Science.gov

Sample records for hes homotopy perturbation

  1. Nonlinearities distribution Laplace transform-homotopy perturbation method.

    PubMed

    Filobello-Nino, Uriel; Vazquez-Leal, Hector; Benhammouda, Brahim; Hernandez-Martinez, Luis; Hoyos-Reyes, Claudio; Perez-Sesma, Jose Antonio Agustin; Jimenez-Fernandez, Victor Manuel; Pereyra-Diaz, Domitilo; Marin-Hernandez, Antonio; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus; Cervantes-Perez, Juan

    2014-01-01

    This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.

  2. Application of the Homotopy Perturbation Method to the Nonlinear Pendulum

    ERIC Educational Resources Information Center

    Belendez, A.; Hernandez, A.; Belendez, T.; Marquez, A.

    2007-01-01

    The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a simple pendulum, and an approximate expression for its period is obtained. Only one iteration leads to high accuracy of the solutions and the relative error for the approximate period is less than 2% for amplitudes as…

  3. Application of the Homotopy Perturbation Method to the Nonlinear Pendulum

    ERIC Educational Resources Information Center

    Belendez, A.; Hernandez, A.; Belendez, T.; Marquez, A.

    2007-01-01

    The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a simple pendulum, and an approximate expression for its period is obtained. Only one iteration leads to high accuracy of the solutions and the relative error for the approximate period is less than 2% for amplitudes as…

  4. Series Expansion of Functions with He's Homotopy Perturbation Method

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2012-01-01

    Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…

  5. Series Expansion of Functions with He's Homotopy Perturbation Method

    ERIC Educational Resources Information Center

    Khattri, Sanjay Kumar

    2012-01-01

    Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…

  6. Laplace homotopy perturbation method for Burgers equation with space- and time-fractional order

    NASA Astrophysics Data System (ADS)

    Johnston, S. J.; Jafari, H.; Moshokoa, S. P.; Ariyan, V. M.; Baleanu, D.

    2016-01-01

    The fractional Burgers equation describes the physical processes of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe. The Laplace homotopy perturbation method is discussed to obtain the approximate analytical solution of space-fractional and time-fractional Burgers equations. The method used combines the Laplace transform and the homotopy perturbation method. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional orders.

  7. Solution of Fifth-order Korteweg and de Vries Equation by Homotopy perturbation Transform Method using He's Polynomial

    NASA Astrophysics Data System (ADS)

    Sharma, Dinkar; Singh, Prince; Chauhan, Shubha

    2017-06-01

    In this paper, a combined form of the Laplace transform method with the homotopy perturbation method is applied to solve nonlinear fifth order Korteweg de Vries (KdV) equations. The method is known as homotopy perturbation transform method (HPTM). The nonlinear terms can be easily handled by the use of He's polynomials. Two test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM).

  8. Solving linear fractional-order differential equations via the enhanced homotopy perturbation method

    NASA Astrophysics Data System (ADS)

    Naseri, E.; Ghaderi, R.; Ranjbar N, A.; Sadati, J.; Mahmoudian, M.; Hosseinnia, S. H.; Momani, S.

    2009-10-01

    The linear fractional differential equation is solved using the enhanced homotopy perturbation method (EHPM). In this method, the convergence has been provided by selecting a stabilizing linear part. The most significant features of this method are its simplicity and its excellent accuracy and convergence for the whole range of fractional-order differential equations.

  9. Optimal homotopy perturbation method for solving a nonlinear problem in elasticity

    NASA Astrophysics Data System (ADS)

    Ene, R.-D.; Marinca, V.; Cãruntu, B.

    2012-09-01

    In this paper we present an analytical method - the Optimal Homotopy Perturbation Method (OHPM), and we apply it to find approximate solutions for a nonlinear problem related to the stress and deformation states of a thin elastic plate. OHPM combines the features of the homotopy approach with an efficient computational algorithm which provides a convenient way to control the convergence of the approximation series. The comparison of the results obtained by OHPM with results obtained by numerical integration show a very good agreement proving the effectiveness and accuracy of the method.

  10. A new modification to homotopy perturbation method combined with Fourier transform for solving nonlinear Cauchy reaction diffusion equation

    NASA Astrophysics Data System (ADS)

    Nourazar, S. S.; Nazari-Golshan, A.

    2015-01-01

    A hybrid of Fourier transform and new modified homotopy perturbation method based on the Adomian method is developed to solve linear and nonlinear partial differential equations. The Taylor series expansion is used to expand nonlinear term of partial differential equation and the Adomian polynomial incorporated into homotopy perturbation method combined with Fourier transform, is used to solve partial differential equations. Three case study problems, partial differential equations, are handled using homotopy perturbation method and Fourier transform modified homotopy perturbation method (FTMHPM). Results obtained are compared with exact solution. The comparison reveals that for same components of recursive sequences, errors associated with Fourier transform modified method are much less than the other and are valid for a large range of x-axis coordinates.

  11. Optimal homotopy perturbation method for nonlinear differential equations governing MHD Jeffery-Hamel flow with heat transfer problem

    NASA Astrophysics Data System (ADS)

    Marinca, Vasile; Ene, Remus-Daniel

    2017-01-01

    In this paper, the Optimal Homotopy Perturbation Method (OHPM) is employed to determine an analytic approximate solution for the nonlinear MHD Jeffery-Hamel flow and heat transfer problem. The Navier-Stokes equations, taking into account Maxwell's electromagnetism and heat transfer, lead to two nonlinear ordinary differential equations. The results obtained by means of OHPM show very good agreement with numerical results and with Homotopy Perturbation Method (HPM) results.

  12. Homotopy Perturbation Method-Based Analytical Solution for Tide-Induced Groundwater Fluctuations.

    PubMed

    Munusamy, Selva Balaji; Dhar, Anirban

    2016-05-01

    The groundwater variations in unconfined aquifers are governed by the nonlinear Boussinesq's equation. Analytical solution for groundwater fluctuations in coastal aquifers under tidal forcing can be solved using perturbation methods. However, the perturbation parameters should be properly selected and predefined for traditional perturbation methods. In this study, a new dimensional, higher-order analytical solution for groundwater fluctuations is proposed by using the homotopy perturbation method with a virtual perturbation parameter. Parameter-expansion method is used to remove the secular terms generated during the solution process. The solution does not require any predefined perturbation parameter and valid for higher values of amplitude parameter A/D, where A is the amplitude of the tide and D is the aquifer thickness.

  13. Laplace transform homotopy perturbation method for the approximation of variational problems.

    PubMed

    Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R

    2016-01-01

    This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.

  14. Calculation of the neutron diffusion equation by using Homotopy Perturbation Method

    NASA Astrophysics Data System (ADS)

    Koklu, H.; Ersoy, A.; Gulecyuz, M. C.; Ozer, O.

    2016-03-01

    The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent results consistent with the existing literature.

  15. On the Application of Homotopy Perturbation Method for Solving Systems of Linear Equations

    PubMed Central

    Edalatpanah, S. A.; Rashidi, M. M.

    2014-01-01

    The application of homotopy perturbation method (HPM) for solving systems of linear equations is further discussed and focused on a method for choosing an auxiliary matrix to improve the rate of convergence. Moreover, solving of convection-diffusion equations has been developed by HPM and the convergence properties of the proposed method have been analyzed in detail; the obtained results are compared with some other methods in the frame of HPM. Numerical experiment shows a good improvement on the convergence rate and the efficiency of this method. PMID:27350974

  16. Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method.

    PubMed

    Reck, Kasper; Thomsen, Erik V; Hansen, Ole

    2011-01-31

    The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution.

  17. Homotopy perturbation method for free vibration analysis of beams on elastic foundation

    NASA Astrophysics Data System (ADS)

    Ozturk, Baki; Bozkurt Coskun, Safa; Zahid Koc, Mehmet; Tarik Atay, Mehmet

    2010-06-01

    In this study, the homotopy perturbation method (HPM) is applied for free vibration analysis of beam on elastic foundation. This numerical method is applied on a previously available case study. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, Nr. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for the case considered in this study and the differential transform method (DTM) results available in the literature.

  18. Calculation of the neutron diffusion equation by using Homotopy Perturbation Method

    SciTech Connect

    Koklu, H. Ozer, O.; Ersoy, A.; Gulecyuz, M. C.

    2016-03-25

    The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent results consistent with the existing literature.

  19. A New Homotopy Perturbation Scheme for Solving Singular Boundary Value Problems Arising in Various Physical Models

    NASA Astrophysics Data System (ADS)

    Roul, Pradip; Warbhe, Ujwal

    2017-08-01

    The classical homotopy perturbation method proposed by J. H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999) is useful for obtaining the approximate solutions for a wide class of nonlinear problems in terms of series with easily calculable components. However, in some cases, it has been found that this method results in slowly convergent series. To overcome the shortcoming, we present a new reliable algorithm called the domain decomposition homotopy perturbation method (DDHPM) to solve a class of singular two-point boundary value problems with Neumann and Robin-type boundary conditions arising in various physical models. Five numerical examples are presented to demonstrate the accuracy and applicability of our method, including thermal explosion, oxygen-diffusion in a spherical cell and heat conduction through a solid with heat generation. A comparison is made between the proposed technique and other existing seminumerical or numerical techniques. Numerical results reveal that only two or three iterations lead to high accuracy of the solution and this newly improved technique introduces a powerful improvement for solving nonlinear singular boundary value problems (SBVPs).

  20. Application of the enhanced homotopy perturbation method to solve the fractional-order Bagley-Torvik differential equation

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M.; Ghaderi, R.; Sheikhol Eslami, A.; Ranjbar, A.; Hosseinnia, S. H.; Momani, S.; Sadati, J.

    2009-10-01

    The enhanced homotopy perturbation method (EHPM) is applied for finding improved approximate solutions of the well-known Bagley-Torvik equation for three different cases. The main characteristic of the EHPM is using a stabilized linear part, which guarantees the stability and convergence of the overall solution. The results are finally compared with the Adams-Bashforth-Moulton numerical method, the Adomian decomposition method (ADM) and the fractional differential transform method (FDTM) to verify the performance of the EHPM.

  1. Modified homotopy perturbation method for solving hypersingular integral equations of the first kind.

    PubMed

    Eshkuvatov, Z K; Zulkarnain, F S; Nik Long, N M A; Muminov, Z

    2016-01-01

    Modified homotopy perturbation method (HPM) was used to solve the hypersingular integral equations (HSIEs) of the first kind on the interval [-1,1] with the assumption that the kernel of the hypersingular integral is constant on the diagonal of the domain. Existence of inverse of hypersingular integral operator leads to the convergence of HPM in certain cases. Modified HPM and its norm convergence are obtained in Hilbert space. Comparisons between modified HPM, standard HPM, Bernstein polynomials approach Mandal and Bhattacharya (Appl Math Comput 190:1707-1716, 2007), Chebyshev expansion method Mahiub et al. (Int J Pure Appl Math 69(3):265-274, 2011) and reproducing kernel Chen and Zhou (Appl Math Lett 24:636-641, 2011) are made by solving five examples. Theoretical and practical examples revealed that the modified HPM dominates the standard HPM and others. Finally, it is found that the modified HPM is exact, if the solution of the problem is a product of weights and polynomial functions. For rational solution the absolute error decreases very fast by increasing the number of collocation points.

  2. A handy approximate solution for a squeezing flow between two infinite plates by using of Laplace transform-homotopy perturbation method.

    PubMed

    Filobello-Nino, Uriel; Vazquez-Leal, Hector; Cervantes-Perez, Juan; Benhammouda, Brahim; Perez-Sesma, Agustin; Hernandez-Martinez, Luis; Jimenez-Fernandez, Victor Manuel; Herrera-May, Agustin Leobardo; Pereyra-Diaz, Domitilo; Marin-Hernandez, Antonio; Huerta Chua, Jesus

    2014-01-01

    This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient.

  3. Homotopy perturbation method with Laplace Transform (LT-HPM) for solving Lane-Emden type differential equations (LETDEs).

    PubMed

    Tripathi, Rajnee; Mishra, Hradyesh Kumar

    2016-01-01

    In this communication, we describe the Homotopy Perturbation Method with Laplace Transform (LT-HPM), which is used to solve the Lane-Emden type differential equations. It's very difficult to solve numerically the Lane-Emden types of the differential equation. Here we implemented this method for two linear homogeneous, two linear nonhomogeneous, and four nonlinear homogeneous Lane-Emden type differential equations and use their appropriate comparisons with exact solutions. In the current study, some examples are better than other existing methods with their nearer results in the form of power series. The Laplace transform used to accelerate the convergence of power series and the results are shown in the tables and graphs which have good agreement with the other existing method in the literature. The results show that LT-HPM is very effective and easy to implement.

  4. On the accuracy of homotopy perturbation and variational iteration methods for lateral broadening of a monoenergetic proton beam

    NASA Astrophysics Data System (ADS)

    Noshad, Houshyar; Bahador, Seyyedeh Samira; Mohammadi, Saeed

    2013-10-01

    In this article, dispersion of a 60 MeV proton pencil beam at various depths in a muscle tissue was numerically investigated via solving a three dimensional Fokker-Planck equation using homotopy perturbation method (HPM) and variational iteration method (VIM). The accuracy of these methods was benchmarked by comparison the radial flux distribution of protons traversing different depths in the tissue with the data of the High Charge and Energy Transport (HZETRN) model and Monte Carlo simulations. Furthermore, the computed depth dose distributions obtained from the HPM and VIM for monoenergetic protons passing through a medium were compared with the results of GEANT4.5.2 code as well as the experimental data reported in the literature. The satisfactory agreement obtained from our computations shows the reliability and applicability of the HPM and VIM in our analysis.

  5. Solution of one-dimensional space- and time-fractional advection-dispersion equation by homotopy perturbation method

    NASA Astrophysics Data System (ADS)

    Singh, Mritunjay Kumar; Chatterjee, Ayan

    2017-04-01

    This study develops solution of one-dimensional space-time fractional advection-dispersion equation (FADE). Various forms of dispersion and velocity profiles (i.e. space dependent and both space-time dependent) are considered throughout the study. Homotopy perturbation method (HPM) is used to solve the problem semi-analytically. The advantage of HPM is that it does not require much information about the boundary of the aquifer. The initial condition may be measured for an aquifer, but sometimes it is very difficult to specify the boundary conditions. The FADE is employed for modeling the fate of contaminants in both homogeneous and heterogeneous porous formations subject to an increasing spatially dependent source condition. It is found that the contaminant concentration changes with the order of FADE as fractional-order derivative contains the memory of the system, i.e. how the system changes from one integer order to another integer order. FADEs are used to model the non-local system, hence this study helps understand the physical meaning of parameters involved in the velocity and dispersion.

  6. Steenrod homotopy

    NASA Astrophysics Data System (ADS)

    Melikhov, Sergey A.

    2009-06-01

    Steenrod homotopy theory is a natural framework for doing algebraic topology on general spaces in terms of algebraic topology of polyhedra; or from a different viewpoint, it studies the topology of the \\lim^1 functor (for inverse sequences of groups). This paper is primarily concerned with the case of compacta, in which Steenrod homotopy coincides with strong shape. An attempt is made to simplify the foundations of the theory and to clarify and improve some of its major results. With geometric tools such as Milnor's telescope compactification, comanifolds (=mock bundles), and the Pontryagin-Thom construction, new simple proofs are obtained for results by Barratt-Milnor, Geoghegan-Krasinkiewicz, Dydak, Dydak-Segal, Krasinkiewicz-Minc, Cathey, Mittag-Leffler-Bourbaki, Fox, Eda-Kawamura, Edwards-Geoghegan, Jussila, and for three unpublished results by Shchepin. An error in Lisitsa's proof of the `Hurewicz theorem in Steenrod homotopy' is corrected. It is shown that over compacta, R.H. Fox's overlayings are equivalent to I.M. James' uniform covering maps. Other results include: \\bullet A morphism between inverse sequences of countable (possibly non-Abelian) groups that induces isomorphisms on \\lim and \\lim^1 is invertible in the pro-category. This implies the `Whitehead theorem in Steenrod homotopy', thereby answering two questions of Koyama. \\bullet If X is an LC_{n-1}-compactum, n\\ge 1, then its n-dimensional Steenrod homotopy classes are representable by maps S^n\\to\

  7. Effects of thermal-diffusion and viscous dissipation on peristaltic flow of micropolar non-Newtonian nanofluid: Application of homotopy perturbation method

    NASA Astrophysics Data System (ADS)

    Abou-zeid, Mohamed

    In this paper, a study of the peristaltic motion of incompressible micropolar non-Newtonian nanofluid with heat transfer in a two-dimensional asymmetric channel is investigated under long-wavelength assumption. The flow includes radiation and viscous dissipation effects as well as all micropolar fluid parameters. The fundamental equations which govern this flow have been modeled under long-wavelength assumption, and the expressions of velocity and microrotation velocity are obtained in a closed form, while the solutions of both temperature and nanoparticles phenomena are obtained using the homotopy perturbation method (HPM). Also, the skin friction, Nusselt number and Sherwood number are obtained at both lower and upper walls. The results have been discussed graphically to observe the effects the physical parameters of the problem have on the physical quantities.

  8. Homotopy optimization methods for global optimization.

    SciTech Connect

    Dunlavy, Daniel M.; O'Leary, Dianne P. (University of Maryland, College Park, MD)

    2005-12-01

    We define a new method for global optimization, the Homotopy Optimization Method (HOM). This method differs from previous homotopy and continuation methods in that its aim is to find a minimizer for each of a set of values of the homotopy parameter, rather than to follow a path of minimizers. We define a second method, called HOPE, by allowing HOM to follow an ensemble of points obtained by perturbation of previous ones. We relate this new method to standard methods such as simulated annealing and show under what circumstances it is superior. We present results of extensive numerical experiments demonstrating performance of HOM and HOPE.

  9. Hypereosinophilic Syndrome (HES)

    MedlinePlus

    ... and is part of the larger group of Myeloproliferative Neoplasms. Closely related disease to HES is chronic eosinophilic ... long-term therapy. Overall experience with IFNa in myeloproliferative neoplasms is that about 25-30% of patients require ...

  10. Algebraic invariants for homotopy types

    NASA Astrophysics Data System (ADS)

    Blanc, David

    1999-11-01

    We define a sequence of purely algebraic invariants - namely, classes in the Quillen cohomology of the [Pi]-algebra [pi][low asterisk]X - for distinguishing between different homotopy types of spaces. Another sequence of such cohomology classes allows one to decide whether a given abstract [Pi]-algebra can be realized as the homotopy [Pi]-algebra of a space.

  11. HOPE: a homotopy optimization method for protein structure prediction.

    PubMed

    Dunlavy, Daniel M; O'Leary, Dianne P; Klimov, Dmitri; Thirumalai, D

    2005-12-01

    We use a homotopy optimization method, HOPE, to minimize the potential energy associated with a protein model. The method uses the minimum energy conformation of one protein as a template to predict the lowest energy structure of a query sequence. This objective is achieved by following a path of conformations determined by a homotopy between the potential energy functions for the two proteins. Ensembles of solutions are produced by perturbing conformations along the path, increasing the likelihood of predicting correct structures. Successful results are presented for pairs of homologous proteins, where HOPE is compared to a variant of Newton's method and to simulated annealing.

  12. Global optimization using homotopy with 2-step predictor-corrector method

    NASA Astrophysics Data System (ADS)

    Chang, Kerk Lee; Ahmad, Rohanin Bt.

    2014-06-01

    In this research, we suggest a new method for solving global optimization problem by improving Homotopy Optimization with Perturbations and Ensembles (HOPE) method. Our new method, named as Homotopy 2-Step Predictor-corrector Method (HSPM) is based on the intermediate Value Theorem (IVT) coupled with modified Predictor-Corrector Halley method (PCH) for solving global optimization problem. HSPM does not require a good initial guess since it contains the element of homotopy, which is a globally convergent method. This paper discusses the time complexity of the new algorithm, which makes it more efficient than HOPE.

  13. Asymptotic invariants of homotopy groups

    NASA Astrophysics Data System (ADS)

    Manin, Fedor

    We study the homotopy groups of a finite CW complex X via constraints on the geometry of representatives of their elements. For example, one can measure the "size" of alpha ∈ pi n (X) by the optimal Lipschitz constant or volume of a representative. By comparing the geometrical structure thus obtained with the algebraic structure of the group, one can define functions such as growth and distortion in pin(X), analogously to the way that such functions are studied in asymptotic geometric group theory. We provide a number of examples and techniques for studying these invariants, with a special focus on spaces with few rational homotopy groups. Our main theorem characterizes those X in which all non-torsion homotopy classes are undistorted, that is, their volume distortion functions, and hence also their Lipschitz distortion functions, are linear.

  14. Hes1 Is Expressed in the Second Heart Field and Is Required for Outflow Tract Development

    PubMed Central

    Mesbah, Karim; Jarry, Thérèse; Mattei, Marie-Geneviève; Kelly, Robert G.

    2009-01-01

    Background Rapid growth of the embryonic heart occurs by addition of progenitor cells of the second heart field to the poles of the elongating heart tube. Failure or perturbation of this process leads to congenital heart defects. In order to provide further insight into second heart field development we characterized the insertion site of a transgene expressed in the second heart field and outflow tract as the result of an integration site position effect. Results Here we show that the integration site of the A17-Myf5-nlacZ-T55 transgene lies upstream of Hes1, encoding a basic helix-loop-helix containing transcriptional repressor required for the maintenance of diverse progenitor cell populations during embryonic development. Transgene expression in a subset of Hes1 expression sites, including the CNS, pharyngeal epithelia, pericardium, limb bud and lung endoderm suggests that Hes1 is the endogenous target of regulatory elements trapped by the transgene. Hes1 is expressed in pharyngeal endoderm and mesoderm including the second heart field. Analysis of Hes1 mutant hearts at embryonic day 15.5 reveals outflow tract alignment defects including ventricular septal defects and overriding aorta. At earlier developmental stages, Hes1 mutant embryos display defects in second heart field proliferation, a reduction in cardiac neural crest cells and failure to completely extend the outflow tract. Conclusions Hes1 is expressed in cardiac progenitor cells in the early embryo and is required for development of the arterial pole of the heart. PMID:19609448

  15. Homotopy theory in toric topology

    NASA Astrophysics Data System (ADS)

    Grbić, J.; Theriault, S.

    2016-04-01

    In toric topology one associates with each simplicial complex K on m vertices two key spaces, the Davis-Januszkiewicz space DJK and the moment-angle complex \\mathscr{Z}K, which are related by a homotopy fibration \\mathscr{Z}K\\xrightarrow{\\tilde{w}}DJ_K\\to \\prodi=1m{C}P∞. A great deal of work has been done to study the properties of DJK and \\mathscr{Z}K, their generalizations to polyhedral products, and applications to algebra, combinatorics, and geometry. Chap. 1 surveys some of the main results in the homotopy theory of these spaces. Chap. 2 breaks new ground by initiating a study of the map \\tilde{w}. It is shown that, for a certain family of simplicial complexes K, the map \\tilde{w} is a sum of higher and iterated Whitehead products. Bibliography: 49 titles.

  16. On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: A general approach

    NASA Astrophysics Data System (ADS)

    Van Gorder, Robert A.; Vajravelu, K.

    2009-12-01

    The Homotopy Analysis Method of Liao [Liao SJ. Beyond perturbation: introduction to the Homotopy Analysis Method. Boca Raton: Chapman & Hall/CRC Press; 2003] has proven useful in obtaining analytical solutions to various nonlinear differential equations. In this method, one has great freedom to select auxiliary functions, operators, and parameters in order to ensure the convergence of the approximate solutions and to increase both the rate and region of convergence. We discuss in this paper the selection of the initial approximation, auxiliary linear operator, auxiliary function, and convergence control parameter in the application of the Homotopy Analysis Method, in a fairly general setting. Further, we discuss various convergence requirements on solutions.

  17. Universal homotopy associative, homotopy commutative H-spaces and the EHP spectral sequence

    NASA Astrophysics Data System (ADS)

    Grbic, Jelena

    2006-05-01

    Assume that all spaces and maps are localised at a fixed prime p. We study the possibility of generating a universal space U(X) from a space X which is universal in the category of homotopy associative, homotopy commutative H-spaces in the sense that any map fcolon X-> Y to a homotopy associative, homotopy commutative H-space extends to a uniquely determined H-map /line{f}colon U(X)-> Y. Developing a method for recognising certain universal spaces, we show the existence of the universal space F_2(n) of a certain three-cell complex L. Using this specific example, we derive some consequences for the calculation of the unstable homotopy groups of spheres, namely, we obtain a formula for the d_1-differential of the EHP-spectral sequence valid in a certain range.

  18. Comparative study of homotopy continuation methods for nonlinear algebraic equations

    NASA Astrophysics Data System (ADS)

    Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.

    2014-07-01

    We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).

  19. Regular homotopy for immersions of graphs into surfaces

    NASA Astrophysics Data System (ADS)

    Permyakov, D. A.

    2016-06-01

    We study invariants of regular immersions of graphs into surfaces up to regular homotopy. The concept of the winding number is used to introduce a new simple combinatorial invariant of regular homotopy. Bibliography: 20 titles.

  20. Application of exponential homotopy algorithm in the inverter harmonic elimination

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2017-02-01

    Eliminating harmonic pollution and improving power factor are the quite important task in the field of power electronics. From the mathematical point of view, harmonic elimination problems can be translated into nonlinear equations. But it is difficult to directly solve the nonlinear equations because of complexity. For this reason, exponential homotopy method is proposed based on homotopy method in this paper. It has focused on built up homotopy equations by modifying the singularities of Jacobian matrix, and on this basis homotopy equations are transformed into the differential initial value problems. Numerical results show that the new exponential homotopy method has higher precision than other algorithms, and the singularity is improved.

  1. Nonlinear filters with log-homotopy

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2007-09-01

    We derive and test a new nonlinear filter that implements Bayes' rule using an ODE rather than with a pointwise multiplication of two functions. This avoids one of the fundamental and well known problems in particle filters, namely "particle collapse" as a result of Bayes' rule. We use a log-homotopy to construct this ODE. Our new algorithm is vastly superior to the classic particle filter, and we do not use any proposal density supplied by an EKF or UKF or other outside source. This paper was written for normal engineers, who do not have homotopy for breakfast.

  2. Magnetic Soliton, Homotopy and Higgs Theory,

    DTIC Science & Technology

    1986-04-24

    OD-AL67 366 NAGETIC SOLITON ONOTOPY ND HIGGS THEORY(U) FOREIGNI n1/ 1TECHNOLOGY D V NRIGHT-PATTERSON AFD ON Y LI ET AL. UNCLSSIIED24 APR 86 FTD-ID...MAGNETIC SOLITON, HOMOTOPY AND HIGGS THEORY by Li Yuanjie and Lei Shizu *. . * . .%..**% . . .-..C./ ~~~Approved for public release; -," Distribution...HOMOTOPY AND HIGGS THEORY By: Li Yuanjie and Lei Shizu English pages: 9 Source: Huazhong Gongxueyuan Xuebao, Vol. 11, Nr. 6, 1983, pp. 65-70 Country of

  3. Homotopy analysis method for fractional IVPs

    NASA Astrophysics Data System (ADS)

    Hashim, I.; Abdulaziz, O.; Momani, S.

    2009-03-01

    In this paper, the homotopy analysis method is applied to solve linear and nonlinear fractional initial-value problems (fIVPs). The fractional derivatives are described by Caputo's sense. Exact and/or approximate analytical solutions of the fIVPs are obtained. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the approach.

  4. An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Yabushita, Kazuki; Yamashita, Mariko; Tsuboi, Kazuhiro

    2007-07-01

    We consider the problem of two-dimensional projectile motion in which the resistance acting on an object moving in air is proportional to the square of the velocity of the object (quadratic resistance law). It is well known that the quadratic resistance law is valid in the range of the Reynolds number: 1 × 103 ~ 2 × 105 (for instance, a sphere) for practical situations, such as throwing a ball. It has been considered that the equations of motion of this case are unsolvable for a general projectile angle, although some solutions have been obtained for a small projectile angle using perturbation techniques. To obtain a general analytic solution, we apply Liao's homotopy analysis method to this problem. The homotopy analysis method, which is different from a perturbation technique, can be applied to a problem which does not include small parameters. We apply the homotopy analysis method for not only governing differential equations, but also an algebraic equation of a velocity vector to extend the radius of convergence. Ultimately, we obtain the analytic solution to this problem and investigate the validation of the solution.

  5. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    SciTech Connect

    Wickramasinghe, Caroline M; Domaschenz, Renae; Amagase, Yoko; Williamson, Daniel; Missiaglia, Edoardo; Shipley, Janet; Murai, Kasumi; Jones, Philip H

    2013-01-01

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  6. Probability-one homotopies in computational science

    NASA Astrophysics Data System (ADS)

    Watson, Layne T.

    2002-03-01

    Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of equations that, under mild assumptions, are globally convergent for a wide range of problems in science and engineering. Convergence theory, robust numerical algorithms, and production quality mathematical software exist for general nonlinear systems of equations, and special cases such as Brouwer fixed point problems, polynomial systems, and nonlinear constrained optimization. Using a sample of challenging scientific problems as motivation, some pertinent homotopy theory and algorithms are presented. The problems considered are analog circuit simulation (for nonlinear systems), reconfigurable space trusses (for polynomial systems), and fuel-optimal orbital rendezvous (for nonlinear constrained optimization). The mathematical software packages HOMPACK90 and POLSYS_PLP are also briefly described.

  7. Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm.

    PubMed

    Wang, Hong; Wang, Xi-cheng

    2014-02-21

    Metabolism is a very important cellular process and its malfunction contributes to human disease. Therefore, building dynamic models for metabolic networks with experimental data in order to analyze biological process rationally has attracted a lot of attention. Owing to the technical limitations, some unknown parameters contained in models need to be estimated effectively by means of the computational method. Generally, problems of parameter estimation of nonlinear biological network are known to be ill condition and multimodal. In particular, with the increasing amount and enlarging the scope of parameters, many optimization algorithms often fail to find a global solution. In this paper, two-stage variable factor Bregman regularization homotopy method is proposed. Discrete homotopy is used to identify the possible extreme region and continuous homotopy is executed for the purpose of stability of path tracing in the special region. Meanwhile, Latin hypercube sampling is introduced to get the good initial guess value and a perturbation strategy is developed to jump out of the local optimum. Three metabolic network inverse problems are investigated to demonstrate the effectiveness of the proposed method.

  8. Calculation of coupled secular oscillation frequencies and axial secular frequency in a nonlinear ion trap by a homotopy method.

    PubMed

    Doroudi, Alireza

    2009-11-01

    In this paper the homotopy perturbation method is used for calculation of the frequencies of the coupled secular oscillations and axial secular frequencies of a nonlinear ion trap. The motion of the ion in a rapidly oscillating field is transformed to the motion in an effective potential. The equations of ion motion in the effective potential are in the form of a Duffing-like equation. The homotopy perturbation method is used for solving the resulted system of coupled nonlinear differential equations and the resulted axial equation for obtaining the expressions for ion secular frequencies as a function of nonlinear field parameters and amplitudes of oscillations. The calculated axial secular frequencies are compared with the results of Lindstedt-Poincare method and the exact results.

  9. Perturbative analysis in higher-spin theories

    NASA Astrophysics Data System (ADS)

    Didenko, V. E.; Misuna, N. G.; Vasiliev, M. A.

    2016-07-01

    A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higherspin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.

  10. HES6 promotes prostate cancer aggressiveness independently of Notch signalling.

    PubMed

    Carvalho, Filipe L F; Marchionni, Luigi; Gupta, Anuj; Kummangal, Basheer A; Schaeffer, Edward M; Ross, Ashley E; Berman, David M

    2015-07-01

    Notch signalling is implicated in the pathogenesis of a variety of cancers, but its role in prostate cancer is poorly understood. However, selected Notch pathway members are overrepresented in high-grade prostate cancers. We comprehensively profiled Notch pathway components in prostate cells and found prostate cancer-specific up-regulation of NOTCH3 and HES6. Their expression was particularly high in androgen responsive lines. Up- and down-regulating Notch in these cells modulated expression of canonical Notch targets, HES1 and HEY1, which could also be induced by androgen. Surprisingly, androgen treatment also suppressed Notch receptor expression, suggesting that androgens can activate Notch target genes in a receptor-independent manner. Using a Notch-sensitive Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) reporter assay, we found that basal levels of Notch signalling were significantly lower in prostate cancer cells compared to benign cells. Accordingly pharmacological Notch pathway blockade did not inhibit cancer cell growth or viability. In contrast to canonical Notch targets, HES6, a HES family member known to antagonize Notch signalling, was not regulated by Notch signalling, but relied instead on androgen levels, both in cultured cells and in human cancer tissues. When engineered into prostate cancer cells, reduced levels of HES6 resulted in reduced cancer cell invasion and clonogenic growth. By molecular profiling, we identified potential roles for HES6 in regulating hedgehog signalling, apoptosis and cell migration. Our results did not reveal any cell-autonomous roles for canonical Notch signalling in prostate cancer. However, the results do implicate HES6 as a promoter of prostate cancer progression.

  11. Enzymatically catalyzed HES conjugation using microbial transglutaminase: Proof of feasibility.

    PubMed

    Besheer, Ahmed; Hertel, Thomas C; Kressler, Jörg; Mäder, Karsten; Pietzsch, Markus

    2009-11-01

    Polymer-drug and polymer-protein conjugates are promising candidates for the delivery of therapeutic agents. PEGylation, using poly(ethylene glycol) for the conjugation, is now the gold standard in this field, and some PEGylated proteins have successfully reached the market. Hydroxyethyl starch (HES) is a water-soluble, biodegradable derivative of starch that is currently being investigated as a substitute for PEG. So far, only chemical methods have been suggested for HES conjugation; however, these may have detrimental effects on proteins. Here, we report an enzymatic method for HES conjugation using a recombinant microbial transglutaminase (rMTG). The latter catalyzes the acyl transfer between the gamma-carboxamide group of a glutaminyl residue (acyl donors) and a variety of primary amines (acyl acceptors), including the amino group of lysine. HES was modified with N-carbobenzyloxy glutaminyl glycine (Z-QG) and hexamethylene diamine (HMDA) to act as acyl donor and acyl acceptor, respectively. Using (1)H NMR, the degree of modification with Z-QG and HMDA was found to be 4.6 and 3.9 mol%, respectively. Using SDS-PAGE, it was possible to show that the modified HES successfully coupled to test compounds, proving that it is accepted as a substrate by rMTG. Finally, the process described in this study is a simple, mild approach to produce fully biodegradable polymer-drug and polymer-protein conjugates. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  12. Efficient Homotopy Continuation Algorithms with Application to Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Brown, David A.

    New homotopy continuation algorithms are developed and applied to a parallel implicit finite-difference Newton-Krylov-Schur external aerodynamic flow solver for the compressible Euler, Navier-Stokes, and Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras one-equation turbulence model. Many new analysis tools, calculations, and numerical algorithms are presented for the study and design of efficient and robust homotopy continuation algorithms applicable to solving very large and sparse nonlinear systems of equations. Several specific homotopies are presented and studied and a methodology is presented for assessing the suitability of specific homotopies for homotopy continuation. . A new class of homotopy continuation algorithms, referred to as monolithic homotopy continuation algorithms, is developed. These algorithms differ from classical predictor-corrector algorithms by combining the predictor and corrector stages into a single update, significantly reducing the amount of computation and avoiding wasted computational effort resulting from over-solving in the corrector phase. The new algorithms are also simpler from a user perspective, with fewer input parameters, which also improves the user's ability to choose effective parameters on the first flow solve attempt. Conditional convergence is proved analytically and studied numerically for the new algorithms. The performance of a fully-implicit monolithic homotopy continuation algorithm is evaluated for several inviscid, laminar, and turbulent flows over NACA 0012 airfoils and ONERA M6 wings. The monolithic algorithm is demonstrated to be more efficient than the predictor-corrector algorithm for all applications investigated. It is also demonstrated to be more efficient than the widely-used pseudo-transient continuation algorithm for all inviscid and laminar cases investigated, and good performance scaling with grid refinement is demonstrated for the inviscid cases. Performance is also demonstrated

  13. Homotopy Types and Social Theory: Theoretical Foundations of Strategic Dynamics

    DTIC Science & Technology

    2016-06-15

    HOMOTOPY TYPES AND SOCIAL THEORY: THEORETICAL FOUNDATIONS OF STRATEGIC DYNAMICS This report provides an overview of a one- year research project...Number of Papers published in peer-reviewed journals : Number of Papers published in non peer-reviewed journals : Final Report: HOMOTOPY TYPES AND SOCIAL...THEORY: THEORETICAL FOUNDATIONS OF STRATEGIC DYNAMICS Report Title This report provides an overview of a one- year research project designed to

  14. An SN Application of Homotopy Continuation in Neutral Particle Transport

    NASA Astrophysics Data System (ADS)

    Myers, Nicholas T.

    The objective of this dissertation is to investigate the usefulness of homotopy continuation applied in the context of neutral particle transport where traditional methods of acceleration degrade. This occurs in higher dimensional heterogeneous problems. We focus on utilizing homotopy continuation as a means of providing a better initial guess for difficult problems. We investigate various homotopy formulations for two primary difficult problems: a thick-diffusive fixed internal source, and a k-eigenvalue problem with high dominance ratio. We also investigate the usefulness of homotopy continuation for computationally intensive problems with 30-energy groups. We find that homotopy continuation exhibits usefulness in specific problem formulations. In the thick-diffusive problem it shows benefit when there is a strong internal source in thin materials. In the k-eigenvalue problem, homotopy continuation provides an improvement in convergence speed for fixed point iteration methods in high dominance ratio problems. We also show that one of our imbeddings successfully stabilizes the nonlinear formulation of the k-eigenvalue problem with a high dominance ratio.

  15. [Abnormal Notch-Hes Signaling Pathways and Acute Leukemia -Review].

    PubMed

    Gu, Zhen-Yang; Wang, Li; Gao, Chun-Ji

    2017-02-01

    The abnormal activation of Notch signaling is closely related to the development of acute leukemia (AL). The core elements of the Notch signaling system include Notch receptors, Notch ligands, CSL DNA-binding proteins, and effectors like target genes. Any factors, which affect ligands, receptors, signal transducers and effectors, can influence the signal transduction of Notch signaling greatly. Based on the role of Notch signaling in AL, several targeted drugs against Notch upstream signaling have been developed. However, due to the complexity and pleiotropic effects of Notch upstream signaling, these targeted drugs display strong side effects. Thus, Hes (Hairy Enhancer of Split) factors as a primary Notch effector, also play an important role in the pathogenesis of AL. This review summarizes recent progresses on Notch-Hes signaling in AL, hopping to provide references for further excavation of the Notch-Hes signaling, and lay foundations for developing the next generation of targeted drugs.

  16. Homotopy Algorithm for Optimal Control Problems with a Second-order State Constraint

    SciTech Connect

    Hermant, Audrey

    2010-02-15

    This paper deals with optimal control problems with a regular second-order state constraint and a scalar control, satisfying the strengthened Legendre-Clebsch condition. We study the stability of structure of stationary points. It is shown that under a uniform strict complementarity assumption, boundary arcs are stable under sufficiently smooth perturbations of the data. On the contrary, nonreducible touch points are not stable under perturbations. We show that under some reasonable conditions, either a boundary arc or a second touch point may appear. Those results allow us to design an homotopy algorithm which automatically detects the structure of the trajectory and initializes the shooting parameters associated with boundary arcs and touch points.

  17. Results of NASA/NOAA HES Trade Studies

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the trade studies that were done for the Hyperspectral Environmental Suite (HES). The goal of the trade studies was to minimize instrument cost and risk while producing scientifically useful products. Three vendors were selected to perform the trade study, and were to conduct 11 studies, with the first study a complete wish list of things that scientists would like from GEO orbit to the 11th study which was for a Reduced Accommodation Sounder (RAS) which would still result in useful scientific products, within constrains compatible with flight on GEOS-R. The RAS's from each vendor and one other HES sounders designs are reviewed.

  18. Expression dynamics and functions of Hes factors in development and diseases.

    PubMed

    Kobayashi, Taeko; Kageyama, Ryoichiro

    2014-01-01

    Hes genes, encoding basic helix-loop-helix (HLH) transcriptional repressors, are mammalian homologues of Drosophila hairy and Enhancer of split genes, both of which are required for normal neurogenesis in Drosophila. There are seven members in the human Hes family, Hes1-7, which are expressed in many tissues and play various roles mainly in development. All Hes proteins have three conserved domains: basic HLH (bHLH), Orange, and WRPW domains. The basic region binds to target DNA sequences, while the HLH region forms homo- and heterodimers with other bHLH proteins, the Orange domain is responsible for the selection of partners during heterodimer formation, and the WRPW domain recruits corepressors. Hes1, Hes5, and Hes7 are known as downstream effectors of canonical Notch signaling, which regulates cell differentiation via cell-cell interaction. Hes factors regulate many events in development by repressing the expression of target genes, many of which encode transcriptional activators that promote cell differentiation. For example, Hes1, Hes3, and Hes5 are highly expressed by neural stem cells, and inactivation of these genes results in insufficient maintenance of stem cell proliferation and prematurely promotes neuronal differentiation. Recently, it was shown that the expression dynamics of Hes1 plays crucial roles in proper developmental timings and fate-determination steps of embryonic stem cells and neural progenitor cells. Here, we discuss some key features of Hes factors in development and diseases.

  19. The Hospice Environmental Survey (HES): Pilot Test of a New Measurement Instrument.

    ERIC Educational Resources Information Center

    Taylor, Jean H.; Perrill, Norman K.

    1988-01-01

    Describes development of the Hospice Environmental Survey (HES) to measure user's perception of the homelike atmosphere provided by a hospital inpatient unit called Hospice House. Presents the HES instrument, methodology, and pilot study data. (Author/NB)

  20. Identification of small molecule Hes1 modulators as potential anticancer chemotherapeutics.

    PubMed

    Sail, Vibhavari; Hadden, M Kyle

    2013-03-01

    Hes1 is a key transcriptional regulator primarily controlled by the Notch signaling pathway, and recent studies have demonstrated both an oncogenic and tumor suppressor role for Hes1, depending on the cell type. Small molecules that activate and inhibit Hes1 activity hold promise as future anticancer chemotherapeutics. We have utilized a cell-based dual luciferase assay to identify modulators of Hes1 expression in a medium-throughput format. A modest screen was performed in HCT-116 colon cancer cell lines, and two small molecules were identified and characterized as Hes1 regulators. Compound 3 induced Hes1 expression and exhibited anticancer effects in pulmonary carcinoid tumor cells, a cell type in which the upregulated Notch/Hes1 signaling plays a tumor suppressive role. Treatment of HCT-116 cells with compound 12 resulted in Hes1 downregulation and antitumor effects.

  1. A Choice Reaction Time Index of Callosal Anatomical Homotopy

    ERIC Educational Resources Information Center

    Desjardins, Sameul; Braun, Claude M. J.; Achim, Andre; Roberge, Carl

    2009-01-01

    Tachistoscopically presented bilateral stimulus pairs not parallel to the meridian produced significantly longer RTs on a task requiring discrimination of shapes (Go/no-Go) than pairs emplaced symmetrically on each side of the meridian in Desjardins and Braun [Desjardins, S., & Braun, C. M. J. (2006). Homotopy and heterotopy and the bilateral…

  2. A Choice Reaction Time Index of Callosal Anatomical Homotopy

    ERIC Educational Resources Information Center

    Desjardins, Sameul; Braun, Claude M. J.; Achim, Andre; Roberge, Carl

    2009-01-01

    Tachistoscopically presented bilateral stimulus pairs not parallel to the meridian produced significantly longer RTs on a task requiring discrimination of shapes (Go/no-Go) than pairs emplaced symmetrically on each side of the meridian in Desjardins and Braun [Desjardins, S., & Braun, C. M. J. (2006). Homotopy and heterotopy and the bilateral…

  3. Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling

    PubMed Central

    Guiu, Jordi; Shimizu, Ritsuko; D’Altri, Teresa; Fraser, Stuart T.; Hatakeyama, Jun; Bresnick, Emery H.; Kageyama, Ryoichiro; Dzierzak, Elaine; Yamamoto, Masayuki; Espinosa, Lluis

    2013-01-01

    Previous studies have identified Notch as a key regulator of hematopoietic stem cell (HSC) development, but the underlying downstream mechanisms remain unknown. The Notch target Hes1 is widely expressed in the aortic endothelium and hematopoietic clusters, though Hes1-deficient mice show no overt hematopoietic abnormalities. We now demonstrate that Hes is required for the development of HSC in the mouse embryo, a function previously undetected as the result of functional compensation by de novo expression of Hes5 in the aorta/gonad/mesonephros (AGM) region of Hes1 mutants. Analysis of embryos deficient for Hes1 and Hes5 reveals an intact arterial program with overproduction of nonfunctional hematopoietic precursors and total absence of HSC activity. These alterations were associated with increased expression of the hematopoietic regulators Runx1, c-myb, and the previously identified Notch target Gata2. By analyzing the Gata2 locus, we have identified functional RBPJ-binding sites, which mutation results in loss of Gata2 reporter expression in transgenic embryos, and functional Hes-binding sites, which mutation leads to specific Gata2 up-regulation in the hematopoietic precursors. Together, our findings show that Notch activation in the AGM triggers Gata2 and Hes1 transcription, and next HES-1 protein represses Gata2, creating an incoherent feed-forward loop required to restrict Gata2 expression in the emerging HSCs. PMID:23267012

  4. On the singular perturbations for fractional differential equation.

    PubMed

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  5. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development.

    PubMed

    Tateya, Tomoko; Imayoshi, Itaru; Tateya, Ichiro; Ito, Juichi; Kageyama, Ryoichiro

    2011-04-15

    Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment

  6. ER = EPR and non-perturbative action integrals for quantum gravity

    NASA Astrophysics Data System (ADS)

    Alsaleh, Salwa; Alasfar, Lina

    In this paper, we construct and calculate non-perturbative path integrals in a multiply-connected spacetime. This is done by summing over homotopy classes of paths. The topology of the spacetime is defined by Einstein-Rosen bridges (ERB) forming from the entanglement of quantum foam described by virtual black holes. As these “bubbles” are entangled, they are connected by Planckian ERBs because of the ER = EPR conjecture. Hence, the spacetime will possess a large first Betti number B1. For any compact 2-surface in the spacetime, the topology (in particular the homotopy) of that surface is non-trivial due to the large number of Planckian ERBs that define homotopy through this surface. The quantization of spacetime with this topology — along with the proper choice of the 2-surfaces — is conjectured to allow non-perturbative path integrals of quantum gravity theory over the spacetime manifold.

  7. A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws

    DTIC Science & Technology

    2012-09-03

    use of so-called probability-one methods [22]. The significant advantage of homotopy method to compute steady state solutions is free of Courant ...A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws Wenrui Hao∗ Jonathan D. Hauenstein† Chi...robustness of the new method . Keywords homotopy continuation, hyperbolic conservation laws, WENO scheme, steady state problems. ∗Department of Applied and

  8. Particle flow for nonlinear filters with log-homotopy

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2008-04-01

    We describe a new nonlinear filter that is vastly superior to the classic particle filter. In particular, the computational complexity of the new filter is many orders of magnitude less than the classic particle filter with optimal estimation accuracy for problems with dimension greater than 2 or 3. We consider nonlinear estimation problems with dimensions varying from 1 to 20 that are smooth and fully coupled (i.e. dense not sparse). The new filter implements Bayes' rule using particle flow rather than with a pointwise multiplication of two functions; this avoids one of the fundamental and well known problems in particle filters, namely "particle collapse" as a result of Bayes' rule. We use a log-homotopy to derive the ODE that describes particle flow. This paper was written for normal engineers, who do not have homotopy for breakfast.

  9. Dynamic homotopy and landscape dynamical set topology in quantum control

    SciTech Connect

    Dominy, Jason; Rabitz, Herschel

    2012-08-15

    We examine the topology of the subset of controls taking a given initial state to a given final state in quantum control, where 'state' may mean a pure state Double-Vertical-Line {psi}>, an ensemble density matrix {rho}, or a unitary propagator U(0, T). The analysis consists in showing that the endpoint map acting on control space is a Hurewicz fibration for a large class of affine control systems with vector controls. Exploiting the resulting fibration sequence and the long exact sequence of basepoint-preserving homotopy classes of maps, we show that the indicated subset of controls is homotopy equivalent to the loopspace of the state manifold. This not only allows us to understand the connectedness of 'dynamical sets' realized as preimages of subsets of the state space through this endpoint map, but also provides a wealth of additional topological information about such subsets of control space.

  10. Splitting a simple homotopy equivalence along a submanifold with filtration

    SciTech Connect

    Bak, A; Muranov, Yu V

    2008-06-30

    A simple homotopy equivalence f:M{sup n}{yields}X{sup n} of manifolds splits along a submanifold Y subset of X if it is homotopic to a map that is a simple homotopy equivalence on the transversal preimage of the submanifold and on the complement of this preimage. The problem of splitting along a submanifold with filtration is a natural generalization of this problem. In this paper we define groups LSF{sub *} of obstructions to splitting along a submanifold with filtration and describe their properties. We apply the results obtained to the problem of the realization of surgery and splitting obstructions by maps of closed manifolds and consider several examples. Bibliography: 36 titles.

  11. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  12. History of a prolific family: the Hes/Hey-related genes of the annelid Platynereis

    PubMed Central

    2014-01-01

    Background The Hes superfamily or Hes/Hey-related genes encompass a variety of metazoan-specific bHLH genes, with somewhat fuzzy phylogenetic relationships. Hes superfamily members are involved in a variety of major developmental mechanisms in metazoans, notably in neurogenesis and segmentation processes, in which they often act as direct effector genes of the Notch signaling pathway. Results We have investigated the molecular and functional evolution of the Hes superfamily in metazoans using the lophotrochozoan Platynereis dumerilii as model. Our phylogenetic analyses of more than 200 Metazoan Hes/Hey-related genes revealed the presence of five families, three of them (Hes, Hey and Helt) being pan-metazoan. Those families were likely composed of a unique representative in the last common metazoan ancestor. The evolution of the Hes family was shaped by many independent lineage specific tandem duplication events. The expression patterns of 13 of the 15 Hes/Hey-related genes in Platynereis indicate a broad functional diversification. Nevertheless, a majority of these genes are involved in two crucial developmental processes in annelids: neurogenesis and segmentation, resembling functions highlighted in other animal models. Conclusions Combining phylogenetic and expression data, our study suggests an unusual evolutionary history for the Hes superfamily. An ancestral multifunctional annelid Hes gene may have undergone multiples rounds of duplication-degeneration-complementation processes in the lineage leading to Platynereis, each gene copies ensuring their maintenance in the genome by subfunctionalisation. Similar but independent waves of duplications are at the origin of the multiplicity of Hes genes in other metazoan lineages. PMID:25250171

  13. Differential regulation of Hes/Hey genes during inner ear development.

    PubMed

    Petrovic, Jelena; Gálvez, Hector; Neves, Joana; Abelló, Gina; Giraldez, Fernando

    2015-07-01

    Notch signaling plays a crucial role during inner ear development and regeneration. Hes/Hey genes encode for bHLH transcription factors identified as Notch targets. We have studied the expression and regulation of Hes/Hey genes during inner ear development in the chicken embryo. Among several Hes/Hey genes examined, only Hey1 and Hes5 map to the sensory regions, although with salient differences. Hey1 expression follows Jag1 expression except at early prosensory stages while Hes5 expression corresponds well to Dl1 expression throughout otic development. Although Hey1 and Hes5 are direct Notch downstream targets, they differ in the level of Notch required for activation. Moreover, they also differ in mRNA stability, showing different temporal decays after Notch blockade. In addition, Bmp, Wnt and Fgf pathways also modify Hey1 and Hes5 expression in the inner ear. Particularly, the Wnt pathway modulates Hey1 and Jag1 expression. Finally, gain of function experiments show that Hey1 and Hes5 cross-regulate each other in a complex manner. Both Hey1 and Hes5 repress Dl1 and Hes5 expression, suggesting that they prevent the transition to differentiation stages, probably by preventing Atoh1 expression. In spite of its association with Jag1, Hey1 does not seem to be instrumental for lateral induction as it does not promote Jag1 expression. We suggest that, besides being both targets of Notch, Hey1 and Hes5 are subject to a rather complex regulation that includes the stability of their transcripts, cross regulation and other signaling pathways.

  14. A choice reaction time index of callosal anatomical homotopy.

    PubMed

    Desjardins, Samuel; Braun, Claude M J; Achim, André; Roberge, Carl

    2009-10-01

    Tachistoscopically presented bilateral stimulus pairs not parallel to the meridian produced significantly longer RTs on a task requiring discrimination of shapes (Go/no-Go) than pairs emplaced symmetrically on each side of the meridian in Desjardins and Braun [Desjardins, S., & Braun, C. M. J. (2006). Homotopy and heterotopy and the bilateral field advantage in the Dimond paradigm. Acta Psychologica, 121, 125-136]. This was explained by the fact that there are more homotopic than heterotopic fibers in the corpus callosum. However: (1) different parts of the visual field were not equiprobably stimulated, possibly causing subtle biases, (2) the predicted cost of vertical asymmetry was tested only with bilateral stimuli, and (3) interstimulus distance was at the outer limit of callosal midline fusion (10.6 degrees ). Here, a tachistoscopic experiment with 24 normal participants replicated the between-field vertical symmetry advantage [Desjardins, S., & Braun, C. M. J. (2006). Homotopy and heterotopy and the bilateral field advantage in the Dimond paradigm. Acta Psychologica, 121,125-136.], but without irrelevant stimulation conditions and with more proximal stimuli. In addition, a significant specific cost of vertical asymmetry of 7ms was found for between-field integration over within-field integration. As far as we know, this is the first demonstration of an effect of callosal anatomical homotopy with reaction time.

  15. The transcriptional repressor Hes1 attenuates inflammation via regulating transcriptional elongation

    PubMed Central

    Shang, Yingli; Coppo, Maddalena; He, Teng; Ning, Fei; Yu, Li; Kang, Lan; Zhang, Bin; Ju, Chanyang; Qiao, Yu; Zhao, Baohong; Gessler, Manfred; Rogatsky, Inez; Hu, Xiaoyu

    2016-01-01

    Most of the known regulatory mechanisms that curb inflammatory gene expression target pre-transcription initiation steps and evidence for regulation of inflammatory gene expression post initiation remains scarce. Here we show that transcription repressor hairy and enhancer of split 1 (Hes1) suppresses production of CXCL1, a chemokine crucial for recruiting neutrophils. Hes1 negatively regulates neutrophil recruitment in vivo in a manner that is dependent on macrophage-produced CXCL1 and attenuates severity of inflammatory arthritis. Mechanistically, inhibition of Cxcl1 expression by Hes1 does not involve modification of transcription initiation. Instead, Hes1 inhibits signal-induced recruitment of positive transcription elongation complex P-TEFb, thereby preventing phosphorylation of RNA polymerase II on serine-2 and productive elongation. Thus, our results identify Hes1 as a homeostatic suppressor of inflammatory responses which exerts its suppressive function by regulating transcription elongation. PMID:27322654

  16. Hes1: a key role in stemness, metastasis and multidrug resistance

    PubMed Central

    Liu, Zi-Hao; Dai, Xiao-Meng; Du, Bin

    2015-01-01

    Hes1 is one mammalian counterpart of the Hairy and Enhancer of split proteins that play a critical role in many physiological processes including cellular differentiation, cell cycle arrest, apoptosis and self-renewal ability. Recent studies have shown that Hes1 functions in the maintenance of cancer stem cells (CSCs), metastasis and antagonizing drug-induced apoptosis. Pathways that are involved in the up-regulation of Hes1 level canonically or non-canonically, such as the Hedgehog, Wnt and hypoxia pathways are frequently aberrant in cancer cells. Here, we summarize the recent data supporting the idea that Hes1 may have an important function in the maintenance of cancer stem cells self-renewal, cancer metastasis, and epithelial–mesenchymal transition (EMT) process induction, as well as chemotherapy resistance, and conclude with the possible mechanisms by which Hes1 functions have their effect, as well as their crosstalk with other carcinogenic signaling pathways. PMID:25781910

  17. Conjugates of methylated cyclodextrin derivatives and hydroxyethyl starch (HES): Synthesis, cytotoxicity and inclusion of anaesthetic actives

    PubMed Central

    Markenstein, Lisa; Appelt-Menzel, Antje; Metzger, Marco

    2014-01-01

    Summary The mono-6-deoxy-6-azides of 2,6-di-O-methyl-β-cyclodextrin (DIMEB) and randomly methylated-β-cyclodextrin (RAMEB) were conjugated to propargylated hydroxyethyl starch (HES) by Cu+-catalysed [2 + 3] cycloaddition. The resulting water soluble polymers showed lower critical solution temperatures (LCST) at 52.5 °C (DIMEB-HES) and 84.5 °C (RAMEB-HES), respectively. LCST phase separations could be completely avoided by the introduction of a small amount of carboxylate groups at the HES backbone. The methylated CDs conjugated to the HES backbone exhibited significantly lower cytotoxicities than the corresponding monomeric CD derivatives. Since the binding potentials of these CD conjugates were very high, they are promising candidates for new oral dosage forms of anaesthetic actives. PMID:25670977

  18. HES1 Is a Master Regulator of Glucocorticoid Receptor-Dependent Gene Expression

    PubMed Central

    Revollo, Javier R.; Oakley, Robert H.; Lu, Nick Z.; Kadmiel, Mahita; Gandhavadi, Maheer; Cidlowski, John A.

    2014-01-01

    Hairy and enhancer of split-1 (HES1) is a basic helix-loop-helix transcription factor that is a key regulator of development and organogenesis. However, little is known about the role of HES1 after birth. Glucocorticoids, primary stress hormones that are essential for life, regulate numerous homeostatic processes that permit vertebrates to cope with physiological challenges. The molecular actions of glucocorticoids are mediated by glucocorticoid receptor-dependent regulation of nearly 25% of the genome. We now establish a genome wide molecular link between HES1 and glucocorticoid receptors that controls the ability of cells and animals to respond to stress. Glucocorticoid signaling rapidly and robustly silenced HES1 expression. This glucocorticoid-dependent repression of HES1 was necessary for the glucocorticoid receptor to regulate many of its target genes. Mice with conditional knockout of HES1 in the liver exhibited an expanded glucocorticoid receptor signaling profile and aberrant metabolic phenotype. Our results indicate that HES1 acts as a master repressor, the silencing of which is required for proper glucocorticoid signaling. PMID:24300895

  19. HES5 silencing is an early and recurrent change in prostate tumourigenesis

    PubMed Central

    Massie, Charles E; Spiteri, Inmaculada; Ross-Adams, Helen; Luxton, Hayley; Kay, Jonathan; Whitaker, Hayley C; Dunning, Mark J; Lamb, Alastair D; Ramos-Montoya, Antonio; Brewer, Daniel S; Cooper, Colin S; Eeles, Rosalind; Warren, Anne Y; Tavaré, Simon; Neal, David E; Lynch, Andy G

    2015-01-01

    Prostate cancer is the most common cancer in men, resulting in over 10 000 deaths/year in the UK. Sequencing and copy number analysis of primary tumours has revealed heterogeneity within tumours and an absence of recurrent founder mutations, consistent with non-genetic disease initiating events. Using methylation profiling in a series of multi-focal prostate tumours, we identify promoter methylation of the transcription factor HES5 as an early event in prostate tumourigenesis. We confirm that this epigenetic alteration occurs in 86–97% of cases in two independent prostate cancer cohorts (n=49 and n=39 tumour–normal pairs). Treatment of prostate cancer cells with the demethylating agent 5-aza-2′-deoxycytidine increased HES5 expression and downregulated its transcriptional target HES6, consistent with functional silencing of the HES5 gene in prostate cancer. Finally, we identify and test a transcriptional module involving the AR, ERG, HES1 and HES6 and propose a model for the impact of HES5 silencing on tumourigenesis as a starting point for future functional studies. PMID:25560400

  20. Higher Inductive Types as Homotopy-Initial Algebras

    DTIC Science & Technology

    2016-08-01

    which are simpler than their homotopy-theoretic versions: the calculation of πn( Sn ) ([13, 15]); the Freudenthal Suspension Theorem [33]; the Blakers...we can define the n-sphere recursively: 23 Definition 38. We define a type Sn −1 by recursion on n : N as follows: S−1 := 0 Sn := ΣSn−1 One can show...interval, suspensions - in particular all the higher spheres Sn - natural numbers, lists, and so on. We remark, however, that in most of these cases

  1. Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-12-01

    This paper studies the dispersion properties and wave propagation in the tetratomic nonlinear acoustic metamaterial chain based on the homotopy analysis method (HAM). We perform a comparison between HAM and Perturbation approach, harmonic balance method (HBM) and equivalent method. Results indicate that HAM can filter the unstable multiple periodic solutions fined by HBM and be more accurate. The succinct equivalent formulas can estimate the bandgaps. There is a limit of the dispersion solution when the nonlinearity tends to infinity. Analyses demonstrate that the energy dispersion in spectrum replaces the linear energy localization because of the hyperchaos that is induced by period-doubling bifurcations. The hyper-chaotic phenomena are demonstrated with frequency spectra, bifurcation diagram and Lyapunov Exponents. This paper further proves the chaotic bands can significantly expand the bandwidth for wave suppression. Enhancing the nonlinearity will vary the behavior of nonlinear bandgaps from independent state to coupling state and then experience a transition. Approaches to manipulate bands are elucidated. The strong nonlinearity is beneficial to expand the total width about 6 times. Moreover, lightweight, low-frequency and broadband characteristics are compatible so can be achieved simultaneously for nonlinear acoustic metamaterial.

  2. Linear homotopy solution of nonlinear systems of equations in geodesy

    NASA Astrophysics Data System (ADS)

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  3. Lattice Homotopy Constraints on Phases of Quantum Magnets

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Watanabe, Haruki; Jian, Chao-Ming; Zaletel, Michael P.

    2017-09-01

    The Lieb-Schultz-Mattis (LSM) theorem and its extensions forbid trivial phases from arising in certain quantum magnets. Constraining infrared behavior with the ultraviolet data encoded in the microscopic lattice of spins, these theorems tie the absence of spontaneous symmetry breaking to the emergence of exotic phases like quantum spin liquids. In this work, we take a new topological perspective on these theorems, by arguing they originate from an obstruction to "trivializing" the lattice under smooth, symmetric deformations, which we call the "lattice homotopy problem." We conjecture that all LSM-like theorems for quantum magnets (many previously unknown) can be understood from lattice homotopy, which automatically incorporates the full spatial symmetry group of the lattice, including all its point-group symmetries. One consequence is that any spin-symmetric magnet with a half-integer moment on a site with even-order rotational symmetry must be a spin liquid. To substantiate the claim, we prove the conjecture in two dimensions for some physically relevant settings.

  4. Sparse diffraction imaging method using an adaptive reweighting homotopy algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Caixia; Zhao, Jingtao; Wang, Yanfei; Qiu, Zhen

    2017-02-01

    Seismic diffractions carry valuable information from subsurface small-scale geologic discontinuities, such as faults, cavities and other features associated with hydrocarbon reservoirs. However, seismic imaging methods mainly use reflection theory for constructing imaging models, which means a smooth constraint on imaging conditions. In fact, diffractors occupy a small account of distributions in an imaging model and possess discontinuous characteristics. In mathematics, this kind of phenomena can be described by the sparse optimization theory. Therefore, we propose a diffraction imaging method based on a sparsity-constraint model for studying diffractors. A reweighted L 2-norm and L 1-norm minimization model is investigated, where the L 2 term requests a least-square error between modeled diffractions and observed diffractions and the L 1 term imposes sparsity on the solution. In order to efficiently solve this model, we use an adaptive reweighting homotopy algorithm that updates the solutions by tracking a path along inexpensive homotopy steps. Numerical examples and field data application demonstrate the feasibility of the proposed method and show its significance for detecting small-scale discontinuities in a seismic section. The proposed method has an advantage in improving the focusing ability of diffractions and reducing the migration artifacts.

  5. Dynamic expression and essential functions of Hes7 in somite segmentation.

    PubMed

    Bessho, Y; Sakata, R; Komatsu, S; Shiota, K; Yamada, S; Kageyama, R

    2001-10-15

    The basic helix-loop-helix (bHLH) gene Hes7, a putative Notch effector, encodes a transcriptional repressor. Here, we found that Hes7 expression oscillates in 2-h cycles in the presomitic mesoderm (PSM). In Hes7-null mice, somites are not properly segmented and their anterior-posterior polarity is disrupted. As a result, the somite derivatives such as vertebrae and ribs are severely disorganized. Although expression of Notch and its ligands is not affected significantly, the oscillator and Notch modulator lunatic fringe is expressed continuously throughout the mutant PSM. These results indicate that Hes7 controls the cyclic expression of lunatic fringe and is essential for coordinated somite segmentation.

  6. Homotopy method for inverse design of the bulbous bow of a container ship

    NASA Astrophysics Data System (ADS)

    Huang, Yu-jia; Feng, Bai-wei; Hou, Guo-xiang; Gao, Liang; Xiao, Mi

    2017-03-01

    The homotopy method is utilized in the present inverse hull design problem to minimize the wave-making coefficient of a 1300 TEU container ship with a bulbous bow. Moreover, in order to improve the computational efficiency of the algorithm, a properly smooth function is employed to update the homotopy parameter during iteration. Numerical results show that the homotopy method has been successfully applied in the inverse design of the ship hull. This method has an advantage of high performance on convergence and it is credible and valuable for engineering practice.

  7. The viscous characterization of hydroxyethyl starch (HES) plasma volume expanders in a non-Newtonian blood analog.

    PubMed

    Walker, Andrew M; Xiao, Yao; Johnston, Clifton R; Rival, David E

    2013-01-01

    Although information pertaining to the viscous characterization of HES 130/0.4 Voluven® and HES 260/0.45 Pentaspan® is available, quantification is limited to 100% concentrations. We focus here on the quantification of their viscous behavior along with HES 130/0.4 Volulyte® in a shear thinning non-Newtonian blood analog of aqueous xanthan gum and glycerol. Dynamic viscosities of multiple batches of HES fluids were measured through capillary viscometry. The viscous behavior of 100%, 25% and 12.5% concentrations were then measured through a closed flow loop across physiologically relevant flow rates. Measured viscosities were 2.57 millipascal second (mPa·s) 6.52 mPa·s and 2.48 mPa·s for HES 130/0.4 Voluven®, HES 260/0.45 and HES 130/0.4 Volulyte®, respectively. Pipe flow analysis found that all HES fluids displayed Newtonian behavior at 100% concentrations. 25% concentrations of both HES 130/0.4 fluids decreased analog viscosity 23%-29% at a flow rate of 1.0 ml/s and 16%-21% at a flow rate of 22.5 ml/s. At a flow rate of 22.5 ml/s, 25% and 12.5% concentrations of HES 260/0.45 resulted in analog viscosity changes of 3.9%-4.5%. Capillary viscosity reductions of approximately 7% and 14.5% in HES 130/0.4 Voluven® and HES 260/0.45 suggest changes in molecular composition to batches previously measured. Maintenance of analog viscosity suggests that HES 260/0.45 would be suitable as a high viscosity plasma expander in extreme hemodilution through preservation of microcirculatory function and wall shear stress (WSS).

  8. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    PubMed Central

    Vazquez-Leal, H.; Jimenez-Fernandez, V. M.; Benhammouda, B.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Ramirez-Pinero, A.; Marin-Hernandez, A.; Huerta-Chua, J.

    2014-01-01

    We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157

  9. Modified hyperspheres algorithm to trace homotopy curves of nonlinear circuits composed by piecewise linear modelled devices.

    PubMed

    Vazquez-Leal, H; Jimenez-Fernandez, V M; Benhammouda, B; Filobello-Nino, U; Sarmiento-Reyes, A; Ramirez-Pinero, A; Marin-Hernandez, A; Huerta-Chua, J

    2014-01-01

    We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation.

  10. A monolithic homotopy continuation algorithm with application to computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Brown, David A.; Zingg, David W.

    2016-09-01

    A new class of homotopy continuation methods is developed suitable for globalizing quasi-Newton methods for large sparse nonlinear systems of equations. The new continuation methods, described as monolithic homotopy continuation, differ from the classical predictor-corrector algorithm in that the predictor and corrector phases are replaced with a single phase which includes both a predictor and corrector component. Conditional convergence and stability are proved analytically. Using a Laplacian-like operator to construct the homotopy, the new algorithm is shown to be more efficient than the predictor-corrector homotopy continuation algorithm as well as an implementation of the widely-used pseudo-transient continuation algorithm for some inviscid and turbulent, subsonic and transonic external aerodynamic flows over the ONERA M6 wing and the NACA 0012 airfoil using a parallel implicit Newton-Krylov finite-difference flow solver.

  11. Power System Transient Stability Analysis through a Homotopy Analysis Method

    SciTech Connect

    Wang, Shaobu; Du, Pengwei; Zhou, Ning

    2014-04-01

    As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.

  12. Homotopy analysis method to study a quadrupole mass filter.

    PubMed

    Seddighi Chaharborj, S; Seddighi Chahrborj, S; Sadat Kiai, S M; Abu Bakar, M R; Ziaeian, I; Gheisari, Y

    2012-04-01

    The homotopy analysis method (HAM) is applied to study the behavior of a hyperbolic rods of quadrupole mass filter and a sinusoidal potential form V(ac)  cos(Ωt). Numerical computation method of a 20th-order HAM is employed to compare the physical properties of the confined ions with fifth-order Runge-Kutta method. Also, comparison is made for the first stability region, the ion trajectories in real time, the polar plots, and the ion trajectory in x - y plan. The results show that the two methods are fairly similar; therefore, the HAM method has potential application to solve linear and nonlinear equations of the charge particle confinement in quadrupole field. Copyright © 2012 John Wiley & Sons, Ltd.

  13. The order of a homotopy invariant in the stable case

    NASA Astrophysics Data System (ADS)

    Podkorytov, Semen S.

    2011-08-01

    Let X, Y be cell complexes, let U be an Abelian group, and let f\\colon \\lbrack X,Y \\rbrack \\to U be a homotopy invariant. By definition, the invariant f has order at most r if the characteristic function of the rth Cartesian power of the graph of a continuous map a\\colon X\\to Y determines the value f( \\lbrack a \\rbrack ) {Z}-linearly. It is proved that, in the stable case (that is, when \\operatorname{dim} X<2n-1, and Y is (n-1)-connected for some natural number n), for a finite cell complex X the order of the invariant f is equal to its degree with respect to the Curtis filtration of the group \\lbrack X,Y \\rbrack . Bibliography: 9 titles.

  14. Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis.

    PubMed

    El Yakoubi, Warif; Borday, Caroline; Hamdache, Johanna; Parain, Karine; Tran, Hong Thi; Vleminckx, Kris; Perron, Muriel; Locker, Morgane

    2012-12-01

    The retina of fish and amphibian contains genuine neural stem cells located at the most peripheral edge of the ciliary marginal zone (CMZ). However, their cell-of-origin as well as the mechanisms that sustain their maintenance during development are presently unknown. We identified Hes4 (previously named XHairy2), a gene encoding a bHLH-O transcriptional repressor, as a stem cell-specific marker of the Xenopus CMZ that is positively regulated by the canonical Wnt pathway and negatively by Hedgehog signaling. We found that during retinogenesis, Hes4 labels a small territory, located first at the pigmented epithelium (RPE)/neural retina (NR) border and later in the retinal margin, that likely gives rise to adult retinal stem cells. We next addressed whether Hes4 might impart this cell subpopulation with retinal stem cell features: inhibited RPE or NR differentiation programs, continuous proliferation, and slow cell cycle speed. We could indeed show that Hes4 overexpression cell autonomously prevents retinal precursor cells from commitment toward retinal fates and maintains them in a proliferative state. Besides, our data highlight for the first time that Hes4 may also constitute a crucial regulator of cell cycle kinetics. Hes4 gain of function indeed significantly slows down cell division, mainly through the lengthening of G1 phase. As a whole, we propose that Hes4 maintains particular stemness features in a cellular cohort dedicated to constitute the adult retinal stem cell pool, by keeping it in an undifferentiated and slowly proliferative state along embryonic retinogenesis.

  15. Stability of gradient semigroups under perturbations

    NASA Astrophysics Data System (ADS)

    Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.

    2011-07-01

    In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

  16. HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion

    SciTech Connect

    Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern; Itkin-Ansari, Pamela; Levine, Fred; E-mail: flevine@ucsd.edu

    2007-04-06

    To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but was repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.

  17. Hes1 Desynchronizes Differentiation of Pluripotent Cells by Modulating STAT3 Activity

    PubMed Central

    Zhou, Xinzhi; Smith, Andrew JH; Waterhouse, Anna; Blin, Guillaume; Malaguti, Mattias; Lin, Chia-Yi; Osorno, Rodrigo; Chambers, Ian; Lowell, Sally

    2013-01-01

    Robust development of the early embryo may benefit from mechanisms that ensure that not all pluripotent cells differentiate at exactly the same time: such mechanisms would build flexibility into the process of lineage allocation. This idea is supported by the observation that pluripotent stem cells differentiate at different rates in vitro. We use a clonal commitment assay to confirm that pluripotent cells commit to differentiate asynchronously even under uniform differentiation conditions. Stochastic variability in expression of the Notch target gene Hes1 has previously been reported to influence neural versus mesodermal differentiation through modulation of Notch activity. Here we report that Hes1 also has an earlier role to delay exit from the pluripotent state into all lineages. The early function of Hes1 to delay differentiation can be explained by an ability of Hes1 to amplify STAT3 responsiveness in a cell-autonomous manner. Variability in Hes1 expression therefore helps to explain why STAT3 responsiveness varies between individual ES cells, and this in turn helps to explain why pluripotent cells commit to differentiate asynchronously. Stem Cells 2013;31:1511–1522 PMID:23649667

  18. Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity.

    PubMed

    Zhou, Xinzhi; Smith, Andrew J H; Waterhouse, Anna; Blin, Guillaume; Malaguti, Mattias; Lin, Chia-Yi; Osorno, Rodrigo; Chambers, Ian; Lowell, Sally

    2013-08-01

    Robust development of the early embryo may benefit from mechanisms that ensure that not all pluripotent cells differentiate at exactly the same time: such mechanisms would build flexibility into the process of lineage allocation. This idea is supported by the observation that pluripotent stem cells differentiate at different rates in vitro. We use a clonal commitment assay to confirm that pluripotent cells commit to differentiate asynchronously even under uniform differentiation conditions. Stochastic variability in expression of the Notch target gene Hes1 has previously been reported to influence neural versus mesodermal differentiation through modulation of Notch activity. Here we report that Hes1 also has an earlier role to delay exit from the pluripotent state into all lineages. The early function of Hes1 to delay differentiation can be explained by an ability of Hes1 to amplify STAT3 responsiveness in a cell-autonomous manner. Variability in Hes1 expression therefore helps to explain why STAT3 responsiveness varies between individual ES cells, and this in turn helps to explain why pluripotent cells commit to differentiate asynchronously.

  19. Hes1 is involved in the self-renewal and tumourigenicity of stem-like cancer cells in colon cancer.

    PubMed

    Gao, Fei; Zhang, YuQin; Wang, ShengChun; Liu, YuanQiang; Zheng, Lin; Yang, JianQuan; Huang, Wei; Ye, YanFen; Luo, WeiRen; Xiao, Dong

    2014-02-04

    A small subpopulation of cancer cells with stem cell-like features might be responsible for tumour generation, progression, and chemoresistance. Hes1 influences the maintenance of certain stem cells and progenitor cells and the digestive systems. We found upregulated Hes1 in poorly differentiated cancer samples compared with well-differentiated tumour samples, and most of the adenocarcinomas exhibited significantly higher levels of Hes1 mRNA compared with that observed in matched normal colon samples. Moreover, Hes1 expression was found to be correlated with the expression of stem cell markers in colon cancer samples, and Hes1 upregulates the expression of stemness-related genes in colon cancer cells. In addition, Hes1 enhances the self-renewal properties of the stem-like cells by increasing the sizes of CD133+ cells and SP cells and the ability of tumour sphere formation. Additionally, the Hes1-overexpressing cells formed significantly larger and higher number of colonies, as determined through the colony and the soft agar assays. More importantly, Hes1 enhances the tumourigenicity of colon cancer cell lines in nude mice and exhibits a strong tumour-formation ability at a cell density of 1 × 10(3). Taken together, our data indicate that Hes1 induces stem-like cell self-renewal and increases the number of tumour-initiating cells in colon cancer.

  20. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    NASA Astrophysics Data System (ADS)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during

  1. hESCCO: development of good practice models for hES cell derivation.

    PubMed

    Franklin, Sarah B; Hunt, Charles; Cornwell, Glenda; Peddie, Valerie; Desousa, Paul; Livie, Morag; Stephenson, Emma L; Braude, Peter R

    2008-01-01

    One response of the UK research community to the public sensitivity and logistical complexity of embryo donation to stem cell research has been the formation of a national network of 'human embryonic stem cell coordinators' (hESCCO). The aim of hESCCO is to contribute to the formation and implementation of national standards for hES cell derivation and banking, in particular the ethical protocols for patient information and informed consent. The hESCCO project is an innovative practical intervention within the broader attempt to establish greater transparency, consistency, efficiency and standardization of hES derivation in the UK. A major outcome of the hESCCO initiative has been the drafting and implementation of a national consent form. The lessons learned in this context may be relevant to other practitioners and regulators as a model of best practice in hES cell derivation.

  2. Using ABI to help HES for cloud property and atmospheric sounding retrieval

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liu, Chian-Yi; Schmit, Timothy J.; Gurka, James J.; Menzel, W. P.

    2005-08-01

    The Advanced Baseline Imager (ABI) and the Hyperspectral Environmental Suite (HES) on GOES-R and beyond will enable improved monitoring of the distribution and evolution of atmospheric thermodynamics and clouds. The HES will be able to provide hourly atmospheric soundings with spatial resolution of 4 ~ 10 km with high accuracy using its high spectral resolution measurements. However, presence of clouds affects the sounding retrieval and needs to be dealt with properly. The ABI is able to provide at high spatial resolution (0.5 ~ 2km) a cloud mask, surface and cloud types, cloud phase mask, cloud top pressure (CTP), cloud particle size (CPS), and cloud optical thickness (COT), etc. The combined ABI/HES system offers the opportunity for atmospheric and cloud products improved over those possible from either system alone. The key step for synergistic use of ABI/HES radiance measurements is the collocation in space and time. Collocated ABI can (1) provide HES sub-pixel cloud characterization (mask, amount, phase, layer information, etc.) within the HES footprint; (2) be used for HES cloudclearing for partly cloudy HES footprints; (3) provide background information in variational retrieval of cloud properties with HES cloudy radiances. The Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of synergistic use of ABI products and HES radiances for better retrieving atmospheric soundings and cloud properties. In order to derive sounding from combined ABI and HES radiances under HES partly cloudy footprint where no microwave sounding unit is available, an optimal cloud-removal or cloud-clearing algorithm is developed. MODIS and AIRS are used to verify the algorithm. AIRS clear

  3. Mahowaldean families of elements in stable homotopy groups revisited

    NASA Astrophysics Data System (ADS)

    Hunter, David J.; Kuhn, Nicholas J.

    1999-09-01

    In the mid 1970s Mark Mahowald constructed a new infinite family of elements in the 2-component of the stable homotopy groups of spheres, [eta]j[set membership][pi]Sj2 (S0)(2) [M]. Using standard Adams spectral sequence terminology (which will be recalled in Section 3 below), [eta]j is detected by h1hj[set membership]Ext2,*[script A] (Z/2, Z/2). Thus he had found an infinite family of elements all having the same Adams filtration (in this case, 2), thus dooming the so-called Doomsday Conjecture. His constructions were ingenious: his elements were constructed as composites of pairs of maps, with the intermediate spaces having, on one hand, a geometric origin coming from double loopspace theory and, on the other hand, mod2 cohomology making them amenable to Adams Spectral Sequence analysis and suggesting that they were related to the new discovered Brown-Gitler spectra [BG].In the years that followed, various other related 2-primary infinite families were constructed, perhaps most notably (and correctly) Bruner's family detected by h2h2j[set membership] Ext3,*[script A](Z/2, Z/2) [B]. An odd prime version was studied by Cohen [C], leading to a family in [pi]S[low asterisk](S0)(p) detected by h0bj[set membership] Ext3,*[script A] (Z/p, Z/p) and a filtration 2 family in the stable homotopy groups of the odd prime Moore space. Cohen also initiated the development of odd primary Brown-Gitler spectra, completed in the mid 1980s, using a different approach, by Goerss [G], and given the ultimate ‘modern’ treatment by Goerss, Lannes and Morel in the 1993 paper [GLM]. Various papers in the late 1970s and early 1980s, e.g. [BP, C, BC], related some of these to loopspace constructions.Our project originated with two goals. One was to see if any of the later work on Brown-Gitler spectra led to clarification of the original constructions. The other was to see if taking advantage of post Segal Conjecture knowledge of the stable cohomotopy of the classifying space BZ/p would

  4. Voluven, a lower substituted novel hydroxyethyl starch (HES 130/0.4), causes fewer effects on coagulation in major orthopedic surgery than HES 200/0.5.

    PubMed

    Langeron, O; Doelberg, M; Ang, E T; Bonnet, F; Capdevila, X; Coriat, P

    2001-04-01

    Hydroxyethyl starch (HES) solutions are effective plasma volume expanders. Impairment of coagulation occurs with large HES volumes infused perioperatively. Therefore, a lower substituted novel HES (Voluven; Fresenius Kabi, Bad Homburg, Germany) was developed to minimize hemostatic interactions, and was compared with HAES-steril (Fresenius Kabi) (pentastarch) regarding safety and efficacy. We performed a prospective, randomized, double-blinded study in 100 major orthopedic surgery patients. Because the 95% confidence interval (-330 mL; +284 mL) for the treatment contrast Voluven-HAES-steril was entirely included in the predefined equivalence range (+/- 500 mL), comparable efficacy was established. Voluven interfered significantly less than HAES-steril with coagulation factor VIII levels and partial thromboplastin time postoperatively. Total amounts of red blood cells transfused were comparable between the Voluven and HAES-steril groups, but a significantly reduced need for homologous red blood cells was observed in the Voluven group. We conclude that in large-blood-loss surgery, Voluven has a comparable efficacy with HAES-steril and may reduce coagulation impairment, possibly leading to a smaller number of allogeneic blood transfusions. Hydroxyethyl starches are common plasma volume expanders, but may interfere with coagulation at large doses. We tested a novel hydroxyethyl starch specification (Voluven; Fresenius Kabi, Bad Homburg, Germany) which was developed to reduce hemostatic interactions while preserving its efficacy in restoring plasma volume in comparison to HAES-steril (pentastarch; Fresenius Kabi) in major orthopedic surgery.

  5. A homotopy algorithm for digital optimal projection control GASD-HADOC

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.

    1993-01-01

    The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.

  6. Numerical Polynomial Homotopy Continuation Method and String Vacua

    DOE PAGES

    Mehta, Dhagash

    2011-01-01

    Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less

  7. Vertical resolution study on the GOES-R Hyperspectral Environmental Suite (HES)

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wang, Fang; Schmit, Timothy J.; Menzel, W. Paul; Gurka, James J.

    2005-01-01

    High spectral resolution infrared radiances from the Hyperspectral Environmental Suite (HES) on Geostationary Operational Environmental Satellite (GOES-R and beyond) will allow for monitoring the evolution of atmospheric temperature and moisture vertical distributions. HES, together with the Advanced Baseline Imager (ABI), will operationally provide enhanced spatial, temporal and vertical information for radiances and atmospheric soundings that are desired by numerical weather forecast models. An algorithm has been developed to analyze the retrieval error and the vertical resolution of soundings from HES radiances. Trade-off studies have been done to balance the spectral coverage, spectral resolution, and signal-to-noise ratio in order to achieve the GOES users' requirement of 1 K accuracy with 1km vertical resolution for temperature and 10% accuracy with 2km vertical resolution for relative humidity. The vertical resolution capability of HES is also compared with that of the current GOES Sounder which has 18 infrared spectral channels and the Advanced Microwave Sounding Unit (AMSU) on the NOAA polar orbiting satellites that has good temperature sensitivity in the lower stratosphere and upper troposphere. The advantage of combination of GOES sounder and AMSU is also investigated.

  8. Delta-1 Activation of Notch-1 Signaling Results in HES-1 Transactivation

    PubMed Central

    Jarriault, Sophie; Le Bail, Odile; Hirsinger, Estelle; Pourquié, Olivier; Logeat, Frédérique; Strong, Clare F.; Brou, Christel; Seidah, Nabil G.; Israël, Alain

    1998-01-01

    The Notch receptor is involved in many cell fate determination events in vertebrates and invertebrates. It has been shown in Drosophila melanogaster that Delta-dependent Notch signaling activates the transcription factor Suppressor of Hairless, leading to an increased expression of the Enhancer of Split genes. Genetic evidence has also implicated the kuzbanian gene, which encodes a disintegrin metalloprotease, in the Notch signaling pathway. By using a two-cell coculture assay, we show here that vertebrate Dl-1 activates the Notch-1 cascade. Consistent with previous data obtained with active forms of Notch-1 a HES-1-derived promoter construct is transactivated in cells expressing Notch-1 in response to Dl-1 stimulation. Impairing the proteolytic maturation of the full-length receptor leads to a decrease in HES-1 transactivation, further supporting the hypothesis that only mature processed Notch is expressed at the cell surface and activated by its ligand. Furthermore, we observed that Dl-1-induced HES-1 transactivation was dependent both on Kuzbanian and RBP-J activities, consistent with the involvement of these two proteins in Notch signaling in Drosophila. We also observed that exposure of Notch-1-expressing cells to Dl-1 results in an increased level of endogenous HES-1 mRNA. Finally, coculture of Dl-1-expressing cells with myogenic C2 cells suppresses differentiation of C2 cells into myotubes, as previously demonstrated for Jagged-1 and Jagged-2, and also leads to an increased level of endogenous HES-1 mRNA. Thus, Dl-1 behaves as a functional ligand for Notch-1 and has the same ability to suppress cell differentiation as the Jagged proteins do. PMID:9819428

  9. A systematic review of third-generation hydroxyethyl starch (HES 130/0.4) in resuscitation: safety not adequately addressed.

    PubMed

    Hartog, Christiane S; Kohl, Matthias; Reinhart, Konrad

    2011-03-01

    Hydroxyethyl starches (HES) are widely used for intravascular volume therapy in surgical, emergency, and intensive care patients. There are safety concerns with regard to coagulopathy, renal failure, pruritus, tissue storage, and mortality. Third-generation HES 130/0.4 is considered to have an improved risk profile. A common rationale for the use of HES is the belief that 3 to 4 times more crystalloid than colloid volume is needed to achieve similar hemodynamic end points. Our goal was to assess whether published studies on HES 130/0.4 resuscitation are sufficiently well designed to draw conclusions about the safety of this compound. In addition, we wanted to assess crystalloid-to-colloid fluid ratios in studies with goal-directed fluid regimen. Systematic review of randomized controlled trials in which HES 130/0.4 is used for resuscitation. We identified 56 randomized controlled trials (RCTs) with HES 130/0.4 in. acute hypovolemia, mainly from the elective surgical setting (n = 45). Surgical studies were small-sized (median 25 patients in the HES groups, range 10 to 90) and of short duration (median 12 hours, range 0.5 to 144 hours). The median cumulative HES dose was 2465 mL (range 328 to 6229 mL), corresponding to 35 mL/kg in a 70-kg patient, the daily dose limit being 50 mL/kg. End points mostly addressed variable surrogate outcomes. Sixty percent of control fluids were other HES solutions, gelatins, or dextran, which have a similar risk profile. Without exception, these studies were not designed for clinically important safety outcomes, primarily because they were too small, used mostly inadequate control fluids, and had inappropriately short observation periods. Therefore, and also because of heterogeneity of patient groups and outcome definitions, results from these studies cannot be pooled. These studies do not allow any conclusion about the safety of HES 130/0.4. There is a common belief that 3 to 4 times more crystalloid than colloid volume is necessary

  10. "Nonlinear pullbacks" of functions and L∞-morphisms for homotopy Poisson structures

    NASA Astrophysics Data System (ADS)

    Voronov, Theodore Th.

    2017-01-01

    We introduce mappings between spaces of functions on (super)manifolds that generalize pullbacks with respect to smooth maps but are, in general, nonlinear (actually, formal). The construction is based on canonical relations and generating functions. (The underlying structure is a formal category, which is a "thickening" of the usual category of supermanifolds; it is close to the category of symplectic micromanifolds and their micromorphisms considered recently by A. Weinstein and A. Cattaneo-B. Dherin-A. Weinstein.) There are two parallel settings, for even and odd functions. As an application, we show how such nonlinear pullbacks give L∞-morphisms for algebras of functions on homotopy Schouten or homotopy Poisson manifolds.

  11. Molecular weight and molar substitution are more important in HES-induced renal impairment than concentration after hemorrhagic and septic shock.

    PubMed

    Simon, T P; Thiele, C; Schuerholz, T; Fries, M; Stadermann, F; Haase, G; Amann, K U; Marx, G

    2015-06-01

    Clinical studies have raised concerns about the safety of 6% hydroxyethylstarch (HES) 130/0.42, but the pathomechanisms of this renal impairment remain unknown. To evaluate the effects of different HES concentrations, molar substitutions and molecular weights in HES-induced renal impairment, we used a porcine two-hit model that combined haemorrhagic and septic shock. We conducted a prospective, randomised, double-blinded, controlled study in a university animal laboratory. Thirty anaesthetised and ventilated pigs were randomised to receive volume replacement therapy using 6% HES130/0.42, 6% HES200/0.5, 10% HES130/0.42 or 10% HES200/0.5, all dissolved in 0.9% NaCl rather than 0.9% NaCl alone. First, we bled the animals until they reached half of their baseline mean arterial pressure (MAP) for 45 minutes followed by fluid resuscitation. As a second hit, sepsis was induced using an Escherichia coli-laden clot 6 hours after haemorrhagic shock. Volume resuscitation started with a delay of two hours and a central venous pressure goal of 12 mmHg. At the end of the study, the groups showed no difference in cardiac output or MAP, but the volume balance (mL/kg BW) was significantly higher in the 0.9% NaCl group (346±90; P≤0.05) than in the other groups (6% HES130, 125±26; 6% HES200, 105±15; 10% HES130, 114±17; 10% HES200, 96±23). Creatinine clearance (mL/min) was significantly lower in the 6% HES200 (26±33) and 10% HES200 (15±18) groups compared to the 0.9% NaCl group (104±46; P≤0.05) but not in the HES 130 formulations (6% HES130: 64±51; 10% HES130: 58±38) at the end of the study. In this porcine two-hit shock model, treatment with 0.9% NaCl, HES 130/0.42 or HES 200/0.5 led to a similar maintenance of haemodynamic values. Despite this similar maintenance of the haemodynamic values, volume replacement with 6% and 10% HES 200/0.5 led to an accumulation of HES, higher colloid osmotic pressure and significantly reduced renal function after haemorrhagic and septic

  12. Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness.

    PubMed

    Zhang, P; Yang, Y; Nolo, R; Zweidler-McKay, P A; Hughes, D P M

    2010-05-20

    The highly conserved NOTCH signaling pathway has many essential functions in the development of diverse cells, tissues and organs from Drosophila to humans, and dysregulated NOTCH signaling contributes to several disorders, including vascular and bone defects, as well as several cancers. Here we describe a novel mechanism of NOTCH regulation by reciprocal inhibition of two NOTCH downstream effectors: Deltex1 and HES1. This mechanism appears to regulate invasion of osteosarcoma cells, as Deltex1 blocks osteosarcoma invasiveness by downregulating NOTCH/HES1 signaling. The inhibitory effect of endogenous Deltex1 on NOTCH signaling is mediated through binding with the intracellular domain of NOTCH and ubiquitination and degradation of NOTCH receptors. Conversely, we show that the NOTCH target gene HES1 causes transcriptional inhibition of Deltex1 by directly binding to the promoter of Deltex1. An HES1 binding site is identified 400 bp upstream of the transcription start site of Deltex1. HES1-mediated repression of Deltex1 requires the C-terminal H3/H4 and WRPW domains of HES1, which associate with the TLE/Groucho corepressors. Taken together, we define a molecular mechanism regulating NOTCH signaling by reciprocal inhibition of the NOTCH target genes HES1 and Deltex1 in mammalian cells. This mechanism may have important clinical implications for targeting NOTCH signaling in osteosarcoma and other cancers.

  13. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity

    PubMed Central

    Wall, Dana S.; Mears, Alan J.; McNeill, Brian; Mazerolle, Chantal; Thurig, Sherry; Wang, Yaping; Kageyama, Ryoichiro; Wallace, Valerie A.

    2009-01-01

    Sonic hedgehog (Shh) is an indispensable, extrinsic cue that regulates progenitor and stem cell behavior in the developing and adult mammalian central nervous system. Here, we investigate the link between the Shh signaling pathway and Hes1, a classical Notch target. We show that Shh-driven stabilization of Hes1 is independent of Notch signaling and requires the Shh effector Gli2. We identify Gli2 as a primary mediator of this response by showing that Gli2 is required for Hh (Hedgehog)-dependent up-regulation of Hes1. We also show using chromatin immunoprecipitation that Gli2 binds to the Hes1 promoter, which suggests that Hes1 is a Hh-dependent direct target of Gli2 signaling. Finally, we show that Shh stimulation of progenitor proliferation and cell diversification requires Gli2 and Hes1 activity. This paper is the first demonstration of the mechanistic and functional link between Shh, Gli, and Hes1 in the regulation of progenitor cell behavior. PMID:19124651

  14. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    SciTech Connect

    Murano, Tatsuro; Okamoto, Ryuichi; Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Watanabe, Mamoru

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  15. Influence of hydroxyethyl starch (HES) 130/0.4 on hemostasis as measured by viscoelastic device analysis: a systematic review.

    PubMed

    Hartog, Christiane S; Reuter, Dorit; Loesche, Wolfgang; Hofmann, Michael; Reinhart, Konrad

    2011-11-01

    Hydroxyethyl starch solutions (HES) are plasma volume expanders which affect hemostasis. Newer HES 130/0.4 is said to be safer. Reevaluation of published evidence is necessary after the recent retraction of studies. Systematic review of studies assessing HES 130/0.4 effects on hemostasis by thrombelastography (TEG, ROTEM) or Sonoclot (SCR) in comparison with crystalloid or albumin control fluids was performed. Only studies which provided statistical comparisons between study fluids were analyzed. Studies were divided into in vitro or in vivo hemodilution studies. We assessed study quality, HES effects which differed significantly from controls, values outside normal range, degree of hemodilution, and cumulative HES dose. Seventeen in vitro and seven in vivo hemodilution studies were analyzed. Four studies reported quality control measures. Nineteen studies (all 15 ROTEM studies, 3 of 5 in vitro TEG, and 1 of 2 SCR studies) showed a significant hypocoagulatory effect of HES 130/0.4 on clot formation, while clotting time was not uniformly affected. Three in vivo TEG studies with low HES doses or cancer patients found mixed or nonsignificant results. In studies which provided normal ranges (n = 9), more values were outside normal ranges in the HES than in the control groups (87/122 vs. 58/122, p < 0.001). Dose effects were apparent in the in vitro studies, which investigated higher dilutions up to 80%. In vivo studies were fewer and did not investigate doses >40 ml/kg. HES 130/0.4 administration results in a weaker and smaller clot. Until results from well-designed clinical trials are available, safer fluids should be chosen for patients with impaired coagulation.

  16. Effects of different types of hydroxyethyl starch (HES) on microcirculation perfusion and tissue oxygenation in patients undergoing liver surgery.

    PubMed

    Cui, Yinghua; Sun, Bo; Wang, Changsong; Liu, Shujuan; Li, Peng; Shi, Jinghui; Li, Enyou

    2014-01-01

    To compare the effects of hydroxyethyl starch (HES) 130/0.4 and HES 200/0.5, which have different molecular weights and degrees of substitution, on microcirculation perfusion and tissue oxygenation in patients undergoing liver surgery. Thirty patients with an American Society of Anesthesiologists status I/II who were scheduled for liver surgery were randomly divided into two groups: one received an intraoperative HES 130/0.4 infusion equal to the amount of blood loss (HES 130/0.4 group, n=15), and the other received HES 200/0.5 equal to the amount of blood loss (HES 200/0.5 group, n=15). Gastric mucosal perfusion and tissue oxygenation were monitored by measuring the gastric mucosal pH (pHi), which was determined using a carbon dioxide tonometer inserted through a nasogastric tube. Gastric mucosal pHi , hemodynamic parameters, body temperature, and blood gas parameters were recorded upon entering the operating room, before skin incision, one hour and two hours after skin incision, and at the end of surgery. The intraoperative pHi decreased in both groups of patients, but the decline in the HES 130/0.4 group was smaller than that of the HES 200/0.5 group. The pHi of the HES 130/0.4 group was significantly higher than that of the HES 200/0.5 group two hours after skin incision and at the end of surgery (P<0.05). A multivariate analysis showed that the type of colloid used intraoperatively was the only variant that affected pHi (F=0.626, P<0.05). Moreover, there were good correlation between pHi at the end of surgery and the length of postoperative hospital stay (r=-0.536, P<0.05) and the time intervals from surgery to the passage of flatus (r=-0.547, P<0.05). Compared with HES 200/0.5, the use of HES 130/0.4 (with a relatively lower molecular weight and lower degree of substitution) could significantly improve internal organ perfusion and tissue oxygenation in patients undergoing liver surgery with a relatively large amount of blood loss.

  17. Global Study of the Simple Pendulum by the Homotopy Analysis Method

    ERIC Educational Resources Information Center

    Bel, A.; Reartes, W.; Torresi, A.

    2012-01-01

    Techniques are developed to find all periodic solutions in the simple pendulum by means of the homotopy analysis method (HAM). This involves the solution of the equations of motion in two different coordinate representations. Expressions are obtained for the cycles and periods of oscillations with a high degree of accuracy in the whole range of…

  18. Global Study of the Simple Pendulum by the Homotopy Analysis Method

    ERIC Educational Resources Information Center

    Bel, A.; Reartes, W.; Torresi, A.

    2012-01-01

    Techniques are developed to find all periodic solutions in the simple pendulum by means of the homotopy analysis method (HAM). This involves the solution of the equations of motion in two different coordinate representations. Expressions are obtained for the cycles and periods of oscillations with a high degree of accuracy in the whole range of…

  19. Re: Coagulation and Fluid Resuscitation by HyperHES in Severe Hemorrhage

    DTIC Science & Technology

    2013-08-01

    administration of 4% gelatin or 6% hydroxyethyl starch solution. Anesth Analg. 2008;106:1078Y1086, table of contents. 5. Kramer GC. Hypertonic resuscitation...impair- ment of clot formation when compared with administration of 6% HES or 4% gelatine .4 Contrary to isotonic crystalloids and colloids, which play...pigs after resuscitation from hem- orrhagic shock using the small-volume con- cept with hypertonic saline/hydroxyethyl starch as compared to

  20. Folic acid remodels chromatin on Hes1 and Neurog2 promoters during caudal neural tube development.

    PubMed

    Ichi, Shunsuke; Costa, Fabricio F; Bischof, Jared M; Nakazaki, Hiromichi; Shen, Yueh-Wei; Boshnjaku, Vanda; Sharma, Saurabh; Mania-Farnell, Barbara; McLone, David G; Tomita, Tadanori; Soares, Marcelo B; Mayanil, Chandra S K

    2010-11-19

    The mechanism(s) behind folate rescue of neural tube closure are not well understood. In this study we show that maternal intake of folate prior to conception reverses the proliferation potential of neural crest stem cells in homozygous Splotch embryos (Sp(-/-)) via epigenetic mechanisms. It is also shown that the pattern of differentiation seen in these cells is similar to wild-type (WT). Cells from open caudal neural tubes of Sp(-/-) embryos exhibit increased H3K27 methylation and decreased expression of KDM6B possibly due to up-regulation of KDM6B targeting micro-RNAs such as miR-138, miR-148a, miR-185, and miR-339-5p. In our model, folate reversed these epigenetic marks in folate-rescued Sp(-/-) embryos. Using tissue from caudal neural tubes of murine embryos we also examined H3K27me2 and KDM6B association with Hes1 and Neurog2 promoters at embryonic day E10.5, the proliferative stage, and E12.5, when neural differentiation begins. In Sp(-/-) embryos compared with WT, levels of H3K27me2 associated with the Hes1 promoter were increased at E10.5, and levels associated with the Neurog2 promoter were increased at E12.5. KDM6B association with Hes1 and Neurog2 promoters was inversely related to H3K27me2 levels. These epigenetic changes were reversed in folate-rescued Sp(-/-) embryos. Thus, one of the mechanisms by which folate may rescue the Sp(-/-) phenotype is by increasing the expression of KDM6B, which in turn decreases H3K27 methylation marks on Hes1 and Neurog2 promoters thereby affecting gene transcription.

  1. Leak testing of IR sensor dewars to 1E-15 std He/s

    NASA Astrophysics Data System (ADS)

    Sasaki, Y. Tito; Bergquist, Lyle E.

    1990-09-01

    The results of tests for leakage performed on ten IR sensor dewars are presented, and the design principles of the new testing devices are discussed. The ultrasensitive leak detector used for testing is compared to conventional detectors. The superfine leak calibrator consisting of a tracer gas supply, an aliquot volume, a pressure transducer, temperature gage, and valves was used to measure leak rates in the E-4 to E-12 std cc He/s range. The testing method is explained, including the gases used, the quadrupole mass analyzer, the reference leak calibration, and the temperature coefficient of the reference leak. The test results of the IR sensor dewars are shown: seven showed leak rates in the E-15 std cc He/s range, two had no detectable leaks, and one had a mid-range E-14 leak. The shelf lives of the dewars are calculated based on the results. The vacuum integrity of small IR sensor dewars can be reliably tested to the range of 1E-15 std cc He/s using the ultrasensitive leak detector and the superfine leak calibrator.

  2. Qingyihuaji Formula Inhibits Pancreatic Cancer and Prolongs Survival by Downregulating Hes-1 and Hey-1.

    PubMed

    Xu, Yanli; Xu, Shan; Cai, Yueqin; Liu, Luming

    2015-01-01

    The dire prognosis of pancreatic cancer has not markedly improved during past decades. The present study was carried out to explore the effect of Qingyihuaji formula (QYHJ) on inhibiting pancreatic cancer and prolonging survival in related Notch signaling pathway. Proliferation of pancreatic cancer cells (SW1990 and PANC-1) was detected by MTT assay at 24, 48, and 72 h with exposure to various concentrations (0.08-50 mg/mL) of QYHJ water extract. Pancreatic tumor models of nude mice were divided into three groups randomly (control, QYHJ, and gemcitabine). mRNA and protein expression of Notch target genes (Hes-1, Hey-1, Hey-2, and Hey-L) in dissected tumor tissue were detected. Results showed that proliferation of SW1990 cells and PANC-1 cells was inhibited by QYHJ water extract in a dose-dependent and time-dependent manner. QYHJ effectively inhibited tumor growth and prolonged survival time in nude mice. Expression of both Hes-1 and Hey-1 was decreased significantly in QYHJ group, suggesting that Hes-1 and Hey-1 in Notch signaling pathway might be potential targets for QYHJ treatment. This research could help explain the clinical effectiveness of QYHJ and may provide advanced pancreatic cancer patients with a new therapeutic option.

  3. PERTURBING LIGNIFICATION

    USDA-ARS?s Scientific Manuscript database

    Perturbing lignification is possible in multiple and diverse ways. Without obvious growth/development phenotypes, transgenic angiosperms can have lignin levels reduced to half the normal level, can have compositions ranging from very high-guaiacyl/low-syringyl to almost totally syringyl, and can eve...

  4. Epigenetic dysregulation of hairy and enhancer of split 4 (HES4) is associated with striatal degeneration in postmortem Huntington brains

    PubMed Central

    Bai, Guang; Cheung, Iris; Shulha, Hennady P.; Coelho, Joana E.; Li, Ping; Dong, Xianjun; Jakovcevski, Mira; Wang, Yumei; Grigorenko, Anastasia; Jiang, Yan; Hoss, Andrew; Patel, Krupal; Zheng, Ming; Rogaev, Evgeny; Myers, Richard H.; Weng, Zhiping; Akbarian, Schahram; Chen, Jiang-Fan

    2015-01-01

    To investigate epigenetic contributions to Huntington's disease (HD) pathogenesis, we carried out genome-wide mapping of the transcriptional mark, trimethyl-histone H3-lysine 4 (H3K4me3) in neuronal nuclei extracted from prefrontal cortex of HD cases and controls using chromatin immunoprecipitation followed by deep-sequencing. Neuron-specific mapping of the genome-wide distribution of H3K4me3 revealed 136 differentially enriched loci associated with genes implicated in neuronal development and neurodegeneration, including GPR3, TMEM106B, PDIA6 and the Notch signaling genes hairy and enhancer of split 4 (HES4) and JAGGED2, supporting the view that the neuronal epigenome is affected in HD. Importantly, loss of H3K4me3 at CpG-rich sequences on the HES4 promoter was associated with excessive DNA methylation, reduced binding of nuclear proteins to the methylated region and altered expression of HES4 and HES4 targeted genes MASH1 and P21 involved in striatal development. Moreover, hypermethylation of HES4 promoter sequences was strikingly correlated with measures of striatal degeneration and age-of-onset in a cohort of 25 HD brains (r = 0.56, P = 0.006). Lastly, shRNA knockdown of HES4 in human neuroblastoma cells altered MASH1 and P21 mRNA expression and markedly increased mutated HTT-induced aggregates and cell death. These findings, taken together, suggest that epigenetic dysregulation of HES4 could play a critical role in modifying HD disease pathogenesis and severity. PMID:25480889

  5. T cell development requires constraint of the myeloid regulator C/EBPa by the Notch target and transcriptional repressor Hes1

    PubMed Central

    De Obaldia, Maria Elena; Bell, J Jeremiah; Wang, Xinxin; Harly, Christelle; Yashiro-Ohtani, Yumi; DeLong, Jonathan H; Zlotoff, Daniel A; Sultana, Dil Afroz; Pear, Warren S; Bhandoola, Avinash

    2014-01-01

    Notch signaling induces gene expression of the T cell lineage and discourages alternative fate outcomes. Hematopoietic deficiency in the Notch target Hes1 results in severe T cell lineage defects; however, the underlying mechanism is unknown. We found here that Hes1 constrained myeloid gene-expression programs in T cell progenitor cells, as deletion of the myeloid regulator C/EBPa restored the development of T cells from Hes1-deficient progenitor cells. Repression of Cebpa by Hes1 required its DNA-binding and Groucho-recruitment domains. Hes1-deficient multipotent progenitor cells showed a developmental bias toward myeloid and dendritic cells after Notch signaling, whereas Hes1-deficient lymphoid progenitor cells required additional cytokine signaling for diversion into the myeloid lineage. Our findings establish the importance of constraining developmental programs of the myeloid lineage early in T cell development. PMID:24185616

  6. REVIEWS OF TOPICAL PROBLEMS: Defects in liquid crystals: homotopy theory and experimental studies

    NASA Astrophysics Data System (ADS)

    Kurik, Mikhail V.; Lavrentovich, O. D.

    1988-03-01

    The fundamental concepts of the homotopy theory of defects in liquid crystals and the results of experimental studies in this field are presented. The concepts of degeneracy space, homotopy groups, and topological charge, which are used for classifying the topologically stable inhomogeneous distributions in different liquid-crystalline phases are examined (uni and biaxial nematics, cholesterics, smectics, and columnar phases). Experimental data are given for the different mesophases on the structure and properties of dislocations, disclinations, point defects in the volume (hedgehogs) and on the surface of the medium (boojums), monopoles, domain formations, and solitons. Special attention is paid to the results of studies of defects in closed volumes (spherical drops, cylindrical capillaries), and to the connection between the topological charges of these defects and the character of the orientation of the molecules of the liquid crystal at the surface. A set of fundamentally new effects that can occur in studying the topological properties of defects in liquid crystals is discussed.

  7. On accelerated flow of MHD powell–eyring fluid via homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell–Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  8. Solution of the Falkner-Skan wedge flow by a revised optimal homotopy asymptotic method.

    PubMed

    Madaki, A G; Abdulhameed, M; Ali, M; Roslan, R

    2016-01-01

    In this paper, a revised optimal homotopy asymptotic method (OHAM) is applied to derive an explicit analytical solution of the Falkner-Skan wedge flow problem. The comparisons between the present study with the numerical solutions using (fourth order Runge-Kutta) scheme and with analytical solution using HPM-Padé of order [4/4] and order [13/13] show that the revised form of OHAM is an extremely effective analytical technique.

  9. Solving nonlinear or stiff differential equations by Laplace homotopy analysis method(LHAM)

    NASA Astrophysics Data System (ADS)

    Chong, Fook Seng; Lem, Kong Hoong; Wong, Hui Lin

    2015-10-01

    The initial value problems of nonlinear or stiff ordinary differential equation appear in many fields of engineering science, particularly in the studies of electrical circuits, chemical reactions, wave vibration and so on. In this research, the standard homotopy analysis method hybrids with Laplace transform method to solve nonlinear and stiff differential equations. Using this modification, the problems solved by LHAM successfully yield good solutions. Some examples are examined to highlight the convenience and effectiveness of LHAM.

  10. Systematic analysis of hydroxyethyl starch (HES) reviews: proliferation of low-quality reviews overwhelms the results of well-performed meta-analyses.

    PubMed

    Hartog, Christiane S; Skupin, Helga; Natanson, Charles; Sun, Junfeng; Reinhart, Konrad

    2012-08-01

    Hydroxyethyl starch (HES) is a synthetic colloid used widely for resuscitation despite the availability of safer, less costly fluids. Numerous HES reviews have been published that may have influenced clinicians' practice. We have therefore examined the relationship between the methodological quality of published HES reviews, authors' potential conflicts of interest (pCOI) and the recommendations made. Systematic analysis of reviews on HES use. Between 1975 and 2010, 165 reviews were published containing recommendations for or against HES use. From the 1990s onwards, favorable reviews increased from two to eight per year and HES's share of the artificial colloid market tripled from 20 to 60 %. Only 7 % (12/165) of these reviews of HES use contained meta-analyses; these 7 % had higher Overview Quality Assessment Questionnaire (OQAQ) scores [median (range) 6.5 (3-7)] than reviews without meta-analysis [2 (1-4); p < 0.001]. The rates of recommending against HES use are 83 % (10/12) in meta-analyses and 20 % (31/153) in reviews without meta-analysis (p < 0.0001). Fourteen authors published the majority (70/124) of positive reviews, and ten of these 14 had or have since developed a pCOI with various manufacturers of HES. Low-quality HES reviews reached different conclusions than high-quality meta-analyses from independent entities, such as Cochrane Reviews. The majority of these low-quality positive HES reviews were written by a small group of authors, most of whom had or have since established ties to industry. The proliferation of positive HES reviews has been associated with increased utilization of an expensive therapy despite the lack of evidence for meaningful clinical benefit and increased risks. Clinicians need to be more informed that marketing efforts are potentially influencing scientific literature.

  11. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway.

    PubMed

    Wang, Sheng-Chun; Lin, Xiao-Lin; Wang, Hui-Yan; Qin, Yu-Juan; Chen, Lin; Li, Jing; Jia, Jun-Shuang; Shen, Hong-Fen; Yang, Sheng; Xie, Rao-Ying; Wei, Fang; Gao, Fei; Rong, Xiao-Xiang; Yang, Jie; Zhao, Wen-Tao; Zhang, Ting-Ting; Shi, Jun-Wen; Yao, Kai-Tai; Luo, Wei-Ren; Sun, Yan; Xiao, Dong

    2015-11-03

    Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.

  12. A calcium-containing electrolyte-balanced hydroxyethyl starch (HES) solution is associated with higher factor VIII activity than is a non-balanced HES solution, but does not affect von Willebrand factor function or thromboelastometric measurements - results of a model of in vitro haemodilution

    PubMed Central

    Rau, Juliane; Rosenthal, Christoph; Langer, Elisabeth; Sander, Michael; Schulte, Erika; Schuster, Michael; von Heymann, Christian

    2014-01-01

    Background Hydroxyethyl starch (HES) is known to impair blood coagulation. The impact of calcium-containing, balanced carrier solutions of HES on coagulation is controversial. We investigated the effects of increasing degrees of haemodilution with modern 6%, electrolyte-balanced HES vs non-balanced HES on coagulation in vitro, and compared the balanced HES to a balanced crystalloid solution for an internal control. Materials and methods Blood samples from ten healthy volunteers were diluted in vitro by 20%, 40% and 60% with either calcium-containing balanced 130/0.42 HES, non-balanced 130/0.4 HES or balanced crystalloid. In all samples, blood counts, prothrombin time ratio, activated partial thromboplastin time, ionized calcium, factor VIII activity, von Willebrand factor antigen, von Willebrand factor collagen binding activity, and von Willebrand factor activity were determined, and activated rotational thromboelastometry (EXTEM and FIBTEM assays) was performed. Results Haemodilution impaired coagulation in a dilution-dependent manner as determined by both conventional laboratory assays and thromboelastometry. Ionized calcium increased with balanced HES (p≤0.004), but decreased with non-balanced HES (p≤0.004). Prothrombin time ratio (p≤0.002) and factor VIII levels (p=0.001) were better preserved with balanced HES than with non-balanced HES in dilutions ≥40%. Thromboelastometry showed no differences between values in blood diluted with the balanced or non-balanced HES. Discussion In vitro, a balanced calcium-containing carrier solution of 6% HES 130/0.42 preserved coagulation better than did non-balanced HES 130/0.4 as quantified by conventional coagulation assays, but not in activated thromboelastometry. One explanation could be the increased ionized calcium levels after dilution with calcium-containing carrier solutions. PMID:24333074

  13. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt

    PubMed Central

    Harrington, Heather A.; Dale, Trevor; Gavaghan, David J.

    2017-01-01

    The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch’s interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain

  14. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt.

    PubMed

    Kay, Sophie K; Harrington, Heather A; Shepherd, Sarah; Brennan, Keith; Dale, Trevor; Osborne, James M; Gavaghan, David J; Byrne, Helen M

    2017-02-28

    The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch's interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain its

  15. Systematic analysis of hydroxyethyl starch (HES) reviews: proliferation of low-quality reviews overwhelms the results of well-performed meta-analyses

    PubMed Central

    Hartog, Christiane S.; Skupin, Helga; Natanson, Charles; Sun, Junfeng; Reinhart, Konrad

    2013-01-01

    Purpose Hydroxyethyl starch (HES) is a synthetic colloid used widely for resuscitation despite the availability of safer, less costly fluids. Numerous HES reviews have been published that may have influenced clinicians’ practice. We have therefore examined the relationship between the methodological quality of published HES reviews, authors’ potential conflicts of interest (pCOI) and the recommendations made. Methods Systematic analysis of reviews on HES use. Results Between 1975 and 2010, 165 reviews were published containing recommendations for or against HES use. From the 1990s onwards, favorable reviews increased from two to eight per year and HES’s share of the artificial colloid market tripled from 20 to 60 %. Only 7 % (12/165) of these reviews of HES use contained meta-analyses; these 7 % had higher Overview Quality Assessment Questionnaire (OQAQ) scores [median (range) 6.5 (3–7)] than reviews without meta-analysis [2 (1–4); p < 0.001]. The rates of recommending against HES use are 83 % (10/12) in meta-analyses and 20 % (31/153) in reviews without meta-analysis (p < 0.0001). Fourteen authors published the majority (70/124) of positive reviews, and ten of these 14 had or have since developed a pCOI with various manufacturers of HES. Conclusions Low-quality HES reviews reached different conclusions than high-quality meta-analyses from independent entities, such as Cochrane Reviews. The majority of these low-quality positive HES reviews were written by a small group of authors, most of whom had or have since established ties to industry. The proliferation of positive HES reviews has been associated with increased utilization of an expensive therapy despite the lack of evidence for meaningful clinical benefit and increased risks. Clinicians need to be more informed that marketing efforts are potentially influencing scientific literature. PMID:22790311

  16. Inflammatory Kidney and Liver Tissue Response to Different Hydroxyethylstarch (HES) Preparations in a Rat Model of Early Sepsis

    PubMed Central

    Schimmer, Ralph C.; Urner, Martin; Voigtsberger, Stefanie; Booy, Christa; Roth Z’Graggen, Birgit; Beck-Schimmer, Beatrice; Schläpfer, Martin

    2016-01-01

    Background Tissue hypoperfusion and inflammation in sepsis can lead to organ failure including kidney and liver. In sepsis, mortality of acute kidney injury increases by more than 50%. Which type of volume replacement should be used is still an ongoing debate. We investigated the effect of different volume strategies on inflammatory mediators in kidney and liver in an early sepsis model. Material and Methods Adult male Wistar rats were subjected to sepsis by cecal ligation and puncture (CLP) and assigned to three fluid replenishment groups. Animals received 30mL/kg of Ringer’s lactate (RL) for 2h, thereafter RL (75mL/kg), hydroxyethyl starch (HES) balanced (25mL/kg), containing malate and acetate, or HES saline (25mL/kg) for another 2h. Kidney and liver tissue was assessed for inflammation. In vitro rat endothelial cells were exposed to RL, HES balanced or HES saline for 2h, followed by stimulation with tumor necrosis factor-α (TNF-α) for another 4h. Alternatively, cells were exposed to malate, acetate or a mixture of malate and acetate, reflecting the according concentration of these substances in HES balanced. Pro-inflammatory cytokines were determined in cell supernatants. Results Cytokine mRNA in kidney and liver was increased in CLP animals treated with HES balanced compared to RL, but not after application of HES saline. MCP-1 was 3.5fold (95% CI: 1.3, 5.6) (p<0.01) and TNF-α 2.3fold (95% CI: 1.2, 3.3) (p<0.001) upregulated in the kidney. Corresponding results were seen in liver tissue. TNF-α-stimulated endothelial cells co-exposed to RL expressed 3529±1040pg/mL MCP-1 and 59±23pg/mL CINC-1 protein. These cytokines increased by 2358pg/mL (95% CI: 1511, 3204) (p<0.001) and 29pg/ml (95% CI: 14, 45) (p<0.01) respectively when exposed to HES balanced instead. However, no further upregulation was observed with HES saline. PBS supplemented with acetate increased MCP-1 by 1325pg/mL (95% CI: 741, 1909) (p<0.001) and CINC-1 by 24pg/mL (95% CI: 9, 38) (p<0

  17. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells.

    PubMed

    Lee, Sung Hee; Hong, Hannah S; Liu, Zi Xiao; Kim, Reuben H; Kang, Mo K; Park, No-Hee; Shin, Ki-Hyuk

    2012-07-20

    Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.

  18. Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body.

    PubMed

    Kameda, Yoko; Saitoh, Takayoshi; Nemoto, Noriko; Katoh, Tokio; Iseki, Sachiko

    2012-08-01

    Hes1 gene represses the expression of proneural basic helix-loop-helix (bHLH) factor Mash1, which is essential for the differentiation of the sympathetic ganglia and carotid body glomus cells. The sympathetic ganglia, carotid body, and common carotid artery in Wnt1-Cre/R26R double transgenic mice were intensely labeled by X-gal staining, i.e., the neural crest origin. The deficiency of Hes1 caused severe hypoplasia of the superior cervical ganglion (SCG). At embryonic day (E) 17.5-E18.5, the volume of the SCG in Hes1 null mutants was reduced to 26.4% of the value in wild-type mice. In 4 of 30 cases (13.3%), the common carotid artery derived from the third arch artery was absent in the null mutants, and the carotid body was not formed. When the common carotid artery was retained, the organ grew in the wall of the third arch artery and glomus cell precursors were provided from the SCG in the null mutants as well as in wild-types. However, the volume of carotid body in the null mutants was only 52.5% of the value in wild-types at E17.5-E18.5. These results suggest that Hes1 plays a critical role in regulating the development of neural crest derivatives in the mouse cervical region.

  19. Communication: Newton homotopies for sampling stationary points of potential energy landscapes

    SciTech Connect

    Mehta, Dhagash; Chen, Tianran; Hauenstein, Jonathan D.; Wales, David J.

    2014-09-28

    One of the most challenging and frequently arising problems in many areas of science is to find solutions of a system of multivariate nonlinear equations. There are several numerical methods that can find many (or all if the system is small enough) solutions but they all exhibit characteristic problems. Moreover, traditional methods can break down if the system contains singular solutions. Here, we propose an efficient implementation of Newton homotopies, which can sample a large number of the stationary points of complicated many-body potentials. We demonstrate how the procedure works by applying it to the nearest-neighbor ϕ{sup 4} model and atomic clusters.

  20. A homotopy analysis method for the option pricing PDE in illiquid markets

    NASA Astrophysics Data System (ADS)

    E-Khatib, Youssef

    2012-09-01

    One of the shortcomings of the Black and Scholes model on option pricing is the assumption that trading the underlying asset does not affect the underlying asset price. This can happen in perfectly liquid markets and it is evidently not viable in markets with imperfect liquidity (illiquid markets). It is well-known that markets with imperfect liquidity are more realistic. Thus, the presence of price impact while studying options is very important. This paper investigates a solution for the option pricing PDE in illiquid markets using the homotopy analysis method.

  1. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  2. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  3. A homotopy algorithm for synthesizing robust controllers for flexible structures via the maximum entropy design equations

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen

    1990-01-01

    One well known deficiency of LQG compensators is that they do not guarantee any measure of robustness. This deficiency is especially highlighted when considering control design for complex systems such as flexible structures. There has thus been a need to generalize LQG theory to incorporate robustness constraints. Here we describe the maximum entropy approach to robust control design for flexible structures, a generalization of LQG theory, pioneered by Hyland, which has proved useful in practice. The design equations consist of a set of coupled Riccati and Lyapunov equations. A homotopy algorithm that is used to solve these design equations is presented.

  4. Optimal q-homotopy analysis method for time-space fractional gas dynamics equation

    NASA Astrophysics Data System (ADS)

    Saad, K. M.; AL-Shareef, E. H.; Mohamed, Mohamed S.; Yang, Xiao-Jun

    2017-01-01

    It is well known that the homotopy analysis method is one of the most efficient methods for obtaining analytical or approximate semi-analytical solutions of both linear and non-linear partial differential equations. A more general form of HAM is introduced in this paper, which is called Optimal q-Homotopy Analysis Method (Oq-HAM). It has better convergence properties as compared with the usual HAM, due to the presence of fraction factor associated with the solution. The convergence of q-HAM is studied in details elsewhere (M.A. El-Tawil, Int. J. Contemp. Math. Sci. 8, 481 (2013)). Oq-HAM is applied to the non-linear homogeneous and non-homogeneous time and space fractional gas dynamics equations with initial condition. An optimal convergence region is determined through the residual error. By minimizing the square residual error, the optimal convergence control parameters can be obtained. The accuracy and efficiency of the proposed method are verified by comparison with the exact solution of the fractional gas dynamics equation. Also, it is shown that the Oq-HAM for the fractional gas dynamics equation is equivalent to the exact solution. We obtain graphical representations of the solutions using MATHEMATICA.

  5. Impact of Sox9 Dosage and Hes1-mediated Notch Signaling in Controlling the Plasticity of Adult Pancreatic Duct Cells in Mice

    PubMed Central

    Hosokawa, Shinichi; Furuyama, Kenichiro; Horiguchi, Masashi; Aoyama, Yoshiki; Tsuboi, Kunihiko; Sakikubo, Morito; Goto, Toshihiko; Hirata, Koji; Tanabe, Wataru; Nakano, Yasuhiro; Akiyama, Haruhiko; Kageyama, Ryoichiro; Uemoto, Shinji; Kawaguchi, Yoshiya

    2015-01-01

    In the adult pancreas, there has been a long-standing dispute as to whether stem/precursor populations that retain plasticity to differentiate into endocrine or acinar cell types exist in ducts. We previously reported that adult Sox9-expressing duct cells are sufficiently plastic to supply new acinar cells in Sox9-IRES-CreERT2 knock-in mice. In the present study, using Sox9-IRES-CreERT2 knock-in mice as a model, we aimed to analyze how plasticity is controlled in adult ducts. Adult duct cells in these mice express less Sox9 than do wild-type mice but Hes1 equally. Acinar cell differentiation was accelerated by Hes1 inactivation, but suppressed by NICD induction in adult Sox9-expressing cells. Quantitative analyses showed that Sox9 expression increased with the induction of NICD but did not change with Hes1 inactivation, suggesting that Notch regulates Hes1 and Sox9 in parallel. Taken together, these findings suggest that Hes1-mediated Notch activity determines the plasticity of adult pancreatic duct cells and that there may exist a dosage requirement of Sox9 for keeping the duct cell identity in the adult pancreas. In contrast to the extended capability of acinar cell differentiation by Hes1 inactivation, we obtained no evidence of islet neogenesis from Hes1-depleted duct cells in physiological or PDL-induced injured conditions. PMID:25687338

  6. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia.

    PubMed

    Espinosa, Lluis; Cathelin, Severine; D'Altri, Teresa; Trimarchi, Thomas; Statnikov, Alexander; Guiu, Jordi; Rodilla, Veronica; Inglés-Esteve, Julia; Nomdedeu, Josep; Bellosillo, Beatriz; Besses, Carles; Abdel-Wahab, Omar; Kucine, Nicole; Sun, Shao-Cong; Song, Guangchan; Mullighan, Charles C; Levine, Ross L; Rajewsky, Klaus; Aifantis, Iannis; Bigas, Anna

    2010-09-14

    It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo.

  7. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia

    PubMed Central

    Espinosa, Lluis; Cathelin, Severine; D’Altri, Teresa; Trimarchi, Thomas; Statnikov, Alexander; Guiu, Jordi; Rodilla, Veronica; Inglés-Esteve, Julia; Nomdedeu, Josep; Bellosillo, Beatriz; Besses, Carles; Abdel-Wahab, Omar; Kucine, Nicole; Sun, Shao-Cong; Song, Guangchan; Mullighan, Charles C.; Levine, Ross L.; Rajewsky, Klaus; Aifantis, Iannis; Bigas, Anna

    2010-01-01

    SUMMARY It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo. PMID:20832754

  8. Boundary perturbation theory for nonanalytic perturbations

    SciTech Connect

    Pomraning, G.C.

    1983-10-01

    First-order perturbation formulas are derived that give the change in the eigenvalue of a reactive system due to a perturbation in the exterior shape of the system. In physical terms, this perturbation involves adding a thin layer of arbitrary material to the surface of the unperturbed system (or deleting material past a material discontinuity). From a mathematical viewpoint, the perturbation is sufficiently general to give rise to a nonanalytic behavior of the eigenvalue on the smallness parameter. Both transport theory and the diffusion approximation are treated.

  9. Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells.

    PubMed

    Lee, Jung Bok; Werbowetski-Ogilvie, Tamra E; Lee, Jong-Hee; McIntyre, Brendan A S; Schnerch, Angelique; Hong, Seok-Ho; Park, In-Hyun; Daley, George Q; Bernstein, Irwin D; Bhatia, Mickie

    2013-08-15

    Notch signaling regulates several cellular processes including cell fate decisions and proliferation in both invertebrates and mice. However, comparatively less is known about the role of Notch during early human development. Here, we examined the function of Notch signaling during hematopoietic lineage specification from human pluripotent stem cells of both embryonic and adult fibroblast origin. Using immobilized Notch ligands and small interfering RNA to Notch receptors we have demonstrated that Notch1, but not Notch2, activation induced hairy and enhancer of split 1 (HES1) expression and generation of committed hematopoietic progenitors. Using gain- and loss-of-function approaches, this was shown to be attributed to Notch-signaling regulation through HES1, which dictated cell fate decisions from bipotent precursors either to the endothelial or hematopoietic lineages at the clonal level. Our study reveals a previously unappreciated role for the Notch pathway during early human hematopoiesis, whereby Notch signaling via HES1 represents a toggle switch of hematopoietic vs endothelial fate specification.

  10. Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats.

    PubMed

    Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin

    2016-08-25

    Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits.

  11. Delta–Notch—and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors

    PubMed Central

    Fischer, Andreas; Gessler, Manfred

    2007-01-01

    Hes and Hey genes are the mammalian counterparts of the Hairy and Enhancer-of-split type of genes in Drosophila and they represent the primary targets of the Delta–Notch signaling pathway. Hairy-related factors control multiple steps of embryonic development and misregulation is associated with various defects. Hes and Hey genes (also called Hesr, Chf, Hrt, Herp or gridlock) encode transcriptional regulators of the basic helix-loop-helix class that mainly act as repressors. The molecular details of how Hes and Hey proteins control transcription are still poorly understood, however. Proposed modes of action include direct binding to N- or E-box DNA sequences of target promoters as well as indirect binding through other sequence-specific transcription factors or sequestration of transcriptional activators. Repression may rely on recruitment of corepressors and induction of histone modifications, or even interference with the general transcriptional machinery. All of these models require extensive protein–protein interactions. Here we review data published on protein–protein and protein–DNA interactions of Hairy-related factors and discuss their implications for transcriptional regulation. In addition, we summarize recent progress on the identification of potential target genes and the analysis of mouse models. PMID:17586813

  12. Astragaloside IV protects cardiomyocytes from anoxia/reoxygenation injury by upregulating the expression of Hes1 protein.

    PubMed

    Huang, Huang; Lai, Songqing; Wan, Qing; Qi, Wanghong; Liu, Jichun

    2016-05-01

    Astragaloside IV (ASI), a traditional Chinese medicine, is a main active ingredient of Astragalus membranaceus. Many clinical studies have found that ASI protects cardiomyocytes in cardiovascular diseases, but the underlying mechanisms remain obscure. The aim of this study was to investigate the molecular mechanisms responsible for the protective effects of ASI in cardiomyocytes from anoxia/reoxygenation (A/R) injury. According to the previous studies, we hypothesized that the cardioprotective effects of ASI against A/R injury might be associated with Notch1/Hes1 signaling pathway. In this study, neonatal rat primary cardiomyocytes were preconditioned with ASI prior to A/R injury. Our results showed that ASI effectively increased the cell viability, decreased the content of MDA, decreased the activities of CPK and LDH, increased the activities of GSH-Px and SOD, and reduced the reactive oxygen species (ROS) generation and the loss of mitochondrial membrane potential (Δψm). ASI inhibited the mitochondrial permeability transition pore (mPTP) opening and activation of caspase-3, and finally decreased the cell apoptosis in cardiomyocytes. Furthermore, ASI upregulated Hes1 protein expression. However, pretreatment with DAPT, a Notch1 inhibitor, effectively attenuated the cardioprotective effects of ASI against A/R injury, except MDA, SOD, GSH-Px, and the ROS generation. Taken together, we demonstrated that ASI could protect against A/R injury via the Notch1/Hes1 signaling pathway.

  13. Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats

    PubMed Central

    Xu, Xiao; Sun, Xin; Hu, Xue-Song; Zhuang, Yan; Liu, Yue-Chen; Meng, Hao; Miao, Lin; Yu, He; Luo, Shu-Jin

    2016-01-01

    Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits. PMID:27560986

  14. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    PubMed

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  15. Homotopy Particle Filter for Ground-Based Tracking of Satellites at GEO

    NASA Astrophysics Data System (ADS)

    Moshtagh, N.; Chan, J.; Chan, M.

    2016-09-01

    Ground telescopes enable low-cost tracking and characterization of meter-class space objects. Since a telescope may be tasked to observe multiple fields of the sky, the time between observations for each object may vary from several seconds to tens of minutes. Long propagation times with nonlinear dynamics are challenging for traditional filtering methods such as the Extended Kalman Filter (EKF). Sampling-based filters based on the Particle Filter (PF) are promising for this type of problem but typically require maintaining a large number of samples. In this work, we evaluate the Homotopy Particle Filter (HPF) which promises effective performance with orders of magnitude fewer particles. The performance of the HPF is evaluated against GEO satellite observations collected by a ground telescope at Lockheed Martin's Space Object Tracking (SPOT) facility.

  16. A homotopy approach for combined control-structure optimization - Constructive analysis and numerical examples

    NASA Technical Reports Server (NTRS)

    Scheid, R. E.; Milman, M. H.; Salama, M.; Bruno, R.; Gibson, J. S.

    1990-01-01

    This paper outlines the development of methods for the combined control-structure optimization of physical systems encountered in the technology of large space structures. The objectives of the approach taken in this paper is not to produce the 'best' optimized design, but rather to efficiently produce a family of design options so as to assist in early trade studies, typically before hard design constraints are imposed. The philosophy is that these are candidate designs to be passed on for further considerations, and their function is more to guide the development of the system design rather than to represent the ultimate product. A homotopy approach involving multi-objective functions is developed for this purpose. Analytical and numerical examples are also presented.

  17. Application of Homotopy analysis method for mechanical model of deepwater SCR installation

    NASA Astrophysics Data System (ADS)

    You, Xiangcheng; Xu, Hang

    2012-09-01

    In this paper, considering the process of deepwater SCR installation with the limitations of small deformation theory of beam and catenary theory, a mechanical model of deepwater SCR installation is given based on large deformation beam model. In the following model, getting the relation of the length of the riser, bending stiffness and the unit weight by dimensional analysis, the simple approximate analytical expressions are obtained by using Homotopy Analysis Method. In the same condition, the calculated results are compared with the proposed approximate analytical expressions, the catenary theory or the commercial software of nonlinear finite element program ORCAFLEX. Hopefully, a convenient and effective method for mechanical model of deepwater SCR installation is provided.

  18. Homotopy-Theoretic Study & Atomic-Scale Observation of Vortex Domains in Hexagonal Manganites

    PubMed Central

    Li, Jun; Chiang, Fu-Kuo; Chen, Zhen; Ma, Chao; Chu, Ming-Wen; Chen, Cheng-Hsuan; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2016-01-01

    Essential structural properties of the non-trivial “string-wall-bounded” topological defects in hexagonal manganites are studied through homotopy group theory and spherical aberration-corrected scanning transmission electron microscopy. The appearance of a “string-wall-bounded” configuration in RMnO3 is shown to be strongly linked with the transformation of the degeneracy space. The defect core regions (~50 Å) mainly adopt the continuous U(1) symmetry of the high-temperature phase, which is essential for the formation and proliferation of vortices. Direct visualization of vortex strings at atomic scale provides insight into the mechanisms and macro-behavior of topological defects in crystalline materials. PMID:27324701

  19. Regulation of the Notch target gene Hes-1 by TGF{alpha} induced Ras/MAPK signaling in human neuroblastoma cells

    SciTech Connect

    Stockhausen, Marie-Therese; Sjoelund, Jonas; Axelson, Hakan . E-mail: hakan.axelson@molmed.mas.lu.se

    2005-10-15

    Ras and Notch signaling have recently been shown to cooperate in the maintenance of neoplastic transformation. Here, we show that TGF{alpha}, a known activator of Ras signaling, can drive cell proliferation and at the same time induce the expression of the Notch target Hes-1 in the neuroblastoma cell line SK-N-BE(2)c. The up-regulation of Hes-1 occurred both at the transcriptional and protein levels and by use of EGFR and MEK inhibitors we could show that the Hes-1 response was dependent on activation of the MAP kinase ERK. Blocking Notch activation by {gamma}-secretase inhibition did not profoundly affect the Hes-1 levels, neither in untreated nor in TGF{alpha} treated cells. The up-regulation of Hes-1 was associated with down-regulation of its pro-neuronal target gene Hash-1. Taken together, these results show that TGF{alpha} is a potent mitogen of neuroblastoma cells and suggest a connection between activation of ERK and Hes-1, thus providing a link between the Ras and Notch signaling pathways.

  20. Topological and geometrical quantum computation in cohesive Khovanov homotopy type theory

    NASA Astrophysics Data System (ADS)

    Ospina, Juan

    2015-05-01

    The recently proposed Cohesive Homotopy Type Theory is exploited as a formal foundation for central concepts in Topological and Geometrical Quantum Computation. Specifically the Cohesive Homotopy Type Theory provides a formal, logical approach to concepts like smoothness, cohomology and Khovanov homology; and such approach permits to clarify the quantum algorithms in the context of Topological and Geometrical Quantum Computation. In particular we consider the so-called "open-closed stringy topological quantum computer" which is a theoretical topological quantum computer that employs a system of open-closed strings whose worldsheets are open-closed cobordisms. The open-closed stringy topological computer is able to compute the Khovanov homology for tangles and for hence it is a universal quantum computer given than any quantum computation is reduced to an instance of computation of the Khovanov homology for tangles. The universal algebra in this case is the Frobenius Algebra and the possible open-closed stringy topological quantum computers are forming a symmetric monoidal category which is equivalent to the category of knowledgeable Frobenius algebras. Then the mathematical design of an open-closed stringy topological quantum computer is involved with computations and theorem proving for generalized Frobenius algebras. Such computations and theorem proving can be performed automatically using the Automated Theorem Provers with the TPTP language and the SMT-solver Z3 with the SMT-LIB language. Some examples of application of ATPs and SMT-solvers in the mathematical setup of an open-closed stringy topological quantum computer will be provided.

  1. On the solution of system of fractional nonlinear predator-prey population model via homotopy decomposition method

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon

    2013-10-01

    We exploit a relatively new analytical technique, the Homotopy Decomposition Method (HDM), for solving nonlinear fractional partial differential equations arising in prey-predator biological population dynamics system. Numerical solutions are provided and they have certain properties which exhibit biologically significant dependence on the parameter values. The fractional derivatives are described in the Caputo sense. The HDM is reliable and reduces the number of computations. This gives the HDM a wider applicability. In addition, the method is very easy to use.

  2. Density perturbation theory

    SciTech Connect

    Palenik, Mark C.; Dunlap, Brett I.

    2015-07-28

    Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.

  3. Inhibition of Notch1 promotes hedgehog signalling in a HES1-dependent manner in chondrocytes and exacerbates experimental osteoarthritis.

    PubMed

    Lin, Neng-Yu; Distler, Alfiya; Beyer, Christian; Philipi-Schöbinger, Ariella; Breda, Silvia; Dees, Clara; Stock, Michael; Tomcik, Michal; Niemeier, Andreas; Dell'Accio, Francesco; Gelse, Kolja; Mattson, Mark P; Schett, Georg; Distler, Jörg Hw

    2016-11-01

    Notch ligands and receptors have recently been shown to be differentially expressed in osteoarthritis (OA). We aim to further elucidate the functional role of Notch signalling in OA using Notch1 antisense transgenic (Notch1 AS) mice. Notch and hedgehog signalling were analysed by real-time PCR and immunohistochemistry. Notch-1 AS mice were employed as a model of impaired Notch signalling in vivo. Experimental OA was induced by destabilisation of the medial meniscus (DMM). The extent of cartilage destruction and osteophyte formation was analysed by safranin-O staining with subsequent assessment of the Osteoarthritis Research Society International (OARSI) and Mankin scores and µCT scanning. Collagen X staining was used as a marker of chondrocyte hypertrophy. The role of hairy/enhancer of split 1 (Hes-1) was investigated with knockdown and overexpression experiments. Notch signalling was activated in human and murine OA with increased expression of Jagged1, Notch-1, accumulation of the Notch intracellular domain 1 and increased transcription of Hes-1. Notch1 AS mice showed exacerbated OA with increases in OARSI scores, osteophyte formation, increased subchondral bone plate density, collagen X and osteocalcin expression and elevated levels of Epas1 and ADAM-TS5 mRNA. Inhibition of the Notch pathway induced activation of hedgehog signalling with induction of Gli-1 and Gli-2 and increased transcription of hedgehog target genes. The regulatory effects of Notch signalling on Gli-expression were mimicked by Hes-1. Inhibition of Notch signalling activates hedgehog signalling, enhances chondrocyte hypertrophy and exacerbates experimental OA including osteophyte formation. These data suggest that the activation of the Notch pathway may limit aberrant hedgehog signalling in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. The Evaluation of Hydroxyethyl Starch (6% HES 130/0.4) Solution’s Potential Preventive Effects on Coagulation Status in Women with Gynecologic Malignancies Using Rotation Thromboelastography

    PubMed Central

    Akay, Meltem Olga; Bilir, Ayten; Öge, Tufan; Kuş, Gökhan; Mutlu, Fezan Şahin

    2014-01-01

    Objective: The aim of this study was to determine the effects of in vitro hemodilution with 6% hydroxyethyl starch (HES) 130/0.4 solution on the coagulation status of women with gynecologic malignancies by using rotation thromboelastogram (ROTEM®). Materials and Methods: Twenty-two patients with gynecological tumors scheduled for anesthesia were enrolled. Blood samples were diluted by 20% with 6% HES (130/0.4) solution. Results: In the INTEM assay, clotting time (CT) (p<0.01) and clot formation time (CFT) (p<0.001) were significantly increased and maximum maximum clot formation (MCF) (p< 0.001) was significantly decreased in HES hemodilution compared with the undiluted control samples. In the EXTEM assay, there was a similar significant increase in increase in CFT (p<0.01) and a decrease in maximum a decrease in MCF (p<0.01) in HES hemodilution when compared with control samples. Conclusion: HES 130/0.4 solution causes significant hypocoagulable changes in the thromboelastographic profile of gynecologic cancer patients in vitro. PMID:25330518

  5. Instantons from perturbation theory

    NASA Astrophysics Data System (ADS)

    Serone, Marco; Spada, Gabriele; Villadoro, Giovanni

    2017-07-01

    In quantum mechanics and quantum field theory perturbation theory generically requires the inclusion of extra contributions nonperturbative in the coupling, such as instantons, to reproduce exact results. We show how full nonperturbative results can be encoded in a suitable modified perturbative series in a class of quantum mechanical problems. We illustrate this explicitly in examples which are known to contain nonperturbative effects, such as the (supersymmetric) double-well potential, the pure anharmonic oscillator, and the perturbative expansion around a false vacuum.

  6. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  7. RNAi for contactin 2 inhibits proliferation of U87-glioma stem cells by downregulating AICD, EGFR, and HES1

    PubMed Central

    Guo, Yang; Zhang, Peidong; Zhang, Hongtian; Zhang, Peng; Xu, Ruxiang

    2017-01-01

    Glioblastoma is the most common form of malignant brain tumors and has a poor prognosis. Glioma stem cells (GSCs) are thought to be responsible for the aberrant proliferation and invasion. Targeting the signaling pathways that promote proliferation in GSCs is one of the strategies for glioma treatment. In this study, we found increased expression of contactin 2 (CNTN2) and amyloid β precursor protein (APP) in U87-derived GSCs (U87-GSCs). RNA interference (RNAi) for CNTN2 downregulated the expression of APP intracellular domain (AICD), which is the proteolytic product of APP. Treatment with CNTN2 RNAi inhibited the proliferation of U87-GSCs. CNTN2 RNAi decreased the expression of epidermal growth factor receptor and HES1, which are potential targets of AICD. In summary, inhibition of the CNTN2/APP signaling pathway may repress the proliferation in U87-GSCs via downregulating the expression of HES1 and epidermal growth factor receptor. CNTN2/APP/AICD signaling pathway plays an important role in U87 glial tumorigenesis. Further studies are warranted to elucidate the role of these signaling pathways in other sources of GSCs. Depending on their role in proliferation in other sources of GSCs, members of the CNTN2/APP/AICD signaling pathway may provide novel targets for the development of therapy for glioblastomas. PMID:28243115

  8. Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1.

    PubMed

    Keohane, Aoife; Ryan, Sinead; Maloney, Eimer; Sullivan, Aideen M; Nolan, Yvonne M

    2010-01-01

    Tumour necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine, which influences neuronal survival and function yet there is limited information available on its effects on hippocampal neural precursor cells (NPCs). We show that TNFalpha treatment during proliferation had no effect on the percentage of proliferating cells prepared from embryonic rat hippocampal neurosphere cultures, nor did it affect cell fate towards either an astrocytic or neuronal lineage when cells were then allowed to differentiate. However, when cells were differentiated in the presence of TNFalpha, significantly reduced percentages of newly born and post-mitotic neurons, significantly increased percentages of astrocytes and increased expression of TNFalpha receptors, TNF-R1 and TNF-R2, as well as expression of the anti-neurogenic Hes1 gene, were observed. These data indicate that exposure of hippocampal NPCs to TNFalpha when they are undergoing differentiation but not proliferation has a detrimental effect on their neuronal lineage fate, which may be mediated through increased expression of Hes1.

  9. Density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Challacombe, Matt

    2004-05-14

    An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.

  10. A fast and accurate sparse continuous signal reconstruction by homotopy DCD with non-convex regularization.

    PubMed

    Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong

    2014-03-26

    In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis.

  11. A Fast and Accurate Sparse Continuous Signal Reconstruction by Homotopy DCD with Non-Convex Regularization

    PubMed Central

    Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong

    2014-01-01

    In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis. PMID:24675758

  12. Discrete homotopy analysis for optimal trading execution with nonlinear transient market impact

    NASA Astrophysics Data System (ADS)

    Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio

    2016-10-01

    Optimal execution in financial markets is the problem of how to trade a large quantity of shares incrementally in time in order to minimize the expected cost. In this paper, we study the problem of the optimal execution in the presence of nonlinear transient market impact. Mathematically such problem is equivalent to solve a strongly nonlinear integral equation, which in our model is a weakly singular Urysohn equation of the first kind. We propose an approach based on Homotopy Analysis Method (HAM), whereby a well behaved initial trading strategy is continuously deformed to lower the expected execution cost. Specifically, we propose a discrete version of the HAM, i.e. the DHAM approach, in order to use the method when the integrals to compute have no closed form solution. We find that the optimal solution is front loaded for concave instantaneous impact even when the investor is risk neutral. More important we find that the expected cost of the DHAM strategy is significantly smaller than the cost of conventional strategies.

  13. Model-based 3-D object recognition using Hermite transform and homotopy techniques

    NASA Astrophysics Data System (ADS)

    Vaz, Richard F.; Cyganski, David; Wright, Charles R.

    1992-02-01

    This paper presents a new method for model-based object recognition and orientation determination which uses a single, comprehensive analytic object model representing the entirety of a suite of images of the object. In this way, object orientation and identity can be directly established from arbitrary views, even though these views are not related by any geometric image transformation. The approach is also applicable to other real and complex- sensed data, such as radar and thermal signatures. The object model is formed from 2-D Hermite function decompositions of an object image expanded about the angles of object rotation by Fourier series. A measure of error between the model and the acquired view is derived as an exact analytic expression, and is minimized over all values of the viewing angle by evaluation of a polynomial system of equations. The roots of this system are obtained via homotopy techniques, and directly provide object identity and orientation information. Results are given which illustrate the performance of this method for noisy real-world images acquired over a single viewing angle variation.

  14. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy

    PubMed Central

    Babcock, Hazen P.; Moffitt, Jeffrey R.; Cao, Yunlong; Zhuang, Xiaowei

    2013-01-01

    In super-resolution imaging techniques based on single-molecule switching and localization, the time to acquire a super-resolution image is limited by the maximum density of fluorescent emitters that can be accurately localized per imaging frame. In order to increase the imaging rate, several methods have been recently developed to analyze images with higher emitter densities. One powerful approach uses methods based on compressed sensing to increase the analyzable emitter density per imaging frame by several-fold compared to other reported approaches. However, the computational cost of this approach, which uses interior point methods, is high, and analysis of a typical 40 µm x 40 µm field-of-view super-resolution movie requires thousands of hours on a high-end desktop personal computer. Here, we demonstrate an alternative compressed-sensing algorithm, L1-Homotopy (L1H), which can generate super-resolution image reconstructions that are essentially identical to those derived using interior point methods in one to two orders of magnitude less time depending on the emitter density. Moreover, for an experimental data set with varying emitter density, L1H analysis is ~300-fold faster than interior point methods. This drastic reduction in computational time should allow the compressed sensing approach to be routinely applied to super-resolution image analysis. PMID:24514370

  15. The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets.

    PubMed

    Cenciarelli, Carlo; Marei, Hany E; Zonfrillo, Manuela; Casalbore, Patrizia; Felsani, Armando; Giannetti, Stefano; Trevisi, Gianluca; Althani, Asma; Mangiola, Annunziato

    2017-02-02

    The invasive and lethal nature of Glioblastoma multiforme (GBM) necessitates the continuous identification of molecular targets and search of efficacious therapies to inhibit GBM growth. The GBM resistance to chemotherapy and radiation it is attributed to the existence of a rare fraction of cancer stem cells (CSC) that we have identified within the tumor core and in peritumor tissue of GBM. Since Notch1 pathway is a potential therapeutic target in brain cancer, earlier we highlighted that pharmacological inhibition of Notch1 signalling by γ-secretase inhibitor-X (GSI-X), reduced cell growth of some c-CSC than to their respective p-CSC, but produced negligible effects on cell cycle distribution, apoptosis and cell invasion. In the current study, we assessed the effects of Hes1-targeted shRNA, a Notch1 gene target, specifically on GBM CSC refractory to GSI-X. Depletion of Hes1 protein induces major changes in cell morphology, cell growth rate and in the invasive ability of shHes1-CSC in response to growth factor EGF. shHes1-CSC show a decrease of the stemness marker Nestin concurrently to a marked increase of neuronal marker MAP2 compared to pLKO.1-CSC. Those effects correlated with repression of EGFR protein and modulation of Stat3 phosphorylation at Y705 and S727 residues. In the last decade Stat3 has gained attention as therapeutic target in cancer but there is not yet any approved Stat3-based glioma therapy. Herein, we report that exposure to a Stat3/5 inhibitor, induced apoptosis either in shHes1-CSC or control cells. Taken together, Hes1 seems to be a favorable target but not sufficient itself to target GBM efficaciously, therefore a possible pharmacological intervention should provide for the use of anti-Stat3/5 drugs either alone or in combination regimen.

  16. The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease.

    PubMed

    Yamada, Yoshiyuki; Rothenberg, Marc E; Lee, Andrew W; Akei, Hiroko Saito; Brandt, Eric B; Williams, David A; Cancelas, Jose A

    2006-05-15

    Dysregulated tyrosine kinase activity by the Fip1-like1 (FIP1L1)-platelet-derived growth factor receptor alpha (PDGFRA) (F/P) fusion gene has been identified as a cause of clonal hypereosinophilic syndrome (HES), called F/P-positive chronic eosinophilic leukemia (CEL) in humans. However, transplantation of F/P-transduced hematopoietic stem cells/progenitors (F/P(+) HSCs/Ps) into mice results in a chronic myelogenous leukemia-like disease, which does not resemble HES. Because a subgroup of patients with HES show T-cell-dependent interleukin-5 (IL-5) overexpression, we determined if expression of the F/P fusion gene in the presence of transgenic T-cell IL-5 overexpression in mice induces HES-like disease. Mice that received a transplant of CD2-IL-5-transgenic F/P(+) HSC/Ps (IL-5Tg-F/P) developed intense leukocytosis, strikingly high eosinophilia, and eosinophilic infiltration of nonhematopoietic as well as hematopoietic tissues, a phenotype resembling human HES. The disease phenotype was transferable to secondary transplant recipients of a high cell dose, suggesting involvement of a short-term repopulating stem cell or an early myeloid progenitor. Induction of significant eosinophilia was specific for F/P since expression of another fusion oncogene, p210-BCR/ABL, in the presence of IL-5 overexpression was characterized by a significantly lower eosinophilia than IL-5Tg-F/P recipients. These results suggest that F/P is not sufficient to induce a HES/CEL-like disease but requires a second event associated with IL-5 overexpression.

  17. Effects of 10% hydroxyethyl starch (HES 200/0.5) solution in intraoperative fluid therapy management of horses undergoing elective surgical procedures.

    PubMed

    Brünisholz, H P; Schwarzwald, C C; Bettschart-Wolfensberger, R; Ringer, S K

    2015-12-01

    The aim of the present study was to investigate the effect of pentastarch on colloid osmotic pressure (COP) and cardiopulmonary function during and up to 24 h after anaesthesia in horses. Twenty-five systemically healthy horses were anaesthetised using isoflurane-medetomidine balanced anaesthesia. Twelve were assigned to treatment with hydroxyethyl starch (HES) (H group) and 13 to no HES (NH group). In the H group, 6 mL/kg of pentastarch 10% HES (200/0.5) was infused over 1 h starting 30 min after induction of anaesthesia. Horses of the NH group received an equal amount of lactated Ringer's solution (LRS). COP and blood biochemical, cardiopulmonary and anaesthesia-related variables were measured at different time points before and after treatment. Pentastarch was effective in correcting the decrease in COP observed with LRS administration. No differences between treatments were detected for blood glucose, lactate, total proteins and electrolytes. Packed cell volume was lower with the H group immediately after finishing HES-administration and for an additional 30 min. In all horses, all blood biochemical variables other than lactate returned to normal after 12 h. No clinically relevant differences between treatments were detected for cardiopulmonary variables, although 23.1% of the NH-horses needed rescue-HES to maintain cardiovascular function, while none of the H-horses needed additional colloids. Overall, 6 mL/kg HES (200/0.5) was found to be effective in maintaining COP during anaesthesia in systemically healthy horses. Intermediate and long-term effects were below the limit of detection. The potentially beneficial effects on cardiovascular function need further investigation, especially in critically ill horses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. CDKN1C/P57 is regulated by the Notch target gene Hes1 and induces senescence in human hepatocellular carcinoma.

    PubMed

    Giovannini, Catia; Gramantieri, Laura; Minguzzi, Manuela; Fornari, Francesca; Chieco, Pasquale; Grazi, Gian Luca; Bolondi, Luigi

    2012-08-01

    CDKN1C/P57 is a cyclin-dependent kinase inhibitor implicated in different human cancers, including hepatocellular carcinoma (HCC); however, little is known regarding the role of CDKN1C/P57 and its regulation in HCC. In this study, we show that the down-regulation of Notch1 and Notch3 in two HCC cell lines resulted in Hes1 down-regulation, CDKN1C/P57 up-regulation, and reduced cell growth. In line with these data, we report that CDKN1C/P57 is a target of transcriptional repression by the Notch effector, Hes1. We found that the up-regulation of CDKN1C/P57 by cDNA transfection decreased tumor growth, as determined by growth curve, flow cytometry analysis, and cyclin D1 down-regulation, without affecting the apoptosis machinery. Indeed, the expression of Bax, Noxa, PUMA, BNIP(3), and cleaved caspase-3 was not affected by CDKN1C/P57 induction. Morphologically CDKN1C/p57-induced HCC cells became flat and lengthened in shape, accumulated the senescence-associated β-galactosidase marker, and increased P16 protein expression. Evaluation of senescence in cells depleted both for Hes1 and CDKN1C/P57 revealed that the senescent state really depends on the accumulation of CDKN1C/p57. Finally, we validated our in vitro results in primary HCCs, showing that Hes1 protein expression inversely correlates with CDKN1C/P57 mRNA levels. In addition, reduced Hes1 protein expression is accompanied by a shorter time to recurrence after curative resection, suggesting that Hes1 may represent a biomarker for prediction of patients with poor prognosis.

  19. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression.

    PubMed

    Takata, Takehiko; Ishikawa, Fuyuki

    2003-01-31

    The Hairy-related bHLH proteins function as transcriptional repressors in most cases and play important roles in diverse aspects of metazoan development. Recently, it was shown that the Drosophila bHLH repressor proteins, Hairy and Deadpan, bind to and function with the NAD(+)-dependent histone deacetylase, Sir2. Here we demonstrate that the human Sir2 homologue, SIRT1, also physically associates with the human bHLH repressor proteins, hHES1 and hHEY2, both in vitro and in vivo. Moreover, using the reporter assay, we show that both SIRT1-dependent and -independent deacetylase pathways are involved in the transcriptional repressions mediated by these bHLH repressors. These results indicate that the molecular association between bHLH proteins and Sir2-related proteins is conserved among metazoans, from Drosophila to human, and suggest that the Sir2-bHLH interaction also plays important roles in human cells.

  20. Minimum-fuel station-change for geostationary satellites using low-thrust considering perturbations

    NASA Astrophysics Data System (ADS)

    Zhao, ShuGe; Zhang, JingRui

    2016-10-01

    The objective of this paper is to find the minimum-fuel station change for geostationary satellites with low-thrust while considering significant perturbation forces for geostationary Earth orbit (GEO). The effect of Earth's triaxiality, lunisolar perturbations, and solar radiation pressure on the terminal conditions of a long duration GEO transfer is derived and used for establishing the station change model with consideration of significant perturbation forces. A method is presented for analytically evaluating the effect of Earth's triaxiality on the semimajor axis and longitude during a station change. The minimum-fuel problem is solved by the indirect optimization method. The easier and related minimum-energy problem is first addressed and then the energy-to-fuel homotopy is employed to finally obtain the solution of the minimum-fuel problem. Several effective techniques are employed in solving the two-point boundary-value problem with a shooting method to overcome the problem of the small convergence radius and the sensitivity of the initial costate variables. These methods include normalization of the initial costate vector, computation of the analytic Jacobians matrix, and switching detection. The simulation results show that the solution of the minimum-fuel station change with low-thrust considering significant perturbation forces can be obtained by applying these preceding techniques.

  1. The Perturbed Puma Model

    NASA Astrophysics Data System (ADS)

    Rong, Shu-Jun; Liu, Qiu-Yu

    2012-04-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.

  2. The increasing number of surgical procedures for female genital fistula in England: analysis of Hospital Episode Statistics (HES) data.

    PubMed

    Ismail, S I M F

    2015-01-01

    The aim of this study was to describe the number and trend of surgical procedures for female genital fistula in England. An online search of Hospital Episode Statistics (HES) data was carried out. Data were available for the 4-year period from 2002-03 until 2005-06. The total number of surgical procedures carried out for female genital fistula steadily increased by 28.7% from 616 in 2002-03 to 793 in 2005-06. The number of surgical procedures performed for rectovaginal fistula exceeded the total number of surgical procedures carried out for vesicovaginal and urethrovaginal fistula in each year of the study period. This pattern needs to be monitored and investigated further.

  3. Effect of rapid set binder on early strength and permeability of HES latex modified road repair pre-packed concrete

    NASA Astrophysics Data System (ADS)

    Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.

    2015-12-01

    The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.

  4. The Notch Target Hes1 Directly Modulates Gli1 Expression and Hedgehog Signaling: A Potential Mechanism of Therapeutic Resistance

    PubMed Central

    Schreck, Karisa C.; Taylor, Pete; Marchionni, Luigi; Gopalakrishnan, Vidya; Bar, Eli E.; Gaiano, Nicholas; Eberhart, Charles G.

    2010-01-01

    Purpose Multiple developmental pathways including Notch, Hedgehog, and Wnt are active in malignant brain tumors such as medulloblastoma and glioblastoma (GBM). This raises the possibility that tumors might compensate for therapy directed against one pathway by upregulating a different one. We investigated whether brain tumors show resistance to therapies against Notch, and whether targeting multiple pathways simultaneously would kill brain tumor cells more effectively than monotherapy. Experimental Design We used GBM neurosphere lines to investigate the effects of a gamma-secretase inhibitor (MRK-003) on tumor growth, and chromatin immunoprecipitation (ChIP) to study the regulation of other genes by Notch targets. We also evaluated the effect of combined therapy with a Hedgehog inhibitor (cyclopamine) in GBM and medulloblastoma lines, and primary human GBM cultures. Results GBM cells are at least partially resistant to long-term MRK-003 treatment, despite ongoing Notch pathway suppression, and show concomitant upregulation of Wnt and Hedgehog activity. The Notch target Hes1, a repressive transcription factor, bound the Gli1 first intron, and may inhibit its expression. Similar results were observed in a melanoma-derived cell line. Targeting Notch and Hedgehog simultaneously induced apoptosis, decreased cell growth, and inhibited colony-forming ability more dramatically than monotherapy. Low-passage neurospheres isolated from freshly resected human GBMs were also highly susceptible to co-inhibition of the two pathways, indicating that targeting multiple developmental pathways can be more effective than monotherapy at eliminating glioblastoma-derived cells. Conclusion Notch may directly suppress Hedgehog via Hes1 mediated inhibition of Gli1 transcription, and targeting both pathways simultaneously may be more effective at eliminating GBMs cells. PMID:21169257

  5. Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.

    PubMed

    Narayanappa, Rajeswari; Rout, Pritilata; Aithal, Madhuri G S; Chand, Ashis Kumar

    2016-05-01

    Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis.

  6. Effect of the colloids gelatin and HES 130/0.4 on blood coagulation in cardiac surgery patients: a randomized controlled trial.

    PubMed

    Kimenai, D M; Bastianen, G W; Daane, C R; Megens-Bastiaanse, C M; van der Meer, N J M; Scohy, T V; Gerritse, B M

    2013-11-01

    The choice of the prime solution for cardiopulmonary bypass can play an important role in limiting the effect on blood coagulation, but it is still unclear what the effect of colloids on blood coagulation is. The aim of this study was to investigate the effect of synthetic colloids on blood loss and blood coagulation in patients after on-pump coronary artery bypass graft (CABG) procedures. Sixty elective, on-pump CABG patients were randomly assigned to receive the prime solutions lactated Ringer's solution combined with hydroxyethyl starch 130/0.4 (HES, 6% Volulyte, Fresenius Kabi Nederland BV, Zeist, the Netherlands) (HES group) or gelatin (Gelofusin(®), B Braun Melsung AG, Melsungen, Germany) (Gelo group). Blood loss was assessed using post-operative chest tube output; secondary endpoints were number of blood component transfusions, routine coagulation test values and rotation thromboelastometry values (Rotem(®) delta, Pentapharm GmbH, Munich, Germany). Total post-operative chest tube output was 500 ± 420 ml in the HES group versus 465 ± 390 ml in the Gelo group (p = 0.48). No significant differences were observed in any of the routine coagulation tests values, thromboelastometry parameters or number of blood component transfusions between the groups. In this randomized, controlled trial of adults after on-pump CABG procedures, there was no significant difference in blood loss or blood coagulation between the HES group and the Gelo group.

  7. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network

    PubMed Central

    Ramos-Montoya, Antonio; Lamb, Alastair D; Russell, Roslin; Carroll, Thomas; Jurmeister, Sarah; Galeano-Dalmau, Nuria; Massie, Charlie E; Boren, Joan; Bon, Helene; Theodorou, Vasiliki; Vias, Maria; Shaw, Greg L; Sharma, Naomi L; Ross-Adams, Helen; Scott, Helen E; Vowler, Sarah L; Howat, William J; Warren, Anne Y; Wooster, Richard F; Mills, Ian G; Neal, David E

    2014-01-01

    Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies. PMID:24737870

  8. Perturbed nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Proctor, T. G.

    1974-01-01

    For perturbed nonlinear systems, a norm, other than the supremum norm, is introduced on some spaces of continuous functions. This makes possible the study of new types of behavior. A study is presented on a perturbed nonlinear differential equation defined on a half line, and the existence of a family of solutions with special boundedness properties is established. The ideas developed are applied to the study of integral manifolds, and examples are given.

  9. MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Alizadeh-Pahlavan, Amir; Aliakbar, Vahid; Vakili-Farahani, Farzad; Sadeghy, Kayvan

    2009-02-01

    The performance of a two-auxiliary-parameter homotopy analysis method (HAM) is investigated in solving laminar MHD flow of an upper-convected Maxwell fluid (UCM) above a porous isothermal stretching sheet. The analysis is carried out up to the 20th-order of approximation, and the effect of parameters such as elasticity number, suction/injection velocity, and magnetic number are studied on the velocity field above the sheet. The results will be contrasted with those reported recently by Hayat et al. [Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358;2006:396-403] obtained using a third-order one-auxiliary-parameter homotopy analysis method. It is concluded that the flow reversal phenomenon as predicted by Hayat et al. (2006) may have arisen because of the inadequacies of using just one-auxiliary-parameter in their analysis. That is, no flow reversal is predicted to occur if instead of using one-auxiliary-parameter use is made of two auxiliary parameters together with a more convenient set of base functions to assure the convergence of the series used to solve the highly nonlinear ODE governing the flow.

  10. Homotopy analysis method for thermophoretic particle deposition effect on magnetohydrodynamic mixed convective heat and mass transfer past a porous wedge in the presence of suction

    NASA Astrophysics Data System (ADS)

    Kandasamy, R.; Muhaimin, I.

    2010-03-01

    Homotopy analysis method is used to analyze the effect of thermophoretic particle deposition on magnetohydrodynamic mixed convection flow with heat and mass transfer over a porous wedge. An explicit analytical solution is obtained which is valid throughout the solution domain and is consistent with numerical results.

  11. Twisting perturbed parafermions

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2017-07-01

    The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang-Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6) nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current-current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3) sigma model which is reformulated as perturbed parafermions.

  12. Vortex perturbation dynamics

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

    1995-01-01

    An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

  13. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  14. Perturbed nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Proctor, T. G.

    1972-01-01

    The existence of a solution defined for all t and possessing a type of boundedness property is established for the perturbed nonlinear system y = f(t,y) + F(t,y). The unperturbed system x = f(t,x) has a dichotomy in which some solutions exist and are well behaved as t increases to infinity, and some solution exists and are well behaved as t decreases to minus infinity. A similar study is made for a perturbed nonlinear differential equation defined on a half line, R+, and the existence of a family of solutions with special boundedness properties is established. The ideas are applied to integral manifolds.

  15. Perturbing turbulence beyond collapse

    NASA Astrophysics Data System (ADS)

    Kühnen, Jakob; Scarselli, Davide; Hof, Björn; Nonlinear Dynamics; Turbulence Group Team

    2016-11-01

    Wall-bounded turbulent flows are considered to be in principle stable against perturbations and persist as long as the Reynolds number is sufficiently high. We show for the example of pipe flow that a specific perturbation of the turbulent flow field disrupts the genesis of new turbulence at the wall. This leads to an immediate collapse of the turbulent flow and causes complete relaminarisation further downstream. The annihilation of turbulence is effected by a steady manipulation of the streamwise velocity component only, greatly simplifying control efforts which usually require knowledge of the highly complex three dimensional and time dependent velocity fields. We present several different control schemes from laboratory experiments which achieve the required perturbation of the flow for total relaminarisation. Transient growth, a linear amplification mechanism measuring the efficiency of eddies in redistributing shear that quantifies the maximum perturbation energy amplification achievable over a finite time in a linearized framework, is shown to set a clear-cut threshold below which turbulence is impeded in its formation and thus permanently annihilated.

  16. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  17. Minor physical anomalies in bipolar I and bipolar II disorders - Results with the Méhes Scale.

    PubMed

    Berecz, Hajnalka; Csábi, Györgyi; Jeges, Sára; Herold, Róbert; Simon, Maria; Halmai, Tamás; Trixler, Dániel; Hajnal, András; Tóth, Ákos Levente; Tényi, Tamás

    2017-03-01

    Minor physical anomalies (MPAs) are external markers of abnormal brain development, so the more common appearence of these signs among bipolar I and bipolar II patients can confirm the possibility of a neurodevelopmental deficit in these illnesses. The aim of the present study was to investigate the rate and topological profile of minor physical anomalies in patients with bipolar I and - first in literature - with bipolar II disorders compared to matched healthy control subjects. Using a list of 57 minor physical anomalies (the Méhes Scale), 30 bipolar I and 30 bipolar II patients, while as a comparison 30 matched healthy control subjects were examined. Significant differences were detected between the three groups comparing the total number of minor physical anomalies, minor malformations and phenogenetic variants and in the cases of the ear and the mouth regions. The individual analyses of the 57 minor physical anomalies by simultaneous comparison of the three groups showed, that in the cases of furrowed tongue and high arched palate were significant differences between the three groups. The results can promote the concept, that a neurodevelopmental deficit may play a role in the etiology of both bipolar I and bipolar II disorders. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation.

    PubMed

    Phillips, Nick E; Manning, Cerys S; Pettini, Tom; Biga, Veronica; Marinopoulou, Elli; Stanley, Peter; Boyd, James; Bagnall, James; Paszek, Pawel; Spiller, David G; White, Michael Rh; Goodfellow, Marc; Galla, Tobias; Rattray, Magnus; Papalopulu, Nancy

    2016-10-04

    Recent studies suggest that cells make stochastic choices with respect to differentiation or division. However, the molecular mechanism underlying such stochasticity is unknown. We previously proposed that the timing of vertebrate neuronal differentiation is regulated by molecular oscillations of a transcriptional repressor, HES1, tuned by a post-transcriptional repressor, miR-9. Here, we computationally model the effects of intrinsic noise on the Hes1/miR-9 oscillator as a consequence of low molecular numbers of interacting species, determined experimentally. We report that increased stochasticity spreads the timing of differentiation in a population, such that initially equivalent cells differentiate over a period of time. Surprisingly, inherent stochasticity also increases the robustness of the progenitor state and lessens the impact of unequal, random distribution of molecules at cell division on the temporal spread of differentiation at the population level. This advantageous use of biological noise contrasts with the view that noise needs to be counteracted.

  19. Murine leukemia provirus-mediated activation of the Notch1 gene leads to induction of HES-1 in a mouse T lymphoma cell line, DL-3.

    PubMed

    Lee, J S; Ishimoto, A; Honjo, T; Yanagawa, S

    1999-07-23

    Constitutive activation of Notch signaling is known to be associated with tumorigenesis. In a mouse T lymphoma cell line, DL-3, we found that a murine leukemia provirus was inserted in the Notch1 locus, which led to marked expression of a virus-Notch1 fusion mRNA encoding an intracellular portion of the Notch1 protein. Furthermore, expression and nuclear localization of this constitutively active form of Notch1 protein were confirmed. Corresponding to this finding, the transcription of the hairy/enhancer of split (HES-1) gene, a known target of Notch1 signaling, was elevated in this cell line. A potential role for overexpressed HES-1 in the development of the lymphoma was discussed.

  20. NF-κB-inducing kinase (NIK) prevents the development of hypereosinophilic syndrome (HES)-like disease in mice independent of IKKα activation

    PubMed Central

    Häcker, Hans; Chi, Liying; Rehg, Jerold E.; Redecke, Vanessa

    2012-01-01

    Immune cell-mediated tissue injury is the common feature of different inflammatory diseases, yet the pathogenetic mechanisms and cell types involved vary significantly. Hypereosinophilic Syndrome (HES) represents a group of inflammatory diseases that are characterized by increased numbers of pathogenic eosinophilic granulocytes in the peripheral blood and diverse organs. Based on clinical and laboratory findings, various forms of HES have been defined, yet the molecular mechanism and potential signaling pathways that drive eosinophil expansion remain largely unknown. Here we show that mice deficient of the serine/ threonine-specific protein kinase NF-κB inducing kinase (NIK) develop a HES-like disease, reflected by progressive blood and tissue eosinophilia, tissue injury and premature death at around 25–30 weeks of age. Similar to the lymphocytic form of HES, CD4+ T-cells from NIK-deficient mice express increased levels of T-helper 2 (Th2)-associated cytokines, and eosinophilia and survival of NIK deficient mice could completely be prevented by genetic ablation of CD4+ T-cells. Experiments based on bone marrow chimeric mice, however, demonstrated that inflammation in NIK-deficient mice depended on radiation-resistant tissues, implicating that NIK-deficient immune cells mediate inflammation in a non-autonomous manner. Surprisingly, disease development was independent of NIKs known function as IkappaB kinase (IKK)-α kinase, as mice carrying a mutation in the activation loop of IKKα, which is phosphorylated by NIK, did not develop inflammatory disease. Our data show that NIK activity in non-hematopoietic cells controls Th2-cell development and prevents eosinophil-driven inflammatory disease, most likely using a signaling pathway that operates independent of the known NIK substrate IKKα. PMID:22474019

  1. Notch-Hes-1 axis controls TLR7-mediated autophagic death of macrophage via induction of P62 in mice with lupus

    PubMed Central

    Li, Xiaojing; Liu, Fei; Zhang, Xuefang; Shi, Guoping; Ren, Jing; Ji, Jianjian; Ding, Liang; Fan, Hongye; Dou, Huan; Hou, Yayi

    2016-01-01

    The increased death of macrophages has been considered as a pathogenic factor for systemic lupus erythematosus (SLE), and dysfunction of autophagy may contribute to improper cell death. However, the effect of autophagy on macrophage during the pathogenesis of SLE is still unclear. Here we found that the death rate and autophagy level of macrophages significantly increased in MRL/lpr lupus-prone mice. Activation of toll-like receptor 7 (TLR7) triggered macrophage death in an autophagy-dependent but caspase-independent way in vitro. Moreover, P62/SQSTM1 is thought to have an essential role in selective autophagy. We also demonstrated that P62/SQSTM1 was required for TLR7-induced autophagy, and knockdown of P62 suppressed R848-induced cell death and LC3II protein accumulation. As an important mediator for cell–cell communication, Notch signaling is responsible for cell-fate decisions. Our results showed that activation of TLR7 also upregulated the expression of Notch1, especially its downstream target gene Hairy and enhancer of split 1 (Hes-1) in macrophages. Of note, we found that Hes-1, as a transcriptional factor, controlled TLR7-induced autophagy by regulating P62 expression. Furthermore, to confirm the above results in vivo, TLR7 agonist imiquimod (IMQ)-induced lupus mouse model was prepared. Splenic macrophages from IMQ-treated mice exhibited increased autophagy and cell death as well as enhanced expressions of Notch1 and Hes-1. Our results indicate that Notch1-Hes-1 signaling controls TLR7-induced autophagic death of macrophage via regulation of P62 in mice with lupus. PMID:27537524

  2. Data compression studies for NOAA Hyperspectral Environmental Suite (HES) using 3D integer wavelet transforms with 3D set partitioning in hierarchical trees

    NASA Astrophysics Data System (ADS)

    Huang, Bormin; Huang, Hung-Lung; Chen, Hao; Ahuja, Alok; Baggett, Kevin; Schmit, Timothy J.; Heymann, Roger W.

    2004-02-01

    The next-generation NOAA/NESDIS GOES-R hyperspectral sounder, now referred to as the HES (Hyperspectral Environmental Suite), will have hyperspectral resolution (over one thousand channels with spectral widths on the order of 0.5 wavenumber) and high spatial resolution (less than 10 km). Hyperspectral sounder data is a particular class of data requiring high accuracy for useful retrieval of atmospheric temperature and moisture profiles, surface characteristics, cloud properties, and trace gas information. Hence compression of these data sets is better to be lossless or near lossless. Given the large volume of three-dimensional hyperspectral sounder data that will be generated by the HES instrument, the use of robust data compression techniques will be beneficial to data transfer and archive. In this paper, we study lossless data compression for the HES using 3D integer wavelet transforms via the lifting schemes. The wavelet coefficients are processed with the 3D set partitioning in hierarchical trees (SPIHT) scheme followed by context-based arithmetic coding. SPIHT provides better coding efficiency than Shapiro's original embedded zerotree wavelet (EZW) algorithm. We extend the 3D SPIHT scheme to take on any size of 3D satellite data, each of whose dimensions need not be divisible by 2N, where N is the levels of the wavelet decomposition being performed. The compression ratios of various kinds of wavelet transforms are presented along with a comparison with the JPEG2000 codec.

  3. Renormalized Lie perturbation theory

    SciTech Connect

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another.

  4. Covariant Bardeen perturbation formalism

    NASA Astrophysics Data System (ADS)

    Vitenti, S. D. P.; Falciano, F. T.; Pinto-Neto, N.

    2014-05-01

    In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors, which yields an adequate language to treat both perturbative approaches in a common framework. We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that at first order correspond to the three known gauge invariant variables Φ, Ψ and Ξ, which are simultaneously foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to construct simultaneously gauge and hypersurface invariant variables at any order.

  5. Amplitudes of Spiral Perturbations

    NASA Astrophysics Data System (ADS)

    Grosbol, P.; Patsis, P. A.

    2014-03-01

    It has proven very difficult to estimate the amplitudes of spiral perturbations in disk galaxies from observations due to the variation of mass-to-light ratio and extinction across spiral arms. Deep, near-infrared images of grand-design spiral galaxies obtained with HAWK-I/VLT were used to analyze the azimuthal amplitude and shape of arms, which, even in the K-band may, be significantly biased by the presence of young stellar populations. Several techniques were applied to evaluate the relative importance of young stars across the arms, such as surface brightness of the disk with light from clusters subtracted, number density of clusters detected, and texture of the disk. The modulation of the texture measurement, which correlates with the number density of faint clusters, yields amplitudes of the spiral perturbation in the range 0.1-0.2. This estimate gives a better estimate of the mass perturbation in the spiral arms, since it is dominated by old clusters.

  6. Discrete reductive perturbation technique

    SciTech Connect

    Levi, Decio; Petrera, Matteo

    2006-04-15

    We expand a partial difference equation (P{delta}E) on multiple lattices and obtain the P{delta}E which governs its far field behavior. The perturbative-reductive approach is here performed on well-known nonlinear P{delta}Es, both integrable and nonintegrable. We study the cases of the lattice modified Korteweg-de Vries (mKdV) equation, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonintegrable lattice KdV equation. Such reductions allow us to obtain many new P{delta}Es of the nonlinear Schroedinger type.

  7. Perturbative cavity quantum electrodynamics

    SciTech Connect

    Hinds., E.A.

    1994-12-31

    Charged particles are coupled to the electromagnetic radiation field at a fundamental level. Even in a vacuum, an atom is perturbed by the zero-point quantum noise of the electromagnetic field, and this coupling is responsible for some basic phenomena such as the Lamb shift and spontaneous radiative decay. These radiative effects can be calculated to high precision using the theory of quantum electrodynamics (QED), and for cases when the atom is in free space, remarkable agreement has been found between theory and experiment. One is led to conclude QED provides a reliable description of the coupling between the charged particles and electromagnetic fields. 101 refs., 20 figs.

  8. Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods.

    PubMed

    Basiri Parsa, A; Rashidi, M M; Anwar Bég, O; Sadri, S M

    2013-09-01

    In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field. The two-dimensional momentum conservation partial differential equations are reduced to ordinary form incorporating Lorentizian magnetohydrodynamic body force terms. These ordinary differential equations are solved by the homotopy analysis method, the differential transform method and also a numerical method (fourth-order Runge-Kutta quadrature with a shooting method), under physically realistic boundary conditions. The homotopy analysis method contains the auxiliary parameter ℏ, which provides us with a simple way to adjust and control the convergence region of solution series. The differential transform method (DTM) does not require an auxiliary parameter and is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The influence of Hartmann number (Ha) and transpiration Reynolds number (mass transfer parameter, Re) on the velocity profiles in the channel are studied in detail. Interesting fluid dynamic characteristics are revealed and addressed. The HAM and DTM solutions are shown to both correlate well with numerical quadrature solutions, testifying to the accuracy of both HAM and DTM in nonlinear magneto-hemodynamics problems. Both these semi-numerical techniques hold excellent potential in modeling nonlinear viscous flows in biological systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A novel solution procedure for a three-level atom interacting with one-mode cavity field via modified homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, N. H.; Salah, Ahmed

    2015-05-01

    In this paper, the interaction of a three-level -configration atom and a one-mode quantized electromagnetic cavity field has been studied. The detuning parameters, the Kerr nonlinearity and the arbitrary form of both the field and intensity-dependent atom-field coupling have been taken into account. The wave function when the atom and the field are initially prepared in the excited state and coherent state, respectively, by using the Schrödinger equation has been given. The analytical approximation solution of this model has been obtained by using the modified homotopy analysis method (MHAM). The homotopy analysis method is mentioned summarily. MHAM can be obtained from the homotopy analysis method (HAM) applied to Laplace, inverse Laplace transform and Pade approximate. MHAM is used to increase the accuracy and accelerate the convergence rate of truncated series solution obtained by the HAM. The time-dependent parameters of the anti-bunching of photons, the amplitude-squared squeezing and the coherent properties have been calculated. The influence of the detuning parameters, Kerr nonlinearity and photon number operator on the temporal behavior of these phenomena have been analyzed. We noticed that the considered system is sensitive to variations in the presence of these parameters.

  10. Perturbations of gravitational instantons

    NASA Astrophysics Data System (ADS)

    Torre, C. G.

    1990-06-01

    Ashtekar's spinorial formulation of general relativity is used to study perturbations of gravitational instantons corresponding to finite-action solutions of the Euclidean Einstein equations (with a nonzero cosmological constant) possessing an anti-self-dual Weyl curvature tensor. It is shown that, with an appropriate ``on-shell'' form of infinitesimal gauge transformations, the space of solutions to the linearized instanton equation can be described in terms of an elliptic complex; the cohomology of the complex defines gauge-inequivalent perturbations. Using this elliptic complex we prove that there are no nontrivial solutions to the linearized instanton equation on conformally anti-self-dual Einstein spaces with a positive cosmological constant. Thus, the space of gravitational instantons is discrete when the cosmological constant is positive; i.e., the dimension of the gravitational moduli space in this case is zero. We discuss the issue of linearization stability as well as the feasibility of using the Atiyah-Singer index theorem to compute the dimension of the gravitational moduli space when the cosmological constant is negative.

  11. Discrete Newtonian cosmology: perturbations

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.; Gibbons, Gary W.

    2015-03-01

    In a previous paper (Gibbons and Ellis 2014 Discrete Newtonian cosmology Class. Quantum Grav. 31 025003), we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lemaître-Robertson-Walker cosmological models of general relativity theory, provided the distribution of particles obeys the central configuration equation. In this paper we show that one can obtain perturbed such Newtonian solutions that give the same linearized structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zel’dovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.

  12. Conformal perturbation theory

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Magnoli, Nicodemo

    2017-08-01

    Statistical systems near a classical critical point have been intensively studied from both theoretical and experimental points of view. In particular, correlation functions are of relevance in comparing theoretical models with the experimental data of real systems. In order to compute physical quantities near a critical point, one needs to know the model at the critical (conformal) point. In this line, recent progress in the knowledge of conformal field theories, through the conformal bootstrap, gives the hope of getting some interesting results also outside of the critical point. In this paper, we will review and clarify how, starting from the knowledge of the critical correlators, one can calculate in a safe way their behavior outside the critical point. The approach illustrated requires the model to be just scale invariant at the critical point. We will clarify the method by applying it to different kind of perturbations of the 2D Ising model.

  13. Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer.

    PubMed

    Moon, Chang Mo; Kwon, Ji-Hee; Kim, Ji Suk; Oh, Sun-Hee; Jin Lee, Kyoung; Park, Jae Jun; Pil Hong, Sung; Cheon, Jae Hee; Kim, Tae Il; Kim, Won Ho

    2014-02-01

    Cancer stem cells (CSCs) play a pivotal role in cancer relapse or metastasis. We investigated the CSC-suppressing effect of nonsteroidal anti-inflammatory drugs (NSAIDs) and the relevant mechanisms in colorectal cancer. We measured the effect of NSAIDs on CSC populations in Caco-2 or SW620 cells using colosphere formation and flow cytometric analysis of PROM1 (CD133)(+) CD44(+) cells after indomethacin treatment with/without prostaglandin E2 (PGE2) or peroxisome proliferator-activated receptor γ (PPARG) antagonist, and examined the effect of indomethacin on transcriptional activity and protein expression of NOTCH/HES1 and PPARG. These effects of indomethacin were also evaluated in a xenograft mouse model. NSAIDs (indomethacin, sulindac and aspirin), celecoxib, γ-secretase inhibitor and PPARG agonist significantly decreased the number of colospheres formation compared to controls. In Caco-2 and SW620 cells, compared to controls, PROM1 (CD133)(+) CD44(+) cells were significantly decreased by indomethacin treatment, and increased by 5-fluorouracil (5-FU) treatment. This 5-FU-induced increase of PROM1 (CD133)(+) CD44(+) cells was significantly attenuated by combination with indomethacin. This CSC-inhibitory effect of indomethacin was reversed by addition of PGE2 and PPARG antagonist. Indomethacin significantly decreased CBFRE and increased PPRE transcriptional activity and their relative protein expressions. In xenograft mouse experiments using 5-FU-resistant SW620 cells, the 5-FU treatment combined with indomethacin significantly reduced tumor growth, compared to 5-FU alone. In addition, treatment of indomethacin alone or combination of 5-FU and indomethacin decreased the expressions of PROM1 (CD133), CD44, PTGS2 (cyclooxygenase 2) and HES1, and increased PPARG expression. NSAIDs could selectively reduce the colon CSCs and suppress 5-FU-induced increase of CSCs via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1, and activating PPARG.

  14. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  15. Perturbing a quantum gravity condensate

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen

    2015-02-01

    In a recent proposal using the group field theory approach, a spatially homogeneous (generally anisotropic) universe is described as a quantum gravity condensate of "atoms of space," which allows the derivation of an effective cosmological Friedmann equation from the microscopic quantum gravity dynamics. Here we take a first step towards the study of cosmological perturbations over the homogeneous background. We consider a state in which a single "atom" is added to an otherwise homogeneous condensate. Backreaction of the perturbation on the background is negligible and the background dynamics can be solved separately. The dynamics for the perturbation takes the form of a quantum cosmology Hamiltonian for a "wave function," depending on background and perturbations, of the product form usually assumed in a Born-Oppenheimer approximation. We show that the perturbation we consider corresponds to a spatially homogeneous metric perturbation, and for this case derive the usual procedures in quantum cosmology from fundamental quantum gravity.

  16. Cosmological perturbations in massive bigravity

    SciTech Connect

    Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk

    2014-12-01

    We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.

  17. 3D Indoor Building Environment Reconstruction using Least Square Adjustment, Polynomial Kernel, Interval Analysis and Homotopy Continuation

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Anton, François; Rahman, Alias Abdul; Mioc, Darka

    2016-10-01

    Nowadays, municipalities intend to have 3D city models for facility management, disaster management and architectural planning. Indoor models can be reconstructed from construction plans but sometimes, they are not available or very often, they differ from `as-built' plans. In this case, the buildings and their rooms must be surveyed. One of the most utilized methods of indoor surveying is laser scanning. The laser scanning method allows taking accurate and detailed measurements. However, Terrestrial Laser Scanner is costly and time consuming. In this paper, several techniques for indoor 3D building data acquisition have been investigated. For reducing the time and cost of indoor building data acquisition process, the Trimble LaserAce 1000 range finder is used. The proposed approache use relatively cheap equipment: a light Laser Rangefinder which appear to be feasible, but it needs to be tested to see if the observation accuracy is sufficient for the 3D building modelling. The accuracy of the rangefinder is evaluated and a simple spatial model is reconstructed from real data. This technique is rapid (it requires a shorter time as compared to others), but the results show inconsistencies in horizontal angles for short distances in indoor environments. The range finder horizontal angle sensor was calibrated using a least square adjustment algorithm, a polynomial kernel, interval analysis and homotopy continuation.

  18. Dynamic compressed HRRP generation for random stepped-frequency radar based on complex-valued fast sequential homotopy.

    PubMed

    You, Peng; Liu, Zhen; Wang, Hongqiang; Wei, Xizhang; Li, Xiang

    2014-05-08

    Compressed sensing has been applied to achieve high resolution range profiles (HRRPs) using a stepped-frequency radar. In this new scheme, much fewer pulses are required to recover the target's strong scattering centers, which can greatly reduce the coherent processing interval (CPI) and improve the anti-jamming capability. For practical applications, however, the required number of pulses is difficult to determine in advance and any reduction of the transmitted pulses is attractive. In this paper, a dynamic compressed sensing strategy for HRRP generation is proposed, in which the estimated HRRP is updated with sequentially transmitted and received pulses until the proper stopping rules are satisfied. To efficiently implement the sequential update, a complex-valued fast sequential homotopy (CV-FSH) algorithm is developed based on group sparse recovery. This algorithm performs as an efficient recursive procedure of sparse recovery, thus avoiding solving a new optimization problem from scratch. Furthermore, the proper stopping rules are presented according to the special characteristics of HRRP. Therefore, the optimal number of pulses required in each CPI can be sought adapting to the echo signal. The results using simulated and real data show the effectiveness of the proposed approach and demonstrate that the established dynamic strategy is more suitable for uncooperative targets.

  19. Dynamic Compressed HRRP Generation for Random Stepped-Frequency Radar Based on Complex-Valued Fast Sequential Homotopy

    PubMed Central

    You, Peng; Liu, Zhen; Wang, Hongqiang; Wei, Xizhang; Li, Xiang

    2014-01-01

    Compressed sensing has been applied to achieve high resolution range profiles (HRRPs) using a stepped-frequency radar. In this new scheme, much fewer pulses are required to recover the target's strong scattering centers, which can greatly reduce the coherent processing interval (CPI) and improve the anti-jamming capability. For practical applications, however, the required number of pulses is difficult to determine in advance and any reduction of the transmitted pulses is attractive. In this paper, a dynamic compressed sensing strategy for HRRP generation is proposed, in which the estimated HRRP is updated with sequentially transmitted and received pulses until the proper stopping rules are satisfied. To efficiently implement the sequential update, a complex-valued fast sequential homotopy (CV-FSH) algorithm is developed based on group sparse recovery. This algorithm performs as an efficient recursive procedure of sparse recovery, thus avoiding solving a new optimization problem from scratch. Furthermore, the proper stopping rules are presented according to the special characteristics of HRRP. Therefore, the optimal number of pulses required in each CPI can be sought adapting to the echo signal. The results using simulated and real data show the effectiveness of the proposed approach and demonstrate that the established dynamic strategy is more suitable for uncooperative targets. PMID:24815679

  20. Study of a homotopy continuation method for early orbit determination with the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Huang, C.

    1986-01-01

    A recent mathematical technique for solving systems of equations is applied in a very general way to the orbit determination problem. The study of this technique, the homotopy continuation method, was motivated by the possible need to perform early orbit determination with the Tracking and Data Relay Satellite System (TDRSS), using range and Doppler tracking alone. Basically, a set of six tracking observations is continuously transformed from a set with known solution to the given set of observations with unknown solutions, and the corresponding orbit state vector is followed from the a priori estimate to the solutions. A numerical algorithm for following the state vector is developed and described in detail. Numerical examples using both real and simulated TDRSS tracking are given. A prototype early orbit determination algorithm for possible use in TDRSS orbit operations was extensively tested, and the results are described. Preliminary studies of two extensions of the method are discussed: generalization to a least-squares formulation and generalization to an exhaustive global method.

  1. Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation

    PubMed Central

    Phillips, Nick E; Manning, Cerys S; Pettini, Tom; Biga, Veronica; Marinopoulou, Elli; Stanley, Peter; Boyd, James; Bagnall, James; Paszek, Pawel; Spiller, David G; White, Michael RH; Goodfellow, Marc; Galla, Tobias; Rattray, Magnus; Papalopulu, Nancy

    2016-01-01

    Recent studies suggest that cells make stochastic choices with respect to differentiation or division. However, the molecular mechanism underlying such stochasticity is unknown. We previously proposed that the timing of vertebrate neuronal differentiation is regulated by molecular oscillations of a transcriptional repressor, HES1, tuned by a post-transcriptional repressor, miR-9. Here, we computationally model the effects of intrinsic noise on the Hes1/miR-9 oscillator as a consequence of low molecular numbers of interacting species, determined experimentally. We report that increased stochasticity spreads the timing of differentiation in a population, such that initially equivalent cells differentiate over a period of time. Surprisingly, inherent stochasticity also increases the robustness of the progenitor state and lessens the impact of unequal, random distribution of molecules at cell division on the temporal spread of differentiation at the population level. This advantageous use of biological noise contrasts with the view that noise needs to be counteracted. DOI: http://dx.doi.org/10.7554/eLife.16118.001 PMID:27700985

  2. Notch 1 Receptor, Delta 1 Ligand and HES 1 Transcription Factor are Expressed in the Lining Epithelium of Periapical Cysts (Preliminary Study)

    PubMed Central

    Meliou, E; Kerezoudis, NP; Tosios, KI; Kiaris, H

    2010-01-01

    Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have examined the expression of the receptor Notch 1, the ligand Delta 1 and the transcription factor HES 1 in the epithelium of well defined periapical cysts. Immunostaining reaction of Notch 1, Delta 1 and HES 1 was observed in the cytoplasm and/or the cytoplasmic membrane and occasionally in the nucleus in the majority of epithelial cells of all periapical cysts. The present observations indicate that Notch pathway is active in the epithelium of periapical cysts. It can be speculated that activation of epithelial cells of periapical cysts is associated with activation of Notch pathway and imply involvement of this pathway in periapical cyst growth and expansion. PMID:21116324

  3. Notch 1 Receptor, Delta 1 Ligand and HES 1 Transcription Factor are Expressed in the Lining Epithelium of Periapical Cysts (Preliminary Study).

    PubMed

    Meliou, E; Kerezoudis, Np; Tosios, Ki; Kiaris, H

    2010-07-27

    Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have examined the expression of the receptor Notch 1, the ligand Delta 1 and the transcription factor HES 1 in the epithelium of well defined periapical cysts. Immunostaining reaction of Notch 1, Delta 1 and HES 1 was observed in the cytoplasm and/or the cytoplasmic membrane and occasionally in the nucleus in the majority of epithelial cells of all periapical cysts. The present observations indicate that Notch pathway is active in the epithelium of periapical cysts. It can be speculated that activation of epithelial cells of periapical cysts is associated with activation of Notch pathway and imply involvement of this pathway in periapical cyst growth and expansion.

  4. Antagonistic regulation of p57kip2 by Hes/Hey downstream of Notch signaling and muscle regulatory factors regulates skeletal muscle growth arrest.

    PubMed

    Zalc, Antoine; Hayashi, Shinichiro; Auradé, Frédéric; Bröhl, Dominique; Chang, Ted; Mademtzoglou, Despoina; Mourikis, Philippos; Yao, Zizhen; Cao, Yi; Birchmeier, Carmen; Relaix, Frédéric

    2014-07-01

    A central question in development is to define how the equilibrium between cell proliferation and differentiation is temporally and spatially regulated during tissue formation. Here, we address how interactions between cyclin-dependent kinase inhibitors essential for myogenic growth arrest (p21(cip1) and p57(kip2)), the Notch pathway and myogenic regulatory factors (MRFs) orchestrate the proliferation, specification and differentiation of muscle progenitor cells. We first show that cell cycle exit and myogenic differentiation can be uncoupled. In addition, we establish that skeletal muscle progenitor cells require Notch signaling to maintain their cycling status. Using several mouse models combined with ex vivo studies, we demonstrate that Notch signaling is required to repress p21(cip1) and p57(kip2) expression in muscle progenitor cells. Finally, we identify a muscle-specific regulatory element of p57(kip2) directly activated by MRFs in myoblasts but repressed by the Notch targets Hes1/Hey1 in progenitor cells. We propose a molecular mechanism whereby information provided by Hes/Hey downstream of Notch as well as MRF activities are integrated at the level of the p57(kip2) enhancer to regulate the decision between progenitor cell maintenance and muscle differentiation. © 2014. Published by The Company of Biologists Ltd.

  5. Identification of a new clock-related element EL-box involved in circadian regulation by BMAL1/CLOCK and HES1.

    PubMed

    Ueshima, Taichi; Kawamoto, Takeshi; Honda, Kiyomasa K; Noshiro, Mitsuhide; Fujimoto, Katsumi; Nakao, Sanae; Ichinose, Natsuhiro; Hashimoto, Seiichi; Gotoh, Osamu; Kato, Yukio

    2012-12-01

    Several cis-acting elements play critical roles in maintaining circadian expression of clock and clock-controlled genes. Using in silico analysis, we identified 10 sequence motifs that are correlated with the circadian phases of gene expression in the cartilage. One of these motifs, an E-box-like clock-related element (EL-box; GGCACGAGGC), can mediate BMAL1/CLOCK-induced transcription, which is typically regulated through an E-box or E'-box. Expression of EL-box-containing genes, including Ank, Dbp, and Nr1d1 (Rev-erbα), was induced by BMAL1/CLOCK or BMAL1/NPAS2. Compared with the E-box, the EL-box elements had distinct responsiveness to DEC1, DEC2, and HES1: suppressive actions of DEC1 and DEC2 on the EL-box were less potent than those on the E-box. HES1, which is known to bind to the N-box (CACNAG), suppressed enhancer activity of the EL-box, but not the E-box. In the Dbp promoter, an EL-box worked cooperatively with a noncanonical (NC) E-box to mediate BMAL1/CLOCK actions. These findings suggest that in addition to known clock elements, the EL-box element may contribute to circadian regulation of clock and clock-controlled genes.

  6. Thermal perturbation of the Sun

    NASA Technical Reports Server (NTRS)

    Twigg, L. W.; Endal, A. S.

    1982-01-01

    Thermal perturbations of the solar convection zone can be modeled (to the first order) by perturbing the mixing length parameter alpha (equal to the ratio of the mixing length to the pressure scale height) used in the standard mixing length theory of convection. Results of such an analysis are presented and discussed in relation to recent work by others.

  7. On dark energy isocurvature perturbation

    SciTech Connect

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn

    2011-06-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.

  8. Perturbation theory in electron diffraction

    NASA Astrophysics Data System (ADS)

    Bakken, L. N.; Marthinsen, K.; Hoeier, R.

    1992-12-01

    The Bloch-wave approach is used for discussing multiple inelastic electron scattering and higher-order perturbation theory in inelastic high-energy electron diffraction. In contrast to previous work, the present work describes three-dimensional diffraction so that higher-order Laue zone (HOLZ) effects are incorporated. Absorption is included and eigenvalues and eigenvectors are calculated from a structure matrix with the inclusion of an absorptive potential. Centrosymmetric as well as non-centrosymmetric crystal structures are allowed. An iteration method with a defined generalized propagation function for solving the inelastic coupling equations is described. It is shown that a similar iteration method with the same propagation function can be used for obtaining higher-order perturbation terms for the wave-function when a perturbation is added to the crystal potential. Finally, perturbation theory by matrix calculations when a general perturbation is added to the structure matrix is considered.

  9. Computing singularities of perturbation series

    SciTech Connect

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be useful for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.

  10. The prequantum line bundle on the moduli space of flat SU( N) connections on a Riemann surface and the homotopy of the large N limit

    NASA Astrophysics Data System (ADS)

    Jeffrey, Lisa C.; Ramras, Daniel A.; Weitsman, Jonathan

    2017-09-01

    We show that the prequantum line bundle on the moduli space of flat SU(2) connections on a closed Riemann surface of positive genus has degree 1. It then follows from work of Lawton and the second author that the classifying map for this line bundle induces a homotopy equivalence between the stable moduli space of flat SU( n) connections, in the limit as n tends to infinity, and {\\mathbb C}P^\\infty . Applications to the stable moduli space of flat unitary connections are also discussed.

  11. The prequantum line bundle on the moduli space of flat SU(N) connections on a Riemann surface and the homotopy of the large N limit

    NASA Astrophysics Data System (ADS)

    Jeffrey, Lisa C.; Ramras, Daniel A.; Weitsman, Jonathan

    2017-03-01

    We show that the prequantum line bundle on the moduli space of flat SU(2) connections on a closed Riemann surface of positive genus has degree 1. It then follows from work of Lawton and the second author that the classifying map for this line bundle induces a homotopy equivalence between the stable moduli space of flat SU(n) connections, in the limit as n tends to infinity, and CP^∞. Applications to the stable moduli space of flat unitary connections are also discussed.

  12. The power of perturbation theory

    NASA Astrophysics Data System (ADS)

    Serone, Marco; Spada, Gabriele; Villadoro, Giovanni

    2017-05-01

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the PicardLefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  13. Instabilities in mimetic matter perturbations

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  14. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression

    PubMed Central

    2014-01-01

    Background PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Methods Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. Results Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression

  15. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  16. Inflationary perturbations in bimetric gravity

    SciTech Connect

    Cusin, Giulia; Durrer, Ruth; Guarato, Pietro; Motta, Mariele E-mail: ruth.durrer@unige.ch E-mail: mariele.motta@unige.ch

    2015-09-01

    In this paper we study the generation of primordial perturbations in a cosmological setting of bigravity during inflation. We consider a model of bigravity which can reproduce the ΛCDM background and large scale structure and a simple model of inflation with a single scalar field and a quadratic potential. Reheating is implemented with a toy-model in which the energy density of the inflaton is entirely dissipated into radiation. We present analytic and numerical results for the evolution of primordial perturbations in this cosmological setting. We find that the amplitude of tensor perturbations generated during inflation is sufficiently suppressed to avoid the effects of the tensor instability discovered in refs. [1,2] which develops during the cosmological evolution in the physical sector. We argue that from a pure analysis of the tensor perturbations this bigravity model is compatible with present observations. However, we derive rather stringent limits on inflation from the vector and scalar sectors.

  17. Perturbative gadgets at arbitrary orders

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen P.; Farhi, Edward

    2008-06-01

    Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k -body effective interactions from two-body Hamiltonians. These effective interactions arise from the k th order in perturbation theory.

  18. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  19. Robust stability under additive perturbations

    NASA Technical Reports Server (NTRS)

    Bhaya, A.; Desoer, C. A.

    1985-01-01

    A MIMO linear time-invariant feedback system 1S(P,C) is considered which is assumed to be U-stable. The plant P is subjected to an additive perturbation Delta P which is proper but not necessarily stable. It is proved that the perturbed system is U-stable if and only if Delta P(I + Q x Delta P) exp -1 is U-stable.

  20. Lectures on perturbative string theories

    SciTech Connect

    Ooguri, Hirosi; Yin, Z. |

    1997-02-01

    These lecture notes on String Theory constitute an introductory course designed to acquaint the students with some basic factors of perturbative string theories. They are intended as preparation for the more advanced courses on non-perturbative aspects of string theories in the school. The course consists of five lectures: (1) Bosonic String, (2) Toroidal Compactifications, (3) Superstrings, (4) Heterotic Strings, and (5) Orbifold Compactifications.

  1. Accurate computation and continuation of homoclinic and heteroclinic orbits for singular perturbation problems

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Friedman, Mark J.; Monteiro, Anand C.

    1993-01-01

    In earlier papers, Doedel and the authors have developed a numerical method and derived error estimates for the computation of branches of heteroclinic orbits for a system of autonomous ordinary differential equations in R(exp n). The idea of the method is to reduce a boundary value problem on the real line to a boundary value problem on a finite interval by using a local (linear or higher order) approximation of the stable and unstable manifolds. A practical limitation for the computation of homoclinic and heteroclinic orbits has been the difficulty in obtaining starting orbits. Typically these were obtained from a closed form solution or via a homotopy from a known solution. Here we consider extensions of our algorithm which allow us to obtain starting orbits on the continuation branch in a more systematic way as well as make the continuation algorithm more flexible. In applications, we use the continuation software package AUTO in combination with some initial value software. The examples considered include computation of homoclinic orbits in a singular perturbation problem and in a turbulent fluid boundary layer in the wall region problem.

  2. Selection of cell fate in the organ of Corti involves the integration of Hes/Hey signaling at the Atoh1 promoter.

    PubMed

    Abdolazimi, Yassan; Stojanova, Zlatka; Segil, Neil

    2016-03-01

    Determination of cell fate within the prosensory domain of the developing cochlear duct relies on the temporal and spatial regulation of the bHLH transcription factor Atoh1. Auditory hair cells and supporting cells arise in a wave of differentiation that patterns them into discrete rows mediated by Notch-dependent lateral inhibition. However, the mechanism responsible for selecting sensory cells from within the prosensory competence domain remains poorly understood. We show in mice that rather than being upregulated in rows of cells, Atoh1 is subject to transcriptional activation in groups of prosensory cells, and that highly conserved sites for Hes/Hey repressor binding in the Atoh1 promoter are needed to select the hair cell and supporting cell fate. During perinatal supporting cell transdifferentiation, which is a model of hair cell regeneration, we show that derepression is sufficient to induce Atoh1 expression, suggesting a mechanism for priming the 3' Atoh1 autoregulatory enhancer needed for hair cell expression.

  3. Acid-Base and Electrolyte Status during Normovolemic Hemodilution with Succinylated Gelatin or HES-Containing Volume Replacement Solutions in Rats

    PubMed Central

    Teloh, Johanna K.; Ferenz, Katja B.; Petrat, Frank; Mayer, Christian; de Groot, Herbert

    2013-01-01

    Background In the past, several studies have compared different colloidal replacement solutions, whereby the focus was usually on the respective colloid. We therefore systematically studied the influence of the carrier solution’s composition of five approved colloidal volume replacement solutions (Gelafundin, Gelafusal, Geloplasma, Voluven and Volulyte) on acid-base as well as electrolyte status during and following acute severe normovolemic hemodilution. The solutions differed in the colloid used (succinylated gelatin vs. HES) and in the presence and concentration of metabolizable anions as well as in their electrolyte composition. Methods Anesthetized Wistar rats were subjected to a stepwise normovolemic hemodilution with one of the solutions until a final hematocrit of 10%. Subsequent to dilution (162 min), animals were observed for an additional period (150 min). During dilution and observation time blood gas analyses were performed eight times in total. Additionally, in the Voluven and Volulyte groups as well as in 6 Gelafundin animals, electrolyte concentrations, glucose, pH and succinylated gelatin were measured in urine and histopathological evaluation of the kidney was performed. Results All animals survived without any indications of injury. Although the employed solutions differed in their respective composition, comparable results in all plasma acid-base and electrolyte parameters studied were obtained. Plasma pH increased from approximately 7.28 to 7.39, the plasma K+ concentration decreased from circa 5.20 mM to 4.80-3.90 mM and the plasma Cl− concentration rose from approximately 105 mM to 111–120 mM. Urinary analysis revealed increased excretion of K+, H+ and Cl−. Conclusions The present data suggest that the carrier solution’s composition with regard to metabolizable anions as well as K+, Ca2+ only has a minor impact on acid-base and electrolyte status after application of succinylated gelatin or HES-containing colloidal volume

  4. Transcriptional Dynamics Elicited by a Short Pulse of Notch Activation Involves Feed-Forward Regulation by E(spl)/Hes Genes

    PubMed Central

    Housden, Ben E.; Fu, Audrey Q.; Krejci, Alena; Bernard, Fred; Fischer, Bettina; Tavaré, Simon; Russell, Steven; Bray, Sarah J.

    2013-01-01

    Dynamic activity of signaling pathways, such as Notch, is vital to achieve correct development and homeostasis. However, most studies assess output many hours or days after initiation of signaling, once the outcome has been consolidated. Here we analyze genome-wide changes in transcript levels, binding of the Notch pathway transcription factor, CSL [Suppressor of Hairless, Su(H), in Drosophila], and RNA Polymerase II (Pol II) immediately following a short pulse of Notch stimulation. A total of 154 genes showed significant differential expression (DE) over time, and their expression profiles stratified into 14 clusters based on the timing, magnitude, and direction of DE. E(spl) genes were the most rapidly upregulated, with Su(H), Pol II, and transcript levels increasing within 5–10 minutes. Other genes had a more delayed response, the timing of which was largely unaffected by more prolonged Notch activation. Neither Su(H) binding nor poised Pol II could fully explain the differences between profiles. Instead, our data indicate that regulatory interactions, driven by the early-responding E(spl)bHLH genes, are required. Proposed cross-regulatory relationships were validated in vivo and in cell culture, supporting the view that feed-forward repression by E(spl)bHLH/Hes shapes the response of late-responding genes. Based on these data, we propose a model in which Hes genes are responsible for co-ordinating the Notch response of a wide spectrum of other targets, explaining the critical functions these key regulators play in many developmental and disease contexts. PMID:23300480

  5. Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular Aβ metabolism.

    PubMed

    Leal, María C; Surace, Ezequiel I; Holgado, María P; Ferrari, Carina C; Tarelli, Rodolfo; Pitossi, Fernando; Wisniewski, Thomas; Castaño, Eduardo M; Morelli, Laura

    2012-02-01

    Cerebral amyloid β (Aβ) accumulation is pathogenically associated with sporadic Alzheimer's disease (SAD). BACE-1 is involved in Aβ generation while insulin-degrading enzyme (IDE) partakes in Aβ proteolytic clearance. Vulnerable regions in AD brains show increased BACE-1 protein levels and enzymatic activity while the opposite occurs with IDE. Another common feature in SAD brains is Notch1 overexpression. Here we demonstrate an increase in mRNA levels of Hey-1, a Notch target gene, and a decrease of IDE transcripts in the hippocampus of SAD brains as compared to controls. Transient transfection of Notch intracellular domain (NICD) in N2aSW cells, mouse neuroblastoma cells (N2a) stably expressing human amyloid precursor protein (APP) Swedish mutation, reduce IDE mRNA levels, promoting extracellular Aβ accumulation. Also, NICD, HES-1 and Hey-1 overexpression result in decreased IDE proximal promoter activity. This effect was mediated by 2 functional sites located at -379/-372 and -310-303 from the first translation start site in the -575/-19 (556 bp) fragment of IDE proximal promoter. By site-directed mutagenesis of the IDE promoter region we reverted the inhibitory effect mediated by NICD transfection suggesting that these sites are indeed responsible for the Notch-mediated inhibition of the IDE gene expression. Intracranial injection of the Notch ligand JAG-1 in Tg2576 mice, expressing the Swedish mutation in human APP, induced overexpression of HES-1 and Hey-1 and reduction of IDE mRNA levels, respectively. Our results support our theory that a Notch-dependent IDE transcriptional modulation may impact on Aβ metabolism providing a functional link between Notch signaling and the amyloidogenic pathway in SAD.

  6. Cdc42-mTOR signaling pathway controls Hes5 and Pax6 expression in retinoic acid-dependent neural differentiation.

    PubMed

    Endo, Makoto; Antonyak, Marc A; Cerione, Richard A

    2009-02-20

    The conditional knockout of the small GTPase Cdc42 from neuroepithelial (NE) and radial glial (RG) cells in the mouse telencephalon has been shown to have a significant impact on brain development by causing these neural progenitor cells to detach from the apical/ventricular surface and to lose their cell identity. This has been attributed to the requirement for Cdc42 in establishing proper apical/basal cell polarity and cell-cell adhesions. In the present study, we provide new insights into the role played by Cdc42 in the maintenance of neural progenitor cells, using the mouse embryonal carcinoma P19 cell line as a model system. We show that the ability of P19 cells to undergo the transition from an Oct3/4-positive, undifferentiated status to microtubule-associated protein 2-positive neurons and glial fibrillary acidic protein-positive astrocytes, upon treatment with retinoic acid (RA), requires RA-induced activation of Cdc42 during the neural cell lineage specification phase. Experiments using chemical inhibitors and RNA interference suggest that the actions of Cdc42 are mediated through signaling pathways that start with fibroblast growth factors and Delta/Notch proteins and lead to Cdc42-dependent mTOR activation, culminating in the up-regulation of Hes5 and Pax6, two transcription factors that are essential for the maintenance of NE and RG cells. The constitutively active Cdc42(F28L) mutant was sufficient to up-regulate Hes5 and Pax6 in P19 cells, even in the absence of RA treatment, ultimately promoting their transition to neural progenitor cells. The ectopic Cdc42 expression also significantly augmented the RA-dependent up-regulation of these transcription factors, resulting in P19 cells maintaining their neural progenitor status but being unable to undergo terminal differentiation. These findings shed new light on how Cdc42 influences neural progenitor cell fate by regulating gene expression.

  7. Melatonin rescues cardiac thioredoxin system during ischemia-reperfusion injury in acute hyperglycemic state by restoring Notch1/Hes1/Akt signaling in a membrane receptor-dependent manner.

    PubMed

    Yu, Liming; Fan, Chongxi; Li, Zhi; Zhang, Jian; Xue, Xiaodong; Xu, Yinli; Zhao, Guolong; Yang, Yang; Wang, Huishan

    2017-01-01

    Stress hyperglycemia is commonly observed in patients suffering from ischemic heart disease. It not only worsens cardiovascular prognosis but also attenuates the efficacies of various cardioprotective agents. This study aimed to investigate the protective effect of melatonin against myocardial ischemia-reperfusion (MI/R) injury in acute hyperglycemic state with a focus on Notch1/Hes1/Akt signaling and intracellular thioredoxin (Trx) system. Sprague Dawley rats were subjected to MI/R surgery and high-glucose (HG, 500 g/L) infusion (4 mL/kg/h) to induce temporary hyperglycemia. Rats were treated with or without melatonin (10 mg/kg/d) during the operation. Furthermore, HG (33 mmol/L)-incubated H9c2 cardiomyoblasts were treated in the presence or absence of luzindole (a competitive melatonin receptor antagonist), DAPT (a γ-secretase inhibitor), LY294002 (a PI3-kinase/Akt inhibitor), or thioredoxin-interacting protein (Txnip) adenoviral vectors. We found that acute hyperglycemia aggravated MI/R injury by suppressing Notch1/Hes1/Akt signaling and intracellular Trx activity. Melatonin treatment effectively ameliorated MI/R injury by reducing infarct size, myocardial apoptosis, and oxidative stress. Moreover, melatonin also markedly enhanced Notch1/Hes1/Akt signaling and rescued intracellular Trx system by upregulating Notch1, N1ICD, Hes1, and p-Akt expressions, increasing Trx activity, and downregulating Txnip expression. However, these effects were blunted by luzindole, DAPT, or LY294002. Additionally, Txnip overexpression not only decreased Trx activity, but also attenuated the cytoprotective effect of melatonin. We conclude that impaired Notch1 signaling aggravates MI/R injury in acute hyperglycemic state. Melatonin rescues Trx system by reducing Txnip expression via Notch1/Hes1/Akt signaling in a membrane receptor-dependent manner. Its role as a prophylactic/therapeutic drug deserves further clinical study. © 2016 John Wiley & Sons A/S. Published by John Wiley

  8. Computing singularities of perturbation series

    NASA Astrophysics Data System (ADS)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-01

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schrödinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be useful for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with δ-function interactions for which Møller-Plesset perturbation theory is considered and the radius of convergence found.

  9. Jet Perturbation by HE target

    SciTech Connect

    Poulsen, P; Kuklo, R M

    2001-03-01

    We have previously reported the degree of attenuation and perturbation by a Cu jet passing through Comp B explosive. Similar tests have now been performed with high explosive (HE) targets having CJ pressures higher than and lower than the CJ pressure of Comp B. The explosives were LX-14 and TNT, respectively. We found that the measured exit velocity of the jet where it transitions from perturbed to solid did not vary significantly as a function of HE type for each HE thickness. The radial momentum imparted to the perturbed jet segment did vary as a function of HE type, however, and we report the radial spreading of the jet and the penetration of a downstream target as a function of HE type and thickness.

  10. Multi-field inflation and cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Gong, Jinn-Ouk

    We provide a concise review on multi-field inflation and cosmological perturbations. We discuss convenient and physically meaningful bases in terms of which perturbations can be systematically studied. We give formal accounts on the gauge fixing conditions and present the perturbation action in two gauges. We also briefly review nonlinear perturbations.

  11. Thermal perturbation of the Sun

    NASA Technical Reports Server (NTRS)

    Twigg, L. W.; Endal, A. S.

    1981-01-01

    An investigation of thermal perturbations of the solar convective zone via changes in the mixing length parameter were carried out, with a view toward understanding the possible solar radius and luminosity changes cited in the literature. The results show that: (a) a single perturbation of alpha is probably not the cause of the solar radius change and (b) the parameter W = d lambda nR./d lambda nL. can not be characterized by a single value, as implied in recent work.

  12. Adaptation Strategies in Perturbed /s/

    ERIC Educational Resources Information Center

    Brunner, Jana; Hoole, Phil; Perrier, Pascal

    2011-01-01

    The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…

  13. Adaptation Strategies in Perturbed /s/

    ERIC Educational Resources Information Center

    Brunner, Jana; Hoole, Phil; Perrier, Pascal

    2011-01-01

    The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…

  14. New results in perturbative QCD

    SciTech Connect

    Ellis, R.K.

    1985-11-01

    Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: (2 2) jet phenomena calculated in O( sT); new techniques for the calculation of tree graphs; and colour coherence in jet phenomena. 31 refs., 6 figs.

  15. Disformal invariance of curvature perturbation

    SciTech Connect

    Motohashi, Hayato; White, Jonathan E-mail: jwhite@post.kek.jp

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  16. VHS Movies: Perturbations for Morphogenesis.

    ERIC Educational Resources Information Center

    Holmes, Danny L.

    This paper discusses the concept of a family system in terms of an interactive system of interrelated, interdependent parts and suggests that VHS movies can act as perturbations, i.e., change promoting agents, for certain dysfunctional family systems. Several distinct characteristics of a family system are defined with particular emphasis on…

  17. Recent Developments in Perturbative QCD

    SciTech Connect

    Dixon, Lance J.; /SLAC

    2005-07-11

    I review recent progress in perturbative QCD on two fronts: extending next-to-next-to-leading order QCD corrections to a broader range of collider processes, and applying twistor-space methods (and related spinoffs) to computations of multi-parton scattering amplitudes.

  18. PERTURBATION APPROACH FOR QUANTUM COMPUTATION

    SciTech Connect

    G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH

    2001-04-01

    We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.

  19. Singularly Perturbed Lie Bracket Approximation

    SciTech Connect

    Durr, Hans-Bernd; Krstic, Miroslav; Scheinker, Alexander; Ebenbauer, Christian

    2015-03-27

    Here, we consider the interconnection of two dynamical systems where one has an input-affine vector field. We show that by employing a singular perturbation analysis and the Lie bracket approximation technique, the stability of the overall system can be analyzed by regarding the stability properties of two reduced, uncoupled systems.

  20. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  1. Homotopy analysis method for chemical reaction and thermophoresis effects on heat and mass transfer for mhd hiemenz flow over a porous wedge in the presence of heat radiation

    NASA Astrophysics Data System (ADS)

    Kandasamy, R.; Muhaimin, I.; Puvi Arasu, P.; Loganathan, P.

    2011-05-01

    An analytical technique, namely, the homotopy analysis method, is applied to analyze the effect of chemical reaction and thermophoresis particle deposition on the MHD mixed convective heat and mass transfer for a Hiemenz flow over a porous wedge in the presence of heat radiation. The fluid is assumed to be viscous and incompressible. Analytical and numerical calculations are carried out for different values of dimensionless parameters, and an analysis of the results obtained shows that the flow field is influenced appreciably by the buoyancy ratio as well as by the thermal diffusion and suction/injection parameters. The effects of these parameters on the process characteristics are investigated methodically, and typical results are illustrated. An explicit, totally analytical, and uniformly valid solution is derived which agrees well with numerical results.

  2. Optimal Homotopy Asymptotic Method for Flow and Heat Transfer of a Viscoelastic Fluid in an Axisymmetric Channel with a Porous Wall

    PubMed Central

    Mabood, Fazle; Khan, Waqar A.; Ismail, Ahmad Izani

    2013-01-01

    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena. PMID:24376722

  3. Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method

    NASA Astrophysics Data System (ADS)

    Sarwar, S.; Rashidi, M. M.

    2016-07-01

    This paper deals with the investigation of the analytical approximate solutions for two-term fractional-order diffusion, wave-diffusion, and telegraph equations. The fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], (1,2), and [1,2], respectively. In this paper, we extended optimal homotopy asymptotic method (OHAM) for two-term fractional-order wave-diffusion equations. Highly approximate solution is obtained in series form using this extended method. Approximate solution obtained by OHAM is compared with the exact solution. It is observed that OHAM is a prevailing and convergent method for the solutions of nonlinear-fractional-order time-dependent partial differential problems. The numerical results rendering that the applied method is explicit, effective, and easy to use, for handling more general fractional-order wave diffusion, diffusion, and telegraph problems.

  4. Optimal homotopy asymptotic method for flow and heat transfer of a viscoelastic fluid in an axisymmetric channel with a porous wall.

    PubMed

    Mabood, Fazle; Khan, Waqar A; Ismail, Ahmad Izani Md

    2013-01-01

    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.

  5. BRST quantization of cosmological perturbations

    SciTech Connect

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  6. BRST quantization of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-01

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  7. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  8. The natural and perturbed troposphere

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.; Hameed, S.; Pinto, J.

    1978-01-01

    A quantitative assessment of the chemical and climatic effects of industrial emissions into the atmosphere requires an understanding of the complex interactions of species within the atmosphere and of the atmosphere with other physical systems such as the oceans, lithosphere, and biosphere. The concentration of a particular species is determined by competition between various production and loss processes. The abundances of tropospheric gases are examined. The reactions of the members of the oxygen group are considered along with the models which have been developed to describe the involved relationships. Attention is also given to the natural carbon cycle, perturbations to the carbon cycle, the natural nitrogen cycle, perturbations to the nitrogen cycle, the hydrogen group, the sulfur group, and the halogen group.

  9. Minor physical anomalies are more common among the first-degree unaffected relatives of schizophrenia patients - Results with the Méhes Scale.

    PubMed

    Hajnal, András; Csábi, Györgyi; Herold, Róbert; Jeges, Sára; Halmai, Tamás; Trixler, Dániel; Simon, Maria; Tóth, Ákos Levente; Tényi, Tamás

    2016-03-30

    Minor physical anomalies are external markers of abnormal brain development,so the more common appearance of these signs among the relatives of schizophrenia patients can confirm minor physical anomalies as intermediate phenotypes. The aim of the present study was to investigate the rate and topological profile of minor physical anomalies in the first-degree unaffected relatives of patients with schizophrenia compared to matched normal control subjects. Using a list of 57 minor physical anomalies (the Méhes Scale), 20 relatives of patients with the diagnosis of schizophrenia and as a comparison 20 matched normal control subjects were examined. Minor physical anomalies were more common in the head and mouth regions among the relatives of schizophrenia patients compared to normal controls. By the differentiation of minor malformations and phenogenetic variants, we have found that only phenogenetic variants were more common in the relatives of schizophrenia patients compared to the control group, however individual analyses showed, that one minor malformation (flat forehead) was more prevalent in the relative group. The results can promote the concept, that minor physical anomalies can be endophenotypic markers of the illness. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. An essential role for RAX homeoprotein and NOTCH-HES signaling in Otx2 expression in embryonic retinal photoreceptor cell fate determination.

    PubMed

    Muranishi, Yuki; Terada, Koji; Inoue, Tatsuya; Katoh, Kimiko; Tsujii, Toshinori; Sanuki, Rikako; Kurokawa, Daisuke; Aizawa, Shinichi; Tamaki, Yasuhiro; Furukawa, Takahisa

    2011-11-16

    The molecular mechanisms underlying cell fate determination from common progenitors in the vertebrate CNS remain elusive. We previously reported that the OTX2 homeoprotein regulates retinal photoreceptor cell fate determination. While Otx2 transactivation is a pivotal process for photoreceptor cell fate determination, its transactivation mechanism in the retina is unknown. Here, we identified an evolutionarily conserved Otx2 enhancer of ∼500 bp, named embryonic enhancer locus for photoreceptor Otx2 transcription (EELPOT), which can recapitulate initial Otx2 expression in the embryonic mouse retina. We found that the RAX homeoprotein interacts with EELPOT to transactivate Otx2, mainly in the final cell cycle of retinal progenitors. Conditional inactivation of Rax results in downregulation of Otx2 expression in vivo. We also showed that NOTCH-HES signaling negatively regulates EELPOT to suppress Otx2 expression. These results suggest that the integrated activity of cell-intrinsic and -extrinsic factors on EELPOT underlies the molecular basis of photoreceptor cell fate determination in the embryonic retina.

  11. Quality of water used during cage cultivation of rainbow trout (Oncorhynchus mykiss) in Bereket HES IV Dam Lake (Muğla, Turkey).

    PubMed

    Ozdemir, Nedim; Demirak, Ahmet; Keskin, Feyyaz

    2014-12-01

    A thorough investigation of the impact of rainbow trout (Oncorhynchus mykiss) cultivation on surface water quality in the area known as Bereket HES IV Dam Lake was conducted. Water samples were collected from October 2009 to June 2010 from four stations in the Dam Lake and analyzed for water temperature, pH, dissolved oxygen, electrical conductivity, nitrite nitrogen, nitrate nitrogen, and orthophosphate. Surface water quality was then evaluated based on the comparison of samples collected from three stations located near fish cages to those collected from a reference station outside the cultivation area as well as by the comparison with standards specified in the Water Pollution Registration Act. According to the Water Pollution Registration Act, the surface water quality of the Dam Lake was class I. Additionally, there were no significant differences in water quality within the Dam Lake among any of the sampling stations, including the reference station. Overall, these findings indicate that cage cultivation of rainbow trout may have a negative impact on the entire Dam Lake.

  12. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  13. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  14. Modulations of perturbed KdV wavetrains

    SciTech Connect

    Forest, M.G.; Mclaughlin, D.W.

    1984-04-01

    The modulations of N-phase Korteweg-de Vries (KdV) wavetrains in the presence of external perturbations is investigated. An invariant representation of these modulation equations in terms of differentials on a Riemann surface is derived from averaged perturbed conservation laws. In particular, the explicit dependence of the representation on the external perturbation is obtained. This invariant representation is used to place the equation in a Riemann diagonal form, whose dependence on the external perturbation is explicitly computed. 15 references.

  15. Geometric Hamiltonian structures and perturbation theory

    SciTech Connect

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.

  16. Identifying Network Perturbation in Cancer

    PubMed Central

    Logsdon, Benjamin A.; Gentles, Andrew J.; Lee, Su-In

    2016-01-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each gene is perturbed—having distinct regulator connectivity in the inferred gene-regulator dependencies between the disease and normal conditions. This approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing methods to identify perturbed genes between distinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for known tumor drivers, genes associated with the biological processes known to be important in the disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity patterns in cancer and normal tissue types more accurately than alternative methods, based on the available epigenomic data from the ENCODE project. PMID:27145341

  17. HES1-mediated inhibition of Notch1 signaling by a Gemini vitamin D analog leads to decreased CD44(+)/CD24(-/low) tumor-initiating subpopulation in basal-like breast cancer.

    PubMed

    So, Jae Young; Wahler, Joseph; Das Gupta, Soumyasri; Salerno, David M; Maehr, Hubert; Uskokovic, Milan; Suh, Nanjoo

    2015-04-01

    Tumor-initiating cells (also known as cancer stem cells) are the subpopulation of cells shown to be responsible for tumor initiation, maintenance and recurrence. In breast cancer, CD44(+)/CD24(-/low) cells were identified as tumor-initiating cells. We previously reported that a Gemini vitamin D analog, 1,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-cholecalciferol (BXL0124), reduced CD44(+)/CD24(-/low) cells in MCF10DCIS basal-like breast cancer cells. Since Notch has been identified as one of the key signaling pathways involved in breast cancer stem cells, the effect of BXL0124 on the Notch signaling pathway was investigated in breast cancer. The CD44(+)/CD24(-/low) subpopulation of MCF10DCIS cells showed elevated Notch1 signaling and increased cell proliferation compared to the CD44(+)/CD24(high) subpopulation. Treatment with the Gemini vitamin D analog BXL0124 decreased the level of activated Notch1 receptor. In addition, mRNA and protein levels of the Notch ligands, Jagged-1, Jagged-2 and DLL1, were significantly reduced by treatment with BXL0124, which was followed by repression of c-Myc, a key downstream target of Notch signaling. Interestingly, HES1, a known downstream target of Notch signaling, was rapidly induced by treatment with BXL0124. The inhibitory effect of BXL0124 on Notch signaling was reversed by knockdown of HES1. Overexpression of HES1 inhibited Notch1 signaling and reduced the CD44(+)/CD24(-/low) subpopulation, confirming a role of HES1 in Notch1 signaling. In conclusion, the Gemini vitamin D analog, BXL0124, represses the tumor-initiating subpopulation by HES1-mediated inhibition of Notch1 signaling. The present study demonstrates BXL0124 as a potent inhibitor of Notch signaling to target tumor-initiating cells in basal-like breast cancer. This article is part of a Special Issue entitled "17th Vitamin D Workshop". Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Transport Studies Using Perturbative Experiments

    SciTech Connect

    Hogeweij, G.M.D.

    2004-03-15

    By inducing a small electron temperature perturbation in a plasma in steady state one can in principle determine the conductive and convective components of the electron heat ux, and the associated thermal diffusivity and convection velocity. The same can be done for other plasma parameters, like density or ion temperature.In this paper experimental and analysis techniques are briey reviewed. The fundamental question whether the uxes are linear functions of the gradients or not is discussed. Experimental results are summarized, including so-called 'non-local' phenomena.

  19. Perturbation analyses of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.

    2011-08-01

    Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the

  20. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids

    PubMed Central

    Farioli-Vecchioli, Stefano; Ceccarelli, Manuela; Saraulli, Daniele; Micheli, Laura; Cannas, Sara; D’Alessandro, Francesca; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Mattera, Andrea; Cestari, Vincenzo; Tirone, Felice

    2014-01-01

    Bone morphogenic proteins (BMPs) and the Notch pathway regulate quiescence and self-renewal of stem cells of the subventricular zone (SVZ), an adult neurogenic niche. Here we analyze the role at the intersection of these pathways of Tis21 (Btg2/PC3), a gene regulating proliferation and differentiation of adult SVZ stem and progenitor cells. In Tis21-null SVZ and cultured neurospheres, we observed a strong decrease in the expression of BMP4 and its effectors Smad1/8, while the Notch anti-neural mediators Hes1/5 and the basic helix-loop-helix (bHLH) inhibitors Id1-3 increased. Consistently, expression of the proneural bHLH gene NeuroD1 decreased. Moreover, cyclins D1/2, A2, and E were strongly up-regulated. Thus, in the SVZ Tis21 activates the BMP pathway and inhibits the Notch pathway and the cell cycle. Correspondingly, the Tis21-null SVZ stem cells greatly increased; nonetheless, the proliferating neuroblasts diminished, whereas the post-mitotic neuroblasts paradoxically accumulated in SVZ, failing to migrate along the rostral migratory stream to the olfactory bulb. The ability, however, of neuroblasts to migrate from SVZ explants was not affected, suggesting that Tis21-null neuroblasts do not migrate to the olfactory bulb because of a defect in terminal differentiation. Notably, BMP4 addition or Id3 silencing rescued the defective differentiation observed in Tis21-null neurospheres, indicating that they mediate the Tis21 pro-differentiative action. The reduced number of granule neurons in the Tis21-null olfactory bulb led to a defect in olfactory detection threshold, without effect on olfactory memory, also suggesting that within olfactory circuits new granule neurons play a primary role in odor sensitivity rather than in memory. PMID:24744701

  1. "Phonon" scattering beyond perturbation theory

    NASA Astrophysics Data System (ADS)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  2. Perturbative Methods in Path Integration

    NASA Astrophysics Data System (ADS)

    Johnson-Freyd, Theodore Paul

    This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the

  3. Perturbations i have Known and Loved

    NASA Astrophysics Data System (ADS)

    Field, Robert W.

    2011-06-01

    A spectroscopic perturbation is a disruption of a ^1Σ-^1Σ-like regular pattern that can embody level-shifts, extra lines, and intensity anomalies. Once upon a time, when a band was labeled ``perturbed,'' it was considered worthless because it could at best yield molecular constants unsuited for archival tables. Nevertheless, a few brave spectroscopists, notably Albin Lagerqvist and Richard Barrow, collected perturbations because they knew that the pattern of multiple perturbations formed an intricate puzzle that would eventually reveal the presence and electronic symmetry of otherwise unobservable electronic states. There are many kinds of patterns of broken patterns. In my PhD thesis I showed how to determine absolute vibrational assignments for the perturber from patterns among the observed values of perturbation matrix elements. When a ^3Π state is perturbed, its six (Ω, parity) components capture a pattern of level shifts and intensity anomalies that reveals more about the nature of the perturber than a simple perturbation of the single component of a ^1Σ state. In perturbation-facilitated OODR, a perturbed singlet level acts as a spectroscopic doorway through which the entire triplet manifold may be systematically explored. For polyatomic molecule vibrations, a vibrational polyad (a group of mutually perturbing vibrational levels, among which the perturbation matrix elements are expected to follow harmonic oscillator scaling rules) can contain more components than a ^3Π state and intrapolyad patterns can be exquisitely sensitive not merely to the nature of an interloper within the polyad but also to the eigenvector character of the vibronic state from which the polyad is viewed. Variation of scaled polyad interaction parameters from one polyad to the next, a pattern of patterns, can signal proximity to an isomerization barrier. Everything in Rydberg-land seems to scale as N⋆-3, yet a trespassing valence state causes all scaling and propensity rules go

  4. Initial conditions for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  5. Inflationary perturbations and precision cosmology

    SciTech Connect

    Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard

    2005-02-15

    Inflationary cosmology provides a natural mechanism for the generation of primordial perturbations which seed the formation of observed cosmic structure and lead to specific signals of anisotropy in the cosmic microwave background radiation. In order to test the broad inflationary paradigm as well as particular models against precision observations, it is crucial to be able to make accurate predictions for the power spectrum of both scalar and tensor fluctuations. We present detailed calculations of these quantities utilizing direct numerical approaches as well as error-controlled uniform approximations, comparing with the (uncontrolled) traditional slow-roll approach. A simple extension of the leading-order uniform approximation yields results for the power spectra amplitudes, the spectral indices, and the running of spectral indices, with accuracy of the order of 0.1%--approximately the same level at which the transfer functions are known. Several representative examples are used to demonstrate these results.

  6. Accuracy of perturbative master equations.

    PubMed

    Fleming, C H; Cummings, N I

    2011-03-01

    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations. We show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.

  7. Robust control with structured perturbations

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1988-01-01

    Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.

  8. Perturbed Radius of Geosynchronous-Satellite Orbit

    NASA Astrophysics Data System (ADS)

    Kawase, Sei-Ichiro

    We analyze theoretically how the radius of geosynchronous orbits would vary owing to the perturbations due to the sun/moon gravity, solar radiation pressure, and the oblate earth. The analysis is simple, as it uses a diagrammatic method to solve near-circular orbital motions. Results are obtained in seven terms of corrections to the radius of non-perturbed ideal orbits. Each correction term is derived, with clear physical meaning, from each component of the perturbing forces.

  9. Kato expansion in quantum canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Nikolaev, Andrey

    2016-06-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  10. Generic perturbations of linear integrable Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Bounemoura, Abed

    2016-11-01

    In this paper, we investigate perturbations of linear integrable Hamiltonian systems, with the aim of establishing results in the spirit of the KAM theorem (preservation of invariant tori), the Nekhoroshev theorem (stability of the action variables for a finite but long interval of time) and Arnold diffusion (instability of the action variables). Whether the frequency of the integrable system is resonant or not, it is known that the KAM theorem does not hold true for all perturbations; when the frequency is resonant, it is the Nekhoroshev theorem that does not hold true for all perturbations. Our first result deals with the resonant case: we prove a result of instability for a generic perturbation, which implies that the KAM and the Nekhoroshev theorem do not hold true even for a generic perturbation. The case where the frequency is nonresonant is more subtle. Our second result shows that for a generic perturbation the KAM theorem holds true. Concerning the Nekhrosohev theorem, it is known that one has stability over an exponentially long (with respect to some function of ɛ -1) interval of time and that this cannot be improved for all perturbations. Our third result shows that for a generic perturbation one has stability for a doubly exponentially long interval of time. The only question left unanswered is whether one has instability for a generic perturbation (necessarily after this very long interval of time).

  11. Kato expansion in quantum canonical perturbation theory

    SciTech Connect

    Nikolaev, Andrey

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  12. Simple Theory of Geosynchronous-Orbit Perturbations

    NASA Astrophysics Data System (ADS)

    Kawase, Sei-Ichiro

    A simple perturbation theory is introduced for modeling geosynchronous orbits. The theory uses diagrammatic representations of orbits, and derives the perturbations in a direct manner without using differential equations. Perturbations of major importance are derived, including satellite-longitude changes due to the earth’s asymmetric shape, orbital eccentricity increase due to the sun-radiation pressure, and orbital plane inclination due to the sun/moon attraction. The theory clarifies the physical/geometrical meaning of the perturbations while using minimal mathematical analysis.

  13. Perturbative spacetimes from Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Luna, Andrés; Monteiro, Ricardo; Nicholson, Isobel; Ochirov, Alexander; O'Connell, Donal; Westerberg, Niclas; White, Chris D.

    2017-04-01

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  14. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  15. Supernovae data and perturbative deviation from homogeneity

    SciTech Connect

    Enqvist, Kari; Mattsson, Maria; Rigopoulos, Gerasimos E-mail: maria.ronkainen@helsinki.fi

    2009-09-01

    We show that a spherically symmetric perturbation of a dust dominated Ω = 1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.

  16. Preliminary Orbit Determination System (PODS) for Tracking and Data Relay Satellite System (TDRSS)-tracked target Spacecraft using the homotopy continuation method

    NASA Technical Reports Server (NTRS)

    Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.

    1988-01-01

    The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.

  17. Preliminary Orbit Determination System (PODS) for Tracking and Data Relay Satellite System (TDRSS)-tracked target Spacecraft using the homotopy continuation method

    NASA Astrophysics Data System (ADS)

    Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.

    1988-09-01

    The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.

  18. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside protects murine hearts against ischemia/reperfusion injury by activating Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress

    PubMed Central

    Zhang, Meng; Yu, Li-ming; Zhao, Hang; Zhou, Xuan-xuan; Yang, Qian; Song, Fan; Yan, Li; Zhai, Meng-en; Li, Bu-ying; Zhang, Bin; Jin, Zhen-xiao; Duan, Wei-xun; Wang, Si-wang

    2017-01-01

    2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a water-soluble active component extracted from Polygonum multiflorum Thunb. A number of studies demonstrate that TSG exerts cardioprotective effects. Since endoplasmic reticulum (ER) stress plays a key role in myocardial ischemia/reperfusion (MI/R)-induced cell apoptosis, we sought to determine whether modulation of the ER stress during MI/R injury was involved in the cardioprotective action of TSG. Male mice were treated with TSG (60 mg·kg−1·d−1, ig) for 2 weeks and then were subjected to MI/R surgery. Pre-administration of TSG significantly improved post-operative cardiac function, and suppressed MI/R-induced myocardial apoptosis, evidenced by the reduction in the myocardial apoptotic index, serum levels of LDH and CK after 6 h of reperfusion. TSG (0.1–1000 μmol/L) did not affect the viability of cultured H9c2 cardiomyoblasts in vitro, but pretreatment with TSG dose-dependently decreased simulated ischemia/reperfusion (SIR)-induced cell apoptosis. Furthermore, both in vivo and in vitro studies revealed that TSG treatment activated the Notch1/Hes1 signaling pathway and suppressed ER stress, as evidenced by increasing Notch1, Notch1 intracellular domain (NICD), Hes1, and Bcl-2 expression levels and by decreasing p-PERK/PERK ratio, p-eIF2α/eIF2α ratio, and ATF4, CHOP, Bax, and caspase-3 expression levels. Moreover, the protective effects conferred by TSG on SIR-treated H9c2 cardiomyoblasts were abolished by co-administration of DAPT (the Notch1 signaling inhibitor). In summary, TSG ameliorates MI/R injury in vivo and in vitro by activating the Notch1/Hes1 signaling pathway and attenuating ER stress-induced apoptosis. PMID:28112174

  19. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  20. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  1. Non-perturbative approach for curvature perturbations in stochastic δ N formalism

    SciTech Connect

    Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-10-01

    In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.

  2. Perturbative theory for Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Moyses, Henrique W.; Bauer, Ross O.; Grosberg, Alexander Y.; Grier, David G.

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  3. Chiral perturbation theory with nucleons

    SciTech Connect

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.

  4. Perturbative theory for Brownian vortexes.

    PubMed

    Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  5. Lensing signals from spin-2 perturbations

    SciTech Connect

    Adamek, Julian; Durrer, Ruth; Tansella, Vittorio E-mail: ruth.durrer@unige.ch

    2016-01-01

    We compute the angular power spectra of the E-type and B-type lensing potentials for gravitational waves from inflation and for tensor perturbations induced by scalar perturbations. We derive the tensor-lensed CMB power spectra for both cases. We also apply our formalism to determine the linear lensing potential for a Bianchi I spacetime with small anisotropy.

  6. Scalar Quantum Electrodynamics: Perturbation Theory and Beyond

    SciTech Connect

    Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.

    2006-09-25

    In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory.

  7. The recursion relation in Lagrangian perturbation theory

    SciTech Connect

    Rampf, Cornelius

    2012-12-01

    We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained.

  8. Covariant generalization of cosmological perturbation theory

    SciTech Connect

    Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo

    2007-01-15

    We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.

  9. Perturbative stability of catenoidal soap films

    NASA Astrophysics Data System (ADS)

    Jana, Soumya; Kar, Sayan

    2013-09-01

    The perturbative stability of catenoidal soap films formed between parallel, equal radii, coaxial rings is studied using analytical and semi-analytical methods. Using a theorem on the nature of eigenvalues for a class of Sturm-Liouville operators, we show that, for the given boundary conditions, azimuthally asymmetric perturbations are stable, while symmetric perturbations lead to an instability --a result demonstrated in Ben Amar et al. (Eur. Phys. J. B 3, 197 (1998)) using numerics and experiment. Further, we show how to obtain the lowest real eigenvalue of perturbations, using the semi-analytical Asymptotic Iteration Method (AIM). Conclusions using AIM support the analytically obtained result as well as the results by Ben Amar et al.. Finally, we compute the eigenfunctions and show, pictorially, how the perturbed soap film evolves in time.

  10. Building a non-perturbative quark-gluon vertex from a perturbative one

    NASA Astrophysics Data System (ADS)

    Bermudez, Rocio

    2016-10-01

    The quark-gluon vertex describes the electromagnetic and the strong interaction among these particles. The description of this interaction at high precision in both regimes, perturbative and non-perturbative, continues being a matter of interest in the context of QCD and Hadron Physics. There exist very helpful models in the literature that explain perturbative aspects of the theory but they fail describing non-perturbative phenomena, as confinement and dynamic chiral symmetry breaking. In this work we study the structure of the quark-gluon vertex in a non-perturbative regime examining QCD, checking results with QED, and working in the Schwinger-Dyson formalism.

  11. Bridging Perturbative Expansions with Tensor Networks

    NASA Astrophysics Data System (ADS)

    Vanderstraeten, Laurens; Mariën, Michaël; Haegeman, Jutho; Schuch, Norbert; Vidal, Julien; Verstraete, Frank

    2017-08-01

    We demonstrate that perturbative expansions for quantum many-body systems can be rephrased in terms of tensor networks, thereby providing a natural framework for interpolating perturbative expansions across a quantum phase transition. This approach leads to classes of tensor-network states parametrized by few parameters with a clear physical meaning, while still providing excellent variational energies. We also demonstrate how to construct perturbative expansions of the entanglement Hamiltonian, whose eigenvalues form the entanglement spectrum, and how the tensor-network approach gives rise to order parameters for topological phase transitions.

  12. Asymptotic stability of singularly perturbed differential equations

    NASA Astrophysics Data System (ADS)

    Artstein, Zvi

    2017-02-01

    Asymptotic stability is examined for singularly perturbed ordinary differential equations that may not possess a natural split into fast and slow motions. Rather, the right hand side of the equation is comprised of a singularly perturbed component and a regular one. The limit dynamics consists then of Young measures, with values being invariant measures of the fast contribution, drifted by the slow one. Relations between the asymptotic stability of the perturbed system and the limit dynamics are examined, and a Lyapunov functions criterion, based on averaging, is established.

  13. Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Comer, Kathryn J.

    We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent

  14. Perturbation calculation of thermodynamic density of states

    SciTech Connect

    Brown, Greg; Schulthess, Thomas C; Nicholson, Don M; Eisenbach, Markus; Stocks, George Malcolm

    2011-01-01

    The density of states g( ) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g ( ) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g( ) for quantum systems using the Wang-Landau approach.

  15. Vector perturbations in a contracting Universe

    SciTech Connect

    Battefeld, T.J.; Brandenberger, R.

    2004-12-15

    In this note we show that vector perturbations exhibit growing mode solutions in a contracting Universe, such as the contracting phase of the pre big bang or the cyclic/ekpyrotic models of the Universe. This is not a gauge artifact and will in general lead to the breakdown of perturbation theory--a severe problem that has to be addressed in any bouncing model. We also comment on the possibility of explaining, by means of primordial vector perturbations, the existence of the observed large-scale magnetic fields. This is possible since they can be seeded by vorticity.

  16. Quantitative methods in classical perturbation theory.

    NASA Astrophysics Data System (ADS)

    Giorgilli, A.

    Poincaré proved that the series commonly used in Celestial mechanics are typically non convergent, although their usefulness is generally evident. Recent work in perturbation theory has enlightened this conjecture of Poincaré, bringing into evidence that the series of perturbation theory, although non convergent in general, furnish nevertheless valuable approximations to the true orbits for a very large time, which in some practical cases could be comparable with the age of the universe. The aim of the author's paper is to introduce the quantitative methods of perturbation theory which allow to obtain such powerful results.

  17. Cosmological perturbations and the Weinberg theorem

    SciTech Connect

    Akhshik, Mohammad; Firouzjahi, Hassan; Jazayeri, Sadra E-mail: firouz@ipm.ir

    2015-12-01

    The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are generated from a single source, such as in single field models of inflation, both of the two allowed independent solutions are adiabatic and conserved on super-horizon scales. There are few known examples in literature which violate this theorem. We revisit the theorem and specify the loopholes in some technical assumptions which violate the theorem in models of non-attractor inflation, fluid inflation, solid inflation and in the model of pseudo conformal universe.

  18. Perturbed ladder operator method: An algebraic recursive solution of perturbed wave equations

    NASA Astrophysics Data System (ADS)

    Bessis, N.; Bessis, G.

    1990-08-01

    The Schrödinger-Infeld-Hull factorization method is extended within the perturbation scheme in order to treat nonfactorizable Sturm-Liouville eigenequations in the same way as factorizable ones. It is shown that, provided suitable choices of the expansion basis set for the perturbing potential and for the associated perturbed ladder function are made, the solution of the factorizability condition associated with the perturbed eigenequation can be achieved by using an elementary finite difference calculus. An algebraic manufacturing process allowing the determination of the perturbed ladder and factorization functions, capable of handling any order of the perturbation and any type of factorization (Infeld-Hull types A to E), is given. This procedure, well adapted for computer algebra, allows an analytical determination of the perturbed eigenvalues and eigenfunctions without calculation of either the excited unperturbed eigenfunctions or any matrix element. This extension of the exact factorization method within the perturbation scheme can be applied to many model equations of current interest in quantum physics. Special attention is paid to perturbed factorizations that correspond to unperturbed ladder operators that are linear functions of the quantum number (types A to D). Illustrative applications are given. Particularly, the perturbed harmonic-oscillator ladder operators and eigenenergies are obtained in closed form.

  19. Controlling roll perturbations in fruit flies

    PubMed Central

    Beatus, Tsevi; Guckenheimer, John M.; Cohen, Itai

    2015-01-01

    Owing to aerodynamic instabilities, stable flapping flight requires ever-present fast corrective actions. Here, we investigate how flies control perturbations along their body roll angle, which is unstable and their most sensitive degree of freedom. We glue a magnet to each fly and apply a short magnetic pulse that rolls it in mid-air. Fast video shows flies correct perturbations up to 100° within 30 ± 7 ms by applying a stroke-amplitude asymmetry that is well described by a linear proportional–integral controller. For more aggressive perturbations, we show evidence for nonlinear and hierarchical control mechanisms. Flies respond to roll perturbations within 5 ms, making this correction reflex one of the fastest in the animal kingdom. PMID:25762650

  20. Perturbations of black p-branes

    SciTech Connect

    Abdalla, Elcio; Fernandez Piedra, Owen Pavel; Oliveira, Jeferson de; Molina, C.

    2010-03-15

    We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdS{sub (p+2)}xS{sup (8-p)} space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.

  1. General degeneracy in density functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Palenik, Mark C.; Dunlap, Brett I.

    2017-07-01

    Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting methodology, we apply it to the iron atom in the central field approximation, perturbed by an electric quadrupole. This system was chosen because it displays both symmetry required degeneracy, between the five 3 d orbitals, as well as accidental degeneracy, between the 3 d and 4 s orbitals. The quadrupole potential couples the degenerate 3 d and 4 s states, serving as an example of the most general perturbation.

  2. Simple Perturbation Example for Quantum Chemistry.

    ERIC Educational Resources Information Center

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  3. The Perturbational MO Method for Saturated Systems.

    ERIC Educational Resources Information Center

    Herndon, William C.

    1979-01-01

    Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)

  4. Simple Perturbation Example for Quantum Chemistry.

    ERIC Educational Resources Information Center

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  5. The Perturbational MO Method for Saturated Systems.

    ERIC Educational Resources Information Center

    Herndon, William C.

    1979-01-01

    Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)

  6. Conserved cosmological perturbation in Galileon models

    SciTech Connect

    Gao, Xian

    2011-10-01

    We prove the existence of a fully nonlinear conserved curvature perturbation on large scales in Galileon-type scalar field models in two approaches. The first approach is based on the conservation of energy-momentum tensor of the Galileon field, which is also the familiar approach in understanding the conservation in k-essence or perfect fluid models. We show that the fluid corresponding to the Galileon field becomes perfect and barotropic on large scales, which is responsible to the conservation. The difference from k-essence model is that, besides the energy-momentum conservation, the Einstein equation must be employed in order to complete the proof of barotropy. In the second approach, we derive the fully non-perturbative action for the curvature perturbation ζ in Galileon models on large scales, and argue that ζ = const is indeed an exact solution on large scales. This conservation of curvature perturbation is important since it relates the later and the primordial universe.

  7. Singular Perturbation for Discontinuous Ordinary Differential Equations

    NASA Astrophysics Data System (ADS)

    Teixeira, M. A.; da Silva, P. R.

    In this article some qualitative aspects of non-smooth systems on ℝn are studied through methods of Geometric Singular Perturbation Theory (GSP-Theory). We present some results that generalize some settings in low dimension, that bridge the space between such systems and singularly perturbed smooth systems. We analyze the local behavior around typical singularities and prove that the dynamics of the so called Sliding Vector Field is determined by the reduced problem on the center manifold.

  8. Local gravitomagnetic perturbations of the lunar orbit

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman

    1992-01-01

    Using the metric in the local inertial frame of the Earth, we calculate relativistic effects on the lunar orbit with the synodic month period. It is shown that such perturbations arise entirely from the gravitomagnetic components of the local metric which exist because of the relative motion of the sun with respect to the Earth. In the case of general relativity, the net perturbation has an amplitude of 3 cm for the lunar range.

  9. Gauge and motion in perturbation theory

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2015-08-01

    Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain effective vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasize that the approximations' governing equations can be formulated in an invariant manner. All of these analyses are carried through second perturbative order, but the methods are general enough to go to any order. Furthermore, the tools I develop, and many of the results, should have broad applicability to any description of perturbed motion, including osculating-geodesic and two-timescale descriptions.

  10. Noise Perturbation for Supervised Speech Separation

    PubMed Central

    Chen, Jitong; Wang, Yuxuan; Wang, DeLiang

    2016-01-01

    Speech separation can be treated as a mask estimation problem, where interference-dominant portions are masked in a time-frequency representation of noisy speech. In supervised speech separation, a classifier is typically trained on a mixture set of speech and noise. It is important to efficiently utilize limited training data to make the classifier generalize well. When target speech is severely interfered by a nonstationary noise, a classifier tends to mistake noise patterns for speech patterns. Expansion of a noise through proper perturbation during training helps to expose the classifier to a broader variety of noisy conditions, and hence may lead to better separation performance. This study examines three noise perturbations on supervised speech separation: noise rate, vocal tract length, and frequency perturbation at low signal-to-noise ratios (SNRs). The speech separation performance is evaluated in terms of classification accuracy, hit minus false-alarm rate and short-time objective intelligibility (STOI). The experimental results show that frequency perturbation is the best among the three perturbations in terms of speech separation. In particular, the results show that frequency perturbation is effective in reducing the error of misclassifying a noise pattern as a speech pattern. PMID:26900194

  11. Dynamics of jet breakup induced by perturbation

    NASA Astrophysics Data System (ADS)

    Shum, Ho Cheung; Li, Jingmei; Mak, Sze Yi

    2014-11-01

    We study the breakup of jet to form droplets, as induced by controlled perturbation, in a microchannel. Controlled mechanical perturbation is introduced to the tubing through which the jet phase is injected into the device, which is monitored under high-speed optical imaging. We measure the frequency of droplet formation and the sizes of the droplets as the frequency and amplitude of the perturbation is varied. Droplets can be induced to form at the perturbation frequency only above a critical frequency and amplitude. In this manner, the droplet size can be precisely controlled. The amplitude needed to induce breakup decreases as the interfacial tension of the system is lowered. Moreover, by selectively varying the wettability of the inner wall of the channel, double emulsion droplets can be generated in one step by applying large-amplitude perturbation of the jet phase. Our work demonstrates the potential of using controlled perturbation to generate droplets with tunable size and shapes, with implications on new designs of liquid dispensing nozzles.

  12. Methylprednisolone inhibits the proliferation and affects the differentiation of rat spinal cord-derived neural progenitor cells cultured in low oxygen conditions by inhibiting HIF-1α and Hes1 in vitro.

    PubMed

    Wang, Wenhao; Wang, Peng; Li, Shiyuan; Yang, Jiewen; Liang, Xinjun; Tang, Yong; Li, Yuxi; Yang, Rui; Wu, Yanfeng; Shen, Huiyong

    2014-09-01

    Although there is much controversy over the use of methylprednisolone (MP), it is one of the main drugs used in the treatment of acute spinal cord injury (SCI). The induction of the proliferation and differentiation of endogenous neural progenitor cells (NPCs) is considered a promising mode of treatment for SCI. However, the effects of MP on spinal cord-derived endogenous NPCs in a low oxygen enviroment remain to be delineated. Thus, the aim of this study was to investigate the potential effects of MP on NPCs cultured under low oxygen conditions in vitro and to elucidate the molecular mechanisms involved. Fetal rat spinal cord-derived NPCs were harvested and divided into 4 groups: 2 groups of cells cultured under normal oxygen conditions and treated with or without MP, and 2 groups incubated in 3% O2 (low oxygen) treated in a similar manner. We found that MP induced suppressive effects on NPC proliferation even under low oxygen conditions (3% O2). The proportion of nestin-positive NPCs decreased from 51.8±2.46% to 36.17±3.55% following the addition of MP and decreased more significantly to 27.20±2.68% in the cells cultured in 3% O2. In addition, a smaller number of glial fibrillary acidic protein (GFAP)-positive cells and a greater number of microtubule-associated protein 2 (MAP2)-positive cells was observed following the addition of MP under both normal (normoxic) and low oxygen (hypoxic) conditions. In response to MP treatment, hypoxia-inducible factor-1α (HIF-1α) and the Notch signaling pathway downstream protein, Hes1, but not the upstream Notch-1 intracelluar domain (NICD), were inhibited. After blocking NICD with a γ-secretase inhibitor (DAPT) MP still inhibited the expression of Hes1. Our results provide insight into the molecular mechanisms responsible for the MP-induced inhibition of proliferation and its effects on differentiation and suggest that HIF-1α and Hes1 play an important role in this effect.

  13. The incidence and healthcare costs of persistent postoperative pain following lumbar spine surgery in the UK: a cohort study using the Clinical Practice Research Datalink (CPRD) and Hospital Episode Statistics (HES).

    PubMed

    Weir, Sharada; Samnaliev, Mihail; Kuo, Tzu-Chun; Ni Choitir, Caitriona; Tierney, Travis S; Cumming, David; Bruce, Julie; Manca, Andrea; Taylor, Rod S; Eldabe, Sam

    2017-09-11

    To characterise incidence and healthcare costs associated with persistent postoperative pain (PPP) following lumbar surgery. Retrospective, population-based cohort study. Clinical Practice Research Datalink (CPRD) and Hospital Episode Statistics (HES) databases. Population-based cohort of 10 216 adults who underwent lumbar surgery in England from 1997/1998 through 2011/2012 and had at least 1 year of presurgery data and 2 years of postoperative follow-up data in the linked CPRD-HES. Incidence and total healthcare costs over 2, 5 and 10 years attributable to persistent PPP following initial lumbar surgery. The rate of individuals undergoing lumbar surgery in the CPRD-HES linked data doubled over the 15-year study period, fiscal years 1997/1998 to 2011/2012, from 2.5 to 4.9 per 10 000 adults. Over the most recent 5-year period (2007/2008 to 2011/2012), on average 20.8% (95% CI 19.7% to 21.9%) of lumbar surgery patients met criteria for PPP. Rates of healthcare usage were significantly higher for patients with PPP across all types of care. Over 2 years following initial spine surgery, the mean cost difference between patients with and without PPP was £5383 (95% CI £4872 to £5916). Over 5 and 10 years following initial spine surgery, the mean cost difference between patients with and without PPP increased to £10 195 (95% CI £8726 to £11 669) and £14 318 (95% CI £8386 to £19 771), respectively. Extrapolated to the UK population, we estimate that nearly 5000 adults experience PPP after spine surgery annually, with each new cohort costing the UK National Health Service in excess of £70 million over the first 10 years alone. Persistent pain affects more than one-in-five lumbar surgery patients and accounts for substantial long-term healthcare costs. There is a need for formal, evidence-based guidelines for a coherent, coordinated management strategy for patients with continuing pain after lumbar surgery. © Article author(s) (or their employer

  14. Perturbations of the Robertson-Walker space

    NASA Astrophysics Data System (ADS)

    Hwang, Jai Chan

    This dissertation contains three parts consisting of thirteen chapters. Each chapter is self-contained, and can be read independently. In chapter 1, we have presented a complete set of cosmological perturbation equations using the covariant equations. We also present an explicit solution for the evolution of large scale cosmological density perturbations assuming a perfect fluid. In chapter 2, two independent gauge-invariant variables are derived which are continuous at any transition where there is a discontinuous change in pressure. In chapter 3, we present a Newtonian counterpart to the general relativistic covariant approach to cosmological perturbations. In chapter 4, we present a simple way of deriving cosmological perturbation equations in generalized gravity theories which accounts for metric perturbations in gauge-invariant way. We apply this approach to the f(phi,R)-omega(phi)phi, cphi;c Lagrangian. In chapter 5, we have derived second order differential equations for cosmological perturbations in a Robertson-Walker space, for each of the following gravity theories: f(R) gravity, generalized scalar-tensor gravity, gravity with non-minimally coupled scalar field, and induced gravity. Asymptotic solutions are derived for the large and small scale limits. In chapter 6, classical evolution of density perturbations in the large scale limit is clarified in the generalized gravity theories. In chapter 7, we apply our method to a theory with the Lagrangian L approximately f(R) + gamma RR;c;c. In chapter 8, T(M)ab;b equals 0 is shown in a general ground. In chapter 9, the origin of the Friedmann-like behavior of the perturbed model in the large scale limit is clarified in a comoving gauge. Thus, when the imperfect fluid contributions are negligible, the large scale perturbations in a nearly flat background evolve like separate Friedmann models. In chapter 10, we generalize the perturbation equations applicable to a class of generalized gravity theories with multi

  15. Perturbations of ultralight vector field dark matter

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Maroto, A. L.; Núñez Jareño, S. J.

    2017-02-01

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with {k}^2≪ Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with {k}^2≫ Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c s 2 ≃ k 2/ m 2 a 2. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order ( Φ - Ψ)/ Φ ˜ c s 2 . Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/ Φ ˜ c s 2 . This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  16. Perturbed kernel approximation on homogeneous manifolds

    NASA Astrophysics Data System (ADS)

    Levesley, J.; Sun, X.

    2007-02-01

    Current methods for interpolation and approximation within a native space rely heavily on the strict positive-definiteness of the underlying kernels. If the domains of approximation are the unit spheres in euclidean spaces, then zonal kernels (kernels that are invariant under the orthogonal group action) are strongly favored. In the implementation of these methods to handle real world problems, however, some or all of the symmetries and positive-definiteness may be lost in digitalization due to small random errors that occur unpredictably during various stages of the execution. Perturbation analysis is therefore needed to address the stability problem encountered. In this paper we study two kinds of perturbations of positive-definite kernels: small random perturbations and perturbations by Dunkl's intertwining operators [C. Dunkl, Y. Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, vol. 81, Cambridge University Press, Cambridge, 2001]. We show that with some reasonable assumptions, a small random perturbation of a strictly positive-definite kernel can still provide vehicles for interpolation and enjoy the same error estimates. We examine the actions of the Dunkl intertwining operators on zonal (strictly) positive-definite kernels on spheres. We show that the resulted kernels are (strictly) positive-definite on spheres of lower dimensions.

  17. Local perturbations perturb—exponentially–locally

    SciTech Connect

    De Roeck, W. Schütz, M.

    2015-06-15

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.

  18. Consistent perturbations in an imperfect fluid

    SciTech Connect

    Sawicki, Ignacy; Amendola, Luca; Saltas, Ippocratis D.; Kunz, Martin E-mail: i.saltas@sussex.ac.uk E-mail: martin.kunz@unige.ch

    2013-01-01

    We present a new prescription for analysing cosmological perturbations in a more-general class of scalar-field dark-energy models where the energy-momentum tensor has an imperfect-fluid form. This class includes Brans-Dicke models, f(R) gravity, theories with kinetic gravity braiding and generalised galileons. We employ the intuitive language of fluids, allowing us to explicitly maintain a dependence on physical and potentially measurable properties. We demonstrate that hydrodynamics is not always a valid description for describing cosmological perturbations in general scalar-field theories and present a consistent alternative that nonetheless utilises the fluid language. We apply this approach explicitly to a worked example: k-essence non-minimally coupled to gravity. This is the simplest case which captures the essential new features of these imperfect-fluid models. We demonstrate the generic existence of a new scale separating regimes where the fluid is perfect and imperfect. We obtain the equations for the evolution of dark-energy density perturbations in both these regimes. The model also features two other known scales: the Compton scale related to the breaking of shift symmetry and the Jeans scale which we show is determined by the speed of propagation of small scalar-field perturbations, i.e. causality, as opposed to the frequently used definition of the ratio of the pressure and energy-density perturbations.

  19. Compensation to whole body active rotation perturbation.

    PubMed

    Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P

    2014-01-01

    The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Haro, Jaime

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.

  1. Unified approach for singularly perturbed control systems

    NASA Astrophysics Data System (ADS)

    Singh, Hardev

    2001-07-01

    The theory of singular perturbation has been a highly recognized and rapidly developing area of control systems in the last thirty years. Results now exists for both the continuous-time and discrete-time systems. However, in the way that these results are normally presented, the solutions to the discrete-time and continuous-time cases evolve from different starting points and seem to bear no relationship to each other. The aim of this dissertation is to develop a unified framework for discrete-time and continuous-time singularly perturbed systems. The discrete-time singularly perturbed control systems results are reorganized so that they are compatible in a way that the continuous-time singularly perturbed control system results are normally presented. This is, in part, achieved by using a newly developed "Unified Approach" to digital system theory, first proposed by Middleton and Goodwin. We first formulate the problem by modeling the singular perturbation parameter from the standpoint of the state space formulation and the second order unified equation. Building upon these results, we further apply this technique to state-feedback, robust state-feedback, Linear Quadratic Regulator (LQR) and Hinfinity optimization control problems. The unified results developed in this Dissertation are valid for both the continuous-time case (sampling interval T = 0) and the discrete-time (sampling interval T > 0).

  2. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    NASA Astrophysics Data System (ADS)

    Pazos, Enrique; Brizuela, David; Martín-García, José M.; Tiglio, Manuel

    2010-11-01

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (ℓ=2, m=±2) perturbations and odd-parity (ℓ=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that—in contrast to previous predictions in the literature—the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  3. Cosmological perturbations on the phantom brane

    NASA Astrophysics Data System (ADS)

    Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < -1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  4. Genistein alleviates testicular ischemia and reperfusion injury-induced spermatogenic damage and oxidative stress by suppressing abnormal testicular matrix metalloproteinase system via the Notch 2/Jagged 1/Hes-1 and caspase-8 pathways.

    PubMed

    Al-Maghrebi, M; Renno, W M

    2016-02-01

    The aim of the study is to examine the role of matrix metalloproteinases (MMPs) and their inhibitors (TIMP) during testicular ischemia/reperfusion (t I/R). The involvement of the Notch pathway, and their modulation by the antioxidant genistein is also studied. Three groups of male Sprague-Dawley rats were used: sham rats, t I/R rats, and genistein-treated rats (10 mg/kg). The t I/R rat model underwent testicular artery occlusion of the left testis and was subjected to 60 min ischemia followed by 4 h reperfusion. Protein expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 were measured in testicular tissue. Histological examination was performed to assess spermatogenesis. Protein levels of Notch 2, Jagged 1, and hairy/enhancer of split 1 (hes-1) was quantified. The degree of testicular oxidative stress, DNA damage and germ cell apoptosis were also evaluated. T I/R induced severe tubular damage, a significant increase in MMP- 2 and MMP-9 expression and decreased expression TIMP-1 and TIMP-2. Genistein treatment normalized the MMP-TIMP imbalance. Rats subjected to t I/R had low total antioxidant capacity of the testis, decreased superoxide dismutase activity, and increased oxidative DNA damage. Enhanced activities of caspase 8, caspase 3 and PARP were also observed during t I/R. Genistein reversed the t I/R-induced suppression of the Notch 2/Jagged 1/hes-1 pathway. Genistein was also able to salvage the testicular structure and function through restoring the MMP-TIMP anti-proteolytic balance, suppressing spermatogenic damage, alleviating oxidative stress and apoptosis. The Notch pathway is partly involved in inhibiting the t I/R-induced testicular impairment.

  5. Elementary theorems regarding blue isocurvature perturbations

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.; Yoo, Hojin

    2015-04-01

    Blue CDM-photon isocurvature perturbations are attractive in terms of observability and may be typical from the perspective of generic mass relations in supergravity. We present and apply three theorems useful for blue isocurvature perturbations arising from linear spectator scalar fields. In the process, we give a more precise formula for the blue spectrum associated with the axion model of Kasuya and Kawasaki [Axion Isocurvature Fluctuations with Extremely Blue Spectrum, Phys. Rev. D 80, 023516 (2009).], which can in a parametric corner give a factor of O (10 ) correction. We explain how a conserved current associated with Peccei-Quinn symmetry plays a crucial role and explicitly plot several example spectra including the breaks in the spectra. We also resolve a little puzzle arising from a naive multiplication of isocurvature expression that sheds light on the gravitational imprint of the adiabatic perturbations on the fields responsible for blue isocurvature fluctuations.

  6. Note on the semiclassicality of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Donà, Pietro; Marcianò, Antonino

    2016-12-01

    Moving from the consideration that matter fields must be treated in terms of their fundamental quantum counterparts, we show straightforward arguments, within the framework of ordinary quantum mechanics and quantum field theory, in order to convince readers that cosmological perturbations must be addressed in term of the semiclassical limit of the expectation value of quantum fields. We first take into account cosmological perturbations originated by a quantum scalar field, and then extend our treatment in order to account for the expectation values of bilinears of Dirac fermion fields. The latter can indeed transform as scalar quantities under diffeomorphisms, as well as all the other bilinear of the Dirac fields that belong to the Clifford algebra. This is the first of a series of works that is intended to prove that cosmological quantum perturbations can actually be accounted for in terms of Dirac fermion fields, which must be treated as fundamental quantum objects, and their dynamics.

  7. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  8. Interactions of simultaneous perturbations of stratospheric photochemistry

    NASA Technical Reports Server (NTRS)

    Butler, D. M.; Stolarski, R. S.

    1978-01-01

    The combined effects of two specific ozone perturbation mechanisms are examined. The need to look back to predictions of the near past as well as the future as a means of testing model results is emphasized. The two perturbations examined are that due to chlorofluoromethane (CFM) release and that due to the air pollutants CO and nitrogen oxide. A steady-state model is used to investigate the characteristics of the stratospheric-tropospheric photochemical system for differing levels of CO and nitrogen oxide fluxes at the ground and for simultaneously changing the stratospheric from CFM release. Two basic scenarios chosen to illustrate the competing effects of the two types of perturbation use the time-dependence for chlorine radical buildup calculated for constant continued release of CFM's.

  9. Perturbed particle disks. [planetary rings application

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1983-01-01

    The velocity ellipsoid in a particle disk near an isolated satellite resonance is determined by solving the Boltzmann moment equations, and solutions are obtained that are stationary functions of the azimuthal angle in a coordinate frame which rotates with the pattern speed of the perturbation potential. The magnitude of the deformation rate tensor in a perturbed particle disk is bounded from above by an expression which includes the orbital angular velocity, the optical depth, and a dimensionless constant of order unity. It is also found that, in sufficiently perturbed regions, there are ranges of azimuthal angle over which the radial component of the angular momentum flux is negative. It is also possible for the angular momentum luminosity to be negative. These results are pertinent to the understanding of sharp edges and density wave decay in planetary rings.

  10. Perturbations in a regular bouncing universe

    SciTech Connect

    Battefeld, T.J.; Geshnizjani, G.

    2006-03-15

    We consider a simple toy model of a regular bouncing universe. The bounce is caused by an extra timelike dimension, which leads to a sign flip of the {rho}{sup 2} term in the effective four dimensional Randall Sundrum-like description. We find a wide class of possible bounces: big bang avoiding ones for regular matter content, and big rip avoiding ones for phantom matter. Focusing on radiation as the matter content, we discuss the evolution of scalar, vector and tensor perturbations. We compute a spectral index of n{sub s}=-1 for scalar perturbations and a deep blue index for tensor perturbations after invoking vacuum initial conditions, ruling out such a model as a realistic one. We also find that the spectrum (evaluated at Hubble crossing) is sensitive to the bounce. We conclude that it is challenging, but not impossible, for cyclic/ekpyrotic models to succeed, if one can find a regularized version.

  11. Non-gravitational perturbations and satellite geodesy

    SciTech Connect

    Milani, A.; Nobill, A.M.; Farinella, P.

    1987-01-01

    This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.

  12. The non-perturbative unquenched quark model

    NASA Astrophysics Data System (ADS)

    Entern, D. R.; Ortega, P. G.; Fernández, F.

    2017-03-01

    In recent years states in the quarkonium spectrum not expected in the naive quark model have appeared and created a lot of interest. In the theoretical side the study of the effect of meson-meson thresholds in the spectrum have been performed in different approximations. In a quark model framework, and in the spirit of the Cornell model, when a meson-meson threshold is included, the coupling to all the quark-antiquark states have to be considered. In practice only the closest states are included perturbatively. In this contribution we will present a framework in which we couple quark-antiquark states with meson-meson states non-perturbatively, taking into account effectively the coupling to all quark-antiquark states. The method will be applied to the study of the X(3872) and a comparison with the perturbative calculation will be performed.

  13. Covariant approach to parametrized cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Lagos, Macarena; Ferreira, Pedro G.

    2017-09-01

    We present a covariant formulation for constructing general quadratic actions for cosmological perturbations, invariant under a given set of gauge symmetries for a given field content. This approach allows us to analyze scalar, vector, and tensor perturbations at the same time in a straightforward manner. We apply the procedure to diffeomorphism invariant single-tensor, scalar-tensor, and vector-tensor theories and show explicitly the full covariant form of the quadratic actions in such cases, in addition to the actions determining the evolution of vector and tensor perturbations. We also discuss the role of the symmetry of the background in identifying the set of cosmologically relevant free parameters describing these classes of theories, including calculating the relevant free parameters for an axisymmetric Bianchi-I vacuum universe.

  14. Instability of charged Lovelock black holes: Vector perturbations and scalar perturbations

    NASA Astrophysics Data System (ADS)

    Takahashi, Tomohiro

    2013-01-01

    We examine the stability of charged Lovelock black hole solutions under vector-type and scalar-type perturbations. We find suitable master variables for the stability analysis; the equations for these variables are Schrödinger-type equations with two components, and these Schrödinger operators are symmetric. By these master equations, we show that charged Lovelock black holes are stable under vector-type perturbations. For scalar-type perturbations, we show the criteria for instability and check these numerically. In our previous paper [T. Takahashi, Prog. Theor. Phys. 125, 1289 (2011)], we have shown that nearly extreme black holes show instability under tensor-type perturbations. In this paper, we find that black holes with a small charge show instability under scalar-type perturbations even if they have a relatively large mass.

  15. Perturbative approach to Markovian open quantum systems

    PubMed Central

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2014-01-01

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607

  16. Continuum methods in lattice perturbation theory

    SciTech Connect

    Becher, Thomas G

    2002-11-15

    We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions.

  17. Galilean invariant resummation schemes of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Peloso, Marco; Pietroni, Massimo

    2017-01-01

    Many of the methods proposed so far to go beyond Standard Perturbation Theory break invariance under time-dependent boosts (denoted here as extended Galilean Invariance, or GI). This gives rise to spurious large scale effects which spoil the small scale predictions of these approximation schemes. By using consistency relations we derive fully non-perturbative constraints that GI imposes on correlation functions. We then introduce a method to quantify the amount of GI breaking of a given scheme, and to correct it by properly tailored counterterms. Finally, we formulate resummation schemes which are manifestly GI, discuss their general features, and implement them in the so called Time-Flow, or TRG, equations.

  18. Perturbative approach to Markovian open quantum systems.

    PubMed

    Li, Andy C Y; Petruccione, F; Koch, Jens

    2014-05-08

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.

  19. Non-perturbative QCD and hadron physics

    NASA Astrophysics Data System (ADS)

    Cobos-Martínez, J. J.

    2016-10-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented.

  20. Conservative perturbation theory for nonconservative systems

    NASA Astrophysics Data System (ADS)

    Shah, Tirth; Chattopadhyay, Rohitashwa; Vaidya, Kedar; Chakraborty, Sagar

    2015-12-01

    In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Liénard system—a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems.

  1. Evolution of perturbations in an inflationary universe

    NASA Technical Reports Server (NTRS)

    Frieman, J. A.; Will, C. M.

    1982-01-01

    The evolution of inhomogeneous density perturbations in a model of the very early universe that is dominated for a time by a constant energy density of a false quantum-mechanical vacuum is analyzed. During this period, the universe inflates exponentially and supercools exponentially, until a phase transition back to the true vacuum reheats the matter and radiation. Focus is on the physically measurable, coordinate-independent modes of inhomogeneous perturbations of this model and it is found that all modes either are constant or are exponentially damped during the inflationary era.

  2. Poynting-Robertson effect. II - Perturbation equations

    NASA Astrophysics Data System (ADS)

    Klacka, J.

    1992-12-01

    The paper addresses the problem of the complete set of perturbation equations of celestial mechanics as applied to the Poynting-Robertson effect. Differential equations and initial conditions for them are justified. The sudden beginning of the operation of the Poynting-Robertson effect (e.g., sudden release of dust particles from a comet) is taken into account. Two sets of differential equations and initial conditions for them are obtained. Both of them are completely equivalent to Newton's equation of motion. It is stressed that the transformation mu yields mu(1-beta) must be made in perturbation equations of celestial mechanics.

  3. On perturbative gravity and gauge theory

    SciTech Connect

    Dixon, L.

    2000-02-14

    The authors review some applications of tree-level (classical) relations between gravity and gauge theory that follow from string theory. Together with D-dimensional unitarily, these relations can be used to perturbatively quantize gravity theories, i.e. They contain the necessary information for obtaining loop contributions. The authors also review recent applications of these ideas showing that N = 1, D = 11 supergravity diverges, and review arguments that N = 8, D = 4 supergravity is less divergent than previously thought, though it does appear to diverge at five loops. Finally, the authors describe field variables for the Einstein-Hilbert Lagrangian that help clarify the perturbative relationship between gravity and gauge theory.

  4. Death to perturbative QCD in exclusive processes?

    SciTech Connect

    Eckardt, R.; Hansper, J.; Gari, M.F.

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  5. A perturbative DFT approach for magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Khoo, Khoong Hong; Laskowski, Robert

    2017-04-01

    We develop a perturbative formalism for computing magnetocrystalline anisotropy within density functional theory and the magnetic force theorem. Instead of computing eigenvalues of the spin-orbit Hamiltonian for selected spin polarizations, as in the conventional ;force theorem; approach, we show that the effect can be cast into a redefined form of the spin-orbit operator. This allows to separate the large eigenvalue shift due to spin-orbit interaction common for both polarizations from the much smaller magnetic anisotropy splitting. As a consequence the anisotropy splitting may by considered as a perturbation.

  6. Perturbative renormalization of the electric field correlator

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Laine, M.

    2016-04-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ∼ 12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  7. Resonances under rank-one perturbations

    NASA Astrophysics Data System (ADS)

    Bourget, Olivier; Cortés, Víctor H.; Del Río, Rafael; Fernández, Claudio

    2017-09-01

    We study resonances generated by rank-one perturbations of self-adjoint operators with eigenvalues embedded in the continuous spectrum. Instability of these eigenvalues is analyzed and almost exponential decay for the associated resonant states is exhibited. We show how these results can be applied to Sturm-Liouville operators. Main tools are the Aronszajn-Donoghue theory for rank-one perturbations, a reduction process of the resolvent based on the Feshbach-Livsic formula, the Fermi golden rule, and a careful analysis of the Fourier transform of quasi-Lorentzian functions. We relate these results to sojourn time estimates and spectral concentration phenomena.

  8. Bayesian model selection and isocurvature perturbations

    NASA Astrophysics Data System (ADS)

    Beltrán, María; García-Bellido, Juan; Lesgourgues, Julien; Liddle, Andrew R.; Slosar, Anže

    2005-03-01

    Present cosmological data are well explained assuming purely adiabatic perturbations, but an admixture of isocurvature perturbations is also permitted. We use a Bayesian framework to compare the performance of cosmological models including isocurvature modes with the purely adiabatic case; this framework automatically and consistently penalizes models which use more parameters to fit the data. We compute the Bayesian evidence for fits to a data set comprised of WMAP and other microwave anisotropy data, the galaxy power spectrum from 2dFGRS and SDSS, and Type Ia supernovae luminosity distances. We find that Bayesian model selection favors the purely adiabatic models, but so far only at low significance.

  9. On the divergences of inflationary superhorizon perturbations

    SciTech Connect

    Enqvist, K; Nurmi, S; Podolsky, D; Rigopoulos, G I E-mail: sami.nurmi@helsinki.fi E-mail: gerasimos.rigopoulos@helsinki.fi

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.

  10. The hydrogen perturbation in molecular connectivity computations.

    PubMed

    Pogliani, Lionello

    2006-05-01

    A new algorithm for the delta(v) number, the basic parameter of molecular connectivity indices, is proposed. The new algorithm, which is centered on graph concepts like complete graphs and general graphs, encodes the information of the bonded hydrogen on different atoms through a perturbation parameter that makes use of no new graph concepts. The model quality of the new algorithm is tested with 13 properties of seven different classes of compounds, as well as with composite classes of compounds with the same property and with composite properties of the same class of compounds. Chosen properties and classes of compounds display different percentage of bonded hydrogen atoms, which allow a checking of the importance of this parameter. A comparison is drawn with previous results with zero contribution for the hydrogen perturbation as well as among results obtained by changing the number of compounds of a property but keeping constant the percentage of hydrogen atoms. Results underline the importance of the property as well as the importance of the number of compounds in determining the level of the hydrogen perturbation. Molecular connectivity terms are in some cases more critical than the combination of indices in detecting the perturbation introduced by the hydrogen atoms. (c) 2006 Wiley Periodicals, Inc.

  11. Privacy Is Become with, Data Perturbation

    NASA Astrophysics Data System (ADS)

    Singh, Er. Niranjan; Singhai, Niky

    2011-06-01

    Privacy is becoming an increasingly important issue in many data mining applications that deal with health care, security, finance, behavior and other types of sensitive data. Is particularly becoming important in counterterrorism and homeland security-related applications. We touch upon several techniques of masking the data, namely random distortion, including the uniform and Gaussian noise, applied to the data in order to protect it. These perturbation schemes are equivalent to additive perturbation after the logarithmic Transformation. Due to the large volume of research in deriving private information from the additive noise perturbed data, the security of these perturbation schemes is questionable Many artificial intelligence and statistical methods exist for data analysis interpretation, Identifying and measuring the interestingness of patterns and rules discovered, or to be discovered is essential for the evaluation of the mined knowledge and the KDD process as a whole. While some concrete measurements exist, assessing the interestingness of discovered knowledge is still an important research issue. As the tool for the algorithm implementations we chose the language of choice in industrial world MATLAB.

  12. What Perturbs the ggrdgr Rings of Uranus?

    PubMed

    French, R G; Kangas, J A; Elliot, J L

    1986-01-31

    The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images.

  13. Magnetic perturbation inspection of inner bearing races

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Lankford, J.

    1972-01-01

    Approximately 100 inner race bearings were inspected nondestructively prior to endurance testing. Two of the bearings which failed during testing spalled at the sites of subsurface inclusions previously detected by using magnetic field perturbation. At other sites initially judged to be suspect, subsurface inclusion-nucleated cracking was observed. Inspection records and metallurgical sectioning results are presented and discussed.

  14. Staggered heavy baryon chiral perturbation theory

    SciTech Connect

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  15. On-Shell Methods in Perturbative QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-04-25

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.

  16. Aharonov-Bohm Effect in Perturbation Theory.

    ERIC Educational Resources Information Center

    Purcell, Kay M.; Henneberger, Walter C.

    1978-01-01

    The Aharonov-Bohn effect is obtained in first-order perturbation theory. It is shown that the effect occurs only when the initial state is a superposition of eigenstates of Lz corresponding to eigenvalues having opposite sign. (Author/GA)

  17. Cosmological perturbations and classical change of signature

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme

    1995-12-01

    Cosmological perturbations on a manifold admitting signature change are studied. The background solution consists in a Friedmann-Lemaître-Robertson-Walker universe filled by a constant scalar field playing the role of a cosmological constant. It is shown that no regular solution exists satisfying the junction conditions at the surface of change. The comparison with similar studies in quantum cosmology is made.

  18. Non-perturbative study of QCD correlators

    NASA Astrophysics Data System (ADS)

    Lokhov, A. Y.

    2006-07-01

    This PhD dissertation is devoted to a non-perturbative study of QCD correlators. The main tool that we use is lattice QCD. We concentrated our efforts on the study of the main correlators of the pure Yang - Mills theory in the Landau gauge, namely the ghost and the gluon propagators. We are particularly interested in determining the Lqcd parameter. It is extracted by means of perturbative predictions available up to NNNLO. The related topic is the influence of non-perturbative effects that show up as appearance of power-corrections to the low-momentum behaviour of the Green functions. A new method of removing these power corrections allows a better estimate of Lqcd. Our result is Lambda^{n_f=0}_{ms} = 269(5)^{+12}_{-9} MeV. Another question that we address is the infrared behaviour of Green functions, at momenta of order and below Lqcd. At low energy the momentum dependence of the propagators changes considerably, and this is probably related to confinement. The lattice approach allows to check the predictions of analytical methods because it gives access to non-perturbative correlators. According to our analysis the gluon propagator is finite and non-zero at vanishing momentum, and the power-law behaviour of the ghost propagator is the same as in the free case.

  19. Revealing global regulatory perturbations across human cancers

    PubMed Central

    Goodarzi, Hani; Elemento, Olivier; Tavazoie, Saeed

    2010-01-01

    Summary The discovery of pathways and regulatory networks whose perturbation contributes to neoplastic transformation remains a fundamental challenge for cancer biology. We show that such pathway perturbations, and the cis-regulatory elements through which they operate, can be efficiently extracted from global gene-expression profiles. Our approach utilizes information-theoretic analysis of expression levels, pathways, and genomic sequences. Analysis across a diverse set of human cancers reveals the majority of previously known cancer pathways. Through de novo motif discovery we associate these pathways with transcription-factor binding sites and miRNA targets, including those of E2F, NF-Y, p53, and let-7. Follow-up experiments confirmed that these predictions correspond to functional in vivo regulatory interactions. Strikingly, the majority of the perturbations, associated with putative cis-regulatory elements, fall outside of known cancer pathways. Our study provides a systems-level dissection of regulatory perturbations in cancer—an essential component of a rational strategy for therapeutic intervention and drug-target discovery. PMID:20005852

  20. Cosmological perturbations from the Standard Model Higgs

    SciTech Connect

    Simone, Andrea De; Riotto, Antonio E-mail: antonio.riotto@unige.ch

    2013-02-01

    We propose that the Standard Model (SM) Higgs is responsible for generating the cosmological perturbations of the universe by acting as an isocurvature mode during a de Sitter inflationary stage. In view of the recent ATLAS and CMS results for the Higgs mass, this can happen if the Hubble rate during inflation is in the range (10{sup 10}−10{sup 14}) GeV (depending on the SM parameters). Implications for the detection of primordial tensor perturbations through the B-mode of CMB polarization via the PLANCK satellite are discussed. For example, if the Higgs mass value is confirmed to be m{sub h} = 125.5 GeV and m{sub t},α{sub s} are at their central values, our mechanism predicts tensor perturbations too small to be detected in the near future. On the other hand, if tensor perturbations will be detected by PLANCK through the B-mode of CMB, then there is a definite relation between the Higgs and top masses, making the mechanism predictive and falsifiable.

  1. Doubly perturbed neutral stochastic functional equations

    NASA Astrophysics Data System (ADS)

    Hu, Lanying; Ren, Yong

    2009-09-01

    In this paper, we prove the existence and uniqueness of the solution to a class of doubly perturbed neutral stochastic functional equations (DPNSFEs in short) under some non-Lipschitz conditions. The solution is constructed by successive approximation. Furthermore, we give the continuous dependence of the solution on the initial value by means of the corollary of Bihari inequality.

  2. Growth of matter perturbation in quintessence cosmology

    NASA Astrophysics Data System (ADS)

    Mulki, Fargiza A. M.; Wulandari, Hesti R. T.

    2017-01-01

    Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.

  3. Tenacious myths about cosmological perturbations larger than the horizon size

    NASA Astrophysics Data System (ADS)

    Press, W. H.; Vishniac, E. T.

    1980-07-01

    The linear perturbation theory of the Einstein-de Sitter (k = 0, Friedmann) big-bang cosmology in synchronous gauge is reviewed, with particular care taken to distinguish physical perturbations, which are locally measurable, from pure-gauge perturbations, which correspond to an unperturbed spacetime written in gauge-perturbed coordinates. Some new results are obtained about the growth of physical perturbations at early times, while they are still outside their horizon; and some commonly accepted rules for estimating the growth and decay of perturbations are shown to be false. Source terms corresponding to inhomogeneous perturbations in the equation of state (or, equivalently, to isothermal perturbations) are next included: the density perturbations that are induced are calculated, including both pressure terms and (higher-order) pressure-gradient terms. Here also, some uncritical beliefs are shown to be incorrect.

  4. Tenacious myths about cosmological perturbations larger than the horizon size

    SciTech Connect

    Press, W.H.; Vishniac, E.T.

    1980-07-01

    We review the linear perturbation theory of the Einstein--de Sitter (k=0, Friedmann) big-bang cosmology in synchronous gauge, taking particular care to distinguish physical perturbations, which are locally measurable, from pure-gauge perturbations, which correspond to an unperturbed spacetime written in gauge-perturbed coordinates. Some new results are obtained about the growth of physical perturbations at early times, while they are still outside their horizon; and some commonly accepted rules for estimating the growth and decay of perturbations are shown to be false. Source terms corresponding to inhomogeneous perturbations in the equation of state (or, equivalently, to isothermal perturbations) are next included: we calculate the density perturbations that are induced, including both pressure terms and (higher-order) pressure-gradient terms. Here also, some uncritical beliefs are shown to be incorrect.

  5. Analyzing magneto-hydrodynamic squeezing flow between two parallel disks with suction or injection by a new hybrid method based on the Tau method and the homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Shaban, M.; Shivanian, E.; Abbasbandy, S.

    2013-11-01

    In this paper an algorithm based on the homotopy analysis method (HAM) is introduced to study the magneto-hydrodynamic (MHD) squeeze flow between two parallel infinite disks where one disk is impermeable and the other is porous with either suction or injection of the fluid in the presence of an applied magnetic field. The continuity and momentum equations governing the squeeze flow are reduced to a single, nonlinear, ordinary differential equation via similarity transformations. In addition, by using the Tau method the problem converts to the algebraic equations to obtain the solution iteratively. The combined effect of inertia, electromagnetic forces for both suction and blowing cases is discussed. Additionally, the convergence of the obtained series solutions is explicitly studied and a proper discussion is given for the obtained results. The applicability, accuracy and efficiency of this new Tau modification of the HAM is demonstrated via the accomplished comparison.

  6. Non-perturbative effects of primordial curvature perturbations on the apparent value of a cosmological constant

    NASA Astrophysics Data System (ADS)

    Enea Romano, Antonio; Sanes Negrete, Sergio; Sasaki, Misao; Starobinsky, Alexei A.

    2014-06-01

    We study effects on the luminosity distance of a local inhomogeneity seeded by primordial curvature perturbations of the type predicted by the inflationary scenario and constrained by the cosmic microwave background radiation. We find that a local underdensity originated from a one, two or three standard deviations peaks of the primordial curvature perturbations field can induce corrections to the value of a cosmological constant of the order of 0.6{%},1{%},1.5{%} , respectively. These effects cannot be neglected in the precision cosmology era in which we are entering. Our results can be considered an upper bound for the effect of the monopole component of the local non-linear structure which can arise from primordial curvature perturbations and requires a fully non-perturbative relativistic treatment.

  7. Homotopy Solutions of Kepler's Equations

    NASA Technical Reports Server (NTRS)

    Fitz-Coy, Norman; Jang, Jiann-Woei

    1996-01-01

    Kepler's Equation is solved using an integrative algorithm developed using homotropy theory. The solution approach is applicable to both elliptic and hyperbolic forms of Kepler's Equation. The results from the proposed algorithm compare quite favorably with those from existing iterative schemes.

  8. Conformal invariant cosmological perturbations via the covariant approach

    SciTech Connect

    Li, Mingzhe; Mou, Yicen E-mail: moinch@mail.ustc.edu.cn

    2015-10-01

    It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible to do equivalent analysis in a certain frame in which the perturbation equations are simpler. In this paper we revisit the problem of conformal invariances of cosmological perturbations in terms of the covariant approach in which the perturbation variables have clear geometric and physical meanings. We show that with this approach the conformal invariant perturbations are easily identified.

  9. Evolution of the curvature perturbations during warm inflation

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro

    2009-06-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum.

  10. Non-adiabatic perturbations in multi-component perfect fluids

    SciTech Connect

    Koshelev, N.A.

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  11. Random matter density perturbations and LMA

    NASA Astrophysics Data System (ADS)

    Reggiani, N.; Guzzo, M. M.; de Holanda, P. C.

    There are reasons to believe that mechanisms exist in the solar interior which lead to random density perturbations in the resonant region of the Large Mixing Angle solution to the solar neutrino problem. We find that, in the presence of these density perturbations, the best fit point in the (sin 2 2θ , Δ m2) parameter space moves to smaller values, compared with the values obtained for the standard LMA solution. Combining solar data with KamLAND results, we find a new compatibility region, which we call VERY-LOW LMA, where sin 2 2θ ~ 0.6 and Δm2 2× 10-5 eV2, for random density fluctuations of order 5% < ξ < 8%. We argue that such values of density fluctuations are still allowed by helioseismological observations at small scales of order 10 - 1000 km deep inside the solar core. PACS: 26.65 - 90.60J - 96.60.H

  12. Revisiting perturbations in extended quasidilaton massive gravity

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia

    2015-04-01

    In this work we study the theory of extended quasidilaton massive gravity together with the presence of matter fields. After discussing the homogeneous and isotropic fully dynamical background equations, which governs the exact expansion history of the universe, we consider small cosmological perturbations around these general FLRW solutions. The stability of tensor, vector and scalar perturbations on top of these general background solutions give rise to slightly different constraints on the parameters of the theory than those obtained in the approximative assumption of the late-time asymptotic form of the expansion history, which does not correspond to our current epoch. This opens up the possibility of stable FLRW solutions to be compared with current data on cosmic expansion with the restricted parameter space based on theoretical ground.

  13. Darboux transformation in black hole perturbation theory

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Johnson, Aaron D.; Kennefick, Daniel

    2017-07-01

    The Darboux transformation between ordinary differential equations is a 19th century technique that has seen wide use in quantum theory for producing exactly solvable potentials for the Schrödinger equation with specific spectral properties. In this paper we show that the same transformation appears in black hole theory, relating, for instance, the Zerilli and Regge-Wheeler equations for axial and polar Schwarzschild perturbations. The transformation reveals these two equations to be isospectral, a well known result whose method has been repeatedly reintroduced under different names. We highlight the key role that the so-called algebraically special solutions play in the black hole Darboux theory and show that a similar relation exists between the Chandrasekhar-Detweiler equations for Kerr perturbations. Finally, we discuss the limitations of the method when dealing with long-range potentials and explore the possibilities offered by a generalized Darboux transformation.

  14. Confinement with Perturbation Theory, After All?

    NASA Astrophysics Data System (ADS)

    Hoyer, Paul

    2015-09-01

    I call attention to the possibility that QCD bound states (hadrons) could be derived using rigorous Hamiltonian, perturbative methods. Solving Gauss' law for A 0 with a non-vanishing boundary condition at spatial infinity gives an linear potential for color singlet and qqq states. These states are Poincaré and gauge covariant and thus can serve as initial states of a perturbative expansion, replacing the conventional free in and out states. The coupling freezes at , allowing reasonable convergence. The bound states have a sea of pairs, while transverse gluons contribute only at . Pair creation in the linear A 0 potential leads to string breaking and hadron loop corrections. These corrections give finite widths to excited states, as required by unitarity. Several of these features have been verified analytically in D = 1 + 1 dimensions, and some in D = 3 + 1.

  15. Control of Asymmetric Magnetic Perturbations in Tokamaks

    SciTech Connect

    Park, Jong-kyu; Schaffer, Michael J.; Menard, Jonathan E.; Boozer, Allen H.

    2007-10-03

    The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |δ→(over)Β/→(over)Β|≈ 10–4 is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and with an increased interaction with the magnetic field of the unperturbed equilibrium fields. This paper explains these counter intuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.

  16. A Numerical, Literal, and Converged Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Wiesel, William E.

    2017-09-01

    The KAM theorem and von Ziepel's method are applied to a perturbed harmonic oscillator, and it is noted that the KAM methodology does not allow for necessary frequency or angle corrections, while von Ziepel does. The KAM methodology can be carried out with purely numerical methods, since its generating function does not contain momentum dependence. The KAM iteration is extended to allow for frequency and angle changes, and in the process apparently can be successfully applied to degenerate systems normally ruled out by the classical KAM theorem. Convergence is observed to be geometric, not exponential, but it does proceed smoothly to machine precision. The algorithm produces a converged perturbation solution by numerical methods, while still retaining literal variable dependence, at least in the vicinity of a given trajectory.

  17. Gluonic Lorentz violation and chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Noordmans, J. P.

    2017-04-01

    By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.

  18. Theory of cosmological perturbations with cuscuton

    NASA Astrophysics Data System (ADS)

    Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal

    2017-07-01

    This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.

  19. Four-loop screened perturbation theory

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Kyllingstad, Lars

    2008-10-01

    We study the thermodynamics of massless ϕ4-theory using screened perturbation theory. In this method, the perturbative expansion is reorganized by adding and subtracting a thermal mass term in the Lagrangian. We calculate the free energy through four loops expanding in a double power expansion in m/T and g2, where m is the thermal mass and g is the coupling constant. The expansion is truncated at order g7 and the loop expansion is shown to have better convergence properties than the weak-coupling expansion. The free energy at order g6 involves the four-loop triangle sum-integral evaluated by Gynther, Laine, Schröder, Torrero, and Vuorinen using the methods developed by Arnold and Zhai. The evaluation of the free energy at order g7 requires the evaluation of a nontrivial three-loop sum-integral, which we calculate by the same methods.

  20. Control of asymmetric magnetic perturbations in tokamaks.

    PubMed

    Park, Jong-Kyu; Schaffer, Michael J; Menard, Jonathan E; Boozer, Allen H

    2007-11-09

    The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |deltaB/B| approximately 10{-4} is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and had an increased interaction with the magnetic field of the unperturbed equilibrium. This Letter explains these counterintuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.

  1. Revisiting perturbations in extended quasidilaton massive gravity

    SciTech Connect

    Heisenberg, Lavinia

    2015-04-01

    In this work we study the theory of extended quasidilaton massive gravity together with the presence of matter fields. After discussing the homogeneous and isotropic fully dynamical background equations, which governs the exact expansion history of the universe, we consider small cosmological perturbations around these general FLRW solutions. The stability of tensor, vector and scalar perturbations on top of these general background solutions give rise to slightly different constraints on the parameters of the theory than those obtained in the approximative assumption of the late-time asymptotic form of the expansion history, which does not correspond to our current epoch. This opens up the possibility of stable FLRW solutions to be compared with current data on cosmic expansion with the restricted parameter space based on theoretical ground.

  2. Uniqueness of static photon surfaces: Perturbative approach

    NASA Astrophysics Data System (ADS)

    Yoshino, Hirotaka

    2017-02-01

    A photon surface S is defined as a three-dimensional timelike hypersurface such that any null geodesic initially tangent to S continues to be included in S , like r =3 M of the Schwarzschild spacetime. Using analytic solutions to static perturbations of a Schwarzschild spacetime, we examine whether a nonspherical spacetime can possess a distorted static photon surface. It is shown that if the region outside of r =3 M is vacuum, no distorted photon surface can be present. Therefore, we establish the perturbative uniqueness for an asymptotically flat vacuum spacetime with a static photon surface. It is also pointed out that if matter is present in the outside region, there is a possibility that a distorted photon surface could form.

  3. Linear density perturbations in multifield coupled quintessence

    NASA Astrophysics Data System (ADS)

    Leithes, Alexander; Malik, Karim A.; Mulryne, David J.; Nunes, Nelson J.

    2017-06-01

    We study the behavior of linear perturbations in multifield coupled quintessence models. Using gauge-invariant linear cosmological perturbation theory we provide the full set of governing equations for this class of models, and solve the system numerically. We apply the numerical code to generate growth functions for various examples, and compare these both to the standard Λ cold dark matter model and to current and future observational bounds. Finally, we examine the applicability of the "small scale approximation" often used to calculate growth functions in quintessence models, in light of upcoming experiments such as SKA and Euclid. We find the deviation of the full equation results for large k modes from the approximation exceeds the experimental uncertainty for these future surveys. The numerical code, Pyessence, written in Python will be publicly available.

  4. Nucleophilicity index from perturbed electrostatic potentials.

    PubMed

    Cedillo, A; Contreras, R; Galván, M; Aizman, A; Andrés, J; Safont, V S

    2007-03-29

    We introduce and test a nucleophilicity index as a new descriptor of chemical reactivity. The index is derived from a perturbation model for the interaction between the nucleophile and a positive test charge. The computational implementation of the model uses an isoelectronic process involving the minimum values of the electronic part of the perturbed molecular electrostatic potential. The working expression defining the nucleophilicity index encompasses both the electrostatic contributions and the second-order polarization effects in a form which is consistent with the empirical scales previously proposed. The index is validated for a series of neutral nucleophiles in the gas phase for which the nucleophilicity pattern has been experimentally established within a spectroscopic scale.

  5. Perturbation theory for asymmetric deformed microdisk cavities

    NASA Astrophysics Data System (ADS)

    Kullig, Julius; Wiersig, Jan

    2016-10-01

    In an article by Dubertrand et al. [Phys. Rev. A 77, 013804 (2008), 10.1103/PhysRevA.77.013804] the perturbation theory for slightly deformed optical microcavities with a mirror-reflection symmetry was developed. However, in real experiments such a mirror-reflection symmetry is often not present either intended or unintended via production tolerances. In this paper we therefore extended the perturbation theory to asymmetric boundary deformations. Consequently, we are able to describe interesting non-Hermitian phenomena like copropagation of optical modes in the (counter-)clockwise direction inside the cavity. The derived analytic formulas are demonstrated at two generic boundary shapes, the spiral and the double-notched circle where a good agreement to the numerical boundary element method is observed.

  6. Thermostat-Like Perturbations of an Oscillator

    NASA Astrophysics Data System (ADS)

    Freidlin, Mark

    2016-07-01

    We consider an oscillator with one degree of freedom perturbed by a deterministic thermostat-like perturbation and another system, in particular, another oscillator, coupled with the first one. If the Hamiltonian of the first system has saddle points, the whole system has, in a sense, a stochastic behavior on long time intervals. Under certain conditions, one can introduce the relative entropy and describe metastability and other large deviation effects in this deterministic system. If the coupled system is also an oscillator, the long time evolution of the energy of this oscillator has a diffusion approximation. To get these results one has to regularize the system. But the results are, to some extent, independent of the regularization: the stochasticity is due to instabilities at saddle points of the original system.

  7. Intelligent perturbation algorithms for space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1990-01-01

    The optimization of space operations is examined in the light of optimization heuristics for computer algorithms and iterative search techniques. Specific attention is given to the search concepts known collectively as intelligent perturbation algorithms (IPAs) and their application to crew/resource allocation problems. IPAs iteratively examine successive schedules which become progressively more efficient, and the characteristics of good perturbation operators are listed. IPAs can be applied to aerospace systems to efficiently utilize crews, payloads, and resources in the context of systems such as Space-Station scheduling. A program is presented called the MFIVE Space Station Scheduling Worksheet which generates task assignments and resource usage structures. The IPAs can be used to develop flexible manifesting and scheduling for the Industrial Space Facility.

  8. Constraining compensated isocurvature perturbations using the CMB

    NASA Astrophysics Data System (ADS)

    Smith, Tristan L.; Rhiannon Smith, Kyle Yee, Julian Munoz, Daniel Grin

    2017-01-01

    Compensated isocurvature perturbations (CIPs) are variations in the cosmic baryon fraction which leave the total non-relativistic matter (and radiation) density unchanged. They are predicted by models of inflation which involve more than one scalar field, such as the curvaton scenario. At linear order, they leave the CMB two-point correlation function nearly unchanged: this is why existing constraints to CIPs are so much more permissive than constraints to typical isocurvature perturbations. Recent work articulated an efficient way to calculate the second order CIP effects on the CMB two-point correlation. We have implemented this method in order to explore constraints to the CIP amplitude using current Planck temperature and polarization data. In addition, we have computed the contribution of CIPs to the CMB lensing estimator which provides us with a novel method to use CMB data to place constraints on CIPs. We find that Planck data places a constraint to the CIP amplitude which is competitive with other methods.

  9. Cosmological perturbations in transient phantom inflation scenarios

    NASA Astrophysics Data System (ADS)

    Richarte, Martín G.; Kremer, Gilberto M.

    2017-01-01

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era.

  10. (Perturbed angular correlations in zirconia ceramics)

    SciTech Connect

    Not Available

    1990-01-01

    This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.

  11. Perturbations of nested branes with induced gravity

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio; Koyama, Kazuya

    2014-06-01

    We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ``ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

  12. Possible Astrometric Perturbation of LHS 288

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.; Begam, M. C.

    2007-05-01

    A sample of 13 stars from the University of Virginia southern hemisphere parallax program has been tested for possible astrometric perturbations due to low-mass companions. The selected objects are primarily early to mid-M dwarfs with large parallaxes, all are within 25 parsecs, that are not known to be binaries. The data were collected from CCD parallax observations made between 1991 and 2002 with the 1-meter reflector at the Siding Spring Observatory, Coonabarabran, Australia. Following our standard central overlap solution for parallax and proper motion, the residuals were subjected to a time-series analysis using the Lomb-Scargle normalized periodogram method (Press et al. 1992). Of these, LHS 288 displays a possible perturbation due to a very low mass companion; such a companion might be as small as 2.4 Jupiter masses. Because LHS 288 is a high proper-motion star in a rich field, the possibility that it passed over an undetected faint star during these observations cannot be eliminated; such a distorted point-spread function might mimic a perturbation. Additional observations from an independent data set could help determine whether the suggested perturbation is real. The remaining stars demonstrate no indication of any companions greater than about 17 Jupiter masses with orbits between 1.5 and 10 years. The single stars are LHS 34 (white dwarf), LHS 271, LHS 337, LHS 532, LHS 1134, LHS 1565, LHS 2310, LHS 2739, LHS 2813, LHS 3064, LHS 3242, and LHS 3418. We acknowledge support from NSF grants AST 98-20711 and 05-07711, Georgia State University, the Space Interferometry Mission (SIM), F. H. Levinson Fund of the Peninsula Community Foundation, UVa, and Hampden-Sydney College in addition to support and generous observing time allocations from the Research School of Astronomy and Astrophysics, Australian National University.

  13. Tests of Chiral Perturbation Theory with COMPASS

    SciTech Connect

    Friedrich, Jan

    2010-12-28

    The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.

  14. Multiple scattering by deep perturbed gratings

    SciTech Connect

    Knotts, M.E.; O`Donnell, K.A.

    1994-11-01

    We present measurements of the far-field scattered intensity for gratings consisting of uniform, regularly spaced, wavelength-scale grooves that have randomly fluctuating depths. The complete polarization dependence of the scattering is determined, and particular attention is given to measurements that isolate multiple scattering. For both perturbed and unperturbed gratings, effects similar to backscattering enhancement seen for randomly rough surfaces are observed, and these effects are linked to the coherent interference of reciprocal pairs of waves multiply scattered within the grooves.

  15. Study of the spectrum of inflaton perturbations

    NASA Astrophysics Data System (ADS)

    Glenz, Matthew M.; Parker, Leonard

    2009-09-01

    We examine the spectrum of inflaton fluctuations resulting from any given long period of exponential inflation. Infrared and ultraviolet divergences in the inflaton dispersion summed over all modes do not appear in our approach. We show how the scale invariance of the perturbation spectrum arises. We also examine the spectrum of scalar perturbations of the metric that is created by the inflaton fluctuations that have left the Hubble sphere during inflation and the spectrum of density perturbations that they produce at reentry after inflation has ended. When the inflaton dispersion spectrum is renormalized during the expansion, we show (for the case of the quadratic inflaton potential) that the density perturbation spectrum approaches a mass-independent limit as the inflaton mass approaches zero, and remains near that limiting value for masses less than about 1/4 of the inflationary Hubble constant. We show that this limiting behavior does not occur if one only makes the Minkowski space subtraction, without the further adiabatic subtractions that involve time derivatives of the expansion scale factor a(t). We also find a parametrized expression for the energy density produced by the change in a(t) as inflation ends. If the end of inflation were sufficiently abrupt, then the temperature corresponding to this energy density could be very significant. We also show that fluctuations of the inflaton field that are present before inflation starts are not dissipated during inflation and could have a significant observational effect today. The mechanism for this is caused by the initial fluctuations through stimulated emission from the vacuum.

  16. Study of the spectrum of inflaton perturbations

    SciTech Connect

    Glenz, Matthew M.; Parker, Leonard

    2009-09-15

    We examine the spectrum of inflaton fluctuations resulting from any given long period of exponential inflation. Infrared and ultraviolet divergences in the inflaton dispersion summed over all modes do not appear in our approach. We show how the scale invariance of the perturbation spectrum arises. We also examine the spectrum of scalar perturbations of the metric that is created by the inflaton fluctuations that have left the Hubble sphere during inflation and the spectrum of density perturbations that they produce at reentry after inflation has ended. When the inflaton dispersion spectrum is renormalized during the expansion, we show (for the case of the quadratic inflaton potential) that the density perturbation spectrum approaches a mass-independent limit as the inflaton mass approaches zero, and remains near that limiting value for masses less than about 1/4 of the inflationary Hubble constant. We show that this limiting behavior does not occur if one only makes the Minkowski space subtraction, without the further adiabatic subtractions that involve time derivatives of the expansion scale factor a(t). We also find a parametrized expression for the energy density produced by the change in a(t) as inflation ends. If the end of inflation were sufficiently abrupt, then the temperature corresponding to this energy density could be very significant. We also show that fluctuations of the inflaton field that are present before inflation starts are not dissipated during inflation and could have a significant observational effect today. The mechanism for this is caused by the initial fluctuations through stimulated emission from the vacuum.

  17. Intelligent perturbation algorithms to space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.

  18. Perturbations Involving nu1 of NCCN.

    PubMed

    Maki; Klee

    1999-01-01

    From high-resolution infrared spectra of 14N12C12C14N, 14N13C13C14N, and 15N12C12C15N, we find that the levels 1000(0)0(0), 1000(0)1(1), 1000(0)2(0,2), and 1000(0)3(1,3) have very pronounced perturbations. Our analysis shows that these perturbations are due to a vibrational resonance among the levels 1000(0)0(0), 0102(0)2(0), and 0102(0)2(2) in the one case, and equivalent levels with one or more additional quanta of nu5 in the other three cases. The resonance constant for the perturbation involving nu1 is 0.25 cm-1. It has the dependence on v5 and l5 that is expected for the sextic potential constant, K124455, although it seems too large for such a high-order constant. The Deltal (or Deltak) = 2 interaction between, for instance, 1000(0)0(0) and 0102(0)2(2e) is shown to be primarily due to the l-type resonance mixing of the 0102(0)2(0) and 0102(0)2(2e) states. The resonance is nearly "turned off" for the 1000(0)2(0,2) and 1000(0)3(1,3) states of 14N13C13C14N because there are no level crossings between the interacting states and the band centers are too far away to have an obvious effect, although careful analysis shows that the perturbation can be seen in their effective centrifugal distortion constants. The spectrum of 15N12C12C15N shows level crossings only in the case of the 1000(0)1(1), 1000(0)2(0,2), and 1000(0)3(1,3) states. Copyright 1999 Academic Press.

  19. A chiral perturbation expansion for gravity

    NASA Astrophysics Data System (ADS)

    Abou-Zeid, Mohab; Hull, Christopher M.

    2006-02-01

    A formulation of Einstein gravity, analogous to that for gauge theory arising from the Chalmers-Siegel action, leads to a perturbation theory about an asymmetric weak coupling limit that treats positive and negative helicities differently. We find power counting rules for amplitudes that suggest the theory could find a natural interpretation in terms of a twistor-string theory for gravity with amplitudes supported on holomorphic curves in twistor space.

  20. Geometric perturbation theory and plasma physics

    SciTech Connect

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  1. Perturbational analysis of plasmon decay in jellium

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Macke, Wilhelm; Miesenböck, Helga M.; Schinner, Andreas

    1991-02-01

    Plasmon damping in the three-dimensional homogeneous electron gas is investigated within second order perturbation theory for the density-density response function. The equivalence of several existing approaches that take into account lowest order two-pair excitations is shown explicitly. Finally, a complete Monte-Carlo analysis of the multi-dimensional integrals for the dielectric function is made for arbitrary densities.

  2. Perturbations of nested branes with induced gravity

    SciTech Connect

    Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk

    2014-06-01

    We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

  3. Multifrequency perturbations in matter-wave interferometry

    NASA Astrophysics Data System (ADS)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.

    2015-11-01

    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  4. Using Lagrangian perturbation theory for precision cosmology

    SciTech Connect

    Sugiyama, Naonori S.

    2014-06-10

    We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc{sup –1} and z = 0.35 to better than 2%.

  5. Convergence of coupled cluster perturbation theory

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Kristensen, Kasper; Matthews, Devin A.; Jørgensen, Poul; Olsen, Jeppe

    2016-12-01

    The convergence of a recently proposed coupled cluster (CC) family of perturbation series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which the energetic difference between two CC models—a low-level parent and a high-level target model—is expanded in orders of the Møller-Plesset (MP) fluctuation potential, is investigated for four prototypical closed-shell systems (Ne, singlet CH2, distorted HF, and F-) in standard and augmented basis sets. In these investigations, energy corrections of the various series have been calculated to high orders and their convergence radii have been determined by probing for possible front- and back-door intruder states, the existence of which would make the series divergent. In summary, we conclude how it is primarily the choice of the target state, and not the choice of the parent state, which ultimately governs the convergence behavior of a given series. For example, restricting the target state to, say, triple or quadruple excitations might remove intruders present in series which target the full configuration interaction limit, such as the standard MP series. Furthermore, we find that whereas a CC perturbation series might converge within standard correlation consistent basis sets, it may start to diverge whenever these become augmented by diffuse functions, similar to the MP case. However, unlike for the MP case, such potential divergences are not found to invalidate the practical use of the low-order corrections of the CC perturbation series.

  6. Inflationary perturbations in no-scale theories

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2017-04-01

    We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n_s and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, "the planckion", whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments.

  7. Non-perturbative effects in spin glasses

    NASA Astrophysics Data System (ADS)

    Castellana, Michele; Parisi, Giorgio

    2015-03-01

    We present a numerical study of an Ising spin glass with hierarchical interactions--the hierarchical Edwards-Anderson model with an external magnetic field (HEA). We study the model with Monte Carlo (MC) simulations in the mean-field (MF) and non-mean-field (NMF) regions corresponding to d >= 4 and d < 4 for the d-dimensional ferromagnetic Ising model respectively. We compare the MC results with those of a renormalization-group (RG) study where the critical fixed point is treated as a perturbation of the MF one, along the same lines as in the -expansion for the Ising model. The MC and the RG method agree in the MF region, predicting the existence of a transition and compatible values of the critical exponents. Conversely, the two approaches markedly disagree in the NMF case, where the MC data indicates a transition, while the RG analysis predicts that no perturbative critical fixed point exists. Also, the MC estimate of the critical exponent ν in the NMF region is about twice as large as its classical value, even if the analog of the system dimension is within only ~2% from its upper-critical-dimension value. Taken together, these results indicate that the transition in the NMF region is governed by strong non-perturbative effects.

  8. Quantum inflaton, primordial perturbations, and CMB fluctuations

    SciTech Connect

    Cao, F.J.; Vega, H.J. de; Sanchez, N.G.

    2004-10-15

    We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of effective classical inflation. We compute the primordial perturbations taking the dominant quantum effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed in terms of the classical inflation results. For a N-component field in a O(N) symmetric model, adiabatic fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power spectrum in classical inflation. Such corrections are estimated to be of the order of (m{sup 2}/NH{sup 2}), where m is the inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides the foundations to the classical inflation and permits to compute quantum corrections to it.

  9. Generating Curvature Perturbations in a Contracting Universe

    NASA Astrophysics Data System (ADS)

    Levy, Aaron M.

    This thesis studies bouncing cosmologies in which the present-day expansion of the universe was preceded not by a "big bang"- before which time and space ceased to have meaning- but by a contracting phase that then bounced. We discuss two competing paradigms for generating the observed, scale-invariant spectrum of primordial density perturbations during the contracting phase: "the matter bounce scenario" and "ekpyrosis." First, we discuss the matter bounce scenario, and in particular, its fine-tuning instability to the growth of anisotropic stress. Then, we examine ekpyrosis. In the best-understood ekpyrotic models, one scalar field drives the background evolution of the universe while another (entropic) scalar field generates the density perturbations. We study the stability of these models, showing that in contrast to previous theorems, the simplest (as measured by parameters and degrees of freedom), observationally viable realizations are dynamical attractors. Finally, we present a new mechanism called "warm ekpyrosis," which eliminates altogether the need for the second (entropic) scalar field. Rather, a single field falls down its ekpyrotic potential, smoothing and flattening the universe, while simultaneously, through couplings to lighter degrees of freedom, decaying into hot, ultrarelativistic matter. This decay allows both for the production of a scale-invariant density perturbation and for a possible mechanism of reheating.

  10. Quantum Perturbative Approach to Discrete Redshift

    NASA Astrophysics Data System (ADS)

    Roberts, Mark D.

    On the largest scales there is evidence of discrete structure, examples of this are superclusters and voids and also by redshift taking discrete values. In this paper it is proposed that discrete redshift can be explained by using the spherical harmonic integer l; this occurs both in the metric or density perturbations and also in the solution of wave equations in Robertson-Walker spacetime. It is argued that the near conservation of energy implies that l varies regularly for wave equations in Robertson-Walker spacetime, whereas for density perturbations l cannot vary regularly. Once this is assumed then perhaps the observed value of discrete redshift provides the only observational or experimental data that directly requires an explanation using both gravitational and quantum theory. In principle a model using this data could predict the scale factor R (or equivalently the deceleration parameter q). Solutions of the Klein-Gordon equation in Robertson-Walker spacetimes are used to devise models which have redshift taking discrete values, but they predict a microscopic value for R. A model in which the stress of the Klein-Gordon equation induces a metrical perturbation of Robertson-Walker spacetime is devised. Calculations based upon this model predict that the Universe is closed with 2_q0 - 1=10^-4.

  11. Cosmic perturbations through the cyclic ages

    SciTech Connect

    Erickson, Joel K.; Gratton, Steven; Steinhardt, Paul J.; Turok, Neil

    2007-06-15

    We analyze the evolution of cosmological perturbations in the cyclic model, paying particular attention to their behavior and interplay over multiple cycles. Our key results are: (1) galaxies and large scale structure present in one cycle are generated by the quantum fluctuations in the preceding cycle without interference from perturbations or structure generated in earlier cycles and without interfering with structure generated in later cycles; (2) the ekpyrotic phase, an epoch of gentle contraction with equation of state w>>1 preceding the hot big bang, makes the universe homogeneous, isotropic and flat within any given observer's horizon; and (3) although the universe is uniform within each observer's horizon, the structure of the cyclic universe on very large scales is more complex, owing to the effects of superhorizon length perturbations, and cannot be described globally as a Friedmann-Robertson-Walker cosmology. In particular, we show that the ekpyrotic contraction phase is so effective in smoothing, flattening and isotropizing the universe within the horizon that this phase alone suffices to solve the horizon and flatness problems even without an extended period of dark energy domination (a kind of low energy inflation). Instead, the cyclic model rests on a genuinely novel, noninflationary mechanism (ekpyrotic contraction) for resolving the classic cosmological conundrums.

  12. Perturbed dissipative solitons: A variational approach

    NASA Astrophysics Data System (ADS)

    Sahoo, Ambaresh; Roy, Samudra; Agrawal, Govind P.

    2017-07-01

    We adopt a variational technique to study the dynamics of perturbed dissipative solitons whose evolution is governed by a Ginzburg-Landau equation (GLE). As a specific example of such solitons, we consider a silicon-based active waveguide in which free carriers are generated through two-photon absorption. In this case, dissipative solitons are perturbed by physical processes such as third-order dispersion, intrapulse Raman scattering, self-steepening, and free-carrier generation. To solve the variational problem, we adopt the Pereira-Stenflo soliton as an ansatz since this soliton is the exact solution of the unperturbed GLE. With this ansatz, we derive a set of six coupled differential equations exhibiting the dynamics of various pulse parameters. This set of equations provides considerable physical insight into the complex behavior of perturbed dissipative solitons. Its predictions are found to be in good agreement with direct numerical simulations of the GLE. More specifically, the spectral and temporal shifts of the chirped soliton induced by free carriers and intrapulse Raman scattering are predicted quite accurately. We also provide simple analytic expressions of these shifts by making suitable approximations. Our semianalytic treatment is useful for gaining physical insight into complex soliton-evolution processes.

  13. Non-perturbative effects in spin glasses

    PubMed Central

    Castellana, Michele; Parisi, Giorgio

    2015-01-01

    We present a numerical study of an Ising spin glass with hierarchical interactions—the hierarchical Edwards-Anderson model with an external magnetic field (HEA). We study the model with Monte Carlo (MC) simulations in the mean-field (MF) and non-mean-field (NMF) regions corresponding to d ≥ 4 and d < 4 for the d-dimensional ferromagnetic Ising model respectively. We compare the MC results with those of a renormalization-group (RG) study where the critical fixed point is treated as a perturbation of the MF one, along the same lines as in the -expansion for the Ising model. The MC and the RG method agree in the MF region, predicting the existence of a transition and compatible values of the critical exponents. Conversely, the two approaches markedly disagree in the NMF case, where the MC data indicates a transition, while the RG analysis predicts that no perturbative critical fixed point exists. Also, the MC estimate of the critical exponent ν in the NMF region is about twice as large as its classical value, even if the analog of the system dimension is within only ~2% from its upper-critical-dimension value. Taken together, these results indicate that the transition in the NMF region is governed by strong non-perturbative effects. PMID:25733337

  14. Topological quantum order: Stability under local perturbations

    SciTech Connect

    Bravyi, Sergey; Hastings, Matthew B.; Michalakis, Spyridon

    2010-09-15

    We study zero-temperature stability of topological phases of matter under weak time-independent perturbations. Our results apply to quantum spin Hamiltonians that can be written as a sum of geometrically local commuting projectors on a D-dimensional lattice with certain topological order conditions. Given such a Hamiltonian H{sub 0}, we prove that there exists a constant threshold {epsilon}>0 such that for any perturbation V representable as a sum of short-range bounded-norm interactions, the perturbed Hamiltonian H=H{sub 0}+{epsilon}V has well-defined spectral bands originating from low-lying eigenvalues of H{sub 0}. These bands are separated from the rest of the spectra and from each other by a constant gap. The band originating from the smallest eigenvalue of H{sub 0} has exponentially small width (as a function of the lattice size). Our proof exploits a discrete version of Hamiltonian flow equations, the theory of relatively bounded operators, and the Lieb-Robinson bound.

  15. Perturbative gravity in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.

    2010-01-01

    Quantum theory of the gravitation in the causal approach is studied up to the second order of perturbation theory in the causal approach. We emphasize the use of cohomology methods in this framework. After describing in detail the mathematical structure of the cohomology method we apply it in three different situations: (a) the determination of the most general expression of the interaction Lagrangian; (b) the proof of gauge invariance in the second order of perturbation theory for the pure gravity system—massless and massive; (c) the investigation of the arbitrariness of the second-order chronological products compatible with renormalization principles and gauge invariance (i.e. the renormalization problem in the second order of perturbation theory). In case (a) we investigate pure gravity systems and the interaction of massless gravity with matter (described by scalars and spinors) and massless Yang-Mills fields. We obtain a difference with respect to the classical field theory due to the fact that in quantum field theory one cannot enforce the divergenceless property on the vector potential and this spoils the divergenceless property of the usual energy-momentum tensor. To correct this one needs a supplementary ghost term in the interaction Lagrangian. In all three case, the computations are more simple than by the usual methods.

  16. Relativistic Positioning System in perturbed spacetime

    NASA Astrophysics Data System (ADS)

    Kostić, Uroš; Horvat, Martin; Gomboc, Andreja

    2015-11-01

    We present a variant of a Global Navigation Satellite System called a Relativistic Positioning System (RPS), which is based on emission coordinates. We modelled the RPS dynamics in a spacetime around Earth, described by a perturbed Schwarzschild metric, where we included the perturbations due to Earth multipoles (up to the 6th), the Moon, the Sun, Venus, Jupiter, solid tide, ocean tide, and Kerr rotation effect. The exchange of signals between the satellites and a user was calculated using a ray-tracing method in the Schwarzschild spacetime. We find that positioning in a perturbed spacetime is feasible and is highly accurate already with standard numerical procedures: the positioning algorithms used to transform between the emission and the Schwarzschild coordinates of the user are very accurate and time efficient—on a laptop it takes 0.04 s to determine the user’s spatial and time coordinates with a relative accuracy of {10}-28-{10}-26 and {10}-32-{10}-30, respectively.

  17. Perturbative Critical Behavior from Spacetime Dependent Couplings

    SciTech Connect

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo

    2012-08-03

    We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-{epsilon} Wilson-Fisher fixed point. Rather than considering 4-{epsilon} dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form {lambda}x{sup {kappa}}{mu}{sup {kappa}}, with a small parameter {kappa} playing a role analogous to {epsilon}. We show, in {phi}{sup 4} theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling {lambda}{sub *}(x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional {phi}{sup 6} theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.

  18. Noninflationary model with scale invariant cosmological perturbations

    SciTech Connect

    Peter, Patrick; Pinho, Emanuel J. C.; Pinto-Neto, Nelson

    2007-01-15

    We show that a contracting universe which bounces due to quantum cosmological effects and connects to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations provided the perturbations are produced during an almost matter dominated era in the contraction phase. This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum (n{sub S}-1>0). Taking into account the spectral index constraint as well as the cosmic microwave background normalization measure yields an equation of state that should be less than {omega} < or approx. 8x10{sup -4}, implying n{sub S}-1{approx}O(10{sup -4}), and that the characteristic curvature scale of the Universe at the bounce is L{sub 0}{approx}10{sup 3}l{sub Pl}, a region where one expects that the Wheeler-DeWitt equation should be valid without being spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between the tensor-to-scalar ratio T/S and the scalar spectral index as T/S{approx}4.6x10{sup -2}{radical}(n{sub S}-1), leading to potentially measurable differences with inflationary predictions.

  19. Baryonic matter perturbations in decaying vacuum cosmology

    SciTech Connect

    Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br

    2014-08-01

    We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.

  20. Hamiltonian formalism for Perturbed Black Hole Spacetimes

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Present and future gravitational wave observations provide a new mechanism to probe the predictions of general relativity. Observations of extreme mass ratio inspirals with millihertz gravitational wave detectors such as LISA will provide exquisite constraints on the spacetime structure outside astrophysical black holes, enabling tests of the no-hair property that all general relativistic black holes are described by the Kerr metric. Previous work to understand what constraints LISA observations will be able to place has focussed on specific alternative theories of gravity, or generic deviations that preserve geodesic separability. We describe an alternative approach to this problem--a technique that employs canonical perturbations of the Hamiltonian function describing motion in the Kerr metric. We derive this new approach and demonstrate its application to the cases of a slowly rotating Kerr black hole which is viewed as a perturbation of a Schwarzschild black hole, of coupled perturbations of black holes in the second-order Chern-Simons modified gravity theory, and several more indicative scenarios. Deyan Mihaylov is funded by STFC.

  1. Managing perturbations during handover meetings: a joint activity framework.

    PubMed

    Mayor, Eric; Bangerter, Adrian

    2015-11-01

    To document the prevalence of perturbations of handover meetings and understand how nurses manage temporal, physical and social meeting boundaries in response to perturbations. Handovers are joint activities performed collaboratively by participating nurses. Perturbations of handover are frequent and may potentially threaten continuity of care. We observed and videotaped handovers during five successive days in four nursing care units in two Swiss hospitals in 2009. Videorecordings were transcribed. All perturbations during the handovers were noted. We performed content analysis of the sources of perturbations from the notes and interactional micro-analyses of handover interactions based on video and transcripts. Nurses are the most frequent sources of perturbations during handovers. Perturbations are collaboratively managed. A tacit division of labour is enacted via multimodal communication strategies, whereby perturbations are dealt with using both linguistic and bodily signals.

  2. Improvement and performance evaluation of the perturbation source method for an exact Monte Carlo perturbation calculation in fixed source problems

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hiroki; Yamamoto, Toshihiro

    2017-09-01

    This paper presents improvement and performance evaluation of the ;perturbation source method;, which is one of the Monte Carlo perturbation techniques. The formerly proposed perturbation source method was first-order accurate, although it is known that the method can be easily extended to an exact perturbation method. A transport equation for calculating an exact flux difference caused by a perturbation is solved. A perturbation particle representing a flux difference is explicitly transported in the perturbed system, instead of in the unperturbed system. The source term of the transport equation is defined by the unperturbed flux and the cross section (or optical parameter) changes. The unperturbed flux is provided by an ;on-the-fly; technique during the course of the ordinary fixed source calculation for the unperturbed system. A set of perturbation particle is started at the collision point in the perturbed region and tracked until death. For a perturbation in a smaller portion of the whole domain, the efficiency of the perturbation source method can be improved by using a virtual scattering coefficient or cross section in the perturbed region, forcing collisions. Performance is evaluated by comparing the proposed method to other Monte Carlo perturbation methods. Numerical tests performed for a particle transport in a two-dimensional geometry reveal that the perturbation source method is less effective than the correlated sampling method for a perturbation in a larger portion of the whole domain. However, for a perturbation in a smaller portion, the perturbation source method outperforms the correlated sampling method. The efficiency depends strongly on the adjustment of the new virtual scattering coefficient or cross section.

  3. Perturbative and gauge invariant treatment of gravitational wave memory

    NASA Astrophysics Data System (ADS)

    Bieri, Lydia; Garfinkle, David

    2014-04-01

    We present a perturbative treatment of gravitational wave memory. The coordinate invariance of Einstein's equations leads to a type of gauge invariance in perturbation theory. As with any gauge invariant theory, results are more clear when expressed in terms of manifestly gauge invariant quantities. Therefore we derive all our results from the perturbed Weyl tensor rather than the perturbed metric. We derive gravitational wave memory for the Einstein equations coupled to a general energy-momentum tensor that reaches null infinity.

  4. Nonconvergence to Saddle Boundary Points under Perturbed Reinforcement Learning

    DTIC Science & Technology

    2012-12-07

    perturbed reinforcement learning scheme with a state-based perturbation function. Section 4 states some standard results from Lyapunov -based...property (1), property (4) establishes equivalence among perturbed and unperturbed dynamics when λ = 0. For example, a candidate perturbation function is: ζi...reinforcement learning schemes, we will use a) stochastic Lyapunov stability analysis, in order to investigate the probabilities that a sample function exits

  5. Singular perturbation and time scale approaches in discrete control systems

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Price, D. B.

    1988-01-01

    After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.

  6. Exact Controllability and Perturbation Analysis for Elastic Beams

    SciTech Connect

    Moreles, Miguel Angel

    2004-05-15

    The Rayleigh beam is a perturbation of the Bernoulli-Euler beam. We establish convergence of the solution of the Exact Controllability Problem for the Rayleigh beam to the corresponding solution of the Bernoulli-Euler beam. Convergence is related to a Singular Perturbation Problem. The main tool in solving this perturbation problem is a weak version of a lower bound for hyperbolic polynomials.

  7. On spectral perturbation caused by bounded variation of potential

    SciTech Connect

    Ismagilov, R S

    2014-01-31

    The harmonic oscillator operator is perturbed by an arbitrary bounded continuous term. This results in the perturbation of the spectrum. The map sending the first of these perturbations into the second is examined. Its approximation by a linear map is studied. Bibliography: 2 titles.

  8. Second floor order perturbation calculation in energy exchange of FEL

    SciTech Connect

    Wei, J.; Lee, S. Y.

    1987-06-01

    Perturbation expansion of standard FEL equations is performed up to second nontrivial order in the Vlasov's equation. We found that the perturbation expansion can be characterized by a single parameter, Ωτ, the number of sychrotron oscillations in the wiggler. The validity of perturbation theory is discussed in this paper.

  9. On spectral perturbation caused by bounded variation of potential

    NASA Astrophysics Data System (ADS)

    Ismagilov, R. S.

    2014-01-01

    The harmonic oscillator operator is perturbed by an arbitrary bounded continuous term. This results in the perturbation of the spectrum. The map sending the first of these perturbations into the second is examined. Its approximation by a linear map is studied. Bibliography: 2 titles.

  10. Perturbations of matter fields in the second-order gauge-invariant cosmological perturbation theory

    NASA Astrophysics Data System (ADS)

    Nakamura, Kouji

    2009-12-01

    To show that the general framework of the second-order gauge-invariant perturbation theory developed by K. Nakamura [Prog. Theor. Phys. 110, 723 (2003)PTPKAV0033-068X10.1143/PTP.110.723; Prog. Theor. Phys. 113, 481 (2005)PTPKAV0033-068X10.1143/PTP.113.481] is applicable to a wide class of cosmological situations, some formulas for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four-dimensional homogeneous isotropic universe, which is developed in Prog. Theor. Phys. 117, 17 (2007)PTPKAV0033-068X10.1143/PTP.117.17. We derive the formulas for the perturbations of the energy-momentum tensors and equations of motion for a perfect fluid, an imperfect fluid, and a single scalar field, and show that all equations are derived in terms of gauge-invariant variables without any gauge fixing. Through these formulas, we may say that the decomposition formulas for the perturbations of any tensor field into gauge-invariant and gauge-variant parts, which are proposed in the above papers, are universal.

  11. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  12. Dynamics of a single ion in a perturbed Penning trap: octupolar perturbation.

    PubMed

    Lara, Martín; Salas, J Pablo

    2004-09-01

    Imperfections in the design or implementation of Penning traps may give rise to electrostatic perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like continuation of families of periodic orbits and Poincaré surfaces of section. We find that, through the variation of the two parameters controlling the dynamics, several periodic orbits emanate from two fundamental periodic orbits. This process produces important changes (bifurcations) in the phase space structure leading to chaotic behavior.

  13. Transfer function analysis of thermospheric perturbations

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.

    1986-01-01

    Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.

  14. Pentaquark masses in chiral perturbation theory

    SciTech Connect

    Mohta, Vivek

    2004-12-01

    Heavy baryon chiral perturbation theory for pentaquarks is applied beyond leading order. The mass splitting in the pentaquark antidecuplet is calculated up to next-to-next-to-leading order in the absence of other exotic multiplets nearby in mass. An expansion in the coupling of the antidecuplet to nonexotic baryons simplifies calculations and makes the pentaquark masses insensitive to the pentaquark-nucleon mass difference. It is assumed that no other pentaquark multiplets are nearby in the mass spectrum. The possibility of determining coupling constants in the chiral Lagrangian on the lattice is discussed. Both positive and negative parities are considered.

  15. Amplification of curvature perturbations in cyclic cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Zhi-Guo; Piao, Yun-Song

    2010-12-01

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  16. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  17. Polyakov loop correlator in perturbation theory

    NASA Astrophysics Data System (ADS)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; Vairo, Antonio

    2017-07-01

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series reexponentiates into singlet and adjoint contributions. We calculate the order g7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the reexponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  18. Light-Front Perturbation Without Spurious Singularities

    NASA Astrophysics Data System (ADS)

    Przeszowski, Jerzy A.; Dzimida-Chmielewska, Elżbieta; Żochowski, Jan

    2016-07-01

    A new form of the light front Feynman propagators is proposed. It contains no energy denominators. Instead the dependence on the longitudinal subinterval x^2_L = 2 x+ x- is explicit and a new formalism for doing the perturbative calculations is invented. These novel propagators are implemented for the one-loop effective potential and various 1-loop 2-point functions for a massive scalar field. The consistency with results for the standard covariant Feynman diagrams is obtained and no spurious singularities are encountered at all. Some remarks on the calculations with fermion and gauge fields in QED and QCD are added.

  19. Sidelobe Sector Nulling with Minimized Phase Perturbations.

    DTIC Science & Technology

    1985-03-01

    Sciences Division FOR THE COMMANDER: ~t~4iq JOHN A. RITZ Acting Chief, Plans Office If your address has changed or if you wish to be removed from the...Perturbations for Arrays of 11, 21, and 41 Elements W~41 z~ 21 7N II -2. 4.0 -J.0 -2.0 -11.6 0.0 1.!0 2.0 3.0 4.0 5.0 LOGI 0 (42141) Figure 3. Look...Trans. Antennas Propag. AP-20:432 -436. 4. Baird , C. A., and Rassweiler, G. G. (1976) Adaptive sidelobe nulling using digitally controlled phase

  20. Growth rate, population entropy, and perturbation theory.

    PubMed

    Demetrius, L

    1989-04-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate--the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity--population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce the notion of environmental intensity. The intensity function, expressed in terms of the entropy parameters, is applied to give a comparative study of the effect of environmental factors on the dynamics of Swedish and French populations.

  1. Geometric Perturbation Theory and Plasma Physics

    NASA Astrophysics Data System (ADS)

    Omohundro, Stephen Malvern

    1985-12-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem

  2. Exciton dynamics in perturbed vibronic molecular aggregates

    PubMed Central

    Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.

    2015-01-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  3. Anomaly freedom in perturbative loop quantum gravity

    SciTech Connect

    Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.

    2008-09-15

    A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.

  4. Transport studies in fusion plasmas: Perturbative experiments

    SciTech Connect

    Cardozo, N.J.L.

    1996-03-01

    By subjecting a plasma in steady state to small perturbations and measuring the response, it is possible to determine elements of the matrix of transport coefficients. Experimentally this is difficult, and results are mainly limited to transport driven by the pressure and temperature gradients. Importantly, off-diagonal elements in the transport matrix appear to be important. This has also implications for the interpretation of the so-called `power balance` diffusivity, determined from the steady state fluxes and gradients. Experimental techniques, analysis techniques, basic formulas, etc., are briefly reviewed. Experimental results are summarized. The fundamental question whether the fluxes are linear functions of the gradients or not is discussed. 31 refs.

  5. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  6. Amplification of curvature perturbations in cyclic cosmology

    SciTech Connect

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-12-15

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  7. Bonding charge density from atomic perturbations.

    PubMed

    Wang, Yi; Wang, William Yi; Chen, Long-Qing; Liu, Zi-Kui

    2015-05-15

    Charge transfer among individual atoms is the key concept in modern electronic theory of chemical bonding. In this work, we present a first-principles approach to calculating the charge transfer. Based on the effects of perturbations of an individual atom or a group of atoms on the electron charge density, we determine unambiguously the amount of electron charge associated with a particular atom or a group of atoms. We computed the topological electron loss versus gain using ethylene, graphene, MgO, and SrTiO3 as examples. Our results verify the nature of chemical bonds in these materials at the atomic level.

  8. Comparison of electroglottographic and acoustic analysis of pitch perturbation.

    PubMed

    LaBlance, G R; Maves, M D; Scialfa, T M; Eitnier, C M; Steckol, K F

    1992-11-01

    Pitch perturbation is a measure of the cycle-to-cycle variation in vocal fold vibration. Perturbation can be assessed by means of electroglottographic or acoustic signals. The purpose of this study was to determine if these two analysis techniques are equivalent measures. The Laryngograph, an electroglottograph, and the Visi-Pitch, an acoustic analyzer, were used to measure pitch perturbation in 80 dysphonic subjects. Both instruments use Koike's formula to calculate relative average perturbation. While intra-subject variability appeared erratic, statistical analysis of intersubject data indicated that the two instruments provided an equivalent measure of pitch perturbation.

  9. The spectrum of density perturbations in an expanding universe

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  10. May chaos always be suppressed by parametric perturbations?

    PubMed

    Schwalger, Tilo; Dzhanoev, Arsen; Loskutov, Alexander

    2006-06-01

    The problem of chaos suppression by parametric perturbations is considered. Despite the widespread opinion that chaotic behavior may be stabilized by perturbations of any system parameter, we construct a counterexample showing that this is not necessarily the case. In general, chaos suppression means that parametric perturbations should be applied within a set of parameters at which the system has a positive maximal Lyapunov exponent. Analyzing the known Duffing-Holmes model by a Melnikov method, we showed that chaotic dynamics cannot be suppressed by harmonic perturbations of a certain parameter, independently from the other parameter values. Thus, to stabilize the behavior of chaotic systems, the perturbation and parameters should be carefully chosen.

  11. Evolution of dark energy perturbations in scalar-tensor cosmologies

    SciTech Connect

    Bueno Sanchez, J. C.; Perivolaropoulos, L.

    2010-05-15

    We solve analytically and numerically the generalized Einstein equations in scalar-tensor cosmologies to obtain the evolution of dark energy and matter linear perturbations. We compare our results with the corresponding results for minimally coupled quintessence perturbations. We find that scalar-tensor dark energy density perturbations are amplified by a factor of about 10{sup 4} compared to minimally coupled quintessence perturbations on scales less than about 1000 h{sup -1} Mpc (sub-Hubble scales). On these scales dark energy perturbations constitute a fraction of about 10% compared to matter density perturbations. Scalar-tensor dark energy density perturbations are anticorrelated with matter linear perturbations on sub-Hubble scales. This anticorrelation of matter with negative pressure perturbations induces a mild amplification of matter perturbations by about 10% on sub-Hubble scales. The evolution of scalar field perturbations on sub-Hubble scales is scale independent and therefore corresponds to a vanishing effective speed of sound (c{sub s{Phi}=}0). We briefly discuss the observational implications of our results, which may include predictions for galaxy and cluster halo profiles that are modified compared to {Lambda}CDM. The observed properties of these profiles are known to be in some tension with the predictions of {Lambda}CDM.

  12. Perturbation Theory for Parent Hamiltonians of Matrix Product States

    NASA Astrophysics Data System (ADS)

    Szehr, Oleg; Wolf, Michael M.

    2015-05-01

    This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).

  13. Inferring propagation paths for sparsely observed perturbations on complex networks

    PubMed Central

    Massucci, Francesco Alessandro; Wheeler, Jonathan; Beltrán-Debón, Raúl; Joven, Jorge; Sales-Pardo, Marta; Guimerà, Roger

    2016-01-01

    In a complex system, perturbations propagate by following paths on the network of interactions among the system’s units. In contrast to what happens with the spreading of epidemics, observations of general perturbations are often very sparse in time (there is a single observation of the perturbed system) and in “space” (only a few perturbed and unperturbed units are observed). A major challenge in many areas, from biology to the social sciences, is to infer the propagation paths from observations of the effects of perturbation under these sparsity conditions. We address this problem and show that it is possible to go beyond the usual approach of using the shortest paths connecting the known perturbed nodes. Specifically, we show that a simple and general probabilistic model, which we solved using belief propagation, provides fast and accurate estimates of the probabilities of nodes being perturbed. PMID:27819038

  14. H(infinity) filtering for fuzzy singularly perturbed systems.

    PubMed

    Yang, Guang-Hong; Dong, Jiuxiang

    2008-10-01

    This paper considers the problem of designing H(infinity) filters for fuzzy singularly perturbed systems with the consideration of improving the bound of singular-perturbation parameter epsilon. First, a linear-matrix-inequality (LMI)-based approach is presented for simultaneously designing the bound of the singularly perturbed parameter epsilon, and H(infinity) filters for a fuzzy singularly perturbed system. When the bound of singularly perturbed parameter epsilon is not under consideration, the result reduces to an LMI-based design method for H(infinity) filtering of fuzzy singularly perturbed systems. Furthermore, a method is given for evaluating the upper bound of singularly perturbed parameter subject to the constraint that the considered system is to be with a prescribed H(infinity) performance bound, and the upper bound can be obtained by solving a generalized eigenvalue problem. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.

  15. Localized Perturbations in Saturn's C Ring

    NASA Astrophysics Data System (ADS)

    Spitale, Joseph N.; Tiscareno, Matthew S.

    2016-10-01

    Years of high-resolution imaging of Saturn's rings have revealed many examples of perturbations arising from local causes. For example, the presence of 100-m-scale and smaller moonlets is inferred in the A ring based on the propeller-shaped disturbances that they create (Tiscareno et al. 2006, 2010); the F ring is shaped by regular collisions with its shepherd Prometheus, as well as with other smaller bodies orbiting in the vicinity (Murray et al. 2005, 2008); the "wisps" on the outer edge of the Keeler gap (Porco et al. 2005) may mark the locations of small moonlets that have emerged from the A ring (Tiscareno and Arnault 2015); wakes in the Huygens ringlet imply the presence of two multi-km bodies, and the irregular shape of its inner edge suggests the presence of many smaller bodies (Spitale and Hahn 2016); based on shadow measurements, the B ring contains an embedded 300-m object that produces a small propeller-shaped disturbance (Spitale and Porco 2010; Spitale and Tiscareno 2012).Here, we present evidence for localized perturbations in the C ring. The ringlet embedded in the Bond gap, near 1.470 Saturn radii, shows discrete clumps orbiting at the Keplerian rate in images spanning about eight years. The clumps are not detected in all image sequences at the expected longitudes. The Dawes ringlet, near 1.495 Saturn radii, has an irregular edge that does not appear as a simple superposition of low-wavenumber normal modes.

  16. Approaches to the Treatment of Equilibrium Perturbations

    NASA Astrophysics Data System (ADS)

    Canagaratna, Sebastian G.

    2003-10-01

    Perturbations from equilibrium are treated in the textbooks by a combination of Le Châtelier's principle, the comparison of the equilibrium constant K with the reaction quotient Q,and the kinetic approach. Each of these methods is briefly reviewed. This is followed by derivations of the variation of the equilibrium value of the extent of reaction, ξeq, with various parameters on which it depends. Near equilibrium this relationship can be represented by a straight line. The equilibrium system can be regarded as moving on this line as the parameter is varied. The slope of the line depends on quantities like enthalpy of reaction, volume of reaction and so forth. The derivation shows that these quantities pertain to the equilibrium system, not the standard state. Also, the derivation makes clear what kind of assumptions underlie our conclusions. The derivation of these relations involves knowledge of thermodynamics that is well within the grasp of junior level physical chemistry students. The conclusions that follow from the derived relations are given as subsidiary rules in the form of the slope of ξeq, with T, p, et cetera. The rules are used to develop a visual way of predicting the direction of shift of a perturbed system. This method can be used to supplement one of the other methods even at the introductory level.

  17. Perturbation of physiological systems by nanoparticles.

    PubMed

    Zhang, Yi; Bai, Yuhong; Jia, Jianbo; Gao, Ningning; Li, Yang; Zhang, Ruinan; Jiang, Guibin; Yan, Bing

    2014-05-21

    Nanotechnology is having a tremendous impact on our society. However, societal concerns about human safety under nanoparticle exposure may derail the broad application of this promising technology. Nanoparticles may enter the human body via various routes, including respiratory pathways, the digestive tract, skin contact, intravenous injection, and implantation. After absorption, nanoparticles are carried to distal organs by the bloodstream and the lymphatic system. During this process, they interact with biological molecules and perturb physiological systems. Although some ingested or absorbed nanoparticles are eliminated, others remain in the body for a long time. The human body is composed of multiple systems that work together to maintain physiological homeostasis. The unexpected invasion of these systems by nanoparticles disturbs normal cell signaling, impairs cell and organ functions, and may even cause pathological disorders. This review examines the comprehensive health risks of exposure to nanoparticles by discussing how nanoparticles perturb various physiological systems as revealed by animal studies. The potential toxicity of nanoparticles to each physiological system and the implications of disrupting the balance among systems are emphasized.

  18. Shock wave perturbation decay in granular materials

    DOE PAGES

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtainedmore » for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.« less

  19. Shock wave perturbation decay in granular materials

    SciTech Connect

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtained for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.

  20. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  1. Perturbation analysis for patch occupancy dynamics

    USGS Publications Warehouse

    Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.

    2009-01-01

    Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.

  2. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  3. Testing gravity theories using tensor perturbations

    NASA Astrophysics Data System (ADS)

    Lin, Weikang; Ishak-Boushaki, Mustapha B.

    2017-01-01

    Primordial gravitational waves constitute a promising probe of the very early universe physics and the laws of gravity. We study the changes to tensor-mode perturbations that can arise in various modified gravity theories. These include a modified friction and a nonstandard dispersion relation. We introduce a physically motivated parametrization of these effects and use current data to obtain excluded parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor-mode modified-gravity parameters as constrained by future experiments COrE, Stage-IV and PIXIE. For the tensor-to-scalar ratio r=0.01, we find the minimum detectible modified-gravity effects. In particular, the minimum detectable graviton mass is about 7.8˜9.7×10-33 eV, which is of the same order of magnitude as the graviton mass that allows massive gravity to produce late-time cosmic acceleration. Finally, we study the tensor-mode perturbations in modified gravity during inflation. We find that, the tensor spectral index would be additionally related to the friction parameter ν0 by nT=-3ν0-r/8. In some cases, the future experiments will be able to distinguish this relation from the standard one. In sum, primordial gravitational waves provide a complementary avenue to test gravity theories.

  4. Hormonal Perturbations in Occupationally Exposed Nickel Workers

    PubMed Central

    Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.

    2016-01-01

    BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607

  5. Covariant perturbations in a multifluid cosmological medium

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter K. S.; Bruni, Marco; Ellis, George F. R.

    1992-08-01

    In a series of recent papers, a new covariant formalism was introduced to treat inhomogeneities in any spacetime. The variables introduced in these papers are gauge-invariant with respect to a Robertson-Walker background spacetime because they vanish identically in such models, and they have a transparent physical meaning. Exact evolution equations were found for these variables, and the linearized form of these equations were obtained, showing that they give the standard results for a barotropic perfect fluid. In this paper we extend this formalism to the general case of multicomponent fluid sources with interactions between them. We show, using the tilted formalism of King and Ellis, (1973) that choosing either the energy frame or the particle frame gives rise to a set of physically well-defined covariant and gauge-invariant variables which describe density and velocity perturbations, both for the total fluid and its constituent components. We then derive a complete set of equations for these variables and show, through harmonic analysis, that they are equivalent to those of Bardeen (1980) and of Kodama and Sasaki (1984). We discuss a number of interesting applications, including the case where the universe is filled with a mixture of baryons and radiation, coupled through Thomson scattering, and we derive solutions for the density and velocity perturbations in the large-scale limit. We also correct a number of errors in the previous literature.

  6. BICEP2, the curvature perturbation and supersymmetry

    SciTech Connect

    Lyth, David H.

    2014-11-01

    The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.

  7. Bounded relative motion under zonal harmonics perturbations

    NASA Astrophysics Data System (ADS)

    Baresi, Nicola; Scheeres, Daniel J.

    2017-04-01

    The problem of finding natural bounded relative trajectories between the different units of a distributed space system is of great interest to the astrodynamics community. This is because most popular initialization methods still fail to establish long-term bounded relative motion when gravitational perturbations are involved. Recent numerical searches based on dynamical systems theory and ergodic maps have demonstrated that bounded relative trajectories not only exist but may extend up to hundreds of kilometers, i.e., well beyond the reach of currently available techniques. To remedy this, we introduce a novel approach that relies on neither linearized equations nor mean-to-osculating orbit element mappings. The proposed algorithm applies to rotationally symmetric bodies and is based on a numerical method for computing quasi-periodic invariant tori via stroboscopic maps, including extra constraints to fix the average of the nodal period and RAAN drift between two consecutive equatorial plane crossings of the quasi-periodic solutions. In this way, bounded relative trajectories of arbitrary size can be found with great accuracy as long as these are allowed by the natural dynamics and the physical constraints of the system (e.g., the surface of the gravitational attractor). This holds under any number of zonal harmonics perturbations and for arbitrary time intervals as demonstrated by numerical simulations about an Earth-like planet and the highly oblate primary of the binary asteroid (66391) 1999 KW4.

  8. Consonantal perturbations of pitch in Halkomelem Salish

    NASA Astrophysics Data System (ADS)

    Brown, Jason; Thompson, James J.

    2005-04-01

    It has long been noted that consonants have an effect on the pitch of a following vowel: voiceless stops tend to raise F0, while voiced stops lower it. It has also been suggested that the duration of such perturbations is shorter in tone languages than in non-tone languages [Hombert, Studies in African Linguistics (1977)]. This study compares the effects that consonants have on F0 in two closely related Salish languages: Island Halkomelem, a non-tone language, and Upriver Halkomelem, a language that has reportedly undergone some limited tonogenesis but offers no clear prosodic clues regarding tonality. The effects of the voiceless and ejective stop series were observed, and measurements of F0 were taken at the onset of voicing for the vowel, then at 20 msec. intervals up to 100 msec. Preliminary results indicate that i) Island Halkomelem shows a greater magnitude of difference in F0 at vowel onset between the voiceless and ejective stops than Upriver Halkomelem, and ii) Island Halkomelem shows greater durations of consonantal perturbations of F0 than does Upriver Halkomelem. This suggests that Upriver Halkomelem may have become more sensitive to pitch than the Island dialect, supporting the interpretation of this language as tonal. [Work supported by Phillips Fund.

  9. Running vacuum cosmological models: linear scalar perturbations

    NASA Astrophysics Data System (ADS)

    Perico, E. L. D.; Tamayo, D. A.

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ(H2) or Λ(R). Such models assume an equation of state for the vacuum given by bar PΛ = - bar rhoΛ, relating its background pressure bar PΛ with its mean energy density bar rhoΛ ≡ Λ/8πG. This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely bar rhoΛ = Σibar rhoΛi. Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ(H2) scenario the vacuum is coupled with every matter component, whereas the Λ(R) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  10. Newtonian perturbations on models with matter creation

    NASA Astrophysics Data System (ADS)

    Jesus, J. F.; Oliveira, F. A.; Basilakos, S.; Lima, J. A. S.

    2011-09-01

    Creation of cold dark matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework, we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin, and Brandenberger, MNRAS 291, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the ΛCDM model. The difference between the CCDM and ΛCDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple χ2-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances, the CCDM scenario analyzed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating ΛCDM cosmology.

  11. Perturbations and 3R in carbon management.

    PubMed

    Pant, Deepak; Sharma, Virbala; Singh, Pooja; Kumar, Manoj; Giri, Anand; Singh, M P

    2017-02-01

    Perturbations in various carbon pools like biological, geological, oceanic, and missing carbon sink affect its global data, which are generally neglected or ignored in routine calculations. These natural and anthropogenic events need to be considered before projecting a sustainable carbon management plan. These plans have both general and experimental aspects. General plans should focus on (a) minimizing emission; (b) maximizing environmentally sound reuse, reduce, and recycling; (c) effective treatment; and (d) converting carbon into valuable products with atom economy. Experimental carbon management plans involving various biological and chemical techniques with limitation in terms of research level and economic feasibility. Chemical options have benefits of higher productivity and wider product range, but it suffers from its higher-energy requirements and environmental unfriendliness. In contrast to this, biological options are more selective and less energy intensive, but their productivity is very low. Hence, there is a requirement of hybrid process where the benefits of both the options, i.e., biological and chemical, can be reaped. In view of above, the proposed review targets to highlight the various perturbations in the global carbon cycle and their effects; study the currently practiced options of carbon management, specifically in light of 3R principle; and propose various new hybrid methods by compatible combinations of chemical and biological processes to develop better and safer carbon management. These methods are hypothetical so they may require further research and validations but may provide a comprehensive base for developing such management methods.

  12. Perceived timing of a postural perturbation.

    PubMed

    Lupo, Julian; Barnett-Cowan, Michael

    2017-02-03

    Falling down is a common event that threatens the survival of an organism. Simple, yet sophisticated neural mechanisms allow for rapid detection of a fall as well as the generation of compensatory reflexes designed to prevent a fall. Fall awareness and preventative alerting devices could potentially mitigate the likelihood of a fall, however, relatively little is known about the perceived timing of a fall. Common anecdotal reports suggest that humans often describe distortions in their perception of time with very little recollection of what occurred during the fall. Previous research has also found that the vestibular system is perceptually slow compared to the other senses (45-160ms delay), indicating that vestibular stimuli must occur prior to other sensory stimuli in order for it to be perceived as synchronous. Here we examine whether fall perception is similarly slow. Participants made temporal order judgments identifying whether fall or sound onset came first to measure the point of subjective simultaneity. Results show that fall perception is slow, where the onset of a perturbation has to precede an auditory stimulus by ∼44 ms to appear coincident with the fall. We suggest that the central nervous system's rapid detection and response capabilities are restricted to reflexive behaviour, with conscious awareness of a fall being prioritized less. The additional lead times for detecting perturbation onset constrain possible fall detection and alert systems that have been proposed to inform a user to prevent falls and may also help explain the increased likelihood for fall incidence in the elderly.

  13. Quantum cosmological perturbations of multiple fluids

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Pinto-Neto, N.; Vitenti, Sandro D. P.

    2016-01-01

    The formalism to treat quantization and evolution of cosmological perturbations of multiple fluids is described. We first construct the Lagrangian for both the gravitational and matter parts, providing the necessary relevant variables and momenta leading to the quadratic Hamiltonian describing linear perturbations. The final Hamiltonian is obtained without assuming any equations of motions for the background variables. This general formalism is applied to the special case of two fluids, having in mind the usual radiation and matter mix which made most of our current Universe history. Quantization is achieved using an adiabatic expansion of the basis functions. This allows for an unambiguous definition of a vacuum state up to the given adiabatic order. Using this basis, we show that particle creation is well defined for a suitable choice of vacuum and canonical variables, so that the time evolution of the corresponding quantum fields is unitary. This provides constraints for setting initial conditions for an arbitrary number of fluids and background time evolution. We also show that the common choice of variables for quantization can lead to an ill-defined vacuum definition. Our formalism is not restricted to the case where the coupling between fields is small, but is only required to vary adiabatically with respect to the ultraviolet modes, thus paving the way to consistent descriptions of general models not restricted to single-field (or fluid).

  14. Density perturbations in general modified gravitational theories

    SciTech Connect

    De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji

    2010-07-15

    We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.

  15. Gauge invariant perturbations of the Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan E.; Chen, Hector; Whiting, Bernard F.

    2017-09-01

    Beginning with the pioneering work of Regge and Wheeler (1957 Phys. Rev. 108 1063), there have been many studies of perturbations away from the Schwarzschild spacetime background. In particular several authors Moncrief (1974 Ann. Phys. 88 323), Sachs (1964 Relativity, Groups and Topology (New York: Gordon and Breach)) and Brizuela et al (2007 Phys. Rev. D 76 024004) have investigated gauge invariant quantities of the Regge-Wheeler (RW) formalism. Steven Detweiler also investigated perturbations of Schwarzschild in his own formalism, introducing his own gauge choice which he denoted the ‘easy (EZ) gauge’, and which he was in the process of adapting for use in the second-order self-force problem. We present here a compilation of some of his working results, arising from notes for which there seems to have been no manuscript in preparation. In particular, we outline Detweiler’s formalism, list the gauge invariant quantities he used, and explain the process by which he found them.

  16. Gradient expansion, curvature perturbations, and magnetized plasmas

    SciTech Connect

    Giovannini, Massimo; Rezaei, Zahra

    2011-04-15

    The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.

  17. Aircraft Range Optimization Using Singular Perturbations

    NASA Technical Reports Server (NTRS)

    Oconnor, Joseph Taffe

    1973-01-01

    An approximate analytic solution is developed for the problem of maximizing the range of an aircraft for a fixed end state. The problem is formulated as a singular perturbation and solved by matched inner and outer asymptotic expansions and the minimum principle of Pontryagin. Cruise in the stratosphere, and on transition to and from cruise at constant Mach number are discussed. The state vector includes altitude, flight path angle, and mass. Specific fuel consumption becomes a linear function of power approximating that of the cruise values. Cruise represents the outer solution; altitude and flight path angle are constants, and only mass changes. Transitions between cruise and the specified initial and final conditions correspond to the inner solutions. The mass is constant and altitude and velocity vary. A solution is developed which is valid for cruise but which is not for the initial and final conditions. Transforming of the independent variable near the initial and final conditions result in solutions which are valid for the two inner solutions but not for cruise. The inner solutions can not be obtained without simplifying the state equations. The singular perturbation approach overcomes this difficulty. A quadratic approximation of the state equations is made. The resulting problem is solved analytically, and the two inner solutions are matched to the outer solution.

  18. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    PubMed Central

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model; the peptide axes are parallel to the membrane plane. The elastic and interfacial contributions to the perturbation free energy of the “peptide-dressed” membrane are evaluated as a function of: the peptide penetration depth into the bilayer's hydrophobic core, the membrane thickness, the polar angle, and the lipid/peptide ratio. The structural properties calculated include the shape and extent of the distorted (stretched and bent) lipid chains surrounding the adsorbed peptide, and their orientational (C-H) bond order parameter profiles. The changes in bond order parameters attendant upon peptide adsorption are in good agreement with magnetic resonance measurements. Also consistent with experiment, our model predicts that peptide adsorption results in membrane thinning. Our calculations reveal pronounced, membrane-mediated, attractive interactions between the adsorbed peptides, suggesting a possible mechanism for lateral aggregation of membrane-bound peptides. As a special case of interest, we have also investigated completely hydrophobic peptides, for which we find a strong energetic preference for the transmembrane (inserted) orientation over the horizontal (adsorbed) orientation. PMID:15189858

  19. Fast ion loss associated with perturbed field by resonant magnetic perturbation coils in KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Jun Young; Kim, Junghee; Rhee, Tongnyeol; Yoon, S. W.; Park, G. Y.; Jeon, Y. M.; Isobe, M.; Shimizu, A.; Ogawa, K.; Park, J.-K.; Garcia-Munoz, M.

    2013-10-01

    Resonant magnetic perturbation (RMP) is the most promising strategies for ELM mitigation/suppression. However, it has been found through the modeling and the experiments that RMP for the ELM mitigation can enhance the toroidally localized fast ion loss. During KSTAR experimental campaigns in 2011 and 2012, sudden increase or decrease of the fast ion loss has been observed by the scintillator-based fast ion loss detector (FILD) when the RMP is applied. Three-dimensional perturbed magnetic field by RMP coil in vacuum is calculated by Biot-Savart's law embedded in the Lorentz orbit code (LORBIT). The LORBIT code which is based on gyro-orbit following motion has been used for the simulation of the three-dimensional fast ion trajectories in presence of non-axisymmetric magnetic perturbation. It seems the measured fast ion loss rate at the localized position depends on not only the RMP field configuration but also the plasma profile such as safety factor and so on, varying the ratio between radial drift and stochastization of the fat-ion orbits. The simulation results of fast ion orbit under magnetic perturbation w/ and w/o plasma responses will be presented and compared with KSTAR FILD measurement results in various cases.

  20. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.