McKenzie, Erica C; Esser, Melissa M; McNitt, Sarah E; Payton, Mark E
2016-07-01
OBJECTIVE To compare the effects of equivalent volumes of equine plasma and 6% hydroxyethyl starch (600/0.75) solution (hetastarch) administered IV on plasma colloid osmotic pressure (pCOP) and commonly monitored clinicopathologic variables in horses. ANIMALS 6 healthy mares. PROCEDURES In a randomized, crossover study, horses were administered hetastarch or plasma (both 10 mL/kg, IV) 18 months apart. The pCOP and variables of interest were measured before (baseline), immediately after, and at intervals up to 96 or 120 hours after infusion. Prothrombin and activated partial thromboplastin times were measured before and at 2 and 8 hours after each infusion. RESULTS Prior to hetastarch and plasma infusions, mean ± SEM pCOP was 19.4 ± 0.5 mm Hg and 19.4 ± 0.8 mm Hg, respectively. In general, hetastarch and plasma infusions comparably increased pCOP from baseline for 48 hours, with maximum increases of 2.0 and 2.3 mm Hg, respectively. Mean Hct and hemoglobin, total protein, and albumin concentrations were decreased for a period of 72, 96, or 120 hours after hetastarch infusion with maximum decrements of 8.8%, 3.2 g/dL, 1.2 g/dL, and 0.6 g/dL, respectively. Plasma infusion decreased (albeit not always significantly) hemoglobin concentration and Hct for 20 and 24 hours (maximum changes of 1.5 g/dL and 6.6%, respectively) and increased total solids concentration (maximum change of 0.6 g/dL) for 48 hours. Platelet count and coagulation times were minimally affected. CONCLUSIONS AND CLINICAL RELEVANCE Overall, the hetastarch and plasma infusions comparably increased pCOP in healthy horses for up to 48 hours. Hetastarch induced greater, more persistent perturbations in clinicopathologic variables.
Deb, S; Sun, L; Martin, B; Talens, E; Burris, D; Kaufmann, C; Rich, N; Rhee, P
2000-07-01
We previously demonstrated that the type of resuscitation fluid used in hemorrhagic shock affects apoptosis. Unlike crystalloid, whole blood seems to attenuate programmed cell death. The purpose of this study was to determine whether the acellular components of whole blood (plasma, albumin) attenuated apoptosis and to determine whether this process involved the Bax protein pathway. Rats were hemorrhaged 27.5 mL/kg, kept in hypovolemic shock for 75 minutes, then resuscitated over 1 hour (n = 44). Control animals underwent anesthesia only (sham, n = 7). Treatment animals were bled then randomly assigned to the following resuscitation groups: no resuscitation (n = 6), whole blood (n = 6), plasma (n = 6), 5% human albumin (n = 6), 6% hetastarch (n = 7), and lactated Ringer's solution (LR, n = 6). Hetastarch was used to control for any colloid effect. LR was used as positive control. Immediately after resuscitation, the lung was collected and evaluated for apoptosis by using two methods. TUNEL stain was used to determine general DNA damage, and Bax protein was used to specifically determine intrinsic pathway involvement. LR and hetastarch treatment resulted in significantly increased apoptosis in the lung as determined by both TUNEL and Bax expression (p < 0.05). Plasma infusion resulted in significantly less apoptosis than LR and hetastarch resuscitation. Multiple cell types (epithelium, endothelium, smooth muscle, monocytes) underwent apoptosis in the lung as demonstrated by the TUNEL stain, whereas Bax expression was limited to cells residing in the perivascular and peribronchial spaces. Apoptosis after volume resuscitation of hemorrhagic shock can be affected by the type of resuscitation fluid used. Manufactured fluids such as lactated Ringer's solution and 6% hetastarch resuscitation resulted in the highest degree of lung apoptosis. The plasma component of whole blood resulted in the least apoptosis. The process of apoptosis after hemorrhagic shock resuscitation involves the Bax protein.
Label Design Affects Medication Safety in an Operating Room Crisis: A Controlled Simulation Study.
Estock, Jamie L; Murray, Andrew W; Mizah, Margaret T; Mangione, Michael P; Goode, Joseph S; Eibling, David E
2018-06-01
Several factors contribute to medication errors in clinical practice settings, including the design of medication labels. The objective of this study was to quantify the impact of label design on medication safety in a realistic, high-stress clinical situation. Ninety-six anesthesia trainee participants were randomly assigned to either the redesigned or the current label condition. Participants were blinded to the study's focus on medication label design and their assigned label condition. Each participant was the sole anesthesia provider in a simulated operating room scenario involving an unexpected vascular injury. The surgeon asked the participant to administer hetastarch to the simulated patient because of hemodynamic instability. The fluid drawer of the anesthesia cart contained three 500-ml intravenous bags of hetastarch and one 500-ml intravenous bag of lidocaine. We hypothesized that redesigned labels would help participants correctly select hetastarch from the cart. If the participants incorrectly selected lidocaine from the cart, we hypothesized that the redesigned labels would help participants detect the lidocaine before administration. The percentage of participants who correctly selected hetastarch from the cart was significantly higher for the redesigned labels than the current labels (63% versus 40%; odds ratio, 2.61 [95% confidence interval, 1.1-6.1]; P = 0.03). Of the participants who incorrectly selected lidocaine from the cart, the percentage who detected the lidocaine before administration did not differ by label condition. The redesigned labels helped participants correctly select hetastarch from the cart, thus preventing some potentially catastrophic medication errors from reaching the simulated patient.
2004-10-01
A Hemoglobin Based Oxygen Carrier, Bovine Polymerized Hemoglobin (HBOC-201) versus Hetastarch (HEX) in an Uncontrolled Liver Injury Hemorrhagic Shock...Transcutaneous tis- sue oxygenation was restored more rap- idly in HBOC-201 pigs, there was a trend to lower lactic acid, and base deficit was less...lactic acidosis and base deficit (BD) abnormalities, indicating on-going hypoperfusion.2–4 As these abnormalities measured upon hospital arrival
Dullinger, Katharina; Pamler, Irene; Brosig, Andreas; Mohrez, Morad; Hähnel, Viola; Offner, Robert; Dormann, Frauke; Becke, Christine; Holler, Ernst; Ahrens, Norbert
2017-02-01
Granulocyte apheresis requires a sedimentation agent. Usually, hydroxyethyl starch (HES) is administered to donors for this purpose and, as granulocyte concentrate (GC) ingredient, also to patients. Authorities recently recommended suspending market authorizations for starch-containing products due to side effects. Therefore, we tested the efficacy of modified fluid gelatin (MFG, Gelafundin 4%) versus hetastarch (Hespan) for GC apheresis. This retrospective matched-pair analysis compared MFG- and hetastarch-derived GCs. Each group consisted of 15 unrelated male donors mobilized with dexamethasone and granulocyte-colony-stimulating factor for apheresis on 1 or 2 days with the COBE Spectra's PMN program. In each group, 24 GCs were collected from 15 male donors and analyzed. None of the HES-derived products, but two of the MFG-derived products (8.3%), had aggregates and could not be used. The HES-derived products had significantly higher neutrophil counts on the first day (7.7 × 10 10 /unit vs. 4.0 × 10 10 /unit; p = 0.00005) as well as second day of apheresis (4.0 × 10 10 /unit vs. 1.1 × 10 10 /unit; p = 0.0002). Median white blood cell collection efficacies were lower with MFG than with HES on Day 1 (24% vs. 43%) and Day 2 (15% vs. 37%). Twenty-one percent of the MFG-derived products had less than 1 × 10 10 granulocytes. These results indicate that granulocyte apheresis is feasible with MFG as well as with hetastarch and that the latter is superior for GC production, if used in the same dosage. In addition, aggregates in GC from the COBE Spectra were observed in the MFG group but not in the hetastarch group. © 2016 AABB.
Prehospital Use of Plasma for Traumatic Hemorrhage
2013-06-01
Treatment Trials Network which h as trialed pre-hospital use of midazolam autoinjection for status epilepticus and is tria ling the use of in travenous...history and current status . J Trauma 2011; 70:811-12. 48. Ogilvie MP, Ryan ML, Proctor KG. Hetastarch during initial resuscitation from trauma. J
Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B
2018-01-01
Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.
2005-03-23
esuscitation The Kocher clamp was closed for 5 min to crush the por- ion of the rectus abdominus muscle to create a soft tissue njury, and pigs were...continuously monitored. A 3–5 cm lower abdominal incision was made and the left rectus abdomi- nus muscle located. The rectus sheath was mobilized
2011-04-01
products and Hextend. The fluid with the highest amount of coagulation factors , FFP resulted in the lowest blood loss. The FFP treatment had the highest...compared to humans and have higher concentrations of many of the clotting factors (FV, FVII , FVIII, F IX, and FXII).44 Although we have confirmed the higher...utilizing plasma early in treatment is to prevent dilution of remaining coagulation factors or reverse the coagulopathy that has been observed in
Effects of In Vitro Hemodilution, Hypothermia and rFVIIa Addition on Coagulation in Human Blood
2012-03-30
primary fluids used by many trauma units and the US Army for pre-hospital resuscitation [17]. HX, a hetastarch-based product in a balanced electro...and has been associated with dilution of coagulation factors and hypothermia. Recombinant activated Factor VII (rFVIIa) has been used, often as a...of rFVIIa results in an enhancement of thrombin generation on the platelet surface at the site of injury independent of the presence of Factor VIII
Pharmacology of colloids and crystalloids.
Griffel, M I; Kaufman, B S
1992-04-01
We have attempted to review body fluid distribution by compartments so that the reader understands the physiology of ICF and ECF, and the relationship between interstitial and intravascular fluids. Crystalloids such as NS and RL are distributed to the ECF, whereas colloids primarily remain intravascular for longer periods. Although effective, crystalloids tend to require larger volumes for infusion, and edema remains a problem. Colloids as a group are extremely effective volume expanders, but none is ideal. Albumin, hetastarch, dextran, and the less commonly used colloids each have significant toxicities that must be considered when using them. Intelligent choices can be made to optimize use of these fluids.
Haak, Carol E; Rudloff, Elke; Kirby, Rebecca
2012-04-01
To compare the use of polymerized stroma-free bovine hemoglobin (Hb-200) and 6% hetastarch 450/0.7 (HES 450/0.7) in 0.9% saline during fluid resuscitation of dogs with gastric dilatation-volvulus (GDV). Prospective, randomized clinical case series. Private specialty and referral clinic. Twenty client-owned dogs presenting with GDV. Dogs presenting with GDV and abnormal perfusion parameters first received rapid IV infusion of a buffered isotonic replacement crystalloid (15 mL/kg) and IV opioids. Patients were then randomized to receive either Hb-200 (N = 10) or HES 450/0.7 (N = 10). Balanced isotonic replacement crystalloids (10-20 mL/kg IV) were rapidly infused along with either Hb-200 or HES in 5 mL/kg IV aliquots to meet resuscitation end points. Resuscitation was defined as meeting at least 2 of 3 criteria: (1) capillary refill time 1-2 seconds, pink mucous membrane color, strong femoral pulse quality; (2) heart rate (HR) ≤ 150/min; or (3) indirect arterial systolic blood pressure (SBP) > 90 mm Hg. HR, SBP, packed cell volume, hemoglobin, glucose, venous pH, bicarbonate, base excess, anion gap, and colloid osmotic pressure were compared at hospital entry and within 30 minutes post-resuscitation. Compared to the HES group, the Hb-200 group required significantly less colloid (4.2 versus 18.4 mL/kg) and crystalloid (31.3 versus 48.1 mL/kg) to reach resuscitation end points (P = 0.001). Time to resuscitation was significantly shorter in the Hb-200 group (12.5 versus 52.5 min). Dogs with GDV receiving Hb-200 during initial resuscitation required smaller volumes of both crystalloid and colloid fluids and reached resuscitation end points faster than dogs receiving HES 450/0.7 (P = 0.02). © Veterinary Emergency and Critical Care Society 2012.
Weise, Florian J; van Vuuren, Rudie J; Echement, Katherine E; Cleverley, Matthew P; van Vuuren, Marlice
2013-03-27
This article reports the first documented treatment of venomous snakebite with a polyvalent snake antivenom from the South African Institute for Medical Research in endangered African wild dogs (Lycaon pictus). Three juvenile male animals (6.5 months of age) showed clinical signs after being bitten by an unidentified venomous snake. The signs included loss of appetite, disorientation, impaired locomotion, excessive facial swelling, profuse salivation, reduced respiratory effort and an apparent depressed mental state. Intravenous treatment with isotonic Ringer lactate solution, hetastarch 6% and dexamethazone, subcutaneous administration of procaine benzylpenicillin and benzathine benzylpenicillin, and ultimately intravenous administration of the polyvalent snake antivenom resulted in the complete recovery of all three wild dogs.
Vasopressin attenuates TNF-mediated inflammation in the rat cremaster microcirculation.
McMahon, Paul J; Proctor, Kenneth G
2009-09-01
Our previous study in a swine polytrauma model suggested that equieffective systemic pressor doses of arginine vasopressin (AVP) versus phenylephrine (PE) have differential effects on the systemic and cerebral microcirculation. The purpose of this study was to directly observe the effects of AVP versus PE on inflammatory changes evoked by tumor necrosis factor alpha (TNF) in the skeletal muscle microcirculation. Seventy-five male rats (180-250 g) were anesthetized with isoforane, intubated and mechanically ventilated with 100% oxygen. The cremaster muscle microcirculation was prepared for intravital video microscopy while being suffused with a heated hetastarch-electrolyte solution. Fluorescein isothiocyanate-labeled albumin (100 mg/kg) was administered intravenously (i.v.) before one of five protocols. In series 1 (n = 20), either AVP (0.2 U/mL) or its vehicle was added to the suffusate for 10 minutes, washed out for 30 minutes, then TNF was suffused (5 ng/mL) for 30 minutes. In series 2 (n = 16), the protocol was similar, except AVP (0.2 U/mL) or an equieffective dose of PE (0.04 mg/mL) was administered i.v. (4.5 mL/h) for 15 minutes before, during, and 45 minutes after TNF suffusion. In series 3 (n = 12), the protocol was similar to series 2, except venous hemorrhage preceded i.v. AVP or PE. In series 4 (n = 15), the protocol was similar to series 3, except an AVP antagonist (vaprisol, 1 mg/kg i.v.) or its vehicle was administered after hemorrhage. In the control series (n = 13), inflammation was evaluated either with a different suffusate (lactated Ringers instead of hetastarch solution), different antigen (histamine instead of TNF), or hemorrhage with no antigen. In series 1, the TNF-evoked increase in leukocyte infiltration (i.e., rolling), leukocyte activation (i.e., sticking), and macromolecular permeability (i.e., albumin extravasation) were attenuated with topical AVP versus vehicle (both p < 0.05), with no effect on venular blood flow (which determines sheer stress). In series 2, the TNF-evoked increase in infiltration, activation, and permeability were all attenuated, and arteriolar blood flow (which determines perfused capillary surface area and hydrostatic pressure) was reduced with i.v. AVP versus i.v. PE (all p < 0.05). In series 3, after hemorrhage to mean arterial pressure <50 mm Hg for 30 minutes, the TNF-evoked increase in infiltration and activation was attenuated, and arteriolar and venular blood flow were both reduced with i.v. AVP versus PE (all p < 0.05). In series 4, after hemorrhage, the TNF-evoked increase in leukocyte activation was potentiated with the vaprisol versus vehicle (p < 0.05) with no effect on arteriolar or venular blood flow. In series 5 (controls), suffusion with lactated Ringers' versus hetastarch solution more than doubled the TNF-evoked increase in activation (p < 0.05). (1) AVP can attenuate TNF-evoked leukocyte infiltration, activation or permeability changes in the skeletal muscle microcirculation. (2) The mechanism is probably receptor mediated and does not entirely depend on sheer stress in venules or Starling forces in capillaries. (3) The magnitude of this anti-inflammatory effect is influenced by several conditions, including volume status, the colloid or crystalloid suffusion fluid, and is possibly specific to the antigenic stimulus (TNF vs. histamine).
Alam, Hasan B; Bice, Leticia M; Butt, Muhammad U; Cho, S David; Dubick, Michael A; Duggan, Michael; Englehart, Michael S; Holcomb, John B; Morris, Melanie S; Prince, M Dale; Schreiber, Martin A; Shults, Christian; Sondeen, Jill L; Tabbara, Malek; Tieu, Brandon H; Underwood, Samantha A
2009-10-01
Trauma-induced coagulopathy, acidosis, and hypothermia form a "lethal triad" that is difficult to treat and is associated with extremely high mortality. This study was performed at three academic centers to evaluate whether resuscitation with blood components could reverse the coagulopathy in a complex polytrauma model. Yorkshire swine (40 +/- 5 kg) were subjected to a three-phase protocol: (a) "Prehospital" phase = femur fracture, hemorrhage (60% blood volume), and 30 minutes shock + infusion of saline (3x shed blood) + induction of hypothermia (33 degrees C); (b) "Early hospital" phase = grade V liver injury; and (c) "Operative" phase= liver packing. After liver packing, the animals (n = 60) were randomized to the following groups: (1) Sham-instrumentation and anesthesia without hemorrhage/injuries, (2) fresh whole blood (FWB), (3) 6% hetastarch (Hextend), (4) fresh frozen plasma/packed RBCs in 1:1 ratio (1:1 FFP/PRBC), and (5) FFP alone. Treatment volumes were equal to the volume of shed blood. Hemodynamic and physiologic parameters and coagulation profile (thrombelastography, prothrombin time, activated partial thromboplastin time, international normalized ratio, and platelets) were monitored during the experiment and for 4 hours posttreatment. At the end of prehospital phase, animals had developed significant acidosis (lactate >5 mmol/L and base deficit >9 mmol/L) and coagulopathy. Posttreatment mortality rates were 85% and 0% for the Hextend and blood component treated groups, respectively (p < 0.05). Hemodynamic parameters and survival rates were similar in groups that were treated with blood products (FWB, FFP, and FFP:PRBC). Animals treated with FFP and Hextend had significant anemia compared with the groups that received red blood cells (FWB and FFP:PRBC). Treatment with FFP and FFP:PRBC corrected the coagulopathy as effectively as FWB, whereas Hextend treatment worsened coagulopathy. In this reproducible model, we have shown that trauma-associated coagulopathy is made worse by hetastarch, but it can be rapidly reversed with the administration of blood components. Impressively, infusion of FFP, even without any red blood cells, can correct the coagulopathy and result in excellent early survival.
Blood Type 0 is not associated with increased blood loss in extensive spine surgery✩
Komatsu, Ryu; Dalton, Jarrod E.; Ghobrial, Michael; Fu, Alexander Y.; Lee, Jae H.; Egan, Cameron; Sessler, Daniel I.; Kasuya, Yusuke; Turan, Alparslan
2016-01-01
Study Objective To investigate whether Type O blood group status is associated with increased intraoperative blood loss and requirement of blood transfusion in extensive spine surgery. Design Retrospective comparative study. Setting University-affiliated, non-profit teaching hospital. Measurements Data from 1,050 ASA physical status 1, 2, 3, 4, and 5 patients who underwent spine surgeries involving 4 or more vertebral levels were analyzed. Patients with Type O blood were matched to similar patients with other blood types using propensity scores, which were estimated via demographic and morphometric data, medical history variables, and extent of surgery. Intraoperative estimated blood loss (EBL) was compared among matched patients using a linear regression model; intraoperative transfusion requirement in volume of red blood cells, fresh frozen plasma, platelet, cryoprecipitate, cell salvaged blood, volume of intraoperative infusion of hetastarch, 5% albumin, crystalloids, and hospital length of hospital (LOS) were compared using Wilcoxon rank-sum tests. Main Results Intraoperative EBL and requirement of blood product transfusion were similar in patients with Type O blood group and those with other blood groups. Conclusion There was no association between Type O blood and increased intraoperative blood loss or blood transfusion requirement during extensive spine surgery, with similar hospital LOS in Type O and non-O patients. PMID:25172503
Morris, Bari R; deLaforcade, Armelle; Lee, Joyce; Palmisano, Joseph; Meola, Dawn; Rozanski, Elizabeth
2016-01-01
To investigate the effects of in vitro hemodilution with lactated Ringers solution (LRS), hetastarch (HES), and fresh frozen plasma (FFP) on whole blood coagulation in dogs as assessed by kaolin-activated thromboelastography. In vitro experimental study. University teaching hospital. Six healthy client-owned dogs. Whole blood was collected and diluted in vitro at a 33% and 67% dilution with either LRS, HES, or FFP. Kaolin-activated thromboelastography was performed on each sample as well as a control. Thromboelastographic parameters R (min), alpha (deg), K (min), and MA (mm) were measured and compared to the sample control for each dilution using mixed model methodology. Prolongation in coagulation times were seen at both dilutions with LRS and HES. There was no significant difference in R times at the 33% dilution, but R time was significantly prolonged at the 67% dilution with HES (P = 0.004). MA was significantly decreased for LRS at both dilutions (P = 0.013, P < 0.001) and more profoundly decreased for HES (P < 0.001, P = 0.006). No significant difference in any parameter was found for FFP. In vitro hemodilution of whole blood with both LRS and HES but not FFP resulted in significant effects on coagulation with HES having a more profound effect. In vivo evaluation of changes in coagulation with various resuscitation fluids is warranted and may be clinically relevant. © Veterinary Emergency and Critical Care Society 2015.
Lichtenberger, Marla; Orcutt, Connie; Cray, Carolyn; Thamm, Douglas H; DeBehnke, Daniel; Page, Cheryl; Mull, Lori; Kirby, Rebecca
2009-10-01
The purpose of this study was to determine the LD(50) for acute blood loss in mallard ducks (Anas platyrhynchos), compare the mortality rate among 3 fluid resuscitation groups, and determine the time required for a regenerative RBC response. Prospective study. Medical College of Wisconsin Research facility. Eighteen mallard ducks were included for the LD(50) study and 28 for the fluid resuscitation study. Phlebotomy was performed during both the LD(50) and fluid resuscitation studies. Ducks in the fluid resuscitation study received a 5 mL/kg intravenous bolus of crystalloids, hetastarch (HES), or a hemoglobin-based oxygen-carrying solution (HBOCS). The LD(50) for acute blood loss was 60% of total blood volume. This blood volume was removed in the fluid resuscitation study to create a model of acute blood loss. Following fluid administration, 6 birds in the crystalloid group (66%), 4 birds in the HES group (40%), and 2 birds in the HBOCS group (20%) died. No statistical difference in mortality rate was seen among the 3 fluid resuscitation groups. Relative polychromasia evaluated post-phlebotomy demonstrated regeneration starting at 24 hours and continuing through 48 hours. The LD(50) for acute blood loss in mallard ducks was 60% of their total blood volume. Although no statistical difference in mortality rate was appreciated among the 3 fluid resuscitation groups, a trend of decreased mortality rate was observed in the HBOCS group. An early regenerative response was apparent following acute blood loss.
Hall, Brian A; Frigas, Evangelo; Matesic, Damir; Gillett, Michael D; Sprung, Juraj
2006-10-01
To report a first case of probable anaphylactoid reaction to 6% hydroxyethyl starch reconstituted in balanced electrolyte and glucose solution (Hextend). A 22-yr-old man was admitted for a partial nephrectomy. Near the end of the four-hour operation, an infusion of Hextend was initiated. Shortly thereafter, mechanical ventilation became difficult, peak inspiratory pressure increased to 55 cm H2O with audible wheezing over the patient's lungs. Blood pressure suddenly decreased to 68/46 mmHg. Multiple doses of phenylephrine, ephedrine and epinephrine were required to restore the patient's blood pressure. Postoperatively, a diffuse urticarial rash was apparent on his upper torso. The patient recovered uneventfully. His postoperative serum tryptase was 26.3 ng x mL(-1) (reference range, < 11.5 ng x mL(-1)) and the urine N-methyl-histamine was 2448 microg x g(-1) creatinine (reference range, 30-200 microg x g(-1) creatinine). Two months after the event, skin testing was conducted to test for possible allergy to latex, lidocaine, propofol, cisatracurium, succinylcholine, vecuronium, midazolam, fentanyl, ondansetron, neostigmine, and cephazolin, and all were negative. Hextend was also tested, starting with a 1:100,000 dilution and the results were negative. The temporal relationship of severe hypotension, bronchospasm and skin rash within ten minutes from administration of Hextend in this patient suggests an immediate hypersensitivity reaction to hetastarch. The elevated levels of serum tryptase and urinary N-methyl-histamine suggest that this hypersensitivity was mediated from mast cell degranulation. Negative skin testing suggests that the reaction was anaphylactoid.
Celik, I; Duda, D; Stinner, B; Kimura, K; Gajek, H; Lorenz, W
2003-10-01
The perioperative use of colloidal plasma substitutes is still under discussion. We therefore conducted a prospective randomised study with three commonly used plasma substitutes to examine their histamine releasing effects in 21 volunteers. MATERIAL OR SUBJETS: 21 male volunteers were enrolled in this prospective, randomised, controlled clinical study. Endpoints were the incidence of early and late histamine release and the time course of the release kinetics. Normovolemic hemodilution technique was used with hydroxyethyl starch (n = 6), human albumin (n = 6) and polygeline (n = 9). Measurement and observation period was 240 min after the start of the plasma substitute infusion. Heart rate, blood pressure, SaO(2), clinical symptoms/signs and plasma histamine were measured during the observation period. The incidence of histamine release over the whole observation period in all three groups was 100%. Histamine release occurred frequently in all three groups until 30 min (50%-78%) and up to 240 min (late release reaction: 67%-83%) after the start of infusion. Surprisingly even hydroxyethyl starch, which is regarded as a generally safe and effective plasma substitute, caused high incidences of late histamine release (67%). Histamine release is a well known side effect of polygeline and - to a lesser extent - also of albumin, but was a novel finding for hydroxyethyl starch. We demonstrated for the first time histamine releasing effects of hydroxyethyl starch over a long period of time after administration. This perioperatively and for intensive care possibly relevant finding should make clinicians aware of late side effects not yet connected with the clinical use of these colloidal plasma substitutes.
Pape, Andreas; Kertscho, Harry; Meier, Jens; Horn, Oliver; Laout, Mohamed; Steche, Max; Lossen, Mischa; Theisen, Alf; Zwissler, Bernhard; Habler, Oliver
2008-08-01
To investigate the efficacy of a polyethylene glycol (PEG) modified formulation of liposome-encapsulated hemoglobin (LEH) as an oxygen-carrying blood substitute in the treatment of critical normovolemic anemia. Prospective, controlled, randomized experimental study in a university research facility. 14 anesthetized and mechanically ventilated beagle dogs. Animals were splenectomized and hemodiluted by exchange of whole blood for iso-oncotic hetastarch (HES). Target parameter of the hemodilution protocol was the individual critical hemoglobin concentration (Hb(crit)) corresponding with the onset of O(2) supply dependency of total body O(2) consumption. At Hb(crit) animals were randomized to receive a bolus infusion (20[Symbol: see text]ml/kg) of either LEH (n = 7) or normal saline (NS; n = 7). Subsequently animals were observed without further intervention. The primary endpoint was survival time after the completion of treatment; secondary endpoints were parameters of central hemodynamics, O(2) transport and tissue oxygenation. Animals in the LEH group survived significantly longer after completion of treatment (149 +/- 109 vs. 43+/- 56 min). Immediately after treatment LEH-treated animals presented with a more stable cardiovascular condition. After 30 min tissue O(2) tension on the surface of a skeletal muscle was significantly higher in the LEH group (23+/-8 vs. 9 +/- 2 mmHg). Nevertheless, treatment with LEH did not decrease mortality within the observation period. In this present experimental study the infusion of a PEG-modified LEH provided adequate tissue oxygenation, hemodynamic stability, and a prolongation of survival time after critical anemia. However, these effects were sustained for only a short period of time.
Effects of the HEET garment in the prevention of hypothermia in a porcine model.
Johnson, Don; Gegel, Brian; Burgert, James; Duncklee, Geoffrey W; Robison, Ricci R; Lewis, Eric J; Crum, Paul M; Kuhns, William; Moore, Daniel; O'Brien, Scott; Elliott, Joel; Washington, Jason; Boyle, John; Seigler, Dale
2010-11-01
Hypothermia is a common battlefield trauma occurrence. This study compared the effectiveness of the hypothermia, environmental, exposure, and trauma (HEET) garment (Trident Industries, Beaufort, SC) with and without thermal inserts with a control group of two wool blankets in the prevention of hypothermia in a treated hypovolemic porcine model. Five female swine (Sus scrofa-Yorkshire cross) were assigned to each of three groups: HEET with thermal inserts (n=5); HEET without thermal inserts (n=5); or control (n=5). After the animals were anesthetized and stabilized for 30 min, the swine were hemorrhaged to a mean arterial pressure (MAP) of 30 mm Hg, simulating a battlefield injury. Hetastarch 6% (500 mL) was rapidly administered, simulating initial field resuscitation. One hour later, the animals' shed blood was reinfused, simulating transfusion at a field medical facility. The investigators moved the animal into a cooler set at 10°C ± 0.5°C. A pulmonary artery catheter was used to monitor core body temperature over a 6-h period. A repeated measures ANOVA and Tukey's post hoc test were used to analyze the data. There was a significant difference between the groups. At the end of 6h, the mean core temperature for the HEET with inserts group was 32.69°C ± 1.5; the HEET without inserts, 31.02°C ± 1.8; and control, 34.78°C ± 1.2 (P<0.05). While all groups became hypothermic, the wool blanket group was most effective in maintaining body temperature closer to normothermia. The HEET garments with and without heaters are ineffective in preventing hypothermia. Copyright © 2010 Elsevier Inc. All rights reserved.
Sena, Matthew J; Douglas, Geoffrey; Gerlach, Travis; Grayson, J Kevin; Pichakron, Kullada O; Zierold, Dustin
2013-08-01
Severe hepatic injuries may be highly lethal, and perihepatic packing remains the mainstay of treatment. This is not always successful, particularly in the setting of hypothermia and coagulopathy. Kaolin-impregnated Combat Gauze (CG) is an effective hemostatic dressing used primarily to treat external wounds. The objective of this study was to determine the ability of CG to control severe hemorrhage in hypothermic, coagulopathic swine with a high-grade hepatic injury. Anesthetized animals underwent splenectomy and were cooled to 32°C while undergoing a 60% exchange transfusion with Hextend. A grade V liver injury was created in the left middle hepatic lobe. Animals were allowed to freely bleed for 30 s and then randomized to treatment with CG or plain gauze laparotomy pads (PG) applied to the injury site. Animals were then resuscitated with warmed Hextend. There was no difference between groups in preinjury hemodynamic or laboratory values. Animals packed with CG had less blood loss when compared with standard packing (CG = 25 mL/kg versus PG = 58 mL/kg, P = 0.05). There was a trend towards lower hetastarch resuscitation requirements in the CG group (CG = 7 mL/kg versus PG = 44 mL/kg, P = 0.06) but no statistically significant difference in mortality (CG = 13% versus PG = 50%, P = 0.11). Histology of the injury sites revealed more adherent clot in the CG group, but no inflammation, tissue necrosis, or residual material. In pigs with severe hepatic injury, Combat Gauze reduced blood loss and resuscitation requirements when compared with plain laparotomy pads. Combat Gauze may be safe and effective for use on severe liver injuries. Published by Elsevier Inc.
Urine flow is a novel hemodynamic monitoring tool for the detection of hypovolemia.
Shamir, Micha Y; Kaplan, Leonid; Marans, Rachel S; Willner, Dafna; Klein, Yoram
2011-03-01
Noticeable changes in vital signs indicating hypovolemia occur only after 15% of the blood volume is lost. More sensitive variables (e.g., cardiac output, systolic pressure variation and its Δdown component) are invasive and difficult to obtain in the early phase of bleeding. Lately, a new technology for continuous optical measurements of minute-to-minute urine flow rates has become available. We performed a preliminary evaluation to determine whether urine flow can act as an early and sensitive warning of hypovolemia. Eleven patients (ASA physical status I-II) undergoing posterior spine fusion surgery were studied prospectively. Study variables included heart rate, blood pressure (systolic and diastolic), systolic pressure variation and Δdown, minute urinary flow, hemoglobin, blood and urinary sodium, and creatinine in the blood and urine. Urine flow rate was measured using URINFO 2000™ (FlowSense Medical, Misgav, Israel). After recording baseline variables, 10 mL/kg of the patient's blood was shed and a second set of variables was recorded. Subsequently, hypovolemia was reversed by infusing colloid solution (hetastarch 6%) followed by recording a third set of variables. These 3 observations were then compared. An average of 614 ± 143 mL (mean ± SD) of blood was shed. During phlebotomy, the mean urine flow rate decreased from 5.7 ± 8 mL/min to 1.07 ± 2.5 mL/min. Systolic blood pressure and hemoglobin also decreased. Δdown increased. After rehydration, urine flow, blood pressure, and Δdown values returned to baseline. The hemoglobin concentration decreased whereas other variables did not change significantly. Urine flow rate is a dynamic variable that seems to be a reliable indicator of changes in blood volume. These results justify further investigation.
Chang, Yu-Jen; Tien, Kuei-Erh; Wen, Cheng-Hao; Hsieh, Tzu-Bou; Hwang, Shiaw-Min
2014-04-01
Very small embryonic-like (VSEL) stem cells are a rare cell population present in bone marrow, cord blood and other tissues that displays a distinct small cell size and the ability to give rise to cells of the three germ layers. VSEL stem cells were reported to be discarded in the red blood cell fraction by Ficoll-Paque density gradient centrifugation during the processing of bone marrow and cord blood specimens. However, most cord blood banks do not include density gradient centrifugation in their procedures while red blood cells are removed by Hespan sedimentation following the Cord Blood Transplantation Study cord blood bank standard operating procedures (COBLT SOP). To clarify the retention of VSEL stem cells, we investigated the recovery of VSEL stem cells following COBLT SOP guidelines. The recovery of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells of umbilical cord blood was examined by flow cytometry before and after COBLT SOP processing, and relative expression of pluripotent genes was analyzed by quantitative polymerase chain reaction. CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells were mostly recovered in the final products following COBLT SOP guidelines. The expression of pluripotent genes could be maintained at >80% in products after hetastarch (Hespan; B. Braun Medical Inc., Irvine, CA, USA) processing. The rare sub-population of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells survived after Hespan sedimentation. This finding suggests that umbilical cord blood units cryopreserved by COBLT SOP in cord blood banks should retain most VSEL stem cells present in the un-processed specimens. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Corrigan, Joshua J; Fonseca, Monique T; Flatow, Elizabeth A; Lewis, Kevin; Steiner, Alexandre A
2014-01-01
We tested the hypothesis that development of hypothermia instead of fever in endotoxic shock is consequential to hypoxia. Endotoxic shock was induced by bacterial lipopolysaccharide (LPS, 500 μg kg−1 i.v.) in rats at an ambient temperature of 22°C. A β3-adrenergic agonist known to activate metabolic heat production, CL316,243, was employed to evaluate whether thermogenic capacity could be impaired by the fall in oxygen delivery () during endotoxic shock. This possibility was rejected as CL316,243 (0.15 mg kg−1 i.v.) evoked similar rises in oxygen consumption () in the presence and absence of endotoxic shock. Next, to investigate whether a less severe form of circulatory hypoxia could be triggering hypothermia, the circulating volume of LPS-injected rats was expanded using 6% hetastarch with the intention of improving tissue perfusion and alleviating hypoxia. This intervention attenuated not only the fall in arterial pressure induced by LPS, but also the associated falls in and body temperature. These effects, however, occurred independently of hypoxia, as they were not accompanied by any detectable changes in NAD+/NADH ratios. Further experimentation revealed that even the earliest drops in cardiac output and during endotoxic shock did not precede the reduction in that brings about hypothermia. In fact, and fell in such a synchrony that the / ratio remained unaffected. Only when hypothermia was prevented by exposure to a warm environment (30°C) did an imbalance in the / ratio become evident, and such an imbalance was associated with reductions in the renal and hypothalamic NAD+/NADH ratios. In conclusion, hypometabolism and hypothermia in endotoxic shock are not consequential to hypoxia but serve as a pre-emptive strategy to avoid hypoxia in this model. PMID:24951620
Jin, Guang; DeMoya, Marc A; Duggan, Michael; Knightly, Thomas; Mejaddam, Ali Y; Hwabejire, John; Lu, Jennifer; Smith, William Michael; Kasotakis, Georgios; Velmahos, George C; Socrate, Simona; Alam, Hasan B
2012-07-01
Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related mortality and morbidity. Combination of TBI and HS (TBI + HS) is highly lethal, and the optimal resuscitation strategy for this combined insult remains unclear. A critical limitation is the lack of suitable large animal models to test different treatment strategies. We have developed a clinically relevant large animal model of TBI + HS, which was used to evaluate the impact of different treatments on brain lesion size and associated edema. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters and intracranial pressure. A computer-controlled cortical impact device was used to create a TBI through a 20-mm craniotomy: 15-mm cylindrical tip impactor at 4 m/s velocity, 100-ms dwell time, and 12-mm penetration depth. Volume-controlled hemorrhage was started (40% blood volume) concurrent with the TBI. After 2 h of shock, animals were randomized to one of three resuscitation groups (n = 5/group): (a) normal saline (NS); (b) 6% hetastarch, Hextend (Hex); and (c) fresh frozen plasma (FFP). Volumes of Hex and FFP matched the shed blood, whereas NS was three times the volume. After 6 h of postresuscitation monitoring, brains were sectioned into 5-mm slices and stained with TTC (2,3,5-triphenyltetrazolium chloride) to quantify the lesion size and brain swelling. Combination of 40% blood loss with cortical impact and a period of shock (2 h) resulted in a highly reproducible brain injury. Total fluid requirements were lower in the Hex and FFP groups. Lesion size and brain swelling in the FFP group (2,160 ± 202.63 mm and 22% ± 1.0%, respectively) were significantly smaller than those in the NS group (3,285 ± 130.8 mm3 and 37% ± 1.6%, respectively) (P < 0.05). Hex treatment decreased the swelling (29% ± 1.6%) without reducing the lesion size. Early administration of FFP reduces the size of brain lesion and associated swelling in a large animal model of TBI + HS. In contrast, artificial colloid (Hex) decreases swelling without reducing the actual size of the brain lesion.
Ayuste, Eduardo C; Chen, Huazhen; Koustova, Elena; Rhee, Peter; Ahuja, Naresh; Chen, Zhang; Valeri, C Robert; Spaniolas, Konstantinos; Mehrani, Tina; Alam, Hasan B
2006-01-01
Cytotoxic properties of racemic (D-,L-isomers) lactated Ringer's solution detected in vitro and in small animal experiments, have not been confirmed in large animal models. Our hypothesis was that in a clinically relevant large animal model of hemorrhage, resuscitation with racemic lactated Ringer's solution would induce cellular apoptosis, which can be attenuated by elimination of d-lactate. Yorkshire swine (n = 49, weight 40-58 kg) were subjected to uncontrolled (iliac arterial and venous injuries) and controlled hemorrhage, totaling 40% of estimated blood volume. They were randomized (n = 7/group) to control groups, which consisted of (1) no hemorrhage (NH), (2) no resuscitation (NR), or resuscitation groups, which consisted of (3) 0.9% saline (NS), (4) racemic lactated Ringer's (DL-LR), (5) L-isomer lactated Ringer's (L-LR), (6) Ketone Ringer's (KR), (7) 6% hetastarch in 0.9% saline (Hespan). KR was identical to LR except for equimolar substitution of lactate with beta-hydroxybutyrate. Resuscitation was performed in three phases, simulating (1) prehospital, (2) operative, (3) postoperative/recovery periods. Arterial blood gasses, circulating cytokines (TNF-alpha, IL-1, -6, -10), and markers of organ injury were serially measured. Metabolic activity of brain, and liver, was measured with microdialysis. Four hours postinjury, organs were harvested for Western blotting, ELISA, TUNEL assay, and immunohistochemistry. All resuscitation strategies restored blood pressure, but clearance of lactic acidosis was impeded following DL-LR resuscitation. Metabolic activity decreased during shock and improved with resuscitation, without any significant inter-group differences. Levels of cytokines in circulation were similar, but tissue levels of TNF in liver and lung increased six- and threefolds (p < 0.05) in NR group. In liver, all resuscitation strategies significantly decreased TNF levels compared with the NR group, but in the lung resuscitation with lactated Ringer (DL and L isomers) failed to decrease tissue TNF levels. DL-LR resuscitation also increased apoptosis (p < 0.05) in liver and lung, which was not seen after resuscitation with other solutions. In this large animal model of hemorrhagic shock, resuscitation with conventional (racemic) LR solution increased apoptotic cell death in liver and lung. This effect can be prevented by simple elimination of D-lactate from the Ringer's solution.
Acute Kidney Injury: Quoi de Neuf?
Reichel, Ronald R.
2014-01-01
Background Acute kidney injury (AKI) is frequently encountered in the nephrology practice. Serum creatinine, with its many shortcomings, is still the main biomarker used to detect AKI. Methods This review focuses on recent advances in definition, diagnosis, risk factors, and molecular mechanisms of AKI. In addition, specific AKI syndromes such as contrast-induced AKI, hepatorenal syndrome, and acute decompensated heart failure are discussed. The connection between AKI and subsequent chronic kidney disease and recent developments in renal replacement therapy are also covered. Results Novel biomarkers such as cystatin C and neutrophil gelatinase–associated lipocalin (NGAL) are being investigated to replace serum creatinine in the detection of AKI. Recent studies suggest that intravenous (IV) fluid use is beneficial for the prevention of contrast-induced AKI, while N-acetylcysteine use is not as well established. Diuretics are clearly beneficial in the treatment of acute decompensated heart failure. Ultrafiltration is less promising and can lead to adverse side effects. Although terlipressin use in hepatorenal syndrome is associated with reduced mortality, it is not available in the United States; combination therapy with midodrine, octreotide, and albumin provides an alternative. Fluid resuscitation is frequently used in critically ill patients with AKI; however, overly aggressive fluid resuscitation is frequently associated with an increased risk of mortality. A 3-step approach that combines guided fluid resuscitation, establishment of an even fluid balance, and an appropriate rate of fluid removal may be beneficial. If fluid resuscitation is needed, crystalloid solutions are preferred over hetastarch solutions. Renal replacement therapy is the last resort in AKI treatment, and timing, modality, and dosing are discussed. Research suggests that AKI leads to an increased incidence of subsequent chronic kidney disease. However, this relationship has not been fully established and additional studies are needed for clarification. Conclusion Despite major advances in AKI research, serum creatinine remains the major biomarker for the detection of AKI. The following interventions have shown to be beneficial: IV fluids for contrast-induced AKI; diuretics for acute decompensated heart failure/cardiorenal syndrome; and combination therapy with midodrine, octreotide, and albumin for hepatorenal syndrome. Fluid resuscitation in a patient with AKI should be used with caution because too liberal use of fluids can be associated with increased mortality. AKI appears to be related to increased rates of subsequent chronic kidney disease, and patients with AKI should therefore be monitored closely. Recent studies on renal replacement therapy have neither revealed an optimal timing for initiation of dialysis nor a clear advantage for a specific dialysis modality. PMID:25249802
NASA Technical Reports Server (NTRS)
Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.
2004-01-01
Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure < 70 mmHg, head trauma, and penetrating injury requiring surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload oxygen from plasma hemoglobin as well as facilitate RBC unloading. We analyzed one volunteer study, 15 intraoperative trials, and 3 trauma studies using HBOCs. Perioperative studies generally suggest ability to deliver oxygen, but one trauma trial using HBOCs (HemAssist) for treatment of trauma resulted in a dramatic increase in mortality, while an intraoperative trauma study using Polyheme demonstrated reductions in blood use and lower mortality compared to historic controls of patients refusing blood. Transfusion reductions with HBOC use have been modest. Two HBOCs (Hemopure and Polyheme) are now in new or planned large-scale multicenter prehospital trials of trauma treatment. A new implementation of small volume resuscitation is closed-loop resuscitation (CLR), which employs microprocessors to titrate just enough fluid to reach a physiologic target . Animal studies suggest less risk of rebleeding in uncontrolled hemorrhage and a reduction in fluid needs with CLR. The first clinical application of CLR was treatment of burn shock and the US Army. Conclusions: Independently sponsored civilian trauma trials and clinical evaluations in operational combat conditions of different small volume strategies are warranted.
Dellinger, R P; Levy, Mitchell M; Rhodes, Andrew; Annane, Djillali; Gerlach, Herwig; Opal, Steven M; Sevransky, Jonathan E; Sprung, Charles L; Douglas, Ivor S; Jaeschke, Roman; Osborn, Tiffany M; Nunnally, Mark E; Townsend, Sean R; Reinhart, Konrad; Kleinpell, Ruth M; Angus, Derek C; Deutschman, Clifford S; Machado, Flavia R; Rubenfeld, Gordon D; Webb, Steven; Beale, Richard J; Vincent, Jean-Louis; Moreno, Rui
2013-02-01
To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) <150 mm Hg (2C); a protocolized approach to blood glucose management commencing insulin dosing when two consecutive blood glucose levels are >180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.
Dellinger, R Phillip; Levy, Mitchell M; Rhodes, Andrew; Annane, Djillali; Gerlach, Herwig; Opal, Steven M; Sevransky, Jonathan E; Sprung, Charles L; Douglas, Ivor S; Jaeschke, Roman; Osborn, Tiffany M; Nunnally, Mark E; Townsend, Sean R; Reinhart, Konrad; Kleinpell, Ruth M; Angus, Derek C; Deutschman, Clifford S; Machado, Flavia R; Rubenfeld, Gordon D; Webb, Steven A; Beale, Richard J; Vincent, Jean-Louis; Moreno, Rui
2013-02-01
To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Some recommendations were ungraded (UG). Recommendations were classified into three groups: 1) those directly targeting severe sepsis; 2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and 3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 hr of recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 hrs of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1C); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients) (1C); fluid challenge technique continued as long as hemodynamic improvement, as based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥ 65 mm Hg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO2/FIO2 ratio of ≤ 100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 hrs) for patients with early ARDS and a Pao2/Fio2 < 150 mm Hg (2C); a protocolized approach to blood glucose management commencing insulin dosing when two consecutive blood glucose levels are > 180 mg/dL, targeting an upper blood glucose ≤ 180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 hrs after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 hrs of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5 to 10 mins (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.