Homotopy perturbation for conservative Helmholtz-Duffing oscillators
NASA Astrophysics Data System (ADS)
Leung, A. Y. T.; Guo, Zhongjin
2009-08-01
The approximate periodic solutions of the Helmholtz-Duffing oscillator are obtained by homotopy perturbation. The Helmholtz-Duffing oscillator becomes a Duffing oscillator when the homotopy parameter degenerates to one and a Helmholtz oscillator when it is zero. Since the behaviors of the solutions in the positive and negative directions are quite different, the asymmetric equation is separated into two auxiliary equations. The auxiliary equations are solved by homotopy perturbation method. A new analytical period for the Helmholtz-Duffing equation is derived. The resulting second-order approximate periodic solutions are compared to the analytical solutions using numerical integration with improved accuracy over some existing methods. Thus, the homotopy perturbation is very effective for the asymmetric nonlinear oscillators.
Căruntu, Bogdan
2014-01-01
The paper presents the optimal homotopy perturbation method, which is a new method to find approximate analytical solutions for nonlinear partial differential equations. Based on the well-known homotopy perturbation method, the optimal homotopy perturbation method presents an accelerated convergence compared to the regular homotopy perturbation method. The applications presented emphasize the high accuracy of the method by means of a comparison with previous results. PMID:25003150
Application of the Homotopy Perturbation Method to the Nonlinear Pendulum
ERIC Educational Resources Information Center
Belendez, A.; Hernandez, A.; Belendez, T.; Marquez, A.
2007-01-01
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a simple pendulum, and an approximate expression for its period is obtained. Only one iteration leads to high accuracy of the solutions and the relative error for the approximate period is less than 2% for amplitudes as…
Nonlinearities distribution Laplace transform-homotopy perturbation method.
Filobello-Nino, Uriel; Vazquez-Leal, Hector; Benhammouda, Brahim; Hernandez-Martinez, Luis; Hoyos-Reyes, Claudio; Perez-Sesma, Jose Antonio Agustin; Jimenez-Fernandez, Victor Manuel; Pereyra-Diaz, Domitilo; Marin-Hernandez, Antonio; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus; Cervantes-Perez, Juan
2014-01-01
This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.
Series Expansion of Functions with He's Homotopy Perturbation Method
ERIC Educational Resources Information Center
Khattri, Sanjay Kumar
2012-01-01
Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…
Analytical method for space-fractional telegraph equation by homotopy perturbation transform method
NASA Astrophysics Data System (ADS)
Prakash, Amit
2016-06-01
The object of the present article is to study spacefractional telegraph equation by fractional Homotopy perturbation transform method (FHPTM). The homotopy perturbation transform method is an innovative adjustment in Laplace transform algorithm. Three test examples are presented to show the efficiency of the proposed technique.
Numerical solution of fractionally damped beam by homotopy perturbation method
NASA Astrophysics Data System (ADS)
Behera, Diptiranjan; Chakraverty, Snehashish
2013-06-01
This paper investigates the numerical solution of a viscoelastic continuous beam whose damping behaviours are defined in term of fractional derivatives of arbitrary order. The Homotopy Perturbation Method (HPM) is used to obtain the dynamic response. Unit step function response is considered for the analysis. The obtained results are depicted in various plots. From the results obtained it is interesting to note that by increasing the order of the fractional derivative the beam suffers less oscillation. Similar observations have also been made by keeping the order of the fractional derivative constant and varying the damping ratios. Comparisons are made with the analytic solutions obtained by Zu-feng and Xiao-yan [Appl. Math. Mech. 28, 219 (2007)] to show the effectiveness and validation of this method.
NASA Astrophysics Data System (ADS)
Chun, Changbum; Sakthivel, Rathinasamy
2010-06-01
The two-point boundary value problems occur in a wide variety of problems in engineering and science. In this paper, we implement the homotopy perturbation method for solving the linear and nonlinear two-point boundary value problems. The main aim of this paper is to compare the performance of the homotopy perturbation method with extended Adomian decomposition method and shooting method. As a result, for the same number of terms, the homotopy perturbation method yields relatively more accurate results with rapid convergence than other methods. The computer symbolic systems such as Maple and Mathematica allow us to perform complicated and tedious calculations.
Laplace homotopy perturbation method for Burgers equation with space- and time-fractional order
NASA Astrophysics Data System (ADS)
Johnston, S. J.; Jafari, H.; Moshokoa, S. P.; Ariyan, V. M.; Baleanu, D.
2016-07-01
The fractional Burgers equation describes the physical processes of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe. The Laplace homotopy perturbation method is discussed to obtain the approximate analytical solution of space-fractional and time-fractional Burgers equations. The method used combines the Laplace transform and the homotopy perturbation method. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional orders.
Semi analytical solution of second order fuzzy Riccati equation by homotopy perturbation method
NASA Astrophysics Data System (ADS)
Jameel, A. F.; Ismail, Ahmad Izani Md
2014-07-01
In this work, the Homotopy Perturbation Method (HPM) is formulated to find a semi-analytical solution of the Fuzzy Initial Value Problem (FIVP) involving nonlinear second order Riccati equation. This method is based upon homotopy perturbation theory. This method allows for the solution of the differential equation to be calculated in the form of an infinite series in which the components can be easily calculated. The effectiveness of the algorithm is demonstrated by solving nonlinear second order fuzzy Riccati equation. The results indicate that the method is very effective and simple to apply.
Numerical Solution of Problems in Calculus of Variations by Homotopy Perturbation Method
Jafari, M. A.; Aminataei, A.
2008-09-01
In this work we use Homotopy Perturbation Method (HPM) to solve differential equations that arise in variational problems. To illustrate the method some examples are provided. The results show the efficiency and accuracy of the HPM. HPM can be considered an alternative method to Adomian decomposition method. Both of these methods can obtain analytic form of the solution in some cases.
NASA Astrophysics Data System (ADS)
Sharma, Dinkar; Singh, Prince; Chauhan, Shubha
2016-01-01
In this paper, a combined form of the Laplace transform method with the homotopy perturbation method (HPTM) is applied to solve nonlinear systems of partial differential equations viz. the system of third order KdV Equations and the systems of coupled Burgers' equations in one- and two- dimensions. The nonlinear terms can be easily handled by the use of He's polynomials. The results shows that the HPTM is very efficient, simple and avoids the round-off errors. Four test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM) which shows that this method is a suitable method for solving systems of partial differential equations.
An Accurate Solution to the Lotka-Volterra Equations by Modified Homotopy Perturbation Method
NASA Astrophysics Data System (ADS)
Chowdhury, M. S. H.; Rahman, M. M.
In this paper, we suggest a method to solve the multispecies Lotka-Voltera equations. The suggested method, which we call modified homotopy perturbation method, can be considered as an extension of the homotopy perturbation method (HPM) which is very efficient in solving a varety of differential and algebraic equations. The HPM is modified in order to obtain the approximate solutions of Lotka-Voltera equation response in a sequence of time intervals. In particular, the example of two species is considered. The accuracy of this method is examined by comparison with the numerical solution of the Runge-Kutta-Verner method. The results prove that the modified HPM is a powerful tool for the solution of nonlinear equations.
Homotopy Perturbation Method-Based Analytical Solution for Tide-Induced Groundwater Fluctuations.
Munusamy, Selva Balaji; Dhar, Anirban
2016-05-01
The groundwater variations in unconfined aquifers are governed by the nonlinear Boussinesq's equation. Analytical solution for groundwater fluctuations in coastal aquifers under tidal forcing can be solved using perturbation methods. However, the perturbation parameters should be properly selected and predefined for traditional perturbation methods. In this study, a new dimensional, higher-order analytical solution for groundwater fluctuations is proposed by using the homotopy perturbation method with a virtual perturbation parameter. Parameter-expansion method is used to remove the secular terms generated during the solution process. The solution does not require any predefined perturbation parameter and valid for higher values of amplitude parameter A/D, where A is the amplitude of the tide and D is the aquifer thickness.
NASA Astrophysics Data System (ADS)
Shchigolev, V. K.
2015-12-01
We propose a new approach in studying the planetary orbits and the perihelion precession in General Relativity by means of the Homotopy Perturbation Method (HPM).For this purpose, we give a brief review of the nonlinear geodesic equations in the spherical symmetry spacetime which are to be studied in our work. On the basis of the main idea of HPM, we construct the appropriate homotopy what leads to the problem of solving the set of linear equations. First of all, we consider the simple example of the Schwarzschild metric for which the approximate geodesics solutions are known, in order to compare the HPM solution for orbits with those obtained earlier. Moreover, we obtain an approximate HPM solution for the Reissner-Nordstorm spacetime of a charged star.
A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.
Doroudi, Alireza
2012-01-01
In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method. PMID:22792612
Laplace transform homotopy perturbation method for the approximation of variational problems.
Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R
2016-01-01
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.
Laplace transform homotopy perturbation method for the approximation of variational problems.
Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R
2016-01-01
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems. PMID:27006884
On the Application of Homotopy Perturbation Method for Solving Systems of Linear Equations
Edalatpanah, S. A.; Rashidi, M. M.
2014-01-01
The application of homotopy perturbation method (HPM) for solving systems of linear equations is further discussed and focused on a method for choosing an auxiliary matrix to improve the rate of convergence. Moreover, solving of convection-diffusion equations has been developed by HPM and the convergence properties of the proposed method have been analyzed in detail; the obtained results are compared with some other methods in the frame of HPM. Numerical experiment shows a good improvement on the convergence rate and the efficiency of this method. PMID:27350974
Eshkuvatov, Z K; Zulkarnain, F S; Nik Long, N M A; Muminov, Z
2016-01-01
Modified homotopy perturbation method (HPM) was used to solve the hypersingular integral equations (HSIEs) of the first kind on the interval [-1,1] with the assumption that the kernel of the hypersingular integral is constant on the diagonal of the domain. Existence of inverse of hypersingular integral operator leads to the convergence of HPM in certain cases. Modified HPM and its norm convergence are obtained in Hilbert space. Comparisons between modified HPM, standard HPM, Bernstein polynomials approach Mandal and Bhattacharya (Appl Math Comput 190:1707-1716, 2007), Chebyshev expansion method Mahiub et al. (Int J Pure Appl Math 69(3):265-274, 2011) and reproducing kernel Chen and Zhou (Appl Math Lett 24:636-641, 2011) are made by solving five examples. Theoretical and practical examples revealed that the modified HPM dominates the standard HPM and others. Finally, it is found that the modified HPM is exact, if the solution of the problem is a product of weights and polynomial functions. For rational solution the absolute error decreases very fast by increasing the number of collocation points. PMID:27652048
Eshkuvatov, Z K; Zulkarnain, F S; Nik Long, N M A; Muminov, Z
2016-01-01
Modified homotopy perturbation method (HPM) was used to solve the hypersingular integral equations (HSIEs) of the first kind on the interval [-1,1] with the assumption that the kernel of the hypersingular integral is constant on the diagonal of the domain. Existence of inverse of hypersingular integral operator leads to the convergence of HPM in certain cases. Modified HPM and its norm convergence are obtained in Hilbert space. Comparisons between modified HPM, standard HPM, Bernstein polynomials approach Mandal and Bhattacharya (Appl Math Comput 190:1707-1716, 2007), Chebyshev expansion method Mahiub et al. (Int J Pure Appl Math 69(3):265-274, 2011) and reproducing kernel Chen and Zhou (Appl Math Lett 24:636-641, 2011) are made by solving five examples. Theoretical and practical examples revealed that the modified HPM dominates the standard HPM and others. Finally, it is found that the modified HPM is exact, if the solution of the problem is a product of weights and polynomial functions. For rational solution the absolute error decreases very fast by increasing the number of collocation points.
Akbarzade, M.; Langari, J.
2011-02-15
In this paper a new approach combining the features of the homotopy concept with variational approach is proposed to find accurate analytical solutions for nonlinear oscillators with and without a fractional power restoring force. Since the first-order approximation leads to very accurate results, comparisons with other results are presented to show the effectiveness of this method. The validity of the method is independent of whether or not there exist small or large parameters in the considered nonlinear equations; the obtained results prove the validity and efficiency of the method, which can be easily extended to other strongly nonlinear problems. At the end we compare our procedure with the optimal homotopy perturbation method.
Narayanamoorthy, S; Sathiyapriya, S P
2016-01-01
In this article, we focus on linear and nonlinear fuzzy Volterra integral equations of the second kind and we propose a numerical scheme using homotopy perturbation method (HPM) to obtain fuzzy approximate solutions to them. To facilitate the benefits of this proposal, an algorithmic form of the HPM is also designed to handle the same. In order to illustrate the potentiality of the approach, two test problems are offered and the obtained numerical results are compared with the existing exact solutions and are depicted in terms of plots to reveal its precision and reliability.
Filobello-Nino, Uriel; Vazquez-Leal, Hector; Cervantes-Perez, Juan; Benhammouda, Brahim; Perez-Sesma, Agustin; Hernandez-Martinez, Luis; Jimenez-Fernandez, Victor Manuel; Herrera-May, Agustin Leobardo; Pereyra-Diaz, Domitilo; Marin-Hernandez, Antonio; Huerta Chua, Jesus
2014-01-01
This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient.
Filobello-Nino, Uriel; Vazquez-Leal, Hector; Cervantes-Perez, Juan; Benhammouda, Brahim; Perez-Sesma, Agustin; Hernandez-Martinez, Luis; Jimenez-Fernandez, Victor Manuel; Herrera-May, Agustin Leobardo; Pereyra-Diaz, Domitilo; Marin-Hernandez, Antonio; Huerta Chua, Jesus
2014-01-01
This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient. PMID:25157331
NASA Astrophysics Data System (ADS)
Noshad, Houshyar; Bahador, Seyyedeh Samira; Mohammadi, Saeed
2013-10-01
In this article, dispersion of a 60 MeV proton pencil beam at various depths in a muscle tissue was numerically investigated via solving a three dimensional Fokker-Planck equation using homotopy perturbation method (HPM) and variational iteration method (VIM). The accuracy of these methods was benchmarked by comparison the radial flux distribution of protons traversing different depths in the tissue with the data of the High Charge and Energy Transport (HZETRN) model and Monte Carlo simulations. Furthermore, the computed depth dose distributions obtained from the HPM and VIM for monoenergetic protons passing through a medium were compared with the results of GEANT4.5.2 code as well as the experimental data reported in the literature. The satisfactory agreement obtained from our computations shows the reliability and applicability of the HPM and VIM in our analysis.
NASA Astrophysics Data System (ADS)
Abou-zeid, Mohamed
In this paper, a study of the peristaltic motion of incompressible micropolar non-Newtonian nanofluid with heat transfer in a two-dimensional asymmetric channel is investigated under long-wavelength assumption. The flow includes radiation and viscous dissipation effects as well as all micropolar fluid parameters. The fundamental equations which govern this flow have been modeled under long-wavelength assumption, and the expressions of velocity and microrotation velocity are obtained in a closed form, while the solutions of both temperature and nanoparticles phenomena are obtained using the homotopy perturbation method (HPM). Also, the skin friction, Nusselt number and Sherwood number are obtained at both lower and upper walls. The results have been discussed graphically to observe the effects the physical parameters of the problem have on the physical quantities.
Homotopy optimization methods for global optimization.
Dunlavy, Daniel M.; O'Leary, Dianne P. (University of Maryland, College Park, MD)
2005-12-01
We define a new method for global optimization, the Homotopy Optimization Method (HOM). This method differs from previous homotopy and continuation methods in that its aim is to find a minimizer for each of a set of values of the homotopy parameter, rather than to follow a path of minimizers. We define a second method, called HOPE, by allowing HOM to follow an ensemble of points obtained by perturbation of previous ones. We relate this new method to standard methods such as simulated annealing and show under what circumstances it is superior. We present results of extensive numerical experiments demonstrating performance of HOM and HOPE.
Hypereosinophilic Syndrome (HES)
... and is part of the larger group of Myeloproliferative Neoplasms. Closely related disease to HES is chronic eosinophilic ... long-term therapy. Overall experience with IFNa in myeloproliferative neoplasms is that about 25-30% of patients require ...
Asymptotic Analysis to Two Nonlinear Equations in Fluid Mechanics by Homotopy Renormalisation Method
NASA Astrophysics Data System (ADS)
Guan, Jiang; Kai, Yue
2016-09-01
By the homotopy renormalisation method, the global approximate solutions to Falkner-Skan equation and Von Kármá's problem of a rotating disk in an infinite viscous fluid are obtained. The homotopy renormalisation method is simple and powerful for finding global approximate solutions to nonlinear perturbed differential equations arising in mathematical physics.
Roles of hesC and gcm in echinoid larval mesenchyme cell development.
Yamazaki, Atsuko; Minokawa, Takuya
2016-04-01
To understand the roles of hesC and gcm during larval mesenchyme specification and differentiation in echinoids, we performed perturbation experiments for these genes in two distantly related euechinoids, Hemicentrotus pulcherrimus and Scaphechinus mirabilis. The number of larval mesenchyme cells increased when the translation of hesC was inhibited, thereby suggesting that hesC has a general role in larval mesenchyme development. We confirmed previous results by demonstrating that gcm is involved in pigment cell differentiation. Simultaneous inhibition of the translation of hesC and gcm induced a significant increase in the number of skeletogenic cells, which suggests that gcm functions in skeletogenic fate repression. Based on these observations, we suggest that: (i) hesC participates in some general aspects of mesenchymal cell development; and (ii) gcm is involved in the mechanism responsible for the binary specification of skeletogenic and pigment cell fates. PMID:27046223
Asymptotic invariants of homotopy groups
NASA Astrophysics Data System (ADS)
Manin, Fedor
We study the homotopy groups of a finite CW complex X via constraints on the geometry of representatives of their elements. For example, one can measure the "size" of alpha ∈ pi n (X) by the optimal Lipschitz constant or volume of a representative. By comparing the geometrical structure thus obtained with the algebraic structure of the group, one can define functions such as growth and distortion in pin(X), analogously to the way that such functions are studied in asymptotic geometric group theory. We provide a number of examples and techniques for studying these invariants, with a special focus on spaces with few rational homotopy groups. Our main theorem characterizes those X in which all non-torsion homotopy classes are undistorted, that is, their volume distortion functions, and hence also their Lipschitz distortion functions, are linear.
Open-closed homotopy algebra in mathematical physics
Kajiura, Hiroshige; Stasheff, Jim
2006-02-15
In this paper we discuss various aspects of open-closed homotopy algebras (OCHAs) presented in our previous paper, inspired by Zwiebach's open-closed string field theory, but that first paper concentrated on the mathematical aspects. Here we show how an OCHA is obtained by extracting the tree part of Zwiebach's quantum open-closed string field theory. We clarify the explicit relation of an OCHA with Kontsevich's deformation quantization and with the B-models of homological mirror symmetry. An explicit form of the minimal model for an OCHA is given as well as its relation to the perturbative expansion of open-closed string field theory. We show that our open-closed homotopy algebra gives us a general scheme for deformation of open string structures (A{sub {infinity}} algebras) by closed strings (L{sub {infinity}} algebras)
Homotopy theory in toric topology
NASA Astrophysics Data System (ADS)
Grbić, J.; Theriault, S.
2016-04-01
In toric topology one associates with each simplicial complex K on m vertices two key spaces, the Davis-Januszkiewicz space DJK and the moment-angle complex \\mathscr{Z}K, which are related by a homotopy fibration \\mathscr{Z}K\\xrightarrow{\\tilde{w}}DJ_K\\to \\prodi=1m{C}P∞. A great deal of work has been done to study the properties of DJK and \\mathscr{Z}K, their generalizations to polyhedral products, and applications to algebra, combinatorics, and geometry. Chap. 1 surveys some of the main results in the homotopy theory of these spaces. Chap. 2 breaks new ground by initiating a study of the map \\tilde{w}. It is shown that, for a certain family of simplicial complexes K, the map \\tilde{w} is a sum of higher and iterated Whitehead products. Bibliography: 49 titles.
NASA Astrophysics Data System (ADS)
Van Gorder, Robert A.; Vajravelu, K.
2009-12-01
The Homotopy Analysis Method of Liao [Liao SJ. Beyond perturbation: introduction to the Homotopy Analysis Method. Boca Raton: Chapman & Hall/CRC Press; 2003] has proven useful in obtaining analytical solutions to various nonlinear differential equations. In this method, one has great freedom to select auxiliary functions, operators, and parameters in order to ensure the convergence of the approximate solutions and to increase both the rate and region of convergence. We discuss in this paper the selection of the initial approximation, auxiliary linear operator, auxiliary function, and convergence control parameter in the application of the Homotopy Analysis Method, in a fairly general setting. Further, we discuss various convergence requirements on solutions.
Rani, Aradhana; Greenlaw, Roseanna; Smith, Richard A; Galustian, Christine
2016-08-01
Hairy and enhancer of split homolog-1 (HES1) is a part of an extensive family of basic helix-loop-helix (bHLH) proteins and plays a crucial role in the control and regulation of cell cycle, proliferation, cell differentiation, survival and apoptosis in neuronal, endocrine, T-lymphocyte progenitors as well as various cancers. HES1 is a transcription factor which is regulated by the NOTCH, Hedgehog and Wnt signalling pathways. Aberrant expression of these pathways is a common feature of cancerous cells. There appears to be a fine and complicated crosstalk at the molecular level between the various signalling pathways and HES1, which contributes to its effects on the immune response and cancers such as leukaemia. Several mechanisms have been proposed, including an enhanced invasiveness and metastasis by inducing epithelial mesenchymal transition (EMT), in addition to its strict requirement for tumour cell survival. In this review, we summarize the current biology and molecular mechanisms as well as its use as a clinical target in cancer therapeutics. PMID:27066918
Comparative study of homotopy continuation methods for nonlinear algebraic equations
NASA Astrophysics Data System (ADS)
Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.
2014-07-01
We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).
Regular homotopy for immersions of graphs into surfaces
NASA Astrophysics Data System (ADS)
Permyakov, D. A.
2016-06-01
We study invariants of regular immersions of graphs into surfaces up to regular homotopy. The concept of the winding number is used to introduce a new simple combinatorial invariant of regular homotopy. Bibliography: 20 titles.
Involvement of Notch1/Hes signaling pathway in ankylosing spondylitis
Xu, Wei; Liang, Chao-Ge; Li, Yi-Fan; Ji, Yun-Han; Qiu, Wen-Jun; Tang, Xian-Zhong
2015-01-01
We aimed to investigate the role of Notch1/Hes signaling pathway in the pathogenesis of abnormal ossification of hip ligament in patients with ankylosing spondylitis (AS). 22 AS patients scheduled for artificial hip arthroplasty were randomly chosen as AS group. As controls, we used 4 patients diagnosed with transcervical fracture who underwent hip replacement surgery. Notch1 and Hes mRNA expressions were detected by real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR). Immunohistochemistry (IHC) was used to detect Notch1 and Hes protein expression. Correlation analyses of Notch-l and Hes with AS-related clinical factors were conducted with spearman’s correlation analysis and partial correlation analysis. RFQ-PCR results showed significant differences in Notch1 and Hes mRNA expressions between AS group and the control group (all P < 0.05). IHC analysis further indicated positive nuclear signals of Notch1 and Hes protein, indicating functional activation of the Notch1 and Hes pathways. Semi-quantitative IHC showed a higher Notch1 and Hes expression levels in AS group compared to the control group (all P < 0.05). Correlation analysis suggested that Hes protein expression was positively associated with the clinical course of the disease in AS patients. In conclusion, Notch1 and Hes overexpression was clearly detected in hip joint ligaments of AS patients, Hes protein expression was associated with the clinical course of AS. Taken together, we suggest that signaling pathways mediated by Notch1-Hes may contribute to ligament ossification of hip joints in AS patients. PMID:26045779
Nonlinear filters with log-homotopy
NASA Astrophysics Data System (ADS)
Daum, Fred; Huang, Jim
2007-09-01
We derive and test a new nonlinear filter that implements Bayes' rule using an ODE rather than with a pointwise multiplication of two functions. This avoids one of the fundamental and well known problems in particle filters, namely "particle collapse" as a result of Bayes' rule. We use a log-homotopy to construct this ODE. Our new algorithm is vastly superior to the classic particle filter, and we do not use any proposal density supplied by an EKF or UKF or other outside source. This paper was written for normal engineers, who do not have homotopy for breakfast.
HES6 enhances the motility of alveolar rhabdomyosarcoma cells
Wickramasinghe, Caroline M; Domaschenz, Renae; Amagase, Yoko; Williamson, Daniel; Missiaglia, Edoardo; Shipley, Janet; Murai, Kasumi; Jones, Philip H
2013-01-01
Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.
Experiments with conjugate gradient algorithms for homotopy curve tracking
NASA Technical Reports Server (NTRS)
Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.
1991-01-01
There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.
Multiple requirements for Hes1 during early eye formation
Lee, Hae Young; Wroblewski, Emily; Philips, Gary T.; Stair, Carrie N.; Conley, Kevin; Reedy, Meredith; Mastick, Grant S.; Brown, Nadean L.
2014-01-01
During embryogenesis, multiple developmental processes are integrated through their precise temporal regulation. Hes1 is a transcriptional repressor that regulates the timing of mammalian retinal neurogenesis. However, roles for Hes1 in early eye development have not been well defined. Here, we show that Hes1 is expressed in the forming lens, optic vesicle, cup, and pigmented epithelium and is necessary for proper growth, morphogenesis, and differentiation of these tissues. Because Hes1 is required throughout the eye, we investigated its interaction with Pax6. Hes1–Pax6 double mutant embryos are eyeless suggesting these genes are coordinately required for initial morphogenesis and outgrowth of the optic vesicle. In Hes1 mutants, Math5 expression is precocious along with retinal ganglion cell, amacrine, and horizontal neuron formation. In contrast to apparent cooperativity between Pax6 and Hes1 during morphogenesis, each gene regulates Math5 and RGC genesis independently. Together, these studies demonstrate that Hes1, like Pax6, simultaneously regulates multiple developmental processes during optic development. PMID:16038893
Expression of Hairy/Enhancer of Split genes, Hes1 and Hes5, during murine nephron morphogenesis.
Piscione, Tino D; Wu, Megan Y J; Quaggin, Susan E
2004-10-01
Hairy/Enhancer of Split (Hes) genes encode transcriptional repressors that function as downstream targets of activated Notch receptors in cell fate decisions during tissue development. During nephrogenesis, multiple Notch pathway genes are co-expressed in multi-potent epithelial progenitors (i.e. pre-tubular aggregates), but demonstrate distinct expression patterns in early nephrons (i.e. S-shaped bodies), suggesting that Notch signaling functions in patterning epithelial cell fate during nephron morphogenesis. To define the spatial activation of the Notch pathway in developing nephrons, we analyzed the expression of Hes1 and Hes5 by mRNA in situ hybridization in cryosections of developing kidneys, and compared their spatiotemporal expression with the expression of other Notch pathway genes in nephron progenitors. Hes1, and to a lesser extent Hes5, were expressed in pre-tubular aggregates and comma-shaped bodies of embryonic day (E) 13.5 and newborn kidneys. In S-shaped bodies, Hes1 expression was detected in the middle part which gives rise to the proximal tubule, but also extended into the lower and upper parts which give rise to the glomerulus and distal tubule, respectively, and was similar to the proximal-distal expression patterns for Notch1 and Jagged1 in these nephrogenic structures. In contrast, strong Hes5 expression was restricted to the middle segment of S-shaped bodies, and resembled Delta-like 1 expression. These data show that Hes1 and Hes5 expression are independently regulated along the proximal-distal axis of the developing nephron. Consequently, the differential, spatial regulation of Hes1 and Hes5 gene expression by the Notch signaling pathway in developing nephrons may be a mechanism for patterning cell fate decisions during nephron morphogenesis. PMID:15465493
Application of the homotopy method for analytical solution of non-Newtonian channel flows
NASA Astrophysics Data System (ADS)
Roohi, Ehsan; Kharazmi, Shahab; Farjami, Yaghoub
2009-06-01
This paper presents the homotopy series solution of the Navier-Stokes and energy equations for non-Newtonian flows. Three different problems, Couette flow, Poiseuille flow and Couette-Poiseuille flow have been investigated. For all three cases, the nonlinear momentum and energy equations have been solved using the homotopy method and analytical approximations for the velocity and the temperature distribution have been obtained. The current results agree well with those obtained by the homotopy perturbation method derived by Siddiqui et al (2008 Chaos Solitons Fractals 36 182-92). In addition to providing analytical solutions, this paper draws attention to interesting physical phenomena observed in non-Newtonian channel flows. For example, it is observed that the velocity profile of non-Newtonian Couette flow is indistinctive from the velocity profile of the Newtonian one. Additionally, we observe flow separation in non-Newtonian Couette-Poiseuille flow even though the pressure gradient is negative (favorable). We provide physical reasoning for these unique phenomena.
Wang, Hong; Wang, Xi-cheng
2014-02-21
Metabolism is a very important cellular process and its malfunction contributes to human disease. Therefore, building dynamic models for metabolic networks with experimental data in order to analyze biological process rationally has attracted a lot of attention. Owing to the technical limitations, some unknown parameters contained in models need to be estimated effectively by means of the computational method. Generally, problems of parameter estimation of nonlinear biological network are known to be ill condition and multimodal. In particular, with the increasing amount and enlarging the scope of parameters, many optimization algorithms often fail to find a global solution. In this paper, two-stage variable factor Bregman regularization homotopy method is proposed. Discrete homotopy is used to identify the possible extreme region and continuous homotopy is executed for the purpose of stability of path tracing in the special region. Meanwhile, Latin hypercube sampling is introduced to get the good initial guess value and a perturbation strategy is developed to jump out of the local optimum. Three metabolic network inverse problems are investigated to demonstrate the effectiveness of the proposed method. PMID:24060619
Doroudi, Alireza
2009-11-01
In this paper the homotopy perturbation method is used for calculation of the frequencies of the coupled secular oscillations and axial secular frequencies of a nonlinear ion trap. The motion of the ion in a rapidly oscillating field is transformed to the motion in an effective potential. The equations of ion motion in the effective potential are in the form of a Duffing-like equation. The homotopy perturbation method is used for solving the resulted system of coupled nonlinear differential equations and the resulted axial equation for obtaining the expressions for ion secular frequencies as a function of nonlinear field parameters and amplitudes of oscillations. The calculated axial secular frequencies are compared with the results of Lindstedt-Poincare method and the exact results. PMID:20365087
HES6 promotes prostate cancer aggressiveness independently of Notch signalling
Carvalho, Filipe L F; Marchionni, Luigi; Gupta, Anuj; Kummangal, Basheer A; Schaeffer, Edward M; Ross, Ashley E; Berman, David M
2015-01-01
Notch signalling is implicated in the pathogenesis of a variety of cancers, but its role in prostate cancer is poorly understood. However, selected Notch pathway members are overrepresented in high-grade prostate cancers. We comprehensively profiled Notch pathway components in prostate cells and found prostate cancer-specific up-regulation of NOTCH3 and HES6. Their expression was particularly high in androgen responsive lines. Up- and down-regulating Notch in these cells modulated expression of canonical Notch targets, HES1 and HEY1, which could also be induced by androgen. Surprisingly, androgen treatment also suppressed Notch receptor expression, suggesting that androgens can activate Notch target genes in a receptor-independent manner. Using a Notch-sensitive Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) reporter assay, we found that basal levels of Notch signalling were significantly lower in prostate cancer cells compared to benign cells. Accordingly pharmacological Notch pathway blockade did not inhibit cancer cell growth or viability. In contrast to canonical Notch targets, HES6, a HES family member known to antagonize Notch signalling, was not regulated by Notch signalling, but relied instead on androgen levels, both in cultured cells and in human cancer tissues. When engineered into prostate cancer cells, reduced levels of HES6 resulted in reduced cancer cell invasion and clonogenic growth. By molecular profiling, we identified potential roles for HES6 in regulating hedgehog signalling, apoptosis and cell migration. Our results did not reveal any cell-autonomous roles for canonical Notch signalling in prostate cancer. However, the results do implicate HES6 as a promoter of prostate cancer progression. PMID:25864518
Perturbative analysis in higher-spin theories
NASA Astrophysics Data System (ADS)
Didenko, V. E.; Misuna, N. G.; Vasiliev, M. A.
2016-07-01
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higherspin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
Regeneration of mammalian cochlear and vestibular hair cells through Hes1/Hes5 modulation with siRNA
Du, Xiaoping; Li, Wei; Gao, Xinsheng; West, Matthew B.; Saltzman, W. Mark; Cheng, Christopher J.; Stewart, Charles; Zheng, Jie; Cheng, Weihua; Kopke, Richard D.
2014-01-01
The Notch pathway is a cell signaling pathway determining initial specification and subsequent cell fate in the inner ear. Previous studies have suggested that new hair cells (HCs) can be regenerated in the inner ear by manipulating the Notch pathway. In the present study, delivery of siRNA to Hes1 and Hes5 using a transfection reagent or siRNA to Hes1 encapsulated within poly(lactide-co-glycolide acid) (PLGA) nanoparticles increased HC numbers in non-toxin treated organotypic cultures of cochleae and maculae of postnatal day 3 mouse pups. An increase in HCs was also observed in cultured cochleae and maculae of mouse pups pre-conditioned with a HC toxin (4-hydroxy-2-nonenal or neomycin) and then treated with the various siRNA formulations. Treating cochleae with siRNA to Hes1 associated with a transfection reagent or siRNA to Hes1 delivered by PLGA nanoparticles decreased Hes1 mRNA and up-regulated Atoh1 mRNA expression allowing supporting cells (SCs) to acquire a HC fate. Experiments using cochleae and maculae of p27kip1/-GFP transgenic mouse pups demonstrated that newly generated HCs trans-differentiated from SCs. Furthermore, PLGA nanoparticles are non-toxic to inner ear tissue, readily taken up by cells within the tissue of interest, and present a synthetic delivery system that is a safe alternative to viral vectors. These results indicate that when delivered using a suitable vehicle, Hes siRNAs are potential therapeutic molecules that may have the capacity to regenerate new HCs in the inner ear and possibly restore human hearing and balance function. PMID:23850665
From Atiyah Classes to Homotopy Leibniz Algebras
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Stiénon, Mathieu; Xu, Ping
2016-01-01
A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold X makes T X [-1] into a Lie algebra object in D + ( X), the bounded below derived category of coherent sheaves on X. Furthermore, Kapranov proved that, for a Kähler manifold X, the Dolbeault resolution {Ω^{bullet-1}(T_X^{1, 0})} of T X [-1] is an L ∞ algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair ( L, A), i.e. a Lie algebroid L together with a Lie subalgebroid A, we define the Atiyah class α E of an A-module E as the obstruction to the existence of an A- compatible L-connection on E. We prove that the Atiyah classes α L/ A and α E respectively make L/ A[-1] and E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category {D^+(A)} , where {A} is the abelian category of left {U(A)} -modules and {U(A)} is the universal enveloping algebra of A. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/ A and E, and inducing the aforesaid Lie structures in {D^+(A)}.
Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory
NASA Astrophysics Data System (ADS)
Hoefel, Eduardo; Livernet, Muriel
2012-08-01
Open-closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) were introduced by Kajiura and Stasheff in 2004. In an appendix to their paper, Markl observed that an SHLP is equivalent to an algebra over the minimal model of a certain operad, without showing that the operad is Koszul. In the present paper, we show that both OCHA and SHLP are algebras over the minimal model of the zeroth homology of two versions of the Swiss-cheese operad and prove that these two operads are Koszul. As an application, we show that the OCHA operad is non-formal as a 2-colored operad but is formal as an algebra in the category of 2-collections.
Results of NASA/NOAA HES Trade Studies
NASA Technical Reports Server (NTRS)
Susskind, Joel
2011-01-01
This slide presentation reviews the trade studies that were done for the Hyperspectral Environmental Suite (HES). The goal of the trade studies was to minimize instrument cost and risk while producing scientifically useful products. Three vendors were selected to perform the trade study, and were to conduct 11 studies, with the first study a complete wish list of things that scientists would like from GEO orbit to the 11th study which was for a Reduced Accommodation Sounder (RAS) which would still result in useful scientific products, within constrains compatible with flight on GEOS-R. The RAS's from each vendor and one other HES sounders designs are reviewed.
Efficient Homotopy Continuation Algorithms with Application to Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Brown, David A.
New homotopy continuation algorithms are developed and applied to a parallel implicit finite-difference Newton-Krylov-Schur external aerodynamic flow solver for the compressible Euler, Navier-Stokes, and Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras one-equation turbulence model. Many new analysis tools, calculations, and numerical algorithms are presented for the study and design of efficient and robust homotopy continuation algorithms applicable to solving very large and sparse nonlinear systems of equations. Several specific homotopies are presented and studied and a methodology is presented for assessing the suitability of specific homotopies for homotopy continuation. . A new class of homotopy continuation algorithms, referred to as monolithic homotopy continuation algorithms, is developed. These algorithms differ from classical predictor-corrector algorithms by combining the predictor and corrector stages into a single update, significantly reducing the amount of computation and avoiding wasted computational effort resulting from over-solving in the corrector phase. The new algorithms are also simpler from a user perspective, with fewer input parameters, which also improves the user's ability to choose effective parameters on the first flow solve attempt. Conditional convergence is proved analytically and studied numerically for the new algorithms. The performance of a fully-implicit monolithic homotopy continuation algorithm is evaluated for several inviscid, laminar, and turbulent flows over NACA 0012 airfoils and ONERA M6 wings. The monolithic algorithm is demonstrated to be more efficient than the predictor-corrector algorithm for all applications investigated. It is also demonstrated to be more efficient than the widely-used pseudo-transient continuation algorithm for all inviscid and laminar cases investigated, and good performance scaling with grid refinement is demonstrated for the inviscid cases. Performance is also demonstrated
Homotopy Algorithm for Optimal Control Problems with a Second-order State Constraint
Hermant, Audrey
2010-02-15
This paper deals with optimal control problems with a regular second-order state constraint and a scalar control, satisfying the strengthened Legendre-Clebsch condition. We study the stability of structure of stationary points. It is shown that under a uniform strict complementarity assumption, boundary arcs are stable under sufficiently smooth perturbations of the data. On the contrary, nonreducible touch points are not stable under perturbations. We show that under some reasonable conditions, either a boundary arc or a second touch point may appear. Those results allow us to design an homotopy algorithm which automatically detects the structure of the trajectory and initializes the shooting parameters associated with boundary arcs and touch points.
Dynamic reprogramming of chromatin: paradigmatic palimpsests and HES factors
Kok, Kurtulus; Arnosti, David N.
2015-01-01
Temporal and spatial control of transcription in development is dictated to a great extent by transcriptional repressors. Some repressor complexes, such as Polycomp-group proteins, induce relatively long-term non-permissive states, whereas others such as hairy/enhancer of split (HES) family repressors are linked to dynamically modulated chromatin states associated with cycling expression of target genes. The mode of action and specificity of repressors involved in mediating this latter form of epigenetic control are unknown. Oscillating expression of HES repressors controlled by signaling pathways such as Notch suggests that the entire ensemble of HES–associated co-repressors and histone modifying complexes readily cycle on and off genes. Dynamic interactions between these factors and chromatin seem to be crucial in maintaining multipotency of progenitor cells, but the significance of such interactions in more differentiated cells is less well understood. We discuss here how genome-wide analyses and real-time gene expression measurements of HES regulated genes can help decipher the detailed mechanisms and biological importance of highly dynamic transcriptional switching mediated by epigenetic changes. PMID:25713582
HesF, an exoprotein required for filament adhesion and aggregation in Anabaena sp. PCC 7120.
Oliveira, Paulo; Pinto, Filipe; Pacheco, Catarina C; Mota, Rita; Tamagnini, Paula
2015-05-01
Here, we report on the identification and characterization of a protein (Alr0267) named HesF, found in the extracellular milieu of Anabaena sp. PCC 7120 grown diazotrophically. hesF was found to be highly upregulated upon transition from non-nitrogen-fixing to nitrogen-fixing conditions, and the highest transcript levels were detected towards the end of the heterocyst differentiation process. The hesF promoter drives transcription of the gene in heterocysts only, and both NtcA and HetR are essential for the gene's in vivo activation. An examination of HesF's translocation showed that the secretion system is neither heterocyst-specific nor dependent on nitrogen-fixing conditions. Furthermore, HesF was found to be a type I secretion system substrate, since an HgdD mutant failed to secrete HesF. Several analyses revealed that a HesF minus mutant strain lacks the heterocyst-specific polysaccharide fibrous layer, accumulates high amounts of polysaccharides in the medium and that HesF is essential for the typical aggregation phenotype in diazotrophic conditions. Thus, we propose that HesF is a carbohydrate-binding exoprotein that plays a role in maintaining the heterocyst cell wall structure. A combination of and possibly interaction between HesF and heterocyst-specific polysaccharides seems to be responsible for filament adhesion and culture aggregation in heterocyst-forming cyanobacteria.
HesF, an exoprotein required for filament adhesion and aggregation in Anabaena sp. PCC 7120.
Oliveira, Paulo; Pinto, Filipe; Pacheco, Catarina C; Mota, Rita; Tamagnini, Paula
2015-05-01
Here, we report on the identification and characterization of a protein (Alr0267) named HesF, found in the extracellular milieu of Anabaena sp. PCC 7120 grown diazotrophically. hesF was found to be highly upregulated upon transition from non-nitrogen-fixing to nitrogen-fixing conditions, and the highest transcript levels were detected towards the end of the heterocyst differentiation process. The hesF promoter drives transcription of the gene in heterocysts only, and both NtcA and HetR are essential for the gene's in vivo activation. An examination of HesF's translocation showed that the secretion system is neither heterocyst-specific nor dependent on nitrogen-fixing conditions. Furthermore, HesF was found to be a type I secretion system substrate, since an HgdD mutant failed to secrete HesF. Several analyses revealed that a HesF minus mutant strain lacks the heterocyst-specific polysaccharide fibrous layer, accumulates high amounts of polysaccharides in the medium and that HesF is essential for the typical aggregation phenotype in diazotrophic conditions. Thus, we propose that HesF is a carbohydrate-binding exoprotein that plays a role in maintaining the heterocyst cell wall structure. A combination of and possibly interaction between HesF and heterocyst-specific polysaccharides seems to be responsible for filament adhesion and culture aggregation in heterocyst-forming cyanobacteria. PMID:25142951
Identification, characterization, and chromosomal localization of the human homolog (hES) of ES/130
Basson, C.T.; Morton, C.C.; MacRae, C.A.
1996-08-01
The chicken extracellular matrix glycoprotein ES/130 is necessary for epithelial-mesenchymal transformation in the developing hear and is also expressed in noncardiac chicken tissues such as limb and notochord. We have identified hES, the human homology of chicken ES/130. Fluorescence in situ hybridization analysis (FISH) localizes hES to human chromosome 20p11.2-p12. FISH analyses of individuals with 20p12 deletions and affected by Alagille syndrome exclude hES as a candidate gene for this disorder. Reverse transcriptase-polymerase chain reaction studies reveal that hES is expressed in both fetal and adult human tissues and that hES expression in the left ventricle is increased in the failing adult heart. Further studies will evaluate how hES mutations may relate to congenital human cardiac and skeletal anomalies as well as cardiac remodeling in the adult. 16 refs., 2 figs.
A CREB-Sirt1-Hes1 Circuitry Mediates Neural Stem Cell Response to Glucose Availability.
Fusco, Salvatore; Leone, Lucia; Barbati, Saviana Antonella; Samengo, Daniela; Piacentini, Roberto; Maulucci, Giuseppe; Toietta, Gabriele; Spinelli, Matteo; McBurney, Michael; Pani, Giovambattista; Grassi, Claudio
2016-02-01
Adult neurogenesis plays increasingly recognized roles in brain homeostasis and repair and is profoundly affected by energy balance and nutrients. We found that the expression of Hes-1 (hairy and enhancer of split 1) is modulated in neural stem and progenitor cells (NSCs) by extracellular glucose through the coordinated action of CREB (cyclic AMP responsive element binding protein) and Sirt-1 (Sirtuin 1), two cellular nutrient sensors. Excess glucose reduced CREB-activated Hes-1 expression and results in impaired cell proliferation. CREB-deficient NSCs expanded poorly in vitro and did not respond to glucose availability. Elevated glucose also promoted Sirt-1-dependent repression of the Hes-1 promoter. Conversely, in low glucose, CREB replaced Sirt-1 on the chromatin associated with the Hes-1 promoter enhancing Hes-1 expression and cell proliferation. Thus, the glucose-regulated antagonism between CREB and Sirt-1 for Hes-1 transcription participates in the metabolic regulation of neurogenesis. PMID:26804914
A Choice Reaction Time Index of Callosal Anatomical Homotopy
ERIC Educational Resources Information Center
Desjardins, Sameul; Braun, Claude M. J.; Achim, Andre; Roberge, Carl
2009-01-01
Tachistoscopically presented bilateral stimulus pairs not parallel to the meridian produced significantly longer RTs on a task requiring discrimination of shapes (Go/no-Go) than pairs emplaced symmetrically on each side of the meridian in Desjardins and Braun [Desjardins, S., & Braun, C. M. J. (2006). Homotopy and heterotopy and the bilateral…
Balanced Hydroxyethylstarch (HES 130/0.4) Impairs Kidney Function In-Vivo without Inflammation
Schick, Martin Alexander; Baar, Wolfgang; Bruno, Raphael Romano; Wollborn, Jakob; Held, Christopher; Schneider, Reinhard; Flemming, Sven; Schlegel, Nicolas; Roewer, Norbert; Neuhaus, Winfried; Wunder, Christian
2015-01-01
Volume therapy is a standard procedure in daily perioperative care, and there is an ongoing discussion about the benefits of colloid resuscitation with hydroxyethylstarch (HES). In sepsis HES should be avoided due to a higher risk for acute kidney injury (AKI). Results of the usage of HES in patients without sepsis are controversial. Therefore we conducted an animal study to evaluate the impact of 6% HES 130/0.4 on kidney integrity with sepsis or under healthy conditions Sepsis was induced by standardized Colon Ascendens Stent Peritonitis (sCASP). sCASP-group as well as control group (C) remained untreated for 24 h. After 18 h sCASP+HES group (sCASP+VOL) and control+HES (C+VOL) received 50 ml/KG balanced 6% HES (VOL) 130/0.4 over 6h. After 24h kidney function was measured via Inulin- and PAH-Clearance in re-anesthetized rats, and serum urea, creatinine (crea), cystatin C and Neutrophil gelatinase-associated lipocalin (NGAL) as well as histopathology were analysed. In vitro human proximal tubule cells (PTC) were cultured +/- lipopolysaccharid (LPS) and with 0.1–4.0% VOL. Cell viability was measured with XTT-, cell toxicity with LDH-test. sCASP induced severe septic AKI demonstrated divergent results regarding renal function by clearance or creatinine measure focusing on VOL. Soleley HES (C+VOL) deteriorated renal function without sCASP. Histopathology revealed significantly derangements in all HES groups compared to control. In vitro LPS did not worsen the HES induced reduction of cell viability in PTC cells. For the first time, we demonstrated, that application of 50 ml/KG 6% HES 130/0.4 over 6 hours induced AKI without inflammation in vivo. Severity of sCASP induced septic AKI might be no longer susceptible to the way of volume expansion. PMID:26340751
History of a prolific family: the Hes/Hey-related genes of the annelid Platynereis
2014-01-01
Background The Hes superfamily or Hes/Hey-related genes encompass a variety of metazoan-specific bHLH genes, with somewhat fuzzy phylogenetic relationships. Hes superfamily members are involved in a variety of major developmental mechanisms in metazoans, notably in neurogenesis and segmentation processes, in which they often act as direct effector genes of the Notch signaling pathway. Results We have investigated the molecular and functional evolution of the Hes superfamily in metazoans using the lophotrochozoan Platynereis dumerilii as model. Our phylogenetic analyses of more than 200 Metazoan Hes/Hey-related genes revealed the presence of five families, three of them (Hes, Hey and Helt) being pan-metazoan. Those families were likely composed of a unique representative in the last common metazoan ancestor. The evolution of the Hes family was shaped by many independent lineage specific tandem duplication events. The expression patterns of 13 of the 15 Hes/Hey-related genes in Platynereis indicate a broad functional diversification. Nevertheless, a majority of these genes are involved in two crucial developmental processes in annelids: neurogenesis and segmentation, resembling functions highlighted in other animal models. Conclusions Combining phylogenetic and expression data, our study suggests an unusual evolutionary history for the Hes superfamily. An ancestral multifunctional annelid Hes gene may have undergone multiples rounds of duplication-degeneration-complementation processes in the lineage leading to Platynereis, each gene copies ensuring their maintenance in the genome by subfunctionalisation. Similar but independent waves of duplications are at the origin of the multiplicity of Hes genes in other metazoan lineages. PMID:25250171
On the Singular Perturbations for Fractional Differential Equation
Atangana, Abdon
2014-01-01
The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357
Homotopy analysis transform algorithm to solve time-fractional foam drainage equation
NASA Astrophysics Data System (ADS)
Singh, Mukesh; Naseem, Mohd; Kumar, Amit; Kumar, Sunil
2016-09-01
This paper emphasizes on finding the solution for a foam drainageequation using the technique of modified homotopy analysis transform method (MHATM). MHATM is a new amalgamation of the homotopy analysis method and Laplace transform method with homotopy polynomial. Comparisons are made between the results of the proposed method for different values of fractional derivative α and exact solutions. Then, we analyze the results by numerical simulations, which demonstrate the simplicity and effectiveness of the present method.
The transcriptional repressor Hes1 attenuates inflammation by regulating transcription elongation.
Shang, Yingli; Coppo, Maddalena; He, Teng; Ning, Fei; Yu, Li; Kang, Lan; Zhang, Bin; Ju, Chanyang; Qiao, Yu; Zhao, Baohong; Gessler, Manfred; Rogatsky, Inez; Hu, Xiaoyu
2016-08-01
Most of the known regulatory mechanisms that curb inflammatory gene expression target pre-transcription-initiation steps, and evidence for post-initiation regulation of inflammatory gene expression remains scarce. We found that the transcriptional repressor Hes1 suppressed production of CXCL1, a chemokine that is crucial for recruiting neutrophils. Hes1 negatively regulated neutrophil recruitment in vivo in a manner that was dependent on macrophage-produced CXCL1, and it attenuated the severity of inflammatory arthritis. Mechanistically, inhibition of Cxcl1 expression by Hes1 did not involve modification of transcription initiation. Instead, Hes1 inhibited signal-induced recruitment of the positive transcription-elongation complex P-TEFb and thereby prevented phosphorylation of RNA polymerase II at Ser2 and productive elongation. Thus, our results identify Hes1 as a homeostatic suppressor of inflammatory responses that exerts its suppressive function by regulating transcription elongation.
Markenstein, Lisa; Appelt-Menzel, Antje; Metzger, Marco
2014-01-01
Summary The mono-6-deoxy-6-azides of 2,6-di-O-methyl-β-cyclodextrin (DIMEB) and randomly methylated-β-cyclodextrin (RAMEB) were conjugated to propargylated hydroxyethyl starch (HES) by Cu+-catalysed [2 + 3] cycloaddition. The resulting water soluble polymers showed lower critical solution temperatures (LCST) at 52.5 °C (DIMEB-HES) and 84.5 °C (RAMEB-HES), respectively. LCST phase separations could be completely avoided by the introduction of a small amount of carboxylate groups at the HES backbone. The methylated CDs conjugated to the HES backbone exhibited significantly lower cytotoxicities than the corresponding monomeric CD derivatives. Since the binding potentials of these CD conjugates were very high, they are promising candidates for new oral dosage forms of anaesthetic actives. PMID:25670977
Splitting a simple homotopy equivalence along a submanifold with filtration
Bak, A; Muranov, Yu V
2008-06-30
A simple homotopy equivalence f:M{sup n}{yields}X{sup n} of manifolds splits along a submanifold Y subset of X if it is homotopic to a map that is a simple homotopy equivalence on the transversal preimage of the submanifold and on the complement of this preimage. The problem of splitting along a submanifold with filtration is a natural generalization of this problem. In this paper we define groups LSF{sub *} of obstructions to splitting along a submanifold with filtration and describe their properties. We apply the results obtained to the problem of the realization of surgery and splitting obstructions by maps of closed manifolds and consider several examples. Bibliography: 36 titles.
Dynamic homotopy and landscape dynamical set topology in quantum control
Dominy, Jason; Rabitz, Herschel
2012-08-15
We examine the topology of the subset of controls taking a given initial state to a given final state in quantum control, where 'state' may mean a pure state Double-Vertical-Line {psi}>, an ensemble density matrix {rho}, or a unitary propagator U(0, T). The analysis consists in showing that the endpoint map acting on control space is a Hurewicz fibration for a large class of affine control systems with vector controls. Exploiting the resulting fibration sequence and the long exact sequence of basepoint-preserving homotopy classes of maps, we show that the indicated subset of controls is homotopy equivalent to the loopspace of the state manifold. This not only allows us to understand the connectedness of 'dynamical sets' realized as preimages of subsets of the state space through this endpoint map, but also provides a wealth of additional topological information about such subsets of control space.
Particle flow for nonlinear filters with log-homotopy
NASA Astrophysics Data System (ADS)
Daum, Fred; Huang, Jim
2008-04-01
We describe a new nonlinear filter that is vastly superior to the classic particle filter. In particular, the computational complexity of the new filter is many orders of magnitude less than the classic particle filter with optimal estimation accuracy for problems with dimension greater than 2 or 3. We consider nonlinear estimation problems with dimensions varying from 1 to 20 that are smooth and fully coupled (i.e. dense not sparse). The new filter implements Bayes' rule using particle flow rather than with a pointwise multiplication of two functions; this avoids one of the fundamental and well known problems in particle filters, namely "particle collapse" as a result of Bayes' rule. We use a log-homotopy to derive the ODE that describes particle flow. This paper was written for normal engineers, who do not have homotopy for breakfast.
Retroviral Infection of hES Cells Produces Random-like Integration Patterns
Lim, Kwang-il
2012-01-01
Retroviral integration provides us with a powerful tool to realize prolonged gene expressions that are often critical to gene therapy. However, the perturbation of gene regulations in host cells by viral genome integration can lead to detrimental effects, yielding cancer. The oncogenic potential of retroviruses is linked to the preference of retroviruses to integrate into genomic regions that are enriched in gene regulatory elements. To better navigate the double-edged sword of retroviral integration we need to understand how retroviruses select their favored genomic loci during infections. In this study I showed that in addition to host proteins that tether retroviral pre-integration complexes to specific genomic regions, the epigenetic architecture of host genome might strongly affect retroviral integration patterns. Specifically, retroviruses showed their characteristic integration preference in differentiated somatic cells. In contrast, retroviral infections of hES cells, which are known to display decondensed chromatin, produced random-like integration patterns lacking of strong preference for regulatory-element-rich genomic regions. Better identification of the cellular and viral factors that determine retroviral integration patterns will facilitate the design of retroviral vectors for safer use in gene therapy. PMID:22526396
Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts
Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko; Dunham, Ian; Murai, Kasumi; Jones, Philip H.
2011-07-01
Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.
Walker, Andrew M; Xiao, Yao; Johnston, Clifton R; Rival, David E
2013-01-01
Although information pertaining to the viscous characterization of HES 130/0.4 Voluven® and HES 260/0.45 Pentaspan® is available, quantification is limited to 100% concentrations. We focus here on the quantification of their viscous behavior along with HES 130/0.4 Volulyte® in a shear thinning non-Newtonian blood analog of aqueous xanthan gum and glycerol. Dynamic viscosities of multiple batches of HES fluids were measured through capillary viscometry. The viscous behavior of 100%, 25% and 12.5% concentrations were then measured through a closed flow loop across physiologically relevant flow rates. Measured viscosities were 2.57 millipascal second (mPa·s) 6.52 mPa·s and 2.48 mPa·s for HES 130/0.4 Voluven®, HES 260/0.45 and HES 130/0.4 Volulyte®, respectively. Pipe flow analysis found that all HES fluids displayed Newtonian behavior at 100% concentrations. 25% concentrations of both HES 130/0.4 fluids decreased analog viscosity 23%-29% at a flow rate of 1.0 ml/s and 16%-21% at a flow rate of 22.5 ml/s. At a flow rate of 22.5 ml/s, 25% and 12.5% concentrations of HES 260/0.45 resulted in analog viscosity changes of 3.9%-4.5%. Capillary viscosity reductions of approximately 7% and 14.5% in HES 130/0.4 Voluven® and HES 260/0.45 suggest changes in molecular composition to batches previously measured. Maintenance of analog viscosity suggests that HES 260/0.45 would be suitable as a high viscosity plasma expander in extreme hemodilution through preservation of microcirculatory function and wall shear stress (WSS).
Linear homotopy solution of nonlinear systems of equations in geodesy
NASA Astrophysics Data System (ADS)
Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.
2010-01-01
A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.
HES1 is an independent prognostic factor for acute myeloid leukemia
Tian, Chen; Tang, Yingjun; Wang, Tengteng; Yu, Yong; Wang, Xiaofang; Wang, Yafei; Zhang, Yizhuo
2015-01-01
HES1 is the target of Notch signaling which is reported to affect cell differentiation and maintain the cells in G0 phase in various tissues including the hematopoietic tissue. HES1 expression appears to be an independent prognostic factor for survival in a heterogeneous group of acute myeloid leukemia (AML) patients. To better assess its significance, we analyzed HES1 expression in a group of non-core binding factor AML patients and correlated its expression with the overall survival and relapse-free survival of AML patients. First, we detected the messenger RNA expression of HES1 in 40 patients with AML by real-time polymerase chain reaction. The top 50% of AML cases with the high HES1 expression were compared with the rest of the AML cohort. Overall survival was calculated from the date of diagnosis until the date of death from any cause or until the date of final follow-up. Relapse-free survival was determined for responders from the time of diagnosis until relapse or death from any cause. We showed that the lower-expression group had a shorter overall survival time and shorter relapse-free survival time compared with those of the high-expression group (37.6±1.6 versus 54.0±1.3 months, 28.6±1.8 months versus 44.8±2.1 months, respectively, P<0.05), and Cox regression showed that HES1 was an independent prognostic factor. In all, we conclude that expression of HES1 is a useful prognostic factor for patients with non-core binding factor AML. PMID:25960660
Sugita, Shurei; Hosaka, Yoko; Okada, Keita; Mori, Daisuke; Yano, Fumiko; Kobayashi, Hiroshi; Taniguchi, Yuki; Mori, Yoshifumi; Okuma, Tomotake; Chang, Song Ho; Kawata, Manabu; Taketomi, Shuji; Chikuda, Hirotaka; Akiyama, Haruhiko; Kageyama, Ryoichiro; Chung, Ung-il; Tanaka, Sakae; Kawaguchi, Hiroshi; Ohba, Shinsuke; Saito, Taku
2015-01-01
Notch signaling modulates skeletal formation and pathogenesis of osteoarthritis (OA) through induction of catabolic factors. Here we examined roles of Hes1, a transcription factor and important target of Notch signaling, in these processes. SRY-box containing gene 9 (Sox9)-Cre mice were mated with Hes1fl/fl mice to generate tissue-specific deletion of Hes1 from chondroprogenitor cells; this deletion caused no obvious abnormality in the perinatal period. Notably, OA development was suppressed when Hes1 was deleted from articular cartilage after skeletal growth in type II collagen (Col2a1)-CreERT;Hes1fl/fl mice. In cultured chondrocytes, Hes1 induced metallopeptidase with thrombospondin type 1 motif, 5 (Adamts5) and matrix metalloproteinase-13 (Mmp13), which are catabolic enzymes that break down cartilage matrix. ChIP-seq and luciferase assays identified Hes1-responsive regions in intronic sites of both genes; the region in the ADAMTS5 gene contained a typical consensus sequence for Hes1 binding, whereas that in the MMP13 gene did not. Additionally, microarray analysis, together with the ChIP-seq, revealed novel Hes1 target genes, including Il6 and Il1rl1, coding a receptor for IL-33. We further identified calcium/calmodulin-dependent protein kinase 2δ (CaMK2δ) as a cofactor of Hes1; CaMK2δ was activated during OA development, formed a protein complex with Hes1, and switched it from a transcriptional repressor to a transcriptional activator to induce cartilage catabolic factors. Therefore, Hes1 cooperated with CaMK2δ to modulate OA pathogenesis through induction of catabolic factors, including Adamts5, Mmp13, Il6, and Il1rl1. Our findings have contributed to further understanding of the molecular pathophysiology of OA, and may provide the basis for development of novel treatments for joint disorders. PMID:25733872
HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion
Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern; Itkin-Ansari, Pamela; Levine, Fred; E-mail: flevine@ucsd.edu
2007-04-06
To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but was repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.
A monolithic homotopy continuation algorithm with application to computational fluid dynamics
NASA Astrophysics Data System (ADS)
Brown, David A.; Zingg, David W.
2016-09-01
A new class of homotopy continuation methods is developed suitable for globalizing quasi-Newton methods for large sparse nonlinear systems of equations. The new continuation methods, described as monolithic homotopy continuation, differ from the classical predictor-corrector algorithm in that the predictor and corrector phases are replaced with a single phase which includes both a predictor and corrector component. Conditional convergence and stability are proved analytically. Using a Laplacian-like operator to construct the homotopy, the new algorithm is shown to be more efficient than the predictor-corrector homotopy continuation algorithm as well as an implementation of the widely-used pseudo-transient continuation algorithm for some inviscid and turbulent, subsonic and transonic external aerodynamic flows over the ONERA M6 wing and the NACA 0012 airfoil using a parallel implicit Newton-Krylov finite-difference flow solver.
Vazquez-Leal, H; Jimenez-Fernandez, V M; Benhammouda, B; Filobello-Nino, U; Sarmiento-Reyes, A; Ramirez-Pinero, A; Marin-Hernandez, A; Huerta-Chua, J
2014-01-01
We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation.
Vazquez-Leal, H.; Jimenez-Fernandez, V. M.; Benhammouda, B.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Ramirez-Pinero, A.; Marin-Hernandez, A.; Huerta-Chua, J.
2014-01-01
We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157
Vazquez-Leal, H; Jimenez-Fernandez, V M; Benhammouda, B; Filobello-Nino, U; Sarmiento-Reyes, A; Ramirez-Pinero, A; Marin-Hernandez, A; Huerta-Chua, J
2014-01-01
We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157
Note on unit tangent vector computation for homotopy curve tracking on a hypercube
NASA Technical Reports Server (NTRS)
Chakraborty, A.; Allison, D. C. S.; Ribbens, C. J.; Watson, L. T.
1991-01-01
Probability-one homotopy methods are a class of methods for solving nonlinear systems of equations that are globally convergent from an arbitrary starting point. The essence of all such algorithms is the construction of an appropriate homotopy map and subsequent tracking of some smooth curve in the zero set of the homotopy map. Tracking a homotopy curve involves finding the unit tangent vector at different points along the zero curve, which amounts to calculating the kernel of the n x (n + 1) Jacobian matrix. While computing the tangent vector is just one part of the curve tracking algorithm, it can require a significant percentage of the total tracking time. This note presents computational results showing the performance of several different parallel orthogonal factorization/triangular system solving algorithms for the tangent vector computation on a hypercube.
Power System Transient Stability Analysis through a Homotopy Analysis Method
Wang, Shaobu; Du, Pengwei; Zhou, Ning
2014-04-01
As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.
Homotopy between plane Couette flow and Pipe flow
NASA Astrophysics Data System (ADS)
Nagata, Masato; Deguchi, Kengo
2014-11-01
In order to investigate symmetry connections between two canonical shear flows, i.e. plane Couette (PCF) and pipe flow (PF), which are linearly stable for all Reynolds numbers and therefore undergo subcritical transition, we take annular Poiseuille-Couette flow (APCF) as an intermediary Although PCF and PF are very different geometrically, APCF recovers PCF by taking the narrow gap limit, and also PF by taking the limit of vanishing inner cylinder where a homotopy of the basis functions from no-slip to regular conditions at the centre is considered. We show that the double-layered mirror-symmetric solutions in sliding Couette flow (APCF without axial pressure gradient) found by Deguchi & Nagata (2011) can be traced back to the mirror-symmetric solutions in PCF. Also we show that only the double-layered solution successfully reaches the PF limit, reproducing the mirror-symmetric solution in PF classified as M1 by Pringle & Kerswell (2007).
Innovation Centre Peptide and Protein Technologies HES-SO Sion: Pioneer in an Emerging Market.
Heinzelmann, Elsbeth
2016-01-01
Peptides are small proteins typically containing a chain of up to 100 amino acids. In our bodies, they are produced every day in vast quantities and perform highly specific biological activities. As there is an increased interest in peptides for pharmaceutical applications, the HES-SO Valais-Wallis created a research group to focus on Peptide and Protein Technologies (P(2)T).
Notch Signaling and Hes Labeling in the Normal and Drug-Damaged Organ of Corti
Batts, Shelley A.; Shoemaker, Christopher R.; Raphael, Yehoash
2009-01-01
During the development of the inner ear, the Notch cell signaling pathway is responsible for the specification of the pro-sensory domain and influences cell fate decisions. It is assumed that Notch signaling ends during maturity and cannot be reinitiated to alter the fate of new or existing cells in the organ of Corti. This is in contrast to non-mammalian species which reinitiate Delta1-Notch1 signaling in response to trauma in the auditory epithelium, resulting in hair cell regeneration through transdifferentiation and/or mitosis. We report immunohistochemical data and Western protein analysis showing that in the aminoglycoside-damaged guinea pig organ of Corti, there is an increase in proteins involved in Notch activation occurring within 24 hours of a chemical hair cell lesion. The signaling response is characterized by the increased presence of Jagged1 ligand in pillar and Deiters cells, Notch1 signal in surviving supporting cell nuclei, and the absence of Jagged2 and Delta-like1. The pro-sensory bHLH protein Atoh1 was absent at all time points following an ototoxic lesion, while the repressor bHLH transcription factors Hes1 and Hes5 were detected in surviving supporting cell nuclei in the former inner and outer hair cell areas, respectively. Notch pathway proteins peaked at 2 weeks, decreased at 1 month, and nearly disappeared by 2 months. These results indicate that the mammalian auditory epithelium retains the ability to regulate Notch signaling and Notch-dependent Hes activity in response to cellular trauma and that the signaling is transient. Additionally, since Hes activity antagonizes the transcription of prosensory Atoh1, the presence of Hes after a lesion may prohibit the occurrence of transdifferentiation in the surviving supporting cells. PMID:19185606
A homotopy algorithm for digital optimal projection control GASD-HADOC
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
Numerical Polynomial Homotopy Continuation Method and String Vacua
Mehta, Dhagash
2011-01-01
Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less
Murano, Tatsuro; Okamoto, Ryuichi; Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Watanabe, Mamoru
2014-01-17
Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.
Innovation Centre Peptide and Protein Technologies HES-SO Sion: Pioneer in an Emerging Market.
Heinzelmann, Elsbeth
2016-01-01
Peptides are small proteins typically containing a chain of up to 100 amino acids. In our bodies, they are produced every day in vast quantities and perform highly specific biological activities. As there is an increased interest in peptides for pharmaceutical applications, the HES-SO Valais-Wallis created a research group to focus on Peptide and Protein Technologies (P(2)T). PMID:27052764
Global Study of the Simple Pendulum by the Homotopy Analysis Method
ERIC Educational Resources Information Center
Bel, A.; Reartes, W.; Torresi, A.
2012-01-01
Techniques are developed to find all periodic solutions in the simple pendulum by means of the homotopy analysis method (HAM). This involves the solution of the equations of motion in two different coordinate representations. Expressions are obtained for the cycles and periods of oscillations with a high degree of accuracy in the whole range of…
Bai, Guang; Cheung, Iris; Shulha, Hennady P.; Coelho, Joana E.; Li, Ping; Dong, Xianjun; Jakovcevski, Mira; Wang, Yumei; Grigorenko, Anastasia; Jiang, Yan; Hoss, Andrew; Patel, Krupal; Zheng, Ming; Rogaev, Evgeny; Myers, Richard H.; Weng, Zhiping; Akbarian, Schahram; Chen, Jiang-Fan
2015-01-01
To investigate epigenetic contributions to Huntington's disease (HD) pathogenesis, we carried out genome-wide mapping of the transcriptional mark, trimethyl-histone H3-lysine 4 (H3K4me3) in neuronal nuclei extracted from prefrontal cortex of HD cases and controls using chromatin immunoprecipitation followed by deep-sequencing. Neuron-specific mapping of the genome-wide distribution of H3K4me3 revealed 136 differentially enriched loci associated with genes implicated in neuronal development and neurodegeneration, including GPR3, TMEM106B, PDIA6 and the Notch signaling genes hairy and enhancer of split 4 (HES4) and JAGGED2, supporting the view that the neuronal epigenome is affected in HD. Importantly, loss of H3K4me3 at CpG-rich sequences on the HES4 promoter was associated with excessive DNA methylation, reduced binding of nuclear proteins to the methylated region and altered expression of HES4 and HES4 targeted genes MASH1 and P21 involved in striatal development. Moreover, hypermethylation of HES4 promoter sequences was strikingly correlated with measures of striatal degeneration and age-of-onset in a cohort of 25 HD brains (r = 0.56, P = 0.006). Lastly, shRNA knockdown of HES4 in human neuroblastoma cells altered MASH1 and P21 mRNA expression and markedly increased mutated HTT-induced aggregates and cell death. These findings, taken together, suggest that epigenetic dysregulation of HES4 could play a critical role in modifying HD disease pathogenesis and severity. PMID:25480889
Bai, Guang; Cheung, Iris; Shulha, Hennady P; Coelho, Joana E; Li, Ping; Dong, Xianjun; Jakovcevski, Mira; Wang, Yumei; Grigorenko, Anastasia; Jiang, Yan; Hoss, Andrew; Patel, Krupal; Zheng, Ming; Rogaev, Evgeny; Myers, Richard H; Weng, Zhiping; Akbarian, Schahram; Chen, Jiang-Fan
2015-03-01
To investigate epigenetic contributions to Huntington's disease (HD) pathogenesis, we carried out genome-wide mapping of the transcriptional mark, trimethyl-histone H3-lysine 4 (H3K4me3) in neuronal nuclei extracted from prefrontal cortex of HD cases and controls using chromatin immunoprecipitation followed by deep-sequencing. Neuron-specific mapping of the genome-wide distribution of H3K4me3 revealed 136 differentially enriched loci associated with genes implicated in neuronal development and neurodegeneration, including GPR3, TMEM106B, PDIA6 and the Notch signaling genes hairy and enhancer of split 4 (HES4) and JAGGED2, supporting the view that the neuronal epigenome is affected in HD. Importantly, loss of H3K4me3 at CpG-rich sequences on the HES4 promoter was associated with excessive DNA methylation, reduced binding of nuclear proteins to the methylated region and altered expression of HES4 and HES4 targeted genes MASH1 and P21 involved in striatal development. Moreover, hypermethylation of HES4 promoter sequences was strikingly correlated with measures of striatal degeneration and age-of-onset in a cohort of 25 HD brains (r = 0.56, P = 0.006). Lastly, shRNA knockdown of HES4 in human neuroblastoma cells altered MASH1 and P21 mRNA expression and markedly increased mutated HTT-induced aggregates and cell death. These findings, taken together, suggest that epigenetic dysregulation of HES4 could play a critical role in modifying HD disease pathogenesis and severity.
miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression
Liu, Baoquan; Yang, Chunxiao; Nie, Xuedan; Wang, Xiaokun; Zheng, Jiaolin; Wang, Yue; Zhu, Yulan
2015-01-01
Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR–381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR–381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR–381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR–381 played important role in neural stem cells proliferation and differentiation. PMID:26431046
Tracing structural optima as a function of available resources by a homotopy method
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Watson, Layne T.; Plaut, Raymond H.; Shin, Yung S.
1988-01-01
Optimization problems are typically solved by starting with an initial estimate and proceeding iteratively to improve it until the optimum is found. The design points along the path from the initial estimate to the optimum are usually of no value. The present work proposes a strategy for tracing a path of optimum solutions parameterized by the amount of available resources. The paper specifically treats the optimum design of a structure to maximize its buckling load. Equations for the optimum path are obtained using Lagrange multipliers, and solved by a homotopy method. The solution path has several transitions from unimodal to bimodal solutions. The Lagrange multipliers and second-order optimality conditions are used to detect branching points and to switch to the optimum solution path. The procedure is applied to the design of a foundation which supports a column for maximum buckling load. Using the total available foundation stiffness as a homotopy parameter, a set of optimum foundation designs is obtained.
Hartog, Christiane S.; Skupin, Helga; Natanson, Charles; Sun, Junfeng; Reinhart, Konrad
2013-01-01
Purpose Hydroxyethyl starch (HES) is a synthetic colloid used widely for resuscitation despite the availability of safer, less costly fluids. Numerous HES reviews have been published that may have influenced clinicians’ practice. We have therefore examined the relationship between the methodological quality of published HES reviews, authors’ potential conflicts of interest (pCOI) and the recommendations made. Methods Systematic analysis of reviews on HES use. Results Between 1975 and 2010, 165 reviews were published containing recommendations for or against HES use. From the 1990s onwards, favorable reviews increased from two to eight per year and HES’s share of the artificial colloid market tripled from 20 to 60 %. Only 7 % (12/165) of these reviews of HES use contained meta-analyses; these 7 % had higher Overview Quality Assessment Questionnaire (OQAQ) scores [median (range) 6.5 (3–7)] than reviews without meta-analysis [2 (1–4); p < 0.001]. The rates of recommending against HES use are 83 % (10/12) in meta-analyses and 20 % (31/153) in reviews without meta-analysis (p < 0.0001). Fourteen authors published the majority (70/124) of positive reviews, and ten of these 14 had or have since developed a pCOI with various manufacturers of HES. Conclusions Low-quality HES reviews reached different conclusions than high-quality meta-analyses from independent entities, such as Cochrane Reviews. The majority of these low-quality positive HES reviews were written by a small group of authors, most of whom had or have since established ties to industry. The proliferation of positive HES reviews has been associated with increased utilization of an expensive therapy despite the lack of evidence for meaningful clinical benefit and increased risks. Clinicians need to be more informed that marketing efforts are potentially influencing scientific literature. PMID:22790311
Sparrow, Duncan B; Faqeih, Eissa Ali; Sallout, Bahauddin; Alswaid, Abdulrahman; Ababneh, Faroug; Al-Sayed, Moeenaldeen; Rukban, Hadeel; Eyaid, Wafaa M; Kageyama, Ryoichiro; Ellard, Sian; Turnpenny, Peter D; Dunwoodie, Sally L
2013-09-01
Spondylocostal dysotosis (SCD) is a rare developmental congenital abnormality of the axial skeleton. Mutation of genes in the Notch signaling pathway cause SCD types 1-5. Dextrocardia with situs inversus is a rare congenital malformation in which the thoracic and abdominal organs are mirror images of normal. Such laterality defects are associated with gene mutations in the Nodal signaling pathway or cilia assembly or function. We investigated two distantly related individuals with a rare combination of severe segmental defects of the vertebrae (SDV) and dextrocardia with situs inversus. We found that both individuals were homozygous for the same mutation in HES7, and that this mutation caused a significant reduction of HES7 protein function; HES7 mutation causes SCD4. Two other individuals with SDV from two unrelated families were found to be homozygous for the same mutation. Interestingly, although the penetrance of the vertebral defects was complete, only 3/7 had dextrocardia with situs inversus, suggesting randomization of left-right patterning. Two of the affected individuals presented with neural tube malformations including myelomeningocele, spina bifida occulta and/or Chiari II malformation. Such neural tube phenotypes are shared with the originally identified SCD4 patient, but have not been reported in the other forms of SCD. In conclusion, it appears that mutation of HES7 is uniquely associated with defects in vertebral, heart and neural tube formation, and this observation will help provide a discriminatory diagnostic guide in patients with SCD, as well as inform molecular genetic testing.
Lillycrop, Karen A; Costello, Paula M; Teh, Ai Ling; Murray, Robert J; Clarke-Harris, Rebecca; Barton, Sheila J; Garratt, Emma S; Ngo, Sherry; Sheppard, Allan M; Wong, Johnny; Dogra, Shaillay; Burdge, Graham C; Cooper, Cyrus; Inskip, Hazel M; Gale, Catharine R; Gluckman, Peter D; Harvey, Nicholas C; Chong, Yap-Seng; Yap, Fabian; Meaney, Michael J; Rifkin-Graboi, Anne; Holbrook, Joanna D; Godfrey, Keith M
2015-01-01
Background Early life environments induce long-term changes in neurocognitive development and behaviour. In animal models, early environmental cues affect neuropsychological phenotypes via epigenetic processes but, as yet, there is little direct evidence for such mechanisms in humans. Method We examined the relation between DNA methylation at birth and child neuropsychological outcomes in two culturally diverse populations using a genome-wide methylation analysis and validation by pyrosequencing. Results Within the UK Southampton Women’s Survey (SWS) we first identified 41 differentially methylated regions of interest (DMROI) at birth associated with child’s full-scale IQ at age 4 years. Associations between HES1 DMROI methylation and later cognitive function were confirmed by pyrosequencing in 175 SWS children. Consistent with these findings, higher HES1 methylation was associated with higher executive memory function in a second independent group of 200 SWS 7-year-olds. Finally, we examined a pathway for this relationship within a Singaporean cohort (n = 108). Here, HES1 DMROI methylation predicted differences in early infant behaviour, known to be associated with academic success. In vitro, methylation of HES1 inhibited ETS transcription factor binding, suggesting a functional role of this site. Conclusions Thus, our findings suggest that perinatal epigenetic processes mark later neurocognitive function and behaviour, providing support for a role of epigenetic processes in mediating the long-term consequences of early life environment on cognitive development. PMID:25906782
Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J.
2016-01-01
Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process. PMID:26769970
Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J
2016-04-15
Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process.
Gawdat, Rania Mohsen; Hammam, Amira Ahmed; Ezzat, Dina Ahmed
2016-09-01
Notch signalling is involved in the development of several autoimmune diseases, one of such diseases is ITP. The aim of this study was to investigate and compare the expression levels of Notch1 receptor and its target Hes1 gene in Egyptian paediatric ITP patients. Real-time quantitative reverse transcriptase polymerase chain reaction was used to analyse the expression levels of Notch1 and Hes1 in 42 children with primary ITP (22 newly diagnosed and 20 persistent) cases. Twenty age and sex matched non-ITP controls were included. The expression levels of Notch1 were higher in newly diagnosed and persistent cases than controls with high statistical significant difference (P value < 0.001, P < 0.001) respectively, similarly as regards the expression levels of HES1 (P value < 0.001, P < 0.007) respectively. A significant positive correlation was found between Notch1 and Hes1 expression levels in newly diagnosed cases (r = 0.587, P value = 0.004). There was an association between levels of both genes in most of ITP patients but Hes1 was markedly elevated than Notch1 in few cases. High expression levels of Notch1/Hes1 indicated the important role of Notch signalling in both newly diagnosed and persistent ITP. High expression levels of Hes1 than Notch1 may shed light on its value as a therapeutic target for future research in ITP. PMID:27429531
Kawamura, Akinori; Ovara, Hiroki; Ooka, Yuko; Kinoshita, Hirofumi; Hoshikawa, Miki; Nakajo, Kenji; Yokota, Daisuke; Fujino, Yuuri; Higashijima, Shin-ichi; Takada, Shinji; Yamasu, Kyo
2016-01-15
In vertebrates, the periodic formation of somites from the presomitic mesoderm (PSM) is driven by the molecular oscillator known as the segmentation clock. The hairy-related gene, hes6/her13.2, functions as a hub by dimerizing with other oscillators of the segmentation clock in zebrafish embryos. Although hes6 exhibits a posterior-anterior expression gradient in the posterior PSM with a peak at the tailbud, the detailed mechanisms underlying this unique expression pattern have not yet been clarified. By establishing several transgenic lines, we found that the transcriptional regulatory region downstream of hes6 in combination with the hes6 3'UTR recapitulates the endogenous gradient of hes6 mRNA expression. This downstream region, which we termed the PT enhancer, possessed several putative binding sites for the T-box and Ets transcription factors that were required for the regulatory activity. Indeed, the T-box transcription factor (Tbx16) and Ets transcription factor (Pea3) bound specifically to the putative binding sites and regulated the enhancer activity in zebrafish embryos. In addition, the 3'UTR of hes6 is required for recapitulation of the endogenous mRNA expression. Furthermore, the PT enhancer with the 3'UTR of hes6 responded to the inhibition of retinoic acid synthesis and fibroblast growth factor signaling in a manner similar to endogenous hes6. The results showed that transcriptional regulation by the T-box and Ets transcription factors, combined with the mRNA stability given by the 3'UTR, is responsible for the unique expression gradient of hes6 mRNA in the posterior PSM of zebrafish embryos.
Communication: Newton homotopies for sampling stationary points of potential energy landscapes
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; Chen, Tianran; Hauenstein, Jonathan D.; Wales, David J.
2014-09-01
One of the most challenging and frequently arising problems in many areas of science is to find solutions of a system of multivariate nonlinear equations. There are several numerical methods that can find many (or all if the system is small enough) solutions but they all exhibit characteristic problems. Moreover, traditional methods can break down if the system contains singular solutions. Here, we propose an efficient implementation of Newton homotopies, which can sample a large number of the stationary points of complicated many-body potentials. We demonstrate how the procedure works by applying it to the nearest-neighbor ϕ4 model and atomic clusters.
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Richter, Stephen
1990-01-01
One well known deficiency of LQG compensators is that they do not guarantee any measure of robustness. This deficiency is especially highlighted when considering control design for complex systems such as flexible structures. There has thus been a need to generalize LQG theory to incorporate robustness constraints. Here we describe the maximum entropy approach to robust control design for flexible structures, a generalization of LQG theory, pioneered by Hyland, which has proved useful in practice. The design equations consist of a set of coupled Riccati and Lyapunov equations. A homotopy algorithm that is used to solve these design equations is presented.
Reliable design of H-2 optimal reduced-order controllers via a homotopy algorithm
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G.; Richter, Stephen; Davis, Larry D.
1992-01-01
Due to control processor limitations, the design of reduced-order controllers is an active area of research. Suboptimal methods based on truncating the order of the corresponding linear-quadratic-Gaussian (LQG) compensator tend to fail if the requested controller dimension is sufficiently small and/or the requested controller authority is sufficiently high. Also, traditional parameter optimization approaches have only local convergence properties. This paper discusses a homotopy algorithm for optimal reduced-order control that has global convergence properties. The exposition is for discrete-time systems. The algorithm has been implemented in MATLAB and is applied to a benchmark problem.
Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design
NASA Technical Reports Server (NTRS)
Whorton, Mark; Buschek, Harald; Calise, Anthony J.
1996-01-01
Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.
Homotopy-Theoretic Study &Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites.
Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2016-01-01
Essential structural properties of the non-trivial "string-wall-bounded" topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a "string-wall-bounded" configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials.
Communication: Newton homotopies for sampling stationary points of potential energy landscapes
Mehta, Dhagash; Chen, Tianran; Hauenstein, Jonathan D.; Wales, David J.
2014-09-28
One of the most challenging and frequently arising problems in many areas of science is to find solutions of a system of multivariate nonlinear equations. There are several numerical methods that can find many (or all if the system is small enough) solutions but they all exhibit characteristic problems. Moreover, traditional methods can break down if the system contains singular solutions. Here, we propose an efficient implementation of Newton homotopies, which can sample a large number of the stationary points of complicated many-body potentials. We demonstrate how the procedure works by applying it to the nearest-neighbor ϕ{sup 4} model and atomic clusters.
Heinzelmann, Elsbeth
2016-01-01
At HES-SO Valais-Wallis, Prof. Fabian Fischer is specialized in microbial fuel cells for novel applications that meet the challenge of producing renewable energies. He and his team possess a unique expertise in bioelectric energy vector generation, phosphate extraction (CHIMIA 2015, 69, 296) and the testing of antimicrobial surfaces. Let's take a look behind the scenes of the Institute of Life Technologies in Sion. PMID:27363382
Regulation of neuronal lineage decisions by the HES-related bHLH protein REF-1.
Lanjuin, Anne; Claggett, Julia; Shibuya, Mayumi; Hunter, Craig P; Sengupta, Piali
2006-02-01
Members of the HES subfamily of bHLH proteins play crucial roles in neural patterning via repression of neurogenesis. In C. elegans, loss-of-function mutations in ref-1, a distant nematode-specific member of this subfamily, were previously shown to cause ectopic neurogenesis from postembryonic lineages. However, while the vast majority of the nervous system in C. elegans is generated embryonically, the role of REF-1 in regulating these neural lineage decisions is unknown. Here, we show that mutations in ref-1 result in the generation of multiple ectopic neuron types derived from an embryonic neuroblast. In wild-type animals, neurons derived from this sublineage are present in a left/right symmetrical manner. However, in ref-1 mutants, while the ectopically generated neurons exhibit gene expression profiles characteristic of neurons on the left, they are present only on the right side. REF-1 functions in a Notch-independent manner to regulate this ectopic lineage decision. We also demonstrate that loss of REF-1 function results in defective differentiation of an embryonically generated serotonergic neuron type. These results indicate that REF-1 functions in both Notch-dependent and independent pathways to regulate multiple developmental decisions in different neuronal sublineages.
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2003-12-01
A good understanding of Perturbative Quantum Gravity is essential for anyone who wishes to proceed towards any kind of non-perturbative approach. This lecture is a brief resumé of the main features of the perturbative regime.
Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin
2016-01-01
Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits. PMID:27560986
Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin
2016-01-01
Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits. PMID:27560986
Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin
2016-01-01
Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits.
Dombrowsky, Heike; Zitta, Karina; Bein, Berthold; Krause, Thorsten; Goldmann, Torsten; Frerichs, Inez; Steinfath, Markus; Weiler, Norbert; Albrecht, Martin
2015-01-01
Background The application of hydroxyethyl starch (HES) for volume resuscitation is controversially discussed and clinical studies have suggested adverse effects of HES substitution, leading to increased patient mortality. Although, the intestine is of high clinical relevance and plays a crucial role in sepsis and inflammation, information about the effects of HES on intestinal function and barrier integrity is very scarce. We therefore evaluated the effects of clinically relevant concentrations of HES on intestinal function and barrier integrity employing an isolated perfused model of the mouse small intestine. Methods An isolated perfused model of the mouse small intestine was established and intestines were vascularly perfused with a modified Krebs-Henseleit buffer containing 3% Albumin (N=7) or 3% HES (130/0.4; N=7). Intestinal metabolic function (galactose uptake, lactate-to-pyruvate ratio), edema formation (wet-to-dry weight ratio), morphology (histological and electron microscopical analysis), fluid shifts within the vascular, lymphatic and luminal compartments, as well as endothelial and epithelial barrier permeability (FITC-dextran translocation) were evaluated in both groups. Results Compared to the Albumin group, HES perfusion did not significantly change the wet-to-dry weight ratio and lactate-to-pyruvate ratio. However, perfusing the small intestine with 3% HES resulted in a significant loss of vascular fluid (p<0.01), an increased fluid accumulation in the intestinal lumen (p<0.001), an enhanced translocation of FITC-dextran from the vascular to the luminal compartment (p<0.001) and a significantly impaired intestinal galactose uptake (p<0.001). Morphologically, these findings were associated with an aggregation of intracellular vacuoles within the intestinal epithelial cells and enlarged intercellular spaces. Conclusion A vascular perfusion with 3% HES impairs the endothelial and epithelial barrier integrity as well as metabolic function of the small
Yan, Bo; Raben, Nina; Plotz, Paul H
2002-03-01
Hes-1, the mammalian homologue 1 of Drosophila hairy and Enhancer of split proteins, belongs to a family of basic helix-loop-helix proteins that are essential to neurogenesis, myogenesis, hematopoiesis, and sex determination. Hes-1 is a transcriptional repressor for a number of known genes including the human acid alpha-glucosidase (GAA) gene as we have previously shown in Hep G2 cells. The human GAA gene encodes the enzyme for glycogen breakdown in lysosomes, deficiency of which results in Glycogen Storage Disease type II (Pompe syndrome). Using constructs containing the DNA element that demonstrates repressive activity in Hep G2 cells and conditions in which the same transcription factors, Hes-1 and YY1, bind, we have shown that this element functions as an enhancer in human fibroblasts. Site-directed mutagenesis and overexpression of Hes-1 showed that Hes-1 functions as a transcriptional activator. The dual function of Hes-1 we have found is likely to contribute to the subtle tissue-specific control of this housekeeping gene.
Chemistry in high-frequency strong laser fields: the story of HeS molecule
NASA Astrophysics Data System (ADS)
Balanarayan, P.; Moiseyev, Nimrod
2013-07-01
The laser-induced stabilisation of atoms producing new chemical species has been evidenced before in the case of helium atoms in high-frequency strong laser fields producing quasi-stable dimers with a strong chemical bond. In the current work, it is shown that the laser-dressed orbitals of helium atoms retain their atomic character, for feasible laser parameters. Namely, the laser-dressed electron density of helium atom peaks at the atomic position. Yet, because of light-induced polarisation two other smaller peaks are obtained at the two classical turning points of the electronic quiver motion. The situation is remarkably different for the case of many-electron atoms such as sulphur. The laser-dressed electron density does not peak at the atomic nucleus (as in the case of helium in laser fields), but maximises at the two classical turning points of the electronic quiver motion that is induced by the high-frequency strong laser field. In the presence of high-frequency strong linear polarised laser field sulphur atoms and helium atoms interact to produce a strong chemical bond which is three orders of magnitude stronger than conventional chemical bonds and the laser-dressed bond in helium dimer. Moreover, as we show here, by varying the quiver length parameter of the laser field and the inter-nuclear distance, the structure of HeS changes from one isomer to another, as evidenced by the double minima in the laser-dressed Born-Oppenheimer potential energy curves.
Homotopy-Theoretic Study &Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites.
Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2016-01-01
Essential structural properties of the non-trivial "string-wall-bounded" topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a "string-wall-bounded" configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials. PMID:27324701
Laminar Convective Boundary Layer Slip Flow over a Flat Plate using Homotopy Analysis Method
NASA Astrophysics Data System (ADS)
Daniel, Yahaya Shagaiya
2016-08-01
In the present study, the influence of velocity slip and suction at the boundary on the steady laminar convective boundary layer flow over a flat plate with convective boundary condition is analyzed. Similarity transformation is used to transform the boundary layer equations which are coupled with partial differential equations into system of ordinary differential equations, which are then solved semi-analytically by homotopy analysis method. The results obtained are presented for several values of the physical governing parameter and comparison with the results published in literature are in perfect agreement. Increase in the slip parameter increases the velocity to a point that the momentum boundary layer becomes thinner. The convective parameter increases as the plate surface temperature increases. The suction on the viscous incompressible fluid suppresses the velocity field and Prandtl number increases by decreasing the temperature and the thermal boundary layer thickness as a result of increase in fluid viscosity.
Exploring the potential energy landscape of the Thomson problem via Newton homotopies
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; Chen, Tianran; Morgan, John W. R.; Wales, David J.
2015-05-01
Locating the stationary points of a real-valued multivariate potential energy function is an important problem in many areas of science. This task generally amounts to solving simultaneous nonlinear systems of equations. While there are several numerical methods that can find many or all stationary points, they each exhibit characteristic problems. Moreover, traditional methods tend to perform poorly near degenerate stationary points with additional zero Hessian eigenvalues. We propose an efficient and robust implementation of the Newton homotopy method, which is capable of quickly sampling a large number of stationary points of a wide range of indices, as well as degenerate stationary points. We demonstrate our approach by applying it to the Thomson problem. We also briefly discuss a possible connection between the present work and Smale's 7th problem.
Application of Homotopy analysis method for mechanical model of deepwater SCR installation
NASA Astrophysics Data System (ADS)
You, Xiangcheng; Xu, Hang
2012-09-01
In this paper, considering the process of deepwater SCR installation with the limitations of small deformation theory of beam and catenary theory, a mechanical model of deepwater SCR installation is given based on large deformation beam model. In the following model, getting the relation of the length of the riser, bending stiffness and the unit weight by dimensional analysis, the simple approximate analytical expressions are obtained by using Homotopy Analysis Method. In the same condition, the calculated results are compared with the proposed approximate analytical expressions, the catenary theory or the commercial software of nonlinear finite element program ORCAFLEX. Hopefully, a convenient and effective method for mechanical model of deepwater SCR installation is provided.
Homotopy-Theoretic Study & Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites
NASA Astrophysics Data System (ADS)
Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2016-06-01
Essential structural properties of the non-trivial “string-wall-bounded” topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a “string-wall-bounded” configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials.
Homotopy-Theoretic Study & Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites
Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2016-01-01
Essential structural properties of the non-trivial “string-wall-bounded” topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a “string-wall-bounded” configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials. PMID:27324701
On the homotopy type of spaces of Morse functions on surfaces
Kudryavtseva, Elena A
2013-01-31
Let M be a smooth closed orientable surface. Let F be the space of Morse functions on M with a fixed number of critical points of each index such that at least {chi}(M)+1 critical points are labelled by different labels (numbered). The notion of a skew cylindric-polyhedral complex is introduced, which generalizes the notion of a polyhedral complex. The skew cylindric-polyhedral complex K-tilde ('the complex of framed Morse functions') associated with the space F is defined. In the case M=S{sup 2} the polytope K-tilde is finite; its Euler characteristic {chi}(K-tilde) is calculated and the Morse inequalities for its Betti numbers {beta}{sub j}(K-tilde) are obtained. The relation between the homotopy types of the polytope K-tilde and the space F of Morse functions equipped with the C{sup {infinity}}-topology is indicated. Bibliography: 51 titles.
Topological and geometrical quantum computation in cohesive Khovanov homotopy type theory
NASA Astrophysics Data System (ADS)
Ospina, Juan
2015-05-01
The recently proposed Cohesive Homotopy Type Theory is exploited as a formal foundation for central concepts in Topological and Geometrical Quantum Computation. Specifically the Cohesive Homotopy Type Theory provides a formal, logical approach to concepts like smoothness, cohomology and Khovanov homology; and such approach permits to clarify the quantum algorithms in the context of Topological and Geometrical Quantum Computation. In particular we consider the so-called "open-closed stringy topological quantum computer" which is a theoretical topological quantum computer that employs a system of open-closed strings whose worldsheets are open-closed cobordisms. The open-closed stringy topological computer is able to compute the Khovanov homology for tangles and for hence it is a universal quantum computer given than any quantum computation is reduced to an instance of computation of the Khovanov homology for tangles. The universal algebra in this case is the Frobenius Algebra and the possible open-closed stringy topological quantum computers are forming a symmetric monoidal category which is equivalent to the category of knowledgeable Frobenius algebras. Then the mathematical design of an open-closed stringy topological quantum computer is involved with computations and theorem proving for generalized Frobenius algebras. Such computations and theorem proving can be performed automatically using the Automated Theorem Provers with the TPTP language and the SMT-solver Z3 with the SMT-LIB language. Some examples of application of ATPs and SMT-solvers in the mathematical setup of an open-closed stringy topological quantum computer will be provided.
The influence of mild carbon dioxide on brain functional homotopy using resting-state fMRI.
Marshall, Olga; Uh, Jinsoo; Lurie, Daniel; Lu, Hanzhang; Milham, Michael P; Ge, Yulin
2015-10-01
Homotopy reflects the intrinsic functional architecture of the brain through synchronized spontaneous activity between corresponding bilateral regions, measured as voxel mirrored homotopic connectivity (VMHC). Hypercapnia is known to have clear impact on brain hemodynamics through vasodilation, but have unclear effect on neuronal activity. This study investigates the effect of hypercapnia on brain homotopy, achieved by breathing 5% carbon dioxide (CO2 ) gas mixture. A total of 14 healthy volunteers completed three resting state functional MRI (RS-fMRI) scans, the first and third under normocapnia and the second under hypercapnia. VMHC measures were calculated as the correlation between the BOLD signal of each voxel and its counterpart in the opposite hemisphere. Group analysis was performed between the hypercapnic and normocapnic VMHC maps. VMHC showed a diffused decrease in response to hypercapnia. Significant regional decreases in VMHC were observed in all anatomical lobes, except for the occipital lobe, in the following functional hierarchical subdivisions: the primary sensory-motor, unimodal, heteromodal, paralimbic, as well as in the following functional networks: ventral attention, somatomotor, default frontoparietal, and dorsal attention. Our observation that brain homotopy in RS-fMRI is affected by arterial CO2 levels suggests that caution should be used when comparing RS-fMRI data between healthy controls and patients with pulmonary diseases and unusual respiratory patterns such as sleep apnea or chronic obstructive pulmonary disease.
Keohane, Aoife; Ryan, Sinead; Maloney, Eimer; Sullivan, Aideen M; Nolan, Yvonne M
2010-01-01
Tumour necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine, which influences neuronal survival and function yet there is limited information available on its effects on hippocampal neural precursor cells (NPCs). We show that TNFalpha treatment during proliferation had no effect on the percentage of proliferating cells prepared from embryonic rat hippocampal neurosphere cultures, nor did it affect cell fate towards either an astrocytic or neuronal lineage when cells were then allowed to differentiate. However, when cells were differentiated in the presence of TNFalpha, significantly reduced percentages of newly born and post-mitotic neurons, significantly increased percentages of astrocytes and increased expression of TNFalpha receptors, TNF-R1 and TNF-R2, as well as expression of the anti-neurogenic Hes1 gene, were observed. These data indicate that exposure of hippocampal NPCs to TNFalpha when they are undergoing differentiation but not proliferation has a detrimental effect on their neuronal lineage fate, which may be mediated through increased expression of Hes1.
Kastratović, Tatjana; Arsenijević, Slobodan; Matović, Zoran; Mitrović, Marina; Nikolić, Ivana; Milosavljević, Zoran; Protrka, Zoran; Šorak, Marija; Đurić, Janko
2015-01-01
Uterine leiomyomas (fibroids) are the most common benign tumors in women of reproductive age. Although the local application of low doses of methotrexate (MTX) is used as an effective treatment of the myomas, myotrexate could be a promising new drug. This study investigated the cytotoxic and apoptotic effects of both MTX and myotrexate in human fibroblasts derived from the uterine fibroids (T hES cell line). The myotrexate adduct is an aqueous solution of MTX and L-arginine. Cells were treated with a graded concentrations of both MTX and myothrexate (0.1-16 µM) for 24 h. The cytotoxicity was assayed by MTT test, apoptosis was evaluated by Annexin V-FITC assay and their possible role in apoptosis was determined by immnu- flourescence. Both MTX and myotrexate induced apoptosis in T hES cells in a dose dependent manner (p < 0.001). Myotrexate significantly increased the percentage of AnnexinV positive cells, BAX/Bcl-2 ratio and subsequent caspase-3 activation compared to the MTX treated cells (p < 0.05). Both MTX or myotrexate treatment showed a diffuse staining of cytochrome c indicating its release from mitochondria to the cytosol, suggesting that their mechanisms of action most likely involves the mitochondrial apoptotic pathway. PMID:26642654
Yanartas, M; Baysal, A; Aydın, C; Ay, Y; Kara, İ; Aydın, E; Cevirme, D; Köksal, C; Sunar, H
2015-01-01
Background: The addition of 6% hydroxyethyl starch (HES) into Ringer lactate priming solution may have adverse effects on hemostasis in patients undergoing coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB) with or without the use of tranexamic acid. Methods: In a prospective, randomized clinical trial, 132 patients were assigned to receive 20 ml/kg of Ringer priming solution with or without tranexamic acid (TA) (Group RS-TA, n=34 and Group RS-noTA, n=32) or 10 ml/kg of 6% HES plus 10 ml/kg of RS priming solution with or without intravenous tranexamic acid (Group HES-TA, n=35 and Group HES-noTA, n=31). Estimated blood loss, chest tube drainage, amount of blood products, hemoglobin, hematocrit, platelet and coagulation parameters were examined before and 24 hour after surgery. Results: For Group HES with tranexamic acid, when compared to other groups, estimated blood loss, postoperative 24 hour drainage loss and blood product transfusions were less (P=0.023; P=0.003; P=0.001; respectively) and hemoglobin, hematocrit values at 12 and 24 hours after surgery increased in comparison to other groups (P=0.041, P=0.034, P=0.004, P=0.001; respectively). Platelet concentrations were similar between groups (P>0.05). Conclusions: In CABG, the administration of tranexamic acid in HES 130/0.4 prime solution study group decreased estimated blood loss and chest tube drainage in comparison to patients receving Ringer prime solution with or without tranexamic acid postoperatively however, no effects on renal functions or postoperative complications were shown. PMID:26131192
Giovannini, Catia; Gramantieri, Laura; Minguzzi, Manuela; Fornari, Francesca; Chieco, Pasquale; Grazi, Gian Luca; Bolondi, Luigi
2012-08-01
CDKN1C/P57 is a cyclin-dependent kinase inhibitor implicated in different human cancers, including hepatocellular carcinoma (HCC); however, little is known regarding the role of CDKN1C/P57 and its regulation in HCC. In this study, we show that the down-regulation of Notch1 and Notch3 in two HCC cell lines resulted in Hes1 down-regulation, CDKN1C/P57 up-regulation, and reduced cell growth. In line with these data, we report that CDKN1C/P57 is a target of transcriptional repression by the Notch effector, Hes1. We found that the up-regulation of CDKN1C/P57 by cDNA transfection decreased tumor growth, as determined by growth curve, flow cytometry analysis, and cyclin D1 down-regulation, without affecting the apoptosis machinery. Indeed, the expression of Bax, Noxa, PUMA, BNIP(3), and cleaved caspase-3 was not affected by CDKN1C/P57 induction. Morphologically CDKN1C/p57-induced HCC cells became flat and lengthened in shape, accumulated the senescence-associated β-galactosidase marker, and increased P16 protein expression. Evaluation of senescence in cells depleted both for Hes1 and CDKN1C/P57 revealed that the senescent state really depends on the accumulation of CDKN1C/p57. Finally, we validated our in vitro results in primary HCCs, showing that Hes1 protein expression inversely correlates with CDKN1C/P57 mRNA levels. In addition, reduced Hes1 protein expression is accompanied by a shorter time to recurrence after curative resection, suggesting that Hes1 may represent a biomarker for prediction of patients with poor prognosis.
Mendes-da-Silva, Cristiano; Lemes, Simone Ferreira; Baliani, Tanyara da Silva; Versutti, Milena Diorio; Torsoni, Marcio Alberto
2015-02-01
Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.
Palenik, Mark C.; Dunlap, Brett I.
2015-07-28
Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.
Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong
2014-01-01
In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis. PMID:24675758
Fast compressed sensing analysis for super-resolution imaging using L1-homotopy.
Babcock, Hazen P; Moffitt, Jeffrey R; Cao, Yunlong; Zhuang, Xiaowei
2013-11-18
In super-resolution imaging techniques based on single-molecule switching and localization, the time to acquire a super-resolution image is limited by the maximum density of fluorescent emitters that can be accurately localized per imaging frame. In order to increase the imaging rate, several methods have been recently developed to analyze images with higher emitter densities. One powerful approach uses methods based on compressed sensing to increase the analyzable emitter density per imaging frame by several-fold compared to other reported approaches. However, the computational cost of this approach, which uses interior point methods, is high, and analysis of a typical 40 µm x 40 µm field-of-view super-resolution movie requires thousands of hours on a high-end desktop personal computer. Here, we demonstrate an alternative compressed-sensing algorithm, L1-Homotopy (L1H), which can generate super-resolution image reconstructions that are essentially identical to those derived using interior point methods in one to two orders of magnitude less time depending on the emitter density. Moreover, for an experimental data set with varying emitter density, L1H analysis is ~300-fold faster than interior point methods. This drastic reduction in computational time should allow the compressed sensing approach to be routinely applied to super-resolution image analysis.
Discrete homotopy analysis for optimal trading execution with nonlinear transient market impact
NASA Astrophysics Data System (ADS)
Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio
2016-10-01
Optimal execution in financial markets is the problem of how to trade a large quantity of shares incrementally in time in order to minimize the expected cost. In this paper, we study the problem of the optimal execution in the presence of nonlinear transient market impact. Mathematically such problem is equivalent to solve a strongly nonlinear integral equation, which in our model is a weakly singular Urysohn equation of the first kind. We propose an approach based on Homotopy Analysis Method (HAM), whereby a well behaved initial trading strategy is continuously deformed to lower the expected execution cost. Specifically, we propose a discrete version of the HAM, i.e. the DHAM approach, in order to use the method when the integrals to compute have no closed form solution. We find that the optimal solution is front loaded for concave instantaneous impact even when the investor is risk neutral. More important we find that the expected cost of the DHAM strategy is significantly smaller than the cost of conventional strategies.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Perturbative tests of non-perturbative counting
NASA Astrophysics Data System (ADS)
Dabholkar, Atish; Gomes, João
2010-03-01
We observe that a class of quarter-BPS dyons in mathcal{N} = 4 theories with charge vector ( Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd( Q∧ P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.
Guo, Yijing; Wang, Pin; Sun, Haixia; Cai, Rongrong; Xia, Wenqing; Wang, Shaohua
2014-01-01
This study aims to investigate the roles of the Notch-Hes1 pathway in the advanced glycation end product (AGE)-mediated differentiation of neural stem cells (NSCs). We prepared pLentiLox3.7 lentiviral vectors that express short hairpin RNA (shRNA) against Notch1 and transfected it into NSCs. Cell differentiation was analyzed under confocal laser-scanning microscopy. The percentage of neurons and astrocytes was quantified by normalizing the total number of TUJ1+ (Neuron-specific class III β-tubulin) and GFAP+ (Glial fibrillary acidic protein) cells to the total number of Hoechst 33342-labeled cell nuclei. The protein and gene expression of Notch-Hes1 pathway components was examined via western blot analysis and real-time PCR. After 1 week of incubation, we found that AGE-bovine serum albumin (BSA) (400 μg/mL) induced the astrocytic differentiation of cultured neurospheres and inhibited neuronal formation. The expression of Notch-Hes1 pathway components was upregulated in the cells in the AGE-BSA culture medium. Immunoblot analysis indicated that shRNA silencing of Notch1 expression in NSCs significantly increases neurogenesis and suppresses astrocytic differentiation in NSCs incubated with AGE-BSA. AGEs promote the astrocytic differentiation of cultured neurospheres by inhibiting neurogenesis through the Notch-Hes1 pathway, providing a potential therapeutic target for hyperglycemia-related cognitive deficits.
Wang, Guotai; Zhang, Shaoting; Xie, Hongzhi; Metaxas, Dimitris N; Gu, Lixu
2015-01-01
Shape prior plays an important role in accurate and robust liver segmentation. However, liver shapes have complex variations and accurate modeling of liver shapes is challenging. Using large-scale training data can improve the accuracy but it limits the computational efficiency. In order to obtain accurate liver shape priors without sacrificing the efficiency when dealing with large-scale training data, we investigate effective and scalable shape prior modeling method that is more applicable in clinical liver surgical planning system. We employed the Sparse Shape Composition (SSC) to represent liver shapes by an optimized sparse combination of shapes in the repository, without any assumptions on parametric distributions of liver shapes. To leverage large-scale training data and improve the computational efficiency of SSC, we also introduced a homotopy-based method to quickly solve the L1-norm optimization problem in SSC. This method takes advantage of the sparsity of shape modeling, and solves the original optimization problem in SSC by continuously transforming it into a series of simplified problems whose solution is fast to compute. When new training shapes arrive gradually, the homotopy strategy updates the optimal solution on the fly and avoids re-computing it from scratch. Experiments showed that SSC had a high accuracy and efficiency in dealing with complex liver shape variations, excluding gross errors and preserving local details on the input liver shape. The homotopy-based SSC had a high computational efficiency, and its runtime increased very slowly when repository's capacity and vertex number rose to a large degree. When repository's capacity was 10,000, with 2000 vertices on each shape, homotopy method cost merely about 11.29 s to solve the optimization problem in SSC, nearly 2000 times faster than interior point method. The dice similarity coefficient (DSC), average symmetric surface distance (ASD), and maximum symmetric surface distance measurement
Frame independent cosmological perturbations
Prokopec, Tomislav; Weenink, Jan E-mail: j.g.weenink@uu.nl
2013-09-01
We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and n-point functions.
Minimum-fuel station-change for geostationary satellites using low-thrust considering perturbations
NASA Astrophysics Data System (ADS)
Zhao, ShuGe; Zhang, JingRui
2016-10-01
The objective of this paper is to find the minimum-fuel station change for geostationary satellites with low-thrust while considering significant perturbation forces for geostationary Earth orbit (GEO). The effect of Earth's triaxiality, lunisolar perturbations, and solar radiation pressure on the terminal conditions of a long duration GEO transfer is derived and used for establishing the station change model with consideration of significant perturbation forces. A method is presented for analytically evaluating the effect of Earth's triaxiality on the semimajor axis and longitude during a station change. The minimum-fuel problem is solved by the indirect optimization method. The easier and related minimum-energy problem is first addressed and then the energy-to-fuel homotopy is employed to finally obtain the solution of the minimum-fuel problem. Several effective techniques are employed in solving the two-point boundary-value problem with a shooting method to overcome the problem of the small convergence radius and the sensitivity of the initial costate variables. These methods include normalization of the initial costate vector, computation of the analytic Jacobians matrix, and switching detection. The simulation results show that the solution of the minimum-fuel station change with low-thrust considering significant perturbation forces can be obtained by applying these preceding techniques.
NASA Astrophysics Data System (ADS)
Rong, Shu-Jun; Liu, Qiu-Yu
2012-04-01
The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.
NASA Astrophysics Data System (ADS)
Alizadeh-Pahlavan, Amir; Aliakbar, Vahid; Vakili-Farahani, Farzad; Sadeghy, Kayvan
2009-02-01
The performance of a two-auxiliary-parameter homotopy analysis method (HAM) is investigated in solving laminar MHD flow of an upper-convected Maxwell fluid (UCM) above a porous isothermal stretching sheet. The analysis is carried out up to the 20th-order of approximation, and the effect of parameters such as elasticity number, suction/injection velocity, and magnetic number are studied on the velocity field above the sheet. The results will be contrasted with those reported recently by Hayat et al. [Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358;2006:396-403] obtained using a third-order one-auxiliary-parameter homotopy analysis method. It is concluded that the flow reversal phenomenon as predicted by Hayat et al. (2006) may have arisen because of the inadequacies of using just one-auxiliary-parameter in their analysis. That is, no flow reversal is predicted to occur if instead of using one-auxiliary-parameter use is made of two auxiliary parameters together with a more convenient set of base functions to assure the convergence of the series used to solve the highly nonlinear ODE governing the flow.
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; Chen, Tianran; Morgan, John W. R.; Wales, David J.
2015-12-01
The comment notes that the Newton homotopy (NH) and Newton trajectory (NT) methods are related. By describing recent implementations of the NH method, we clarify the similarities and differences between the two approaches. The possible synergy between NH, NT and other flow methods could suggest further developments in mathematics and chemistry.
Wu, Jiunn-Ren; Yeh, Jwu-Lai; Liou, Shu-Fen; Dai, Zen-Kong; Wu, Bin-Nan; Hsu, Jong-Hau
2016-01-01
Patent ductus arteriosus (PDA) can cause morbidity and mortality in neonates. Vascular remodeling, characterized by proliferation and migration of smooth muscle cells (SMCs), is an essential process for postnatal DA closure. Notch signaling is an important mediator of vascular remodelling but its role in DA is unkonwn. We investigated the effects and underlying mechanisms of γ-secretase inhibitor DAPT, a Notch signaling inhibitor on angiotensin II (Ang II)-induced proliferation and migration of DASMCs. Proliferation and migration of DASMCs cultured from neonatal Wistar rats were induced by Ang II, with or without DAPT pre-treatment. In addition, potential underlying mechanisms including cell cycle progression, Ca2+ influx, reactive oxygen species (ROS) production, signal transduction of MAPK and Akt, and Notch receptor with its target gene pathway were examined. We found that DAPT inhibited Ang II-induced DASMCs proliferation and migration dose dependently. DAPT also arrested the cell cycle progression in the G0/G1-phase, and attenuated calcium overload and ROS production caused by Ang II. Moreover, DAPT inhibited nuclear translocation of Notch3 receptor intracellular domain, with decreased expression of its down-stream genes including HES1, HES2 and HES5. Finally, Ang II-activated ERK1/2, JNK and Akt were also counteracted by DAPT. In conclusion, DAPT inhibits Ang II-induced DASMCs proliferation and migration. These effects are potentially mediated by decreased calcium influx, reduced ROS production, and down-regulation of ERK1/2, JNK and Akt, through the Notch3-HES1/2/5 pathway. Therefore, Notch signaling has a role in DA remodeling and may provide a target pathway for therapeutic intervention of PDA. PMID:27570480
Wu, Jiunn-Ren; Yeh, Jwu-Lai; Liou, Shu-Fen; Dai, Zen-Kong; Wu, Bin-Nan; Hsu, Jong-Hau
2016-01-01
Patent ductus arteriosus (PDA) can cause morbidity and mortality in neonates. Vascular remodeling, characterized by proliferation and migration of smooth muscle cells (SMCs), is an essential process for postnatal DA closure. Notch signaling is an important mediator of vascular remodelling but its role in DA is unkonwn. We investigated the effects and underlying mechanisms of γ-secretase inhibitor DAPT, a Notch signaling inhibitor on angiotensin II (Ang II)-induced proliferation and migration of DASMCs. Proliferation and migration of DASMCs cultured from neonatal Wistar rats were induced by Ang II, with or without DAPT pre-treatment. In addition, potential underlying mechanisms including cell cycle progression, Ca(2+) influx, reactive oxygen species (ROS) production, signal transduction of MAPK and Akt, and Notch receptor with its target gene pathway were examined. We found that DAPT inhibited Ang II-induced DASMCs proliferation and migration dose dependently. DAPT also arrested the cell cycle progression in the G0/G1-phase, and attenuated calcium overload and ROS production caused by Ang II. Moreover, DAPT inhibited nuclear translocation of Notch3 receptor intracellular domain, with decreased expression of its down-stream genes including HES1, HES2 and HES5. Finally, Ang II-activated ERK1/2, JNK and Akt were also counteracted by DAPT. In conclusion, DAPT inhibits Ang II-induced DASMCs proliferation and migration. These effects are potentially mediated by decreased calcium influx, reduced ROS production, and down-regulation of ERK1/2, JNK and Akt, through the Notch3-HES1/2/5 pathway. Therefore, Notch signaling has a role in DA remodeling and may provide a target pathway for therapeutic intervention of PDA. PMID:27570480
Li, Xiaojing; Liu, Fei; Zhang, Xuefang; Shi, Guoping; Ren, Jing; Ji, Jianjian; Ding, Liang; Fan, Hongye; Dou, Huan; Hou, Yayi
2016-01-01
The increased death of macrophages has been considered as a pathogenic factor for systemic lupus erythematosus (SLE), and dysfunction of autophagy may contribute to improper cell death. However, the effect of autophagy on macrophage during the pathogenesis of SLE is still unclear. Here we found that the death rate and autophagy level of macrophages significantly increased in MRL/lpr lupus-prone mice. Activation of toll-like receptor 7 (TLR7) triggered macrophage death in an autophagy-dependent but caspase-independent way in vitro. Moreover, P62/SQSTM1 is thought to have an essential role in selective autophagy. We also demonstrated that P62/SQSTM1 was required for TLR7-induced autophagy, and knockdown of P62 suppressed R848-induced cell death and LC3II protein accumulation. As an important mediator for cell-cell communication, Notch signaling is responsible for cell-fate decisions. Our results showed that activation of TLR7 also upregulated the expression of Notch1, especially its downstream target gene Hairy and enhancer of split 1 (Hes-1) in macrophages. Of note, we found that Hes-1, as a transcriptional factor, controlled TLR7-induced autophagy by regulating P62 expression. Furthermore, to confirm the above results in vivo, TLR7 agonist imiquimod (IMQ)-induced lupus mouse model was prepared. Splenic macrophages from IMQ-treated mice exhibited increased autophagy and cell death as well as enhanced expressions of Notch1 and Hes-1. Our results indicate that Notch1-Hes-1 signaling controls TLR7-induced autophagic death of macrophage via regulation of P62 in mice with lupus. PMID:27537524
Häcker, Hans; Chi, Liying; Rehg, Jerold E.; Redecke, Vanessa
2012-01-01
Immune cell-mediated tissue injury is the common feature of different inflammatory diseases, yet the pathogenetic mechanisms and cell types involved vary significantly. Hypereosinophilic Syndrome (HES) represents a group of inflammatory diseases that are characterized by increased numbers of pathogenic eosinophilic granulocytes in the peripheral blood and diverse organs. Based on clinical and laboratory findings, various forms of HES have been defined, yet the molecular mechanism and potential signaling pathways that drive eosinophil expansion remain largely unknown. Here we show that mice deficient of the serine/ threonine-specific protein kinase NF-κB inducing kinase (NIK) develop a HES-like disease, reflected by progressive blood and tissue eosinophilia, tissue injury and premature death at around 25–30 weeks of age. Similar to the lymphocytic form of HES, CD4+ T-cells from NIK-deficient mice express increased levels of T-helper 2 (Th2)-associated cytokines, and eosinophilia and survival of NIK deficient mice could completely be prevented by genetic ablation of CD4+ T-cells. Experiments based on bone marrow chimeric mice, however, demonstrated that inflammation in NIK-deficient mice depended on radiation-resistant tissues, implicating that NIK-deficient immune cells mediate inflammation in a non-autonomous manner. Surprisingly, disease development was independent of NIKs known function as IkappaB kinase (IKK)-α kinase, as mice carrying a mutation in the activation loop of IKKα, which is phosphorylated by NIK, did not develop inflammatory disease. Our data show that NIK activity in non-hematopoietic cells controls Th2-cell development and prevents eosinophil-driven inflammatory disease, most likely using a signaling pathway that operates independent of the known NIK substrate IKKα. PMID:22474019
Perturbations for transient acceleration
Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br
2012-04-01
According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.
NASA Technical Reports Server (NTRS)
Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.
1995-01-01
An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.
Cosmological perturbations in antigravity
NASA Astrophysics Data System (ADS)
Oltean, Marius; Brandenberger, Robert
2014-10-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.
Scalar cosmological perturbations
NASA Astrophysics Data System (ADS)
Uggla, Claes; Wainwright, John
2012-05-01
Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein’s field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations.
Liouvillian perturbations of black holes
NASA Astrophysics Data System (ADS)
Couch, W. E.; Holder, C. L.
2007-10-01
We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.
Aspects of perturbative unitarity
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2016-07-01
We reconsider perturbative unitarity in quantum field theory and upgrade several arguments and results. The minimum assumptions that lead to the largest time equation, the cutting equations and the unitarity equation are identified. Using this knowledge and a special gauge, we give a new, simpler proof of perturbative unitarity in gauge theories and generalize it to quantum gravity, in four and higher dimensions. The special gauge interpolates between the Feynman gauge and the Coulomb gauge without double poles. When the Coulomb limit is approached, the unphysical particles drop out of the cuts and the cutting equations are consistently projected onto the physical subspace. The proof does not extend to nonlocal quantum field theories of gauge fields and gravity, whose unitarity remains uncertain.
Renormalized Lie perturbation theory
Rosengaus, E.; Dewar, R.L.
1981-07-01
A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another.
Degenerate density perturbation theory
NASA Astrophysics Data System (ADS)
Palenik, Mark C.; Dunlap, Brett I.
2016-09-01
Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of Nd degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X α exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first- through third-order energies as a function of α , with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.
NASA Astrophysics Data System (ADS)
Morais, M. H. M.; Murray, C. D.
1999-09-01
We present some mechanisms that can lead to instability of initially small eccentricity Trojan-type orbits associated with planetary satellites. Dermott & Murray (1981) showed that in the context of the hierarchical restricted three-body problem (M>> m), stable small eccentricity coorbital motion associated with the mass m, occurs within a region of relative width in semi-major axis a_s=0.74 epsilon (where epsilon is the dimensionless Hill's radius). However, for large eccentricities, the size of the stable coorbital region shrinks as a_s=4 (epsilon /e)(1/2) epsilon (Namouni 1999). The perturbations from other nearby bodies can cause increases in both eccentricity and semi-major axis, leading to ejection from the coorbital region via collisions with the parent body or a nearby perturber. We show that mean motion resonances among saturnian satellites can cause chaotic diffusion of both the eccentricity and the semi-major axis of their associated Trojan orbits. Moreover, we show that secular resonances inside the coorbital regions of some uranian and saturnian satellites can induce significant increases in the eccentricity of Trojan objects. A better insight into the complicated dynamics exhibited by Trojan objects when they are being subject to perturbations is fundamental to be able to assess the likelihood of finding real examples of these configurations. Dermott & Murray (1981). Icarus 48, 1-11. Namouni (1999). Icarus 137, 293-314.
Covariant Bardeen perturbation formalism
NASA Astrophysics Data System (ADS)
Vitenti, S. D. P.; Falciano, F. T.; Pinto-Neto, N.
2014-05-01
In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors, which yields an adequate language to treat both perturbative approaches in a common framework. We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that at first order correspond to the three known gauge invariant variables Φ, Ψ and Ξ, which are simultaneously foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to construct simultaneously gauge and hypersurface invariant variables at any order.
von Grabowiecki, Yannick; Licona, Cynthia; Palamiuc, Lavinia; Abreu, Paula; Vidimar, Vania; Coowar, Djalil; Mellitzer, Georg; Gaiddon, Christian
2015-01-01
Muscular atrophy, a physiopathologic process associated with severe human diseases such as amyotrophic lateral sclerosis (ALS) or cancer, has been linked to reactive oxygen species (ROS) production. The Notch pathway plays a role in muscle development and in muscle regeneration upon physical injury. In this study, we explored the possibility that the Notch pathway participates in the ROS-related muscular atrophy occurring in cancer-associated cachexia and ALS. We also tested whether hybrid compounds of tocopherol, harboring antioxidant activity, and the omega-alkanol chain, presenting cytoprotective activity, might reduce muscle atrophy and impact the Notch pathway. We identified one tocopherol-omega alkanol chain derivative, AGT251, protecting myoblastic cells against known cytotoxic agents. We showed that this compound presenting antioxidant activity counteracts the induction of the Notch pathway by cytotoxic stress, leading to a decrease of Notch1 and Notch3 expression. At the functional level, these regulations correlated with a repression of the Notch target gene Hes1 and the atrophy/remodeling gene MuRF1. Importantly, we also observed an induction of Notch3 and Hes1 expression in two murine models of muscle atrophy: a doxorubicin-induced cachexia model and an ALS murine model expressing mutated superoxide dismutase 1. In both models, the induction of Notch3 and Hes1 were partially opposed by AGT251, which correlated with ameliorations in body and muscle weight, reduction of muscular atrophy markers, and improved survival. Altogether, we identified a compound of the tocopherol family that protects against muscle atrophy in various models, possibly through the regulation of the Notch pathway.
Yang, Zhiyun; Wang, Li; Wang, Xianbo
2016-10-01
Matrine is a Chinese medicine, which is widely utilized for the attenuation of liver injuries and promotion of liver regeneration. It was previously observed that the in vivo administration of matrine promoted oval cell‑mediated liver regeneration in a rat model, suggesting that this compound may affect the differentiation of hepatic progenitor cells. The present study aimed to determine the mechanisms underlying this observation and to investigate the effect of matrine on the differentiation of the WB‑F344 rat hepatic progenitor cell line. Matrine was administered to rats, and rat serum was collected. WB‑F344 cells were cultured in the presence or absence of the rat serum for 24‑72 h, and the effects on cell viability and proliferation were assessed using acridine orange/propidium iodide staining and a 3‑(4,5‑dimethylthiazol‑2‑yl) ‑2,5‑diphenyltetrazolium bromide assay. The expression of albumin (ALB, a hepatocyte marker) and the notch signaling pathway ligand, Jagged 1, were assessed using immunohistochemistry and western blotting, and the mRNA transcription of ALB, Jagged 1 and hairy and enhancer of split‑1 (HES1, another notch signaling ligand) were measured using reverse transcription‑polymerase chain reaction analysis. The results showed that proliferation of the WB‑F344 cells was inhibited by matrine serum in a concentration‑ and time‑dependent manner. Matrine serum downregulated Jagged 1 and HES1, and upregulated ALB, indicating the induction of WB‑F344 cell differentiation. The effects of matrine serum were reversed by supplementing the culture medium with 0.1 mol/l parathyroid hormone, a Notch signaling pathway activator. In conclusion, matrine induced hepatic differentiation of the hepatic progenitor cells, likely by inhibiting the Jagged 1/HES1 signaling pathway.
von Grabowiecki, Yannick; Licona, Cynthia; Palamiuc, Lavinia; Abreu, Paula; Vidimar, Vania; Coowar, Djalil; Mellitzer, Georg; Gaiddon, Christian
2015-01-01
Muscular atrophy, a physiopathologic process associated with severe human diseases such as amyotrophic lateral sclerosis (ALS) or cancer, has been linked to reactive oxygen species (ROS) production. The Notch pathway plays a role in muscle development and in muscle regeneration upon physical injury. In this study, we explored the possibility that the Notch pathway participates in the ROS-related muscular atrophy occurring in cancer-associated cachexia and ALS. We also tested whether hybrid compounds of tocopherol, harboring antioxidant activity, and the omega-alkanol chain, presenting cytoprotective activity, might reduce muscle atrophy and impact the Notch pathway. We identified one tocopherol-omega alkanol chain derivative, AGT251, protecting myoblastic cells against known cytotoxic agents. We showed that this compound presenting antioxidant activity counteracts the induction of the Notch pathway by cytotoxic stress, leading to a decrease of Notch1 and Notch3 expression. At the functional level, these regulations correlated with a repression of the Notch target gene Hes1 and the atrophy/remodeling gene MuRF1. Importantly, we also observed an induction of Notch3 and Hes1 expression in two murine models of muscle atrophy: a doxorubicin-induced cachexia model and an ALS murine model expressing mutated superoxide dismutase 1. In both models, the induction of Notch3 and Hes1 were partially opposed by AGT251, which correlated with ameliorations in body and muscle weight, reduction of muscular atrophy markers, and improved survival. Altogether, we identified a compound of the tocopherol family that protects against muscle atrophy in various models, possibly through the regulation of the Notch pathway. PMID:25326132
Basiri Parsa, A; Rashidi, M M; Anwar Bég, O; Sadri, S M
2013-09-01
In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field. The two-dimensional momentum conservation partial differential equations are reduced to ordinary form incorporating Lorentizian magnetohydrodynamic body force terms. These ordinary differential equations are solved by the homotopy analysis method, the differential transform method and also a numerical method (fourth-order Runge-Kutta quadrature with a shooting method), under physically realistic boundary conditions. The homotopy analysis method contains the auxiliary parameter ℏ, which provides us with a simple way to adjust and control the convergence region of solution series. The differential transform method (DTM) does not require an auxiliary parameter and is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The influence of Hartmann number (Ha) and transpiration Reynolds number (mass transfer parameter, Re) on the velocity profiles in the channel are studied in detail. Interesting fluid dynamic characteristics are revealed and addressed. The HAM and DTM solutions are shown to both correlate well with numerical quadrature solutions, testifying to the accuracy of both HAM and DTM in nonlinear magneto-hemodynamics problems. Both these semi-numerical techniques hold excellent potential in modeling nonlinear viscous flows in biological systems. PMID:23930807
NASA Astrophysics Data System (ADS)
Van Gorder, Robert A.
2012-03-01
We apply the method of homotopy analysis to study the Fitzhugh-Nagumo equation. ut=uxx+u(u-α)(1-u), which has various applications in the fields of logistic population growth, flame propagation, neurophysiology, autocatalytic chemical reaction, branching Brownian motion process and nuclear reactor theory. In particular, we focus on the case of Gaussian wave forms, which has not previously been discussed in the literature. Through an application of homotopy analysis, we are able to demonstrate an interesting role of the auxiliary function H( x, t). In particular, we show that while we are free to pick specific forms of H( x, t), there are certain forms which permit both (i) regularity of solutions by cancelling possible singularities and (ii) ease the process of integrating when computing the higher order terms in the homotopy expansion. In addition to the discussion on the choice of H( x, t), we are able to deduce the behavior of Gaussian waveform solutions in the Fitzhugh-Nagumo model for various values of both the wave speed and the ambient concentration parameter ( α).
Discrete reductive perturbation technique
Levi, Decio; Petrera, Matteo
2006-04-15
We expand a partial difference equation (P{delta}E) on multiple lattices and obtain the P{delta}E which governs its far field behavior. The perturbative-reductive approach is here performed on well-known nonlinear P{delta}Es, both integrable and nonintegrable. We study the cases of the lattice modified Korteweg-de Vries (mKdV) equation, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonintegrable lattice KdV equation. Such reductions allow us to obtain many new P{delta}Es of the nonlinear Schroedinger type.
Yan, B; Heus, J; Lu, N; Nichols, R C; Raben, N; Plotz, P H
2001-01-19
Acid alpha-glucosidase, the product of a housekeeping gene, is a lysosomal enzyme that degrades glycogen. A deficiency of this enzyme is responsible for a recessively inherited myopathy and cardiomyopathy, glycogenesis type II. We have previously demonstrated that the human acid alpha-glucosidase gene expression is regulated by a silencer within intron 1, which is located in the 5'-untranslated region. In this study, we have used deletion analysis, electrophoretic mobility shift assay, and footprint analysis to further localize the silencer to a 25-base pair element. The repressive effect on the TK promoter was about 50% in both orientations in expression plasmid, and two transcriptional factors were identified with antibodies binding specifically to the element. Mutagenesis and functional analyses of the element demonstrated that the mammalian homologue 1 of Drosophila hairy and Enhancer of split (Hes-1) binding to an E box (CACGCG) and global transcription factor-YY1 binding to its core site function as a transcriptional repressor. Furthermore, the overexpression of Hes-1 significantly enhanced the repressive effect of the silencer element. The data should be helpful in understanding the expression and regulation of the human acid alpha-glucosidase gene as well as other lysosomal enzyme genes.
Meliou, E; Kerezoudis, NP; Tosios, KI; Kiaris, H
2010-01-01
Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have examined the expression of the receptor Notch 1, the ligand Delta 1 and the transcription factor HES 1 in the epithelium of well defined periapical cysts. Immunostaining reaction of Notch 1, Delta 1 and HES 1 was observed in the cytoplasm and/or the cytoplasmic membrane and occasionally in the nucleus in the majority of epithelial cells of all periapical cysts. The present observations indicate that Notch pathway is active in the epithelium of periapical cysts. It can be speculated that activation of epithelial cells of periapical cysts is associated with activation of Notch pathway and imply involvement of this pathway in periapical cyst growth and expansion. PMID:21116324
Meliou, E; Kerezoudis, Np; Tosios, Ki; Kiaris, H
2010-01-01
Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have examined the expression of the receptor Notch 1, the ligand Delta 1 and the transcription factor HES 1 in the epithelium of well defined periapical cysts. Immunostaining reaction of Notch 1, Delta 1 and HES 1 was observed in the cytoplasm and/or the cytoplasmic membrane and occasionally in the nucleus in the majority of epithelial cells of all periapical cysts. The present observations indicate that Notch pathway is active in the epithelium of periapical cysts. It can be speculated that activation of epithelial cells of periapical cysts is associated with activation of Notch pathway and imply involvement of this pathway in periapical cyst growth and expansion.
Karasek, R A; Theorell, T; Schwartz, J E; Schnall, P L; Pieper, C F; Michela, J L
1988-01-01
Associations between psychosocial job characteristics and past myocardial infarction (MI) prevalence for employed males were tested with the Health Examination Survey (HES) 1960-61, N = 2,409, and the Health and Nutrition Examination Survey (HANES) 1971-75, N = 2,424. A new estimation method is used which imputes to census occupation codes, job characteristic information from national surveys of job characteristics (US Department of Labor, Quality of Employment Surveys). Controlling for age, we find that employed males with jobs which are simultaneously low in decision latitude and high in psychological work load (a multiplicative product term isolating 20 per cent of the population) have a higher prevalence of myocardial infarction in both data bases. In a logistic regression analysis, using job measures adjusted for demographic factors and controlling for age, race, education, systolic blood pressure, serum cholesterol, smoking (HANES only), and physical exertion, we find a low decision latitude/high psychological demand multiplicative product term associated with MI in both data bases. Additional multiple logistic regressions show that low decision latitude is associated with increased prevalence of MI in both the HES and the HANES. Psychological workload and physical exertion are significant only in the HANES. PMID:3389427
Phillips, Nick E; Manning, Cerys S; Pettini, Tom; Biga, Veronica; Marinopoulou, Elli; Stanley, Peter; Boyd, James; Bagnall, James; Paszek, Pawel; Spiller, David G; White, Michael RH; Goodfellow, Marc; Galla, Tobias; Rattray, Magnus; Papalopulu, Nancy
2016-01-01
Recent studies suggest that cells make stochastic choices with respect to differentiation or division. However, the molecular mechanism underlying such stochasticity is unknown. We previously proposed that the timing of vertebrate neuronal differentiation is regulated by molecular oscillations of a transcriptional repressor, HES1, tuned by a post-transcriptional repressor, miR-9. Here, we computationally model the effects of intrinsic noise on the Hes1/miR-9 oscillator as a consequence of low molecular numbers of interacting species, determined experimentally. We report that increased stochasticity spreads the timing of differentiation in a population, such that initially equivalent cells differentiate over a period of time. Surprisingly, inherent stochasticity also increases the robustness of the progenitor state and lessens the impact of unequal, random distribution of molecules at cell division on the temporal spread of differentiation at the population level. This advantageous use of biological noise contrasts with the view that noise needs to be counteracted. DOI: http://dx.doi.org/10.7554/eLife.16118.001 PMID:27700985
NASA Astrophysics Data System (ADS)
Boyd, John P.; Xu, Zhengjie
2012-02-01
Computation of solitons of the cubically-nonlinear Benjamin-Ono equation is challenging. First, the equation contains the Hilbert transform, a nonlocal integral operator. Second, its solitary waves decay only as O(1/∣ x∣ 2). To solve the integro-differential equation for waves traveling at a phase speed c, we introduced the artificial homotopy H( uXX) - c u + (1 - δ) u2 + δu3 = 0, δ ∈ [0, 1] and solved it in two ways. The first was continuation in the homotopy parameter δ, marching from the known Benjamin-Ono soliton for δ = 0 to the cubically-nonlinear soliton at δ = 1. The second strategy was to bypass continuation by numerically computing perturbation series in δ and forming Padé approximants to obtain a very accurate approximation at δ = 1. To further minimize computations, we derived an elementary theorem to reduce the two-parameter soliton family to a parameter-free function, the soliton symmetric about the origin with unit phase speed. Solitons for higher order Benjamin-Ono equations are also computed and compared to their Korteweg-deVries counterparts. All computations applied the pseudospectral method with a basis of rational orthogonal functions invented by Christov, which are eigenfunctions of the Hilbert transform.
You, Peng; Liu, Zhen; Wang, Hongqiang; Wei, Xizhang; Li, Xiang
2014-01-01
Compressed sensing has been applied to achieve high resolution range profiles (HRRPs) using a stepped-frequency radar. In this new scheme, much fewer pulses are required to recover the target's strong scattering centers, which can greatly reduce the coherent processing interval (CPI) and improve the anti-jamming capability. For practical applications, however, the required number of pulses is difficult to determine in advance and any reduction of the transmitted pulses is attractive. In this paper, a dynamic compressed sensing strategy for HRRP generation is proposed, in which the estimated HRRP is updated with sequentially transmitted and received pulses until the proper stopping rules are satisfied. To efficiently implement the sequential update, a complex-valued fast sequential homotopy (CV-FSH) algorithm is developed based on group sparse recovery. This algorithm performs as an efficient recursive procedure of sparse recovery, thus avoiding solving a new optimization problem from scratch. Furthermore, the proper stopping rules are presented according to the special characteristics of HRRP. Therefore, the optimal number of pulses required in each CPI can be sought adapting to the echo signal. The results using simulated and real data show the effectiveness of the proposed approach and demonstrate that the established dynamic strategy is more suitable for uncooperative targets. PMID:24815679
Perturbative unidirectional invisibility
NASA Astrophysics Data System (ADS)
Mostafazadeh, Ali
2015-08-01
We outline a general perturbative method of evaluating scattering features of finite-range complex potentials and use it to examine complex perturbations of a rectangular barrier potential. In optics, these correspond to modulated refractive index profiles of the form n (x ) =n0+f (x ) , where n0 is real, f (x ) is complex valued, and |f (x ) | ≪1 ≤n0 . We give a comprehensive description of the phenomenon of unidirectional invisibility for such media, proving five general theorems on its realization in P T -symmetric and non-P T -symmetric material. In particular, we establish the impossibility of unidirectional invisibility for P T -symmetric samples whose refractive index has a constant real part and show how a simple scaling transformation of a unidirectionally invisible P T -symmetric index profile with n0=1 may be used to generate a hierarchy of unidirectionally invisible P T -symmetric index profiles with n0>1 . The results pertaining to unidirectional invisibility for n0>1 open the way for the experimental studies of this phenomenon in a variety of active materials. As an application of our general results, we show that a medium with n (x ) =n0+ζ ei K x , ζ and K real, and |ζ |≪1 can support unidirectional invisibility only for n0=1 . We then construct unidirectionally invisible index profiles of the form n (x ) =n0+∑ℓzℓei Kℓx with zℓ complex, Kℓ real, | zℓ|≪1 , and n0>1 .
Canonical density matrix perturbation theory.
Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias
2015-12-01
Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847
Cosmological perturbations in massive bigravity
Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk
2014-12-01
We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.
Canonical density matrix perturbation theory.
Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias
2015-12-01
Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures.
2014-01-01
Background PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Methods Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. Results Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression
On dark energy isocurvature perturbation
Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn
2011-06-01
Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.
Perturbation theory in electron diffraction
NASA Astrophysics Data System (ADS)
Bakken, L. N.; Marthinsen, K.; Hoeier, R.
1992-12-01
The Bloch-wave approach is used for discussing multiple inelastic electron scattering and higher-order perturbation theory in inelastic high-energy electron diffraction. In contrast to previous work, the present work describes three-dimensional diffraction so that higher-order Laue zone (HOLZ) effects are incorporated. Absorption is included and eigenvalues and eigenvectors are calculated from a structure matrix with the inclusion of an absorptive potential. Centrosymmetric as well as non-centrosymmetric crystal structures are allowed. An iteration method with a defined generalized propagation function for solving the inelastic coupling equations is described. It is shown that a similar iteration method with the same propagation function can be used for obtaining higher-order perturbation terms for the wave-function when a perturbation is added to the crystal potential. Finally, perturbation theory by matrix calculations when a general perturbation is added to the structure matrix is considered.
Modulated preheating and isocurvature perturbations
Enqvist, Kari; Rusak, Stanislav E-mail: stanislav.rusak@helsinki.fi
2013-03-01
We consider a model of preheating where the coupling of the inflaton to the preheat field is modulated by an additional scalar field which is light during inflation. We establish that such a model produces the observed curvature perturbation analogously to the modulated reheating scenario. The contribution of modulated preheating to the power spectrum and to non-Gaussianity can however be significantly larger compared to modulated perturbative reheating. We also consider the implications of the current constraints on isocurvature perturbations in case where the modulating field is responsible for cold dark matter. We find that existing bounds on CDM isocurvature perturbations imply that modulated preheating is unlikely to give a dominant contribution to the curvature perturbation and that the same bounds suggest important constraints on non-Gaussianity and the amount of primordial gravitational waves.
Teloh, Johanna K.; Ferenz, Katja B.; Petrat, Frank; Mayer, Christian; de Groot, Herbert
2013-01-01
Background In the past, several studies have compared different colloidal replacement solutions, whereby the focus was usually on the respective colloid. We therefore systematically studied the influence of the carrier solution’s composition of five approved colloidal volume replacement solutions (Gelafundin, Gelafusal, Geloplasma, Voluven and Volulyte) on acid-base as well as electrolyte status during and following acute severe normovolemic hemodilution. The solutions differed in the colloid used (succinylated gelatin vs. HES) and in the presence and concentration of metabolizable anions as well as in their electrolyte composition. Methods Anesthetized Wistar rats were subjected to a stepwise normovolemic hemodilution with one of the solutions until a final hematocrit of 10%. Subsequent to dilution (162 min), animals were observed for an additional period (150 min). During dilution and observation time blood gas analyses were performed eight times in total. Additionally, in the Voluven and Volulyte groups as well as in 6 Gelafundin animals, electrolyte concentrations, glucose, pH and succinylated gelatin were measured in urine and histopathological evaluation of the kidney was performed. Results All animals survived without any indications of injury. Although the employed solutions differed in their respective composition, comparable results in all plasma acid-base and electrolyte parameters studied were obtained. Plasma pH increased from approximately 7.28 to 7.39, the plasma K+ concentration decreased from circa 5.20 mM to 4.80-3.90 mM and the plasma Cl− concentration rose from approximately 105 mM to 111–120 mM. Urinary analysis revealed increased excretion of K+, H+ and Cl−. Conclusions The present data suggest that the carrier solution’s composition with regard to metabolizable anions as well as K+, Ca2+ only has a minor impact on acid-base and electrolyte status after application of succinylated gelatin or HES-containing colloidal volume
Disformal transformation of cosmological perturbations
NASA Astrophysics Data System (ADS)
Minamitsuji, Masato
2014-10-01
We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar-tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar-tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Friedman, Mark J.; Monteiro, Anand C.
1993-01-01
In earlier papers, Doedel and the authors have developed a numerical method and derived error estimates for the computation of branches of heteroclinic orbits for a system of autonomous ordinary differential equations in R(exp n). The idea of the method is to reduce a boundary value problem on the real line to a boundary value problem on a finite interval by using a local (linear or higher order) approximation of the stable and unstable manifolds. A practical limitation for the computation of homoclinic and heteroclinic orbits has been the difficulty in obtaining starting orbits. Typically these were obtained from a closed form solution or via a homotopy from a known solution. Here we consider extensions of our algorithm which allow us to obtain starting orbits on the continuation branch in a more systematic way as well as make the continuation algorithm more flexible. In applications, we use the continuation software package AUTO in combination with some initial value software. The examples considered include computation of homoclinic orbits in a singular perturbation problem and in a turbulent fluid boundary layer in the wall region problem.
Causal compensated perturbations in cosmology
NASA Technical Reports Server (NTRS)
Veeraraghavan, Shoba; Stebbins, Albert
1990-01-01
A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.
Base case and perturbation scenarios
Edmunds, T
1998-10-01
This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a
Identification of perturbation modes and controversies in ekpyrotic perturbations
NASA Astrophysics Data System (ADS)
Hwang, Jai-Chan; Noh, Hyerim
2002-10-01
If the linear perturbation theory is valid through the bounce, the surviving fluctuations from the ekpyrotic scenario (cyclic one as well) should have very blue spectra with suppressed amplitude for the scalar-type structure. We derive the same (and consistent) result using the curvature perturbation in the uniform-field (comoving) gauge and in the zero-shear gauge. Previously, Khoury et al. interpreted results from the latter gauge condition incorrectly and claimed the scale-invariant spectrum, thus generating controversy in the literature. We also correct similar errors in the literature based on wrong mode identification and joining condition. No joining condition is needed for the derivation.
Poulsen, P; Kuklo, R M
2001-03-01
We have previously reported the degree of attenuation and perturbation by a Cu jet passing through Comp B explosive. Similar tests have now been performed with high explosive (HE) targets having CJ pressures higher than and lower than the CJ pressure of Comp B. The explosives were LX-14 and TNT, respectively. We found that the measured exit velocity of the jet where it transitions from perturbed to solid did not vary significantly as a function of HE type for each HE thickness. The radial momentum imparted to the perturbed jet segment did vary as a function of HE type, however, and we report the radial spreading of the jet and the penetration of a downstream target as a function of HE type and thickness.
Perturbation theory in thermosphere dynamics
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Volland, H.
1976-01-01
It is shown that density and pressure throughout the thermosphere can be adequately described in a logarithmic expansion that provides a sound basis for the application of perturbation theory. This expansion eliminates most of the important nonlinearities associated with density variations. On the basis of this expansion, the validity of perturbation theory can be extended to cover a large variety of atmospheric conditions in which the relative temperature amplitude is less than 0.5 and wind velocities are significantly less than the speed of sound.
Sturrock, Marc; Terry, Alan J; Xirodimas, Dimitris P; Thompson, Alastair M; Chaplain, Mark A J
2012-07-01
There are many intracellular signalling pathways where the spatial distribution of the molecular species cannot be neglected. These pathways often contain negative feedback loops and can exhibit oscillatory dynamics in space and time. Two such pathways are those involving Hes1 and p53-Mdm2, both of which are implicated in cancer. In this paper we further develop the partial differential equation (PDE) models of Sturrock et al. (J. Theor. Biol., 273:15-31, 2011) which were used to study these dynamics. We extend these PDE models by including a nuclear membrane and active transport, assuming that proteins are convected in the cytoplasm towards the nucleus in order to model transport along microtubules. We also account for Mdm2 inhibition of p53 transcriptional activity. Through numerical simulations we find ranges of values for the model parameters such that sustained oscillatory dynamics occur, consistent with available experimental measurements. We also find that our model extensions act to broaden the parameter ranges that yield oscillations. Hence oscillatory behaviour is made more robust by the inclusion of both the nuclear membrane and active transport. In order to bridge the gap between in vivo and in silico experiments, we investigate more realistic cell geometries by using an imported image of a real cell as our computational domain. For the extended p53-Mdm2 model, we consider the effect of microtubule-disrupting drugs and proteasome inhibitor drugs, obtaining results that are in agreement with experimental studies.
Hajnal, András; Csábi, Györgyi; Herold, Róbert; Jeges, Sára; Halmai, Tamás; Trixler, Dániel; Simon, Maria; Tóth, Ákos Levente; Tényi, Tamás
2016-03-30
Minor physical anomalies are external markers of abnormal brain development,so the more common appearance of these signs among the relatives of schizophrenia patients can confirm minor physical anomalies as intermediate phenotypes. The aim of the present study was to investigate the rate and topological profile of minor physical anomalies in the first-degree unaffected relatives of patients with schizophrenia compared to matched normal control subjects. Using a list of 57 minor physical anomalies (the Méhes Scale), 20 relatives of patients with the diagnosis of schizophrenia and as a comparison 20 matched normal control subjects were examined. Minor physical anomalies were more common in the head and mouth regions among the relatives of schizophrenia patients compared to normal controls. By the differentiation of minor malformations and phenogenetic variants, we have found that only phenogenetic variants were more common in the relatives of schizophrenia patients compared to the control group, however individual analyses showed, that one minor malformation (flat forehead) was more prevalent in the relative group. The results can promote the concept, that minor physical anomalies can be endophenotypic markers of the illness.
Ozdemir, Nedim; Demirak, Ahmet; Keskin, Feyyaz
2014-12-01
A thorough investigation of the impact of rainbow trout (Oncorhynchus mykiss) cultivation on surface water quality in the area known as Bereket HES IV Dam Lake was conducted. Water samples were collected from October 2009 to June 2010 from four stations in the Dam Lake and analyzed for water temperature, pH, dissolved oxygen, electrical conductivity, nitrite nitrogen, nitrate nitrogen, and orthophosphate. Surface water quality was then evaluated based on the comparison of samples collected from three stations located near fish cages to those collected from a reference station outside the cultivation area as well as by the comparison with standards specified in the Water Pollution Registration Act. According to the Water Pollution Registration Act, the surface water quality of the Dam Lake was class I. Additionally, there were no significant differences in water quality within the Dam Lake among any of the sampling stations, including the reference station. Overall, these findings indicate that cage cultivation of rainbow trout may have a negative impact on the entire Dam Lake.
Abdolazimi, Yassan; Stojanova, Zlatka; Segil, Neil
2016-03-01
Determination of cell fate within the prosensory domain of the developing cochlear duct relies on the temporal and spatial regulation of the bHLH transcription factor Atoh1. Auditory hair cells and supporting cells arise in a wave of differentiation that patterns them into discrete rows mediated by Notch-dependent lateral inhibition. However, the mechanism responsible for selecting sensory cells from within the prosensory competence domain remains poorly understood. We show in mice that rather than being upregulated in rows of cells, Atoh1 is subject to transcriptional activation in groups of prosensory cells, and that highly conserved sites for Hes/Hey repressor binding in the Atoh1 promoter are needed to select the hair cell and supporting cell fate. During perinatal supporting cell transdifferentiation, which is a model of hair cell regeneration, we show that derepression is sufficient to induce Atoh1 expression, suggesting a mechanism for priming the 3' Atoh1 autoregulatory enhancer needed for hair cell expression. PMID:26932672
Mabood, Fazle; Khan, Waqar A.; Ismail, Ahmad Izani
2013-01-01
In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena. PMID:24376722
Mabood, Fazle; Khan, Waqar A; Ismail, Ahmad Izani Md
2013-01-01
In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.
NASA Astrophysics Data System (ADS)
Sarwar, S.; Rashidi, M. M.
2016-07-01
This paper deals with the investigation of the analytical approximate solutions for two-term fractional-order diffusion, wave-diffusion, and telegraph equations. The fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], (1,2), and [1,2], respectively. In this paper, we extended optimal homotopy asymptotic method (OHAM) for two-term fractional-order wave-diffusion equations. Highly approximate solution is obtained in series form using this extended method. Approximate solution obtained by OHAM is compared with the exact solution. It is observed that OHAM is a prevailing and convergent method for the solutions of nonlinear-fractional-order time-dependent partial differential problems. The numerical results rendering that the applied method is explicit, effective, and easy to use, for handling more general fractional-order wave diffusion, diffusion, and telegraph problems.
Matter perturbations in Galileon cosmology
De Felice, Antonio; Kase, Ryotaro; Tsujikawa, Shinji
2011-02-15
We study the evolution of matter density perturbations in Galileon cosmology where the late-time cosmic acceleration can be realized by a field kinetic energy. We obtain full perturbation equations at linear order in the presence of five covariant Lagrangians L{sub i} (i=1,{center_dot}{center_dot}{center_dot},5) satisfying the Galileon symmetry {partial_derivative}{sub {mu}}{phi}{yields}{partial_derivative}{sub {mu}}{phi}{sup +}b{sub {mu}} in the flat space-time. The equations for a matter perturbation as well as an effective gravitational potential are derived under a quasistatic approximation on subhorizon scales. This approximation can reproduce full numerical solutions with high accuracy for the wavelengths relevant to large-scale structures. For the model parameters constrained by the background expansion history of the Universe, the growth rate of matter perturbations is larger than that in the {Lambda}-cold dark matter model, with the growth index {gamma} today typically smaller than 0.4. We also find that, even on very large scales associated with the integrated-Sachs-Wolfe effect in cosmic microwave background temperature anisotropies, the effective gravitational potential exhibits a temporal growth during the transition from the matter era to the epoch of cosmic acceleration. These properties are useful to distinguish the Galileon model from the {Lambda}-cold dark matter model in future high-precision observations.
Disformal invariance of curvature perturbation
NASA Astrophysics Data System (ADS)
Motohashi, Hayato; White, Jonathan
2016-02-01
We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.
VHS Movies: Perturbations for Morphogenesis.
ERIC Educational Resources Information Center
Holmes, Danny L.
This paper discusses the concept of a family system in terms of an interactive system of interrelated, interdependent parts and suggests that VHS movies can act as perturbations, i.e., change promoting agents, for certain dysfunctional family systems. Several distinct characteristics of a family system are defined with particular emphasis on…
Adaptation Strategies in Perturbed /s/
ERIC Educational Resources Information Center
Brunner, Jana; Hoole, Phil; Perrier, Pascal
2011-01-01
The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…
Basics of QCD perturbation theory
Soper, D.E.
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Seven topics in perturbative QCD
Buras, A.J.
1980-09-01
The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e/sup +/e/sup -/ annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics.
PERTURBATION APPROACH FOR QUANTUM COMPUTATION
G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH
2001-04-01
We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.
Neptune's story. [Triton's orbit perturbation
NASA Technical Reports Server (NTRS)
Goldreich, P.; Murray, N.; Longaretti, P. Y.; Banfield, D.
1989-01-01
It is conjectured that Triton was captured from a heliocentric orbit as the result of a collision with what was then one of Neptune's regular satellites. The immediate post-capture orbit was highly eccentric. Dissipation due to tides raised by Neptune in Triton caused Triton's orbit to evolve to its present state in less than one billion years. For much of this time Triton was almost entirely molten. While its orbit was evolving, Triton cannibalized most of the regular satellites of Neptune and also perturbed Nereid, thus accounting for that satellite's highly eccentric and inclined orbit. The only regular satellites of Neptune that survived were those that formed well within 5 Neptune radii, and they move on inclined orbits as the result of chaotic perturbations forced by Triton.
Cosmological perturbations in unimodular gravity
Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu
2014-09-01
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
Farioli-Vecchioli, Stefano; Ceccarelli, Manuela; Saraulli, Daniele; Micheli, Laura; Cannas, Sara; D'Alessandro, Francesca; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Mattera, Andrea; Cestari, Vincenzo; Tirone, Felice
2014-01-01
Bone morphogenic proteins (BMPs) and the Notch pathway regulate quiescence and self-renewal of stem cells of the subventricular zone (SVZ), an adult neurogenic niche. Here we analyze the role at the intersection of these pathways of Tis21 (Btg2/PC3), a gene regulating proliferation and differentiation of adult SVZ stem and progenitor cells. In Tis21-null SVZ and cultured neurospheres, we observed a strong decrease in the expression of BMP4 and its effectors Smad1/8, while the Notch anti-neural mediators Hes1/5 and the basic helix-loop-helix (bHLH) inhibitors Id1-3 increased. Consistently, expression of the proneural bHLH gene NeuroD1 decreased. Moreover, cyclins D1/2, A2, and E were strongly up-regulated. Thus, in the SVZ Tis21 activates the BMP pathway and inhibits the Notch pathway and the cell cycle. Correspondingly, the Tis21-null SVZ stem cells greatly increased; nonetheless, the proliferating neuroblasts diminished, whereas the post-mitotic neuroblasts paradoxically accumulated in SVZ, failing to migrate along the rostral migratory stream to the olfactory bulb. The ability, however, of neuroblasts to migrate from SVZ explants was not affected, suggesting that Tis21-null neuroblasts do not migrate to the olfactory bulb because of a defect in terminal differentiation. Notably, BMP4 addition or Id3 silencing rescued the defective differentiation observed in Tis21-null neurospheres, indicating that they mediate the Tis21 pro-differentiative action. The reduced number of granule neurons in the Tis21-null olfactory bulb led to a defect in olfactory detection threshold, without effect on olfactory memory, also suggesting that within olfactory circuits new granule neurons play a primary role in odor sensitivity rather than in memory.
The status of perturbative QCD
Ellis, R.K.
1988-10-01
The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant ..cap alpha../sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs.
Quantum fields with classical perturbations
Dereziński, Jan
2014-07-15
The main purpose of these notes is a review of various models of Quantum Field Theory (QFT) involving quadratic Lagrangians. We discuss scalar and vector bosons, spin 1/2 fermions, both neutral and charged. Beside free theories, we study their interactions with classical perturbations, called, depending on the context, an external linear source, mass-like term, current or electromagnetic potential. The notes may serve as a first introduction to QFT.
Perturbation growth in accreting filaments
NASA Astrophysics Data System (ADS)
Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.
2016-05-01
We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.
R evolution: Improving perturbative QCD
Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio
2010-07-01
Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.
Cosmological perturbations: Vorticity, isocurvature and magnetic fields
NASA Astrophysics Data System (ADS)
Christopherson, Adam J.
2014-10-01
In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.
Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.
Superconvergent perturbation method in quantum mechanics
Scherer, W. )
1995-02-27
An analog of Kolmogorov's superconvergent perturbation theory in classical mechanics is constructed for self-adjoint operators. It is different from the usual Rayleigh-Schroedinger perturbation theory and yields expansions for eigenvalues and eigenvectors in terms of functions of the perturbation parameter.
Identifying Network Perturbation in Cancer
Logsdon, Benjamin A.; Gentles, Andrew J.; Lee, Su-In
2016-01-01
We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each gene is perturbed—having distinct regulator connectivity in the inferred gene-regulator dependencies between the disease and normal conditions. This approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing methods to identify perturbed genes between distinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for known tumor drivers, genes associated with the biological processes known to be important in the disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity patterns in cancer and normal tissue types more accurately than alternative methods, based on the available epigenomic data from the ENCODE project. PMID:27145341
Perturbation analyses of intermolecular interactions.
Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R
2011-08-01
Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the
Transport Studies Using Perturbative Experiments
Hogeweij, G.M.D.
2004-03-15
By inducing a small electron temperature perturbation in a plasma in steady state one can in principle determine the conductive and convective components of the electron heat ux, and the associated thermal diffusivity and convection velocity. The same can be done for other plasma parameters, like density or ion temperature.In this paper experimental and analysis techniques are briey reviewed. The fundamental question whether the uxes are linear functions of the gradients or not is discussed. Experimental results are summarized, including so-called 'non-local' phenomena.
Perturbation analyses of intermolecular interactions
NASA Astrophysics Data System (ADS)
Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.
2011-08-01
Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the
"Phonon" scattering beyond perturbation theory
NASA Astrophysics Data System (ADS)
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
Perturbative Methods in Path Integration
NASA Astrophysics Data System (ADS)
Johnson-Freyd, Theodore Paul
This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the
NASA Astrophysics Data System (ADS)
Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.
1988-09-01
The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.
Perturbations of vortex ring pairs
NASA Astrophysics Data System (ADS)
Gubser, Steven S.; Horn, Bart; Parikh, Sarthak
2016-02-01
We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.
Perturbative nature of color superconductivity
Brown, William E.; Liu, James T.; Ren, Hai-cang
2000-06-01
Color superconductivity is a possible phase of high density QCD. We present a systematic derivation of the transition temperature T{sub C} from the QCD Lagrangian through study of the di-quark proper vertex. With this approach, we confirm the dependence of T{sub C} on the coupling g, namely T{sub C}{approx}{mu}g{sup -5}e{sup -{kappa}}{sup /g}, previously obtained from the one-gluon exchange approximation in the superconducting phase. The diagrammatic approach we employ allows us to examine the perturbative expansion of the vertex and the propagators. We find an additional O(1) contribution to the prefactor of the exponential from the one-loop quark self energy and that the other one-loop radiative contributions and the two gluon exchange vertex contribution are subleading. (c) 2000 The American Physical Society.
Robust control with structured perturbations
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1988-01-01
Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.
Kato expansion in quantum canonical perturbation theory
NASA Astrophysics Data System (ADS)
Nikolaev, Andrey
2016-06-01
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
On adiabatic perturbations in the ekpyrotic scenario
Linde, A.; Mukhanov, V.; Vikman, A. E-mail: Viatcheslav.Mukhanov@physik.uni-muenchen.de
2010-02-01
In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.
Perturbation theory in light-cone quantization
Langnau, A.
1992-01-01
A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.
Non-perturbative approach for curvature perturbations in stochastic δ N formalism
Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp
2014-10-01
In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.
Anderson, Michele K; Hernandez-Hoyos, Gabriela; Dionne, Christopher J; Arias, Alexandra M; Chen, Dan; Rothenberg, Ellen V
2002-06-01
PU.1 and GATA-3 are transcription factors that are required for development of T cell progenitors from the earliest stages. Neither one is a simple positive regulator for T lineage specification, however. When expressed at elevated levels at early stages of T cell development, each of these transcription factors blocks T cell development within a different, characteristic time window, with GATA-3 overexpression initially inhibiting at an earlier stage than PU.1. These perturbations are each associated with a distinct spectrum of changes in the regulation of genes needed for T cell development. Both transcription factors can interfere with expression of the Rag-1 and Rag-2 recombinases, while GATA-3 notably blocks PU.1 and IL-7Ralpha expression, and PU.1 reduces expression of HES-1 and c-Myb. A first-draft assembly of the regulatory targets of these two factors is presented as a provisional gene network. The target genes identified here provide insight into the basis of the effects of GATA-3 or PU.1 overexpression and into the regulatory changes that distinguish the developmental time windows for these effects.
Perturbative theory for Brownian vortexes.
Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G
2015-06-01
Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers. PMID:26172698
Perturbative theory for Brownian vortexes
NASA Astrophysics Data System (ADS)
Moyses, Henrique W.; Bauer, Ross O.; Grosberg, Alexander Y.; Grier, David G.
2015-06-01
Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.
Chiral perturbation theory with nucleons
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.
Degenerate Open Shell Density Perturbation Theory
NASA Astrophysics Data System (ADS)
Palenik, Mark; Dunlap, Brett
The density perturbation theory (DPT) methodology we have developed applies the Hohenberg-Kohn theorem to perturbations in density functional theory. At each order, the energy is directly minimized with respect to the density at all lower orders. The difference between the perturbed and unperturbed densities is expanded in terms of a finite number of basis functions, and a single matrix inversion in this space reduces the complexity of the problem to that of non-interacting perturbation theory. For open-shell systems with symmetry, however, the situation becomes more complex. Typically, the perturbation will break the symmetry leading to a zeroth-order shift in the Kohn-Sham potential. Because the symmetry breaking is independent of the strength of the perturbation, the mapping from the initial to the perturbed KS potential is discontinuous and techniques from perturbation theory for noninteracting particles fail. We describe a rigorous formulation of DPT for use in systems that display an initial degeneracy, such as atoms and Fe55Cp*12 clusters and present initial calculations on these systems.
Double soft theorem for perturbative gravity
NASA Astrophysics Data System (ADS)
Saha, Arnab Priya
2016-09-01
Following up on the recent work of Cachazo, He and Yuan [1], we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.
Intelligent perturbation algorithms for space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1991-01-01
Intelligent perturbation algorithms for space scheduling optimization are presented in the form of the viewgraphs. The following subject areas are covered: optimization of planning, scheduling, and manifesting; searching a discrete configuration space; heuristic algorithms used for optimization; use of heuristic methods on a sample scheduling problem; intelligent perturbation algorithms are iterative refinement techniques; properties of a good iterative search operator; dispatching examples of intelligent perturbation algorithm and perturbation operator attributes; scheduling implementations using intelligent perturbation algorithms; major advances in scheduling capabilities; the prototype ISF (industrial Space Facility) experiment scheduler; optimized schedule (max revenue); multi-variable optimization; Space Station design reference mission scheduling; ISF-TDRSS command scheduling demonstration; and example task - communications check.
The recursion relation in Lagrangian perturbation theory
Rampf, Cornelius
2012-12-01
We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained.
Covariant generalization of cosmological perturbation theory
Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo
2007-01-15
We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.
IR divergences in inflation and entropy perturbations
Xue, Wei; Brandenberger, Robert; Gao, Xian E-mail: xgao@apc.univ-paris7.fr
2012-06-01
We study leading order perturbative corrections to the two point correlation function of the scalar field describing the curvature perturbation in a slow-roll inflationary background, paying particular attention to the contribution of entropy mode loops. We find that the infrared divergences are worse than in pure de Sitter space: they are power law rather than logarithmic. The validity of perturbation theory and thus of the effective field theory of cosmological perturbations leads to stringent constraints on the coupling constants describing the interactions, in our model the quartic self-interaction coupling constant of the entropy field. If the self coupling constant is larger than some critical value which depends in particular on the duration of the inflationary phase, then perturbation theory breaks down. Our analysis may have implications for the stability of de Sitter space: the quantum effects which lead to an instability of de Sitter space will be larger in magnitude in the presence of entropy fluctuations.
Tubulin-perturbing naphthoquinone spiroketals.
Balachandran, Raghavan; Hopkins, Tamara D; Thomas, Catherine A; Wipf, Peter; Day, Billy W
2008-02-01
Several natural and synthetic naphthoquinone spiroketals are potent inhibitors of the thioredoxin-thioredoxin reductase redox system. Based on the antimitotic and weak antitubulin actions noted for SR-7 ([8-(furan-3-ylmethoxy)-1-oxo-1,4-dihydronaphthalene-4-spiro-2'-naphtho[1'',8''-de][1',3'][dioxin]), a library of related compounds was screened for tubulin-perturbing properties. Two compounds, TH-169 (5'-hydroxy-4'H-spiro[1,3-dioxolane-2,1'-naphthalen]-4'-one) and TH-223 (5'-methoxy-4'H-spiro[1,3-dioxane-2,1'-naphthalen]-4'-one), had substantial effects on tubulin assembly and were antiproliferative at low micromolar concentrations. TH-169 was the most potent at blocking GTP-dependent polymerization of 10 mum tubulin in vitro with a remarkable 50% inhibitory concentration of ca. 400 nm. It had no effect on paclitaxel-induced microtubule assembly and did not cause microtubule hypernucleation. TH-169 failed to compete with colchicine for binding to beta-tubulin. The 50% antiproliferative concentration of TH-169 against human cancer cells was at or slightly below 1 mum. Flow cytometry showed that 1 mum TH-169 caused an increase in G(2)/M and hypodiploid cells. TH-169 eliminated the PC-3 cells' polyploid population and increased their expression of p21(WAF1) and Hsp70 in a concentration-dependent manner. The antiproliferative effect of TH-169 was irreversible and independent of changes in caspases, actin, tubulin, glyceraldehyde phosphate dehydrogenase or Bcl-x(S/L). This structurally simple naphthoquinone spiroketal represents a small molecule, tubulin-interactive agent with a novel apoptotic pathway and attractive biological function. PMID:18194192
Persistence despite perturbations for interacting populations.
Schreiber, Sebastian J
2006-10-21
Two definitions of persistence despite perturbations in deterministic models are presented. The first definition, persistence despite frequent small perturbations, is shown to be equivalent to the existence of a positive attractor i.e. an attractor bounded away from extinction. The second definition, persistence despite rare large perturbations, is shown to be equivalent to permanence i.e. a positive attractor whose basin of attraction includes all positive states. Both definitions set up a natural dichotomy for classifying models of interacting populations. Namely, a model is either persistent despite perturbations or not. When it is not persistent, it follows that all initial conditions are prone to extinction due to perturbations of the appropriate type. For frequent small perturbations, this method of classification is shown to be generically robust: there is a dense set of models for which persistent (respectively, extinction prone) models lies within an open set of persistent (resp. extinction prone) models. For rare large perturbations, this method of classification is shown not to be generically robust. Namely, work of Josef Hofbauer and the author have shown there are open sets of ecological models containing a dense sets of permanent models and a dense set of extinction prone models. The merits and drawbacks of these different definitions are discussed.
Adaptive Modeling Procedure Selection by Data Perturbation*
Zhang, Yongli; Shen, Xiaotong
2015-01-01
Summary Many procedures have been developed to deal with the high-dimensional problem that is emerging in various business and economics areas. To evaluate and compare these procedures, modeling uncertainty caused by model selection and parameter estimation has to be assessed and integrated into a modeling process. To do this, a data perturbation method estimates the modeling uncertainty inherited in a selection process by perturbing the data. Critical to data perturbation is the size of perturbation, as the perturbed data should resemble the original dataset. To account for the modeling uncertainty, we derive the optimal size of perturbation, which adapts to the data, the model space, and other relevant factors in the context of linear regression. On this basis, we develop an adaptive data-perturbation method that, unlike its nonadaptive counterpart, performs well in different situations. This leads to a data-adaptive model selection method. Both theoretical and numerical analysis suggest that the data-adaptive model selection method adapts to distinct situations in that it yields consistent model selection and optimal prediction, without knowing which situation exists a priori. The proposed method is applied to real data from the commodity market and outperforms its competitors in terms of price forecasting accuracy. PMID:26640319
Perturbation calculation of thermodynamic density of states
Brown, Greg; Schulthess, Thomas C; Nicholson, Don M; Eisenbach, Markus; Stocks, George Malcolm
2011-01-01
The density of states g( ) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g ( ) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g( ) for quantum systems using the Wang-Landau approach.
Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas
NASA Astrophysics Data System (ADS)
Comer, Kathryn J.
We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent
Cosmological perturbations and the Weinberg theorem
Akhshik, Mohammad; Firouzjahi, Hassan; Jazayeri, Sadra E-mail: firouz@ipm.ir
2015-12-01
The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are generated from a single source, such as in single field models of inflation, both of the two allowed independent solutions are adiabatic and conserved on super-horizon scales. There are few known examples in literature which violate this theorem. We revisit the theorem and specify the loopholes in some technical assumptions which violate the theorem in models of non-attractor inflation, fluid inflation, solid inflation and in the model of pseudo conformal universe.
Calculating nonadiabatic pressure perturbations during multifield inflation
NASA Astrophysics Data System (ADS)
Huston, Ian; Christopherson, Adam J.
2012-03-01
Isocurvature perturbations naturally occur in models of inflation consisting of more than one scalar field. In this paper, we calculate the spectrum of isocurvature perturbations generated at the end of inflation for three different inflationary models consisting of two canonical scalar fields. The amount of nonadiabatic pressure present at the end of inflation can have observational consequences through the generation of vorticity and subsequently the sourcing of B-mode polarization. We compare two different definitions of isocurvature perturbations and show how these quantities evolve in different ways during inflation. Our results are calculated using the open source Pyflation numerical package which is available to download.
Popov-Cenić, S; Müller, N; Kladetzky, R G; Hack, G; Lang, U; Safer, A; Rahlfs, V W
1977-02-01
Patients who had undergone orthopaedic surgery were investigated. The changes attributable to premedication and narcosis were characterized by a primary fibrinolysis which was accompanied by a slight hypercoagulability. This increased fibrinolytic activity was more pronounced immediately after the beginning of the operation. The post operative changes are characterized by increased ADP-induced aggregation, increased release of platelet factors 3 and 4 and hypercoagulability with reduced fibrinolysis. The reduction in platelets during the operation could be prevented due to the influence of dextran and hydroxyethyl starch (HES). It came further to a slight increase in the activity of factor VII, to an increased fibrinogen polymerization and also to an increased release of platelet factor 4.
SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS
THIEDE, ERIK; VAN KOTEN, BRIAN; WEARE, JONATHAN
2015-01-01
For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations. PMID:26491218
Controlling roll perturbations in fruit flies
Beatus, Tsevi; Guckenheimer, John M.; Cohen, Itai
2015-01-01
Owing to aerodynamic instabilities, stable flapping flight requires ever-present fast corrective actions. Here, we investigate how flies control perturbations along their body roll angle, which is unstable and their most sensitive degree of freedom. We glue a magnet to each fly and apply a short magnetic pulse that rolls it in mid-air. Fast video shows flies correct perturbations up to 100° within 30 ± 7 ms by applying a stroke-amplitude asymmetry that is well described by a linear proportional–integral controller. For more aggressive perturbations, we show evidence for nonlinear and hierarchical control mechanisms. Flies respond to roll perturbations within 5 ms, making this correction reflex one of the fastest in the animal kingdom. PMID:25762650
Quarks in Coulomb gauge perturbation theory
Popovici, C.; Watson, P.; Reinhardt, H.
2009-02-15
Coulomb gauge quantum chromodynamics within the first order functional formalism is considered. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented.
The Perturbational MO Method for Saturated Systems.
ERIC Educational Resources Information Center
Herndon, William C.
1979-01-01
Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)
Primordial perturbations during a slow expansion
NASA Astrophysics Data System (ADS)
Piao, Yun-Song
2007-10-01
Recently, it has been shown that a slow expansion, which is asymptotically a static state in infinite past and may be described as an evolution with γ≪-1, of early universe may lead to the generation of primordial perturbation responsible for the structure formation of observable universe. However, its feasibility depends on whether the growing mode of Bardeen potential before phase transition can be inherited by the constant mode of curvature perturbation after phase transition. In this paper, we phenomenally regard this slow expansion as that driven by multi-NEC (null energy condition) violating scalar fields. We calculate the curvature perturbation induced by the entropy perturbation before phase transition and find that the spectrum is naturally scale invariant with a slight red tilt. The result has an interesting similarity to that of slow roll inflation.
Cosmological perturbations in mimetic Horndeski gravity
NASA Astrophysics Data System (ADS)
Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino
2016-04-01
We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.
Perturbations of black p-branes
Abdalla, Elcio; Fernandez Piedra, Owen Pavel; Oliveira, Jeferson de; Molina, C.
2010-03-15
We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdS{sub (p+2)}xS{sup (8-p)} space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.
Plasma perturbation induced by laser photodetachment.
Nishiura, M; Sasao, M; Wada, M; Bacal, M
2001-03-01
The plasma dynamics arising from laser photodetachment is discussed herein theoretically and experimentally. The hybrid fluid-kinetic model, where the positive ions and electrons are treated by the fluid theory and the negative ions are treated within the ballistic approximation, is extended and applied to the analysis of densities perturbed by laser photodetachment. The agreement between the theory and measured data confirms the validity of the considered plasma dynamics model. This model, including the positive ion perturbation, shows a good agreement with the time evolution and the spatial distribution of perturbed electron densities which are measured by a Langmuir probe inside and outside the laser beam. From the overshoot in the time evolution of perturbed electron current in the center of the laser beam, the positive ion temperature was found to be in the range 0.1-0.25 eV, while the electron temperature changes from 0.3 to 3.2 eV.
On perturbations of a quintom bounce
Cai Yifu; Qiu Taotao; Zhang Xinmin; Brandenberger, Robert; Piao Yunsong E-mail: qiutt@mail.ihep.ac.cn E-mail: yspiao@gucas.ac.cn
2008-03-15
A quintom universe with an equation of state crossing the cosmological constant boundary can provide a bouncing solution dubbed the quintom bounce and thus resolve the big bang singularity. In this paper, we investigate the cosmological perturbations of the quintom bounce both analytically and numerically. We find that the fluctuations in the dominant mode in the post-bounce expanding phase couple to the growing mode of the perturbations in the pre-bounce contracting phase.
Regular attractors and nonautonomous perturbations of them
Vishik, Marko I; Zelik, Sergey V; Chepyzhov, Vladimir V
2013-01-31
We study regular global attractors of dissipative dynamical semigroups with discrete or continuous time and we investigate attractors for nonautonomous perturbations of such semigroups. The main theorem states that the regularity of global attractors is preserved under small nonautonomous perturbations. Moreover, nonautonomous regular global attractors remain exponential and robust. We apply these general results to model nonautonomous reaction-diffusion systems in a bounded domain of R{sup 3} with time-dependent external forces. Bibliography: 22 titles.
Aspects of Perturbative Quantum Field Theory
NASA Astrophysics Data System (ADS)
Srednyak, Stanislav
This thesis consists of three parts. The first is devoted to the calculation of multiplicity of two-gluon production in heavy ion collisions in the framework of Colour Glass Condensate. The second exhibits a finite basis for the perturbative correlation functions at a given loop order. The third demonstrates that the number of integrations in a perturbative amplitude can be reduced in half in even dimensions, and provides explicit formula for such a reduction in the (2,2) signature.
Coupled perturbed modes and internal solitary waves.
Higham, C J; Tindle, C T
2003-05-01
Coupled perturbed mode theory combines conventional coupled modes and perturbation theory. The theory is used to directly calculate mode coupling in a range-dependent shallow water problem involving propagation through continental shelf internal solitary waves. The solitary waves considered are thermocline depressions, separating well-mixed upper and lower layers. The method is fast and accurate. Results highlight mode coupling associated with internal solitary waves, and mode capture or loss to and from the discrete mode spectrum.
Gauge and motion in perturbation theory
NASA Astrophysics Data System (ADS)
Pound, Adam
2015-08-01
Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasize that the approximations' governing equations can be formulated in an invariant manner. All of these analyses are carried through second perturbative order, but the methods are general enough to go to any order. Furthermore, the tools I develop, and many of the results, should have broad applicability to any description of perturbed motion, including osculating-geodesic and two-timescale descriptions.
Thermally unstable perturbations in stratified conducting atmospheres
NASA Astrophysics Data System (ADS)
Reale, Fabio; Serio, Salvatore; Peres, Giovanni
1994-10-01
We investigate the thermal stability of isobaric perturbations in a stratified isothermal background atmosphere with solar abundances, as resulting from the competition of optically thin plasma radiative cooling and of heating conducted from the surrounding atmosphere. We have analyzed the threshold line between stable and unstable perturbations, in the plane of the two important control parameters: the initial size of the perturbation and the temperature of the unperturbed medium; this line changes with the pressure of the unperturbed atmosphere. We have extended the results of linear perturbation analysis by means of numerical calculations of the evolution of spherical isobaric perturbations, using a two-dimensional hydrodynamic code including Spitzer heat conduction. We explore a wide range of the parameters appropriate to the solar and stellar upper atmospheres: the background uniform temperature is between 105 K and 107 K, the initial pressure betweeen 0.1 and 10 dyn/sq cm, and the perturbation size between 105 and 1010 cm. The numerical results are in substantial agreement with the linear analysis. We discuss possible implications of our results also in terms of observable effects, especially concerning plasma downflows, and propose thermal instability as a possible candidate to explain the observed redshifts in solar and stellar transition region lines.
Secular Planetary Perturbations in Circumstellar Debris Disks
NASA Astrophysics Data System (ADS)
Hahn, Joseph M.; Capobianco, C.
2006-12-01
Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.
Nonambipolar Transport and Torque in Perturbed Equilibria
NASA Astrophysics Data System (ADS)
Logan, N. C.; Park, J.-K.; Wang, Z. R.; Berkery, J. W.; Kim, K.; Menard, J. E.
2013-10-01
A new Perturbed Equilibrium Nonambipolar Transport (PENT) code has been developed to calculate the neoclassical toroidal torque from radial current composed of both passing and trapped particles in perturbed equilibria. This presentation outlines the physics approach used in the development of the PENT code, with emphasis on the effects of retaining general aspect-ratio geometric effects. First, nonambipolar transport coefficients and corresponding neoclassical toroidal viscous (NTV) torque in perturbed equilibria are re-derived from the first order gyro-drift-kinetic equation in the ``combined-NTV'' PENT formalism. The equivalence of NTV torque and change in potential energy due to kinetic effects [J-K. Park, Phys. Plas., 2011] is then used to showcase computational challenges shared between PENT and stability codes MISK and MARS-K. Extensive comparisons to a reduced model, which makes numerous large aspect ratio approximations, are used throughout to emphasize geometry dependent physics such as pitch angle resonances. These applications make extensive use of the PENT code's native interfacing with the Ideal Perturbed Equilibrium Code (IPEC), and the combination of these codes is a key step towards an iterative solver for self-consistent perturbed equilibrium torque. Supported by US DOE contract #DE-AC02-09CH11466 and the DOE Office of Science Graduate Fellowship administered by the Oak Ridge Institute for Science & Education under contract #DE-AC05-06OR23100.
Cosmological perturbations on the phantom brane
NASA Astrophysics Data System (ADS)
Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun
2016-07-01
We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < ‑1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.
Cosmological perturbations on the phantom brane
NASA Astrophysics Data System (ADS)
Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun
2016-07-01
We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < -1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.
Effect of tape recording on perturbation measures.
Jiang, J; Lin, E; Hanson, D G
1998-10-01
Tape recorders have been shown to affect measures of voice perturbation. Few studies, however, have been conducted to quantitatively justify the use or exclusion of certain types of recorders in voice perturbation studies. This study used sinusoidal and triangular waves and synthesized vowels to compare perturbation measures extracted from directly digitized signals with those recorded and played back through various tape recorders, including 3 models of digital audio tape recorders, 2 models of analog audio cassette tape recorders, and 2 models of video tape recorders. Signal contamination for frequency perturbation values was found to be consistently minimal with digital recorders (percent jitter = 0.01%-0.02%), mildly increased with video recorders (0.05%-0.10%), moderately increased with a high-quality analog audio cassette tape recorder (0.15%), and most prominent with a low-quality analog audio cassette tape recorder (0.24%). Recorder effect on amplitude perturbation measures was lowest in digital recorders (percent shimmer = 0.09%-0.20%), mildly to moderately increased in video recorders and a high-quality analog audio cassette tape recorder (0.25%-0.45%), and most prominent in a low-quality analog audio cassette tape recorder (0.98%). The effect of cassette tape material, length of spooled tape, and duration of analysis were also tested and are discussed.
Compensation to whole body active rotation perturbation.
Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P
2014-01-01
The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information.
Local perturbations perturb—exponentially-locally
NASA Astrophysics Data System (ADS)
De Roeck, W.; Schütz, M.
2015-06-01
We elaborate on the principle that for gapped quantum spin systems with local interaction, "local perturbations [in the Hamiltonian] perturb locally [the groundstate]." This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835-871 (2012)], relying on the "spectral flow technique" or "quasi-adiabatic continuation" [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique "bulk ground state" or "topological quantum order." We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.
A special perturbation method in orbital dynamics
NASA Astrophysics Data System (ADS)
Peláez, Jesús; Hedo, José Manuel; Rodríguez de Andrés, Pedro
2007-02-01
The special perturbation method considered in this paper combines simplicity of computer implementation, speed and precision, and can propagate the orbit of any material particle. The paper describes the evolution of some orbital elements based in Euler parameters, which are constants in the unperturbed problem, but which evolve in the time scale imposed by the perturbation. The variation of parameters technique is used to develop expressions for the derivatives of seven elements for the general case, which includes any type of perturbation. These basic differential equations are slightly modified by introducing one additional equation for the time, reaching a total order of eight. The method was developed in the Grupo de Dinámica de Tethers (GDT) of the UPM, as a tool for dynamic simulations of tethers. However, it can be used in any other field and with any kind of orbit and perturbation. It is free of singularities related to small inclination and/or eccentricity. The use of Euler parameters makes it robust. The perturbation forces are handled in a very simple way: the method requires their components in the orbital frame or in an inertial frame. A comparison with other schemes is performed in the paper to show the good performance of the method.
Rolling axions during inflation: perturbativity and signatures
NASA Astrophysics Data System (ADS)
Peloso, Marco; Sorbo, Lorenzo; Unal, Caner
2016-09-01
The motion of a pseudo-scalar field X during inflation naturally induces a significant amplification of the gauge fields to which it is coupled. The amplified gauge fields can source characteristic scalar and tensor primordial perturbations. Several phenomenological implications have been discussed in the cases in which (i) X is the inflaton, and (ii) X is a field different from the inflaton, that experiences a temporary speed up during inflation. In this second case, visible sourced gravitational waves (GW) can be produced at the CMB scales without affecting the scalar perturbations, even if the scale of inflation is several orders of magnitude below what is required to produce a visible vacuum GW signal. Perturbativity considerations can be used to limit the regime in which these results are under perturbative control. We revised limits recently claimed for the case (i), and we extend these considerations to the case (ii). We show that, in both cases, these limits are satisfied by the applications that generate signals at CMB scales. Applications that generate gravitational waves and primordial black holes at much smaller scales are at the limit of the validity of this perturbativity analysis, so we expect those results to be valid up to possibly order one corrections.
Cosmological perturbations in teleparallel Loop Quantum Cosmology
Haro, Jaime
2013-11-01
Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.
Controlling Complex Networks with Compensatory Perturbations
NASA Astrophysics Data System (ADS)
Cornelius, Sean; Kath, William; Motter, Adilson
2012-02-01
The response of complex networks to perturbations is of critical importance in areas as diverse as ecosystem management, power system design, and cell reprogramming. These systems have the property that localized perturbations can propagate through the network, causing the system as a whole to change behavior and possibly collapse. We will show how this same mechanism can actually be exploited to prevent such failures and, more generally, control a network's behavior. This strategy is based on counteracting a deleterious perturbation through the judicious application of additional, compensatory perturbations---a prospect recently demonstrated heuristically in metabolic and food-web networks. Here, we introduce a method to identify such compensatory perturbations in general complex networks, under arbitrary constraints that restrict the interventions one can actually implement in real systems. Our method accounts for the full nonlinear time evolution of real complex networks, and in fact capitalizes on this behavior to bring the system to a desired target state even when this state is not directly accessible. Altogether, these results provide a new framework for the rescue, control, and reprogramming of complex networks in various domains.
Perturbation calculation of thermodynamic density of states.
Brown, G; Schulthess, T C; Nicholson, D M; Eisenbach, M; Stocks, G M
2011-12-01
The density of states g (ε) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g*(ε) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g(ε) for quantum systems using the Wang-Landau approach.
Perturbations in a regular bouncing universe
Battefeld, T.J.; Geshnizjani, G.
2006-03-15
We consider a simple toy model of a regular bouncing universe. The bounce is caused by an extra timelike dimension, which leads to a sign flip of the {rho}{sup 2} term in the effective four dimensional Randall Sundrum-like description. We find a wide class of possible bounces: big bang avoiding ones for regular matter content, and big rip avoiding ones for phantom matter. Focusing on radiation as the matter content, we discuss the evolution of scalar, vector and tensor perturbations. We compute a spectral index of n{sub s}=-1 for scalar perturbations and a deep blue index for tensor perturbations after invoking vacuum initial conditions, ruling out such a model as a realistic one. We also find that the spectrum (evaluated at Hubble crossing) is sensitive to the bounce. We conclude that it is challenging, but not impossible, for cyclic/ekpyrotic models to succeed, if one can find a regularized version.
Non-gravitational perturbations and satellite geodesy
Milani, A.; Nobill, A.M.; Farinella, P.
1987-01-01
This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.
Inhomogeneous Broadening in Perturbed Angular Correlation Spectroscopy
NASA Astrophysics Data System (ADS)
Bunker, Austin; Adams, Mike; Hodges, Jeffery; Park, Tyler; Stufflebeam, Michael; Evenson, William; Matheson, Phil; Zacate, Matthew
2009-10-01
Our research concerns the effect of a static distribution of defects on the net electric field gradient (EFG) within crystal structures. Defects and vacancies perturb the distribution of gamma rays emitted from radioactive probe nuclei within the crystal. These defects and vacancies produce a net EFG at the site of the probe which causes the magnetic quadrupole moment of the nucleus of the probe to precess about the EFG. The net EFG, which is strongly dependent upon the defect concentration, perturbs the angular correlation (PAC) of the gamma rays, and is seen in the damping of the perturbation function, G2(t), in time and broadening of the spectral peaks in the Fourier transform. We have used computer simulations to study the probability distribution of EFG tensor components in order to uncover the concentration dependence of G2(t). This in turn can be used to analyze experimental PAC data and quantitatively describe properties of the crystal.
Perturbation measurement of waveguides for acoustic thermometry
NASA Astrophysics Data System (ADS)
Lin, H.; Feng, X. J.; Zhang, J. T.
2013-09-01
Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.
Singular perturbations and the sounding rocket problem
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1979-01-01
In this paper, Goddard's problem of maximizing the final altitude of a sounding rocket (a singular problem of optimal control) is analyzed using singular perturbation methods. The problem is first cast in singular perturbation form and then solved to zero order by adding boundary-layer corrections to the reduced solution. For a quadratic drag law, a closed-form solution is obtained, although consideration of a numerical example indicates that this solution is not useful for practical sounding rockets. However, use of state variable transformations allows a very accurate numerical approximation to be constructed. It is concluded that application of singular perturbation methods to the well-known sounding rocket problem indicates that these methods may have utility in dealing with singular problems of optimal control.
Perturbation analysis of electromagnetic geodesic acoustic modes
NASA Astrophysics Data System (ADS)
Ren, Haijun
2014-06-01
Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δBθ, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξθ. The parallel perturbation of magnetic field, δB∥, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δBθ to the leading order. The radial displacement ξr is of order O(βɛξθ) but plays a significant role in determining δB∥, where β is the plasma/magnetic pressure ratio and ɛ is the inverse aspect ratio.
Non-perturbative quantum geometry III
NASA Astrophysics Data System (ADS)
Krefl, Daniel
2016-08-01
The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stokes phenomena over the combined string coupling and quantized Kähler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local ℙ1 + ℙ1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stokes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local ℙ2 near the conifold point in moduli space is also provided.
Hypersurface-invariant approach to cosmological perturbations
NASA Astrophysics Data System (ADS)
Salopek, D. S.; Stewart, J. M.
1995-01-01
Using Hamilton-Jacobi theory, we develop a formalism for solving semiclassical cosmological perturbations which does not require an explicit choice of time hypersurface. The Hamilton-Jacobi equation for gravity interacting with matter (either a scalar or dust field) is solved by making an ansatz which includes all terms quadratic in the spatial curvature. Gravitational radiation and scalar perturbations are treated on an equal footing. Our technique encompasses linear perturbation theory and it also describes some mild nonlinear effects. As a concrete example of the method, we compute the galaxy-galaxy correlation function as well as large-angle microwave background fluctuations for power-law inflation, and we compare with recent observations.
Cosmological perturbations in extended massive gravity
NASA Astrophysics Data System (ADS)
Gümrükçüoğlu, A. Emir; Hinterbichler, Kurt; Lin, Chunshan; Mukohyama, Shinji; Trodden, Mark
2013-07-01
We study cosmological perturbations around self-accelerating solutions to two extensions of nonlinear massive gravity: the quasi-dilaton theory and the mass-varying theory. We examine stability of the cosmological solutions, and the extent to which the vanishing of the kinetic terms for scalar and vector perturbations of self-accelerating solutions in massive gravity is generic when the theory is extended. We find that these kinetic terms are in general nonvanishing in both extensions, though there are constraints on the parameters and background evolution from demanding that they have the correct sign. In particular, the self-accelerating solutions of the quasi-dilaton theory are always unstable to scalar perturbations with wavelength shorter than the Hubble length.
Perturbation analysis of electromagnetic geodesic acoustic modes
Ren, Haijun
2014-06-15
Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.
Perturbation-induced dynamics of dark solitons
NASA Astrophysics Data System (ADS)
Kivshar, Yuri S.; Yang, Xiaoping
1994-02-01
We study analytically and numerically the effect of perturbations on (spatial and temporal) dark optical solitons. Our purpose is to elaborate a general analytical approach to describe the dynamics of dark solitons in the presence of physically important effects which break integrability of the primary nonlinear Schrödinger equation. We show that the corresponding perturbation theory differs for the cases of constant and varying backgrounds which support the dark solitons. We present a general formalism describing the perturbation-induced dynamics for both cases and also analyze the influence of several physically important effects, such as linear and two-photon absorption, Raman self-induced scattering, gain with saturation, on the propagation of the dark soliton. As we show, the perturbation-induced dynamics of a dark soliton may be treated as a result of the combined effect of the background evolution and internal soliton dynamics, the latter being characterized by the soliton phase angle. A similar approach is applied to the problem of the dark-soliton propagation on a finite-width background. We analyze adiabatic modification of a dark pulse propagating on a dispersively spreading finite-width background, and we prove analytically that a frequency chirp of the background does not affect the soliton motion. As a matter of fact, the results obtained describe the perturbation-induced dynamics of dark solitons in the so-called adiabatic approximation and, as we show for all the cases analyzed, they are in excellent agreement with direct numerical simulations of the corresponding perturbed nonlinear Schrödinger equation, provided the effects produced by the emitted radiation are small.
Perturbative QCD at Finite Temperature and Density
NASA Astrophysics Data System (ADS)
Niégawa, A.
This is a comprehensive review on the perturbative hot QCD including the recent developments. The main body of the review is concentrated upon dealing with physical quantities like reaction rates. Contents: S1. Introduction, S2. Perturbative thermal field theory: Feynman rules, S3. Reaction-rate formula, S4. Hard-thermal-loop resummation scheme in hot QCD, S5. Effective action, S6. Hard modes with |P2| ≤ O (g2 T2), S7. Application to the computation of physical quantities, S8. Beyond the hard-thermal-loop resummation scheme, S9. Conclusions.
Death to perturbative QCD in exclusive processes?
Eckardt, R.; Hansper, J.; Gari, M.F.
1994-04-01
The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.
Conservative perturbation theory for nonconservative systems
NASA Astrophysics Data System (ADS)
Shah, Tirth; Chattopadhyay, Rohitashwa; Vaidya, Kedar; Chakraborty, Sagar
2015-12-01
In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Liénard system—a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems.
Perturbative approach to Markovian open quantum systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2014-05-01
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Evolution of perturbations in an inflationary universe
NASA Technical Reports Server (NTRS)
Frieman, J. A.; Will, C. M.
1982-01-01
The evolution of inhomogeneous density perturbations in a model of the very early universe that is dominated for a time by a constant energy density of a false quantum-mechanical vacuum is analyzed. During this period, the universe inflates exponentially and supercools exponentially, until a phase transition back to the true vacuum reheats the matter and radiation. Focus is on the physically measurable, coordinate-independent modes of inhomogeneous perturbations of this model and it is found that all modes either are constant or are exponentially damped during the inflationary era.
Continuum methods in lattice perturbation theory
Becher, Thomas G
2002-11-15
We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions.
Conservative perturbation theory for nonconservative systems.
Shah, Tirth; Chattopadhyay, Rohitashwa; Vaidya, Kedar; Chakraborty, Sagar
2015-12-01
In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Liénard system-a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems. PMID:26764794
Screened perturbation theory to three loops
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2001-05-15
The thermal physics of a massless scalar field with a {phi}{sup 4} interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast with the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.
Computing model independent perturbations in dark energy and modified gravity
Battye, Richard A.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk
2014-03-01
We present a methodology for computing model independent perturbations in dark energy and modified gravity. This is done from the Lagrangian for perturbations, by showing how field content, symmetries, and physical principles are often sufficient ingredients for closing the set of perturbed fluid equations. The fluid equations close once ''equations of state for perturbations'' are identified: these are linear combinations of fluid and metric perturbations which construct gauge invariant entropy and anisotropic stress perturbations for broad classes of theories. Our main results are the proof of the equation of state for perturbations presented in a previous paper, and the development of the required calculational tools.
The Beauty of Lattice Perturbation Theory: the Role of Lattice Perturbation Theory in B Physics
NASA Astrophysics Data System (ADS)
Monahan, C. J.
2012-12-01
As new experimental data arrive from the LHC the prospect of indirectly detecting new physics through precision tests of the Standard Model grows more exciting. Precise experimental and theoretical inputs are required to test the unitarity of the CKM matrix and to search for new physics effects in rare decays. Lattice QCD calculations of non-perturbative inputs have reached a precision at the level of a few percent; in many cases aided by the use of lattice perturbation theory. This review examines the role of lattice perturbation theory in B physics calculations on the lattice in the context of two questions: how is lattice perturbation theory used in the different heavy quark formalisms implemented by the major lattice collaborations? And what role does lattice perturbation theory play in determinations of non-perturbative contributions to the physical processes at the heart of the search for new physics? Framing and addressing these questions reveals that lattice perturbation theory is a tool with a spectrum of applications in lattice B physics.
Circumstellar Debris Disks: Diagnosing the Unseen Perturber
NASA Astrophysics Data System (ADS)
Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.
2016-07-01
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.
Geometric perturbation theory and plasma physics
Omohundro, S.M.
1985-01-01
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations.
Do cosmological perturbations have zero mean?
Armendariz-Picon, Cristian
2011-03-01
A central assumption in our analysis of cosmic structure is that cosmological perturbations have a constant ensemble mean, which can be set to zero by appropriate choice of the background. This property is one of the consequences of statistical homogeneity, the invariance of correlation functions under spatial translations. In this article we explore whether cosmological perturbations indeed have zero mean, and thus test one aspect of statistical homogeneity. We carry out a classical test of the zero mean hypothesis against a class of alternatives in which primordial perturbations have inhomogeneous non-vanishing means, but homogeneous and isotropic covariances. Apart from Gaussianity, our test does not make any additional assumptions about the nature of the perturbations and is thus rather generic and model-independent. The test statistic we employ is essentially Student's t statistic, applied to appropriately masked, foreground-cleaned cosmic microwave background anisotropy maps produced by the WMAP mission. We find evidence for a non-zero mean in a particular range of multipoles, but the evidence against the zero mean hypothesis goes away when we correct for multiple testing. We also place constraints on the mean of the temperature multipoles as a function of angular scale. On angular scales smaller than four degrees, a non-zero mean has to be at least an order of magnitude smaller than the standard deviation of the temperature anisotropies.
Privacy Is Become with, Data Perturbation
NASA Astrophysics Data System (ADS)
Singh, Er. Niranjan; Singhai, Niky
2011-06-01
Privacy is becoming an increasingly important issue in many data mining applications that deal with health care, security, finance, behavior and other types of sensitive data. Is particularly becoming important in counterterrorism and homeland security-related applications. We touch upon several techniques of masking the data, namely random distortion, including the uniform and Gaussian noise, applied to the data in order to protect it. These perturbation schemes are equivalent to additive perturbation after the logarithmic Transformation. Due to the large volume of research in deriving private information from the additive noise perturbed data, the security of these perturbation schemes is questionable Many artificial intelligence and statistical methods exist for data analysis interpretation, Identifying and measuring the interestingness of patterns and rules discovered, or to be discovered is essential for the evaluation of the mined knowledge and the KDD process as a whole. While some concrete measurements exist, assessing the interestingness of discovered knowledge is still an important research issue. As the tool for the algorithm implementations we chose the language of choice in industrial world MATLAB.
Circumstellar Debris Disks: Diagnosing the Unseen Perturber
NASA Astrophysics Data System (ADS)
Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.
2016-07-01
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.
Effective field theory of cosmological perturbations
NASA Astrophysics Data System (ADS)
Piazza, Federico; Vernizzi, Filippo
2013-11-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.
WACCM climate chemistry sensitivity to sprite perturbations
NASA Astrophysics Data System (ADS)
Arnone, E.; Smith, A. K.; Enell, C.-F.; Kero, A.; Dinelli, B. M.
2014-06-01
Transient luminous events affect Earth's atmosphere between thunderstorm tops and the lower ionosphere through ion-neutral chemistry reactions. Particular emphasis has been given to sprites, with models and observations suggesting a capability of perturbing atmospheric nitrogen oxides at a local level, as it is known to occur for tropospheric lightning and laboratory air discharges. However, it is as yet unknown whether sprites can be a relevant source of nitrogen oxides for the upper atmosphere. In this paper, we study the sensitivity of the Whole Atmosphere Community Climate Model (WACCM) to sprite-like nitrogen oxide perturbations. We take a top-down approach to estimate what magnitude sprite perturbations should have to become significant as compared to other relevant atmospheric processes and study the sensitivity of the model response within the given uncertainties. We show that, based on current predictions by sprite streamer chemistry models, sprites can perturb Tropical NOx at 70 km altitude between 0.015 ppbv (buried in the background variability) and 0.15 ppbv (about 20%), adopting a local NOx production per sprite of 1.5·1023 and 1.5·1024 molecules respectively at this altitude. Below the lowest of the adopted values, sprites are irrelevant at global scales. Sprite NOx may build up to significantly larger amounts locally above active thunderstorms, further aided by other transient luminous events and possibly terrestrial gamma ray flashes. We also use model results to interpret the available observational studies and give recommendations for future campaigns.
On-Shell Methods in Perturbative QCD
Bern, Zvi; Dixon, Lance J.; Kosower, David A.
2007-04-25
We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.
Degenerate adiabatic perturbation theory: Foundations and applications
NASA Astrophysics Data System (ADS)
Rigolin, Gustavo; Ortiz, Gerardo
2014-08-01
We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.
Mixing at shocked interfaces with known perturbations
NASA Astrophysics Data System (ADS)
Cook, Andrew; Weber, Chris; Bonazza, Riccardo; Cabot, Bill
2012-11-01
We derive a growth-rate model for the Richtmyer-Meshkov mixing layer, given arbitrary but known initial conditions. The initial growth rate is determined by the net mass flux through the center plane of the perturbed interface immediately after shock passage. The net mass flux is determined by the correlation between the post-shock density and streamwise velocity. The post-shock density field is computed from the known initial perturbations and the shock jump conditions. The streamwise velocity is computed via Biot-Savart integration of the vorticity field. The vorticity deposited by the shock is obtained from the baroclinic torque with an impulsive acceleration. Using the initial growth rate and characteristic perturbation wavelength as scaling factors, the model collapses growth rates over a broad range of Mach numbers, Atwood numbers and perturbation types. The mixing layer at late times exhibits a power-law growth with an average exponent of theta=0.23. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Additional support was provided to the University of Wisconsin by U.S. DOE Grant No. DE-FG52-06NA26196.
Long periodic perturbations of Trojan asteroids.
NASA Astrophysics Data System (ADS)
Érdi, B.
1987-03-01
The motion of the Trojan asteroids is studied in the elliptic restricted three-body problem of the Sun-Jupiter-asteroid system. Long periodic perturbations of the orbital elements are discussed. Relations between dynamical parameters are considered and comparisons are made with Bien's and Schubart's results.
Long periodic perturbations of Trojan asteroids
NASA Astrophysics Data System (ADS)
Erdi, B.
The motion of the Trojan asteroids is studied in the elliptic restricted three-body problem of the Sun-Jupiter-asteroid system. Long periodic perturbations of the orbital elements are discussed. Relations between dynamical parameters are considered and comparisons are made with Bien's and Schubart's results.
On the divergences of inflationary superhorizon perturbations
Enqvist, K; Nurmi, S; Podolsky, D; Rigopoulos, G I E-mail: sami.nurmi@helsinki.fi E-mail: gerasimos.rigopoulos@helsinki.fi
2008-04-15
We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
What Perturbs the ggrdgr Rings of Uranus?
French, R G; Kangas, J A; Elliot, J L
1986-01-31
The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images. PMID:17776019
Characterizing heterogeneous cellular responses to perturbations.
Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J
2008-12-01
Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.
Toward controlling perturbations in robotic sensor networks
NASA Astrophysics Data System (ADS)
Banerjee, Ashis G.; Majumder, Saikat R.
2014-06-01
Robotic sensor networks (RSNs), which consist of networks of sensors placed on mobile robots, are being increasingly used for environment monitoring applications. In particular, a lot of work has been done on simultaneous localization and mapping of the robots, and optimal sensor placement for environment state estimation1. The deployment of RSNs, however, remains challenging in harsh environments where the RSNs have to deal with significant perturbations in the forms of wind gusts, turbulent water flows, sand storms, or blizzards that disrupt inter-robot communication and individual robot stability. Hence, there is a need to be able to control such perturbations and bring the networks to desirable states with stable nodes (robots) and minimal operational performance (environment sensing). Recent work has demonstrated the feasibility of controlling the non-linear dynamics in other communication networks like emergency management systems and power grids by introducing compensatory perturbations to restore network stability and operation2. In this paper, we develop a computational framework to investigate the usefulness of this approach for RSNs in marine environments. Preliminary analysis shows promising performance and identifies bounds on the original perturbations within which it is possible to control the networks.
Staggered heavy baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
What Perturbs the ggrdgr Rings of Uranus?
French, R G; Kangas, J A; Elliot, J L
1986-01-31
The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images.
Cosmological perturbations from the Standard Model Higgs
Simone, Andrea De; Riotto, Antonio E-mail: antonio.riotto@unige.ch
2013-02-01
We propose that the Standard Model (SM) Higgs is responsible for generating the cosmological perturbations of the universe by acting as an isocurvature mode during a de Sitter inflationary stage. In view of the recent ATLAS and CMS results for the Higgs mass, this can happen if the Hubble rate during inflation is in the range (10{sup 10}−10{sup 14}) GeV (depending on the SM parameters). Implications for the detection of primordial tensor perturbations through the B-mode of CMB polarization via the PLANCK satellite are discussed. For example, if the Higgs mass value is confirmed to be m{sub h} = 125.5 GeV and m{sub t},α{sub s} are at their central values, our mechanism predicts tensor perturbations too small to be detected in the near future. On the other hand, if tensor perturbations will be detected by PLANCK through the B-mode of CMB, then there is a definite relation between the Higgs and top masses, making the mechanism predictive and falsifiable.
Perturbative Implementation of the Furry Picture
NASA Astrophysics Data System (ADS)
Huber, Matthias; Stockmeyer, Edgardo
2007-01-01
Recently the block-diagonalization of Dirac-operators was investigated from a mathematical point of view in the one-particle case [14]. We extend this result to the N-particle case. This leads to a perturbative realization of the Furry picture in the N-particle two-spinor space.
A new size extensive multireference perturbation theory.
Chen, Feiwu; Fan, Zhihui
2014-01-15
A new multireference perturbation series is derived based on the Rayleigh-Schrödinger perturbation theory. It is orbitally invariant. Its computational cost is comparable to the single reference Møller-Plesset perturbation theory. It is demonstrated numerically that the present multireference second- and third-order energies are size extensive by two types of supermolecules composed of H2 and BH monomers. Spectroscopic constants of F2(X1Σg+),Cl2(X1Σg+),C2-(X2Σg+),B2(X3Σg-),and C2+(X4Σg-) as well as the ground state energies of H2O, NH2, and CH2 at three bond lengths have been calculated with the second multireference perturbation theory. The dissociation behaviors of CH4 and HF have also been investigated. Comparisons with other approximate theoretical models as well as the experimental data have been carried out to show their relative performances.
Tropea, Peppino; Martelli, Dario; Aprigliano, Federica; Micera, Silvestro; Monaco, Vito
2015-01-01
The aim of this study was to analyze the modifications of temporal parameters during slipping-like perturbations associated both with aging and perturbation intensities. Twelve participants equally distributed from two age groups (elderly and young) were recorded while, during steady locomotion, managing unexpected slipping-like perturbations, in forward direction, at different intensity and amplitude of foot shift. Two metrics were extrapolated from the analysis of the ground reaction force supplied by ad hoc platform aimed at destabilizing the balance control. The results indicated that the analyzed timing variables, both for elderly and young, are strongly modified by intensity of the perturbation, but only slight altered by the amplitude. Concerning the comparison about the two groups, elderly people seem to have slower reactive response than young subjects. These findings support further investigations in order to gain a better understanding of fall dynamics in elderly people.
Conformal invariant cosmological perturbations via the covariant approach
Li, Mingzhe; Mou, Yicen E-mail: moinch@mail.ustc.edu.cn
2015-10-01
It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible to do equivalent analysis in a certain frame in which the perturbation equations are simpler. In this paper we revisit the problem of conformal invariances of cosmological perturbations in terms of the covariant approach in which the perturbation variables have clear geometric and physical meanings. We show that with this approach the conformal invariant perturbations are easily identified.
Non-adiabatic perturbations in multi-component perfect fluids
Koshelev, N.A.
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Intelligent perturbation algorithms for space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1990-01-01
The optimization of space operations is examined in the light of optimization heuristics for computer algorithms and iterative search techniques. Specific attention is given to the search concepts known collectively as intelligent perturbation algorithms (IPAs) and their application to crew/resource allocation problems. IPAs iteratively examine successive schedules which become progressively more efficient, and the characteristics of good perturbation operators are listed. IPAs can be applied to aerospace systems to efficiently utilize crews, payloads, and resources in the context of systems such as Space-Station scheduling. A program is presented called the MFIVE Space Station Scheduling Worksheet which generates task assignments and resource usage structures. The IPAs can be used to develop flexible manifesting and scheduling for the Industrial Space Facility.
Relativistic perturbations for all the planets
NASA Astrophysics Data System (ADS)
Lestrade, J.-F.; Bretagnon, P.
1982-01-01
The relativistic perturbations in the osculating elements of all the planets, due to the theory of General Relativity, are presented where only the gravitational field of the sun is taken into account and the effects are calculated in the post-Newtonian approximation. The relativistic effects are calculated with the requirement that an accuracy of 5 x 10 to the -12th UA be kept over an interval of 1000 years, and are expressed in series form depending on the dynamical time in the isotropic coordinate and standard coordinate systems. The method uses equations derived from the equations of Gauss for the relativistic acceleration. A theory of the motion of Mercury is derived through the addition of the relativistic perturbations to the third-order Newtonian theory of Bretagnon (1981). It is noted that the computer programs used allow any values for the physical parameters Gamma and Beta of the Eddigton-Robertson metric.
Inflationary tensor perturbations after BICEP2.
Caligiuri, Jerod; Kosowsky, Arthur
2014-05-16
The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision.
Perturbative search for dead-end CFTs
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2015-05-01
To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as and robust against the perturbative corrections. These classes of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Thus, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.
Control of Asymmetric Magnetic Perturbations in Tokamaks
Park, Jong-kyu; Schaffer, Michael J.; Menard, Jonathan E.; Boozer, Allen H.
2007-10-03
The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |δ→(over)Β/→(over)Β|≈ 10–4 is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and with an increased interaction with the magnetic field of the unperturbed equilibrium fields. This paper explains these counter intuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.
Relaxing Lorentz invariance in general perturbative anomalies
Salvio, A.
2008-10-15
We analyze the role of Lorentz symmetry in the perturbative nongravitational anomalies for a single family of fermions. The theory is assumed to be translational-invariant, power-counting renormalizable and based on a local action, but is allowed to have general Lorentz violating operators. We study the conservation of global and gauge currents associated with general internal symmetry groups and find, by using a perturbative approach, that Lorentz symmetry does not participate in the clash of symmetries that leads to the anomalies. We first analyze the triangle graphs and prove that there are regulators for which the anomalous part of the Ward identities exactly reproduces the Lorentz-invariant case. Then we show, by means of a regulator independent argument, that the anomaly cancellation conditions derived in Lorentz-invariant theories remain necessary ingredients for anomaly freedom.
Thermostat-Like Perturbations of an Oscillator
NASA Astrophysics Data System (ADS)
Freidlin, Mark
2016-07-01
We consider an oscillator with one degree of freedom perturbed by a deterministic thermostat-like perturbation and another system, in particular, another oscillator, coupled with the first one. If the Hamiltonian of the first system has saddle points, the whole system has, in a sense, a stochastic behavior on long time intervals. Under certain conditions, one can introduce the relative entropy and describe metastability and other large deviation effects in this deterministic system. If the coupled system is also an oscillator, the long time evolution of the energy of this oscillator has a diffusion approximation. To get these results one has to regularize the system. But the results are, to some extent, independent of the regularization: the stochasticity is due to instabilities at saddle points of the original system.
Inflationary tensor perturbations after BICEP2.
Caligiuri, Jerod; Kosowsky, Arthur
2014-05-16
The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision. PMID:24877926
Perturbation theory for solitons in optical fibers
NASA Astrophysics Data System (ADS)
Kaup, D. J.
1990-11-01
Using a singular perturbation expansion, we study the evolution of a Raman loss compensated soliton in an optical fiber. Our analytical results agree quite well with the numerical results of Mollenauer, Gordon, and Islam [IEEE J. Quantum Electron. QE-22, 157 (1986)]. However, there are some differences in that our theory predicts an additional structure that was only partially seen in the numerical calculations. Our analytical results do give a quite good qualitative and quantitative check of the numerical results.
Tests of Chiral Perturbation Theory with COMPASS
Friedrich, Jan
2010-12-28
The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.
A new perturbative approach to nonlinear problems
Bender, C. M.; Milton, K. A.; Pinsky, S. S.; Simmons, L. M., Jr.
1989-07-01
A recently proposed perturbative technique for quantum field theory consistsof replacing nonlinear terms in the Lagrangian such as /phi//sup 4/ by(/phi//sup 2/)/sup 1+delta/ and then treating delta as a small parameter. It is shown herethat the same approach gives excellent results when applied to difficultnonlinear differential equations such as the Lane--Emden, Thomas--Fermi,Blasius, and Duffing equations.
Geometric perturbation theory and plasma physics
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
Perturbation Theory for Superfluid in Nonuniform Potential
NASA Astrophysics Data System (ADS)
Koshida, Shinji; Kato, Yusuke
2016-05-01
Perturbation theory of superfluid fraction in terms of nonuniform potential is constructed. We find that the coefficient of the leading term is determined by the dynamical structure factor or density fluctuation of the system. The results for the ideal Bose gas and the interacting Bose system with linear dispersion are consistent to implications from Landau's criterion. We also find that the superfluidity of Tomonaga-Luttinger liquid with K>2 is shown to be stable against nonuniform potential.
(Perturbed angular correlations in zirconia ceramics)
Not Available
1990-01-01
This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.
Perturbations of nested branes with induced gravity
Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk
2014-06-01
We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.
Intelligent perturbation algorithms to space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1991-01-01
The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.
Noninflationary model with scale invariant cosmological perturbations
Peter, Patrick; Pinho, Emanuel J. C.; Pinto-Neto, Nelson
2007-01-15
We show that a contracting universe which bounces due to quantum cosmological effects and connects to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations provided the perturbations are produced during an almost matter dominated era in the contraction phase. This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum (n{sub S}-1>0). Taking into account the spectral index constraint as well as the cosmic microwave background normalization measure yields an equation of state that should be less than {omega} < or approx. 8x10{sup -4}, implying n{sub S}-1{approx}O(10{sup -4}), and that the characteristic curvature scale of the Universe at the bounce is L{sub 0}{approx}10{sup 3}l{sub Pl}, a region where one expects that the Wheeler-DeWitt equation should be valid without being spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between the tensor-to-scalar ratio T/S and the scalar spectral index as T/S{approx}4.6x10{sup -2}{radical}(n{sub S}-1), leading to potentially measurable differences with inflationary predictions.
Numerical optimization of perturbative coils for tokamaks
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team
2014-10-01
Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.
Multifrequency perturbations in matter-wave interferometry
NASA Astrophysics Data System (ADS)
Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.
2015-11-01
High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.
Using Lagrangian Perturbation Theory for Precision Cosmology
NASA Astrophysics Data System (ADS)
Sugiyama, Naonori S.
2014-06-01
We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc-1 and z = 0.35 to better than 2%.
Using Lagrangian perturbation theory for precision cosmology
Sugiyama, Naonori S.
2014-06-10
We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc{sup –1} and z = 0.35 to better than 2%.
Non-perturbative Renormalization with Staggered Fermions
NASA Astrophysics Data System (ADS)
Lytle, Andrew
Lattice studies of Standard Model phenomenology frequently require knowledge of matching factors, or "Z-factors," that convert lattice operators defined at the lattice scale to operators in a continuum scheme at a scale mu. We make the first non-perturbative determinations of Z-factors for improved, fully dynamical staggered fermions. We compute the mass renormalization factor Zm for the Asqtad action, which is the action used by the MILC collaboration[1]. We find the strange quark mass to be mMSs (2 GeV) = 103(3) MeV; significantly larger than the result obtained using the perturbative Z-factor[2]. We compute all 256 bilinear Z-factors for the HYP-smeared action, which provides a laboratory for comparison to the results of one-loop perturbation theory[3]. Our results indicate broad agreement for ratios of Z-factors, at the few percent level, while the Z-factors themselves differ at around the ten percent level. The bilinear calculations are a stepping stone towards computation of the four-Fermi Z-factors relevant for an ongoing precision calculation of BK[4, 5, 6, 7], the knowledge of which is used to constrain the CKM matrix. Uncertainty in the required matching factors constitutes the dominant source of error.
Verification against perturbed analyses and observations
NASA Astrophysics Data System (ADS)
Bowler, N. E.; Cullen, M. J. P.; Piccolo, C.
2015-07-01
It has long been known that verification of a forecast against the sequence of analyses used to produce those forecasts can under-estimate the magnitude of forecast errors. Here we show that under certain conditions the verification of a short-range forecast against a perturbed analysis coming from an ensemble data assimilation scheme can give the same root-mean-square error as verification against the truth. This means that a perturbed analysis can be used as a reliable proxy for the truth. However, the conditions required for this result to hold are rather restrictive: the analysis must be optimal, the ensemble spread must be equal to the error in the mean, the ensemble size must be large and the forecast being verified must be the background forecast used in the data assimilation. Although these criteria are unlikely to be met exactly it becomes clear that for most cases verification against a perturbed analysis gives better results than verification against an unperturbed analysis. We demonstrate the application of these results in a idealised model framework and a numerical weather prediction context. In deriving this result we recall that an optimal (Kalman) analysis is one for which the analysis increments are uncorrelated with the analysis errors.
Relativistic Positioning System in perturbed spacetime
NASA Astrophysics Data System (ADS)
Kostić, Uroš; Horvat, Martin; Gomboc, Andreja
2015-11-01
We present a variant of a Global Navigation Satellite System called a Relativistic Positioning System (RPS), which is based on emission coordinates. We modelled the RPS dynamics in a spacetime around Earth, described by a perturbed Schwarzschild metric, where we included the perturbations due to Earth multipoles (up to the 6th), the Moon, the Sun, Venus, Jupiter, solid tide, ocean tide, and Kerr rotation effect. The exchange of signals between the satellites and a user was calculated using a ray-tracing method in the Schwarzschild spacetime. We find that positioning in a perturbed spacetime is feasible and is highly accurate already with standard numerical procedures: the positioning algorithms used to transform between the emission and the Schwarzschild coordinates of the user are very accurate and time efficient—on a laptop it takes 0.04 s to determine the user’s spatial and time coordinates with a relative accuracy of {10}-28-{10}-26 and {10}-32-{10}-30, respectively.
Cosmic perturbations through the cyclic ages
Erickson, Joel K.; Gratton, Steven; Steinhardt, Paul J.; Turok, Neil
2007-06-15
We analyze the evolution of cosmological perturbations in the cyclic model, paying particular attention to their behavior and interplay over multiple cycles. Our key results are: (1) galaxies and large scale structure present in one cycle are generated by the quantum fluctuations in the preceding cycle without interference from perturbations or structure generated in earlier cycles and without interfering with structure generated in later cycles; (2) the ekpyrotic phase, an epoch of gentle contraction with equation of state w>>1 preceding the hot big bang, makes the universe homogeneous, isotropic and flat within any given observer's horizon; and (3) although the universe is uniform within each observer's horizon, the structure of the cyclic universe on very large scales is more complex, owing to the effects of superhorizon length perturbations, and cannot be described globally as a Friedmann-Robertson-Walker cosmology. In particular, we show that the ekpyrotic contraction phase is so effective in smoothing, flattening and isotropizing the universe within the horizon that this phase alone suffices to solve the horizon and flatness problems even without an extended period of dark energy domination (a kind of low energy inflation). Instead, the cyclic model rests on a genuinely novel, noninflationary mechanism (ekpyrotic contraction) for resolving the classic cosmological conundrums.
Cosmological scalar field perturbations can grow
NASA Astrophysics Data System (ADS)
Alcubierre, Miguel; de la Macorra, Axel; Diez-Tejedor, Alberto; Torres, José M.
2015-09-01
It has been argued that the small perturbations to the homogeneous and isotropic configurations of a canonical scalar field in an expanding universe do not grow. We show that this is not true in general, and clarify the root of the misunderstanding. We revisit a simple model in which the zero mode of a free scalar field oscillates with high frequency around the minimum of the potential. Under this assumption the linear perturbations grow like those in the standard cold dark matter scenario, but with a Jeans length at the scale of the Compton wavelength of the scalar particle. Contrary to previous analyses in the literature our results do not rely on time averages and/or fluid identifications, and instead we solve both analytically (in terms of a well-defined series expansion) and numerically the linearized Einstein-Klein-Gordon system. Also, we use gauge-invariant fields, which makes the physical analysis more transparent and simplifies the comparison with previous works carried out in different gauges. As a byproduct of this study we identify a time-dependent modulation of the different physical quantities associated to the background as well as the perturbations with potential observational consequences in dark matter models.
Baryonic matter perturbations in decaying vacuum cosmology
Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br
2014-08-01
We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.
Dark matter dispersion tensor in perturbation theory
NASA Astrophysics Data System (ADS)
Aviles, Alejandro
2016-03-01
We compute the dark matter velocity dispersion tensor up to third order in perturbation theory using the Lagrangian formalism, revealing growing solutions at the third and higher orders. Our results are general and can be used for any other perturbative formalism. As an application, corrections to the matter power spectrum are calculated, and we find that some of them have the same structure as those in the effective field theory of large-scale structure, with "EFT-like" coefficients that grow quadratically with the linear growth function and are further suppressed by powers of the logarithmic linear growth factor f ; other corrections present additional k dependence. Due to the velocity dispersions, there exists a free-streaming scale that suppresses the whole 1-loop power spectrum. Furthermore, we find that as a consequence of the nonlinear evolution, the free-streaming length is shifted towards larger scales, wiping out more structure than that expected in linear theory. Therefore, we argue that the formalism developed here is better suited for a perturbation treatment of warm dark matter or neutrino clustering, where the velocity dispersion effects are well known to be important. We discuss implications related to the nature of dark matter.
Supersymmetric perturbations of the M5 brane
NASA Astrophysics Data System (ADS)
Niarchos, Vasilis
2014-05-01
We study long-wavelength supersymmetric deformations of brane solutions in supergravity using an extension of previous ideas within the general scheme of the blackfold approach. As a concrete example, we consider long-wavelength perturbations of the planar M2-M5 bound state solution in eleven-dimensional supergravity. We propose a specific ansatz for the first order deformation of the supergravity fields and explore how this deformation perturbs the Killing spinor equations. We find that a special part of these equations gives a projection equation on the Killing spinors that has the same structure as the κ-symmetry condition of the abelian M5 brane theory. Requiring a match between supergravity and gauge theory implies a specific non-linear gauge-gravity map between the bosonic fields of the abelian M5 brane theory and the gravity-induced fluid-like degrees of freedom of the blackfold equations that control the perturbative gravity solution. This observation sheds new light on the SUGRA/DBI correspondence.
Quantum inflaton, primordial perturbations, and CMB fluctuations
Cao, F.J.; Vega, H.J. de; Sanchez, N.G.
2004-10-15
We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m{sup 2}/NH{sup 2}), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it.
Perturbative Critical Behavior from Spacetime Dependent Couplings
Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo
2012-08-03
We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-{epsilon} Wilson-Fisher fixed point. Rather than considering 4-{epsilon} dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form {lambda}x{sup {kappa}}{mu}{sup {kappa}}, with a small parameter {kappa} playing a role analogous to {epsilon}. We show, in {phi}{sup 4} theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling {lambda}{sub *}(x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional {phi}{sup 6} theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.
Quantum-to-classical transition for ekpyrotic perturbations
NASA Astrophysics Data System (ADS)
Battarra, Lorenzo; Lehners, Jean-Luc
2014-03-01
We examine the processes of quantum squeezing and decoherence of density perturbations produced during a slowly contracting ekpyrotic phase in which entropic perturbations are converted to curvature perturbations before the bounce to an expanding phase. During the generation phase, the entropic fluctuations evolve into a highly squeezed quantum state, analogous to the evolution of inflationary perturbations. Subsequently, during the conversion phase, quantum coherence is lost very efficiently due to the interactions of entropy and adiabatic modes. Moreover, while decoherence occurs, the adiabatic curvature perturbations inherit their semiclassicality from the entropic perturbations. Our results confirm that, just as for inflation, an ekpyrotic phase can generate nearly scale-invariant curvature perturbations which may be treated as a statistical ensemble of classical density perturbations, in agreement with observations of the cosmic background radiation.
CDM/baryon isocurvature perturbations in a sneutrino curvaton model
Harigaya, Keisuke; Kawasaki, Masahiro; Hayakawa, Taku; Yokoyama, Shuichiro E-mail: taku1215@icrr.u-tokyo.ac.jp E-mail: shuichiro@rikkyo.ac.jp
2014-10-01
Matter isocurvature perturbations are strictly constrained from cosmic microwave background observations. We study a sneutrino curvaton model where both cold dark matter (CDM)/baryon isocurvature perturbations are generated. In our model, total matter isocurvature perturbations are reduced since the CDM/baryon isocurvature perturbations compensate for each other. We show that this model can not only avoid the stringent observational constraints but also suppress temperature anisotropies on large scales, which leads to improved agreement with observations.
The collision singularity in a perturbed n-body problem.
NASA Technical Reports Server (NTRS)
Sperling, H. J.
1972-01-01
Collision of all bodies in a perturbed n-body problem is analyzed by an extension of the author's results for a perturbed two-body problem (1969). A procedure is set forth to prove that the absolute value of energy in a perturbed n-body system remains bounded until the moment of collision. It is shown that the characteristics of motion in both perturbed problems are basically the same.
Persistence of the Hopf bifurcation under singular perturbations
Abed, E.H.
1984-05-01
The purpose of this paper is to study persistence of the Hopf bifurcation under singular perturbations of the associated vector field. Both single parameter and multiparameter singular perturbation problems are considered. In each case, hyperbolicity of an associated fast time system is shown to imply persistence. For single parameter singular perturbation problems, we employ Fenichel's center manifold theorem for singularly perturbed systems (1) to prove regular degeneration of the bifurcated periodic solutions and to study their stability.
On spectral perturbation caused by bounded variation of potential
Ismagilov, R S
2014-01-31
The harmonic oscillator operator is perturbed by an arbitrary bounded continuous term. This results in the perturbation of the spectrum. The map sending the first of these perturbations into the second is examined. Its approximation by a linear map is studied. Bibliography: 2 titles.
NASA Technical Reports Server (NTRS)
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
Transfer function analysis of thermospheric perturbations
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.
1986-01-01
Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.
Whitham theory for perturbed Korteweg-de Vries equation
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.
2016-10-01
Original Whitham's method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides in the modulation equations so that they become non-uniform; (ii) the perturbation leads to modification of the matrix of Whitham velocities. General form of Whitham modulation equations is obtained in both cases. The essential difference between them is illustrated by an example of so-called 'generalized Korteweg-de Vries equation'. Method of finding steady-state solutions of perturbed Whitham equations in the case of dissipative perturbations is considered.
Large field cutoffs make perturbative series converge
NASA Astrophysics Data System (ADS)
Meurice, Yannick
For λφ4 problems, convergent perturbative series can be obtained by cutting off the large field configurations. The modified series converge to values exponentially close to the exact ones. For λ larger than some critical value, the method outperforms Padé approximants and Borel summations. We discuss some aspects of the semi-classical methods used to calculate the modified Feynman rules and estimate the error associated with the procedure. We provide a simple numerical example where the procedure works despite the fact that the Borel sum has singularities on the positive real axis.
Large field cutoffs make perturbative series converge
NASA Astrophysics Data System (ADS)
Meurice, Yannick
2002-03-01
For λφ 4 problems, convergent perturbative series can be obtained by cutting off the large field configurations. The modified series converge to values exponentially close to the exact ones. For λ larger than some critical value, the method outperforms Padé approximants and Borel summations. We discuss some aspects of the semi-classical methods used to calculate the modified Feynman rules and estimate the error associated with the procedure. We provide a simple numerical example where the procedure works despite the fact that the Borel sum has singularities on the positive real axis.
Cosmological explosions from cold dark matter perturbations
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1992-01-01
The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.
Numerical simulation of small perturbation transonic flows
NASA Technical Reports Server (NTRS)
Seebass, A. R.; Yu, N. J.
1976-01-01
The results of a systematic study of small perturbation transonic flows are presented. Both the flow over thin airfoils and the flow over wedges were investigated. Various numerical schemes were employed in the study. The prime goal of the research was to determine the efficiency of various numerical procedures by accurately evaluating the wave drag, both by computing the pressure integral around the body and by integrating the momentum loss across the shock. Numerical errors involved in the computations that affect the accuracy of drag evaluations were analyzed. The factors that effect numerical stability and the rate of convergence of the iterative schemes were also systematically studied.
Gravitational perturbation and Kerr/CFT correspondence
NASA Astrophysics Data System (ADS)
Ghezelbash, A. M.
2016-07-01
We find the explicit form of two-point function for the conformal spin-2 energy momentum operators on the near horizon of a near extremal Kerr black hole by variation of a proper boundary action. In this regard, we consider an appropriate boundary action for the gravitational perturbation of the Kerr black hole. We show that the variation of the boundary action with respect to the boundary fields yields the two-point function for the energy momentum tensor of a conformal field theory. We find agreement between the two-point function and the correlators of the dual conformal field theory to the Kerr black hole.
Anisotropic perturbations due to dark energy
NASA Astrophysics Data System (ADS)
Battye, Richard A.; Moss, Adam
2006-08-01
A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.
Light-Front Perturbation Without Spurious Singularities
NASA Astrophysics Data System (ADS)
Przeszowski, Jerzy A.; Dzimida-Chmielewska, Elżbieta; Żochowski, Jan
2016-07-01
A new form of the light front Feynman propagators is proposed. It contains no energy denominators. Instead the dependence on the longitudinal subinterval x^2_L = 2 x+ x- is explicit and a new formalism for doing the perturbative calculations is invented. These novel propagators are implemented for the one-loop effective potential and various 1-loop 2-point functions for a massive scalar field. The consistency with results for the standard covariant Feynman diagrams is obtained and no spurious singularities are encountered at all. Some remarks on the calculations with fermion and gauge fields in QED and QCD are added.
Multigrid applied to singular perturbation problems
NASA Technical Reports Server (NTRS)
Kamowitz, David
1987-01-01
The solution of the singular perturbation problem by a multigrid algorithm is considered. Theoretical and experimental results for a number of different discretizations are presented. The theoretical and observed rates agree with the results developed in an earlier work of Kamowitz and Parter. In addition, the rate of convergence of the algorithm when the coarse grid operator is the natural finite difference analog of the fine grid operator is presented. This is in contrast to the case in the previous work where the Galerkin choice (I sup H sub h L sub h,I sup h sub H) was used for the coarse grid operators.
Exciton dynamics in perturbed vibronic molecular aggregates
Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.
2015-01-01
A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840
Efficient perturbation theory for quantum lattice models.
Hafermann, H; Li, G; Rubtsov, A N; Katsnelson, M I; Lichtenstein, A I; Monien, H
2009-05-22
We present a novel approach to long-range correlations beyond dynamical mean-field theory, through a ladder approximation to dual fermions. The new technique is applied to the two-dimensional Hubbard model. We demonstrate that the transformed perturbation series for the nonlocal dual fermions has superior convergence properties over standard diagrammatic techniques. The critical Néel temperature of the mean-field solution is suppressed in the ladder approximation, in accordance with quantum Monte Carlo results. An illustration of how the approach captures and allows us to distinguish short- and long-range correlations is given.
Amplification of curvature perturbations in cyclic cosmology
Zhang Jun; Liu Zhiguo; Piao Yunsong
2010-12-15
We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.
g-FUNCTION in Perturbation Theory
NASA Astrophysics Data System (ADS)
Konechny, Anatoly
We present some explicit computations checking a particular form of gradient formula for a boundary beta function in two-dimensional quantum field theory on a disk. The form of the potential function and metric that we consider were introduced in Refs. 16 and 18 in the context of background independent open string field theory. We check the gradient formula to the third order in perturbation theory around a fixed point. Special consideration is given to situations when resonant terms are present exhibiting logarithmic divergences and universal nonlinearities in beta functions. The gradient formula is found to work to the given order.
Inferring propagation paths for sparsely observed perturbations on complex networks
Massucci, Francesco Alessandro; Wheeler, Jonathan; Beltrán-Debón, Raúl; Joven, Jorge; Sales-Pardo, Marta; Guimerà, Roger
2016-01-01
In a complex system, perturbations propagate by following paths on the network of interactions among the system’s units. In contrast to what happens with the spreading of epidemics, observations of general perturbations are often very sparse in time (there is a single observation of the perturbed system) and in “space” (only a few perturbed and unperturbed units are observed). A major challenge in many areas, from biology to the social sciences, is to infer the propagation paths from observations of the effects of perturbation under these sparsity conditions. We address this problem and show that it is possible to go beyond the usual approach of using the shortest paths connecting the known perturbed nodes. Specifically, we show that a simple and general probabilistic model, which we solved using belief propagation, provides fast and accurate estimates of the probabilities of nodes being perturbed.
H(infinity) filtering for fuzzy singularly perturbed systems.
Yang, Guang-Hong; Dong, Jiuxiang
2008-10-01
This paper considers the problem of designing H(infinity) filters for fuzzy singularly perturbed systems with the consideration of improving the bound of singular-perturbation parameter epsilon. First, a linear-matrix-inequality (LMI)-based approach is presented for simultaneously designing the bound of the singularly perturbed parameter epsilon, and H(infinity) filters for a fuzzy singularly perturbed system. When the bound of singularly perturbed parameter epsilon is not under consideration, the result reduces to an LMI-based design method for H(infinity) filtering of fuzzy singularly perturbed systems. Furthermore, a method is given for evaluating the upper bound of singularly perturbed parameter subject to the constraint that the considered system is to be with a prescribed H(infinity) performance bound, and the upper bound can be obtained by solving a generalized eigenvalue problem. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.
Perturbation Theory for Parent Hamiltonians of Matrix Product States
NASA Astrophysics Data System (ADS)
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
A new perturbation theory for electrolyte solutions
NASA Astrophysics Data System (ADS)
Drunsel, F.; Zmpitas, W.; Gross, J.
2014-08-01
Developing physically based equations of state for electrolyte solutions is demanding due to the long range behaviour of the Coulombic interaction potentials. In this work, we present a new perturbation approach for nonprimitive model electrolyte solutions consisting of hard spheres with a positive or negative point charge or with point dipoles. We overcome the problem of diverging correlation integrals by separating the interaction potentials into short ranged parts and a long ranged contribution. For the point charges, the division is done like in most implementations of the Ewald sum. The perturbation expansion to 3rd order is formulated using the short ranged part of the potentials only, which results in converging correlation integrals for which we provide simple analytical expressions. The long range contribution to the Helmholtz energy is taken into account by a analytical term that has recently been presented by Rodgers and Weeks [J. M. Rodgers and J. D. Weeks, J. Chem. Phys. 131, 244108 (2009)]. In order to assess the proposed theory, we present molecular simulation data for Helmholtz energies of the same model electrolyte solutions. Predictions for the Helmholtz energy from the new theory are found to be in very good agreement with results from the molecular simulations for all state points we regarded.
Perturbation solutions of combustion instability problems
NASA Technical Reports Server (NTRS)
Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.
1979-01-01
A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.
Monte Carlo small-sample perturbation calculations
Feldman, U.; Gelbard, E.; Blomquist, R.
1983-01-01
Two different Monte Carlo methods have been developed for benchmark computations of small-sample-worths in simplified geometries. The first is basically a standard Monte Carlo perturbation method in which neutrons are steered towards the sample by roulette and splitting. One finds, however, that two variance reduction methods are required to make this sort of perturbation calculation feasible. First, neutrons that have passed through the sample must be exempted from roulette. Second, neutrons must be forced to undergo scattering collisions in the sample. Even when such methods are invoked, however, it is still necessary to exaggerate the volume fraction of the sample by drastically reducing the size of the core. The benchmark calculations are then used to test more approximate methods, and not directly to analyze experiments. In the second method the flux at the surface of the sample is assumed to be known. Neutrons entering the sample are drawn from this known flux and tracking by Monte Carlo. The effect of the sample or the fission rate is then inferred from the histories of these neutrons. The characteristics of both of these methods are explored empirically.
Remarks on simple modified perturbation theory
NASA Astrophysics Data System (ADS)
Shirkov, D. V.
2015-03-01
The goal is to devise a pQCD modification that should be regular in the low energy region and could serve practically for the data analysis below 1 GeV up to the infra-red limit. The recently observed "blow-up" of the 4-loop pQCD series for the Bjorken sum rule form-factor around Q ≲ 1 GeV and partial resolving of the issue with the help of the Analytic Perturbation Theory (APT) until Q ˜ 0.6 GeV provided the impetus for this attempt. The " massive pQCD" under construction has two grounds. The first is pQCD with only one parameter added, an effective " glueball mass" m ρ ≲ M glb ≲ 1 GeV, serving as an infrared regulator. Roughly, we introduce it by changing the ultra-violet ln Q 2 for a massive log, ln( Q 2 + M {/glb 2}) regular in the low energy region and finite in the infra-red limit. The second stems from the ghost-free APT comprising non-power perturbative expansion that makes it compatible with linear integral transformations.
Aircraft Range Optimization Using Singular Perturbations
NASA Technical Reports Server (NTRS)
Oconnor, Joseph Taffe
1973-01-01
An approximate analytic solution is developed for the problem of maximizing the range of an aircraft for a fixed end state. The problem is formulated as a singular perturbation and solved by matched inner and outer asymptotic expansions and the minimum principle of Pontryagin. Cruise in the stratosphere, and on transition to and from cruise at constant Mach number are discussed. The state vector includes altitude, flight path angle, and mass. Specific fuel consumption becomes a linear function of power approximating that of the cruise values. Cruise represents the outer solution; altitude and flight path angle are constants, and only mass changes. Transitions between cruise and the specified initial and final conditions correspond to the inner solutions. The mass is constant and altitude and velocity vary. A solution is developed which is valid for cruise but which is not for the initial and final conditions. Transforming of the independent variable near the initial and final conditions result in solutions which are valid for the two inner solutions but not for cruise. The inner solutions can not be obtained without simplifying the state equations. The singular perturbation approach overcomes this difficulty. A quadratic approximation of the state equations is made. The resulting problem is solved analytically, and the two inner solutions are matched to the outer solution.
Consonantal perturbations of pitch in Halkomelem Salish
NASA Astrophysics Data System (ADS)
Brown, Jason; Thompson, James J.
2005-04-01
It has long been noted that consonants have an effect on the pitch of a following vowel: voiceless stops tend to raise F0, while voiced stops lower it. It has also been suggested that the duration of such perturbations is shorter in tone languages than in non-tone languages [Hombert, Studies in African Linguistics (1977)]. This study compares the effects that consonants have on F0 in two closely related Salish languages: Island Halkomelem, a non-tone language, and Upriver Halkomelem, a language that has reportedly undergone some limited tonogenesis but offers no clear prosodic clues regarding tonality. The effects of the voiceless and ejective stop series were observed, and measurements of F0 were taken at the onset of voicing for the vowel, then at 20 msec. intervals up to 100 msec. Preliminary results indicate that i) Island Halkomelem shows a greater magnitude of difference in F0 at vowel onset between the voiceless and ejective stops than Upriver Halkomelem, and ii) Island Halkomelem shows greater durations of consonantal perturbations of F0 than does Upriver Halkomelem. This suggests that Upriver Halkomelem may have become more sensitive to pitch than the Island dialect, supporting the interpretation of this language as tonal. [Work supported by Phillips Fund.
Hormonal Perturbations in Occupationally Exposed Nickel Workers
Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.
2016-01-01
BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607
Cosmological perturbations in a mimetic matter model
NASA Astrophysics Data System (ADS)
Matsumoto, Jiro; Odintsov, Sergei D.; Sushkov, Sergey V.
2015-03-01
We investigate the cosmological evolution of a mimetic matter model with arbitrary scalar potential. The cosmological reconstruction—which is the method for constructing a model for an arbitrary evolution of the scale factor—is explicitly performed for different choices of potential. The cases where the mimetic matter model shows the evolution as cold dark matter (CDM), the w CDM model, dark matter and dark energy with a dynamical O m (z ) [where O m (z )≡[(H (z )/H0)2-1 ]/[(1 +z )3-1 ] ], and phantom dark energy with a phantom-nonphantom crossing are presented in detail. The cosmological perturbations for such evolutions are studied in the mimetic matter model. For instance, the evolution behavior of the matter density contrast (which is different than the usual one, i.e., δ ¨+2 H δ ˙-κ2ρ δ /2 =0 ) is investigated. The possibility of a peculiar evolution of δ in the model under consideration is shown. Special attention is paid to the behavior of the matter density contrast near the future singularity, where the decay of perturbations may occur much earlier than the singularity.
Perturbed cholesterol homeostasis in aging spinal cord.
Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W
2016-09-01
The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.
Geoacoustic inversion by mode amplitude perturbation
NASA Astrophysics Data System (ADS)
Poole, Travis L.; Lynch, James F.; Pierce, Allan D.; Frisk, George V.
2005-09-01
In a shallow-water waveguide the geoacoustic properties of the seafloor have a significant effect on the way sound propagates through the water. Because of this, measurements of the pressure field in the water can be used to estimate bottom properties. In this talk a perturbative method is presented which allows one to use measurements of the modal amplitudes to estimate a set of bottom parameters. A key component of the method is an expression for the derivative of the mode functions with respect to some bottom parameter. Following from the work of Thode and Kim [J. Acoust. Soc. Am. 116, 3370-2283 (2004)], the derivative is expressed as a weighted sum over all modes (both propagating and leaky). It is thought that this method can be used alongside eigenvalue perturbation [Rajan et al., J. Acoust. Soc. Am. 82, 998-1017 (1987)] to provide an inversion scheme more robust to measurement noise. To demonstrate its feasibility, the method is applied to synthetic and real data. [Work supported by the WHOI education office.
Perturbation resilience and superiorization of iterative algorithms
NASA Astrophysics Data System (ADS)
Censor, Y.; Davidi, R.; Herman, G. T.
2010-06-01
Iterative algorithms aimed at solving some problems are discussed. For certain problems, such as finding a common point in the intersection of a finite number of convex sets, there often exist iterative algorithms that impose very little demand on computer resources. For other problems, such as finding that point in the intersection at which the value of a given function is optimal, algorithms tend to need more computer memory and longer execution time. A methodology is presented whose aim is to produce automatically for an iterative algorithm of the first kind a 'superiorized version' of it that retains its computational efficiency but nevertheless goes a long way toward solving an optimization problem. This is possible to do if the original algorithm is 'perturbation resilient', which is shown to be the case for various projection algorithms for solving the consistent convex feasibility problem. The superiorized versions of such algorithms use perturbations that steer the process in the direction of a superior feasible point, which is not necessarily optimal, with respect to the given function. After presenting these intuitive ideas in a precise mathematical form, they are illustrated in image reconstruction from projections for two different projection algorithms superiorized for the function whose value is the total variation of the image.
Approaches to the Treatment of Equilibrium Perturbations
NASA Astrophysics Data System (ADS)
Canagaratna, Sebastian G.
2003-10-01
Perturbations from equilibrium are treated in the textbooks by a combination of Le Châtelier's principle, the comparison of the equilibrium constant K with the reaction quotient Q,and the kinetic approach. Each of these methods is briefly reviewed. This is followed by derivations of the variation of the equilibrium value of the extent of reaction, ξeq, with various parameters on which it depends. Near equilibrium this relationship can be represented by a straight line. The equilibrium system can be regarded as moving on this line as the parameter is varied. The slope of the line depends on quantities like enthalpy of reaction, volume of reaction and so forth. The derivation shows that these quantities pertain to the equilibrium system, not the standard state. Also, the derivation makes clear what kind of assumptions underlie our conclusions. The derivation of these relations involves knowledge of thermodynamics that is well within the grasp of junior level physical chemistry students. The conclusions that follow from the derived relations are given as subsidiary rules in the form of the slope of ξeq, with T, p, et cetera. The rules are used to develop a visual way of predicting the direction of shift of a perturbed system. This method can be used to supplement one of the other methods even at the introductory level.
Molecular cluster perturbation theory. I. Formalism
NASA Astrophysics Data System (ADS)
Byrd, Jason N.; Jindal, Nakul; Molt, Robert W., Jr.; Bartlett, Rodney J.; Sanders, Beverly A.; Lotrich, Victor F.
2015-11-01
We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.
Localized Perturbations in Saturn's C Ring
NASA Astrophysics Data System (ADS)
Spitale, Joseph N.; Tiscareno, Matthew S.
2016-10-01
Years of high-resolution imaging of Saturn's rings have revealed many examples of perturbations arising from local causes. For example, the presence of 100-m-scale and smaller moonlets is inferred in the A ring based on the propeller-shaped disturbances that they create (Tiscareno et al. 2006, 2010); the F ring is shaped by regular collisions with its shepherd Prometheus, as well as with other smaller bodies orbiting in the vicinity (Murray et al. 2005, 2008); the "wisps" on the outer edge of the Keeler gap (Porco et al. 2005) may mark the locations of small moonlets that have emerged from the A ring (Tiscareno and Arnault 2015); wakes in the Huygens ringlet imply the presence of two multi-km bodies, and the irregular shape of its inner edge suggests the presence of many smaller bodies (Spitale and Hahn 2016); based on shadow measurements, the B ring contains an embedded 300-m object that produces a small propeller-shaped disturbance (Spitale and Porco 2010; Spitale and Tiscareno 2012).Here, we present evidence for localized perturbations in the C ring. The ringlet embedded in the Bond gap, near 1.470 Saturn radii, shows discrete clumps orbiting at the Keplerian rate in images spanning about eight years. The clumps are not detected in all image sequences at the expected longitudes. The Dawes ringlet, near 1.495 Saturn radii, has an irregular edge that does not appear as a simple superposition of low-wavenumber normal modes.
Quasi-periodic oscillations of perturbed tori
NASA Astrophysics Data System (ADS)
Parthasarathy, Varadarajan; Manousakis, Antonios; Kluźniak, Włodzimierz
2016-05-01
We performed axisymmetric hydrodynamical simulations of oscillating tori orbiting a non-rotating black hole. The tori in equilibrium were constructed with a constant distribution of angular momentum in a pseudo-Newtonian potential (Kluźniak-Lee). Motions of the torus were triggered by adding subsonic velocity fields: radial, vertical and diagonal to the tori in equilibrium. As the perturbed tori evolved in time, we measured L2 norm of density and obtained the power spectrum of L2 norm which manifested eigenfrequencies of tori modes. The most prominent modes of oscillation excited in the torus by a quasi-random perturbation are the breathing mode and the radial and vertical epicyclic modes. The radial and the plus modes, as well as the vertical and the breathing modes will have frequencies in an approximate 3:2 ratio if the torus is several Schwarzschild radii away from the innermost stable circular orbit. Results of our simulations may be of interest in the context of high-frequency quasi-periodic oscillations observed in stellar-mass black hole binaries, as well as in supermassive black holes.
Quantum cosmological perturbations of multiple fluids
NASA Astrophysics Data System (ADS)
Peter, Patrick; Pinto-Neto, N.; Vitenti, Sandro D. P.
2016-01-01
The formalism to treat quantization and evolution of cosmological perturbations of multiple fluids is described. We first construct the Lagrangian for both the gravitational and matter parts, providing the necessary relevant variables and momenta leading to the quadratic Hamiltonian describing linear perturbations. The final Hamiltonian is obtained without assuming any equations of motions for the background variables. This general formalism is applied to the special case of two fluids, having in mind the usual radiation and matter mix which made most of our current Universe history. Quantization is achieved using an adiabatic expansion of the basis functions. This allows for an unambiguous definition of a vacuum state up to the given adiabatic order. Using this basis, we show that particle creation is well defined for a suitable choice of vacuum and canonical variables, so that the time evolution of the corresponding quantum fields is unitary. This provides constraints for setting initial conditions for an arbitrary number of fluids and background time evolution. We also show that the common choice of variables for quantization can lead to an ill-defined vacuum definition. Our formalism is not restricted to the case where the coupling between fields is small, but is only required to vary adiabatically with respect to the ultraviolet modes, thus paving the way to consistent descriptions of general models not restricted to single-field (or fluid).
Shock wave perturbation decay in granular materials
Vogler, Tracy J.
2015-11-05
A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtained for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.
Shock wave perturbation decay in granular materials
Vogler, Tracy J.
2015-11-05
A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtainedmore » for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.« less
Density perturbations in general modified gravitational theories
De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji
2010-07-15
We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.
Perturbation analysis for patch occupancy dynamics
Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.
2009-01-01
Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.
Perturbative quantum gravity in double field theory
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Terrestrial perturbation experiments for environmental assessment
NASA Astrophysics Data System (ADS)
Suter, G. W.
1982-01-01
The National Environmental Policy Act of 1969 (NEPA) was initially interpreted as requiring full disclosure of the environmental impact of a federal action. Because of the limitations of time, money, and manpower, the requirement that all impacts be considered has led to superficial analysis of many important impacts. Data collection has largely been limited to the enumeration of species because this information can be applied to the analysis of any problem. The President's Council on Environment Quality (CEQ) has provided a solution to this problem by reinterpreting NEPA as requiring analysis of those impacts that have significant bearing on decision making. Because assessment resources can now be concentrated on a few critical issues, it should be possible to perform field perturbation experiments to provide direct evidence of the effects of a specific mixture of pollutants or physical disturbances on the specific receiving ecosystem. Techniques are described for field simulation of gaseous and particulate air pollution, polluted rain, soil pollutants, disturbance of the soil, and disturbance of wildlife. These techniques are discussed in terms of their realism, cost, and the restrictions that they place on the measurement of ecological parameters. Development and use of these field perturbation techniques should greatly improve the accuracy of predictive assessments and further our understanding of ecosystem processes.
Perturbed cholesterol homeostasis in aging spinal cord.
Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W
2016-09-01
The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933
Magneto-reheating constraints from curvature perturbations
Ringeval, Christophe; Suyama, Teruaki; Yokoyama, Jun'ichi E-mail: suyama@resceu.s.u-tokyo.ac.jp
2013-09-01
As additional perturbative degrees of freedom, it is known that magnetic fields of inflationary origin can source curvature perturbations on super-Hubble scales. By requiring the magnetic generated curvature to remain smaller than its inflationary adiabatic counterpart during inflation and reheating, we derive new constraints on the maximal field value today, the reheating energy scale and its equation of state parameter. These bounds end up being stronger by a few order of magnitude than those associated with a possible backreaction of the magnetic field onto the background. Our results are readily applicable to any slow-roll single field inflationary models and any magnetic field having its energy density scaling as a{sup γ} during inflation. As an illustrative example, massive inflation is found to remain compatible with a magnetic field today B{sub 0} = 5 × 10{sup −15} G for some values of γ only if a matter dominated reheating takes place at energies larger than 10{sup 5} GeV. Conversely, assuming γ = −1, massive inflation followed by a matter dominated reheating cannot explain large scale magnetic fields larger than 10{sup −20} G today.
Perturbation analysis for patch occupancy dynamics.
Martin, Julien; Nichols, James D; McIntyre, Carol L; Ferraz, Gonçalo; Hines, James E
2009-01-01
Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species. PMID:19294907
BICEP2, the curvature perturbation and supersymmetry
Lyth, David H.
2014-11-01
The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.
Fast ion loss associated with perturbed field by resonant magnetic perturbation coils in KSTAR
NASA Astrophysics Data System (ADS)
Kim, Jun Young; Kim, Junghee; Rhee, Tongnyeol; Yoon, S. W.; Park, G. Y.; Jeon, Y. M.; Isobe, M.; Shimizu, A.; Ogawa, K.; Park, J.-K.; Garcia-Munoz, M.
2013-10-01
Resonant magnetic perturbation (RMP) is the most promising strategies for ELM mitigation/suppression. However, it has been found through the modeling and the experiments that RMP for the ELM mitigation can enhance the toroidally localized fast ion loss. During KSTAR experimental campaigns in 2011 and 2012, sudden increase or decrease of the fast ion loss has been observed by the scintillator-based fast ion loss detector (FILD) when the RMP is applied. Three-dimensional perturbed magnetic field by RMP coil in vacuum is calculated by Biot-Savart's law embedded in the Lorentz orbit code (LORBIT). The LORBIT code which is based on gyro-orbit following motion has been used for the simulation of the three-dimensional fast ion trajectories in presence of non-axisymmetric magnetic perturbation. It seems the measured fast ion loss rate at the localized position depends on not only the RMP field configuration but also the plasma profile such as safety factor and so on, varying the ratio between radial drift and stochastization of the fat-ion orbits. The simulation results of fast ion orbit under magnetic perturbation w/ and w/o plasma responses will be presented and compared with KSTAR FILD measurement results in various cases.
A hybrid-perturbation-Galerkin technique which combines multiple expansions
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1989-01-01
A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.
Formation of Voids from Negative Density Perturbations
NASA Astrophysics Data System (ADS)
de Araujo, J. C. N.; Opher, R.
1990-11-01
RESUMEN. Se estudia la formaci6n de huecos a partir de un espectro negativo de perturbaciones, tomando en cuenta la expansi6n del Universo, arrastre por fotones, enfriamiento por fotones, fotoionizaci6n, ioniza- ci6n colisional, enfriamiento Lyman a y la formaci6n y enfriamiento de moleculas H2. Nuestros resultados predicen la existencia de regiones 1/10 de Ia densidad promedio para regiones de masa lO - 1O10M . ABSTRACT. In the present paer we study the formation of voids from a negative spectrum of perturbations taking into account the expansion of the Universe, photon-drag, photon-cooling, photoionization, collisional ionization, Lyman a cooling and the formation and cooling of 112 molecules. Our results predict the existence of regions 1/10 the average density for regions of mass 1O - 1O10M@ : CLUSTERS-GALAXIES - COSMOLOGY
Dynamical entropy for systems with stochastic perturbation
Ostruszka; Pakonski; Slomczynski; Zyczkowski
2000-08-01
Dynamics of deterministic systems perturbed by random additive noise is characterized quantitatively. Since for such systems the Kolmogorov-Sinai (KS) entropy diverges if the diameter of the partition tends to zero, we analyze the difference between the total entropy of a noisy system and the entropy of the noise itself. We show that this quantity is finite and non-negative and we call it the dynamical entropy of the noisy system. In the weak noise limit this quantity is conjectured to tend to the KS entropy of the deterministic system. In particular, we consider one-dimensional systems with noise described by a finite-dimensional kernel for which the Frobenius-Perron operator can be represented by a finite matrix.
Perturbation technique to analyze nonlinear oscillations
Tu, S.T.
1986-01-01
Using perturbation and asymptotic methods, the author analyzes the nonlinear oscillations of two dynamical systems: the Bonhoeffer-van der Pol equations and the forced Duffing equation. In the two-dimensional model of the former system, he studies the transition from stable steady-state to relaxation oscillation as a parameter is varied. The analysis also helps to clarify a phenomenon commonly known as the duck trajectory. In the three-dimensional model, bursting oscillation is explained. In the forced Duffing equation, the main interest is the trajectory near the homoclinic orbit and the saddle point. A map of that trajectory is analytically constructed. From that map, limit cycles and their linear stability are investigated.
Inflationary perturbations in a closed FLRW universe
NASA Astrophysics Data System (ADS)
Yokomizo, Nelson; Bonga, Beatrice; Gupt, Brajesh
2016-03-01
We investigate the evolution of gauge invariant quantum perturbations in the closed FLRW model in the presence of an inflationary potential. We first find out initial conditions for the background geometry which lead to a desired slow-roll phase that is compatible with observation. Providing the initial conditions for the quantum field at the onset of slow-roll we study the influence of the spatial curvature on the scalar and tensor power spectra at the end of inflation. By comparing our results with the recent Planck data we discuss the role of spatial curvature on the estimation of various cosmological parameters. We highlight the main differences from the standard inflationary scenario in a flat FLRW model and potential implications for future observations. Finally, we comment on the quantum gravitational extension of this scenario to the Planck scale. Supported by CNPq-Brazil and NSF.
Non-perturbative background field calculations
NASA Astrophysics Data System (ADS)
Stephens, C. R.
1988-01-01
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.
Robustness of topological quantum codes: Ising perturbation
NASA Astrophysics Data System (ADS)
Zarei, Mohammad Hossein
2015-02-01
We study the phase transition from two different topological phases to the ferromagnetic phase by focusing on points of the phase transition. To this end, we present a detailed mapping from such models to the Ising model in a transverse field. Such a mapping is derived by rewriting the initial Hamiltonian in a new basis so that the final model in such a basis has a well-known approximated phase transition point. Specifically, we consider the toric codes and the color codes on various lattices with Ising perturbation. Our results provide a useful table to compare the robustness of the topological codes and to explicitly show that the robustness of the topological codes depends on triangulation of their underlying lattices.
Modified contour-improved perturbation theory
Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian
2010-11-01
The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard ''contour-improved'' method based on a derivative expansion of the Adler function. The new approach has some advantages compared to contour-improved perturbation theory. The renormalization scale dependence is weaker by more than a factor of 2 and the last term of the expansion is reduced by about 10%, while the renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2% lower than the contour-improved value. We find {alpha}{sub s}(M{sub Z}{sup 2})=0.1211{+-}0.0010.
Perturbation approach applied to modal diffraction methods.
Bischoff, Joerg; Hehl, Karl
2011-05-01
Eigenvalue computation is an important part of many modal diffraction methods, including the rigorous coupled wave approach (RCWA) and the Chandezon method. This procedure is known to be computationally intensive, accounting for a large proportion of the overall run time. However, in many cases, eigenvalue information is already available from previous calculations. Some of the examples include adjacent slices in the RCWA, spectral- or angle-resolved scans in optical scatterometry and parameter derivatives in optimization. In this paper, we present a new technique that provides accurate and highly reliable solutions with significant improvements in computational time. The proposed method takes advantage of known eigensolution information and is based on perturbation method. PMID:21532698
Applications of partially quenched chiral perturbation theory
Golterman, M.F.; Leung, K.C.
1998-05-01
Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate, weak decay constants, Goldstone boson masses, B{sub K}, and the K{sup +}{r_arrow}{pi}{sup +}{pi}{sup 0} decay amplitude, using partially quenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and generalize, results of previous work by Sharpe. We compare B{sub K} and the K{sup +} decay amplitude with their real-world values in some examples. For the latter quantity, two other systematic effects that plague lattice computations, namely, finite-volume effects and unphysical values of the quark masses and pion external momenta, are also considered. We find that typical one-loop corrections can be substantial. {copyright} {ital 1998} {ital The American Physical Society}
Singular perturbations in the state regulator problem
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1972-01-01
Most of the results of singular perturbation theory have been concerned with initial value problems whereas optimal control problems are of two-point boundary value type. The portions of this theory applicable to the open loop state regulator problem are reviewed. For obtaining approximate solutions to the state regulator problem the method of matched asymptotic expansions is employed. This method has been developed in connection with certain fluid mechanics problems and is applicable to nonlinear as well as linear problems. It has been found in the past to be advantageous not to formulate this method generally but to apply it to each individual problem and this approach is adopted here. A general recipe for the method is given and its application is illustrated by using the method to obtain an approximate solution to a simple, specific state regulator problem.
Plasma Braking Due to External Magnetic Perturbations
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Olofsson, Kejo; Brunsell, P. R.; Khan, M. W. M.; Drake, J. R.
2010-11-01
The RFP EXTRAP T2R is equipped with a comprehensive active feedback system (128 active saddle coils in the full-coverage array) and active control of both resonant and non-resonant MHD modes has been demonstrated. The feedback algorithms, based on modern control methodology such as reference mode tracking (both amplitude and phase), are a useful tool to improve the ``state of the art'' of the MHD mode control. But this tool can be used also to improve the understanding and the characterization of other phenomena such as the ELM mitigation with a resonant magnetic perturbation or the plasma viscosity. The present work studies plasma and mode braking due to static RMPs. Results show that a static RMP produces a global braking of the flow profile. The study of the effect of RMPs characterized by different helicities will also give information on the plasma viscosity profile. Experimental results are finally compared to theoretical models.
New Representations of the Perturbative S Matrix.
Baadsgaard, Christian; Bjerrum-Bohr, N E J; Bourjaily, Jacob L; Caron-Huot, Simon; Damgaard, Poul H; Feng, Bo
2016-02-12
We propose a new framework to represent the perturbative S matrix which is well defined for all quantum field theories of massless particles, constructed from tree-level amplitudes and integrable term by term. This representation is derived from the Feynman expansion through a series of partial fraction identities, discarding terms that vanish upon integration. Loop integrands are expressed in terms of "Q-cuts" that involve both off-shell and on-shell loop momenta, defined with a precise contour prescription that can be evaluated by ordinary methods. This framework implies recent results found in the scattering equation formalism at one loop, and it has a natural extension to all orders--even nonplanar theories without well-defined forward limits or good ultraviolet behavior. PMID:26918978
A human source for ELF magnetic perturbations.
Liboff, A R
2016-01-01
Current models that frame consciousness in terms of electromagnetic field theory carry implications that have yet to be fully explored. Endogenous weak extremely low frequency (ELF) magnetic fields are generated by ionic charge flow in axons, dendrites and synaptic transmitters. Because neural tissues are transparent to such fields, these provide the basis for the globally unifying qualities required to properly describe consciousness as a field. At the same time, however, an electromagnetic approach predicts partial transmission of this 1-100 nT field, suggesting external interactions similar to the various ELF magnetic perturbations that are linked to homeostatic and endocrine-related physiological effects. It follows that humans may represent an additional, previously unrecognized source of weak (1-10 nT) ambient ELF magnetic fields. PMID:27355315
Degenerate R-S perturbation theory
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Certain, P. R.
1973-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.
Shahvarpour, Ali; Shirazi-Adl, Aboulfazl; Larivière, Christian; Bazrgari, Babak
2015-02-26
Spine stability demand influences active-passive coordination of the trunk response, especially during sudden perturbations. The objective of this study was to look at the role of passive, stationary active and reflexive subsystems on spinal stability. Spine stability was evaluated here during pre- and post-perturbation phases by computing the minimum (i.e., critical) muscle stiffness coefficient required to maintain stability. The effects of pre-perturbation conditions (preloading, initial posture and abdominal antagonistic coactivation) as well as perturbation magnitude were studied. Results revealed that higher preload, initially flexed trunk posture and abdominal pre-activation enhanced pre-perturbation stiffness and stability. In contrast to the preload, however, larger sudden load, initial flexion and abdominal preactivation significantly increased post-perturbation stability margin. As a result, much lower critical muscle stiffness coefficient was required post-perturbation. Compared to the pre-perturbation phase, the trunk stiffness and stability substantially increased post-perturbation demanding thus a much lower critical muscle stiffness coefficient. Overall, these findings highlight the crucial role of the ligamentous spine and muscles (in both passive and active states) in augmenting the trunk stiffness and hence stability during pre- and post-perturbation phases; a role much evident in the presence of initial trunk flexion.
Non-Gaussian isocurvature perturbations in dark radiation
Kawakami, Etsuko; Kawasaki, Masahiro; Miyamoto, Koichi; Nakayama, Kazunori; Sekiguchi, Toyokazu E-mail: kawasaki@icrr.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp
2012-07-01
We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mixtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the non-linearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.
Gravitational arcs as a perturbation of the perfect ring
NASA Astrophysics Data System (ADS)
Alard, C.
2007-11-01
The image of a point situated at the centre of a circularly symmetric potential is a perfect circle. The perturbative effect of non-symmetrical potential terms is to displace and break the perfect circle. These two effects, displacement and breaking, are directly related to the Taylor expansion of the perturbation at first order on the circle. The numerical accuracy of this perturbative approach is tested in the case of an elliptical potential with a core radius. The contour of the images and the caustic lines are well reproduced by the perturbative approach. These results suggest that the modelling of arcs, and in particular that of tangential arcs, may be simplified by using a general perturbative representation for points located on the circle. This linear perturbative approach is accurate when the gradient of the circular potential is almost linear; this constraint is satisfied when the potential is nearly isothermal.
Converting entropy to curvature perturbations after a cosmic bounce
NASA Astrophysics Data System (ADS)
Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward
2016-10-01
We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.
Non-perturbative String Theory from Water Waves
Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Intersegmental coupling and recovery from perturbations in freely running cockroaches.
Couzin-Fuchs, Einat; Kiemel, Tim; Gal, Omer; Ayali, Amir; Holmes, Philip
2015-01-15
Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations.
Adiabatic and isocurvature perturbation projections in multi-field inflation
Gordon, Chris; Saffin, Paul M. E-mail: Paul.Saffin@nottingham.ac.uk
2013-08-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.
Investigations of Probe Induced Perturbations in a Hall Thruster
D. Staack; Y. Raitses; N.J. Fisch
2002-08-12
An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities.
Inferring the perturbation time from biological time course data
Yang, Jing; Penfold, Christopher A.; Grant, Murray R.; Rattray, Magnus
2016-01-01
Motivation: Time course data are often used to study the changes to a biological process after perturbation. Statistical methods have been developed to determine whether such a perturbation induces changes over time, e.g. comparing a perturbed and unperturbed time course dataset to uncover differences. However, existing methods do not provide a principled statistical approach to identify the specific time when the two time course datasets first begin to diverge after a perturbation; we call this the perturbation time. Estimation of the perturbation time for different variables in a biological process allows us to identify the sequence of events following a perturbation and therefore provides valuable insights into likely causal relationships. Results: We propose a Bayesian method to infer the perturbation time given time course data from a wild-type and perturbed system. We use a non-parametric approach based on Gaussian Process regression. We derive a probabilistic model of noise-corrupted and replicated time course data coming from the same profile before the perturbation time and diverging after the perturbation time. The likelihood function can be worked out exactly for this model and the posterior distribution of the perturbation time is obtained by a simple histogram approach, without recourse to complex approximate inference algorithms. We validate the method on simulated data and apply it to study the transcriptional change occurring in Arabidopsis following inoculation with Pseudomonas syringae pv. tomato DC3000 versus the disarmed strain DC3000hrpA. Availability and Implementation: An R package, DEtime, implementing the method is available at https://github.com/ManchesterBioinference/DEtime along with the data and code required to reproduce all the results. Contact: Jing.Yang@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27288495
Anomaly-free cosmological perturbations in effective canonical quantum gravity
Barrau, Aurelien; Calcagni, Gianluca; Grain, Julien E-mail: bojowald@gravity.psu.edu E-mail: julien.grain@ias.u-psud.fr
2015-05-01
This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.
Constraints on primordial density perturbations from induced gravitational waves
Assadullahi, Hooshyar; Wands, David
2010-01-15
We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.
Equation-of-motion coupled cluster perturbation theory revisited
Eriksen, Janus J. Jørgensen, Poul; Olsen, Jeppe; Gauss, Jürgen
2014-05-07
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally converges towards the full configuration interaction energy limit. The series is based on a Møller-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby remedying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz.
Resonant magnetic perturbations and edge ergodization on the COMPASS tokamak
Cahyna, P.; Fuchs, V.; Krlin, L.
2008-09-15
Results of calculations of resonant magnetic perturbation spectra on the COMPASS tokamak are presented. Spectra of the perturbations are calculated from the vacuum field of the perturbation coils. Ergodization is then estimated by applying the criterion of overlap of the resulting islands and verified by field line tracing. Results show that for the chosen configuration of perturbation coils an ergodic layer appears in the pedestal region. The ability to form an ergodic layer is similar to the theoretical results for the ELM suppression experiment at DIII-D; thus, a comparable effect on ELMs can be expected.
Perturbation Monte Carlo methods for tissue structure alterations.
Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Spanier, Jerome
2013-01-01
This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of ∼15-25% of the scattering parameters.
Multifield cosmological perturbations at third order and the ekpyrotic trispectrum
Lehners, Jean-Luc; Renaux-Petel, Sebastien
2009-09-15
Using the covariant formalism, we derive the equations of motion for adiabatic and entropy perturbations at third order in perturbation theory for cosmological models involving two scalar fields. We use these equations to calculate the trispectrum of ekpyrotic and cyclic models in which the density perturbations are generated via the entropic mechanism. In these models, the conversion of entropy into curvature perturbations occurs just before the big bang, either during the ekpyrotic phase or during the subsequent kinetic energy dominated phase. In both cases, we find that the nonlinearity parameters f{sub NL} and g{sub NL} combine to leave a very distinct observational imprint.
The Liouvillian perturbations of the Kerr-Newman black hole
NASA Astrophysics Data System (ADS)
Holder, Cody
The well-known Kovacic algorithm is applied to the differential equations that govern the "synthetic" radial perturbations of the Kerr-Newman black hole as a means to identify all of the Liouvillian (i.e. closed-form) solutions. The analysis includes the scalar, Dirac, electromagnetic and gravitational perturbations (i.e. spin 0,1/2,1,2 fields), the non-extreme and extreme geometries, and the perturbations of the Kerr and Schwarzschild black holes. This work presents new results that extend, and essentially complete, the analysis of the Liouvillian perturbations of the Kerr-Newman black hole initiated by this author and supervisor in a recent article.
Nondimensional forms for singular perturbation analyses of aircraft energy climbs
NASA Technical Reports Server (NTRS)
Calise, A. J.; Markopoulos, N.; Corban, J. E.
1991-01-01
This paper proposes a systematic approach for identifying the perturbation parameter in singular perturbation analysis of aircraft optimal guidance, and in particular considers a family of problems related to aircraft energy climbs. The approach, which is based on a nondimensionalization of the equations of motion, is used to evaluatae the appropriateness of forced singular perturbation formulations used in the past for transport and fighter aircraft, and to assess the applicability of energy state approximations and singular perturbation analysis for airbreathing transatmospheric vehicles with hypersonic cruise and orbital capabilities.
Non-linear isocurvature perturbations and non-Gaussianities
Langlois, David; Vernizzi, Filippo; Wands, David E-mail: filippo.vernizzi@cea.fr
2008-12-15
We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended {delta}N formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.
Concurrent multiple-state analytic perturbation theory via supersymmetry
NASA Astrophysics Data System (ADS)
Dhatt, Sharmistha; Bhattacharyya, Kamal
2011-04-01
Conventional nondegenerate perturbation theory for some nth state starts with the corresponding unperturbed state. The present formulation yields recursively perturbation expansions for any bound state using the sole information of the unperturbed ground state. Logarithmic perturbation theory is exploited along with supersymmetric quantum mechanics to achieve this end. As the method involves ground-state perturbations of a series of supersymmetric Hamiltonians, concern about nodal shifts of targeted excited states arises only at the ultimate step, thus, minimizing considerably the labor of clumsy computations involved in dealing with excited states.
Quaternion regularization and stabilization of perturbed central motion. II
NASA Astrophysics Data System (ADS)
Chelnokov, Yu. N.
1993-04-01
Generalized regular quaternion equations for the three-dimensional two-body problem in terms of Kustaanheimo-Stiefel variables are obtained within the framework of the quaternion theory of regularizing and stabilizing transformations of the Newtonian equations for perturbed central motion. Regular quaternion equations for perturbed central motion of a material point in a central field with a certain potential Pi are also derived in oscillatory and normal forms. In addition, systems of perturbed central motion equations are obtained which include quaternion equations of perturbed orbit orientations in oscillatory or normal form, and a generalized Binet equation is derived. A comparative analysis of the equations is carried out.
Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations
Orlenko, E. V. Evstafev, A. V.; Orlenko, F. E.
2015-02-15
A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated.
Perturbative and non-perturbative aspects of the two-dimensional string/Yang-Mills correspondence
NASA Astrophysics Data System (ADS)
Lelli, Simone; Maggiore, Michele; Rissone, Anna
2003-04-01
It is known that YM 2 with gauge group SU( N) is equivalent to a string theory with coupling gs=1/ N, order by order in the 1/ N expansion. We show how this result can be obtained from the bosonization of the fermionic formulation of YM 2, improving on results in the literature, and we examine a number of non-perturbative aspects of this string/YM correspondence. We find contributions to the YM 2 partition function of order exp{- kA/( πα' gs)} with k an integer and A the area of the target space, which would correspond, in the string interpretation, to D1-branes. Effects which could be interpreted as D0-branes are instead strictly absent, suggesting a non-perturbative structure typical of type 0B string theories. We discuss effects from the YM side that are interpreted in terms of the stringy exclusion principle of Maldacena and Strominger. We also find numerically an interesting phase structure, with a region where YM 2 is described by a perturbative string theory separated from a region where it is described by a topological string theory.
Computation of solar perturbations with Poisson series
NASA Technical Reports Server (NTRS)
Broucke, R.
1974-01-01
Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.
Perturbing Streaming in Dictyostelium discoidium Aggregation
NASA Astrophysics Data System (ADS)
Rericha, Erin; Garcia, Gene; Parent, Carole; Losert, Wolfgang
2009-03-01
The ability of cells to move towards environmental cues is a critical process allowing the destruction of intruders by the immune system, the formation of the vascular system and the whole scale remodeling of tissues during embryo development. We examine the initial transition from single cell to group migration in the social amoeba Dictyostelium discoidium. Upon starvation, D. discoidium cells enter into a developmental program that triggers solitary cells to aggregate into a multicellular structure. The aggregation is mediated by the small molecule, cyclic-AMP, that cells sense, synthesize, secrete and migrate towards often in a head-to-tail fashion called a stream. Using experiment and numerical simulation, we study the sensitivity of streams to perturbations in the cyclic-AMP concentration field. We find the stability of the streams requires cells to shape the cyclic-AMP field through localized secretion and degradation. In addition, we find the streaming phenotype is sensitive to changes in the substrate properties, with slicker surfaces leading to longer more branched streams that yield large initial aggregates.
Phase perturbation measurements through a heated ionosphere
NASA Technical Reports Server (NTRS)
Frey, A.; Gordon, W. E.
1982-01-01
High frequency radiowaves incident on an overdense (i.e., HF-frequency penetration frequency) ionosphere produce electron density irregularities. The effect of such ionospheric irregularities on the phase of UHF-radiowaves was determined. For that purpose the phase of radiowaves originating from celestial radio sources was observed with two antennas. The radiosources were chosen such that the line of sight to at least one of the antennas (usually both) passed through the modified volume of the ionosphere. Observations at 430 MHz and at 2380 MHz indicate that natural irregularities have a much stronger effect on the UHF phase fluctuations than the HF-induced irregularities for presently achieved HF-power densities of 20-80 uW/sq m. It is not clear whether some of the effects observed are the result of HF-modification of the ionosphere. Upper limits on the phase perturbations produced by HF-modification are 10 deg at 2380 MHz and 80 deg at 430 MHz.
Cosmological perturbations across an S-brane
Brandenberger, Robert H.; Kounnas, Costas; Partouche, Hervé; Patil, Subodh P.; Toumbas, Nicolaos E-mail: kounnas@lpt.ens.fr E-mail: subodh.patil@cern.ch
2014-03-01
Space-filling S-branes can mediate a transition between a contracting and an expanding universe in the Einstein frame. Following up on previous work that uncovered such bouncing solutions in the context of weakly coupled thermal configurations of a certain class of type II superstrings, we set up here the formalism in which we can study the evolution of metric fluctuations across such an S-brane. Our work shows that the specific nature of the S-brane, which is sourced by non-trivial massless thermal string states and appears when the universe reaches a maximal critical temperature, allows for a scale invariant spectrum of curvature fluctuations to manifest at late times via a stringy realization of the matter bounce scenario. The finite energy density at the transition from contraction to expansion provides calculational control over the propagation of the curvature perturbations through the bounce, furnishing a working proof of concept that such a stringy universe can result in viable late time cosmology.
A Unified Approach for Solving Nonlinear Regular Perturbation Problems
ERIC Educational Resources Information Center
Khuri, S. A.
2008-01-01
This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…
The perturbations of the orbital elements of Trojan asteroids
NASA Astrophysics Data System (ADS)
Erdi, B.
1981-08-01
An asymptotic solution for the cylindrical coordinates of Trojan asteroids is derived by using a three-variable expansion method in the elliptic restricted three-body problem. The perturbations of the orbital elements are obtained from this solution by applying the formulas of the two-body problem. The main perturbations of the mean motion are studied in detail.
Variational Perturbation Treatment of the Confined Hydrogen Atom
ERIC Educational Resources Information Center
Montgomery, H. E., Jr.
2011-01-01
The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…
Quantum radiation from superluminal refractive-index perturbations.
Belgiorno, F; Cacciatori, S L; Ortenzi, G; Sala, V G; Faccio, D
2010-04-01
We analyze in detail photon production induced by a superluminal refractive-index perturbation in realistic experimental operating conditions. The interaction between the refractive-index perturbation and the quantum vacuum fluctuations of the electromagnetic field leads to the production of photon pairs.
Reconfigurable Optical Spectra from Perturbations on Elliptical Whispering Gallery Resonances
NASA Technical Reports Server (NTRS)
Mohageg, Makan; Maleki, Lute
2008-01-01
Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed.
Spatially cascading effect of perturbations in experimental meta-ecosystems.
Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian
2016-09-14
Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. PMID:27629038
Perturbational formulation of principal component analysis in molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.
2008-10-01
Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we
Plasma-satellite interaction driven magnetic field perturbations
Saeed-ur-Rehman; Marchand, Richard
2014-09-15
We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.
Higher-order Lagrangian perturbative theory for the Cosmic Web
NASA Astrophysics Data System (ADS)
Tatekawa, Takayuki; Mizuno, Shuntaro
2016-10-01
Zel'dovich proposed Lagrangian perturbation theory (LPT) for structure formation in the Universe. After this, higher-order perturbative equations have been derived. Recently fourth-order LPT (4LPT) have been derived by two group. We have shown fifth-order LPT (5LPT) In this conference, we notice fourth- and more higher-order perturbative equations. In fourth-order perturbation, because of the difference in handling of spatial derivative, there are two groups of equations. Then we consider the initial conditions for cosmological N-body simulations. Crocce, Pueblas, and Scoccimarro (2007) noticed that second-order perturbation theory (2LPT) is required for accuracy of several percents. We verify the effect of 3LPT initial condition for the simulations. Finally we discuss the way of further improving approach and future applications of LPTs.
Duality between QCD perturbative series and power corrections
NASA Astrophysics Data System (ADS)
Narison, S.; Zakharov, V. I.
2009-08-01
We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of αs from τ-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.
Elliptic inflation: generating the curvature perturbation without slow-roll
NASA Astrophysics Data System (ADS)
Matsuda, Tomohiro
2006-09-01
There are many inflationary models in which the inflaton field does not satisfy the slow-roll condition. However, in such models, it is always difficult to generate the curvature perturbation during inflation. Thus, to generate the curvature perturbation, one must introduce another component into the theory. To cite a case, curvatons may generate the dominant part of the curvature perturbation after inflation. However, we question whether it is realistic to consider the generation of the curvature perturbation during inflation without slow-roll. Assuming multifield inflation, we encounter the generation of curvature perturbation during inflation without slow-roll. The potential along the equipotential surface is flat by definition and thus we do not have to worry about symmetry. We also discuss KKLT (Kachru Kallosh Linde Trivedi) models, in which corrections lifting the inflationary direction may not become a serious problem if there is a symmetry enhancement at the tip (not at the moving brane) of the inflationary throat.
Reducing Plasma Perturbations with Segmented Metal Shielding on Electrostatic Probes
Staack, D.; Raitses, Y.; Fisch N.J.
2002-10-02
Electrostatic probes are widely used to measure spatial plasma parameters in the quasi-neutral plasma created in Hall thrusters and similar E x B electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In an attempt to reduce these perturbations in Hall thrusters, the perturbations were examined by varying the component material, penetration distance, and residence time of various probe designs. This study leads us to a conclusion that secondary electron emission from insulator ceramic tubes of the probe can affect local changes of the plasma parameters causing plasma perturbations. A probe design, which consists of a segmented metal shielding of the probe insulator, is suggested to reduce these perturbations. This new probe design can be useful for plasma applications in which the electron temperature is sufficient to produce secondary electron emission by interaction of plasma electrons with dielectric materials.
A new model for realistic random perturbations of stochastic oscillators
NASA Astrophysics Data System (ADS)
Dieci, Luca; Li, Wuchen; Zhou, Haomin
2016-08-01
Classical theories predict that solutions of differential equations will leave any neighborhood of a stable limit cycle, if white noise is added to the system. In reality, many engineering systems modeled by second order differential equations, like the van der Pol oscillator, show incredible robustness against noise perturbations, and the perturbed trajectories remain in the neighborhood of a stable limit cycle for all times of practical interest. In this paper, we propose a new model of noise to bridge this apparent discrepancy between theory and practice. Restricting to perturbations from within this new class of noise, we consider stochastic perturbations of second order differential systems that -in the unperturbed case- admit asymptotically stable limit cycles. We show that the perturbed solutions are globally bounded and remain in a tubular neighborhood of the underlying deterministic periodic orbit. We also define stochastic Poincaré map(s), and further derive partial differential equations for the transition density function.
On perturbation and pattern coexistence in postural coordination dynamics.
Bardy, Benoît G; Oullier, Olivier; Lagarde, Julien; Stoffregen, Thomas A
2007-07-01
In studies of postural control, investigators have used either experimentally induced perturbations to stance or unperturbed stance. The distinction between perturbed and unperturbed stance has gained renewed importance in the context of inphase and antiphase coordination of the hips and ankles. Several contributions have replicated the findings published over the past decade, suggesting the possibility of a unified view of postural control. However, any proposed unified view depends on how so called perturbed and unperturbed are defined. The authors argue that, to date, there is no explicit and general definition of those terms. The main reason is that all perturbations are relative and depend on appropriate frames of reference for perception and action. Arguments about empirical or theoretical unification of perturbed and unperturbed stance are premature.
Assessment of multireference perturbation methods for chemical reaction barrier heights.
Fracchia, Francesco; Cimiraglia, Renzo; Angeli, Celestino
2015-05-28
A few flavors of multireference perturbation theory, two variants of the n-electron valence state perturbation theory and two of the complete active space perturbation theory, are here tested for the calculation of barrier heights for the set of chemical reactions included in the DBH24/08 database, for which very accurate values are available. The comparison of the results obtained with these approaches with those already published for other theoretical models indicates that multireference perturbation theory is a valuable tool for the description of a chemical reaction. Moreover, limiting the comparison to the perturbation theory approaches, one observes that the bad behavior found for single reference methods (such as Møller-Plesset to second and fourth order in the energy) is markedly improved upon moving to the multireference generalizations.
Flexoelectricity from density-functional perturbation theory
NASA Astrophysics Data System (ADS)
Stengel, Massimiliano
2013-11-01
We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient, which can be readily calculated from first principles in the framework of density-functional perturbation theory, is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order Taylor expansion in the wave vector q around the Γ (q=0) point in the Brillouin zone naturally yields the flexoelectric tensor. At order one in q we recover Martin's theory of piezoelectricity [Martin, Phys. Rev. B 5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response functions in a vicinity of Γ. Based on this analysis, we find that there is an ambiguity in the specification of the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447 (1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or dynamic regime, and we relate our findings to earlier theoretical works on the subject.
Statistics and dynamics of the perturbed universe
NASA Astrophysics Data System (ADS)
Lemson, G.
1995-09-01
Wilson discovered the corresponding radiation field, at a temperature of roughly 3K (Penzias & Wilson, 1965). It soon appeared that this microwave background radiation was isotropic to a high degree, which conrmed the assumptions made about the homogeneity of the early Universe. At present however, we see that the Universe is no longer featureless and smooth. Starting from the smallest scales we see matter organized in structures up to very large scales: from planets to stars to stellar systems to galaxies to groups and clusters of galaxies, up to super-clusters, where clusters and galaxies are organized in the largest structures known. Somewhere during the evolution of the Universe, these structures must have developed out of the featureless, uniform sea of matter and radiation. Various different theories have been developed to explain the emergence of structure, but in this thesis I will concentrate exclusively on the most generally accepted theory, that of gravitational instability. In this theory it is assumed that in the early Universe, small fluctuations in the density were present, and these would grow under the influence of gravity towards the presently observed structures. There is actually a rather complete theory of the early stages of this process, that regime where these deviations from homogeneity are small. In that case, the inhomogeneous field may be seen as a small disturbance to the uniform model, and the standard apparatus of perturbation theory may be applied. In this thesis I investigate the later stages of this process of structure formation, where the fluctuations have grown to such a size that this 'linear' perturbation approach breaks down. There is as yet no comprehensive model describing this 'nonlinear' regime as successfully as the linear theory describes the early stages of structure formation. Instead, the problem is approached from many different directions, using different, approximate models for describing the dynamics and other
Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects
Boglione, Mariaelena; Gonzalez Hernandez, Jose O.; Melis, Stefano; Prokudin, Alexey
2015-09-01
We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, q_{T}. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.
Shock Boundary Layer Interaction Sensitivity to Upstream Geometric Perturbations
NASA Astrophysics Data System (ADS)
Campo, Laura; Helmer, David; Eaton, John
2012-11-01
Shock boundary layer interactions (SBLIs) can have drastic effects on the performance of external aerodynamics and propulsion systems in high speed flight vehicles. In such systems, the upstream and boundary conditions of the flow are uncertain, and the sensitivity of SBLIs to perturbations in these conditions is unknown. The sensitivity of two SBLIs - a compression corner interaction and an incident shock interaction - to small geometric perturbations was investigated using particle image velocity measurements. Tests were performed in a continuously operated, low aspect ratio, Mach 2.1 wind tunnel. The shock was generated by a 1.1mm high 20° wall-mounted compression wedge, and various configurations of small (h < 0 . 2 δ) steady bumps were introduced upstream on the opposite wall. 100 perturbed cases were tested in order to generate a dataset which is well suited for validation of CFD codes. Both SBLIs were very sensitive to perturbations in a given region and insensitive to perturbations outside of it. Depending on the location of the perturbations, the compression corner interaction could be significantly strengthened or weakened. The position of the incident SBLI was also a strong function of both the location and size of the upstream perturbations.
Evolution equation for non-linear cosmological perturbations
Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch
2011-11-01
We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.
Development of a perturbation generator for vortex stability studies
NASA Technical Reports Server (NTRS)
Riester, J. E.; Ash, Robert L.
1991-01-01
Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.
Postural responses to unexpected perturbations of balance during reaching
Trivedi, Hari; Leonard, Julia A.; Ting, Lena H.; Stapley, Paul J.
2014-01-01
To study the interaction between feedforward and feedback modes of postural control, we investigated postural responses during unexpected perturbations of the support surface that occurred during forward reaching in a standing position. We examined postural responses in lower limb muscles of 9 human subjects. Baseline measures were obtained when subjects executed reaching movements to a target placed in front of them (R condition) and during postural responses to forward and backward support-surface perturbations (no reaching, P condition) during quiet stance. Perturbations were also given at different delays after the onset of reaching movements (RP conditions) as well as with the arm extended in the direction of the target, but not reaching (P/AE condition). Results showed that during perturbations to reaching (RP), the initial automatic postural response, occurring around 100 ms after the onset of perturbations, was relatively unchanged in latency or amplitude compared to control conditions (P and P/AE). However, longer latency postural responses were modulated to aid in the reaching movements during forward perturbations but not during backward perturbations. Our results suggest that the nervous system prioritizes the maintenance of a stable postural base during reaching, and that later components of the postural responses can be modulated to ensure the performance of the voluntary task. PMID:20035321
Adjustments after an ankle dorsiflexion perturbation during human running.
Scohier, M; De Jaeger, D; Schepens, B
2012-01-01
In this study we investigated the effect of a mechanical perturbation of unexpected timing during human running. With the use of a powered exoskeleton, we evoked a dorsiflexion of the right ankle during its swing phase while subjects ran on a treadmill. The perturbation resulted in an increase of the right ankle dorsiflexion of at least 5°. The first two as well as the next five steps after the perturbation were analyzed to observe the possible immediate and late biomechanical adjustments. In all cases subjects continued to run after the perturbation. The immediate adjustments were the greatest and the most frequent when the delay between the right ankle perturbation and the subsequent right foot touch-down was the shortest. For example, the vertical impact peak force was strongly modified on the first step after the perturbations and this adjustment was correlated to a right ankle angle still clearly modified at touch-down. Some late adjustments were observed in the subsequent steps predominantly occurring during left steps. Subjects maintained the step length and the step period as constant as possible by adjusting other step parameters in order to avoid stumbling and continue running at the speed imposed by the treadmill. To our knowledge, our experiments are the first to investigate perturbations of unexpected timing during human running. The results show that humans have a time-dependent, adapted strategy to maintain their running pattern. PMID:21872474
Perturbing polynomials with all their roots on the unit circle
NASA Astrophysics Data System (ADS)
Mossinghoff, M. J.; Pinner, C. G.; Vaaler, J. D.
1998-10-01
Given a monic real polynomial with all its roots on the unit circle, we ask to what extent one can perturb its middle coefficient and still have a polynomial with all its roots on the unit circle. We show that the set of possible perturbations forms a closed interval of length at most 4, with 4 achieved only for polynomials of the form x(2n) + cx(n) + 1 with c in [-2, 2]. The problem can also be formulated in terms of perturbing the constant coefficient of a polynomial having all its roots in [-1, 1]. If we restrict to integer coefficients, then the polynomials in question are products of cyclotomics. We show that in this case there are no perturbations of length 3 that do not arise from a perturbation of length 4. We also investigate the connection between slightly perturbed products of cyclotomic polynomials and polynomials with small Mahler measure. We describe an algorithm for searching for polynomials with small Mahler measure by perturbing the middle coefficients of products of cyclotomic polynomials. We show that the complexity of this algorithm is O(C-root d), where d is the degree, and we report on the polynomials found by this algorithm through degree 64.
Transport of energetic ions by low-n magnetic perturbations
Mynick, H.E.
1992-10-01
The stochastic transport of MeV ions induced by low-n magnetic perturbations is studied, focussing chiefly on the stochastic mechanism operative for passing particles in low frequency perturbations. Beginning with a single-harmonic form for the perturbing field, it iii first shown numerically and analytically that the stochastic threshold of energetic particles can be much lower than that of the magnetic field, contrary to earlier expectations, so that MHD perturbations could cause appreciable loss of energetic ions without destroying the bulk confinement. The analytic theory is then extended in a number of directions, to darity the relation of the present stochaistic mechanism to instances already found, to allow for more complex perturbations, and to consider the more general relationship between the stochasticity of magnetic fields, and that of particles of differing energies (and pitch angles) moving in those fields. It is shown that the stochastic threshold is in general a nonmonotonic function of energy, whose form can to some extent be tailored to achieve desired goals (e.g., burn control or ash removal) by a judicious choice of the perturbation. Illustrative perturbations are exhibited which are stochastic for low but not for high-energy ions, for high but not for low-energy ions, and for intermediate-energy ions, but not for low or high energy. The second possibility is the behavior needed for burn control; the third provides a possible mechanism for ash removal.
Boundary Layer Instabilities Generated by Freestream Laser Perturbations
NASA Technical Reports Server (NTRS)
Chou, Amanda; Schneider, Steven P.
2015-01-01
A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.
Perturbative and non-perturbative aspects in vector model/higher spin duality
NASA Astrophysics Data System (ADS)
Jevicki, Antal; Jin, Kewang; Ye, Qibin
2013-05-01
We review some recent work on AdS/CFT duality involving the 3D O(N) vector model and AdS4 higher spin gravity. Our construction is based on bi-local collective field theory which provides an off-shell formulation of higher spin gravity with G = 1/N playing the role of a coupling constant. Consequently, perturbative and non-perturbative issues of the theory can be studied. For the correspondence based on free CFTs we discuss the nature of bulk 1/N interactions through an S-matrix which is argued to be equal to 1 (Coleman-Mandula theorem). As a consequence in this class of theories nonlinearities are removable, through a nonlinear field transformation which we show at the exact level. We also describe a geometric (Kähler space) framework for the bi-local theory which applies equally simply to Sp(2N) fermions and the de Sitter correspondence. We discuss in this framework the structure and size of the bi-local Hilbert space and the implementation of (finite N) exclusion principle. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.
A synthetic theory for the perturbations of Titan on Hyperion
NASA Astrophysics Data System (ADS)
Taylor, D. B.
1992-11-01
A theory for Hyperion is developed in which the perturbations by Titan have been developed synthetically. These perturbations were derived by fitting a sum of periodic terms to the numerical integration of Sinclair and Taylor (1985) extended to +/- 25 yr from the epoch used, 1973.87. A theory for Hyperion, constructed by adding the solar perturbations to the synthetic theory and including expressions for the motion of the orbit plane, was, together with the theories for the other major satellites of Saturn fitted to observations from 1967 to 1983.
Curvature and isocurvature perturbations in two-field inflation
NASA Astrophysics Data System (ADS)
Lalak, Z.; Langlois, D.; Pokorski, S.; Turzyński, K.
2007-07-01
We study cosmological perturbations in two-field inflation, allowing for non-standard kinetic terms. We calculate analytically the spectra of curvature and isocurvature modes at Hubble crossing, up to first order in the slow-roll parameters. We also compute numerically the evolution of the curvature and isocurvature modes from well within the Hubble radius until the end of inflation. We show explicitly for a few examples, including the recently proposed model of 'roulette' inflation, how isocurvature perturbations affect significantly the curvature perturbation between Hubble crossing and the end of inflation.
Extreme Value Analysis of Tidal Stream Velocity Perturbations
Harding, Samuel; Thomson, Jim; Polagye, Brian; Richmond, Marshall C.; Durgesh, Vibhav; Bryden, Ian
2011-04-26
This paper presents a statistical extreme value analysis of maximum velocity perturbations from the mean flow speed in a tidal stream. This study was performed using tidal velocity data measured using both an Acoustic Doppler Velocimeter (ADV) and an Acoustic Doppler Current Profiler (ADCP) at the same location which allows for direct comparison of predictions. The extreme value analysis implements of a Peak-Over-Threshold method to explore the effect of perturbation length and time scale on the magnitude of a 50-year perturbation.
Spectra of magnetic chain graphs: coupling constant perturbations
NASA Astrophysics Data System (ADS)
Exner, Pavel; Manko, Stepan S.
2015-03-01
We analyze spectral properties of a quantum graph in the form of a ring chain with a δ coupling in the vertices exposed to a homogeneous magnetic field perpendicular to the graph plane. We find the band spectrum in the case when the chain exhibits a translational symmetry and study the discrete spectrum in the gaps resulting from changing a finite number of vertex coupling constants. In particular, we discuss in detail some examples such as perturbations of one or two vertices, weak perturbation asymptotics, and a pair of distant perturbations.
Disentangling perturbative and power corrections in precision tau decay analysis
Gorbunov, D.S.; Pivovarov, A.A.
2005-01-01
Hadronic tau decay precision data are analyzed with account of both perturbative and power corrections of high orders within QCD. It is found that contributions of high order power corrections are essential for extracting a numerical value for the strange quark mass from the data on Cabibbo suppressed tau decays. We show that with inclusion of new five-loop perturbative corrections in the analysis the convergence of perturbation theory remains acceptable only for few low order moments. We obtain m{sub s}(M{sub {tau}})=130{+-}27 MeV in agreement with previous estimates.
Scalar perturbations in conformal rolling scenario with intermediate stage
Libanov, M.; Ramazanov, S.; Rubakov, V. E-mail: sabir@ms2.inr.ac.ru
2011-06-01
Scalar cosmological perturbations with nearly flat power spectrum may originate from perturbations of the phase of a scalar field conformally coupled to gravity and rolling down negative quartic potential. We consider a version of this scenario whose specific property is a long intermediate stage between the end of conformal rolling and horizon exit of the phase perturbations. Such a stage is natural, e.g., in cosmologies with ekpyrosis or genesis. Its existence results in small negative scalar tilt, statistical anisotropy of all even multipoles starting from quardupole of general structure (in contrast to the usually discussed single quadrupole of special type) and non-Gaussianity of a peculiar form.
Cosmological perturbations of a perfect fluid and noncommutative variables
De Felice, Antonio; Gerard, Jean-Marc; Suyama, Teruaki
2010-03-15
We describe the linear cosmological perturbations of a perfect fluid at the level of an action, providing thus an alternative to the standard approach based only on the equations of motion. This action is suited not only to perfect fluids with a barotropic equation of state, but also to those for which the pressure depends on two thermodynamical variables. By quantizing the system we find that (1) some perturbation fields exhibit a noncommutativity quite analogous to the one observed for a charged particle moving in a strong magnetic field, (2) local curvature and pressure perturbations cannot be measured simultaneously, (3) ghosts appear if the null energy condition is violated.
Stability of coflowing capillary jets under nonaxisymmetric perturbations.
Montanero, J M; Gañán-Calvo, A M
2008-04-01
In this paper, linear hydrodynamic stability analysis is used to study the response of a capillary jet and a coflowing fluid to both axisymmetric and nonaxisymmetric perturbations. The temporal analysis revealed that nonaxisymmetric perturbations were damped (or overdamped) within the region of parameter space explored, which involved equal velocities for the jet and focusing fluid. It is explained how an extension to a spatiotemporal analysis implies that those perturbations can yield no transition from convective (jetting) to absolute (whipping) instability for that parameter region. This result provides a theoretical explanation for the absence of that kind of transition in most experimental results in the literature.
Simple bounds from the perturbative regime of inflation
Leblond, Louis; Shandera, Sarah E-mail: sarah@phys.columbia.edu
2008-08-15
We examine the conditions under which a perturbative expansion around an inflating background is valid. When inflation is driven by a single field with a general sound speed, we find a lower limit on the sound speed related to the amplitude of the inflationary power spectrum. Generalizing the sound speed constraints to include scale dependence can limit the number of e-folds obtained in the perturbative regime and restrict otherwise apparently viable models. We also show that, for models with a low sound speed, eternal inflation cannot occur in the perturbative regime.
Second-order perturbation on a SDCI calculation
NASA Astrophysics Data System (ADS)
Maynau, Daniel; Heully, Jean-Louis
1993-08-01
Starting from a SDCI calculation the SD eigenvector is perturbed by all triply and quadruply excited determinants. Efficiency is promoted through direct CI techniques, however, some flexibility has been kept, making possible the use of various perturbational schemes (here: Epstein—Nesbet and M∅ller—Plesset). The SDCI starting point avoids divergence problems posed by CCSD(T) and also by purely perturbative methods such as MP4. Several calculations on the potential curves of some molecules (H 2O, N 2, F 2, Ne 2) show that the present method is at least as good as the MP4 or CCSD(T) methods at comparable computational cost.
Curvature perturbation and waterfall dynamics in hybrid inflation
Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao E-mail: firouz@mail.ipm.ir
2011-10-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.
Statistics and dynamics of the perturbed universe
NASA Astrophysics Data System (ADS)
Lemson, G.
1995-09-01
Wilson discovered the corresponding radiation field, at a temperature of roughly 3K (Penzias & Wilson, 1965). It soon appeared that this microwave background radiation was isotropic to a high degree, which conrmed the assumptions made about the homogeneity of the early Universe. At present however, we see that the Universe is no longer featureless and smooth. Starting from the smallest scales we see matter organized in structures up to very large scales: from planets to stars to stellar systems to galaxies to groups and clusters of galaxies, up to super-clusters, where clusters and galaxies are organized in the largest structures known. Somewhere during the evolution of the Universe, these structures must have developed out of the featureless, uniform sea of matter and radiation. Various different theories have been developed to explain the emergence of structure, but in this thesis I will concentrate exclusively on the most generally accepted theory, that of gravitational instability. In this theory it is assumed that in the early Universe, small fluctuations in the density were present, and these would grow under the influence of gravity towards the presently observed structures. There is actually a rather complete theory of the early stages of this process, that regime where these deviations from homogeneity are small. In that case, the inhomogeneous field may be seen as a small disturbance to the uniform model, and the standard apparatus of perturbation theory may be applied. In this thesis I investigate the later stages of this process of structure formation, where the fluctuations have grown to such a size that this 'linear' perturbation approach breaks down. There is as yet no comprehensive model describing this 'nonlinear' regime as successfully as the linear theory describes the early stages of structure formation. Instead, the problem is approached from many different directions, using different, approximate models for describing the dynamics and other
Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R
2016-02-01
Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information. PMID:26746011
Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R
2016-02-01
Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information.
Renormalization-scheme-invariant perturbation theory: Miracle or mirage
Chyla, J.
1985-05-15
A recently proposed solution to the renormalization-scheme ambiguity in perturbation theory is critically analyzed and shown to possess another kind of ambiguity closely related to the one it is supposed to cure.
Capillary-mediated interface perturbations: Deterministic pattern formation
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.
2016-09-01
Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.
Cosmological perturbations of axion with a dynamical decay constant
NASA Astrophysics Data System (ADS)
Kobayashi, Takeshi; Takahashi, Fuminobu
2016-08-01
A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the number of degenerate vacua along the axion potential.
Revised Perturbation Statistics for the Global Scale Atmospheric Model
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1975-01-01
Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees.
Life expectancy change in perturbed communities: derivation and qualitative analysis.
Dambacher, Jeffrey M; Levins, Richard; Rossignol, Philippe A
2005-09-01
Pollution, loss of habitat, and climate change are introducing dramatic perturbations to natural communities and affecting public health. Populations in perturbed communities can change dynamically, in both abundance and age structure. While analysis of the community matrix can predict changes in population abundance arising from a sustained or press perturbation, perturbations also have the potential to modify life expectancy, which adds yet another means to falsify experimental hypotheses and to monitor management interventions in natural systems. In some instances, an input to a community will produce no change in the abundance of a population but create a major shift in its mean age. We present an analysis of change in both abundance and life expectancy, leading to a formal quantitative assessment as well as qualitative predictions, and illustrate the usefulness of the technique through general examples relating to vector-borne disease and fisheries. PMID:16043195
Tensor perturbations in a general class of Palatini theories
Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J. E-mail: laviniah@kth.se
2015-06-01
We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Tracking perturbations in Boolean networks with spectral methods.
Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli
2005-08-01
In this paper we present a method for predicting the spread of perturbations in Boolean networks. The method is applicable to networks that have no regular topology. The prediction of perturbations can be performed easily by using a presented result which enables the efficient computation of the required iterative formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the method is applied to show the spread of perturbations in networks containing a distribution of functions found from biological data. The advances in the study of the spread of perturbations can directly be applied to enable ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be computed and thus distributions of functions compared with each other with respect to the amount of order they create in random networks. PMID:16196674
Generating ekpyrotic curvature perturbations before the big bang
Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.
2007-11-15
We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n{sub s} tends to range from slightly blue to red, with 0.97
Some methods for calculation of perturbations in nuclear reactors
Abramov, B. D.
2015-12-15
Some methods for calculation of local perturbations of neutron fields and reactivity effects accompanying them are considered. Existence, uniqueness, properties and methods for finding solutions to the considered problems are discussed.
Global terrestrial biogeochemistry: Perturbations, interactions, and time scales
Braswell, B.H. Jr.
1996-12-01
Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.
Noise Reduction in High-Throughput Gene Perturbation Screens
Technology Transfer Automated Retrieval System (TEKTRAN)
Motivation: Accurate interpretation of perturbation screens is essential for a successful functional investigation. However, the screened phenotypes are often distorted by noise, and their analysis requires specialized statistical analysis tools. The number and scope of statistical methods available...
Cosmic-string-induced hot dark matter perturbations
NASA Technical Reports Server (NTRS)
Van Dalen, Anthony
1990-01-01
This paper investigates the evolution of initially relativistic matter, radiation, and baryons around cosmic string seed perturbations. A detailed analysis of the linear evolution of spherical perturbations in a universe is carried out, and this formalism is used to study the evolution of perturbations around a sphere of uniform density and fixed radius, approximating a loop of cosmic string. It was found that, on scales less than a few megaparsec, the results agree with the nonrelativistic calculation of previous authors. On greater scales, there is a deviation approaching a factor of 2-3 in the perturbation mass. It is shown that a scenario with cosmic strings, hot dark matter, and a Hubble constant greater than 75 km/sec per Mpc can generally produce structure on the observed mass scales and at the appropriate time: 1 + z = about 4 for galaxies and 1 + z = about 1.5 for Abell clusters.
Gyroscope test of gravitation: An analysis of the important perturbations
NASA Technical Reports Server (NTRS)
Oconnell, R. F.
1971-01-01
Two perturbations, the earth's quadrupole moment and the earth's revolution around the sun, are discussed. Schiff's proposed gyroscope test of gravitation is analyzed, along with the capability of deciphering each separate contribution to the angular velocity of spin precession.
Perturbed atoms in molecules and solids: The PATMOS model.
Røeggen, Inge; Gao, Bin
2013-09-01
A new computational method for electronic-structure studies of molecules and solids is presented. The key element in the new model - denoted the perturbed atoms in molecules and solids model - is the concept of a perturbed atom in a complex. The basic approximation of the new model is unrestricted Hartree Fock (UHF). The UHF orbitals are localized by the Edmiston-Ruedenberg procedure. The perturbed atoms are defined by distributing the orbitals among the nuclei in such a way that the sum of the intra-atomic UHF energies has a minimum. Energy corrections with respect to the UHF energy, are calculated within the energy incremental scheme. The most important three- and four-electron corrections are selected by introducing a modified geminal approach. Test calculations are performed on N2, Li2, and parallel arrays of hydrogen atoms. The character of the perturbed atoms is illustrated by calculations on H2, CH4, and C6H6.
Multifractality of quantum wave functions in the presence of perturbations.
Dubertrand, R; García-Mata, I; Georgeot, B; Giraud, O; Lemarié, G; Martin, J
2015-09-01
We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems. PMID:26465547
Characterizing metabolic pathway diversification in the context of perturbation size.
Yang, Laurence; Srinivasan, Shyamsundhar; Mahadevan, Radhakrishnan; Cluett, William R
2015-03-01
Cell metabolism is an important platform for sustainable biofuel, chemical and pharmaceutical production but its complexity presents a major challenge for scientists and engineers. Although in silico strains have been designed in the past with predicted performances near the theoretical maximum, real-world performance is often sub-optimal. Here, we simulate how strain performance is impacted when subjected to many randomly varying perturbations, including discrepancies between gene expression and in vivo flux, osmotic stress, and substrate uptake perturbations due to concentration gradients in bioreactors. This computational study asks whether robust performance can be achieved by adopting robustness-enhancing mechanisms from naturally evolved organisms-in particular, redundancy. Our study shows that redundancy, typically perceived as a ubiquitous robustness-enhancing strategy in nature, can either improve or undermine robustness depending on the magnitude of the perturbations. We also show that the optimal number of redundant pathways used can be predicted for a given perturbation size.
Inflationary perturbations in anisotropic, shear-free universes
Pereira, Thiago S.; Carneiro, Saulo; Marugan, Guillermo A. Mena E-mail: saulo.carneiro@pq.cnpq.br
2012-05-01
In this work, the linear and gauge-invariant theory of cosmological perturbations in a class of anisotropic and shear-free spacetimes is developed. After constructing an explicit set of complete eigenfunctions in terms of which perturbations can be expanded, we identify the effective degrees of freedom during a generic slow-roll inflationary phase. These correspond to the anisotropic equivalent of the standard Mukhanov-Sasaki variables. The associated equations of motion present a remarkable resemblance to those found in perturbed Friedmann-Robertson-Walker spacetimes with curvature, apart from the spectrum of the Laplacian, which exhibits the characteristic frequencies of the underlying geometry. In particular, it is found that the perturbations cannot develop arbitrarily large super-Hubble modes.
On the breakdown of the curvature perturbation ζ during reheating
NASA Astrophysics Data System (ADS)
Tarman Algan, Merve; Kaya, Ali; Seyma Kutluk, Emine
2015-04-01
It is known that in single scalar field inflationary models the standard curvature perturbation ζ, which is supposedly conserved at superhorizon scales, diverges during reheating at times 0dot phi=, i.e. when the time derivative of the background inflaton field vanishes. This happens because the comoving gauge 0varphi=, where varphi denotes the inflaton perturbation, breaks down when 0dot phi=. The issue is usually bypassed by averaging out the inflaton oscillations but strictly speaking the evolution of ζ is ill posed mathematically. We solve this problem in the free theory by introducing a family of smooth gauges that still eliminates the inflaton fluctuation varphi in the Hamiltonian formalism and gives a well behaved curvature perturbation ζ, which is now rigorously conserved at superhorizon scales. At the linearized level, this conserved variable can be used to unambiguously propagate the inflationary perturbations from the end of inflation to subsequent epochs. We discuss the implications of our results for the inflationary predictions.
The probability equation for the cosmological comoving curvature perturbation
Riotto, Antonio; Sloth, Martin S. E-mail: sloth@cern.ch
2011-10-01
Fluctuations of the comoving curvature perturbation with wavelengths larger than the horizon length are governed by a Langevin equation whose stochastic noise arise from the quantum fluctuations that are assumed to become classical at horizon crossing. The infrared part of the curvature perturbation performs a random walk under the action of the stochastic noise and, at the same time, it suffers a classical force caused by its self-interaction. By a path-interal approach and, alternatively, by the standard procedure in random walk analysis of adiabatic elimination of fast variables, we derive the corresponding Kramers-Moyal equation which describes how the probability distribution of the comoving curvature perturbation at a given spatial point evolves in time and is a generalization of the Fokker-Planck equation. This approach offers an alternative way to study the late time behaviour of the correlators of the curvature perturbation from infrared effects.
Convergent perturbation theory for lattice models with fermions
NASA Astrophysics Data System (ADS)
Sazonov, V. K.
2016-05-01
The standard perturbation theory in QFT and lattice models leads to the asymptotic expansions. However, an appropriate regularization of the path or lattice integrals allows one to construct convergent series with an infinite radius of the convergence. In the earlier studies, this approach was applied to the purely bosonic systems. Here, using bosonization, we develop the convergent perturbation theory for a toy lattice model with interacting fermionic and bosonic fields.
Perturbations from cosmic strings in cold dark matter
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Stebbins, Albert
1992-01-01
A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.
Perturbations from cosmic strings in cold dark matter
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Stebbins, Albert
1991-01-01
A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.