rapid, and economical procedures – opens a new route toward large-scale production of a more efficient antigenic compound to be used as a vaccination tool or as an adjuvant, and also represents a top-quality biomaterial to be further modified for biotechnological purposes. PMID:24936129

  20. Cytoskeletal proteins participate in conserved viral strategies across kingdoms of life.

    PubMed

    Erb, Marcella L; Pogliano, Joe

    2013-12-01

    The discovery of tubulin-like cytoskeletal proteins carried on the genomes of bacteriophages that are actively used for phage propagation during both the lytic and lysogenic cycle have revealed that there at least two ways that viruses can utilize a cytoskeleton; co-opt the host cytoskeleton or bring their own homologues. Either strategy underscores the deep evolutionary relationship between viruses and cytoskeletal proteins and points to a conservation of viral strategies that crosses the kingdoms of life. Here we review some of the most recent discoveries about tubulin cytoskeletal elements encoded by phages and compare them to some of the strategies utilized by the gammaherpesvirues of mammalian cells. PMID:24055040

  1. Herpesviral ICP0 Protein Promotes Two Waves of Heterochromatin Removal on an Early Viral Promoter during Lytic Infection

    PubMed Central

    Lee, Jennifer S.; Raja, Priya

    2016-01-01

    ABSTRACT Herpesviruses must contend with host cell epigenetic silencing responses acting on their genomes upon entry into the host cell nucleus. In this study, we confirmed that unchromatinized herpes simplex virus 1 (HSV-1) genomes enter primary human foreskin fibroblasts and are rapidly subjected to assembly of nucleosomes and association with repressive heterochromatin modifications such as histone 3 (H3) lysine 9-trimethylation (H3K9me3) and lysine 27-trimethylation (H3K27me3) during the first 1 to 2 h postinfection. Kinetic analysis of the modulation of nucleosomes and heterochromatin modifications over the course of lytic infection demonstrates a progressive removal that coincided with initiation of viral gene expression. We obtained evidence for three phases of heterochromatin removal from an early gene promoter: an initial removal of histones and heterochromatin not dependent on ICP0, a second ICP0-dependent round of removal of H3K9me3 that is independent of viral DNA synthesis, and a third phase of H3K27me3 removal that is dependent on ICP0 and viral DNA synthesis. The presence of ICP0 in transfected cells is also sufficient to promote removal of histones and H3K9me3 modifications of cotransfected genes. Overall, these results show that ICP0 promotes histone removal, a reduction of H3K9me3 modifications, and a later indirect reduction of H3K27me3 modifications following viral early gene expression and DNA synthesis. Therefore, HSV ICP0 promotes the reversal of host epigenetic silencing mechanisms by several mechanisms. PMID:26758183

  2. A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells

    PubMed Central

    Campeau, Eric; Ruhl, Victoria E.; Rodier, Francis; Smith, Corey L.; Rahmberg, Brittany L.; Fuss, Jill O.; Campisi, Judith; Yaswen, Paul; Cooper, Priscilla K.; Kaufman, Paul D.

    2009-01-01

    The ability to express or deplete proteins in living cells is crucial for the study of biological processes. Viral vectors are often useful to deliver DNA constructs to cells that are difficult to transfect by other methods. Lentiviruses have the additional advantage of being able to integrate into the genomes of non-dividing mammalian cells. However, existing viral expression systems generally require different vector backbones for expression of cDNA, small hairpin RNA (shRNA) or microRNA (miRNA) and provide limited drug selection markers. Furthermore, viral backbones are often recombinogenic in bacteria, complicating the generation and maintenance of desired clones. Here, we describe a collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers. These vectors are based on the Gateway technology (Invitrogen) whereby the cDNA, shRNA or miRNA of interest is cloned into an Entry vector and then recombined into a Destination vector that carries the chosen viral backbone and drug selection marker. This recombination reaction generates the desired product with >95% efficiency and greatly reduces the frequency of unwanted recombination in bacteria. We generated Destination vectors for the production of both retroviruses and lentiviruses. Further, we characterized each vector for its viral titer production as well as its efficiency in expressing or depleting proteins of interest. We also generated multiple types of vectors for the production of fusion proteins and confirmed expression of each. We demonstrated the utility of these vectors in a variety of functional studies. First, we show that the FKBP12 Destabilization Domain system can be used to either express or deplete the protein of interest in mitotically-arrested cells. Also, we generate primary fibroblasts that can be induced to senesce in the presence or absence of DNA damage. Finally, we

  3. Viral miRNAs and immune evasion.

    PubMed

    Boss, Isaac W; Renne, Rolf

    2011-01-01

    Viral miRNAs, ~22nt RNA molecules which post-transcriptionally regulate gene expression, are emerging as important tools in immune evasion. Viral infection is a complex process that requires immune evasion in order to establish persistent life-long infection of the host. During this process viruses express both protein-coding and non-coding genes, which help to modulate the cellular environment making it more favorable for infection. In the last decade, it was uncovered that DNA viruses express a diverse and abundant pool of small non-coding RNA molecules, called microRNAs (miRNAs). These virally encoded miRNAs are non-immunogenic and therefore are important tools used to evade both innate and adaptive immune responses. This review aims to summarize our current knowledge of herpesvirus- and polyomavirus-encoded miRNAs, and how they contribute to immune evasion by targeting viral and/or host cellular genes. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.

  4. Identification and characterization of Kaposi's sarcoma-associated herpesvirus open reading frame 11 promotor activation

    SciTech Connect

    Chen, Lei

    2008-01-01

    Open reading frame 11 (ORF11) of Kaposi's sarcoma-associated herpesvirus belongs to a herpesviral homologous protein family shared by some members of the gamma- herpesvirus subfamily. Little is known about this ORF11 homologous protein family. We have characterized an unknown open reading frame, ORF11, located adjacent and in the opposite orientation to a well-characterized viral IL-6 gene. Northern blot analysis reveals that ORF11 is expressed during the KSHV lytic cycle with delayed-early transcription kinetics. We have determined the 5{prime} and 3{prime} untranslated region of the unspliced ORF11 transcript and identified both the transcription start site and the transcription termination site. Core promoter region, representing ORF11 promoter activity, was mapped to a 159nt fragment 5{prime} most proximal to the transcription start site. A functional TATA box was identified in the core promoter region. Interestingly, we found that ORF11 transcriptional activation is not responsive to Rta, the KSHV lytic switch protein. We also discovered that part of the ORF11 promoter region, the 209nt fragment upstream of the transcription start site, was repressed by phorbol esters. Our data help to understand transcription regulation of ORF11 and to elucidate roles of ORF11 in KSHV pathogenesis and life cycle.

  5. The Kaposi's sarcoma-associated herpesvirus ORF34 protein binds to HIF-1α and causes its degradation via the proteasome pathway.

    PubMed

    Haque, Muzammel; Kousoulas, Konstantin G

    2013-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for Kaposi's sarcoma (KS) and two other lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). Kaposi's sarcoma is a highly vascular tumor, and recently both hypoxia-inducible factor 1α (HIF-1α) and HIF-2α were detected in KS samples, indicating a role of HIFs in the KSHV life cycle. Previously, we showed that ORF34, a lytic gene of unassigned function, was activated by hypoxia and that ORF34 transcription was upregulated by both HIFs (M. Haque, D. A. Davis, V. Wang, I. Widmer, and R. Yarchoan, J Virol. 77:6761-6768, 2003). In the present study, we show that coexpression of ORF34 with HIF-1αm (degradation-resistant HIF-1α) caused substantial reduction in HIF-1α-dependent transcription, as evidenced by reporter assays. Two-way immunoprecipitation experiments revealed that ORF34 physically interacted with HIF-1αm in transient expression experiments. Deletion analysis revealed that three different ORF34 domains interacted with the amino-terminal domain of HIF-1α. Also, purified HIF-1α and ORF34 proteins interacted with each other. The observed transcriptional inhibition of HIF-1α-dependent promoters was attributed to degradation of HIF-1α after binding with ORF34, since the overall amount of wild-type HIF-1α but not the degradation-resistant one (HIF-1αm) was reduced in the presence of ORF34. Moreover, ORF34 caused degradation of HIF-1α in a dose-dependent manner. Inhibition of the ubiquitin-dependent pathway by the chemical proteasome inhibitor MG132 prevented HIF-1α degradation in the presence of ORF34. These results show that ORF34 binds to HIF-1α, leading to its degradation via the proteasome-dependent pathway. PMID:23221556

  6. Inhibiting the Recruitment of PLCγ1 to Kaposi’s Sarcoma Herpesvirus K15 Protein Reduces the Invasiveness and Angiogenesis of Infected Endothelial Cells

    PubMed Central

    Gramolelli, Silvia; Weidner-Glunde, Magdalena; Abere, Bizunesh; Viejo-Borbolla, Abel; Bala, Kiran; Rückert, Jessica; Kremmer, Elisabeth; Schulz, Thomas F.

    2015-01-01

    Kaposi’s sarcoma (KS), caused by Kaposi’s sarcoma herpesvirus (KSHV), is a highly vascularised tumour of endothelial origin. KSHV infected endothelial cells show increased invasiveness and angiogenesis. Here, we report that the KSHV K15 protein, which we showed previously to contribute to KSHV-induced angiogenesis, is also involved in KSHV-mediated invasiveness in a PLCγ1-dependent manner. We identified βPIX, GIT1 and cdc42, downstream effectors of PLCγ1 in cell migration, as K15 interacting partners and as contributors to KSHV-triggered invasiveness. We mapped the interaction between PLCγ1, PLCγ2 and their individual domains with two K15 alleles, P and M. We found that the PLCγ2 cSH2 domain, by binding to K15P, can be used as dominant negative inhibitor of the K15P-PLCγ1 interaction, K15P-dependent PLCγ1 phosphorylation, NFAT-dependent promoter activation and the increased invasiveness and angiogenic properties of KSHV infected endothelial cells. We increased the binding of the PLCγ2 cSH2 domain for K15P by substituting two amino acids, thereby creating an improved dominant negative inhibitor of the K15P-dependent PLCγ1 activation. Taken together, these results demonstrate a necessary role of K15 in the increased invasiveness and angiogenesis of KSHV infected endothelial cells and suggest the K15-PLCγ1 interaction as a possible new target for inhibiting the angiogenic and invasive properties of KSHV. PMID:26295810

  7. Viral potassium channels as a robust model system for studies of membrane-protein interaction.

    PubMed

    Braun, Christian J; Lachnit, Christine; Becker, Patrick; Henkes, Leonhard M; Arrigoni, Cristina; Kast, Stefan M; Moroni, Anna; Thiel, Gerhard; Schroeder, Indra

    2014-04-01

    The viral channel KcvNTS belongs to the smallest K(+) channels known so far. A monomer of a functional homotetramer contains only 82 amino acids. As a consequence of the small size the protein is almost fully submerged into the membrane. This suggests that the channel is presumably sensitive to its lipid environment. Here we perform a comparative analysis for the function of the channel protein embedded in three different membrane environments. 1. Single-channel currents of KcvNTS were recorded with the patch clamp method on the plasma membrane of HEK293 cells. 2. They were also measured after reconstitution of recombinant channel protein into classical planar lipid bilayers and 3. into horizontal bilayers derived from giant unilamellar vesicles (GUVs). The recombinant channel protein was either expressed and purified from Pichia pastoris or from a cell-free expression system; for the latter a new approach with nanolipoprotein particles was used. The data show that single-channel activity can be recorded under all experimental conditions. The main functional features of the channel like a large single-channel conductance (80pS), high open-probability (>50%) and the approximate duration of open and closed dwell times are maintained in all experimental systems. An apparent difference between the approaches was only observed with respect to the unitary conductance, which was ca. 35% lower in HEK293 cells than in the other systems. The reason for this might be explained by the fact that the channel is tagged by GFP when expressed in HEK293 cells. Collectively the data demonstrate that the small viral channel exhibits a robust function in different experimental systems. This justifies an extrapolation of functional data from these systems to the potential performance of the channel in the virus/host interaction. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking. PMID:23791706

  8. A highly sensitive and selective viral protein detection method based on RNA oligonucleotide nanoparticle

    PubMed Central

    Roh, Changhyun; Lee, Ho-Young; Kim, Sang-Eun; Jo, Sung-Kee

    2010-01-01

    Globally, approximately 170 million people (representing approximately 3% of the population worldwide), are infected with hepatitis C virus (HCV) and at risk of serious liver disease, including chronic hepatitis. We propose a new quantum dots (QDs)-supported RNA oligonucleotide approach for the specific and sensitive detection of viral protein using a biochip. This method was developed by immobilizing a HCV nonstructural protein 5B (NS5B) on the surface of a glass chip via the formation of a covalent bond between an amine protein group and a ProLinker™ glass chip. The QDs-supported RNA oligonucleotide was conjugated via an amide formation reaction from coupling of a 5′-end-amine-modified RNA oligonucleotide on the surface of QDs displaying carboxyl groups via standard EDC coupling. The QDs-conjugated RNA oligonucleotide was interacted to immobilized viral protein NS5B on the biochip. The detection is based on the variation of signal of QDs-supported RNA oligonucleotide bound on an immobilized biochip. It was demonstrated that the value of the signal has a linear relationship with concentrations of the HCV NS5B viral protein in the 1 μg mL−1 to 1 ng mL−1 range with a detection limit of 1 ng mL−1. The major advantages of this RNA-oligonucleotide nanoparticle assay are its good specificity, ease of performance, and ability to perform one-spot monitoring. The proposed method could be used as a general method of HCV detection and is expected to be applicable to other types of diseases as well. PMID:20517476

  9. A proteomic study of the differential protein expression in MDBK cells after bovine herpesvirus type 1 infection (BHV-1) strain treatment

    PubMed Central

    Guo, Li; Yang, Yanling; Liu, Linna; Liao, Peng; Wen, Yongjun; Wu, Hua; Cheng, Shipeng

    2015-01-01

    Different BHV-1 strains, such as the virulent IBRV LN01/08 strains and the attenuated vaccine strain IBRV LNM, produces different clinical immune responses; however, the study of the differential protein expression in Madin-Darby bovine kidney (MDBK) cells after BHV-1-infection still remains unclear. Here, we applied a comparative proteomic strategy, based on 2D and MALDI-TOF/MS platforms, to examine the differential expression of proteins in MDBK cells that were treated and not treated with virulent IBRV LN01/08 and attenuated IBRV LNM strains. A total of eight differential proteins, including pyruvate kinase, heat shock protein (HSP) 90 (HSP90AA1 and HSP90AB1), annexin A, albumin (ALB), scinderin (SCIN), tubulin (alpha 1a) and vimentin (VIM), were identified. Among these proteins, pyruvate kinase, and HSP90 (HSP90AB1), tubulin and vimentin were identified in the virulent IBRV LN01/08 strain group, but were not identified in the attenuated IBRV LNM group. These results play an important role in tumor formation and development, cell migration, tumor cell line apoptosis, cell invasion and viral infection. The HSP90 (HSP90AA1) protein was identified in the control group and the attenuated IBRV LNM-infected group. Most studies have shown that HSP90 proteins were more of a cancer gene target, and inhibiting its function would result to oncogene degradation during cancer treatment. On the other hand, ALB is associated to cell differentiation, apoptosis, necrosis, cell death, viral infection, autophagy, interstitial tissue inflammation, and cell survival. These results provide a theoretical basis for the systematic understanding of BHV-1-infection mechanisms and BHV-1-induced immune responses. PMID:26064331

  10. A proteomic study of the differential protein expression in MDBK cells after bovine herpesvirus type 1 infection (BHV-1) strain treatment.

    PubMed

    Guo, Li; Yang, Yanling; Liu, Linna; Liao, Peng; Wen, Yongjun; Wu, Hua; Cheng, Shipeng

    2015-01-01

    Different BHV-1 strains, such as the virulent IBRV LN01/08 strains and the attenuated vaccine strain IBRV LNM, produces different clinical immune responses; however, the study of the differential protein expression in Madin-Darby bovine kidney (MDBK) cells after BHV-1-infection still remains unclear. Here, we applied a comparative proteomic strategy, based on 2D and MALDI-TOF/MS platforms, to examine the differential expression of proteins in MDBK cells that were treated and not treated with virulent IBRV LN01/08 and attenuated IBRV LNM strains. A total of eight differential proteins, including pyruvate kinase, heat shock protein (HSP) 90 (HSP90AA1 and HSP90AB1), annexin A, albumin (ALB), scinderin (SCIN), tubulin (alpha 1a) and vimentin (VIM), were identified. Among these proteins, pyruvate kinase, and HSP90 (HSP90AB1), tubulin and vimentin were identified in the virulent IBRV LN01/08 strain group, but were not identified in the attenuated IBRV LNM group. These results play an important role in tumor formation and development, cell migration, tumor cell line apoptosis, cell invasion and viral infection. The HSP90 (HSP90AA1) protein was identified in the control group and the attenuated IBRV LNM-infected group. Most studies have shown that HSP90 proteins were more of a cancer gene target, and inhibiting its function would result to oncogene degradation during cancer treatment. On the other hand, ALB is associated to cell differentiation, apoptosis, necrosis, cell death, viral infection, autophagy, interstitial tissue inflammation, and cell survival. These results provide a theoretical basis for the systematic understanding of BHV-1-infection mechanisms and BHV-1-induced immune responses.

  11. The Ebola virus matrix protein deeply penetrates the plasma membrane: an important step in viral egress.

    PubMed

    Soni, Smita P; Adu-Gyamfi, Emmanuel; Yong, Sylvia S; Jee, Clara S; Stahelin, Robert V

    2013-05-01

    Ebola virus, from the Filoviridae family has a high fatality rate in humans and nonhuman primates and to date, to the best of our knowledge, has no FDA approved vaccines or therapeutics. Viral protein 40 (VP40) is the major Ebola virus matrix protein that regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of VP40 membrane binding that are important for viral release remain to be elucidated. In this study, we used fluorescence quenching of a tryptophan on the membrane-binding interface with brominated lipids along with mutagenesis of VP40 to understand the depth of membrane penetration into lipid bilayers. Experimental results indicate that VP40 penetrates 8.1 Å into the hydrocarbon core of the plasma membrane bilayer. VP40 also induces substantial changes to membrane curvature as it tubulates liposomes and induces vesiculation into giant unilamellar vesicles, effects that are abrogated by hydrophobic mutations. This is a critical step in viral egress as cellular assays demonstrate that hydrophobic residues that penetrate deeply into the plasma membrane are essential for plasma membrane localization and virus-like particle formation and release from cells.

  12. The phiX174 protein J mediates DNA packaging and viral attachment to host cells.

    PubMed

    Bernal, Ricardo A; Hafenstein, Susan; Esmeralda, Raquel; Fane, Bentley A; Rossmann, Michael G

    2004-04-01

    Packaging of viral genomes into their respective capsids requires partial neutralization of the highly negatively charged RNA or DNA. Many viruses, including the Microviridae bacteriophages phiX174, G4, and alpha3, have solved this problem by coding for a highly positively charged nucleic acid-binding protein that is packaged along with the genome. The phiX174 DNA-binding protein, J, is 13 amino acid residues longer than the alpha3 and G4 J proteins by virtue of an additional nucleic acid-binding domain at the amino terminus. Chimeric phiX174 particles containing the smaller DNA-binding protein cannot be generated due to procapsid instability during DNA packaging. However, chimeric alpha3 and G4 phages, containing the phiX174 DNA-binding protein in place of the endogenous J protein, assemble and are infectious, but are less dense than the respective wild-type species. In addition, host cell attachment and native gel migration assays indicate surface variations of these viruses that are controlled by the nature of the J protein. The structure of alpha3 packaged with phiX174 J protein was determined to 3.5A resolution and compared with the previously determined structures of phiX174 and alpha3. The structures of the capsid and spike proteins in the chimeric particle remain unchanged within experimental error when compared to the wild-type alpha3 virion proteins. The amino-terminal region of the phiX174 J protein, which is missing from wild-type alpha3 virions, is mostly disordered in the alpha3 chimera. The differences observed between solution properties of wild-type phiX174, wild-type alpha3, and alpha3 chimera, including their ability to attach to host cells, correlates with the degree of order in the amino-terminal domain of the J protein. When ordered, this domain binds to the interior of the viral capsid and, thus, might control the flexibility of the capsid. In addition, the properties of the phiX174 J protein in the chimera and the results of mutational

  13. HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis.

    PubMed

    Haecker, Irina; Renne, Rolf

    2014-01-01

    MiRNAs regulate gene expression by binding predominantly to the 3' untranslated region (UTR) of target transcripts to prevent their translation and/or induce target degradation. In addition to the more than 1200 human miRNAs, human DNA tumor viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) encode miRNAs. Target predictions indicate that each miRNA targets hundreds of transcripts, many of which are regulated by multiple miRNAs. Thus, target identification is a big challenge for the field. Most methods used currently investigate single miRNA-target interactions and are not able to analyze complex miRNA-target networks. To overcome these challenges, cross-linking and immunoprecipitation (CLIP), a recently developed method to study direct RNA-protein interactions in living cells, has been successfully applied to miRNA target analysis. It utilizes Argonaute (Ago)-immunoprecipitation to isolate native Ago-miRNA-mRNA complexes. In four recent publications, two variants of the CLIP method (HITS-CLIP and PAR-CLIP) were utilized to determine the targetomes of human and viral miRNAs in cells infected with the gamma-herpesviruses KSHV and EBV, which are associated with a number of human cancers. Here, we briefly introduce herpesvirus-encoded miRNAs and then focus on how CLIP technology has largely impacted our understanding of viral miRNAs in viral biology and pathogenesis. PMID:24940765

  14. Detecting the ability of viral, bacterial and eukaryotic replication proteins to track along DNA.

    PubMed

    Tinker, R L; Kassavetis, G A; Geiduschek, E P

    1994-11-15

    The phage T4 gene 45 protein (gp45), Escherichia coli beta and the eukaryotic proliferating cell nuclear antigen (PCNA) function in replication as processivity factors of their corresponding DNA polymerases. The T4 gp45 also functions as the transcriptional activator that connects expression of viral late genes to DNA replication. DNA tracking is an essential component of the replication and transcription regulatory functions of T4 gp45. The ability of gp45, beta and PCNA to track along DNA has been analyzed by photocrosslinking. Each of these proteins must be loaded onto DNA by a species-specific assembly factor. For gp45 and beta, the density of traffic along DNA is determined by a dynamic balance between continuous protein loading and unloading, and is also dependent on interaction with the conjugate single-stranded DNA binding protein.

  15. Proteomic approaches to uncovering virus–host protein interactions during the progression of viral infection

    PubMed Central

    Lum, Krystal K; Cristea, Ileana M

    2016-01-01

    The integration of proteomic methods to virology has facilitated a significant breadth of biological insight into mechanisms of virus replication, antiviral host responses and viral subversion of host defenses. Throughout the course of infection, these cellular mechanisms rely heavily on the formation of temporally and spatially regulated virus–host protein–protein interactions. Reviewed here are proteomic-based approaches that have been used to characterize this dynamic virus–host interplay. Specifically discussed are the contribution of integrative mass spectrometry, antibody-based affinity purification of protein complexes, cross-linking and protein array techniques for elucidating complex networks of virus–host protein associations during infection with a diverse range of RNA and DNA viruses. The benefits and limitations of applying proteomic methods to virology are explored, and the contribution of these approaches to important biological discoveries and to inspiring new tractable avenues for the design of antiviral therapeutics is highlighted. PMID:26817613

  16. Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro.

    PubMed

    Pratelli, Annamaria; Colao, Valeriana

    2016-01-01

    The fusion machinery for herpesvirus entry in the host cells involves the interactions of viral glycoproteins with cellular receptors, although additional viral and cellular domains are required. Extensive areas of the plasma membrane surface consist of lipid rafts organized into cholesterol-rich microdomains involved in signal transduction, protein sorting, membrane transport and in many processes of viruses infection. Because of the extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to the lipid rafts, we investigated the effect of cholesterol depletion by methyl-β-cyclodextrin (MβCD) on caprine herpesvirus 1 (CpHV.1) in three important phases of virus infection such as binding, entry and post-entry. MβCD treatment did not prejudice virus binding to cells, while a dose-dependent reduction of the virus yield was observed at the virus entry stage, and 30 mM MβCD reduced infectivity evidently. Treatment of MDBK after virus entry revealed a moderate inhibitory effect suggesting that cholesterol is mainly required during virus entry rather than during the post-entry stage. Alteration of the envelope lipid composition affected virus entry and a noticeable reduction in virus infectivity was detected in the presence of 15 mM MβCD. Considering that the recognition of a host cell receptor is a crucial step in the start-up phase of infection, these data are essential for the study of CpHV.1 pathogenesis. To date virus receptors for CpHV.1 have not yet been identified and further investigations are required to state that MβCD treatment affects the expression of the viral receptors.

  17. Herpesvirus infections of the central nervous system in immunocompromised patients

    PubMed Central

    Strank, Cornelia

    2012-01-01

    Human herpesviruses may cause infections of the central nervous system during primary infection or following reactivation from a latent state. Especially in immunosuppressed patients the infection can take a life-threatening course, and therefore early diagnosis of herpesvirus-associated neurological diseases should have high priority. Clinical presentation in these patients is usually without typical features, making diagnosis even more challenging. Therefore general broad testing for different herpesviruses in cerebrospinal fluid samples is highly recommended. In addition, determination of the virus DNA level in the cerebrospinal fluid by quantitative assays seems to be of high importance to determine prognosis. Moreover, it might help to differentiate between specific virus-associated disease and unspecific presence of virus in the cerebrospinal fluid, especially in immunocompromised patients. Polymerase chain reaction analysis of cerebrospinal fluid has revolutionized the diagnosis of nervous system viral infections, particularly those caused by human herpesviruses. This review summarizes the role human herpesviruses play in central nervous system infections in immunocompromised patients, with a focus on the clinical manifestation of encephalitis. PMID:22973424

  18. The histone chaperone protein Nucleosome Assembly Protein-1 (hNAP-1) binds HIV-1 Tat and promotes viral transcription

    PubMed Central

    Vardabasso, Chiara; Manganaro, Lara; Lusic, Marina; Marcello, Alessandro; Giacca, Mauro

    2008-01-01

    Background Despite the large amount of data available on the molecular mechanisms that regulate HIV-1 transcription, crucial information is still lacking about the interplay between chromatin conformation and the events that regulate initiation and elongation of viral transcription. During transcriptional activation, histone acetyltransferases and ATP-dependent chromatin remodeling complexes cooperate with histone chaperones in altering chromatin structure. In particular, human Nucleosome Assembly Protein-1 (hNAP-1) is known to act as a histone chaperone that shuttles histones H2A/H2B into the nucleus, assembles nucleosomes and promotes chromatin fluidity, thereby affecting transcription of several cellular genes. Results Using a proteomic screening, we identified hNAP-1 as a novel cellular protein interacting with HIV-1 Tat. We observed that Tat specifically binds hNAP1, but not other members of the same family of factors. Binding between the two proteins required the integrity of the basic domain of Tat and of two separable domains of hNAP-1 (aa 162–290 and 290–391). Overexpression of hNAP-1 significantly enhanced Tat-mediated activation of the LTR. Conversely, silencing of the protein decreased viral promoter activity. To explore the effects of hNAP-1 on viral infection, a reporter HIV-1 virus was used to infect cells in which hNAP-1 had been either overexpressed or knocked-down. Consistent with the gene expression results, these two treatments were found to increase and inhibit viral infection, respectively. Finally, we also observed that the overexpression of p300, a known co-activator of both Tat and hNAP-1, enhanced hNAP-1-mediated transcriptional activation as well as its interaction with Tat. Conclusion Our study reveals that HIV-1 Tat binds the histone chaperone hNAP-1 both in vitro and in vivo and shows that this interaction participates in the regulation of Tat-mediated activation of viral gene expression. PMID:18226242

  19. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation

    PubMed Central

    Zhang, Hua; Song, Lei; Cong, Haolong

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5′ untranslated region (5′UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. IMPORTANCE The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection

  20. The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R.

    PubMed

    de Munnik, Sabrina M; van der Lee, Rosan; Velders, Daniëlle M; van Offenbeek, Jody; Smits-de Vries, Laura; Leurs, Rob; Smit, Martine J; Vischer, Henry F

    2016-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes the constitutively active G protein-coupled receptor ORF74, which is expressed on the surface of infected host cells and has been linked to the development of the angioproliferative tumor Kaposi's sarcoma. Furthermore, the insulin-like growth factor (IGF)-1 receptor, a receptor tyrosine kinase, also plays an essential role in Kaposi's sarcoma growth and survival. In this study we examined the effect of the constitutively active viral receptor ORF74 on human IGF-1R signaling. Constitutive and CXCL1-induced ORF74 signaling did not transactivate IGF-1R. In contrast, IGF-1 stimulated phospholipase C (PLC) activation in an ORF74-dependent manner without affecting chemokine binding to ORF74. Inhibition of constitutive ORF74 activity by mutagenesis or the inverse agonist CXCL10, or neutralizing IGF-1R with an antibody or silencing IGF-1R expression using siRNA inhibited PLC activation by IGF-1. Transactivation of ORF74 in response to IGF-1 occurred independently of Src, PI3K, and secreted ORF74 ligands. Furthermore, tyrosine residues in the carboxyl-terminus and intracellular loop 2 of ORF74 are not essential for IGF-1-induced PLC activation. Interestingly, PLC activation in response to IGF-1 is specific for ORF74 as IGF-1 was unable to activate PLC in cells expressing the constitutively active human cytomegalovirus (HCMV)-encoded GPCR US28. Interestingly, IGF-1 does not induce β-arrestin recruitment to ORF74. The proximity ligation assay revealed close proximity between ORF74 and IGF-1R on the cell surface, but a physical interaction was not confirmed by co-immunoprecipitation. Unmasking IGF-1R signaling to PLC in response to IGF-1 is a previously unrecognized action of ORF74. PMID:26931381

  1. Influenza C virus NS1 protein upregulates the splicing of viral mRNAs.

    PubMed

    Muraki, Yasushi; Furukawa, Takatoshi; Kohno, Yoshihiko; Matsuzaki, Yoko; Takashita, Emi; Sugawara, Kanetsu; Hongo, Seiji

    2010-02-01

    Pre-mRNAs of the influenza A virus M and NS genes are poorly spliced in virus-infected cells. By contrast, in influenza C virus-infected cells, the predominant transcript from the M gene is spliced mRNA. The present study was performed to investigate the mechanism by which influenza C virus M gene-specific mRNA (M mRNA) is readily spliced. The ratio of M1 encoded by a spliced M mRNA to CM2 encoded by an unspliced M mRNA in influenza C virus-infected cells was about 10 times larger than that in M gene-transfected cells, suggesting that a viral protein(s) other than M gene translational products facilitates viral mRNA splicing. RNase protection assays showed that the splicing of M mRNA in infected cells was much higher than that in M gene-transfected cells. The unspliced and spliced mRNAs of the influenza C virus NS gene encode two nonstructural (NS) proteins, NS1(C/NS1) and NS2(C/NS2), respectively. The introduction of premature translational termination into the NS gene, which blocked the synthesis of the C/NS1 and C/NS2 proteins, drastically reduced the splicing of NS mRNA, raising the possibility that C/NS1 or C/NS2 enhances viral mRNA splicing. The splicing of influenza C virus M mRNA was increased by coexpression of C/NS1, whereas it was reduced by coexpression of the influenza A virus NS1 protein (A/NS1). The splicing of influenza A virus M mRNA was also increased by coexpression of C/NS1, though it was inhibited by that of A/NS1. These results suggest that influenza C virus NS1, but not A/NS1, can upregulate viral mRNA splicing.

  2. Application and correlation of nano resolution microscopy techniques to viral protein localization

    NASA Astrophysics Data System (ADS)

    Hodges, Jeffery Allen

    This dissertation is primarily focused on the application of super-resolution microscopy techniques to localization of viral proteins within envelope viruses. Advances in optical super-resolution microscopy techniques have enabled scientists to observe phenomena much smaller than the Abbe diffraction limit by stochastically limiting the number of molecules excited at a given instance and localizing their positions one at a time. Additionally, methods such as Atomic Force Microscopy (AFM) allow scientists to measure the topological features and material properties of samples through contact with a force probe. This dissertation describes the application of these two techniques to virology in order to localize internal viral proteins of enveloped virions, and measure their effect on the elastic properties of the virion. By utilizing super-resolution microscopy techniques such as Fluorescent Photo-Activated Localization Microscopy (fPALM) on virions, which have had their surface glycoproteins labeled with a photo-switchable label, the viral envelope may be accurately recovered. This dissertation describes the development and application of this technique as it applies to envelope recovery of Vesicular Stomatitis Virus (VSV) and Human Immunodeficiency Virus-1 (HIV-1). By fluorescently labeling proteins, which are internal to each of these viruses, I have been able to localize a variety of viral proteins within their recovered envelopes. This is done without significant damage to the virion, making this method a highly effective in vivo technique. In the case of VSV, an asymmetric localization along the central axis towards the blunt 5' end was found to exist for both the polymerase and phosphoproteins. These have been determined to occupy a region in the central cavity of ˜57 +/- 12 nm on the 5' end. This inhomogeneity of the underlying proteins such an asymmetry would predict that the Young's modulus would vary along the central axis of the virion. This dissertation

  3. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction.

    PubMed Central

    Esposito, D; Craigie, R

    1998-01-01

    HIV-1 integrase specifically recognizes and cleaves viral end DNA during the initial step of retroviral integration. The protein and DNA determinants of the specificity of viral end DNA binding have not been clearly identified. We have used mutational analysis of the viral end LTR sequence, in vitro selection of optimal viral end sequences, and specific photocrosslinking to identify regions of integrase that interact with specific bases in the LTR termini. The results highlight the involvement of the disordered loop of the integrase core domain, specifically residues Q148 and Y143, in binding to the terminal portion of the viral DNA ends. Additionally, we have identified positions upstream in the LTR termini which interact with the C-terminal domain of integrase, providing evidence for the role of that domain in stabilization of viral DNA binding. Finally, we have located a region centered 12 bases from the viral DNA terminus which appears essential for viral end DNA binding in the presence of magnesium, but not in the presence of manganese, suggesting a differential effect of divalent cations on sequence-specific binding. These results help to define important regions of contact between integrase and viral DNA, and assist in the formulation of a molecular model of this vital interaction. PMID:9755183

  4. Nuclear colocalization of cellular and viral myc proteins with HSP70 in myc-overexpressing cells.

    PubMed Central

    Koskinen, P J; Sistonen, L; Evan, G; Morimoto, R; Alitalo, K

    1991-01-01

    The c-myc oncogene and its viral counterpart v-myc encode phosphoproteins which have been located within cell nuclei, excluding nucleoli. We have expressed the c-myc gene under the simian virus 40 early promoter and studied the distribution of its protein product in transient expression assays in COS, HeLa, and 293 cells. We found three distinct patterns of c-myc immunofluorescence in the transfected cells: one-third of the c-myc-positive cells displayed a diffuse nuclear distribution, and in two-thirds of the cells the c-myc fluorescence was accumulated either in small amorphous or in large multilobed phase-dense nuclear structures. Unexpectedly, these structures also stained for the HSP70 heat shock protein in both heat-shocked and untreated cells. Our results indicate that both transient and stable overexpression of either the c-myc or v-myc protein induces translocation of the endogenous HSP70 protein from the cytoplasm to the nucleus, where it becomes sequestered in structures containing the myc protein. Interestingly, the closely related N-myc protein does not stimulate substantial nuclear expression of the HSP70 protein. Studies with chimeric myc proteins revealed that polypeptide sequences encoded by the second exon of c-myc are involved in colocalization with HSP70. Images PMID:1846202

  5. Topology of Endoplasmic Reticulum-Associated Cellular and Viral Proteins Determined with Split-GFP.

    PubMed

    Hyun, Seong-In; Maruri-Avidal, Liliana; Moss, Bernard

    2015-07-01

    The split green fluorescent protein (GFP) system was adapted for investigation of the topology of ER-associated proteins. A 215-amino acid fragment of GFP (S1-10) was expressed in the cytoplasm as a free protein or fused to the N-terminus of calnexin and in the ER as an intraluminal protein or fused to the C-terminus of calnexin. A 16-amino acid fragment of GFP (S11) was fused to the N- or C-terminus of the target protein. Fluorescence occurred when both GFP fragments were in the same intracellular compartment. After validation with the cellular proteins PDI and tapasin, we investigated two vaccinia virus proteins (L2 and A30.5) of unknown topology that localize to the ER and are required for assembly of the viral membrane. Our results indicated that the N- and C-termini of L2 faced the cytoplasmic and luminal sides of the ER, respectively. In contrast both the N- and C-termini of A30.5 faced the cytoplasm. The system offers advantages for quickly determining the topology of intracellular proteins: the S11 tag is similar in length to commonly used epitope tags; multiple options are available for detecting fluorescence in live or fixed cells; transfection protocols are adaptable to numerous expression systems and can enable high throughput applications.

  6. Role of RNA Branchedness in the Competition for Viral Capsid Proteins.

    PubMed

    Singaram, Surendra W; Garmann, Rees F; Knobler, Charles M; Gelbart, William M; Ben-Shaul, Avinoam

    2015-11-01

    To optimize binding-and packaging-by their capsid proteins (CP), single-stranded (ss) RNA viral genomes often have local secondary/tertiary structures with high CP affinity, with these "packaging signals" serving as heterogeneous nucleation sites for the formation of capsids. Under typical in vitro self-assembly conditions, however, and in particular for the case of many ssRNA viruses whose CP have cationic N-termini, the adsorption of CP by RNA is nonspecific because the CP concentration exceeds the largest dissociation constant for CP-RNA binding. Consequently, the RNA is saturated by bound protein before lateral interactions between CP drive the homogeneous nucleation of capsids. But, before capsids are formed, the binding of protein remains reversible and introduction of another RNA species-with a different length and/or sequence-is found experimentally to result in significant redistribution of protein. Here we argue that, for a given RNA mass, the sequence with the highest affinity for protein is the one with the most compact secondary structure arising from self-complementarity; similarly, a long RNA steals protein from an equal mass of shorter ones. In both cases, it is the lateral attractions between bound proteins that determines the relative CP affinities of the RNA templates, even though the individual binding sites are identical. We demonstrate this with Monte Carlo simulations, generalizing the Rosenbluth method for excluded-volume polymers to include branching of the polymers and their reversible binding by protein.

  7. Evidence that the major hemolymph protein of the Pacific oyster, Crassostrea gigas, has antiviral activity against herpesviruses.

    PubMed

    Green, Timothy J; Robinson, Nick; Chataway, Tim; Benkendorff, Kirsten; O'Connor, Wayne; Speck, Peter

    2014-10-01

    Viruses belonging to the family Malacoherpesviridae currently pose a serious threat to global production of the Pacific oyster, Crassostrea gigas. Hemolymph extracts from C. gigas are known to have potent antiviral activity. The compound(s) responsible for this broad-spectrum antiviral activity in oyster hemolymph have not been identified. The objective of this study was to identify these antiviral compound(s) and establish whether hemolymph antiviral activity is under genetic control in the Australian C. gigas population. Hemolymph antiviral activity of 18 family lines of C. gigas were assayed using a herpes simplex virus type 1 (HSV-1) and Vero cell plaque reduction assay. Differences in anti-HSV-1 activity between the family lines were observed (p<0.001) with heritability estimated to be low (h(2)=0.21). A glycoprotein that inhibits HSV-1 replication was identified by resolving oyster hemolymph by native-polyacrylamide gel electrophoresis (PAGE) and assaying extracted protein fractions using the HSV-1 and Vero cell plaque assay. Highest anti-HSV-1 activity corresponded with an N-linked glycoprotein with an estimated molecular mass of 21kDa under non-reducing SDS-PAGE conditions. Amino acid sequencing by tandem mass spectrometry revealed this protein matched the major hemolymph protein, termed cavortin. Our results provide further evidence that cavortin is a multifunctional protein involved in immunity and that assays associated with its activity might be useful for marker-assisted selection of disease resistant oysters. PMID:25169112

  8. Cellular DDX21 RNA helicase inhibits influenza A virus replication but is counteracted by the viral NS1 protein.

    PubMed

    Chen, Guifang; Liu, Chien-Hung; Zhou, Ligang; Krug, Robert M

    2014-04-01

    Influenza A virus RNA synthesis is catalyzed by the viral polymerase comprised of the PA, PB1, and PB2 proteins. We show that the host DDX21 RNA helicase restricts influenza A virus by binding PB1 and inhibiting polymerase assembly, resulting in reduced viral RNA and protein synthesis. Later during infection, the viral NS1 protein overcomes this restriction by binding to DDX21 and displacing PB1. DDX21 binds to a region of the NS1 N-terminal domain that also participates in other critical functions. A virus mutant whose NS1 protein is unable to bind DDX21 exhibits reduced viral protein synthesis at both late and early times of infection, a phenotype converted to wild-type upon DDX21 knockdown. As sequential interaction of PB1 and NS1 with DDX21 leads to temporal regulation of viral gene expression, influenza A virus likely uses the DDX21-NS1 interaction not only to overcome restriction, but also to regulate the viral life cycle.

  9. The Adenovirus L4-33K Protein Regulates both Late Gene Expression Patterns and Viral DNA Packaging

    PubMed Central

    Wu, Kai; Guimet, Diana

    2013-01-01

    The adenovirus (Ad) L4-33K protein has been linked to disparate functions during infection. L4-33K is a virus-encoded alternative RNA splicing factor which activates splicing of viral late gene transcripts that contain weak 3′ splice sites. Additionally, L4-33K has been indicated to play a role in adenovirus assembly. We generated and characterized an Ad5 L4-33K mutant virus to further explore its function(s) during infection. Infectivity, viral genome replication, and most viral gene expression of the L4-33K mutant virus are comparable to those of the wild-type virus, except for a prominent decrease in the levels of the late proteins IIIa and pVI. The L4-33K mutant virus produces only empty capsids, indicating a defect in viral DNA packaging. We demonstrate that L4-33K does not preferentially bind to viral packaging sequences in vivo, and mutation of L4-33K does not interfere with the binding of the known viral packaging proteins IVa2, L4-22K, L1-52/55K, and IIIa to the packaging sequences in vivo. Collectively, these results demonstrate that the phenotype of an Ad5 L4-33K mutant virus is complex. The L4-33K protein regulates the accumulation of selective Ad late gene mRNAs and is involved in the proper transition of gene expression during the late phase of infection. The L4-33K protein also plays a role in adenovirus morphogenesis by promoting the packaging of the viral genome into the empty capsid. These results demonstrate the multifunctional nature of the L4-33K protein and its involvement in several different and critical aspects of viral infection. PMID:23552425

  10. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    SciTech Connect

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  11. Singapore grouper iridovirus protein VP088 is essential for viral infectivity.

    PubMed

    Yuan, Yongming; Wang, Yunzhi; Liu, Qizhi; Zhu, Feng; Hong, Yunhan

    2016-01-01

    Viral infection is a great challenge in healthcare and agriculture. The Singapore grouper iridovirus (SGIV) is highly infectious to numerous marine fishes and increasingly threatens mariculture and wildlife conservation. SGIV intervention is not available because little is known about key players and their precise roles in SGVI infection. Here we report the precise role of VP088 as a key player in SGIV infection. VP088 was verified as an envelope protein encoded by late gene orf088. We show that SGIV could be neutralized with an antibody against VP088. Depletion or deletion of VP088 significantly suppresses SGIV infection without altering viral gene expression and host responses. By precisely quantifying the genome copy numbers of host cells and virions, we reveal that VP088 deletion dramatically reduces SGIV infectivity through inhibiting virus entry without altering viral pathogenicity, genome stability and replication and progeny virus release. These results pinpoint that VP088 is a key player in SGIV entry and represents an ideal target for SGIV intervention. PMID:27498856

  12. Singapore grouper iridovirus protein VP088 is essential for viral infectivity

    PubMed Central

    Yuan, Yongming; Wang, Yunzhi; Liu, Qizhi; Zhu, Feng; Hong, Yunhan

    2016-01-01

    Viral infection is a great challenge in healthcare and agriculture. The Singapore grouper iridovirus (SGIV) is highly infectious to numerous marine fishes and increasingly threatens mariculture and wildlife conservation. SGIV intervention is not available because little is known about key players and their precise roles in SGVI infection. Here we report the precise role of VP088 as a key player in SGIV infection. VP088 was verified as an envelope protein encoded by late gene orf088. We show that SGIV could be neutralized with an antibody against VP088. Depletion or deletion of VP088 significantly suppresses SGIV infection without altering viral gene expression and host responses. By precisely quantifying the genome copy numbers of host cells and virions, we reveal that VP088 deletion dramatically reduces SGIV infectivity through inhibiting virus entry without altering viral pathogenicity, genome stability and replication and progeny virus release. These results pinpoint that VP088 is a key player in SGIV entry and represents an ideal target for SGIV intervention. PMID:27498856

  13. Preparation of the Human Cytomegalovirus Nuclear Egress Complex and Associated Proteins.

    PubMed

    Sharma, Mayuri; Kamil, Jeremy P; Coen, Donald M

    2016-01-01

    Herpesviruses, like most DNA viruses, replicate their genomes in the host cell nucleus. Their DNA is then packaged and assembled into viral nucleocapsids, which, in most cases, are too large to pass through the nuclear pore complex. Instead, herpesviruses use a complex multistep pathway, termed nuclear egress, to exit the nucleus. Key players in this process include two conserved viral proteins that form the nuclear egress complex (NEC). In human cytomegalovirus, these NEC proteins are UL50, embedded in the inner nuclear membrane, and its nucleoplasmic partner UL53. Both are essential for viral nuclear egress. However, other viral components as well as host nuclear envelope proteins may also participate in nuclear egress. Identifying these viral and cellular factors may provide important insight into the herpesvirus lifecycle and its relationship to the underlying, yet still-mysterious, host nuclear egress pathway. We developed an immunoprecipitation-based protocol, described herein, to identify protein-protein interactions involving the NEC from the nuclear fraction of infected cells that express an epitope-tagged version of NEC subunit UL53.

  14. Functional characterization of Kaposi's sarcoma-associated herpesvirus open reading frame K8 by bacterial artificial chromosome-based mutagenesis.

    PubMed

    Wang, Yan; Sathish, Narayanan; Hollow, Charles; Yuan, Yan

    2011-03-01

    The open reading frame K8 of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a basic leucine zipper (bZip) protein that binds to the origin of viral DNA replication and is an integral component of viral lytic DNA replication complex. Moreover, K8 physically interacts with replication and transcription activator (RTA) and represses its transactivation activity on several viral promoters. To investigate the role of this protein in viral life cycle, we constructed two K8-null recombinant mutant viruses (BAC-ΔK8 and BAC-stopK8) by using a bacterial artificial chromosome (BAC) system. Latent viral infection can be reconstituted in 293T and BJAB cells with wild-type and the K8-null recombinant viruses by introducing the cloned viral genomes into the cells. When the cells carrying these viruses were induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate, no significant difference was seen in overall viral gene expression between wild-type and K8-null viruses, with lytic DNA replication still active in the latter. However, 293T cells harboring K8-null mutant viruses, either BAC-ΔK8 or BAC-stopK8, displayed lower copy numbers of latent KSHV genome in comparison with wild-type viruses. Furthermore, although K8 deficiency appeared to not affect infectivity when K8-null viruses were used to infect 293T, primary human microvascular dermal endothelial and human foreskin fibroblast cells, they exhibited much lower viral genome copy numbers in all types of cell compared to wild-type viruses. Taken together, these data suggest a possible role of K8 in abortive lytic DNA replication occurring in early stages of de novo infection or in the maintenance of latent viral genomes. PMID:21159864

  15. Viral infections in pigeons.

    PubMed

    Marlier, D; Vindevogel, H

    2006-07-01

    This review provides a current update on the major viral diseases of the domestic pigeon (Columba livia domestica), based on scientific reports and clinical experience. Paramyxovirus 1, adenovirus, rotavirus, herpesvirus 1, poxvirus and circovirus infections are described according to common clinical signs and target tissues. Since pigeons are sometimes treated as if they were poultry, the review also summarises the common viral infections of poultry for which pigeons are considered resistant. It is hoped that the review will provide a useful reference for veterinarians and others and offer advice on the diagnosis, treatment and prevention of the major infectious diseases of pigeons.

  16. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.

  17. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  18. Protein kinase R reveals an evolutionary model for defeating viral mimicry

    PubMed Central

    Elde, Nels C.; Child, Stephanie J.; Geballe, Adam P.; Malik, Harmit S.

    2008-01-01

    Distinguishing self from non-self is a fundamental biological challenge. Many pathogens exploit the challenge of self discrimination by employing mimicry to subvert key cellular processes including the cell cycle, apoptosis, and cytoskeletal dynamics1-5. Other mimics interfere with immunity6, 7. Poxviruses encode K3L, a mimic of eIF2α, which is the substrate of Protein Kinase R (PKR), an important component of innate immunity in vertebrates8, 9. The PKR-K3L interaction exemplifies the conundrum imposed by viral mimicry. To be effective, PKR must recognize a conserved substrate (eIF2α) while avoiding rapidly evolving substrate mimics like K3L. Using the PKR-K3L system and a combination of phylogenetic and functional analyses, we uncover evolutionary strategies by which host proteins can overcome mimicry. We find that PKR has evolved under dramatic episodes of positive selection in primates. The ability of PKR to evade viral mimics is partly due to positive selection at sites most intimately involved in eIF2α recognition. We also find that adaptive changes on multiple surfaces of PKR produce combinations of substitutions that increase the odds of defeating mimicry. Thus, while it can appear that pathogens gain insurmountable advantages by mimicking cellular components, host factors like PKR can compete in molecular ‘arms races’ with mimics because of remarkable evolutionary flexibility at protein interaction interfaces challenged by mimicry. PMID:19043403

  19. A Novel Function of Human Pumilio Proteins in Cytoplasmic Sensing of Viral Infection

    PubMed Central

    Narita, Ryo; Takahasi, Kiyohiro; Murakami, Etsu; Hirano, Emi; Yamamoto, Seiji P.; Yoneyama, Mitsutoshi; Kato, Hiroki; Fujita, Takashi

    2014-01-01

    RIG-I-like receptor (RLR) plays a pivotal role in the detection of invading pathogens to initiate type I interferon (IFN) gene transcription. Since aberrant IFN production is harmful, RLR signaling is strictly regulated. However, the regulatory mechanisms are not fully understood. By expression cloning, we identified Pumilio proteins, PUM1 and PUM2, as candidate positive regulators of RIG-I signaling. Overexpression of Pumilio proteins and their knockdown augmented and diminished IFN-β promoter activity induced by Newcastle disease virus (NDV), respectively. Both proteins showed a specific association with LGP2, but not with RIG-I or MDA5. Furthermore, all of these components were recruited to NDV-induced antiviral stress granules. Interestingly, biochemical analyses revealed that Pumilio increased double-stranded (ds) RNA binding affinity of LGP2; however, Pumilio was absent in the dsRNA-LGP2 complex, suggesting that Pumilio facilitates viral RNA recognition by LGP2 through its chaperon-like function. Collectively, our results demonstrate an unknown function of Pumilio in viral recognition by LGP2. PMID:25340845

  20. Importance of SARS-CoV spike protein Trp-rich region in viral infectivity

    SciTech Connect

    Lu Yanning; Neo, T.L.; Liu, D.Xi.; Tam, James P.

    2008-07-04

    SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalanine substitutions. Our results show that individually substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10-25% infectivity comparing to the wild-type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.

  1. Expanding the proteome of an RNA virus by phosphorylation of an intrinsically disordered viral protein.

    PubMed

    Cordek, Daniel G; Croom-Perez, Tayler J; Hwang, Jungwook; Hargittai, Michele R S; Subba-Reddy, Chennareddy V; Han, Qingxia; Lodeiro, Maria Fernanda; Ning, Gang; McCrory, Thomas S; Arnold, Jamie J; Koc, Hasan; Lindenbach, Brett D; Showalter, Scott A; Cameron, Craig E

    2014-08-29

    The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using (15)N-, (13)C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome. PMID:25031324

  2. A Trio of Viral Proteins Tunes Aphid-Plant Interactions in Arabidopsis thaliana

    PubMed Central

    Du, Zhiyou; Murphy, Alex M.; Anggoro, Damar Tri; Tungadi, Trisna; Luang-In, Vijitra; Lewsey, Mathew G.; Rossiter, John T.; Powell, Glen; Smith, Alison G.; Carr, John P.

    2013-01-01

    Background Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV), on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: ‘peach-potato aphid’, ‘green peach aphid’). Methodology/Principal Findings Infection of Arabidopsis (ecotype Col-0) with CMV strain Fny (Fny-CMV) induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M). 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase), triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1), a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s) toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. Conclusions/Significance Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b) appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis) that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences between

  3. The HIV-1 Tat Protein Has a Versatile Role in Activating Viral Transcription ▿

    PubMed Central

    Das, Atze T.; Harwig, Alex; Berkhout, Ben

    2011-01-01

    It is generally acknowledged that the Tat protein has a pivotal role in HIV-1 replication because it stimulates transcription from the viral long terminal repeat (LTR) promoter by binding to the TAR hairpin in the nascent RNA transcript. However, a multitude of additional Tat functions have been suggested. The importance of these functions is difficult to assess in replication studies with Tat-mutated HIV-1 variants because of the dominant negative effect on viral gene expression. We therefore used an HIV-1 construct that does not depend on the Tat-TAR interaction for transcription to reevaluate whether or not Tat has a second essential function in HIV-1 replication. This HIV-rtTA variant uses the incorporated Tet-On gene expression system for activation of transcription and replicates efficiently upon complete TAR deletion. Here we demonstrated that Tat inactivation does nevertheless severely inhibit replication. Upon long-term culturing, the Tat-minus HIV-rtTA variant acquired mutations in the U3 region that improved promoter activity and reestablished replication. We showed that in the absence of a functional TAR, Tat remains important for viral transcription via Sp1 sequence elements in the U3 promoter region. Substitution of these U3 sequences with nonrelated promoter elements created a virus that replicates efficiently without Tat in SupT1 T cells. These results indicate that Tat has a versatile role in transcription via TAR and U3 elements. The results also imply that Tat has no other essential function in viral replication in cultured T cells. PMID:21752913

  4. A zyxin-related protein whose synthesis is reduced in virally transformed fibroblasts.

    PubMed

    Zumbrunn, J; Trueb, B

    1996-10-15

    We have cloned the gene for a novel LIM-domain protein from human fibroblasts whose expression is substantially decreased in simian-virus-40-(SV40)-transformed cells. This protein has a calculated molecular mass of 61 kDa and comprises a proline-rich domain followed by three LIM motifs. It appears to be identical to the focal adhesion protein p83 that has recently been isolated and characterized from porcine and human platelets. Hybridization experiments demonstrate a very low degree of evolutionary conservation of its sequence between mammals and birds. It is therefore possible that the novel protein represents the human equivalent of the chicken protein zyxin as the two proteins display a very similar overall structure, although their amino acid sequences diverge markedly from each other. The repression of this zyxin-related protein in virally transformed fibroblasts may explain, at least in part, the dramatic morphological changes that occur at the cell surface and in the cytoskeleton of transformed cells.

  5. Genomic deletions and mutations resulting in the loss of eight genes reduce the in vivo replication capacity of Meleagrid herpesvirus 1.

    PubMed

    Mahony, Timothy J; Hall, Robyn N; Walkden-Brown, Stephen; Meers, Joanne; Gravel, Jennifer L; West, Lani; Hardy, Vanessa; Islam, A F M Fakhrul; Fowler, Elizabeth V; Mitter, Neena

    2015-08-01

    Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek's disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed. PMID:26149791

  6. A Genomic Approach to Unravel Host-Pathogen Interaction in Chelonians: The Example of Testudinid Herpesvirus 3.

    PubMed

    Origgi, Francesco C; Tecilla, Marco; Pilo, Paola; Aloisio, Fabio; Otten, Patricia; Aguilar-Bultet, Lisandra; Sattler, Ursula; Roccabianca, Paola; Romero, Carlos H; Bloom, David C; Jacobson, Elliott R

    2015-01-01

    We report the first de novo sequence assembly and analysis of the genome of Testudinid herpesvirus 3 (TeHV3), one of the most pathogenic chelonian herpesviruses. The genome of TeHV3 is at least 150,080 nucleotides long, is arranged in a type D configuration and comprises at least 102 open reading frames extensively co-linear with those of Human herpesvirus 1. Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus. To date, there has been limited genetic characterization of TeHVs and a resolution beyond the genotype was not feasible because of the lack of informative DNA sequences. To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates. The rationale for selecting gB is that it encodes for a well-conserved protein among herpesviruses but is coupled with a relevant antigenicity and is consequently prone to accumulate single nucleotide polymorphisms. These features were considered critical for an ideal phylogenetic marker to investigate the potential existence of distinct TeHV3 genogroups and their associated pathology. Fifteen captive tortoises presumptively diagnosed to be infected with TeHVs or carrying compatible lesions on the basis of either the presence of intranuclear inclusions (presumptively infected) and/or diphtheronecrotic stomatitis-glossitis or pneumonia (compatible lesions) were selected for the study. Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed. Our results revealed 1) the existence of at least two distinct TeHV3 genogroups apparently associated with different pathologies in tortoises and 2) the first evidence for a putative homologous recombination event having occurred in a chelonian herpesvirus. This novel

  7. A Genomic Approach to Unravel Host-Pathogen Interaction in Chelonians: The Example of Testudinid Herpesvirus 3

    PubMed Central

    Origgi, Francesco C.; Tecilla, Marco; Pilo, Paola; Aloisio, Fabio; Otten, Patricia; Aguilar-Bultet, Lisandra; Sattler, Ursula; Roccabianca, Paola; Romero, Carlos H.; Bloom, David C.; Jacobson, Elliott R.

    2015-01-01

    We report the first de novo sequence assembly and analysis of the genome of Testudinid herpesvirus 3 (TeHV3), one of the most pathogenic chelonian herpesviruses. The genome of TeHV3 is at least 150,080 nucleotides long, is arranged in a type D configuration and comprises at least 102 open reading frames extensively co-linear with those of Human herpesvirus 1. Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus. To date, there has been limited genetic characterization of TeHVs and a resolution beyond the genotype was not feasible because of the lack of informative DNA sequences. To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates. The rationale for selecting gB is that it encodes for a well-conserved protein among herpesviruses but is coupled with a relevant antigenicity and is consequently prone to accumulate single nucleotide polymorphisms. These features were considered critical for an ideal phylogenetic marker to investigate the potential existence of distinct TeHV3 genogroups and their associated pathology. Fifteen captive tortoises presumptively diagnosed to be infected with TeHVs or carrying compatible lesions on the basis of either the presence of intranuclear inclusions (presumptively infected) and/or diphtheronecrotic stomatitis-glossitis or pneumonia (compatible lesions) were selected for the study. Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed. Our results revealed 1) the existence of at least two distinct TeHV3 genogroups apparently associated with different pathologies in tortoises and 2) the first evidence for a putative homologous recombination event having occurred in a chelonian herpesvirus. This novel

  8. Human herpesvirus 6.

    PubMed Central

    Braun, D K; Dominguez, G; Pellett, P E

    1997-01-01

    Human herpesvirus 6 variant A (HHV-6A) and human herpesvirus 6 variant B (HHV-6B) are two closely related yet distinct viruses. These visuses belong to the Roseolovirus genus of the betaherpesvirus subfamily; they are most closely related to human herpesvirus 7 and then to human cytomegalovirus. Over 95% of people older than 2 years of age are seropositive for either or both HHV-6 variants, and current serologic methods are incapable of discriminating infection with one variant from infection with the other. HHV-6A has not been etiologically linked to any human disease, but such an association will probably be found soon. HHV-6B is the etiologic agent of the common childhood illness exanthem subitum (roseola infantum or sixth disease) and related febrile illnesses. These viruses are frequently active and associated with illness in immunocompromised patients and may play a role in the etiology of Hodgkin's disease and other malignancies. HHV-6 is a commensal inhabitant of brains; various neurologic manifestations, including convulsions and encephalitis, can occur during primary HHV-6 infection or in immunocompromised patients. HHV-6 and distribution in the central nervous system are altered in patients with multiple sclerosis; the significance of this is under investigation. PMID:9227865

  9. Residues in human respiratory syncytial virus P protein that are essential for its activity on RNA viral synthesis.

    PubMed

    Asenjo, Ana; Mendieta, Jesús; Gómez-Puertas, Paulino; Villanueva, Nieves

    2008-03-01

    Human respiratory syncytial virus (HRSV) P protein, 241 amino acid long, is a structural homotetrameric phosphoprotein. Viral transcription and replication processes are dependent on functional P protein interactions inside viral ribonucleoprotein complexes (RNPs). Binding capacity to RNPs proteins and transcription and replication complementation analyses, using inactive P protein variants, have identified residues essential for functional interactions with itself, L, N and M2-1 proteins. P protein may establish some of these interactions as monomer, but efficient viral transcription and replication requires P protein oligomerization through the central region of the molecule. A structurally stable three-dimensional model has been generated in silico for this region (residues 98-158). Our analysis has indicated that P protein residues L135, D139, E140 and L142 are involved in homotetramerization. Additionally, the residues D136, S156, T160 and E179 appear to be essential for P protein activity on viral RNA synthesis and very high turnover phosphorylation at S143, T160 and T210 could regulate it. Thus, compounds targeted to those of these residues, located in the modeled three-dimensional structure, could have specific anti-HRSV effect.

  10. Singapore grouper iridovirus (SGIV) encoded SGIV-miR-13 attenuates viral infection via modulating major capsid protein expression.

    PubMed

    Yan, Yang; Guo, Chuanyu; Ni, Songwei; Wei, Jingguang; Li, Pengfei; Wei, Shina; Cui, Huachun; Qin, Qiwei

    2015-07-01

    Singapore grouper iridovirus (SGIV) encodes a number of microRNAs (miRNAs) during infection. Among these, SGIV-miR-13 has robust expression at early stage after SGIV inoculation, raising a huge possibility that it participates in the viral infection. In the present study, we found that SGIV-miR-13 overexpression led to a significant reduction in viral load in cultured fish cells with SGIV infection, as demonstrated by less level of viral transcripts, viral-induced cytopathic effect (CPE) and assembled viral particles. In silico analysis showed that SGIV-miR-13 maps antisense to the coding region of SGIV major capsid protein (SGIV-MCP), suggesting it to be a potential target of SGIV-miR-13. Coincidently, SGIV-miR-13 showed an inverted expression profile with SGIV-MCP during SGIV infection, and luciferase reporter assay further demonstrated SGIV-MCP as the direct target of SGIV-miR-13. Functionally, overexpression of SGIV-miR-13 inhibited, whereas knockdown of SGIV-miR-13 restored the expression of SGIV-MCP during viral infection, resulting in altered viral progeny emergences. In conclusion, our data suggest that SGIV-miR-13 functions in a negative regulatory mechanism to restrict early viral replication, and thus prevents excessive cellular antiviral responses during SGIV infection. The detailed investigation of SGIV encoded miRNAs may provide new insights into the mechanism of iridovirus pathogenesis.

  11. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  12. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression.

    PubMed

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N(6)-methyladenosine (m(6)A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m(6)A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1-3) bind to m(6)A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1-3 proteins recognize m(6)A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4(+) T-cells. We further mapped the YTHDF1-3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1-3 in cells had the opposite effects. Moreover, silencing the m(6)A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m(6)A erasers increased Gag expression. Our findings suggest an important role of m(6)A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. PMID:27371828

  13. RhoB is a component of the human cytomegalovirus assembly complex and is required for efficient viral production

    PubMed Central

    Goulidaki, Nektaria; Alarifi, Saud; Alkahtani, Saad H; Al-Qahtani, Ahmed; Spandidos, Demetrios A; Stournaras, Christos; Sourvinos, George

    2015-01-01

    Human Cytomegalovirus (HCMV), an ubiquitous β-herpesvirus, is a significant pathogen that causes medically severe diseases in immunocompromised individuals and in congenitally infected neonates. RhoB belongs to the family of Rho GTPases, which regulates diverse cellular processes. Rho proteins are implicated in the entry and egress from the host cell of mainly α- and γ-herpesviruses, whereas β-herpesviruses are the least studied in this regard. Here, we studied the role of RhoB GTPase during HCMV lytic infection. Microscopy analysis, both in fixed and live infected cells showed that RhoB was translocated to the assembly complex/compartment (AC) of HCMV, a cytoplasmic zone in infected cells where many viral structural proteins are known to accumulate and assembly of new virions takes place. Furthermore, RhoB was localized at the AC even when the expression of the late HCMV AC proteins was inhibited. At the very late stages of infection, cellular projections were formed containing RhoB and HCMV virions, potentially contributing to the successful viral spread. Interestingly, the knockdown of RhoB in HCMV-infected cells resulted in a significant reduction of the virus titer and could also affect the accumulation of AC viral proteins at this subcellular compartment. RhoB knockdown also affected actin fibers' structure. Actin reorganization was observed at late stages of infection originating from the viral AC and surrounding the cellular projections, implying a potential interplay between RhoB and actin during HCMV assembly and egress. In conclusion, our results demonstrate for the first time that RhoB is a constituent of the viral AC and is required for HCMV productive infection. PMID:26114383

  14. Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 VP22.

    PubMed

    Zheng, Chunfu; Brownlie, Robert; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2005-09-01

    The bovine herpesvirus 1 (BHV-1) tegument protein VP22 is predominantly localized in the nucleus after viral infection. To analyze subcellular localization in the absence of other viral proteins, a plasmid expressing BHV-1 VP22 fused to enhanced yellow fluorescent protein (EYFP) was constructed. The transient expression of VP22 fused to EYFP in COS-7 cells confirmed the predominant nuclear localization of VP22. Analysis of the amino acid sequence of VP22 revealed that it does not have a classical nuclear localization signal (NLS). However, by constructing a series of deletion derivatives, we mapped the nuclear targeting domain of BHV-1 VP22 to amino acids (aa) 121 to 139. Furthermore, a 4-aa motif, 130PRPR133, was able to direct EYFP and an EYFP dimer (dEYFP) or trimer (tEYFP) predominantly into the nucleus, whereas a deletion or mutation of this arginine-rich motif abrogated the nuclear localization property of VP22. Thus, 130PRPR133 is a functional nonclassical NLS. Since we observed that the C-terminal 68 aa of VP22 mediated the cytoplasmic localization of EYFP, an analysis was performed on these C-terminal amino acid sequences, and a leucine-rich motif, 204LDRMLKSAAIRIL216, was detected. Replacement of the leucines in this putative nuclear export signal (NES) with neutral amino acids resulted in an exclusive nuclear localization of VP22. Furthermore, this motif was able to localize EYFP and dEYFP in the cytoplasm, and the nuclear export function of this NES could be blocked by leptomycin B. This demonstrates that this leucine-rich motif is a functional NES. These data represent the first identification of a functional NLS and NES in a herpesvirus VP22 homologue.

  15. Bovine herpesvirus type 4 infection modulates autophagy in a permissive cell line.

    PubMed

    Montagnaro, Serena; Ciarcia, Roberto; Pagnini, Francesco; De Martino, Luisa; Puzio, Maria Valeria; Granato, Giovanna Elvira; Avino, Franca; Pagnini, Ugo; Iovane, Giuseppe; Giordano, Antonio

    2013-07-01

    Bovine herpesvirus type 4 (BoHV-4), like other herpesviruses, induces a series of alterations in the host cell that modify the intracellular environment in favor of viral replication, survival and spread. This research examined the impact of BoHV-4 infection on autophagy in BoHV-4 infected Madin Darby bovine kidney (MDBK) cells. Protein extracts of BoHV-4 infected and control MDBK cells were subjected to Western blot. The concentrations of the autophagy and apoptosis-related proteins Beclin 1, p21, PI3 kinase, Akt1/2, mTOR, phospho mTOR, p62 and the light chain three (LC3) were normalized to the actin level and expressed as the densitometric ratio. Western blot analysis of virus-infected cells revealed that autophagic degradation pathway was induced in the late phase of BoHV-4 infection. After 48 h post-infection the protein LC3II, which is essential for autophagy was found to be markedly increased, while infection of MDBK cells with BoHV-4 resulted in a depletion of p62 levels. Becline 1, PI3 kinase, Akt1/2 and p21 expression increased between 24 and 48 h post-infection. Surprisingly, mTOR and its phosphorylated form, which are negative regulators of autophagy, also increased after 24 h post-infection. In conclusion, our findings suggest that BoHV-4 has developed mechanisms for modulation of autophagy that are probably part of a strategy designed to enhance viral replication and to evade the immune system. Additional studies on the relationship between autophagy and BoHV-4 replication and survival, in both lytic and latent replication phases, are needed to understand the role of autophagy in BoHV-4 pathogenesis.

  16. Herpesvirus gB: A Finely Tuned Fusion Machine

    PubMed Central

    Cooper, Rebecca S.; Heldwein, Ekaterina E.

    2015-01-01

    Enveloped viruses employ a class of proteins known as fusogens to orchestrate the merger of their surrounding envelope and a target cell membrane. Most fusogens accomplish this task alone, by binding cellular receptors and subsequently catalyzing the membrane fusion process. Surprisingly, in herpesviruses, these functions are distributed among multiple proteins: the conserved fusogen gB, the conserved gH/gL heterodimer of poorly defined function, and various non-conserved receptor-binding proteins. We summarize what is currently known about gB from two closely related herpesviruses, HSV-1 and HSV-2, with emphasis on the structure of the largely uncharted membrane interacting regions of this fusogen. We propose that the unusual mechanism of herpesvirus fusion could be linked to the unique architecture of gB. PMID:26690469

  17. A Single Amino Acid Dictates Protein Kinase R Susceptibility to Unrelated Viral Antagonists

    PubMed Central

    Esparo, Nicolle M.; Child, Stephanie J.; Geballe, Adam P.

    2016-01-01

    During millions of years of coevolution with their hosts, cytomegaloviruses (CMVs) have succeeded in adapting to overcome host-specific immune defenses, including the protein kinase R (PKR) pathway. Consequently, these adaptations may also contribute to the inability of CMVs to cross species barriers. Here, we provide evidence that the evolutionary arms race between the antiviral factor PKR and its CMV antagonist TRS1 has led to extensive differences in the species-specificity of primate CMV TRS1 proteins. Moreover, we identify a single residue in human PKR that when mutated to the amino acid present in African green monkey (Agm) PKR (F489S) is sufficient to confer resistance to HCMVTRS1. Notably, this precise molecular determinant of PKR resistance has evolved under strong positive selection among primate PKR alleles and is positioned within the αG helix, which mediates the direct interaction of PKR with its substrate eIF2α. Remarkably, this same residue also impacts sensitivity to K3L, a poxvirus-encoded pseudosubstrate that structurally mimics eIF2α. Unlike K3L, TRS1 has no homology to eIF2α, suggesting that unrelated viral genes have convergently evolved to target this critical region of PKR. Despite its functional importance, the αG helix exhibits extraordinary plasticity, enabling adaptations that allow PKR to evade diverse viral antagonists while still maintaining its critical interaction with eIF2α. PMID:27780231

  18. Production of recombinant snakehead rhabdovirus: the NV protein is not required for viral replication.

    PubMed

    Johnson, M C; Simon, B E; Kim, C H; Leong, J A

    2000-03-01

    Snakehead rhabdovirus (SHRV) affects warm water fish in Southeast Asia and belongs to the genus Novirhabdovirus by virtue of its nonvirion gene (NV). Because SHRV grows best at temperatures between 28 and 31 degrees C, we were able to use the T7 expression system to produce viable recombinant SHRV from a cloned cDNA copy of the viral genome. Expression of a positive-strand RNA copy of the 11, 550-nucleotide SHRV genome along with the viral nucleocapsid (N), phosphoprotein (P), and polymerase (L) proteins resulted in the generation of infectious SHRV in cells preinfected with a vaccinia virus vector for T7 polymerase expression. Recombinant virus production was verified by detection of a unique restriction site engineered into the SHRV genome between the NV and L genes. Since we were now able to begin examining the function of the NV gene, we constructed a recombinant virus containing a nonsense mutation located 22 codons into the coding sequence of the NV protein. The NV knockout virus was produced at a concentration as high as that of wild-type virus in cultured fish cells, and the resulting virions appeared to be identical to the wild-type virions in electron micrographs. These initial studies suggest that NV has no critical function in SHRV replication in cultured fish cells.

  19. Quassinoids: Viral protein R inhibitors from Picrasma javanica bark collected in Myanmar for HIV infection.

    PubMed

    Win, Nwet Nwet; Ito, Takuya; Win, Yi Yi; Ngwe, Hla; Kodama, Takeshi; Abe, Ikuro; Morita, Hiroyuki

    2016-10-01

    Viral protein R (Vpr) is an accessory protein that plays important roles in the viral pathogenesis of Human Immunodeficiency Virus-1 (HIV-1). An assay for anti-Vpr activity, using TREx-HeLa-Vpr cells, is a promising strategy to discover Vpr inhibitors. The anti-Vpr assay revealed that the CHCl3-soluble extract of Picrasma javanica bark possesses potent anti-Vpr activity. Furthermore, studies of quassinoids (1-15) previously isolated from the extract demonstrated that all of the tested quassinoids exhibit anti-Vpr activity. Among the tested compounds, javanicin I (15) exhibited the most potent anti-Vpr activity ((***)p <0.001) in comparing with that of the positive control, damnacanthal. The structure-activity relationships of the active quassinoids suggested that the presence of a methyl group at C-13 in the 2,12,14-triene-1,11,16-trione-2,12-dimethoxy-18-norpicrasane quassinoids is the important factor for the potent inhibitory effect in TREx-HeLa-Vpr cells. PMID:27575477

  20. Strategies to inhibit viral protein nuclear import: HIV-1 as a target.

    PubMed

    Levin, Aviad; Loyter, Abraham; Bukrinsky, Michael

    2011-09-01

    Nuclear import is a critical step in the life cycle of HIV-1. During the early (preintegration) stages of infection, HIV-1 has to transport its preintegration complex into the nucleus for integration into the host cell chromatin, while at the later (postintegration) stages viral regulatory proteins Tat and Rev need to get into the nucleus to stimulate transcription and regulate splicing and nuclear export of subgenomic and genomic RNAs. Given such important role of nuclear import in HIV-1 life cycle, this step presents an attractive target for antiviral therapeutic intervention. In this review, we describe the current state of our understanding of the interactions regulating nuclear import of the HIV-1 preintegration complex and describe current approaches to inhibit it. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.

  1. Japanese encephalitis virus co-opts the ER-stress response protein GRP78 for viral infectivity

    PubMed Central

    2011-01-01

    The serum-free medium from Japanese encephalitis virus (JEV) infected Baby Hamster Kidney-21 (BHK-21) cell cultures was analyzed by liquid chromatography tandem mass spectrometry (LC-MS) to identify host proteins that were secreted upon viral infection. Five proteins were identified, including the molecular chaperones Hsp90, GRP78, and Hsp70. The functional role of GRP78 in the JEV life cycle was then investigated. Co-migration of GRP78 with JEV particles in sucrose density gradients was observed and co-localization of viral E protein with GRP78 was detected by immunofluorescence analysis in vivo. Knockdown of GRP78 expression by siRNA did not effect viral RNA replication, but did impair mature viral production. Mature viruses that do not co-fractionate with GPR78 displayed a significant decrease in viral infectivity. Our results support the hypothesis that JEV co-opts host cell GPR78 for use in viral maturation and in subsequent cellular infections. PMID:21418596

  2. Papillomavirus E7 protein binding to the retinoblastoma protein is not required for viral induction of warts.

    PubMed Central

    Defeo-Jones, D; Vuocolo, G A; Haskell, K M; Hanobik, M G; Kiefer, D M; McAvoy, E M; Ivey-Hoyle, M; Brandsma, J L; Oliff, A; Jones, R E

    1993-01-01

    Human papillomaviruses (HPVs) are the etiologic agents responsible for benign epithelial proliferative disorders including genital warts and are a contributory factor in the pathogenesis of cervical cancer. HPVs demonstrate strict species and cell-type specificity, which is manifested by the inability of these viruses to induce disease in any species other than humans. The natural history of HPV infection in humans is closely mimicked by cottontail rabbit papillomavirus (CRPV) infection in domestic laboratory rabbits. The CRPV E7 gene is known to play an essential role in virus-mediated induction of papillomas. We now show by mutational analysis that the CRPV E7 protein's biochemical and biological properties, including binding to the retinoblastoma suppressor protein (pRB), transcription factor E2F transactivation of the adenovirus E2 promoter, disruption of pRB-E2F complexes, and cellular transformation as measured by growth in soft agar, mimic those of the HPV E7 protein. Intradermal injection of CRPV DNA lacking E7 gene sequences critical for the binding of the CRPV E7 protein to pRB induced papillomas in rabbits. These studies indicate that E7 protein binding to pRB is not required in the molecular pathogenesis of virally induced warts and suggest that other properties intrinsic to the E7 protein are necessary for papilloma formation. Images PMID:8380462

  3. Ovine herpesvirus-2-encoded microRNAs target virus genes involved in virus latency.

    PubMed

    Riaz, Aayesha; Dry, Inga; Levy, Claire S; Hopkins, John; Grey, Finn; Shaw, Darren J; Dalziel, Robert G

    2014-02-01

    Herpesviruses encode microRNAs (miRNAs) that target both virus and host genes; however, their role in herpesvirus biology is understood poorly. We identified previously eight miRNAs encoded by ovine herpesvirus-2 (OvHV-2), the causative agent of malignant catarrhal fever (MCF), and have now investigated the role of these miRNAs in regulating expression of OvHV-2 genes that play important roles in virus biology. ORF20 (cell cycle inhibition), ORF50 (reactivation) and ORF73 (latency maintenance) each contain predicted targets for several OvHV-2 miRNAs. Co-transfection of miRNA mimics with luciferase reporter constructs containing the predicted targets showed the 5' UTRs of ORF20 and ORF73 contain functional targets for ovhv-miR-2 and ovhv2-miR-8, respectively, and the 3' UTR of ORF50 contains a functional target for ovhv2-miR-5. Transfection of BJ1035 cells (an OvHV-2-infected bovine T-cell line) with the relevant miRNA mimic resulted in a significant decrease in ORF50 and a smaller but non-significant decrease in ORF20. However, we were unable to demonstrate a decrease in ORF73. MCF is a disease of dysregulated lymphocyte proliferation; miRNA inhibition of ORF20 expression may play a role in this aberrant lymphocyte proliferation. The proteins encoded by ORF50 and ORF73 play opposing roles in latency. It has been hypothesized that miRNA-induced inhibition of virus genes acts to ensure that fluctuations in virus mRNA levels do not result in reactivation under conditions that are unfavourable for viral replication and our data supported this hypothesis. PMID:24172907

  4. Protein modification during anti-viral heat-treatment bioprocessing of factor VIII concentrates, factor IX concentrates, and model proteins in the presence of sucrose.

    PubMed

    Smales, C Mark; Pepper, Duncan S; James, David C

    2002-01-01

    To ensure the optimal safety of plasma derived and new generation recombinant proteins, heat treatment is customarily applied in the manufacturing of such biopharmaceuticals as a means of viral inactivation. In subjecting proteins to anti-viral heat-treatment it is necessary to use high concentrations of thermostabilizing excipients to prevent protein damage, and it is therefore imperative that the correct balance between bioprocessing conditions, maintenance of protein integrity and virus kill is found. In this study we have utilized model proteins (lysozyme, fetuin, and human serum albumin) and plasma-derived therapeutic proteins (factor VIII and factor IX) to investigate the protein modifications that occur during anti-viral heat treatment. Specifically, we investigated the relationship between bioprocessing conditions and the type and extent of protein modification under a variety of industrially relevant wet and lyophilized heat treatments using sucrose as a thermostabilizing agent. Heat treatment led to the formation of disulfide crosslinks and aggregates in proteins containing free cysteine residues. Terminal oligosaccharide sialic acid residues were hydrolyzed from the glycan moieties of glycoproteins during anti-viral heat treatment. Heat treatment promoted sucrose hydrolysis to yield glucose and fructose, leading, in turn, to the glycation of lysine amino groups in those proteins containing di-lysine motifs. During extended hear treatments, 1,2-dicarbonyl type advanced glycation end-products were also formed. Glycation-type modifications were more prevalent in wet heat-treated protein formulations.

  5. Immune blot analysis of viral surface proteins in serum and liver of patients with chronic hepatitis B virus infection.

    PubMed

    Gerken, G; Manns, M; Gerlich, W H; Hess, G; Meyer zum Büschenfelde, K H

    1989-12-01

    The small and the middle surface proteins of hepatitis virus form either the virion or the 22 nm particle both of which are secreted. The large surface protein by itself remains cell bound in artificially transfected cell culture unless it is accompanied by an excess of the smaller protens. Its behavior in vivo is not yet well studied. Using specific monoclonal antibodies for immunoblotting, we found an abundance of small surface protein in the serum of chronic virus carriers and moderate amounts in the liver irrespective of viremia. The large surface protein was present in the serum and the liver of viremic carriers. In nonviremic carriers, the large protein was absent from serum, but in the liver a shorter form of the large protein was readily detectable. These findings suggest a complex regulatory mechanism of the viral surface protein depending on the expression of other viral gene products. PMID:2621452

  6. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids

    PubMed Central

    Cowan, Graham H.; Roberts, Alison G.; Chapman, Sean N.; Ziegler, Angelika; Savenkov, Eugene I.; Torrance, Lesley

    2012-01-01

    The potato mop-top virus (PMTV) triple gene block 2 (TGB2) movement proteins fused to monomeric red fluorescent protein (mRFP-TGB2) was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localizations and interactions of mRFP-TGB2 were investigated using confocal imaging [confocal laser-scanning microscope, (CLSM)] and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum (ER), mobile granules, small round structures (1–2 μm in diameter), and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labeled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein (CP), genomic RNA and fluorescently-labeled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localized to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts. PMID:23269927

  7. Nonstructural Protein NP1 of Human Bocavirus 1 Plays a Critical Role in the Expression of Viral Capsid Proteins

    PubMed Central

    Zou, Wei; Cheng, Fang; Shen, Weiran; Engelhardt, John F.; Yan, Ziying

    2016-01-01

    ABSTRACT A novel chimeric parvoviral vector, rAAV2/HBoV1, in which the recombinant adeno-associated virus 2 (rAAV2) genome is pseudopackaged by the human bocavirus 1 (HBoV1) capsid, has been shown to be highly efficient in gene delivery to human airway epithelia (Z. Yan et al., Mol Ther 21:2181–2194, 2013, http://dx.doi.org/10.1038/mt.2013.92). In this vector production system, we used an HBoV1 packaging plasmid, pHBoV1NSCap, that harbors HBoV1 nonstructural protein (NS) and capsid protein (Cap) genes. In order to simplify this packaging plasmid, we investigated the involvement of the HBoV1 NS proteins in capsid protein expression. We found that NP1, a small NS protein encoded by the middle open reading frame, is required for the expression of the viral capsid proteins (VP1, VP2, and VP3). We also found that the other NS proteins (NS1, NS2, NS3, and NS4) are not required for the expression of VP proteins. We performed systematic analyses of the HBoV1 mRNAs transcribed from the pHBoV1NSCap packaging plasmid and its derivatives in HEK 293 cells. Mechanistically, we found that NP1 is required for both the splicing and the read-through of the proximal polyadenylation site of the HBoV1 precursor mRNA, essential functions for the maturation of capsid protein-encoding mRNA. Thus, our study provides a unique example of how a small viral nonstructural protein facilitates the multifaceted regulation of capsid gene expression. IMPORTANCE A novel chimeric parvoviral vector, rAAV2/HBoV1, expressing a full-length cystic fibrosis transmembrane conductance regulator (CFTR) gene, is capable of correcting CFTR-dependent chloride transport in cystic fibrosis human airway epithelium. Previously, an HBoV1 nonstructural and capsid protein-expressing plasmid, pHBoV1NSCap, was used to package the rAAV2/HBoV1 vector, but yields remained low. In this study, we demonstrated that the nonstructural protein NP1 is required for the expression of capsid proteins. However, we found that the

  8. Newly Identified Phosphorylation Site in the Vesicular Stomatitis Virus P Protein Is Required for Viral RNA Synthesis

    PubMed Central

    Mondal, Arindam; Victor, Ken G.; Pudupakam, R. S.; Lyons, Charles E.

    2014-01-01

    The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form. Previously, five sites of phosphorylation were identified on the P protein and these sites were reported to be differentially important for mRNA synthesis or genomic replication. The previous studies were carried out by biochemical analysis of portions of the authentic viral P protein or by analysis of bacterium-expressed, exogenously phosphorylated P protein by mutagenesis. However, there has been no systematic biochemical search for phosphorylation sites on authentic, virus-expressed P protein. In this study, we analyzed the P protein isolated from VSV-infected cells for sites of phosphorylation by mass spectrometry. We report the identification of Tyr14 as a previously unidentified phosphorylation site of VSV P and show that it is essential for viral transcription and replication. However, our mass spectral analysis failed to observe the phosphorylation of previously reported C-terminal residues Ser226 and Ser227 and mutagenic analyses did not demonstrate a role for these sites in RNA synthesis. PMID:24257610

  9. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen.

  10. Neutralizing determinants defined by monoclonal antibodies on polypeptides specified by bovine herpesvirus 1.

    PubMed Central

    Collins, J K; Butcher, A C; Riegel, C A; McGrane, V; Blair, C D; Teramoto, Y A; Winston, S

    1984-01-01

    Monoclonal antibodies were used to study neutralizing determinants on polypeptides of bovine herpesvirus 1. Two of three monoclonal antibodies which recognized nonoverlapping epitopes on a glycoprotein of 82,000 daltons were found to neutralize. A second group of monoclonal antibodies that individually precipitated five viral glycopolypeptides ranging in size from 102,000 to 55,000 daltons also neutralized. Two monoclonal antibodies which were the most efficient in neutralization recognized a non-glycosylated protein of 115,000 daltons which was the major polypeptide on the virus. A fourth group of monoclonal antibodies precipitated a non-glycosylated polypeptide of 91,000 daltons and several smaller polypeptides, but these antibodies demonstrated only limited neutralizing activity. Images PMID:6208375

  11. Bovine herpesvirus type 5 infection regulates Bax/BCL-2 ratio.

    PubMed

    Garcia, A F; Novais, J B; Antello, T F; Silva-Frade, C; Ferrarezi, M C; Flores, E F; Cardoso, T C

    2013-09-23

    Bovine herpesvirus 5 (BoHV-5) is an α-herpesvirus that causes neurological disease in young cattle and is also occasionally involved in reproductive disorders. Although there have been many studies of the apoptotic pathways induced by viruses belonging to the family Herpesviridae, there is little information about the intrinsic programmed cell death pathway in host-BoHV-5 interactions. We found that BoHV-5 is able to replicate in both mesenchymal and epithelial cell lines, provoking cytopathology that is characterized by cellular swelling and cell fusion. Viral antigens were detected in infected cells by immunofluorescence assay at 48 to 96 h post-infection (p.i.). At 48 to 72 h p.i., anti-apoptotic BCL-2 antigens were found at higher levels than Bax antigens; the latter is considered a pro-apoptotic protein. Infected cells had increased BCL-2 phenotype cells from 48 to 96 h p.i., based on flow cytometric analysis. At 48 to 96 h p.i., Bax mRNA was not expressed in any of the infected cell monolayers. In contrast, BCL-2 mRNA was found at high levels at all p.i. in both types of cells. BoHV-5 replication apparently modulates BCL-2 expression and gene transcription, enhancing production of virus progeny.

  12. Bovine herpesvirus type 5 infection regulates Bax/BCL-2 ratio.

    PubMed

    Garcia, A F; Novais, J B; Antello, T F; Silva-Frade, C; Ferrarezi, M C; Flores, E F; Cardoso, T C

    2013-01-01

    Bovine herpesvirus 5 (BoHV-5) is an α-herpesvirus that causes neurological disease in young cattle and is also occasionally involved in reproductive disorders. Although there have been many studies of the apoptotic pathways induced by viruses belonging to the family Herpesviridae, there is little information about the intrinsic programmed cell death pathway in host-BoHV-5 interactions. We found that BoHV-5 is able to replicate in both mesenchymal and epithelial cell lines, provoking cytopathology that is characterized by cellular swelling and cell fusion. Viral antigens were detected in infected cells by immunofluorescence assay at 48 to 96 h post-infection (p.i.). At 48 to 72 h p.i., anti-apoptotic BCL-2 antigens were found at higher levels than Bax antigens; the latter is considered a pro-apoptotic protein. Infected cells had increased BCL-2 phenotype cells from 48 to 96 h p.i., based on flow cytometric analysis. At 48 to 96 h p.i., Bax mRNA was not expressed in any of the infected cell monolayers. In contrast, BCL-2 mRNA was found at high levels at all p.i. in both types of cells. BoHV-5 replication apparently modulates BCL-2 expression and gene transcription, enhancing production of virus progeny. PMID:24085451

  13. Equine herpesvirus-1 infection disrupts interferon regulatory factor-3 (IRF-3) signaling pathways in equine endothelial cells.

    PubMed

    Sarkar, Sanjay; Balasuriya, Udeni B R; Horohov, David W; Chambers, Thomas M

    2016-05-01

    Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction.

  14. Study of the Frequency of Herpesvirus Infections Among Patients Suspected Aseptic Meningitis in the West of Iran

    PubMed Central

    Akya, Alisha; Ahmadi, Kamal; Zehtabian, Shahram; Salimi, Afsaneh; Elahi, Azam; Madani, Sayed Hamid

    2015-01-01

    Background: Aseptic meningitis is the most common type of meningitis and is characterized by meningeal inflammation that is not linked to identifiable bacterial pathogens in cerebrospinal fluid (CSF). Objectives: This study aimed to evaluate the frequency of aseptic meningitis caused by herpesviruses, namely herpes simplex types I and II (HSV-1, HSV-2), Epstein-Barr virus (EBV), cytomegalovirus (CMV) and varicella-zoster virus (VZV). Patients and Methods: A total of 196 CSF samples were collected from patients with suspected meningitis. All samples were smear- and culture-negative for bacterial pathogens. The biochemical and cytological findings of CSF samples were also recorded. DNA was extracted from samples and PCR with specific primers was carried out to detect viruses. Results: The 196 samples derived from 100 (52%) men and 96 (48%) women ranging in age from one day to 86 years with an average age of 32.3 ± 25.3 years. Of them, 8 (4.08%) samples yielded positive results, including 5 (2.55%) cases of VZV infection and 3 (1.53%) cases of HSV-1 infection. No cases of HSV-2, CMV or EBV infection were detected. CSF protein and glucose levels among positive cases were all in the normal range. Conclusions: The results indicate a considerable rate of herpesvirus infection in patients with aseptic meningitis, and that VZV is the most common herpesvirus to cause infection followed by HSV-1. Our results also showed that a moderate increase in the WBC count and predominance of lymphocytes can be valuable clues in diagnosing viral meningitis. Given the different approaches of drug therapy in bacterial and viral meningitis, use of molecular methods is necessary in hospitals to rapidly discriminate between them. PMID:26568804

  15. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation

    PubMed Central

    Lin, Jing-Yi; Li, Mei-Ling; Shih, Shin-Ru

    2009-01-01

    An internal ribosomal entry site (IRES) that directs the initiation of viral protein translation is a potential drug target for enterovirus 71 (EV71). Regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the internal ribosomal entry site. Biotinylated RNA-affinity chromatography and proteomic approaches were employed to identify far upstream element (FUSE) binding protein 2 (FBP2) as an ITAF for EV71. The interactions of FBP2 with EV71 IRES were confirmed by competition assay and by mapping the association sites in both viral IRES and FBP2 protein. During EV71 infection, FBP2 was enriched in cytoplasm where viral replication occurs, whereas FBP2 was localized in the nucleus in mock-infected cells. The synthesis of viral proteins increased in FBP2-knockdown cells that were infected by EV71. IRES activity in FBP2-knockdown cells exceeded that in the negative control (NC) siRNA-treated cells. On the other hand, IRES activity decreased when FBP2 was over-expressed in the cells. Results of this study suggest that FBP2 is a novel ITAF that interacts with EV71 IRES and negatively regulates viral translation. PMID:19010963

  16. Bacterial expression of antigenic sites A and D in the spike protein of transmissible gastroenteritis virus and evaluation of their inhibitory effects on viral infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spike (S) protein is a key structural protein of coronaviruses including, the porcine transmissible gastroenteritis virus (TGEV). The S protein is a type I membrane glycoprotein located in the viral envelope and is responsible for mediating the binding of viral particles to specific cell recepto...

  17. Characterization and purification of recombinant bovine viral diarrhea virus particles with epitope-tagged envelope proteins.

    PubMed

    Wegelt, Anne; Reimann, Ilona; Granzow, Harald; Beer, Martin

    2011-06-01

    Bovine viral diarrhea virus (BVDV) belongs to the genus Pestivirus within the family Flaviviridae. The lipid membrane of the virions is supposed to contain the three glycosylated envelope proteins E(rns), E1 and E2, but detailed studies of virus assembly are complicated because no efficient purification method for pestiviruses has been described so far. In this study, we generated infectious BVDV with N-terminally FLAG-tagged E(rns) or E2 proteins, respectively. The expression of the epitope-tagged E(rns) and E2 proteins could be shown by immunofluorescence and Western blot experiments. Furthermore, an affinity tag purification protocol for the isolation and concentration of infectious BVDV was established. In the preparation with a titre of 10(8.75) TCID(50) ml(-1), spherical particles with a diameter of 43-58 nm (mean diameter: 48 nm) could be detected by negative staining electron microscopy, and immunogold labelling located both E(rns) and E2 proteins at the virus membrane.

  18. Retroviral GAG proteins recruit AGO2 on viral RNAs without affecting RNA accumulation and translation.

    PubMed

    Bouttier, Manuella; Saumet, Anne; Peter, Marion; Courgnaud, Valérie; Schmidt, Ute; Cazevieille, Chantal; Bertrand, Edouard; Lecellier, Charles-Henri

    2012-01-01

    Cellular micro(mi)RNAs are able to recognize viral RNAs through imperfect micro-homologies. Similar to the miRNA-mediated repression of cellular translation, this recognition is thought to tether the RNAi machinery, in particular Argonaute 2 (AGO2) on viral messengers and eventually to modulate virus replication. Here, we unveil another pathway by which AGO2 can interact with retroviral mRNAs. We show that AGO2 interacts with the retroviral Group Specific Antigen (GAG) core proteins and preferentially binds unspliced RNAs through the RNA packaging sequences without affecting RNA stability or eliciting translation repression. Using RNAi experiments, we provide evidences that these interactions, observed with both the human immunodeficiency virus 1 (HIV-1) and the primate foamy virus 1 (PFV-1), are required for retroviral replication. Taken together, our results place AGO2 at the core of the retroviral life cycle and reveal original AGO2 functions that are not related to miRNAs and translation repression.

  19. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release.

    PubMed

    Raghava, Smita; Giorda, Kristina M; Romano, Fabian B; Heuck, Alejandro P; Hebert, Daniel N

    2013-06-01

    Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers. PMID:23651212

  20. The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication.

    PubMed

    Li, Ling; Wu, Rui; Zheng, Fengwei; Zhao, Cheng; Pan, Zishu

    2015-12-01

    Pestivirus nonstructural protein 2 (NS2) is a multifunctional, hydrophobic protein with an important but poorly understood role in viral RNA replication and infectious virus production. In the present study, based on sequence analysis, we mutated several representative conserved residues within the N-terminus of NS2 of classical swine fever virus (CSFV) and investigated how these mutations affected viral RNA replication and infectious virus production. Our results demonstrated that the mutation of two aspartic acids, NS2/D60A or NS2/D60K and NS2/D78K, in the N-terminus of NS2 abolished infectious virus production and that the substitution of arginine for alanine at position 100 (NS2/R100A) resulted in significantly decreased viral titer. The serial passage of cells containing viral genomic RNA molecules generated the revertants NS2/A60D, NS2/K60D and NS2/K78D, leading to the recovery of infectious virus. In the context of the NS2/R100A mutant, the NS2/I90L mutation compensated for infectious virus production. The regulatory roles of the indicated amino acid residues were identified to occur at the viral RNA replication level. These results revealed a novel function for the NS2 N-terminus of CSFV in modulating viral RNA replication. PMID:26232654

  1. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta).

    PubMed

    Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise

    2015-05-01

    A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles.

  2. Effect of herpesvirus infection on pancreatic duct cell secretion

    PubMed Central

    Hegyi, Péter; Ördög, Balázs; Jr, Zoltán Rakonczai; Takács, Tamás; Lonovics, János; Szabolcs, Annamária; Sári, Réka; Tóth, András; Papp, Julius G; Kovács, András Varró Mária K; Gray, Mike A; Argent, Barry E; Boldogköi, Zsolt

    2005-01-01

    AIM: To examine the effect of acute infection caused by herpesvirus (pseudorabies virus, PRV) on pancreatic ductal secretion. METHODS: The virulent Ba-DupGreen (BDG) and non-virulent Ka-RREp0lacgfp (KEG) genetically modified strains of PRV were used in this study and both of them contain the gene for green fluorescent protein (GFP). Small intra/interlobular ducts were infected with BDG virus (107 PFU/mL for 6 h) or with KEG virus (1010 PFU/mL for 6 h), while non-infected ducts were incubated only with the culture media. The ducts were then cultured for a further 18 h. The rate of HCO3- secretion [base efflux -J(B-)] was determined from the buffering capacity of the cells and the initial rate of intracellular acidification (1) after sudden blockage of basolateral base loaders with dihydro-4,4-diisothiocyanatostilbene-2,2-disulfonic acid (500 mmol/L) and amiloride (200 mmol/L), and (2) after alkali loading the ducts by exposure to NH4Cl. All the experiments were performed in HCO3--buffered Ringer solution at 37°C (n = 5 ducts for each experimental condition). Viral structural proteins were visualized by immunohistochemistry. Virally-encoded GFP and immunofluorescence signals were recorded by a confocal laser scanning microscope. RESULTS: The BDG virus infected the majority of accessible cells of the duct as judged by the appearance of GFP and viral antigens in the ductal cells. KEG virus caused a similarly high efficiency of infection. After blockage of basolateral base loaders, BDG infection significantly elevated -J(B-) 24 h after the infection, compared to the non-infected group. However, KEG infection did not modify -J(B-). After alkali loading the ducts, -J(B-) was significantly elevated in the BDG group compared to the control group 24 h after the infection. As we found with the inhibitor stop method, no change was observed in the group KEG compared to the non-infected group. CONCLUSION: Incubation with the BDG or KEG strains of PRV results in an effective

  3. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle. PMID:27414795

  4. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle. PMID:27414795

  5. Canine Enteric Coronaviruses: Emerging Viral Pathogens with Distinct Recombinant Spike Proteins

    PubMed Central

    Licitra, Beth N.; Duhamel, Gerald E.; Whittaker, Gary R.

    2014-01-01

    Canine enteric coronavirus (CCoV) is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs) that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host. PMID:25153347

  6. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein.

    PubMed

    Hernaez, B; Cabezas, M; Muñoz-Moreno, R; Galindo, I; Cuesta-Geijo, M A; Alonso, C

    2013-02-01

    Autophagy is a relevant cellular defense mechanism that directly eliminates intracellular pathogens and has a crucial role for innate and adaptive immune responses. Some viruses have developed tools to counteract this cellular response. A179L, the viral Bcl2 homolog of African swine fever virus, interacts with proapoptotic Bcl2 family proteins to inhibit apoptosis. Here we report that this gene manipulates autophagy by interacting with Beclin 1 through its BH3 homology domain. At subcellular level, A179L colocalized with Beclin 1 at mitochondria and the endoplasmic reticulum. Virus infection inhibited autophagosome formation in cells; however, when autophagy was induced prior to or at the time of infection the number of infected cells was severely decreased.

  7. Identification of two homologs of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species.

    PubMed Central

    Rose, T M; Strand, K B; Schultz, E R; Schaefer, G; Rankin, G W; Thouless, M E; Tsai, C C; Bosch, M L

    1997-01-01

    Simian retroperitoneal fibromatosis (RF) is a vascular fibroproliferative neoplasm which has many morphological and histological similarities to human Kaposi's sarcoma (KS). Like epidemic KS in AIDS patients, RF is highly associated with an immunodeficiency syndrome (simian acquired immunodeficiency syndrome [SAIDS]) caused by a retrovirus infection. Recently, a new gammaherpesvirus, called Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8), has been identified in KS tumors, suggesting that KS has a viral etiology. Our previous experimental transmission studies and epidemiological data suggest that RF also has an infectious etiology. In order to determine whether a similar virus is also associated with RF, we have assayed for the presence of an unknown herpesvirus using degenerate PCR primers targeting the highly conserved DNA polymerase genes of the herpesvirus family. Here we provide DNA sequence evidence for two new herpesviruses closely related to KSHV from RF tissues of two macaque species, Macaca nemestrina and Macaca mulatta. Our data suggest that KSHV and the putative macaque herpesviruses define a new group within the subfamily Gammaherpesvirinae whose members are implicated in the pathogenesis of KS and KS-like neoplasms in different primate species. PMID:9094697

  8. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles.

    PubMed

    Mahony, D; Cavallaro, A S; Mody, K T; Xiong, L; Mahony, T J; Qiao, S Z; Mitter, N

    2014-06-21

    Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 μg Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 μg dose of E2 adsorbed to 250 μg HMSA was compared to immunisation with Opti-E2 (50 μg) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 μg). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine. PMID:24811899

  9. Mutation of a C-Terminal Motif Affects Kaposi's Sarcoma-Associated Herpesvirus ORF57 RNA Binding, Nuclear Trafficking, and Multimerization ▿

    PubMed Central

    Taylor, Adam; Jackson, Brian R.; Noerenberg, Marko; Hughes, David J.; Boyne, James R.; Verow, Mark; Harris, Mark; Whitehouse, Adrian

    2011-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is essential for virus lytic replication. ORF57 regulates virus gene expression at multiple levels, enhancing transcription, stability, nuclear export, and translation of viral transcripts. To enhance the nuclear export of viral intronless transcripts, ORF57 (i) binds viral intronless mRNAs, (ii) shuttles between the nucleus, nucleolus, and the cytoplasm, and (iii) interacts with multiple cellular nuclear export proteins to access the TAP-mediated nuclear export pathway. We investigated the implications on the subcellular trafficking, cellular nuclear export factor recruitment, and ultimately nuclear mRNA export of an ORF57 protein unable to bind RNA. We observed that mutation of a carboxy-terminal RGG motif, which prevents RNA binding, affects the subcellular localization and nuclear trafficking of the ORF57 protein, suggesting that it forms subnuclear aggregates. Further analysis of the mutant shows that although it still retains the ability to interact with cellular nuclear export proteins, it is unable to export viral intronless mRNAs from the nucleus. Moreover, computational molecular modeling and biochemical studies suggest that, unlike the wild-type protein, this mutant is unable to self-associate. Therefore, these results suggest the mutation of a carboxy-terminal RGG motif affects ORF57 RNA binding, nuclear trafficking, and multimerization. PMID:21593148

  10. Reining in polyoma virus associated nephropathy: design and characterization of a template mimicking BK viral coat protein cellular binding.

    PubMed

    Audu, Christopher O; O'Hara, Bethany; Pellegrini, Maria; Wang, Lei; Atwood, Walter J; Mierke, Dale F

    2012-10-16

    The BK polyoma virus is a leading cause of chronic post kidney transplantation rejection. One target for therapeutic intervention is the initial association of the BK virus with the host cell. We hypothesize that the rate of BKV infection can be curbed by competitively preventing viral binding to cells. The X-ray structures of homologous viruses complexed with N-terminal glycoproteins suggest that the BC and HI loops of the viral coat are determinant for binding and thereby infection of the host cell. The large size of the viral coat precludes it from common biophysical and small molecule screening studies. Hence, we sought to develop a smaller protein template incorporating the identified binding loops of the BK viral coat in a manner that adequately mimics the binding characteristics of the BK virus coat protein to cells. Such a mimic may serve as a tool for the identification of inhibitors of BK viral progression. Herein, we report the design and characterization of a reduced-size and soluble template derived from a four-helix protein-TM1526 of Thermatoga maritima archaea bacteria-which maintains the topological display of the BC and HI loops as found in the viral coat protein, VP1, of BKV. We demonstrate that the GT1b and GD1b sialogangliosides, which bind to the VP1 of BKV, also associate with our BKV template. Employing a GFP-tagged template, we show host cell association that is dose dependent and that can be reduced by neuraminidase treatment. These data demonstrate that the BKV template mimics the host cell binding observed for the wild-type virus coat protein VP1.

  11. Human herpesvirus 6: An emerging pathogen.

    PubMed Central

    Campadelli-Fiume, G.; Mirandola, P.; Menotti, L.

    1999-01-01

    Infections with human herpesvirus 6 (HHV-6), a beta-herpesvirus of which two variant groups (A and B) are recognized, is very common, approaching 100% in seroprevalence. Primary infection with HHV-6B causes roseola infantum or exanthem subitum, a common childhood disease that resolves spontaneously. After primary infection, the virus replicates in the salivary glands and is shed in saliva, the recognized route of transmission for variant B strains; it remains latent in lymphocytes and monocytes and persists at low levels in cells and tissues. Not usually associated with disease in the immunocompetent, HHV-6 infection is a major cause of opportunistic viral infections in the immunosuppressed, typically AIDS patients and transplant recipients, in whom HHV-6 infection/reactivation may culminate in rejection of transplanted organs and death. Other opportunistic viruses, human cytomegalovirus and HHV-7, also infect or reactivate in persons at risk. Another disease whose pathogenesis may be correlated with HHV-6 is multiple sclerosis. Data in favor of and against the correlation are discussed. PMID:10341172

  12. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus

    SciTech Connect

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.

    2009-12-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.

  13. Complete Genome Sequences of Elephant Endotheliotropic Herpesviruses 1A and 1B Determined Directly from Fatal Cases

    PubMed Central

    Wilkie, Gavin S.; Watson, Mick; Kerr, Karen; Sanderson, Stephanie; Bouts, Tim; Steinbach, Falko; Dastjerdi, Akbar

    2013-01-01

    A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely, EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease. PMID:23552421

  14. Inhibition of iridovirus protein synthesis and virus replication by antisense morpholino oligonucleotides targeted to the major capsid protein, the 18 kDa immediate-early protein, and a viral homolog of RNA polymerase II

    SciTech Connect

    Sample, Robert; Bryan, Locke; Long, Scott; Majji, Sai; Hoskins, Glenn; Sinning, Allan; Olivier, Jake; Chinchar, V. Gregory . E-mail: vchinchar@microbio.umsmed.edu

    2007-02-20

    Frog virus 3 (FV3) is a large DNA virus that encodes {approx} 100 proteins. Although the general features of FV3 replication are known, the specific roles that most viral proteins play in the virus life cycle have not yet been elucidated. To address the question of viral gene function, antisense morpholino oligonucleotides (asMOs) were used to transiently knock-down expression of specific viral genes and thus infer their role in virus replication. We designed asMOs directed against the major capsid protein (MCP), an 18 kDa immediate-early protein (18K) that was thought to be a viral regulatory protein, and the viral homologue of the largest subunit of RNA polymerase II (vPol-II{alpha}). All three asMOs successfully inhibited translation of the targeted protein, and two of the three asMOs resulted in marked phenotypic changes. Knock-down of the MCP resulted in a marked reduction in viral titer without a corresponding drop in the synthesis of other late viral proteins. Transmission electron microscopy (TEM) showed that in cells treated with the anti-MCP MO assembly sites were devoid of viral particles and contained numerous aberrant structures. In contrast, inhibition of 18K synthesis did not block virion formation, suggesting that the 18K protein was not essential for replication of FV3 in fathead minnow (FHM) cells. Finally, consistent with the view that late viral gene expression is catalyzed by a virus-encoded or virus-modified Pol-II-like protein, knock-down of vPol-II{alpha} triggered a global decline in late gene expression and virus yields without affecting the synthesis of early viral genes. Collectively, these results demonstrate the utility of using asMOs to elucidate the function of FV3 proteins.

  15. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector

    PubMed Central

    He, Zhijian; Miao, Lei; Jordan, Rainer; S-Manickam, Devika; Luxenhofer, Robert; Kabanov, Alexander V

    2015-01-01

    Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈ 80 nm) and narrowly dispersed polyplexes (PDI < 0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(l-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery. PMID:25846127

  16. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process.

  17. Stochastic Kinetics of Viral Capsid Assembly Based on Detailed Protein Structures

    PubMed Central

    Hemberg, Martin; Yaliraki, Sophia N.; Barahona, Mauricio

    2006-01-01

    We present a generic computational framework for the simulation of viral capsid assembly which is quantitative and specific. Starting from PDB files containing atomic coordinates, the algorithm builds a coarse-grained description of protein oligomers based on graph rigidity. These reduced protein descriptions are used in an extended Gillespie algorithm to investigate the stochastic kinetics of the assembly process. The association rates are obtained from a diffusive Smoluchowski equation for rapid coagulation, modified to account for water shielding and protein structure. The dissociation rates are derived by interpreting the splitting of oligomers as a process of graph partitioning akin to the escape from a multidimensional well. This modular framework is quantitative yet computationally tractable, with a small number of physically motivated parameters. The methodology is illustrated using two different viruses which are shown to follow quantitatively different assembly pathways. We also show how in this model the quasi-stationary kinetics of assembly can be described as a Markovian cascading process, in which only a few intermediates and a small proportion of pathways are present. The observed pathways and intermediates can be related a posteriori to structural and energetic properties of the capsid oligomers. PMID:16473916

  18. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process. PMID:26906695

  19. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.

    PubMed

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  20. The conundrum of a unique protein encoded by citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein.

    PubMed

    Bak, Aurélie; Folimonova, Svetlana Y

    2015-11-01

    Citrus tristeza virus (CTV), one of the most economically important viruses, produces a unique protein, p33, which is encoded only in the genomes of isolates of CTV. Recently, we demonstrated that membrane association of the p33 protein confers virus ability to extend its host range. In this work we show that p33 shares characteristics of viral movement proteins. Upon expression in a host cell, the protein localizes to plasmodesmata and displays the ability to form extracellular tubules. Furthermore, p33 appears to traffic via the cellular secretory pathway and the actin network to plasmodesmata locations and is likely being recycled through the endocytic pathway. Finally, our study reveals that p33 colocalizes with a putative movement protein of CTV, the p6 protein. These results suggest a potential role of p33 as a noncanonical viral movement protein, which mediates virus translocation in the specific hosts.

  1. The conundrum of a unique protein encoded by citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein.

    PubMed

    Bak, Aurélie; Folimonova, Svetlana Y

    2015-11-01

    Citrus tristeza virus (CTV), one of the most economically important viruses, produces a unique protein, p33, which is encoded only in the genomes of isolates of CTV. Recently, we demonstrated that membrane association of the p33 protein confers virus ability to extend its host range. In this work we show that p33 shares characteristics of viral movement proteins. Upon expression in a host cell, the protein localizes to plasmodesmata and displays the ability to form extracellular tubules. Furthermore, p33 appears to traffic via the cellular secretory pathway and the actin network to plasmodesmata locations and is likely being recycled through the endocytic pathway. Finally, our study reveals that p33 colocalizes with a putative movement protein of CTV, the p6 protein. These results suggest a potential role of p33 as a noncanonical viral movement protein, which mediates virus translocation in the specific hosts. PMID:26210077

  2. MicroRNA-Mediated Transformation by the Kaposi's Sarcoma-Associated Herpesvirus Kaposin Locus

    PubMed Central

    Forte, Eleonora; Raja, Archana N.; Shamulailatpam, Priscilla; Manzano, Mark; Schipma, Matthew J.; Casey, John L.

    2014-01-01

    ABSTRACT The human oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a set of ∼20 viral microRNAs (miRNAs). miR-K10a stands out among these miRNAs because its entire stem-loop precursor overlaps the coding sequence for the Kaposin (Kap) A/C proteins. The ectopic expression of KapA has been reported to lead to transformation of rodent fibroblasts. However, these experiments inadvertently also introduced miR-K10a, which raises the question whether the transforming activity of the locus could in fact be due to miR-K10a expression. To answer this question, we have uncoupled miR-K10a and KapA expression. Our experiments revealed that miR-K10a alone transformed cells with an efficiency similar to that when it was coexpressed with KapA. Maintenance of the transformed phenotype was conditional upon continued miR-K10a but not KapA protein expression, consistent with its dependence on miRNA-mediated changes in gene expression. Importantly, miR-K10a taps into an evolutionarily conserved network of miR-142-3p targets, several of which are expressed in 3T3 cells and are also known inhibitors of cellular transformation. In summary, our studies of miR-K10a serve as an example of an unsuspected function of an mRNA whose precursor is embedded within a coding transcript. In addition, our identification of conserved miR-K10a targets that limit transformation will point the way to a better understanding of the role of this miRNA in KSHV-associated tumors. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus. The viral Kaposin locus has known oncogenic potential, which has previously been attributed to the encoded KapA protein. Here we show that the virally encoded miR-K10a miRNA, whose precursor overlaps the KapA-coding region, may account for the oncogenic properties of this locus. Our data suggest that miR-K10a mimics the cellular miRNA miR-142-3p and thereby represses several known inhibitors of oncogenic transformation. Our work

  3. Identification and isolation of a novel herpesvirus in a captive mob of eastern grey kangaroos (Macropus giganteus).

    PubMed

    Smith, Joseph A; Wellehan, James F X; Pogranichniy, Roman M; Childress, April L; Landolfi, Jennifer A; Terio, Karen A

    2008-06-22

    A novel herpesvirus was detected in a captive mob of eastern grey kangaroos (Macropus giganteus) during diagnostic workup for individuals with ulcerative cloacitis. Virus was initially detected in tissues using a consensus herpesvirus PCR. No viral inclusions or particles had been evident in routine histologic or transmission electron microscopic sections of cloacal lesions. Virus was isolated from samples and transmission electron microscopy of the resulting isolates confirmed that the virus was morphologically consistent with a herpesvirus. Nucleotide sequencing of the PCR product from tissue samples and from the isolates revealed that the virus was in the subfamily Gammaherpesvirinae and was distinct from other known herpesviruses. The correlation between the lesions and the novel virus remains unknown. Two herpesviruses, both in the subfamily Alphaherpesvirinae, have previously been described in macropods and are known to cause systemic clinical disease. This is the first reported gammaherpesvirus within the order Marsupialia, and may provide valuable information regarding the evolution and phylogeny of this virus family. Based on current herpesvirus nomenclature convention, the authors propose the novel herpesvirus be named Macropodid herpesvirus 3 (MaHV-3).

  4. CD147 and downstream ADAMTSs promote the tumorigenicity of Kaposi's sarcoma-associated herpesvirus infected endothelial cells

    PubMed Central

    Dai, Lu; Trillo-Tinoco, Jimena; Chen, Yihan; Bonstaff, Karlie; Del Valle, Luis; Parsons, Chris; Ochoa, Augusto C.; Zabaleta, Jovanny; Toole, Bryan P.; Qin, Zhiqiang

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposi's sarcoma (KS), which preferentially arise in immunocompromised patients and lack effective therapeutic options. We have previously shown that KSHV or viral protein LANA up-regulates the glycoprotei